Table of Contents

Abstract ... V

List of Figures ... VI

List of Tables ... VII

List of Abbreviations ... VIII

1. **Introduction** ... 1
 1.1. Lymphatic filariasis ... 1
 1.2. The immune response in filarial infection .. 3
 1.2.1. The spectrum of clinical outcomes in filarial infection 3
 1.2.2. Host protection in helminth infection 4
 1.2.2.1. Evidence of immunity in humans 5
 1.2.2.2. Evidence of immunity from animal models 5
 1.2.3. Helminth-derived immune regulation of the host response 6
 1.2.3.1. Host cells targeted by helminths to induce regulation 8
 1.2.3.2. Helminth-derived immunomodulatory molecules 9
 1.2.3.3. Filarial cystatin ... 12
 1.3. Biological functions of monocytes & macrophages 13
 1.3.1. Monocytes .. 13
 1.3.2. Macrophages .. 13
 1.3.2.1. The murine system .. 13
 1.3.2.2. The human system ... 14
 1.3.3. The role of monocytes & macrophages in filarial infection 15
 1.4. Antibody glycosylation in lymphatic filariasis 16
 1.4.1. Antibody structure .. 16
 1.4.2. The role of antibodies in lymphatic filariasis 16
 1.4.3. Fc receptor-mediated activation of innate immune cells 17
 1.4.4. Glycosylation ... 17
 1.4.5. Antibody glycosylation .. 18
 1.4.6. The role of IgG glycosylation in disease 19

2. **Aims of the Study** .. 20
 2.1. Open questions & the contribution of this thesis 20
 2.2. Hypothesis ... 20
 2.3. Aims and objectives .. 20

3. **Materials** .. 21
 3.1. Biological resources ... 21
 3.2. Laboratory equipment .. 21
3.3. Consumables

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>

3.4. Buffers and media

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1. Brugia malayi purification and culture</td>
<td>22</td>
</tr>
<tr>
<td>3.4.2. Cell culture and preparation</td>
<td>22</td>
</tr>
<tr>
<td>3.4.3. Cell sorting and flow cytometry</td>
<td>22</td>
</tr>
<tr>
<td>3.4.4. ELISA</td>
<td>22</td>
</tr>
<tr>
<td>3.4.5. Antibody glycan analysis</td>
<td>23</td>
</tr>
</tbody>
</table>

3.4.1. Brugia malayi purification and culture

3.5. Chemicals and biological reagents

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.1. Chemicals</td>
<td>23</td>
</tr>
<tr>
<td>3.5.2. Microbeads and antibodies</td>
<td>23</td>
</tr>
<tr>
<td>3.5.3. Cytokines</td>
<td>24</td>
</tr>
<tr>
<td>3.5.4. Other reagents</td>
<td>24</td>
</tr>
</tbody>
</table>

3.5.1. Chemicals

3.5.2. Microbeads and antibodies

3.5.3. Cytokines

3.5.4. Other reagents

3.6. Commercial kits

3.7. Primer sequences

3.8. Software

4. METHODS

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Characterisation of the phenotype and function of monocytes and macrophages from filaria non-endemic normal donors</td>
<td>26</td>
</tr>
<tr>
<td>4.1.1. Ethical statement</td>
<td>26</td>
</tr>
<tr>
<td>4.1.2. Brugia malayi adult male, female and Mf lysate and ES preparation</td>
<td>26</td>
</tr>
<tr>
<td>4.1.3. Isolation of PBMCs from buffy coats</td>
<td>26</td>
</tr>
<tr>
<td>4.1.4. Isolation of CD14+ monocytes from PBMCs and subsequent differentiation to macrophages</td>
<td>26</td>
</tr>
<tr>
<td>4.1.5. In vitro stimulation of monocytes and macrophages</td>
<td>27</td>
</tr>
<tr>
<td>4.1.6. Cytokine analysis</td>
<td>27</td>
</tr>
<tr>
<td>4.1.7. RNA extraction and real-time PCR</td>
<td>27</td>
</tr>
<tr>
<td>4.1.8. Harvesting of adhered monocytes and macrophages from culture plates</td>
<td>28</td>
</tr>
<tr>
<td>4.1.9. Flow cytometry analysis of monocytes and macrophages</td>
<td>28</td>
</tr>
<tr>
<td>4.1.10. LPS stimulation of Mf lysate-differentiated macrophages</td>
<td>28</td>
</tr>
<tr>
<td>4.1.11. Phagocytosis assay</td>
<td>28</td>
</tr>
<tr>
<td>4.1.12. Isolation of CD4+ T cells from PBMCs and CFSE labelling</td>
<td>29</td>
</tr>
<tr>
<td>4.1.13. Monocyte:CD4+ T cell coculture</td>
<td>29</td>
</tr>
</tbody>
</table>

4.2. Characterisation of the Wuchereria bancrofti-exposed cohort and determination of the phenotype and function of isolated monocytes

