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Zusammenfassung

In dieser Arbeit schlage ich probabilistische und Bayesianische Methoden vor, mit welchen pe-

riphere neuronale Schmerzverarbeitung quantitativ untersucht werden kann. Durch Einführung

einer detaillierten statistischen Charakterisierung von Nozizeptoren (Schmerzrezeptoren), legt

diese Arbeit den Grundstein für ein stärker quantitatives Verständnis der Schmerzverar-

beitung in der Peripherie. Ich illustriere meinen Zugang an drei spezifischen Modellen in

den Kapiteln 2 bis 4. Jedes der ausgewählten Kapitel lehnt sich dabei an einen der Verar-

beitungsschritte peripherer Schmerzverarbeitung an.

In Kapitel 2 entwickle ich Bayesianische Modelle, welche das klassische Verfahren verbessern,

mit welchem die Antwortschwelle und die Tiefe von hitzesensitiven Nozizeptoren geschätzt

werden. Die vorgeschlagene Bayesianische Methode ist robuster als bisher benutzte, nicht-

probabilistische Methoden. Mein neuartiger Zugang ergibt hier bedeutungsvolle und inter-

pretierbare Parameterschätzungen für eine Reihe von Nozizeptoren, bei welchen eine Param-

eterschätzung mit der klassischen Methode fehlschlägt.

In Kapitel 3 benutze ich “sparsame” (Engl.: “sparse”) generalisierte lineare Modelle zur

Identifizierung der Reizeigenschaften, welche besonders gut die neuronalen Antworten vorher-

sagen. Die Likelihoodfunktion dieser Modelle wird durch einen Regularisierungsterm er-

weitert. Maximierung dieser erweiterten Likelihood führt zu sogenannten sparsamen Mod-

ellen, in welchen wenige Reizeigenschaften als Prädiktoren ausgewählt sind (sie haben von

Null verschiedene Regressionskoeffizienten), währen die meisten Reizeigenschaften einen ver-

schwindenden Regressionskoeffizienten haben und dadurch nicht in das Modell eingehen. Die

ausgewählten Reizeigenschaften sind relativ konsistent über verschiedene Neuronen. Vor

allem zeitliche Veränderungen der vertikalen Deformation des Hautgewebes um den Rezeptor

scheinen wichtig zu sein, um die neuronalen Antworten auf mechanische Reize zu erklären.

Die ausgewählten Reizkomponenten können eventuell Aufschluss über die Aktivierung von

Transduktionskanälen geben.

In Kapitel 4 entwickle ich ein parametrisches Modell für die Feuerrate und die Adapta-

tion primärer afferenter Zellen. Die geschätzten Parameter dieser Zellen spannen einen Pa-

rameterraum auf, in welchem neuronale Antworten auf ganz verschiedenen Reize einheitlich

verglichen und möglicherweise auch unterschieden werden können.

Zum Abschluss diskutiere ich in Kapitel 5 Stärken und Grenzen der präsentierten Mod-

elle. Hier schlage ich einen theoretischen Rahmen vor, in welchem die entwickelten Modelle

zu einem generellen Verständnis verbunden werden können. I argumentiere, dass solch ein
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vollständig probabilistisches Modell einen vielversprechenden Zugang bildet, um die Informa-

tionsverarbeitung in primären afferenten Nozizeptoren zu verstehen.

Summary

In this work I suggest probabilistic and Bayesian methods to assess the neural processing

of noxious (painful) stimulation by primary afferent receptor neurons, called nociceptors.

By introducing advanced statistical characterization of nociceptors, this work is leading the

way towards a more quantitative understanding of “pain pathways” at the peripheral level.

I illustrate these methods through three models in chapters 2 to 4. Each model can be

associated with a processing stage of peripheral pain pathway.

In chapter 2, I suggest Bayesian models to improve a classical model for estimating the

threshold temperature and depth of heat-sensitive nociceptors. I find that application of this

new Bayesian procedure is more robust than previously used, non-probabilistic methods. My

novel approach results in meaningful and interpretable parameter estimation for a number of

nociceptors for which the classical method failed.

In chapter 3, I use sparse generalized linear models to identify the stimulus features that

are most predictive of neural responses. The likelihood of these models is augmented by a

regularization term. Maximizing this augmented likelihood results in sparse models in which

few stimulus features are selected (i.e. have non-zero coefficients), while most features have a

regression coefficient of zero. I find that the selected features are relatively consistent across

neurons. The temporary changes of vertical deformation of receptor-embedded tissue seems

to be the main feature of spatial deformation caused by mechanical stimuli. The selected

features might give insights into the activation of transducer channels.

In chapter 4, I develop a parametric model of firing rate and adaptation of primary afferents.

The estimated parameters of these neurons provide a a parametric space to characterize and

potentially discriminate the responses of these neurons to different stimulus modalities.

In the end in chapter 5, I discuss strengths and limitations of these models. I suggest a

framework to link all developed models towards a general understanding. I postulate that

such a fully probabilistic model offers a promising framework to encode the processing carried

out by primary afferent nociceptors.

Keywords: Nociceptors, C-fibers, pain, Transduction, noise, neural responses, Bayesian

inference, GLM, Lasso, sampling, Continuum mechanics, Thermomechanics, Skin tissue
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Chapter 1 

1 General Introduction 

The sensation of “pain” is a complex experience that is essential to an organism’s survival. 

It involves the mechanistic aspect of detecting and responding to noxious (painful) stimuli 

(Woolf & Ma, 2007) (Perl, 2007) (Raja, et al., 1999)  but also cognitive and emotional 

aspects and processing in the brain (Price, 1988) (Apkarian, et al., 2005). Under normal 

conditions, an organism’s ability to experience pain serves as warning system, marking 

tissue damage.  However, alterations of the pain pathway contravene its usefulness as a 

warning system, resulting in chronic and debilitating pain experiences. A recent market 

research report indicates that more than 1.5 billion people worldwide suffer from chronic 

pain and that approximately 3- 4.5% of the global population suffers from neuropathic pain 

(Global Industry Analysts, 2011). 

Alternations of the pain pathway, often come as a state of peripheral sensitization, in which 

non-noxious stimuli, such as weak touch or warmth, are perceived as noxious (a condition 

that is called allodynia) and mildly noxious events are perceived as highly noxious (a 

condition that is called hyperalgesia). Either conditions elicit different potential therapeutic 

treatment targets and form broad aspects for the study of pain. Beside the cognitive and 

emotional aspects of pain, processing of noxious stimuli and perception of pain can be 

studied at the peripheral level of primary afferent neurons, called nociceptors (Sherrington, 

1906), the central level of second order neurons in spinal cord, and at the level of 

supraspinal pain processing mechanisms (Basbaum, et al., 2009) (Perl, 2011) (Julius & 

Basbaum, 2001). 

The key to understanding pain hypersensitivity or chronic pain is a better understanding 

of the molecular, cellular and neuronal representation of acute pain at peripheral and/or 

central loci. In the present work, I studied the neuronal representation of stimuli at the 

peripheral level by primary afferent neurons responding to noxious stimuli. This work 

emphasizes the application of probabilistic models to study nociceptors and thus explores 

the usefulness of advanced methods from computational neuroscience (Pouget, et al., 

2013) in the new setting of pain research. 
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1.1 Anatomical Overview 

The cell bodies of nociceptors are located in the trigeminal and dorsal root ganglia (DRG) 

outside the central nervous system (CNS), and generate axonal stalks that split into two 

sets of fibers. One set reaches the skin and most internal organs such as joints and 

muscles, where it builds the receptor site, detects noxious (harmful) stimuli and converts 

them into electrical signals. The other set of fibers runs in the opposite direction and 

extends toward the dorsal horn of the spinal cord to form synapses with local neurons, 

which process the sequence of action potentials arriving from the periphery and transmit 

it to supraspinal sites (see Figure 1).  

 

 

Figure 1. Schematic of the operational components of a C-fiber nociceptor. The peripheral terminal of a C-fiber are free nerve 
endings. They innervate epidermal and dermal layer of skin and transduces noxious stimuli to the receptor potential. The receptor 
potential triggers generation of action potentials. The axon conducts action potentials from the periphery to the central nervous system. 
The cell body of a nociceptor is in the dorsal root ganglion (DRG). The central terminal is in dorsal root of spinal cord where information 
is transferred to second order neurons at central synapses. From there the information is transferred to the suprasipnal levels. 

 

Nociceptors are classified into two broad classes with distinct structure and function. ‘C’ 

nociceptors are unmyelinated (i.e. without insulation from a fatty sheath of myelin), hence 

conduct impulses relatively slowly, at around 0.25-1.25 m/sec, and convey the poorly 

localized, delayed pain (Julius & Basbaum, 2001). ‘A𝛿’ nociceptors are thinly myelinated, 

conduct impulses fast, at around 5-30 m/sec, and mediate a localized, sharp and fast pain 

sensation. Additionally, a group of primary sensory neurons, called silent nociceptors, 

becomes responsive to harmful stimuli only after tissue damage has occurred. Nociceptors 
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are heterogeneous and exhibit multiple nociceptor subclasses, each expressing a 

distinctive repertoire of cation channels of the transient receptor signaling proteins (Braz, 

et al., 2005) (Julius & Basbaum, 2001). After tissue damage, this heterogeneous palette 

of transduction molecules undergoes profound changes, giving rise to a state of 

hyperexcitability, called peripheral sensitization. 

Electrophysiological recordings of C-fibers show that most (over 70%) nociceptors are 

polymodal: they can be activated by multiple types of painful stimuli, such as mechanical, 

thermal, or chemical stimuli (Perl, 1996). Nevertheless, different thermal pain and 

mechanical pinch thought to be perceived as distinct qualities. This has strengthened the 

position that the brain’s ability to discriminate different noxious stimulus modalities is 

unlikely to be attributable to modality-specific primary nociceptor subsets. Indeed, one of 

the central debates in this field has revolved around the question to what extend 

nociception represents a mechanistically distinct aspect of the different stimulus 

modalities. 

