Inhaltsverzeichnis

I Vektoranalyse ... 1

1 Ebene und räumliche Kurven ... 1
 1.1 Vektorielle Darstellung einer Kurve 1
 1.2 Differentiation eines Vektors nach einem Parameter 4
 1.2.1 Ableitung eines Vektors ... 4
 1.2.2 Geschwindigkeits- und Beschleunigungsvektor eines Massenpunktes 9
 1.3 Bogenlänge einer Kurve .. 12
 1.4 Tangenten- und Hauptnormaleneinheitsvektor 16
 1.5 Krümmung einer Kurve ... 21
 1.6 Ein Anwendungsbeispiel: Zerlegung von Geschwindigkeit und Beschleunigung in Tangential- und Normalkomponenten 27

2 Flächen im Raum .. 31
 2.1 Vektorielle Darstellung einer Fläche 31
 2.2 Flächenkurven .. 35
 2.3 Tangentialebene, Flächennormale, Flächenelement 37
 2.4 Flächen vom Typ $z = f(x, y)$ 43

3 Skalar- und Vektorfelder .. 47
 3.1 Ein einführendes Beispiel ... 47
 3.2 Skalarfelder ... 50
 3.3 Vektorfelder ... 52
 3.4 Spezielle Vektorfelder aus Physik und Technik 55
 3.4.1 Homogenes Vektorfeld ... 55
 3.4.2 Kugel- oder radialsymmetrisches Vektorfeld (Zentralfeld) 56
 3.4.3 Zylinder- oder axialsymmetrisches Vektorfeld 58
 3.4.4 Zusammenstellung der behandelten Vektorfelder 59

4 Gradient eines Skalarfeldes .. 60
 4.1 Definition und Eigenschaften des Gradienten 60
 4.2 Richtungsableitung ... 64
 4.3 Flächen vom Typ $F(x; y; z) = 0$ 66
 4.4 Ein Anwendungsbeispiel: Elektrisches Feld einer Punktladung 68

5 Divergenz und Rotation eines Vektorfeldes 70
 5.1 Divergenz eines Vektorfeldes 70
 5.1.1 Ein einführendes Beispiel 70
 5.1.2 Definition und Eigenschaften der Divergenz 74
 5.1.3 Ein Anwendungsbeispiel: Elektrisches Feld eines homogen geladenen Zylinders 77
Inhaltsverzeichnis

8 Oberflächenintegrale ... 170
 8.1 Ein einführendes Beispiel .. 170
 8.2 Definition eines Oberflächenintegrals 175
 8.3 Berechnung eines Oberflächenintegrals 177
 8.3.1 Oberflächenintegral in speziellen (symmetriegerechten) Koordinaten .. 178
 8.3.2 Oberflächenintegral in Flächenparametern 190
 8.4 Anwendungsbeispiele aus Physik und Technik 195
 8.4.1 Fluss eines homogenen Vektorfeldes durch die Oberfläche eines Würfels 195
 8.4.2 Fluss eines zylinder- oder axialsymmetrischen Vektorfeldes durch die Oberfläche eines Zylinders .. 199
 8.4.3 Fluss eines kugel- oder radialsymmetrischen Vektorfeldes durch die Oberfläche einer Kugel 202

9 Integralsätze von Gauß und Stokes ... 205
 9.1 Gaußscher Integralsatz .. 205
 9.1.1 Ein einführendes Beispiel .. 205
 9.1.2 Gaußscher Integralsatz im Raum .. 207
 9.1.3 Gaußscher Integralsatz in der Ebene 211
 9.2 Stokesscher Integralsatz ... 214
 9.3 Anwendungsbeispiele aus Physik und Technik 222
 9.3.1 Elektrisches Feld eines homogen geladenen Zylinders 222
 9.3.2 Magnetfeld eines stromdurchflossenen linearen Leiters 227

Übungsaufgaben ... 230
 Zu Abschnitt 1 .. 230
 Zu Abschnitt 2 .. 232
 Zu Abschnitt 3 .. 234
 Zu Abschnitt 4 .. 236
 Zu Abschnitt 5 .. 237
 Zu Abschnitt 6 .. 239
 Zu Abschnitt 7 .. 242
 Zu Abschnitt 8 .. 245
 Zu Abschnitt 9 .. 248

