Contents

List of Contributors — IX

1 Carbon Nanomembranes — 1
1.1 Molecular Mechanisms of Electron-Induced Cross-Linking — 5
1.2 Tuning of CNM's Properties on a Molecular Level — 12
Acknowledgments — 25
References — 25

2 Controlled Functionalization of Graphene by Oxo-addends — 30
2.1 Introduction — 30
2.2 History of GO and Graphite Oxide — 31
2.3 Structure of GO — 32
2.3.1 Considerations about the Structure of GO — 33
2.4 Nomenclature of Functionalized Graphene — 34
2.5 Oxo-Functionalized Graphene — 34
2.5.1 Oxo-G₁ from Graphite — 35
2.5.2 Oxo-G₁ from Graphite Sulfate — 36
2.5.3 Organosulfate in Oxo-G₁ and GO — 37
2.6 Raman Spectroscopy of Graphene, GO and Oxo-G₁ — 38
2.6.1 Raman Spectra of Graphene — 39
2.6.2 Raman Spectra of Graphene with Defects — 40
2.6.3 Raman Spectra of GO, rGO, Oxo-G₁ and Related Graphene — 40
2.6.4 SRS and Microscopy — 41
2.7 Conventional Chemistry of GO — 42
2.7.1 Non-Covalent and Covalent Approaches — 43
2.7.2 Considerations about Carbon–Carbon Bond Formation — 48
2.8 Controlled Oxo-Functionalization of Graphene — 50
2.8.1 Stability of GO — 50
2.8.2 Stability of Oxo-G₁ — 53
2.8.3 Reduction of Oxo-G₁ — 54
2.8.4 Synthetic Modification of Oxo-G₁ — 56
2.9 Conclusions — 60
References — 61

3 Chemical Synthesis of Cycloparaphenylenes — 67
3.1 Introduction — 67
3.2 Synthetic Efforts toward CPPs — 67
3.3 Synthetic Strategies toward CPPs — 70
3.4 Synthesis of [5]–[12] and [18]CPP by Bertozzi and Jasti — 71
3.5 Synthesis of [7]–[16]CPP by Itami — 74
3.5.1 Synthesis of [5]–[13] and [16]CPP by Yamago — 78
3.6 Synthesis of Armchair Carbon Nanorings — 82
3.6.1 Synthesis of Chiral and Zigzag Carbon Nanorings — 89
3.7 Synthesis of Heteroatom-Containing Carbon Nanorings — 91
3.8 Synthesis of Carbon Nanocages — 94
3.9 Summary — 98
References — 98

4 Controlled Chemical Synthesis in CVD Graphene — 104
4.1 Introduction — 104
4.2 Layer Number Control — 106
4.2.1 Layer Number Control on Ni Substrate — 106
4.2.2 Bilayer Graphene and Stacking on Cu Substrate — 118
4.3 Large-Sized Single-Crystal Graphene on Cu Substrate — 123
4.3.1 Substrate — 123
4.3.2 Growth Parameters — 128
4.4 Direct Growth on Insulating Substrates — 131
4.5 Doping — 133
4.6 Conclusions and Perspectives — 134
References — 136

5 Chemical Functionalization of Graphene Family Members — 146
5.1 Graphene — 146
5.1.1 Covalent Functionalization Reactions — 147
5.1.2 Non-covalent Functionalization Reactions — 153
5.2 Graphene oxide — 154
5.2.1 Covalent Functionalization Reactions — 155
5.2.2 Non-covalent Functionalization Reactions — 159
5.3 Reduced GO — 159
5.3.1 Covalent Functionalization — 160
5.3.2 Non-covalent Functionalization Reactions — 160
5.4 Characterization of Graphene Family Members — 161
5.4.1 UV-Visible Spectroscopy — 161
5.4.2 Fourier transform infrared Spectroscopy — 161
5.4.3 Atomic Force Microscopy — 162
5.4.4 Transmission Electron Microscopy — 163
5.4.5 Raman spectroscopy — 164
5.4.6 X-Ray Photoelectron Spectroscopy — 165
5.4.7 Thermogravimetric Analysis — 165
5.5 Conclusions — 166
Acknowledgments — 167
References — 167
6 Graphene via Molecule-Assisted Ultrasound-Induced Liquid-Phase Exfoliation: A Supramolecular Approach — 173
6.1 Introduction — 173
6.2 Ultrasound-Induced Liquid-Phase Exfoliation — 174
6.3 Molecule-Assisted UILPE — 177
6.3.1 Dispersions in Aqueous Solutions — 177
6.3.2 Graphene Dispersions in Organic Solvents — 183
6.4 Conclusion — 185
Acknowledgments — 186
References — 186