1.2 Theories of Pain Processing 

Historically, two opposing theories of pain have been put forth to explain how nociceptors 

encode noxious percepts (Melzack & Wall, 1965) (Melzack & Wall, 1982) (Nathan, 1976). 

According to the Specificity theory (von Frey, 1894) pain is produced by activation of 

distinct nociceptor subtypes that are tuned to respond to a specific quality, modality and/or 

intensity of stimuli. This model supports the idea of a labeled line relationship between the 

stimulation and neural modules responsible for conscious perception of pain (Bessou & 

Perl, 1969) (Perl, 2007) and assumed the existence of specialized and functionally distinct 

subtypes of nociceptors. On the other hand, Pattern theory suggests (Goldscheider, 1894) 

that pain is produced when a stimulus elicits a pattern of activity across indistinct primary 

afferent neurons. The resulting pattern is then convoluted within the central nervous 

system to generate a specific percept representing the noxious mechanical, thermal, or 

chemical stimulus applied to the peripheral receptive field (Weddell, 1955). This theory 

recognizes that the spatiotemporal pattern of the impulses from the skin are important. 

Other theories of pain contain elements of both Specificity theory and Pattern theory. The 

most studied one is ‘gate control’ theory of pain suggested by Melzack & Wall (Melzack & 

Wall, 1965), which extends from the so-called sensory interaction theories. Gate control 

theory is a pattern-based theory, proposed that low- and high-threshold afferents converge 

on unspecialized central neurons and that sufficiently strong activation of those central 

neurons encode pain. 
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The existence of nociceptor subtypes which preferentially or specifically respond to a 

certain feature of the stimulus (Basbaum, et al., 2009) rolled out the original form of Pattern 

theory. On the other hand, the existence of some coding dilemmas such as mismatch 

between the nature of stimuli and perception of pain (e.g burning cold) (Prescott, et al., 

2014) supports the most recent theory of pain. This theory is referred as population coding 

of somatosensation, or a ‘combinatorial’ theory (Ma, 2010). Combinatorial coding posits 

that perception of painful stimuli depends on the combination of nociceptor subtypes, and 

the proportion to which they are activated. This theory combines the specificity and pattern 

theory. First, the senses of pain are, at least in part, selectively processed by the subtypes 

of primary afferent neurons itself and along specific labeled lines (peripheral specificity). 

Second, an activity pattern of labeled lines in the central nervous system is involved in the 

emergence of a specific sensation (central pattern). A critical aspect of this hypothesis is 

that responsiveness of individual nociceptors to a particular stimulus does not need to be 

directly correlated to the perception of that stimulus (Ma, 2012). This point suggests a key 

role for polymodal C-fibers, in which the same peripheral neuron conveys the information 

about different stimulus modalities to the central level of processing. Thus, targeting the 

mechanism that shapes the discharge responses of C-fibers to different stimulus 

modalities, or that modulate the communication of these primary afferents with second-

order neurons, may provide evidence for each of the hypothesis, may help to formulate 

these theories more specifically, and may offer therapeutic interventions. 

Yet our understanding of the mechanism of how polymodal C-fibers encode pain remains 

far from complete. An adequate description requires both definitive identification of the 

constituent transducer channels and their kinetics. Several studies have focused on 

identification and characterization of ion channels using electrophysiological measuring 

technics, or genetic- or immunotoxin-based methods combined with behavioral studies 

(Basbaum, et al., 2009) (Caterina, et al., 1997) (Cho, et al., 2012) (Vriens, et al., 2014). 

Identification of TRPV1 (Caterina, et al., 1997), has been one of the great success stories 

of sensory biology and now includes TRP, ASIC, and potassium and ligand-gated ion 

channels (Basbaum, et al., 2009). While thermal sensitivity in the warm-hot range turns 

out to be mediated by multiple TRP channels TRPV1, TRPV2, TRPV3, and TRPV4 that 

all express a particular C-terminal (Dhaka, et al., 2006) (Cho, et al., 2012) (Vriens, et al., 

2014). But the extent to which all these TRPs are expressed remains uncertain. There is 

even more uncertainty about noxious mechanical transduction with several competing 

candidates (Hu, et al., 2006).  

The main reasons hampering identification of transducer channels refer to the technical 

difficulties to isolate and measure small diameter C-fibers. Free nerve endings of C-fiber 
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nociceptors are hard to locate in the tissue they innervate, and the small diameter (<0.5 

µm) of nerve endings make these neurons inaccessible for standard electrophysiological 

recordings (Basbaum, et al., 2009). Nevertheless the uncertainty in identification of 

transducer channels is impeding progress toward the second requirement, namely, 

identifying the transducer kinetics that might contribute by shaping the firing pattern of C-

fibers. With respect to these requirements, chapter 3 of the present work is an abstraction 

from these specific channel types and a characterization of the features that drive action 

potential generation by using statistical models. 

This study focused on the identification of the temporal features of the neuronal 

representation that distinguish different stimulus modalities using advanced statistical 

methods. We used a data set obtained with an in vitro skin nerve preparation of mouse 

saphenous nerve in which noxious mechanical and heat sensation can be reproduced 

(Milenkovic, et al., 2008). This dataset was designed and recorded in close collaboration 

with Dr. Rabih A. Moshourab and Prof. Gary R. Lewin in Max Delbrück Institute, Berlin. In 

chapter 4, I will develop a framework that provides a parametric description of 

spatiotemporal dynamic of response discharges of single neurons. Such a parametric 

description allows a quantitative and formally valid characterization of the variability of 

response properties throughout the population of nociceptors that goes beyond qualitative 

descriptions such as 'polymodal' or 'unimodal’. The main aim of this study was to provide 

a probabilistic formulation of the primary afferent neurons’ responding properties. 

Information about a sensory stimulus is believed to be encoded in a sequence of action 

potentials. How this happens in detail, is a common problem in system neuroscience. 

Previous studies gained insight into the computations carried out by neural ensembles 

using a large array of methods, including mathematical modeling of pain as a complete 

system (Britton & Skevington, 1989) (Haeri, et al., 2003), biophysically detailed models of 

ion channel characterization (Tigerholm, et al., 2014), statistical models of cultured DRG 

neurons (Ratté, et al., 2014) (Rho & Prescott, 2012) , and neuroimaging (Apkarian, et al., 

2005) (Cecchi, et al., 2012). Yet, the application of advanced statistical methods to study 

the responses has proven difficult in the past. On one hand, recordings in C-fibers are 

challenging, resulting in small data sets, short recording times, and accordingly few 

repetitions – a situation that calls for an approach using Bayesian inference in a 

probabilistic model. While classical statistical methods have guaranteed long run 

performance on large data sets, Bayesian methods perform well on small data sets by 

gracefully balancing prior knowledge and new evidence (e.g. (Wasserman, 2004)). 

Bayesian inference requires a probabilistic model of the data generating process. Noise 

levels in nociceptor responses have typically been assumed to be negligibly small. 
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Unfortunately, this neglect of nociceptor noise implies that there are hardly any data to 

characterize the variability in nociceptor responses. This makes it difficult to formulate an 

accurate probabilistic model for spike responses recorded from nociceptors. In addition, 

previous studies have often been rather qualitative and did not directly suggest appropriate 

prior distributions as needed for Bayesian inference. Closing this gap will be one of the 

main contributions of this thesis. 

1.3 Receptor Neuron Models 

One approach towards descriptive models of response discharge of C-fibers is to construct 

an accurate model of the mechanisms underlying the spatiotemporal discharge patterns. 

Which mechanisms affect significantly the initiation and generation of action potentials and 

to what extend? Addressing this issue was the first step toward developing a receptor 

model in this study. 

Figure 2 illustrates schematically receptor sites of two C-fibers. The main processing steps 

are indicated by three boxes.  

 

Figure 2. Schematic of receptor sites of free nerve endings of two C-fibers innervating skin. Three main processing steps from 
transferring the stimulus within the skin to transduction of mechanical and thermal stimuli to generation of action potential are shown 
in individual boxes. Red box: Transfer of stimulus within the skin. A mechanical stimulus applied on the surface of skin causes 
deformation of skin tissue at receptor site. This deformation is called strain and activates mechano-sensitive transducer channels. A 
heat stimulus applied on the surface of the skin causes temperature changes at depth of receptor and activated heat-sensitive 
transducer channels. Blue box: Transduction mechanism. At receptor site activation of mechano-heat-sensitive ion channels triggers 
a local depolarization of membrane and generation of receptor potential. Green box: Action Potential Generation. Receptor potential 
triggers action potentials. The temporal dynamics and frequency of action potentials give insight into the main features of original 
stimulus and dynamics of transducer channels. 
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The receptor site of the free nerve endings of a C-fiber innervates the epidermal and/or 

dermal layer of skin. The mechanical or thermal stimuli are often applied to the surface of 

the skin and are transmitted through the skin tissue to the site of receptor. The first box 

from the right in Figure 2 ‘Transfer of stimulus within the skin’ shows schematically the 

transmission of heat and mechanical stimuli to the receptor site(s). Notably, this 

transmission through the skin is mediated by physical laws from classical mechanics and 

thermodynamics. At the receptor site, the deformations of skin tissue (strain) caused by 

mechanical stimuli, or temperature changes caused by thermal stimuli, activate a cascade 

of chemical processes in transducer channels, (see Figure 2, second box; Transduction 

mechanism), resulting in ion flow through these channels, which generates a local 

depolarization (proximal stimulus or receptor potential) that drives the membrane potential 

towards the threshold. Depolarization of membrane potential generates action potentials, 

whose temporal dynamic and frequency reflects the main features of the stimulus (see 

Figure 2, third box; Action Potential Generation).  