II Wahrscheinlichkeitsrechnung .. 251
 1 Hilfsmittel aus der Kombinatorik .. 251
 1.1 Urnenmodell ... 251
 1.2 Permutationen .. 252
 1.3 Kombinationen .. 255
 1.4 Variationen .. 260
 1.5 Tabellarische Zusammenstellung der wichtigsten Formeln 264
 2 Grundbegriffe .. 264
 2.1 Einführende Beispiele .. 264
 2.2 Zufallsexperimente .. 268
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitennummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Elementareignisse und Ergebnismenge eines Zufallsexperiments</td>
<td>269</td>
</tr>
<tr>
<td>2.4</td>
<td>Ereignisse und Ereignisraum</td>
<td>270</td>
</tr>
<tr>
<td>2.5</td>
<td>Verknüpfungen von Ereignissen</td>
<td>273</td>
</tr>
<tr>
<td>3</td>
<td>Wahrscheinlichkeit</td>
<td>276</td>
</tr>
<tr>
<td>3.1</td>
<td>Laplace-Experimente</td>
<td>276</td>
</tr>
<tr>
<td>3.2</td>
<td>Wahrscheinlichkeitsaxiome</td>
<td>281</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Eigenschaften der relativen Häufigkeiten</td>
<td>281</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Wahrscheinlichkeitsaxiome von Kolmogoroff</td>
<td>284</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Festlegung unbekannter Wahrscheinlichkeiten in der Praxis („statistische“ Definition der Wahrscheinlichkeit)</td>
<td>286</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Wahrscheinlichkeitsraum</td>
<td>287</td>
</tr>
<tr>
<td>3.3</td>
<td>Additionssatz für beliebige Ereignisse</td>
<td>290</td>
</tr>
<tr>
<td>3.4</td>
<td>Bedingte Wahrscheinlichkeit</td>
<td>292</td>
</tr>
<tr>
<td>3.5</td>
<td>Multiplikationssatz</td>
<td>295</td>
</tr>
<tr>
<td>3.6</td>
<td>Stochastisch unabhängige Ereignisse</td>
<td>299</td>
</tr>
<tr>
<td>3.7</td>
<td>Ereignisbäume</td>
<td>302</td>
</tr>
<tr>
<td>3.8</td>
<td>Totale Wahrscheinlichkeit eines Ereignisses und Bayessche Formel</td>
<td>308</td>
</tr>
<tr>
<td>4</td>
<td>Wahrscheinlichkeitsverteilung einer Zufallsvariablen</td>
<td>315</td>
</tr>
<tr>
<td>4.1</td>
<td>Zufallsvariable oder Zufallsgrößen</td>
<td>315</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Einführende Beispiele</td>
<td>315</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Definition einer Zufallsvariablen</td>
<td>317</td>
</tr>
<tr>
<td>4.2</td>
<td>Verteilungsfunktion einer Zufallsvariable</td>
<td>318</td>
</tr>
<tr>
<td>4.3</td>
<td>Wahrscheinlichkeitsverteilung einer diskreten Zufallsvariablen (diskrete Verteilung)</td>
<td>319</td>
</tr>
<tr>
<td>4.4</td>
<td>Wahrscheinlichkeitsverteilung einer stetigen Zufallsvariablen (stetige Verteilung)</td>
<td>327</td>
</tr>
<tr>
<td>5</td>
<td>Kennwerte oder Maßzahlen einer Wahrscheinlichkeitsverteilung</td>
<td>335</td>
</tr>
<tr>
<td>5.1</td>
<td>Erwartungswert einer Zufallsvariablen</td>
<td>336</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Ein einführendes Beispiel</td>
<td>336</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Erwartungswert einer diskreten Zufallsvariablen</td>
<td>336</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Erwartungswert einer stetigen Zufallsvariablen</td>
<td>337</td>
</tr>
<tr>
<td>5.2</td>
<td>Erwartungswert einer Funktion</td>
<td>339</td>
</tr>
<tr>
<td>5.3</td>
<td>Mittelwert, Varianz und Standardabweichung einer diskreten Zufallsvariablen</td>
<td>340</td>
</tr>
<tr>
<td>5.4</td>
<td>Mittelwert, Varianz und Standardabweichung einer stetigen Zufallsvariablen</td>
<td>344</td>
</tr>
<tr>
<td>5.5</td>
<td>Mittelwert und Varianz einer linearen Funktion</td>
<td>348</td>
</tr>
<tr>
<td>6</td>
<td>Spezielle Wahrscheinlichkeitsverteilungen</td>
<td>350</td>
</tr>
<tr>
<td>6.1</td>
<td>Binomialverteilung</td>
<td>350</td>
</tr>
<tr>
<td>6.2</td>
<td>Hypergeometrische Verteilung</td>
<td>361</td>
</tr>
<tr>
<td>6.3</td>
<td>Poisson-Verteilung</td>
<td>367</td>
</tr>
</tbody>
</table>
III Grundlagen der mathematischen Statistik 471

