The molecular neuroanatomy, chemoarchitecture and projectome of the hypothalamic center regulating the stress response in larval zebrafish

Referees:

Prof. Dr. Jochen Wittbrodt Dr. Soojin Ryu

TABLE OF CONTENTS

.

Abstract

Zusammenfassung

Publications

Talks and poster presentations

1 Introduction	1
1.1 The stress response	1
1.2 The paraventricular nucleus of the hypothalamus	3
1.2.1 The mammalian PVN	3
1.2.2 The PVN homolog in fish	3
1.2.3 Transcription factor expression delineating the PVN-homologous	
region in vertebrates	4
1.2.4 Cell types of the PVN/NPO	4
1.3 The pituitary gland	7
1.4 The adrenal/interrenal gland	7
1.5 Zebrafish as a new model in stress research	8
1.5.1 Advantages	9
1.5.2 Challenges	9
2 Aims of the project	10
3 Results	11
3.1 Body axis and neuraxis	<u>11</u>
3.2 Defining the PVN-homologous region in larval zebrafish using conserved	
transcription factor expression	11
3.2.1 Comparison of preoptic <i>otpa</i> and <i>otpb</i> expression	12
3.2.2 The spatial arrangement of transcription factor expression domains	s in
relation to <i>otpa</i>	12

.

3.3 Identification of peptidergic cell types present in the NPO	17
3.3.1 Anatomical landmarks in relation to the NPO	_17
3.3.2 Typical PVN cell types are located inside and surrounding the NPC)
	20
3.3.3 The 3D location of neurosecretory cell types within the otpa-positiv	ve
PO	_22
3.3.4 Chemoarchitecture of the NPO	24
3.3.5 Avp and Oxt in the adult brain	30
3.4 NPO cell type subclassification based on peptide coexpression	31
3.4.1 Absence of coexpression in all animals	31
3.4.2 Variable coexpression	33
3.4.3 Consistent coexpression	36
3.5 A cis-regulatory module that allows targeted expression in the NPO	39
3.6 Morphological analysis of NPO cells reveals innervated target regions	43
3.6.1 The Brainbow technique in larval zebrafish	44
3.6.2 Morphological analysis of NPO cells producing Avp or Oxt	51
3.7 Generation of transgenic lines that allow specific manipulation of the cells	
within the stress axis	58
3.7.1 Targeted expression to manipulate the NPO	58
3.7.2 Transgenic access to manipulate the interrenal gland	60
3.8 Summary	66
4 Discussion	67
4.1 Comparative chemoarchitecture	67
4.2 Homology of the PVN and the NPO	68
4.3 Coexpression comparison with mammals	69
4.4 Functional implications of coexpressed neuropeptides	72
4.5 Transgenic manipulation of the stress axis	74
4.5.1 The stress response is dampened after genetic cell ablation using	
otpECR6	74
4.5.2 Ablation of interrenal cells induces hypocortisolemia	74

.

4.6 Implications of single cell neuromorphology shown by Brainbow	75
5 Conclusion and Outlook	76
6 Material and Methods	79
6.1 Material	79
6.1.1 Buffers and solutions	79
6.1.2 Enzymes and reaction kits	80
6.1.3 Instruments	80
6.1.4 Animals	80
6.1.5 Plasmid constructs (transient injections)	81
6.1.6 Riboprobes and morpholinos	81
6.1.7 Antibodies	82
6.1.8 Microscopy	84
6.1.9 Software	84
6.2 Experimental procedure	84
6.2.1 Fish maintenance	85
6.2.2 Riboprobe synthesis	85
6.2.3 Whole-mount fluorescent in situ hybridization	86
6.2.4 Whole-mount immunohistochemistry	86
6.2.5 Transgenesis	87
6.2.6 Screening procedure	87
6.2.7 Embedding of larvae	87
6.2.8 Confocal microscopy	87
6.2.9 Image evaluation	87
6.2.10. Conditional targeted cell ablation	88
7 Abbreviations	89
8 References	92

-

Acknowledgements_____104