Hence, an accurate model requires; (1) an understanding of skin mechanics that embeds 

the nerve terminals and mediates the stimulus to the receptor site. (2) A model to 

characterize the conversion of local tissue deformation or temperature changes to 

electrochemical events at receptor site and depolarization of membrane. (3) A model to 

describe the temporal dynamics of action potentials such as adaptation and refractory 

periods. 

Accordingly, in this study I developed probabilistic models to study each of three steps: (1) 

Transfer of stimulus within the skin. (2) Combination of different stimulus modalities by 

peripheral transduction mechanisms. 3) Temporal dynamics of generated action potentials 

within the fiber. 

This work is organized according to three processing steps and as follow. 

1.3.1 Transfer of stimulus within the skin 

In chapter 2, “A Probabilistic Model for Estimating the Depth and Threshold Temperature 

of C-fiber Nociceptors”, I studied the interaction of thermal stimuli with nociceptor-

embedded skin tissue. When the skin comes into the contact with a hot object, the heat 

conducted from the surface triggers a sequence of events in heat sensitive afferent fibers 

within the skin. Thereby the original stimulus is encoded in a sequence of action potentials 

that are relayed to the central nervous system and give rise to the sensation of warmth or 

heat pain. 
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Previous studies had shown that the heat threshold of C-fiber mechano-heat sensitive 

nociceptors (C-MH) primarily depends on the temperature at the depth of receptor 

(Tillman, et al., 1995) (Stoll & Greene, 1959) and thus for the same stimulus intensity, the 

pain level could be higher if the nociceptor is closer to the surface. Therefore, the location 

of receptor terminals and the threshold at this depth have been viewed as important 

parameters in the modeling of C-MH nociceptors. This hypothesis has provided a classical 

method of finding the receptor terminal depth and threshold without experimental 

measurement (Henriques & Moritz, 1947). However, previous studies have shown that 

certain experimental conditions are required for this method to produce stable results 

(Tillman, et al., 1995). In this chapter I introduced a probabilistic model which improves the 

classical method and provides a more reliable estimation of receptor depth and threshold 

temperature.   

1.3.2 Transduction mechanism 

In chapter 3, “Decoding of polymodal C-fiber nociceptor responses with a generalized 

linear model and L1 norm regularization”, I investigated within a probabilistic framework 

the relationship between mechanical and thermal stimuli at receptor site and discharge 

responses of C-MH nociceptors. This framework comprises an analytical model along with 

a probabilistic model. The analytical model describes the deformations of skin tissue that 

can be produced by a mechanical force applied on the surface of skin. The probabilistic 

model describes the transduction of these deformations at receptor site into neural 

responses. Within this framework, I ascertained which aspects of the local tissue 

deformations and thermal stimulus are most predictive of the neural response.  

To characterize the deformation in skin tissue at receptor site I used a continuum 

mechanics model (Phillips & Johnson, 1981b). According to this model a simple 

mechanical stimulus can induce a complex pattern of spatial deformations at receptor site. 

But not all aspects of spatial deformation can activate the mechano-sensitive transducer 

channels. To select the main features of spatial deformation I applied a sparsity based 

regularization of all candidates (Tibshirani, 1996). The results suggested that among the 

six deformation candidates that we considered, the derivative of vertical compressive 

strain, and maximum compressive and tensile strains are most predictive of neural 

responses. The selected features could be potentially used to characterize individual ion 

channels rather than complete neurons.  

1.3.3 Temporal dynamics of generated action potentials within the fibers 

In chapter 4, “A Parametric Model of Firing Rates and Adaptation: a Study of Discharge 

Responses of Primary Afferent Neurons and Nociceptors”, I introduced parametric 
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dynamical models. These were used to describe the stimulus-driven instantaneous firing 

rate of response discharges of C-fiber nociceptors to controlled mechanical and heat 

stimuli. Each model consisted of two coupled ordinary differential equations (ODEs), 

describing the rate of an inhomogeneous point process and adaptation effects on this rate. 

I investigated two types of ODEs; one incorporating a linear adaptation process and 

another incorporating nonlinear, divisive adaptation. I found that these dynamical models 

provided good characterizations of the recorded spike trains, but observed that more data 

are needed to conclusively differentiate between different hypothesized dynamics. The 

estimated parameters of these models offer a potential to provide a parameter space in 

which to classify the responses of neurons to different modalities of thermal and 

mechanical stimuli. 
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Chapter 2 

2 A Probabilistic Model for Estimating the Depth 

and Threshold Temperature of C-fiber 

Nociceptors 

The content of this chapter has been accepted for publication in the journal Scientific 

Reports (Dezhdar, et al., 2015, in press). 

The subjective experience of thermal pain follows the detection and encoding of noxious 

stimuli by primary afferent neurons called nociceptors. However, nociceptor morphology 

has been hard to access and the mechanisms of signal transduction remain unresolved. 

In order to understand how heat transducers in nociceptors are activated in vivo, it is 

important to estimate the temperatures that directly activate the skin-embedded nociceptor 

membrane. Hence, the nociceptor’s temperature threshold must be estimated, which in 

turn will depend on the depth at which transduction happens in the skin. Since the 

temperature at the receptor cannot be accessed experimentally, such an estimation can 

currently only be achieved through modeling. However, the current state-of-the-art model 

to estimate temperature at the receptor suffers from the fact that it cannot account for the 

natural stochastic variability of neuronal responses. We improve this model using a 

probabilistic approach which accounts for uncertainties and potential noise in system. 

Using a data set of 24 C-fibers recorded in vitro, we show that, even without detailed 

knowledge of the bio-thermal properties of the system, the probabilistic model that we 

propose here is capable of providing estimates of threshold and depth in cases where the 

classical method fails.  

2.1 Introduction 

For many years, pain has been subject to extensive neurobiological, clinical, and 

psychophysical studies (Perl, 2007) (Basbaum, et al., 2009) (Perl, 2011). Since the early 

20th century when Charles Sherrington conducted neurophysiological experiments that 

started to define the neural process of detecting and responding to noxious, harmful stimuli 

as nociception and the responsible afferent neurons as nociceptors (Sherrington, 1906), 
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different types of nociceptors have been identified (Burgess & Perl, 1967) (Smith & Lewin, 

2009). The main group includes polymodal unmyelinated nociceptors (Bessou & Perl, 

1969), responding to potentially painful mechanical and heat stimulation, thus defined as 

mechano-heat sensitive C fibers (C-MH fibers) (Handwerker, et al., 1987) (Kress, et al., 

1992) (Fleischer, et al., 1983) (Lewin & Mendell, 1994). Although C-fibers play a pivotal 

role in perception of noxious heat stimuli, less is known about the underlying mechanisms 

that transform heat and mechanical stimuli into neural activity (Melzack & Wall, 1962) 

(Lewin & Moshourab, 2004) (Cavanaugh, et al., 2009).  

The pain pathway can be broken down in three major components: (1) transduction of heat 

or mechanical energy into electrical signals at the receptor site, (2) transmission and 

modulation of action potentials from peripheral receptor site to the Central Nervous System 

CNS and higher brain function, and (3) perception of signals as pain (Woolf & Ma, 2007). 

In recent years mathematical and computational models of the pain pathway have been 

developed and provided valuable insights into various aspects of pain, like acute pain 

(Britton, et al., 1995) and neuropathic pain within a dynamical system of neurons (Ratté, 

et al., 2014) (Rho & Prescott, 2012), relating the input stimulation to the sensation of pain 

in an artificial neural network (Haeri, et al., 2003) (Minamitani & Hagita, 1981), or the 

temporal dynamics of pain perception using neuroimaging (Cecchi, et al., 2012). Recently, 

mathematical modeling of pain at the cellular level drew attention to the plausibility of 

physiological properties of nociceptors and bio-thermal properties of skin (Xu, et al., 2008) 

(Tillman, et al., 1995a). In heat sensitive sensory neurons, the threshold temperature was 

considered as a determinant for activation of heat sensitive ion channels, and to 

discriminate nociceptors from warm sensitive neurons. Despite the fact that there at least 

three ion channels activated by noxious heat are expressed in mouse nociceptors (TRPV1, 

TRPM3 and anoctamin-1) (Vriens, et al., 2011) (Caterina, et al., 1997) (Cho, et al., 2012) 

(Vriens, et al., 2014) there is still no clear picture of where in the skin (e.g. dermal or 

epidermal free nerve endings) these physiologically important heat transducing ion 

channels are located. Thus computational models, based on real experimental data, can 

potentially provide constraints on the thermal changes that a noxious heat transducer must 

be able to detect in order to transform thermal energy into a noxious heat code in 

nociceptors. Measuring the threshold temperature of a nociceptor is complicated by the 

fact that the temperature at the location of receptor differs from the surface temperature, 

because the skin is not a perfect heat conductor. In addition, the receptor endings are hard 

to access, due to the complex and variable histological structure of the skin (i.e. several 

layers, ridges, hair follicles), branching of the free nerve endings of C-fibers, and small 

diameters of terminal endings. Even the smallest thermocouples are large with respect to 
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the epidermal and dermal thickness and as an external object they would change the 

conditions of heat flows. An infrared camera could detect the flow of heat, but it cannot 

reveal the position of nerve endings. Therefore, it is currently not possible to measure the 

temperature at the transduction site(s) in nociceptor endings directly. 