1 Grundbegriffe .. 471

1.1 Ein einführendes Beispiel .. 471
1.2 Zufallsstichproben aus einer Grundgesamtheit 472
1.3 Häufigkeitsverteilung einer Stichprobe .. 474
 1.3.1 Häufigkeitsfunktion einer Stichprobe .. 474
 1.3.2 Verteilungsfunktion einer Stichprobe ... 477
 1.3.3 Gruppierung der Stichprobenwerte bei umfangreichen Stichproben (Einteilung in Klassen) .. 479

2 Kennwerte oder Maßzahlen einer Stichprobe ... 485

2.1 Mittelwert, Varianz und Standardabweichung einer Stichprobe 486
2.2 Spezielle Berechnungsformeln für die Kennwerte einer Stichprobe 489
 2.2.1 Berechnung der Kennwerte unter Verwendung der Häufigkeitsfunktion .. 489
 2.2.2 Berechnung der Kennwerte einer gruppierten Stichprobe 491

3 Statistische Schätzmethoden für die unbekannten Parameter einer
 Wahrscheinlichkeitsverteilung („Parameterschätzungen“) 493

3.1 Aufgaben der Parameterschätzung .. 493
3.2 Schätzfunktionen und Schätzwerte für die unbekannten Parameter einer
 Wahrscheinlichkeitsverteilung („Punktschätzungen“) 494
 3.2.1 Ein einführendes Beispiel ... 495
 3.2.2 Schätz- und Stichprobenfunktionen ... 495
 3.2.3 Schätzungen für den Mittelwert \(\mu \) ... 498
 3.2.4 Schätzungen für die Varianz \(\sigma^2 \) ... 499
 3.2.5 Schätzungen für einen Anteilswert \(p \) (Parameter \(p \) einer Binomialverteilung) .. 500
 3.2.6 Tabellarische Zusammenstellung der wichtigsten Schätzfunktionen
 und ihrer Schätzwerte .. 500
3.3 Ein Verfahren zur Gewinnung von Schätzfunktionen 503
 3.3.1 Maximum-Likelihood-Methode .. 504
 3.3.2 Anwendungen auf spezielle Wahrscheinlichkeitsverteilungen 506
 3.3.2.1 Binomialverteilung ... 506
 3.3.2.2 Poisson-Verteilung ... 508
 3.3.2.3 Gaußsche Normalverteilung ... 511
3.4 Vertrauens- oder Konfidenzintervalle für die unbekannten Parameter einer
 Wahrscheinlichkeitsverteilung („Intervallschätzungen“) 514
 3.4.1 Vertrauens- oder Konfidenzintervalle und statistische Sicherheit 514
 3.4.2 Vertrauensintervalle für den unbekannten Mittelwert \(\mu \) einer Normalverteilung bei bekannter Varianz \(\sigma^2 \) 518
 3.4.3 Vertrauensintervalle für den unbekannten Mittelwert \(\mu \) einer Normalverteilung bei unbekannter Varianz \(\sigma^2 \) 525
 3.4.4 Vertrauensintervalle für die unbekannte Varianz \(\sigma^2 \) einer Normalverteilung .. 530
3.4.5 Vertrauensintervalle für einen unbekannten Anteilswert \(p \)
(Parameter \(p \) einer Binomialverteilung) ... 534
3.4.6 Vertrauensintervalle für den unbekannten Mittelwert \(\mu \) einer beliebigen Verteilung ... 539

4 Statistische Prüfverfahren für die unbekannten Parameter einer Wahrscheinlichkeitsverteilung („ParameterTests“) .. 540
4.1 Ein einführendes Beispiel .. 540
4.2 Statistische Hypothesen und Parametertests ... 544
4.3 Planung und Durchführung eines Parametertests 545
4.4 Mögliche Fehlerquellen bei einem Parametertest 550
4.5 Spezielle Parametertests .. 555
 4.5.1 Tests für den unbekannten Mittelwert \(\mu \) einer Normalverteilung bei bekannter Varianz \(\sigma^2 \) .. 555
 4.5.2 Tests für den unbekannten Mittelwert \(\mu \) einer Normalverteilung bei unbekannter Varianz \(\sigma^2 \) ... 564
 4.5.3 Tests für die Gleichheit der unbekannten Mittelwerte \(\mu_1 \) und \(\mu_2 \) zweier Normalverteilungen (Differenzentests) 569
 4.5.3.1 Abhängige und unabhängige Stichproben 569
 4.5.3.2 Differenzentests bei abhängigen Stichproben 571
 4.5.3.3 Differenzentests bei unabhängigen Stichproben 576
 4.5.4 Tests für die unbekannte Varianz \(\sigma^2 \) einer Normalverteilung 588
 4.5.5 Tests für einen unbekannten Anteilswert \(p \) (Parameter \(p \) einer Binomialverteilung) ... 593
4.6 Ein Anwendungsbeispiel: Statistische Qualitätskontrolle unter Verwendung von Kontrollkarten ... 599

