<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Subsections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Semiconductors: Basic Operating Principles</td>
<td>1.1 Basics for the operation of power semiconductors, 1.2 Power electronic switches</td>
</tr>
<tr>
<td>2</td>
<td>Basics</td>
<td>2.1 Application fields and current performance limits for power semiconductors, 2.2 Line rectifiers, 2.2.1 Rectifier diodes, 2.2.1.1 General terms, 2.2.1.2 Structure and functional principle, 2.2.1.3 Static behaviour, 2.2.1.4 Dynamic behaviour, 2.2.2 Thyristors, 2.2.2.1 General terms, 2.2.2.2 Structure and functional principle, 2.2.2.3 Static behaviour, 2.2.2.4 Dynamic behaviour, 2.3 Freewheeling and snubber diodes, 2.3.1 Structure and functional principle, 2.3.1.1 Schottky diodes, 2.3.1.2 PIN diodes, 2.3.2 Static behaviour, 2.3.2.1 On-state behaviour, 2.3.2.2 Blocking behaviour, 2.3.3 Dynamic behaviour, 2.3.3.1 Turn-on behaviour, 2.3.3.2 Turn-off behaviour, 2.3.3.3 Dynamic ruggedness, 2.4 Power MOSFET and IGBT, 2.4.1 Structure and functional principle, 2.4.2 IGBT, 2.4.2.1 Static behaviour, 2.4.2.2 Switching behaviour, 2.4.2.3 IGBT – Concepts and new directions of development, 2.4.3 Power MOSFET, 2.4.3.1 Static behaviour, 2.4.3.2 Switching behaviour, 2.4.3.3 Latest versions and new directions of development, 2.5 Packaging, 2.5.1 Technologies, 2.5.1.1 Soldering, 2.5.1.2 Diffusion sintering (low-temperature joining technology), 2.5.1.3 Wire bonding, 2.5.1.4 Pressure contact, 2.5.1.5 Assembly and connection technology, 2.5.1.6 Modules with or without base plate, 2.5.2 Functions and features, 2.5.2.1 Insulation, 2.5.2.2 Heat dissipation and thermal resistance, 2.5.2.3 Power cycling capability, 2.5.2.4 Current conduction to the main terminals, 2.5.2.5 Low-inductance internal structure, 2.5.2.6 Coupling capacitances, 2.5.2.7 Circuit complexity</td>
</tr>
</tbody>
</table>
2.5.2.8 Defined and safe failure behaviour in the event of module defects

2.5.2.9 Environmentally compatible recycling

2.5.3 Discrete devices

2.5.3.1 Small rectifiers

2.5.3.2 Stud-mounted diodes and stud thyristors

2.5.3.3 Disk cells

2.5.3.4 SEMISTART®

2.5.4 Power modules

2.5.4.1 Basics

2.5.4.2 Module families with rectifier diodes and thyristors

2.5.4.3 Module families with IGBT and freewheeling diodes

2.6 Integration of sensors, protective equipment and driver electronics

2.6.1 Modules with integrated current measurement

2.6.2 Modules with integrated temperature measurement

2.6.3 IPM (Intelligent Power Module)

2.7 Reliability

2.7.1 MTBF, MTTF and FIT rate

2.7.2 Accelerated testing according to Arrhenius

2.7.3 Standard tests for the product qualification and postqualification

2.7.3.1 High Temperature Reverse Bias Test (HTRB), High Temperature Gate Bias Test (HTGB), High Humidity High Temperature Reverse Bias Test (THB)

2.7.3.2 High and low temperature storage (HTS, LTS)

2.7.3.3 Temperature cycling test (TC)

2.7.3.4 Power cycling test (PC)

2.7.3.5 Vibration test

2.7.4 Additional tests for spring contacts

2.7.4.1 Micro-vibration (fretting corrosion)

2.7.4.2 Corrosive atmosphere (pollution gas test)

2.7.4.3 Contact-to-PCB temperature cycling

2.7.5 Failure mechanisms during power cycling

2.7.6 Evaluation of temperature changes regarding module lifetime

3 Datasheet Ratings for MOSFET, IGBT, Diodes and Thyristors

3.1 Standards, symbols and terms

3.1.1 Standards

3.1.2 Letter symbols and terms

3.1.3 Maximum ratings and characteristics

3.1.4 Component (type) designation system

3.2 Rectifier diodes and thyristors

3.2.1 Temperatures

3.2.2 Thermal impedance and thermal resistance

3.2.3 Mechanical data

3.2.4 Rectifier diodes

3.2.4.1 Maximum ratings

3.2.4.2 Characteristics

3.2.4.3 Diagrams

3.2.5 Thyristors

3.2.5.1 Maximum ratings

3.2.5.2 Characteristics

3.2.5.3 Diagrams

3.2.6 Diode and thyristor modules

3.2.6.1 Maximum ratings and characteristics

3.2.6.2 Diagrams

3.3 IGBT modules

3.3.1 Maximum ratings