To mitigate these shortcomings, mathematical models were used to estimate the threshold 

temperature as a parameter (Cecchi, et al., 2012) (Hardy & Stolwijk, 1966) (Schepers & 

Ringkamp, 2009) (Tillman, et al., 1995). Tillman et al. (Tillman, et al., 1995) showed that 

latency of the first action potential fired by a C-MH afferent depends primarily on the 

temperature at the location of the receptor (its depth), and is hence influenced by the heat 

conductance of the skin. Therefore, to obtain an accurate estimate of threshold 

temperature of the receptor neurons, the first step has been to model the propagation of 

the temperature in several layers of the skin from the surface to the receptor depth. Several 

models have been developed to estimate nociceptor depth and threshold by using 

neurophysiological recordings of nociceptors or behavioral measurements to parameterize 

the heat diffusion equation, which describes the ability of the skin to conduct heat energy 

(Tillman, et al., 1995a) (Stoll & Greene, 1959) (Xu, et al., 2008). In a typical experimental 

protocol for this purpose, a heat electrode is placed on the skin surface, through which 

ramped heat stimuli with different rates are applied. The time   until the threshold is 

reached can be the time of reporting the sensation of pain in a behavioral experiment (Stoll 

& Greene, 1959) (Marchandise, et al., 2014) or the latency of the first action potential in 

an electrophysiological recording (Tillman, et al., 1995). Assuming that neurons fire at a 

set temperature, it is possible to estimate the firing threshold temperature and the depth 

of the receptor from the threshold time   by solving the heat diffusivity equation for 

different ramp stimuli. The estimated threshold temperature reported in previous studies 

varies in a range from 39-41 °C (Tillman, et al., 1995a) (Tillman, et al., 1995), 43 °C 

(Patapoutian, et al., 2003), 45 °C (Hardy & Stolwijk, 1966), and 47 °C (Lynn & Carpenter, 

1982). However, only in the study by Tillman et al. (Tillman, et al., 1995) were threshold 

temperatures estimated at each neurons’ estimated depth, while the other studies 

obtained threshold temperature at an assumed fixed depth or at the surface of the skin, 

which may explain the tremendous variability of the estimates in spite of using the same 

stimulus parameters.  

An accurate estimation of the time at which the threshold temperature was reached is 

essential for the classical approaches. Small inaccuracies in spike time measurement, 

internal random process which could result in a delay between reaching the threshold and 

generation of first action potential, and trial-to-trial variability of neural responses, can 
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result to big inaccuracies in depths, and sometimes even make depth estimation 

impossible. Additionally, there are many sources of uncertainty in the estimation method. 

For example, the bio-thermal skin parameters (e.g. thickness, thermal diffusivity) are 

difficult to estimate accurately, since they vary with the age, gender, recording area and 

even the hair cycle of the specimen (Wang, et al., 2013). Moreover, repeated recordings 

from one neuron are often difficult because of the dynamic experimental conditions when 

recording from C-fibers (Zimmermann, et al., 2009). Therefore, the results of the classical 

approaches to estimate heat threshold and receptor depth have been disputed (Xu, et al., 

2008) and often failed to yield reliable estimates (Tillman, et al., 1995). 

In this contribution, we reformulated the established model for temperature propagation in 

a probabilistic way. We thus open up the way to account for natural variability on receptor 

response and uncertainties in other model parameters, enabling a statistical approach to 

the problem of inferring receptor depth from spike times and associated surface 

temperature. We introduce two modifications to the previous approach. First, we allow for 

a small, variable delay that can account for the variability of spike latency arising from 

deterministic properties of the system and/or ‘noise’, e.g. generated by random processes 

inside the neuron. Second, we use Monte-Carlo methods to deal with the uncertainty in 

bio-thermal parameters of skin model. To demonstrate the reliability of the new 

probabilistic model we applied both the classical approach and the probabilistic approach 

on a data set of extracellular recordings from 24 C-MH nociceptors. We then estimated 

the receptor parameters, depth and threshold temperature of all neurons and evaluated 

the probabilistic model using model evidence tests. The proposed method succeeds in 

producing realistic estimates of both threshold and depth for all measured neurons, 

although previous methods failed to provide such estimates for all neurons.  

2.2 Results 

Towards our aim to improve the classical model for depth and threshold estimation we first 

investigated the factors that rendered previous approaches unstable. We assumed that 

the instability of the classical model was mainly due to uncertainties of the threshold time 

and an incomplete skin model. Here, we use the term ‘threshold time’ to refer to the (not 

directly measureable) time at which the neuron reaches its firing threshold and action 

potential initiation. In the classical approach, threshold time is assumed to be equal to the 

time of the first spike. However, the first spike after stimulation onset may be generated 

with a small delay (latency noise), or it may be caused by spontaneous sub-threshold 

activity, especially in cases where the spike latency is very short compared to stimulus 



 
15 

 

onset. To deal with these uncertainties and variability in spike times we (i) introduce a 

delay between threshold time and first spike (latency), (ii) allowing for some responses to 

be outliers that are not driven by the presented stimulus, and (iii) introduce a probabilistic 

model for the skin.  

2.2.1 Classical method, directly using the heat transfer model to identify neuron 

properties  

We first assessed the performance of the classical model to estimate receptor depth and 

threshold, based on the analytical solution of the heat diffusion equation. An attractive 

feature of the analytical approximation is that the solution at any point in the skin can be 

obtained independently from the skin model, which is particularly useful when the skin 

model is not completely determined, or when the skin is stimulated from the corium side 

to facilitate electrical stimulation and pharmacological manipulation of the primary afferents 

in in vitro skin preparations (Lewin & Moshourab, 2004). Figure 1a depicts a typical skin 

model in which the heat electrode is applied on the surface of the skin. The heat energy 

flows from epidermal to dermal and subcutaneous layers and reaches the free nerve 

endings of C-MH fibers at some point. The ability of each layer to absorb heat energy and 

attenuate the surface temperature during transfer depends on its thermal diffusivity.  

Assuming a fixed temperature threshold of a neuron at a fixed depth, it is possible to infer 

this depth from the time until this threshold is reached after applying a constant supra-

threshold temperature to the surface. Figure 1b depicts the state of the heat gradients 

within the skin for four different surface temperatures when reaching a threshold of T=38.8 

°C at a depth of D=0.3 mm. Each curve hence refers to a different time point after stimulus 

onset, i.e. the latency of the first action potential. All curves intersect in a single point: the 

estimated depth of the receptor.  

This idealized example illustrates how the classical approach to depth and threshold 

estimation depends on reliable spike latency. Neuronal “noise” that causes variability in 

spike timing unfavorably affects the performance of this method. Real-world 

measurements affected by noise thus often fail to intersect in a single point, as illustrated 

in Figure 1c, thereby failing to provide estimates of location and threshold temperature.  

We studied the capability of the classical approach to predict receptor threshold and depth 

in recordings from 24 C-MH neurons. Our experimental protocol consisted of three heat 

stimuli with three ramp rate durations of long: 16 s, middle: 4 s, and short (see Figure 1d 

for an example). Each stimulus was applied only once and in the same order. The heat 

electrode was placed on the corium side of the skin, not on the epidermis (see Figure 1e).  
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Figure 1. Experimental conditions and schematic of skin model. (a) Schematic of skin model and a C-fiber. In a typical 
experimental protocol heat electrode is placed on the surface of the skin. (b-c) Drift of different surface temperatures for all locations 
in the skin up to a depth of D=5 mm as a schematic illustration. Each curve refers to a different surface temperature at different time 
points after stimulation onset of different experimental conditions. (b) All four curves intersect in a single point, which refers to threshold 
and depth of nerve endings. (c) There is no single solution of heat equation that is consistent for all four experimental conditions. (d) 
An example of in this study applied experimental protocol. Three heat ramped stimuli with different ramp durations were applied on 
the dermal d of the skin while the responses of one C-MH nociceptor to all three stimulus conditions were simultaneously recorded. 
The surface threshold temperatures Tthreshold are associated with the first spike times τ for all three conditions. (e) Transfer of initial 
Tthreshold of all conditions through the skin layers for the example neuron. The curves intersect at the location of receptor and the same 
threshold temperature. Note that in our experiments the heat electrode was placed on the inside of the skin. 

 

For a given threshold time  𝜏 =  𝑡∗  the relation between the surface temperature 

𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑥, 𝑡) =  𝑇∗(0, 𝑡∗)  at time  𝑡 = 𝑡∗  and the attenuated threshold temperature 

𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑇𝑠𝑢𝑟𝑓𝑎𝑛𝑐𝑒(𝑥, 𝑡∗) at the location x of the receptor can be entered in the solution 

of heat equation as formulated by Henriques (Henriques & Moritz, 1947), 

𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + ( 𝑇0 −  𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒)
2

√𝜋
 ∫ 𝑒−𝑥2

𝛾 √𝜏⁄

0

𝑑𝑥                          (2.1) 

2

√𝜋
 ∫ 𝑒−𝑥2

𝛾 √𝜏⁄

0

𝑑𝑥 = Φ [
𝛾

√𝜏
]. 

We assume the skin has uniform temperature 
0

T  at stimulation onset. In equation (2.1), 

we used the short hand notation 𝛾 =  𝐷 2𝑎⁄ , with 𝐷 being the receptor depth and 𝑎 =  √
𝜅

𝜌 𝑐
  



 
17 

 

the thermal diffusivity of skin. In the second equality, Φ denotes the cumulative distribution 

function of the standard normal distribution. Then all combinations of receptor depth D

and temperature threshold 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  that are consistent with these experimental 

conditions lie on a curve in the 𝐷 − 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  plane (see Figure 1e). For the same cell 

under different experimental conditions 𝑡+, 𝑇+another curve results (Figure 1d and e). 

Assuming that the receptor threshold temperature is defined and the same for all three 

stimulus conditions, then the intersection between these curves corresponds to 𝐷 and 

𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  constellations that are consistent with both measurements. 

