Inhalt/Content

Seite/Page

<table>
<thead>
<tr>
<th>Vorwort / Preface</th>
<th>1</th>
</tr>
</thead>
</table>

Plenarvorträge / Plenary Lecture

- **H. Ludanek, G. Sandgren, F. Roos**
 Drivetrain functions for reduction of CO2-emission and higher comfort in future powertrain concepts with an integrated approach
 3

- **T. Nakatsuka**
 Role of transmissions in contributing to the automotive industry
 21

- **Y. Hojo**
 TOYOTA drivetrain technologies for customers around the world
 41

Automatikgetriebe / Stufenlosgetriebe / Automatic transmission / continuously variable transmission

- **C. Zülch, C. Kraft, U. Lindner, M. Mischnick, M. Reichler**
 The new BMW powertrain with eight-speed automatic transmission
 57

- **A. Teubert**
 CVT – The transmission concept of the future
 67

- **F. Shinohara**
 Development of new shift controls CVT7’s auxiliary gearbox to obtain a smoother shift feel
 83
NVH / NVH

C. Sasse
New hydrodynamic torque converters for improved NVH-behavior and reduced fuel consumption 95

H. Faust
Powertrain with sequential cylinder deactivation (SCD) modes of 6-cylinder engines 105

P. Lindemann, T. Krause, M. Steinberger
Innovative Torque Converters – iTC™ 119

Elektrische Antriebe und Speicher / Electric drivetrain and storage

P. Lück,
The modular electric drive of the Volkswagen e-Golf 139
H. Jelden,
J. Tousen

M. Budde
Future requirements of electrical vehicle batteries 155

S. Quaglia, G. Riedmiller
The functional innovations of the BMW i3 powertrain 165

Hybrid I / Hybrid drive I

J. Ogrzewalla, M. Stapelbroek, G. Hellenbroich
ePGS – package optimized hybrid drivetrain 181

M. Rihn
A universal hybrid transmission for HEVs, PHEVs and E-REVs – PUNCH powerglide’s vision of hybrid mobility 189

H. Schäfer
Electrical transmission for plug-in-hybrid vehicles 203
Antriebssysteme / Drive systems

J. Lang, V. Marx, P. Gansloser

CTC – Compact Transfer Case – Das neue Mercedes-Benz Allradsystem

J. Gindele, W. Novak, P. Fietkau, P. Neuwirth, W. Leitermann

Trans:Mission – Driving performance – The transaxle powertrain of the Mercedes-AMG sports cars

Kupplungen / Synchronisierung / Clutches / Synchronizer

N. Tonius, B. Bertsche, C. Dörr

Dog clutches as innovative shifting elements for automatic transmissions

A. Promberger, F. Nickel, V. Föge

Potential and further development of the free spinning friction ring – Has a long time displaced friction system concept the right answers for today’s challenges?

T. Neupert, D. Bartel

Drag torque of wet clutches – Comparison of measurement and CFD simulation

Doppelkupplungsgetriebe / Dual clutch transmission

J. Hoffmann, P. Bührle, K.-L. Kimmig, A. Englisch, A. Götz

Double clutch systems – comfortable, efficient, sporty

A. Grau

Development process for a wet dual clutch with regard to fulfill vehicle requirements
Hybrid II / Hybrid drive II

W. Binder, H. Gröhlich, A. Kelller
The new e-S tronic® with integrated electric motor in the Audi A3 e-tron – 6-Speed e-DCT (DQ400E) 321

L. Hallén
The automatic transmission for the new Volvo XC90 plug-in hybrid powertrain 339

V. Saxena, A. Moser, F. Schneider, H.-J. Hauck, M. Burmeister, R. Köstel
Innovative and compact disconnect system for electrified drivetrains using a one-way clutch in a DCT 345

Elektrische Antriebe / Electric drivetrain

U. Griesmeier, V. Engel, E. Lübbe, D. Ortner
Implementation of a range extender concept for vehicles with front- or rear-transverse mounted engines 355

Gear design for a high-speed e-drive – Gear concepts for high-speed e-motive applications 369

T. Altenrath
GKN two speed electric front axle for the BMW i8 – The first two speed eAxle on the market 383

W. Schön
Highly integrated electric drivetrain 397
Handschaltgetriebe / Manual transmission

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Hofmann, U. Kretzschmar</td>
<td>The new small 6-speed manual transmission of GM</td>
<td>405</td>
</tr>
<tr>
<td>M. Sedlmair, J. Geiger, J.-P. Stemplinger, K. Stahl</td>
<td>Efficiency potential of a manual transmission – Simulation of optimization measures in gears and lubricants</td>
<td>419</td>
</tr>
<tr>
<td>R. Krüttgen</td>
<td>New fuel economy transmission fluids for manual gearboxes – challenges and opportunities</td>
<td>435</td>
</tr>
</tbody>
</table>

Komponenten / Components

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Pabst, S. Tremmel, S. Wartzack</td>
<td>Increasing the rating life of planetary bearings in automatic transmissions through residual compressive stresses</td>
<td>451</td>
</tr>
<tr>
<td>M. Müller</td>
<td>Weight and cost reduction of hydraulic drive train components by application of engineering plastics – Applications from clutch master cylinder to gear shift module and electric oil pumps</td>
<td>465</td>
</tr>
<tr>
<td>P. Echtler, K. Renck, A. Schenk</td>
<td>Next gen low viscosity gear oils and their impact on modern synchronizer systems</td>
<td>481</td>
</tr>
</tbody>
</table>
Simulation / Simulation