5 Statistische Prüfverfahren für die unbekannte Verteilungsfunktion einer Wahrscheinlichkeitsverteilung („Anpassungs- oder VerteilungsTests“) 604
5.1 Aufgaben eines Anpassungs- oder Verteilungstests 604
5.2 Ein einführendes Beispiel ... 605
5.3 Chi-Quadrat-Test („\(\chi^2 \)-Test“) .. 607

6 Korrelation und Regression .. 620
 6.1 Korrelation ... 620
 6.1.1 Korrelationskoeffizient einer zweidimensionalen Stichprobe 620
 6.1.2 Korrelationskoeffizient einer zweidimensionalen Grundgesamtheit 630
 6.2 Regression ... 633

Übungsaufgaben ... 639
 Zu Abschnitt 1 ... 639
 Zu Abschnitt 2 ... 641
 Zu Abschnitt 3 ... 642
 Zu Abschnitt 4 ... 644
 Zu Abschnitt 5 ... 647
 Zu Abschnitt 6 ... 648
IV Fehler- und Ausgleichsrechnung ... 650

1 „Fehlerarten“ (systematische und zufällige Messabweichungen).
 Aufgaben der Fehler- und Ausgleichsrechnung ... 650

2 Statistische Verteilung der Messwerte und Messabweichungen („Messfehler“) 654
 2.1 Häufigkeitsverteilungen ... 654
 2.2 Normalverteilte Messgrößen .. 656

3 Auswertung einer Messreihe ... 662
 3.1 Mittelwert und Standardabweichung .. 662
 3.2 Vertrauensbereich für den Mittelwert µ, Messunsicherheit, Messergebnis ... 670

4 „Fehlerfortpflanzung“ nach Gauß ... 679
 4.1 Ein einführendes Beispiel ... 679
 4.2 Mittelwert einer „indirekten“ Messgröße .. 680
 4.3 Gaußsches Fehlerfortpflanzungsgesetz (Varianzfortpflanzungsgesetz) ... 683
 4.4 Messergebnis für eine „indirekte“ Messgröße 687

5 Ausgleichs- oder Regressionskurven ... 694
 5.1 Ein einführendes Beispiel ... 694
 5.2 Ausgleichung nach der „Gaußschen Methode der kleinsten Quadrate“ ... 696
 5.3 Ausgleichs- oder Regressionsgerade ... 701
 5.3.1 Bestimmung der Parameter einer Ausgleichsgeraden 701
 5.3.2 Streuungsmaße und Unsicherheiten bei der Parameterbestimmung ... 709
 5.4 Ausgleichs- oder Regressionsparabel .. 715
 5.5 Nichtlineare Ausgleichsprobleme, die auf die lineare Regression zurück- 719
 führbar sind ...

Übungsaufgaben .. 730
 Zu Abschnitt 3 ... 730
 Zu Abschnitt 4 ... 732
 Zu Abschnitt 5 ... 734
Anhang ... 739

Teil A: Tabellen zur Wahrscheinlichkeitsrechnung und Statistik 740

Tabelle 1: Verteilungsfunktion $\phi(u)$ der Standardnormalverteilung 740
Tabelle 2: Quantile der Standardnormalverteilung ... 742
Tabelle 3: Quantile der Chi-Quadrat-Verteilung ... 744
Tabelle 4: Quantile der t-Verteilung von „Student“ 746

Teil B: Lösungen der Übungsaufgaben .. 749

I Vektoranalysis ... 750
Abschnitt 1 .. 750
Abschnitt 2 .. 753
Abschnitt 3 .. 757
Abschnitt 4 .. 760
Abschnitt 5 .. 763
Abschnitt 6 .. 769
Abschnitt 7 .. 777
Abschnitt 8 .. 783
Abschnitt 9 .. 790

II Wahrscheinlichkeitsrechnung .. 796
Abschnitt 1 .. 796
Abschnitt 2 .. 797
Abschnitt 3 .. 798
Abschnitt 4 .. 801
Abschnitt 5 .. 804
Abschnitt 6 .. 808
Abschnitt 7 .. 814