 

 

Figure 2. Transfer curves of surface threshold temperature through the skin in a depth vs receptor threshold plane for three 
different ramp rates and four neurons. (a) All three curves intersect in a single point, which is the solution of equation (2.1) and 
refers to threshold and depth of this neuron. (b) Three curves intersect in three close points and span a triangle. The resulting threshold 
and depth was determined as an average over three curves. (c) Two curves intersect and the third one start at a very low Tsurface and 
remains below the other two. (d) The curves start at a very low initial temperature and do not intersect. There is not any single solution 
for equation (2.1). 
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To solve the equation (2.1) for three ramped heat stimuli we assumed that the threshold 

time was equal to the latency of the first spike (i.e. the time from ramp onset to the first 

spike, corrected by electrical conduction delay) for all three ramped stimuli, and measured 

the temperature at the surface at that time. Figure 2 shows the solution of the heat function 

and transfer of three surface temperatures 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑡𝑖), (𝑖 = 1,2,3 number of stimuli) in 𝐷 −

𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 plane for 4 example C-MH neurons. 

Only 2 out of 24 neurons intersected in a single point (Figure 2a shows an example), 5 out 

of 24 intersected in three close points and spanned a small triangle (e.g. Figure 2b). For 

12 out of 24 the temperature curves which correspond to two ramped stimuli intersected 

in one point but the third curve did not intersect the other two curves (e.g. Figure 2c). For 

the remaining 5 neurons the curves did not intersect at all (e.g. Figure 2d). 

For the 2 neurons with a single intersection point distinct depth and threshold temperature 

were directly obtained by the intersection. For 5 neurons that the intersections span a small 

triangle we generated an average over the intersections. For cases where the intersections 

span wider ranges, generation of an average over stimulations induces a high variance in 

the estimated depth, leading to an expected large estimation error for threshold and depth. 

The mean average receptor threshold temperature for the 2 neurons with a single 

intersection was 39.44 °C and standard deviation of 5.7 °C, consistent with values found 

in the literature (Tillman, et al., 1995). Yet, for the majority of neurons (17 out of 24) the 

classical method could not determine a threshold estimate of all three ramped stimuli, 

pointing out the potential for improvement of this classical approach toward a better 

estimation of depth and threshold.  

The main limitation of the classical approach lies in its assumption that parameter 

constellations are either fully consistent with the experimental outcome (i.e. they are on 

the curve) and can be included in the estimation or they are completely inconsistent with 

the experimental outcome (not on the curve) and might be discarded. In the following 

sections we will use equation (2.1) as part of a probabilistic model, which allows us to 

formulate a continuous measure of consistency with the experimental outcome (a 

likelihood function). This allows us to identify a unique most likely combination of receptor 

depth and temperature threshold. 

2.2.2 Probabilistic method, likelihood function  

The classical method for inferring depth and temperature threshold assumes that the 

latency of the response is exactly equal to the time when the temperature threshold was 

reached. Here, we weaken this assumption by introducing a delay, Δ between the time to 
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threshold 𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and the response latency 𝑡𝑙𝑎𝑡 . Thus we now evaluate equation (2.1) 

at 𝑡𝑙𝑎𝑡 = 𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + Δ. For 𝑖 = 1,2,3 measured responses to 3 ramped stimuli, we then 

have, 

𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑖 + ( 𝑇0 − 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑖  )Φ[𝛾 √𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 +  Δ𝑖⁄ ]                    (2.2) 

In this equation, 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑖  denotes the surface temperature at time 𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑖 =  𝑡𝑙𝑎𝑡
𝑖 −  Δ𝑖 in 

the 𝑖-th measurement and 𝑡𝑙𝑎𝑡
𝑖 =  𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑖 + Δ𝑖 is the latency of the response in the 𝑖-th 

measurement. Equation (2.2) is a system of 𝑛 = 3 equations with the same parameter 

𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝛾 but 𝑛 = 3 different 𝑡𝑙𝑎𝑡
𝑖  and  Δ𝑖 of three conditions. As we have shown in 

previous section it is not generally possible to determine an intersection point. However, 

because 𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑖 ≤ Δ𝑖 ≤  𝑡𝑙𝑎𝑡

𝑖  , we can postulate that the delays should be (i) positive and 

(ii) small. We will therefore assume that the  Δ𝑖  are exponentially distributed with a 

parameter 𝜆. In our experience the exact value of 𝜆 did not change the results, so that we 

fixed 𝜆 = 1 for all of the following. With the given data, we can write Δ𝑖 as a function of 

𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and 𝛾 , by inverting equation (2.2). This allows us to write the log-likelihood 

function; 

ℓ(𝛾, 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) =  −𝜆 ∑ Δ𝑖(𝛾, 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

𝑛

𝑖=1

                                           (2.3) 

The parameters 𝛾 and 𝑇̂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 that jointly maximize this function are maximum likelihood 

estimates of the underlying neuron parameters. After finding the estimate for  𝛾 , we can 

derive the depth using the equation 𝐷 = 𝛾. 2𝑎 from it.  

We can view the negative of the right side of equation (2.3) as an error function that we 

attempt to minimize under the constraint that  Δ𝑖 ≥ 0. The smallest error can be attained if 

all delays are exactly zero in which case this method agrees with the classical method 

discussed in the previous section. In cases in which no unique parameters setting exists, 

the assumption that responses should be instantaneous, is relaxed by letting one or more 

Δ𝑖 be larger than zero. Note however that increasing the delays does also increase the 

error. Thus, the parameter constellation with minimal error will be one that is consistent 

with the data by assuming only minimal response delays. 

Figure 3 shows, for two example neurons C-MH1 (Figure 3a-c, single intersection, in 

Figure 2a) and C-MH4 (Figure 3d-f, no intersection in Figure 2d) the stimulus traces for 

three different ramp rates (long-, middle- and short ramps) at the surface together with the 

attenuated stimulus traces at the classically estimated receptor location 𝛾𝑐𝑙𝑎𝑠𝑠𝑖𝑐 and at the 

probabilistic estimated receptor location 𝛾𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐 . 
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Figure 3. The measured thermal stimulus traces applied on the surface of the skin with three ramp rates and the estimated 
stimulus traces within the skin at the estimated depth of neurons’ terminals for two example neurons C-MH1 and C-MH4. The 
estimation of the depth and Tthreshold was done according to the classical and probabilistic method. The probabilistic estimated Tthreshold 
is the solution of equation (2.3). The classical Tthreshold is the intersection of Ti

surface , i = 1,2,3 curves in D-Tthreshold plane for three ramp 
rates of equation (2.1). (a-c) The stimulus traces of neuron C-MH1 for (a) long ramp, (b) middle ramp, and (c) short ramp. Both classical 
and probabilistic methods successfully estimated the parameters. The classical model approached a single intersection of ramped 
stimuli and probabilistic method approached small delays. (d-f) The stimulus traces of neuron C-MH4 for (d) long ramp, (e) middle 
ramp, and (f) short ramp. The classical method failed to find an intersection but the probabilistic method resulted successfully to a 
parameters estimate. 

 

In example neuron C-MH1 the classically estimated normalized depth is 𝛾𝑐𝑙𝑎𝑠𝑠𝑖𝑐 =

2.04 and probabilistic estimated is 𝛾𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐 = 1.05. As Figure 2a shows for C-MH1 the 

classical model results successfully in a single intersection. The probabilistic estimated 

location of neuron, however, is closer to the surface compared with the classical estimate. 

As a result the estimated stimulus at 𝛾𝑐𝑙𝑎𝑠𝑠𝑖𝑐 is weaker for all three ramp rates.  

Note that in Figure 3a the estimated delay for the longest ramp is close to zero but not for 

the middle ramp (Figure 3b) and short ramp (Figure 3c). 

In the case of neuron C-MH4 the classical method failed to find an intersection of all three 

ramp stimuli (see Figure 2d) and therefore the stimulus traces could not be tracked at 

location  𝛾𝑐𝑙𝑎𝑠𝑠𝑖𝑐. But the probabilistic method estimated successfully a depth and thus the 

stimulus traces could be estimated at this location (see Figure 3d-f). Note that neuron C-

MH4 shows a small latency for all three ramp stimuli. The first spike in all three conditions 

occurred immediately after the stimulus onset. This observation may suggest that the first 
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spike may actually have been caused by sources of activity other than the onset of the 

heat ramp. 

 

 

Figure 4. (a) Estimated threshold temperature Tthreshold, (b) depth D, (c) and normalized depth  of 24 C-MH neurons according 

to three methods: classical model, full probabilistic model and a selection model. For the selection model, in which the outlier 
curve was omitted, we chose the model with the highest evidence. Neurons are divided into two groups. In group ‘Single intersection’ 
or ‘Group I’ the classical model was successfully resulted in a single or very close intersection. This group includes 7 neurons. In 
‘Two/None intersection’ or ‘Group II’ the classical model failed to estimate an intersection. This group includes 17 neurons. The boxes 
extend from the lower to upper quartile values of the estimated in each group, with a white bar at the median. The whiskers show the 
range of the estimates. Flier points are those past the end of the whiskers. 

