Contents

Rock Anisotropy, Fracture and Earthquake Assessment — 1

1 Seismic Wave Propagation in Anisotropic Rocks with Applications to Defining Fractures in Earth Crust — 11

1.1 Introduction — 12
1.2 Elastic Anisotropy of Crustal Rocks — 14
1.2.1 Anisotropic Symmetry System — 14
1.2.2 Transversely Isotropic Medium — 18
1.2.3 Anisotropy of Fractured Rock — 20
1.3 Plane Wave Propagation in Homogeneous Anisotropic Medium — 28
1.3.1 Phase Velocities of Body Waves in Anisotropic Media — 30
1.3.2 Group Velocities of Body Waves in Anisotropic Media — 39
1.3.3 Body Wave Polarizations — 45
1.4 Reflection and Refraction of Plane Waves at a Planar Boundary between Anisotropic Media — 52
1.4.1 Slowness Surface Method — 53
1.4.2 Reflection and Transmission Coefficients — 67
1.5 Ray Tracing in Anisotropic Heterogeneous Media — 72
1.5.1 Ray Series Method — 73
1.5.2 Body-Wave Polarization — 78
1.5.3 Geometrical Spreading and Ray Amplitudes — 79
1.5.4 Specification of a Source and Ray Synthetic Seismogram — 82
1.5.5 Least-Squares Inverse for Traveltime — 84
1.6 Ray Series Modeling of Seismic Wave Propagation in 3-D Heterogamous Anisotropic Media — 88
1.6.1 The VSP Experiment at Hi Vista and Shear-Wave Splitting
Observations — 88
1.6.2 Theory — 94
1.6.3 Traveltime and Amplitude Modeling Results — 101
1.7 Observation and Modeling of Fault-zone Fracture Seismic Anisotropy — 110
1.7.1 The Experiment and Data — 110
1.7.2 Seismic Wave Traveltimes in a Heterogeneous Anisotropic Medium — 114
Contents

Polarization of Plane Waves in an Aligned Fracture Anisotropic Medium —— 118
Shear Wave Splitting Observations and Implications on Stress Regimes in the Los Angeles Basin, California —— 121
Tectonic Significance and Geological Setting —— 122
The Data and Method —— 122
Implications from Shear Wave Splitting Observations —— 126
Ray Tracing —— 131
Acknowledgements —— 134
References —— 134

2 Reproducing the Realistic Compressive-tensile Strength Ratio of Rocks using Discrete Element Model —— 142

Introduction —— 143
A Brief Introduction to the ESyS-Particle —— 146
The Equations of Particle Motion —— 146
Force-displacement Laws and Calculation of Forces and Torques —— 147
The New Criterion for Bond Breakage —— 150
Macroscopic Failure Criterion —— 150
Particle Scale Failure Criterion in DEM Model —— 150
A New Failure Criterion for DEM —— 151
Calibration Procedures —— 152
Input Microscopic Parameters and the Desired Macroscopic Parameters —— 153
Sample Generation —— 154
Numerical Set-ups —— 155
Parametric Studies —— 157
Elastic Parameters —— 157
Fracture Parameters —— 159
Discussions and Conclusions —— 169
Acknowledgements —— 170
References —— 170

3 Rock Fracture under Static and Dynamic Stress —— 175

Introduction —— 175
Stress Intensity Factor and Stress Field —— 177
Coulomb-Mohr Failure Criterion —— 186
Energy Release and J-integral —— 189
Energy Release Rate —— 189
J-integral —— 189
Crack Growth —— 192
Maximum Hoop Stress Theory —— 192
Strain Energy Density Theory —— 196
Crack Growth under Dynamic Loading —— 197
Dynamic Crack Propagation in Rock —— 199
3.7 Cohesive Model in Rock Fracture —— 204
3.7.1 Stress Change in Slip-weakening Model —— 205
3.7.2 Relationship between Energy Release Rate G and the Parameter in Slip-weakening Model —— 209
3.8 Numeric Method for Fracture Mechanics —— 210
3.8.1 Singularity Element Method —— 211
3.8.2 Extended Finite Element Method —— 213
3.9 Discussion —— 215
Acknowledgements —— 216
References —— 216

4 Multiple Linear Regression Analyses on the Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement —— 221
4.1 Introduction —— 221
4.2 Data —— 223
4.3 Linear Models and Computational Approach —— 226
4.4 Results —— 228
4.4.1 Simple Linear Regression Results —— 228
4.4.2 Multiple Linear Regression Results —— 229
4.4.3 Model Diagnostics —— 233
4.4.4 Comparison between Multiple Models and Simple Models —— 235
4.4.5 Model Fits on the Slip Factors —— 236
4.5 Concluding Remarks —— 237
Acknowledgements —— 238
References —— 238

5.1 PI Algorithm —— 241
5.1.1 Background and Basic Concepts —— 241
5.1.2 Algorithm Validation —— 242
5.1.3 Test of the Algorithm: ROC and Beyond —— 243
5.2 The Sichuan-Yunnan Region —— 244
5.2.1 Seismicity and Earthquake Catalogue —— 244
5.2.2 Tectonic Setting —— 245
5.2.3 The 2008 Wenchuan Earthquake —— 245
5.3 PI Algorithm Applied to the Sichuan-Yunnan Region —— 246
5.3.1 Parameter Setting —— 246
5.3.2 Sliding Window Retrospective Test —— 248
5.3.3 Ergodicity —— 249