III Grundlagen der mathematischen Statistik .. 819
Abschnitt 1 .. 819
Abschnitt 2 .. 824
Abschnitt 3 .. 826
Abschnitt 4 .. 829
Abschnitt 5 .. 836
Abschnitt 6 .. 840

IV Fehler- und Ausgleichsrechnung ... 844
Abschnitt 3 .. 844
Abschnitt 4 .. 847
Abschnitt 5 .. 851

Literaturhinweise .. 859
Sachwortverzeichnis .. 860
Inhaltsübersicht Band 1

Kapitel I: Allgemeine Grundlagen

1 Einige grundlegende Begriffe über Mengen
2 Die Menge der reellen Zahlen
3 Gleichungen
4 Ungleichungen
5 Lineare Gleichungssysteme
6 Der Binomische Lehrsatz

Kapitel II: Vektoralgebra

1 Grundbegriffe
2 Vektorrechnung in der Ebene
3 Vektorrechnung im 3-dimensionalen Raum
4 Anwendungen in der Geometrie

Kapitel III: Funktionen und Kurven

1 Definition und Darstellung einer Funktion
2 Allgemeine Funktionseigenschaften
3 Koordinatentransformationen
4 Grenzwert und Stetigkeit einer Funktion
5 Ganzracionale Funktionen (Polynomfunktionen)
6 Gebrochenrationale Funktionen
7 Potenz- und Wurzelfunktionen
8 Kegelschnitte
9 Trigonometrische Funktionen
10 Arkusfunktionen
11 Exponentialfunktionen
12 Logarithmusfunktionen
13 Hyperbel- und Areafunktionen

Kapitel IV: Differentialrechnung

1 Differenzierbarkeit einer Funktion
2 Ableitungsregeln
3 Anwendungen der Differentialrechnung
Kapitel V: Integralrechnung

1 Integration als Umkehrung der Differentiation
2 Das bestimmte Integral als Flächeninhalt
3 Unbestimmtes Integral und Flächenfunktion
4 Der Fundamentalsatz der Differential- und Integralrechnung
5 Grund- oder Stammintegrale
6 Berechnung bestimmter Integrale unter Verwendung einer Stammfunktion
7 Elementare Integrationsregeln
8 Integrationsmethoden
9 Uneigentliche Integrale
10 Anwendungen der Integralrechnung

Kapitel VI: Potenzreihenentwicklungen

1 Unendliche Reihen
2 Potenzreihen
3 Taylor-Reihen

Kapitel VII: Komplexe Zahlen und Funktionen

1 Definition und Darstellung einer komplexen Zahl
2 Komplexe Rechnung
3 Anwendungen der komplexen Rechnung
4 Ortskurven

Anhang: Lösungen der Übungsaufgaben
Inhaltsübersicht Band 2

Kapitel I: Lineare Algebra

1 Vektoren
2 Reelle Matrizen
3 Determinanten
4 Ergänzungen
5 Lineare Gleichungssysteme
6 Komplexe Matrizen
7 Eigenwerte und Eigenvektoren einer quadratischen Matrix

Kapitel II: Fourier-Reihen

1 Fourier-Reihe einer periodischen Funktion
2 Anwendungen

Kapitel III: Differential- und Integralrechnung für Funktionen von mehreren Variablen

1 Funktionen von mehreren Variablen
2 Partielle Differentiation
3 Mehrfachintegrals

Kapitel IV: Gewöhnliche Differentialgleichungen

1 Grundbegriffe
2 Differentialgleichungen 1. Ordnung
3 Lineare Differentialgleichungen 2. Ordnung mit konstanten Koeffizienten
4 Anwendungen in der Schwingungslehre
5 Lineare Differentialgleichungen n-ter Ordnung mit konstanten Koeffizienten
6 Numerische Integration einer Differentialgleichung
7 Systeme linearer Differentialgleichungen
Kapitel V: Fourier-Transformationen

1 Grundbegriffe
2 Spezielle Fourier-Transformationen
3 Wichtige „Hilfsfunktionen“ in den Anwendungen
4 Eigenschaften der Fourier-Transformation (Transformationssätze)
5 Rücktransformation aus dem Bildbereich in den Originalbereich
6 Anwendungen der Fourier-Transformation

Kapitel VI: Laplace-Transformationen

1 Grundbegriffe
2 Eigenschaften der Laplace-Transformation (Transformationssätze)
3 Laplace-Transformierte einer periodischen Funktion
4 Rücktransformation aus dem Bildbereich in den Originalbereich
5 Anwendungen der Laplace-Transformation

Anhang: Lösungen der Übungsaufgaben