 

Figure 4 summarizes the results of analysis of all neurons for three estimates  𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

depth D  and normalized depth 𝛾. We divided all 24 C-MH neurons into two main groups: 

The group ‘Single intersection’ that includes 7 neurons for which the classical model 

successfully resulted in a single intersection or the intersections span a small triangle like 

neurons C-MH1 and C-MH2 of Figure 2a-b. We refer to this group as ‘Group I’. The group 

‘Two/None intersections’ that includes the remaining 17 neurons for which the classical 

model failed fully or partly to estimate any intersection like neurons C-MH3 and C-MH4 of 

Figure 2c-d. We refer to this group as ‘Group II’. The estimated parameters in ‘Group I’ for 

both classical and probabilistic models compared with the same parameters in ‘Group II’ 

reveals that in ‘Group I’ both approaches were successful. But, the classical model shows 

very implausible values for the ‘Group II’: a median threshold temperature of 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

33.3 °C and mean depth of 𝐷 = 12.5 mm. Previous studies have shown that the majority 
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of C-MH fibers display a threshold of 43 °C (Basbaum, et al., 2009) (Patapoutian, et al., 

2003), but several studies have reported threshold temperature in a range of 36-47 °C 

(Hardy & Stolwijk, 1966) (Tillman, et al., 1995) (Bromm, et al., 1984) (Lele, 1954). Given 

the thickness of the skin <1 mm in our experiments and the reported values of threshold 

temperature, the classical model failed to estimate the parameters for the ‘Group II’ with 

two/none intersections. The full probabilistic model shows for ‘Group II’ a mean threshold 

of 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 32.36 °C and a mean depth  𝐷 = 0.9 mm. Hence this model likely failed to 

estimate  𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (because it is implausibly low), but the estimated depth was consistent 

with the reported depth from the previous studies in range of 20-570 µm (Tillman, et al., 

1995) (Bromm, et al., 1984). Note that in our experimental setup the heat electrode was 

placed on the inside of the skin, so the depth of the receptor from the epidermis was 𝐷𝑒 =

 100 µm (assuming that the skin is approximately 1 mm thick).  

As a brief summary, in this section we showed that using a statistical model to estimate 

the parameters gives a successful parameter combination of depth for all neurons even 

when the classical model fails to give any parameter estimate. Yet, in the case of estimated 

threshold temperatures the values with a median of  𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 32.36 °C were lower than 

previously reported thresholds in range of 36-47 °C (Hardy & Stolwijk, 1966) (Tillman, et 

al., 1995) (Bromm, et al., 1984) (Lele, 1954). We then used the calculated depth to 

estimate the attenuated stimulus traces at the location of the receptor ending. 

The major contribution of the probabilistic model is to incorporate noise by allowing for 

delay in first spike time. However, we didn’t cover the possibility that the first spike 

recorded after stimulus onset might be an ‘outlier’ which was not triggered by the stimulus, 

but rather generated by the (low) resting state activity of the receptor. Next we therefore 

addressed the question of how our results would change under the assumption that the 

first spike after stimulus onset may have been triggered by a probabilistic random process.   

2.2.3 Selection method, discarding outlier responses  

Every stimulus that is taken into account for the estimation of depth and threshold adds a 

certain amount of information and reduces the uncertainty of the estimation. But since 

there is also a certain probability that the first spike is not a response to the stimulus, every 

stimulus also adds a certain amount of noise to the estimation. Hence, there exists a 

potential tradeoff in adding as many recordings as possible to the estimation, or rejecting 

some of them as outliers. For example in our data for 12 out of 24 neurons in 𝐷 − 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

plane, two out of three curves intersect in one point, while the remaining curve either 

intersects in other points or does not intersect. Essentially, at least two ramp stimuli of 

different slope are required to observe an intersection of the curves. But, we asked if we 
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reduce the variability of the estimate in the case of widely spanned ranges of intersections 

by omitting some curves.  

We extended this idea to the maximum likelihood framework described in the previous 

section. We introduced multiple probabilistic models that could describe the data and then 

decided which one provides a more concise description. 

To discriminate between the models we employed a Bayesian testing procedure (Jeffreys, 

1935) and used model comparison based on marginal likelihood (Kass & Raftery, 1995). 

This approach is usually applied to pairwise comparisons: to compare two models, the 

marginal likelihood of each model is evaluated. The ratio of the marginal likelihoods from 

model 1 and model 2 is called the Bayes Factor. If the ratio of marginal likelihoods from 

model 1 and model 2 is larger than 1, the first model is preferred and vice versa, the second 

model is preferred.  

The main reason for adopting a Bayesian approach for model comparison is that Bayes 

factors provide a way of including other information as prior knowledge when assessing 

the evidence for a hypothesis. This is a strong advantage for data with lots of uncertainties, 

such as a small number of recorded neurons and no repetition of recordings for each 

stimulus, or an incomplete skin model. We can incorporate histological and bio-thermal 

information and results reported by other investigators as prior knowledge and use this to 

improve the estimation of receptor parameters. Furthermore, by integrating over the full 

parameter space, marginal likelihoods penalize complex models in a very natural way 

(Kass & Raftery, 1995) (Kass & Wassermann, 1995). 

Bayes Factors can only be calculated for pairwise comparisons. Yet, here we are 

interested in selecting the best out of multiple models. We therefore used the marginal 

likelihoods directly and chose the model that maximizes the marginal likelihood. For 

simplicity, we will refer to any of the models that exclude one or more stimuli from the 

determination of the neuron's parameters as the ‘Selection model’. 

The first model is the full probabilistic model described above, assuming a data set 

consisting of n different experimental conditions, e.g. ramped stimuli, where for all 

responses the first spikes have been triggered by the stimulus. More specifically, the first 

model assumes that the corresponding delays Δ𝑖 = 𝑡𝑙𝑎𝑡
𝑖 −  𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑖  , ( 𝑖 = 1,2,3 number of 

stimuli) have a probability distribution with free parameters 𝜃1 =  {𝛾, 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}. Here, the 

unknown skin parameters and other nuisance factors could go into 𝜃1 as well. 

In the ‘Selection models’ only for the first m < n responses the first spikes have been 

triggered by the stimulus and would therefore contribute meaningfully to the estimate of 
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depth and threshold. For the remaining responses the first spikes are the result of a 

stationary background process, e.g. spontaneous discharges or in any other way not 

triggered by the stimulus. Thus the second model assumes that only the first delays Δ𝑖 ,

𝑖 = 1, … , 𝑚, 𝑚 < 𝑛  have the same probability distribution with parameters 𝜃1  and the 

remaining delays are based on processes with different distribution functions. This second 

model has a parameter vector 𝜃2 =  𝜃1 ∪ {Δ̃𝑚+1, … ,  Δ̃𝑛} that contains the parameters from 

the first model and some additional parameters to capture the times of the non-stimulus-

triggered first spikes. 

In the case of our data the delays of three ramped stimuli in first model M1 have the same 

probability distribution with the parameter space 𝜃1 =  {𝛾, 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}. In instances of the 

selection models M2 only two delays out of three have the same distribution with the 

parameter space 𝜃2 =  𝜃1 and the third delay has a density function Ρ(𝑡, 𝜆̃)  with 

parameter 𝜆̃. 

To compare the models, we use the marginal likelihood, 

ℒ𝑘 =  ∫ Ρ(Δ|𝜃𝑘, 𝑀𝑘)Ρ(𝜃𝑘|𝑀𝑘)𝑑𝜃𝑘                                                       (2.4) 

In equation (2.4), Ρ(Δ|𝜃𝑘, 𝑀𝑘)  is the likelihood of observing the delays given the 

parameters 𝜃𝑘  under model 𝑘. Making the dependence of the likelihood on the model 

explicit here illustrates that in addition to the parameters of the model, the likelihood of the 

data depends on the formulated model itself as well. The term Ρ(𝜃𝑘|𝑀𝑘) is the prior density 

of the parameters of model Mk. This term provides a way to include other information about 

plausible values of parameters. Our first concern is thus how to choose prior densities to 

represent the available information.  

The prior densities offer an appropriate way of adding biologically meaningful constraints 

from the literature into a statistical model. In Table 1 we show a summary of reported 

parameters and the prior density functions we employed here (for more details of choice 

of prior densities see section methods). 

We applied the ‘Selection models’ on the 24 neurons. To demonstrate the performance of 

the selection models, we chose the model M2,i (i-th stimulus was omitted) with the highest 

evidence and compared the estimates with the results of full probabilistic model M1 and 

with the classical model. Figure 4 shows the  𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, depth and normalized depth 𝛾. The 

selection model shows for the ‘Group II’ a mean threshold of 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 36.7 °C and a 

mean depth  𝐷 = 0.8 mm. In contrast to the full probabilistic model, the selection model 



 
25 

 

approached successfully to a mean threshold temperature, which is consistent with the 

previous studies. 

We supposed that the main reason why the classical model failed was its inability to 

account for neural noise and for statistical outliers in the responses. Thus, one might 

expect that a working stimulus selection model would mainly detect outliers, and thus 

exclude the response to one stimulus from the parameter determination for those neurons 

for which the classical model failed. To test this idea, we normalized the sum of the 

marginal likelihoods for each neuron across all candidate models to 1. We then plotted the 

normalized marginal likelihood for the full model that does not exclude any stimuli (see 

Figure 5). Clearly, the marginal likelihood  ℒ𝑓𝑢𝑙𝑙 was larger for the ‘Group I’ for which the 

classical model had been successful than it was for the ‘Group II’ for which the classical 

model had failed to find a consistent parameter estimate. Put another way, this indicates 

that for many neurons in ‘Group II’, one of the selection models provided a better 

description than the full model. As the selection models accounted for outliers, while the 

full model did not, we conclude that statistical outliers might have contributed to the failure 

of the classical method on the neurons in ‘Group II’.  

 Thus, the results from our method suggested that for ‘Group II’, selection models that 

accounted for statistical outliers were more successful at describing the data, suggesting 

that outliers had indeed contributed to the failures of the classical method in these neurons. 

 

Figure 5. Normalized marginal likelihood for the full probabilistic model M1 for two groups of neurons. The ‘Group I’ includes 
7 neurons that could be estimated successfully by classical model. The ‘Group II’ includes the remaining 17 neurons. The error bars 
are the standard error of the mean. 
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Table 1. Priori distributions for different parameters. The reported values of Tthreshold were estimated at either first spike time or 
first time if reporting pain or any sensations. The priori density functions are:  Normal distribution N, Beta distribution B, and Uniform 
distribution U. 