7 Solution Synthesis of Atomically Precise Graphene Nanoribbons — 194
7.1 Introduction — 194
7.2 Structure of Solution-Synthesized GNRs — 198
7.3 Synthetic Approaches Toward Atomically Precise GNRs — 201
7.3.1 Suzuki Coupling — 201
7.3.2 Yamamoto Coupling — 201
7.3.3 Diels–Alder Reaction — 203
7.3.4 Planarization of Synthesized Polymers — 204
7.3.5 Alternative Approaches — 205
7.4 Chemical Modification — 206
7.4.1 Nitrogen Doping — 207
7.4.2 Edge Chlorination — 209
7.5 Characterization Techniques for Solution-Synthesized GNRs — 209
7.6 Challenges in Solution-Based Synthesis of GNRs — 215
7.6.1 Solubility — 216
7.6.2 Isomerization — 217
7.7 Summary and Future Outlook — 219
References — 220

8 Nanodiamonds for Biological Applications — 226
8.1 Introduction — 226
8.2 Biocompatibility of NDs — 226
8.2.1 In Vitro Biocompatibility Evaluation of NDs — 227
8.2.2 In Vivo Biocompatibility Evaluation of NDs — 228
8.3 Surface Coating for Improving ND Stability and Biocompatibility in Biological Environments — 229
8.3.1 Covalent Coating of NDs — 229
8.3.2 Non-covalent Coating of NDs — 231
8.3.3 Silica Coating — 233
8.4 Functionalization of NDs with Biomolecules — 234
8.4.1 Introduction of Proteins onto NDs — 234
8.4.2 Modification of DNA on NDs — 235
8.4.3 Self-Assembled NDs on Bionanostructures — 235
8.5 ND for Drug delivery — 237
8.5.1 Drug Delivery with Detonation ND Clusters — 237
8.5.2 Drug Delivery with Polymer-Modified NDs — 239
8.6 NDs for Imaging and Biosensing — 240
8.6.1 Fluorescence Imaging with NDs — 243
8.6.2 NDs as Nanoscale Magnetometer — 243
8.6.3 Magnetic Resonance Imaging with Hyperpolarized NDs — 246
8.7 Conclusions — 247
Acknowledgments — 248
References — 248

9 Polycyclic Hydrocarbons with an Open-Shell Ground State — 253
9.1 Introduction — 253
9.2 Quinodimethane-Based Open-Shell Polycyclic Hydrocarbons — 256
9.2.1 o-QDM-Embedded Diradicaloids — 256
9.2.2 m-Xylylene-Based Systems — 257
9.2.3 p-QDM-Embedded Systems and Its π-Extended Derivatives — 259
9.3 Open-Shell Anthenes and Peri-Fused Acenes — 265
9.3.1 Anthenes — 265
9.3.2 Periacenes — 267
9.4 Phenalenyl-Based Open-Shell PHs — 270
9.4.1 Phenalenyl-Based Monoradicals — 270
9.4.2 Phenalenyl-Based Diradicaloids — 275
9.5 Miscellaneous Open-Shell PHs — 281
9.6 Conclusion — 282
Acknowledgments — 283
References — 283

10 Synthesis and Use of Reactive Molecular Precursors for the Preparation of Carbon Nanomaterials — 289
10.1 Introduction — 289
10.2 Reactivity of Oligoynes — 291
10.3 Synthetic Approaches toward Oligoynes — 292
10.4 Carbonization of Non-Preorganized Oligoynes — 296
10.5 Topochemical Polymerization of Oligoynes — 299
10.6 Self-Assembly and Carbonization of Functionalized Oligoynes — 301
10.7 Conclusions and Outlook — 307
Acknowledgments — 308
References — 308

Index — 315