Galaxy and Structure Formation
in Dynamical and Coupled Dark Energy

Camilla Penzo
Max-Planck-Institut für Astronomie

Referees: Dr. Andrea V. Macciò
Prof. Dr. Björn M. Schäfer
Contents

Introduction

1 Cosmological Models
 1.1 Cosmological Assumptions and Equations
 1.2 An Expanding universe and the Cosmological Constant
 1.3 The ΛCDM Model
 1.3.1 Baryons
 1.3.2 Radiation
 1.3.3 Dark Matter
 1.3.4 Problems of a Cosmological Constant
 1.4 Dark Energy
 1.4.1 Dynamical Dark Energy
 1.4.2 Coupled Dark Energy

2 Galaxy Formation and Evolution
 2.1 Linear Structure Formation
 2.1.1 Remarks on Linear Evolution and Dark Energy
 2.2 Non-Linear Structure Formation
 2.2.1 Spherical Collapse
 2.2.2 Press-Schechter Mass Function
 2.2.3 The Zel'dovich Approximation
 2.3 N-Body Simulations of the Large-Scale Structure of the universe
 2.3.1 Particle-Particle Method
 2.3.2 Particle-Mesh Method
 2.3.3 Tree Algorithms
 2.3.4 Halo mass Function
 2.3.5 Radial Density Profiles
 2.4 Hydrodynamical Processes in Galaxy Formation
 2.4.1 Accreting Gas and Cooling Process
 2.4.2 Star Formation and Feedback Mechanisms
 2.5 Hydrodynamics
 2.5.1 SPH Method