Contents

1 Introduction 1

2 Optical Communication Systems 5

2.1 Digital Transmission Systems 5

2.2 Components of Optical Communication Systems 9

2.2.1 Laser 9

2.2.2 Modulator 10

2.2.3 Single-Mode Fiber 15

2.2.4 Numerical Modeling of Fiber 33

2.2.5 Optical Amplifier 38

2.2.6 Optical and Electrical Filter 41

2.2.7 Photo-Detector 42

2.3 Modulation Formats 42

2.3.1 OOK 44

2.3.2 Duobinary 49

2.3.3 DPSK 54

2.3.4 DQPSK 58

2.3.5 Equivalent Impulse Response 61

2.3.6 Wavelength Division Multiplexing 63

2.4 Transmission Impairments 64

2.4.1 Attenuation 64

2.4.2 Chromatic Dispersion 66

2.4.3 Polarization Mode Dispersion 71

2.4.4 Self-Phase Modulation 76
2.4.5 Cross-Phase Modulation .. 78
2.4.6 Four-Wave Mixing ... 81
2.4.7 Intrachannel FWM and Intrachannel XPM 83
2.4.8 Stimulated Scattering Effects 85
2.5 Conclusions ... 86

3 Electronic Predistortion for Compensation of CD 89
 3.1 Introduction ... 89
 3.2 Principle of Electronic Predistortion 90
 3.3 Filter Adaptation based on the Inverse Transfer Function 95
 3.4 Filter Adaptation utilizing Window-Functions 98
 3.5 Filter Adaptation using the MMSE Criterion 102
 3.6 Impact of Filter Adaptation on EPD Performance 106
 3.7 Compensation of Other Linear Transmission Impairments 109
 3.8 Sensitivity to Limitations in D/A Converter Hardware 109
 3.9 Tolerance towards Detuning of the EPD Filter 119
 3.10 Nonlinear Performance for Single Channel Transmission 119
 3.11 Nonlinear Performance for WDM Transmission 123
 3.12 Improved Nonlinear Transmission by using Phase Optimized OOK 129
 3.13 Complexity of EPD for Compensation of CD 137
 3.13.1 Complexity Reduction using the Symmetry of the FIR Taps 145
 3.13.2 Complexity Reduction using Real Input Signal 146
 3.13.3 Complexity Reduction using the Discrete Input to the FIR Filter 146
 3.13.4 Complexity Reduction using Timing Alignment of the Input Signal 148
 3.14 Conclusions ... 149

4 EPD for Compensation of CD and Nonlinearity 153
 4.1 Introduction .. 153
 4.2 Filter Adaptation to the Transmission Link 154
 4.3 Sensitivity to Limitations in D/A Converter Hardware 158
5 Electronic Predistortion for Compensation of PMD

5.1 Transmitter Structure ... 212
5.2 Identification of the Polarization Transfer Matrix 214
 5.2.1 Perfect Knowledge of the Physical Perturbation 214
 5.2.2 Measurement of the PMD-Vector and its Derivatives 214
 5.2.3 Measurement of the Polarization Transfer Matrix 216
5.3 Adaptation Speed and Control Algorithm 217
5.4 Performance .. 219
 5.4.1 Measured PMD-Vectors 219
 5.4.2 Measurements of the Polarization Transfer Matrix 221
 5.4.3 Impact of Limited Transmitter D/A Conversion Rate 222
 5.4.4 Impact of Measurement Quantization 223
5.5 Conclusions ... 224

6 Summary and Conclusion .. 227

A Split-Step Fourier Method 235
 A.1 Adaptation of Step Size by Nonlinear-Phase Rotation 238
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2</td>
<td>Adaptation of Step Size using Local Error</td>
<td>240</td>
</tr>
<tr>
<td>A.3</td>
<td>Acceleration of the Split-Step Fourier Method by using a GPU</td>
<td>242</td>
</tr>
<tr>
<td>A.3.1</td>
<td>Evaluation of Performance and Accuracy</td>
<td>245</td>
</tr>
<tr>
<td>B</td>
<td>Optimization of Dispersion Maps</td>
<td>253</td>
</tr>
<tr>
<td>B.1</td>
<td>Optimization of an 800km Link at 10.7 Gbit/s</td>
<td>254</td>
</tr>
<tr>
<td>B.2</td>
<td>Optimization of an 800km Link at 42.8 Gbit/s</td>
<td>254</td>
</tr>
<tr>
<td>B.3</td>
<td>Achievable OSNR for a Dispersion Map</td>
<td>256</td>
</tr>
<tr>
<td>C</td>
<td>Parameter Optimization using Simulated Annealing</td>
<td>259</td>
</tr>
<tr>
<td>D</td>
<td>Notation, Symbols and Abbreviations</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>275</td>
</tr>
</tbody>
</table>