M. Zimmer, M. Otto, K. Stahl

C. Spangler, C. Guo, D. Semenov, A. Moser

Uniform geometry calculation of arbitrary gear types for automotive gearings

Comparison of DCT actuation systems – An evaluation of system efficiency and cost

4. VDI-Fachkonferenz / 4th VDI Conference
Getriebe in Nutzfahrzeugen / Transmissions in Commercial Vehicles

Effizienz / Efficiency

G. Woentner, S. Kuntner

Efficiency optimization by using a normally closed / normally closed double clutch in combination with a fail save hydraulic actuation system

S. Caba, S. Liu

Reducing the CO₂ emissions during garbage collection

S. Chaker, C. Kehrer, M. Folie

Predictive gear-shifting – optimization of the transmission control by driver assistance systems using the example of an automatic transmission

B. A. J. de Jong

DAF predictive cruise control – Minimising fuel consumption by anticipating on a 2 km slope horizon
<table>
<thead>
<tr>
<th>Komponenten / Components</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Häggström, W. Stenström, U. Sellgren, S. Björklund</td>
<td>Parameter study of the thermomechanical performance of heavy duty synchronizers 597</td>
</tr>
<tr>
<td>J. Kibler, D. Laukemann, T. Huth</td>
<td>Voith retarder 115CT 621</td>
</tr>
<tr>
<td>K. Peter</td>
<td>Innovative control concepts for electromagnetic clutches in automotive applications 631</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antriebsstrang / Drivetrain</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Resch, J. Müller</td>
<td>Development of highly functional power shift transmissions for future commercial vehicles 645</td>
</tr>
<tr>
<td>V. Hartmann</td>
<td>High performance powertrains for commercial vehicle and offhighway applications considering the most modern security standards and regulation 653</td>
</tr>
<tr>
<td>J.-F. Kuhn</td>
<td>Active control of speed and tractive force of a CVT driven construction machine 661</td>
</tr>
<tr>
<td>H. Aitzetmüller</td>
<td>New powersplit transmissions for on- and off-road vehicles 671</td>
</tr>
<tr>
<td>S. Ott, A. Albers, S. Boog, C. Koch, O. Müller</td>
<td>Optical analysis and measurement-based determination of spring behavior in clutch disc damper systems during dynamic operation 679</td>
</tr>
</tbody>
</table>
Validierung / Validation

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Süssmann</td>
<td>Generation and utilization of customer-specific driving cycles for heavy duty vehicles</td>
<td>701</td>
</tr>
<tr>
<td>T. Kattenberg, L. Frerichs, M. Lienkamp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Hawarden, G. Jackson</td>
<td>Dual clutch transmissions in commercial vehicles – Eaton® Procision™ 7-speed dual clutch</td>
<td>711</td>
</tr>
<tr>
<td>F. Nickel, M. Mühlegger, D. Scherrer</td>
<td>Innovative compound friction materials in commercial vehicle clutches</td>
<td>721</td>
</tr>
</tbody>
</table>

2nd International VDI Conference

Control Solutions for Transmissions

System Integration und Robustheit von Sensoren / System integration and robustness of sensors

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Munzig</td>
<td>Reliable sensor technologies for transmission applications</td>
<td>733</td>
</tr>
<tr>
<td>L. Aichriedler, D. Spitzer</td>
<td>Advanced transmission sensors for speed and position detection</td>
<td>743</td>
</tr>
<tr>
<td>M. Eglinger</td>
<td>Closed-loop pressure control in transmission applications</td>
<td>753</td>
</tr>
<tr>
<td>A. Peukert</td>
<td>Shift – by – wire system with alternative sensors – Logical combination of sensors and magnets</td>
<td>761</td>
</tr>
<tr>
<td>Kontrollsysteme und Konzepte für die Aktuatorik von Kupplungssystemen / Control systems and concepts for actuation of different clutch systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. Göckler</td>
<td>Transmission actuation – Further development of existing systems and new application areas</td>
<td></td>
</tr>
<tr>
<td>M. Leesch</td>
<td>CO₂ reduction through modern DCT actuation units</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardware und Software Entwicklung / Hardware and software development</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Leteinturier, K. Scheibert, B. Steurich</td>
</tr>
<tr>
<td>M. Yolga</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optimierung durch Simulation und Tests / Optimization by simulation and testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Ganier, M. Mochi, F. Gallo, M. Lutz</td>
</tr>
<tr>
<td>V. Talon, N. Sabatier, P. Montaland</td>
</tr>
<tr>
<td>J. Srnik, E. Müller, M. Homm</td>
</tr>
<tr>
<td>G. Bauer, R. Gaspar, J. Mauss</td>
</tr>
</tbody>
</table>
Optimierungsmöglichkeiten für die Integration und Effizienzsteigerung der Getriebeaktuatorik /
Potentials of integration and efficiency improvement of actuations in transmissions

M. Kehrer, U. Polzin

Functional requirements of direct-controlled and pilot-controlled hydraulic solenoid valves for transmission application

845

F. Jonas, R. Frei

Effective design procedure for hydraulic components by interdisciplinary system simulation of electrified powertrains

853

E. Müller, M. Homm, H. Kalczynski

Highly integrated and efficient actuation of the 9G-TRONIC by Mercedes-Benz

863

L. Holtmann

Pump systems for future transmissions – Contribution of optimized pump technology on reduced fuel consumption

871

Umgang mit neuen hybriden Konzepten /
Controlling new hybrid features

J. Nienstedt, J. Waterstredt

Electronic and hydraulic controls integration of a hydraulic accumulator for stop-start operation

879

M. Falco

Influence of electric drive systems and their control on the NVH behavior of hybrid and electric vehicles

881