Parameters Reported value Subject Reference Prior density Remark 

Threshold 36 °C Human (Lele, 1954) N(38,2) First sensation 

39-41 °C Monkey (Tillman, et al., 

1995) 

N(38,2) First spike 

43.2 °C Human (Stoll & Greene, 

1959) 

N(38,2) First pain 

43 °C Human (Bromm, et al., 

1984) 

N(38,2) - 

45 °C Human (Hardy & 

Stolwijk, 1966) 

N(38,2) - 

47 °C Rat (Lynn & 

Carpenter, 1982) 

N(38,2) - 

Depth D 20-570 µm Monkey (Tillman, et al., 

1995) 

B(4.75,2.25) C fibers 

180-240 µm Human (Stoll & Greene, 

1959) 

B(4.75,2.25) C fibers 

100 µm Human (Bromm, et al., 

1984) 

B(4.75,2.25) C fibers 

Thermal 

conductivity   

.05-.14 

W/mk 

Pig, Human, 

Monkey, rat 

(Xu, et al., 2008) 

(Tillman, et al., 

1995) (Henriques 

& Moritz, 1947) 

(Duck, 2013)  

U(0.05,0.14) Dermal & 

Epidermal 

Density   1116-1200  

Kg/m3 

Pig, Human, 

Monkey, rat 

U(1116,1200) Dermal & 

Epidermal 

Specific heat c  700-950 

J/Kg K 

Pig, Human, 

Monkey, rat 

U(700,950) Dermal & 

Epidermal 

 



 
27 

 

2.3 Discussion  

In this study we have shown that considering variability, noise and stochastic processes 

in study of primary afferent pain receptors improved the classical deterministic models to 

estimate the depth and threshold of C-fiber nociceptors. We have shown that allowing for 

a small delay in the first response of C-MH nociceptors modified the localization of the 

receptor neurons. Moreover, assuming some stochastic activities which were not triggered 

by stimulus and discarding the outlier responses caused by these stochastic activities 

further improved the estimation of activation threshold of C-MH neurons. We demonstrated 

the reliability of our general framework on a challenging data set, in which the stimulus 

electrode was placed on the corium and dermal side of the skin, the thickness of measured 

skin was unknown and each stimulus condition was applied only once. Our approach 

provides a unique insight into how temperature impinges on heat transducers in their 

native, complex environment. Most studies have hitherto focused on activation of channels 

by membrane heating in an in vitro context where skin is absent (Cesare & McNaughton, 

1996). Our study provides a framework to understand where and with what temperatures 

native heat transducers are activated in vivo.   

Introducing delay in response time allows us to weaken the assumption that latency and 

the threshold time should be the same. However, a delay is justified only if the probabilistic 

model converges to the classical model in boundary condition. Because in classical model 

all delays are neglected it describes an ideal, noise-free case and thus represents the 

boundary condition for the probabilistic model when delays are zero. Hence in the 

boundary condition the classically estimated model parameters should maximize the log- 

likelihood function of delays. Our results confirmed that for negligibly small delays, the 

probabilistically estimated parameters converge towards the classically estimated results. 

Hence, the probabilistic model improves the results in cases where the classical model 

failed and converges to the classical model in boundary condition. 

An alternative way to account for noise in the system might be to add white noise into 

equation (2.1) and treat it as suggested in the classical method. However, this approach 

would require to either predetermine the amount of the noise, or to assume that noise is 

generated by a random process and systematically vary the parameter governing that 

process. Because of the unknown sources and amount of noise, the first method might 

add more uncertainties to the system and the latter method might result in a biological 

meaningless source of noise. 
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In fact, while the probabilistic model improved the estimation of depth, it did not improve 

the estimate of the mean threshold temperature. The low average threshold temperature 

around the baseline temperature for some results estimated by probabilistic model 

suggests that for some responses, a small delay in threshold time might not be sufficient 

to deal with the noise. Indeed, the estimation of depth and threshold temperature was 

improved by discarding these outlier responses in the ‘Selection models’.  In addition, the 

marginal likelihood ratios suggested that the ‘Selection models’ described the observed 

latency better than the initial probabilistic model that used all stimuli to estimate the 

neuron's parameters. Using marginal likelihoods also offered a way of adding prior 

information about model parameters from the literature by choosing an a priori density 

function. For some parameters, there were multiple possibilities for choosing the prior 

density. This could have influenced our computation of model evidence (Kass & Raftery, 

1995). Yet, when we repeated our analysis with slightly different priors, the estimated 

model evidence consistently favored the same model (for more details see section 

methods; choice of prior density functions). We therefore believe that our outlier-detection 

method is relatively insensitive to the choice of the exact parametric form of the prior 

distribution, as long as the range of values from the literature is captured. 

Localization of sensory endings is particularly interesting for quantitative models that 

describe the responses of a neuron to stimulation and for attempts to uncover the neurons 

encoding strategy. For instance, in mathematical modeling of touch sensitive A-fibers 

several investigators have used the histologically measured depth to model the 

somatosensory responses (Sripati, et al., 2006) (Gerling & Thomas, 2008) (Edin, 2004). 

However, the thickness of epidermis and dermis is variable over a population of animals 

and depends on the gender, age, area and hair cycle, and anatomical location (Wang, et 

al., 2013). In many experimental setups the thickness of skin layers and location of neuron 

have not been measured. Even in such cases our method can be freely adapted to 

estimate the depth and threshold of neurons by replacing the heat stimulation with 

mechanical stimulation and the heat transfer function with the stress/strain functions. 

Whereas other investigators required complex and detailed skin models, we presented a 

simple probabilistic model of skin. This way, our method can provide results for cases in 

which the data do not warrant the formulation of a very detailed skin model, or where 

insufficient information about the thermodynamic properties of the studied tissue is 

available. 
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2.4 Methods 

Experiments were performed in strict accordance with the recommendations in the Guide 

for the Care and Use of Laboratory Animals of the Max Delbrück Centre for Molecular 

Medicine. The protocol was approved by the Committee on the Ethics of Animal 

Experiments of Animal Welfare German authorities (LaGeSo; Permit Number: T 

(00383/12).  

2.4.1 Skin nerve preparation and identification of single C-fibers 

The skin-nerve preparation was used to record from single primary afferents (Milenkovic, 

et al., 2007) (Milenkovic, et al., 2008) (Wetzel, et al., 2007) (Martinez-Salgado, et al., 

2007). Mice were killed by CO2 inhalation for 2–4 min followed by cervical dislocation. The 

saphenous nerve and the shaved skin of the hind limb of the mouse were dissected free 

and placed in an organ bath at 32 °C. The chamber was perfused with a synthetic 

interstitial fluid (SIF buffer) the composition of which was (in mM): NaCl, 123; KCl, 3.5; 

MgSO4, 0.7; NaH2PO4, 1.7; CaCl2, 2.0; sodium gluconate, 9.5; glucose, 5.5; sucrose, 

7.5; and HEPES, 10 at a pH of 7.4. The skin was placed with the corium side up in the 

organ bath. The saphenous nerve was placed in an adjacent chamber on a mirror to aid 

and under microscopy fine filaments were teased from the nerve and placed on the 

recording electrode. Electrical isolation was achieved with mineral oil.  

Single mechanically sensitive units were characterized by probing the skin with a glass 

rod for mechanically responsive receptive fields. Figure 6 shows the anatomical location 

of all 24 neurons relative to the saphenous nerve trunk. Using an electrical stimulating 

electrode, we measured the conduction velocity (calculated by dividing conduction 

distance over electrical latency for the spike) to select C-fibers whose conduction velocity 

was in the C-fiber range <1 m/s.  

 

 

Figure 6. Schematic of hind-limb skin of mouse and anatomical locations of receptive field. For all 24 neurons the locations of 
the receptive fields are illustrated in respect to the saphenous nerve trunk.  
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2.4.2  Thermal stimulation protocol 

For heat stimulation, a Peltier element–based contact probe (4x3 mm surface) applied 

thermal stimuli (custom device built by the Yale School of Medicine Instrumentation Repair 

and Design) to the receptive field of identified C fibers.  

The stimulation protocol sent as a pre-programmed series of commands to the Peltier 

element were applied to all C-fibers. The thermal stimulation protocol consisted of 3 stimuli 

(32–48 °C) with different ramp durations (16 s, 4 s, 2 s) and the hold phase of 10 seconds. 

The interstimulation interval was 60 seconds. The order of stimulation was first heat and 

then mechanical from the slowest to fastest ramps. After the thermal stimulation we carried 

out a mechanical stimulation protocol, the results of which are not part of this manuscript. 

Data were obtained from 11 C57Bl6/N wildtype mice. 

2.4.3 Heat transfer model of skin 

Heat energy flows through the skin to the nociceptive terminals due to the temperature 

gradients. According to the second law of thermodynamics, heat flows from warmer 

location to colder location. With no heat source, these thermodynamical effects will let the 

skin relax to one homogeneous temperature. In an experimental set using a Peltier device, 

the stimulus acts as a heat source, inducing heat at one location which then flows through 

the skin and eventually results in a temperature increase at the receptor site of neuron. 

Because the stimulus temperature varies over time, the resulting heat flow will vary over 

time as well. In addition, it varies in space because skin is not an ideal conductor and 

locations further from the stimulus receive lower heat energy and at a later time. Directly 

measuring the exact temperature profile in the skin at the depth of nociceptor is difficult. 