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1. Ethical statement</td>
<td>30</td>
</tr>
<tr>
<td>4.2.2. Study population</td>
<td>30</td>
</tr>
<tr>
<td>4.2.3. Measurement of polyclonal antibody isotypes in plasma</td>
<td>30</td>
</tr>
<tr>
<td>4.2.4. Measurement of B. malayi lysate-specific antibody isotypes in plasma</td>
<td>31</td>
</tr>
</tbody>
</table>
4.2.5. Measurement of filarial cystatin-specific antibody isotypes in plasma
4.2.6. Isolation of PBMCs from whole blood and subsequent purification of CD14+ monocytes
4.2.7. RNA extraction and real-time PCR
4.2.8. In vitro stimulation of monocytes from W. bancrofti endemic donors
4.2.9. Cytokine measurement in the culture supernatant

4.3. Analysis of IgG Fc N-linked glycosylation in W. bancrofti-exposed donors
4.3.1. Study population
4.3.2. Measurement of polyconal and filarial-specific antibody isotypes
4.3.3. Purification of total IgG from plasma
4.3.4. IgG pepsin digestion and generation of Fc glycopeptides
4.3.5. Enzymatic N-glycan release
4.3.6. Isolation and purification of released N-glycans
4.3.7. APTS labelling of glycans
4.3.8. CE-LIF N-glycan profiling

4.4. Statistical analyses

5. RESULTS
5.1. Characterisation of the phenotype and function of monocytes and in vitro generated macrophages from filaria non-endemic normal donors
5.1.1. Monocytes and macrophages respond appropriately to in vitro stimulation with known polarising agents
5.1.2. B. malayi female and Mf lysate act on monocytes and macrophages in a dose-dependent manner
5.1.3. Monocytes and macrophages stimulated in vitro with Mf lysate develop a distinct activation phenotype
5.1.4. B. malayi female and Mf lysate-stimulated macrophages display impaired phagocytosis
5.1.5. B. malayi Mf lysate interferes with macrophage differentiation in vitro
5.1.6. B. malayi Mf lysate-stimulated monocytes impair CD4+ T cell proliferation and cytokine production
5.1.7. Neutralisation of IL-10 or PD-1 restores CD4+ T cell IFN-γ production
5.1.8. Stimulation of monocytes and macrophages with the filarial immunomodulator Bm-CPI-2 reflects the activation phenotype induced by B. malayi Mf lysate

5.2. Characterisation of immunological blood plasma parameters and the phenotype and function of monocytes from W. bancrofti-exposed donors
5.2.1. Filarial-specific antibody measurements confirm the diagnosis and classification of the W. bancrofti-exposed cohort
5.2.2. Monocytes from W. bancrofti AS patients have a regulatory phenotype
5.2.2. Monocytes from filaria-exposed persons respond equally to *B. malayi*-specific stimuli regardless of the immunological background of the host ... 48

5.3. Analysis of total IgG Fc N-Linked glycosylation in *W. bancrofti*-exposed donors .. 50

6. Discussion .. 53

6.1. *In vitro* stimulation of human monocytes and macrophages 53

6.1.1. Human monocytes and macrophages develop typical classically or alternatively activated characteristics under appropriate stimulation conditions 53

6.1.2. *B. malayi* female and Mf lysate induce diverse responses in monocytes and macrophages, characterised by differential expression of M1, M2 and regulatory markers 54

6.1.3. *B. malayi* female and Mf lysate inhibit phagocytosis 55

6.1.4. *B. malayi* Mf lysate interferes with macrophage differentiation *in vitro* 56

6.1.5. *B. malayi* Mf lysate-modulated monocytes curtail CD4+ T cell effector functions through IL-10- and PD-1-dependent mechanisms 56

6.1.6. Stimulation of monocytes and macrophages with *B. malayi* cystatin (Bm-CPI-2) reflects the activation phenotype induced by *B. malayi* Mf lysate 57

6.2. Characterisation of the antibody response and the phenotype and function of monocytes from *W. bancrofti*-exposed donors .. 58

6.2.1. IgG4 dominates the filarial-specific and cystatin-specific antibody response of *W. bancrofti* AS patients ... 58

6.2.2. The phenotype of monocytes from *W. bancrofti* AS patients reflects that observed in monocytes stimulated *in vitro* with *B. malayi* Mf lysate 58

6.3. *W. bancrofti* AS patients display a distinct antibody glycosylation profile characterised by decreased levels of disialylated IgG 59

7. Limitations of the Study .. 60

8. Outlook ... 61

8.1. Cystatin as a filarial immunomodulator that contributes to the development of asymptomatic infection in lymphatic filariasis ... 61

8.2. Determination of the glycosylation profile of cystatin-specific IgG and its subclasses, and the role of IgG with decreased sialylation 61

Zusammenfassung .. 62

Bibliography .. 63

Publications & Scientific Contributions ... 81

Acknowledgements .. 82

Selbstständigkeitserkärung .. 83