Therefore, heat transfer in the skin is typically modeled using thermodynamical laws (Xu, 

et al., 2008) (Henriques & Moritz, 1947). The general equation describes heat flow in the 

skin by a diffusion equation, 

𝜕𝑇

𝜕𝑡
=  𝑎2

𝜕2𝑇

𝜕𝑥2
                                                                               (2.5) 

Here, 𝑇 = 𝑇(𝑥, 𝑡) is the temperature at time 𝑡 and distance 𝑥 from the stimulus contact, 

such that 𝑇(0, 𝑡)  is the experimentally applied heat stimulus and the temperature at other 

locations needs to be determined by solving equation (2.5). Furthermore, 𝑎 =  √𝜅 𝜌 𝑐 ⁄  is 

called the thermal diffusivity. Thermal diffusivity is square root of the ratio between thermal 

conductivity  𝜅 and the product of density 𝜌 and specific heat 𝑐 of the skin. 

When solving equation (2.5) analytically, one has to assume that the skin is a solid with 

uniform thermal properties. Given the complex structure of the skin, this assumption is 
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likely to be violated. More realistic approaches therefore treat the skin as consisting of 

multiple layers, where each layer has uniform thermal properties but layers are allowed to 

differ in their thermal diffusivity. Typical models use separate layers for epidermis, dermis 

and subcutaneous tissue (Tillman, et al., 1995) (Xu, et al., 2008). Other models have used 

four layers (Henriques & Moritz, 1947) or up to eight layers (Hardy & Stolwijk, 1966) in live 

animal models. In all these multi-layer approaches, the stimulus is assumed to be applied 

at the epidermal side of the skin and the thickness of each layer has to be specified in 

advance. Then, a system of equations describing the flow of heat into and out of each of 

the layers can be derived. (Tillman, et al., 1995) (Marchandise, et al., 2014) used a 

modified finite difference schemes to numerically solve these equations, while (Stoll & 

Greene, 1959) (Henriques & Moritz, 1947) derived a first order approximation of the time-

temperature relationship in every layer and at any distance from the skin surface according 

to the equation (2.1). This approximation was originally derived for experiments in which 

the stimulus is abruptly switched on and is then kept fixed until the threshold is reached. 

However, these approximations have also been successfully applied to conditions where 

the surface temperature is not constant but is known at every instant in time (Stoll & 

Greene, 1959). This perspective can be justified if we assume that heat conductance in 

the skin is sufficiently fast. Then the temperature at any distance can be computed quite 

accurately until the steady state temperature is reached.  

2.4.4 Estimation of depth from 𝜸 using a Monte-Carlo method 

Several investigators measured the epidermal and dermal thickness and their thermal 

properties. In Table 1 we summarized some measurements. So far the experiments don't 

differ, we would start usually with epidermis as superficial layer and estimate 𝐷  for a 

determined diffusivity of epidermis according to, 

𝛾 =  
𝐷𝑒

2√𝜅𝑒/𝜌𝑒𝑐𝑒

                                                                          (2.6) 

If the estimated 𝐷 does not exceed the histological measured epidermal thickness, we 

would accept it as the depth of nerve endings, otherwise 𝛾 would compose of epidermis 

and dermis layers 

 

𝛾 =  
𝐷𝑒

2√𝜅𝑒/𝜌𝑒𝑐𝑒

+  
𝐷𝑑

2√𝜅𝑑/𝜌𝑑𝑐𝑑
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Where, 𝐷𝑒 is the depth of the epidermis, and 𝐷𝑑 is the depth of dermis. To estimate 𝐷 in 

equation (2.6) we would then determine 𝐷𝑒 and thermal diffusivities and solve the equation 

for  𝐷𝑑.  

In our data set, however, the heat electrode was placed on the dermal and subcutaneous 

site of the skin and the thickness of the skin wasn’t measured. This experimental 

redundancy prevent using a direct multilayer model of the skin. Therefore we reduced a 

two layer model with separate layers for epidermis, and dermis to a one layer model, which 

accords properties of both epidermis and dermis. Next step is to set the skin of a one layer 

model. To this end, we took the maximum and minimum reported values of thermal 

conductivity, density, and specific heat of epidermis and dermis from literature (see Table 

1). We then sampled three sets for 𝜅, 𝜌 and 𝑐 from respective uniform distributions. The 

sampling range of the distributions were the maximum and minimum values for epidermis 

and dermis. For the estimated normalized depth,  𝛾 we drew every single parameter from 

the corresponding sampling distribution and computed the depth. We then repeated this 

procedures for the whole sampling sets with size of 108 and in the end averaged over the 

computed 𝐷. 

2.4.5 Choice of prior density functions 

In order to express the prior assumptions about the value of 𝛾 =  
𝐷

2√𝜅 𝜌 𝑐⁄
 , we need an a 

priori density function of the depth and all parameters of the thermal diffusivity. According 

to histological studies most C-MH fibers end in the epidermal to dermal layers of the skin 

(Breathnach, 1977). Therefore, the probability of finding the nerve endings decreases with 

increasing depth, but it is unlikely to find nerve endings directly beneath the skin surface. 

Furthermore, depth cannot be larger than the skin's thickness, which is in our experiments 

approximately 500 µm to 1 mm. Note that in our experimental set up the position zero 

refers to some distances deep into dermis and subcutaneous tissue. The shape of this 

distribution seems to have a probability density function with asymmetric tails but a heavier 

tail toward zero. A distribution with this property is offered by Beta distribution. Beta 

distribution has two shape parameters α and β. These shape parameters are determined 

if two properties of the distribution are known, for example the mode and a given percentile. 

In previous studies the locations of C-MH fibers were estimated in the depths ranging from 

20 to 570 µm (see Table 1 for references). Therefore, we scaled the Beta distribution in 

an interval of 0 ≤ 𝐷 ≤ 600 µm and assumed that the depth of a receptor neuron had a 

Beta distribution with 75-80 percent of the distribution’s mass in an interval around median 

of an approximate width of 400µm and model
𝛼−1

𝛼+𝛽−2
= [0.75,0.8]. We arbitrary chose two 
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shape parameters α = 4.75 and β = 2.25 which satisfied these assumptions. In addition 

and to verify that this choice of prior did not influence our analysis, we also ran the same 

analysis with other shape parameters and a uniform and Weibull distribution. 

We chose uniform distribution U(a,b) (with a and b being the minimum and maximum 

values of distribution) for the thermal diffusivity parameters. To this end  𝛾 composes of 

four distribution functions in form of  
𝐷𝑖

2√
𝜅𝑖

𝜌𝑐𝑖

 and  𝐷𝑖 ∼  ℬ(4.75,2.25) ,  𝜅𝑖~ 𝒰(0.3,1.3) , 

𝑐𝑖~𝒰(700,950), and  𝜌𝑖~𝒰(1116,1200) , (for the i-th draw from sampling population).To 

define an explicit density function Ρ(𝛾) we firstly drew samples 𝐷𝑖, 𝜅𝑖, 𝑐𝑖  , 𝑖 = 1, … , 108 from 

the respective distributions and calculated 𝛾𝑖. It is very difficult to derive an analytical form 

for the distribution of 𝛾  from these assumptions. Therefore, we approximated the 

distribution of the sampled 𝛾  by a mixture of 3 Gaussian distributions with unknown 

parameters (estimated using expectation-maximization (EM) algorithm for fitting mixture-

of-Gaussian models implemented in scikit-learn, the number of components was 

determined by minimizing Bayesian Information Criterion (BIC).). 

A more complicated case is the prior Ρ(𝑡, 𝜆̃) for the outliers Δĩ  in ‘Selection models’ M2. In 

order to create a meaningful marginal likelihood, the prior should be a proper probability 

density function (Kass & Raftery, 1995). In addition, the priors should be random statistical 

process that generate the first spikes independently of the stimulus. An example density 

that satisfies this property assumes that the first spike times are spontaneous events, 

which are generated by a Poisson process. Under these conditions the first spike time is 

a random event of an exponential distribution with a rate parameter 𝜆̃ ~ 10.  To estimate 

the total evidence for a model, we took the expectation with respect to  𝜆̃. This expectation 

was implemented as a numerical integration.In Table 1 we summarized all priori 

distribution functions for parameters from literature including the references.  

2.4.6 Calculating the marginal likelihood 

Typical strategies to estimate the marginal likelihood (4) are sampling (i.e. Monte-Carlo 

integration) or analytical approximations like the Laplace approximation, Variational 

Inference, or Expectation Propagation. For low dimensional parameter spaces (2-4 

dimensions), numerical integration may work as well. In equation (2.3), the delays are only 

given implicitly, which makes analytical approximations quite difficult. Furthermore, 

numerical integration techniques would be computationally very intensive due to the cost 

of solving equation (2.3). We therefore used a combination of analytical and numerical 

integration to determine the marginal likelihood. We interpreted the integral (4) as the 
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expected value of the likelihood function Ρ(Δ|𝜃𝑘; 𝑀𝑘) , under the prior density Ρ(𝜃𝑘|𝑀𝑘) for 

model Mk , 

𝔼[ Ρ(Δ|𝑀𝑘)]Ρ(θk|𝑀𝑘) =  ∫ Ρ(Δ|𝑀𝑘)Ρ(θk)𝑑𝜃𝑘 

and used numerical integration according to trapezoidal rule to compute the expected 

value. The prior densities are for model M1:{Ρ(𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), Ρ(𝛾)}and for model M2: Ρ(𝜃𝑘) =

{Ρ(𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), Ρ(𝛾), Ρ(𝑡, 𝜆̃)} For ‘Selection models’, M2, however, we assumed the outlier 

first spike has a fixed value, so that we can formally write the likelihood for the outlier 

components as a dirac function δ(tlat − 𝑡), which allowed us to solve for the corresponding 

components of the marginal likelihood (4) analytically. All other parameters of model M2 

were treated in the same way as in M1. 

For every potentially excluded stimulus in selection model M2, we estimated the ratio of 

the marginal likelihood for the full model M1 over the marginal likelihood for the model M2 

without the excluded stimuli. 
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Chapter 3 

3 Decoding of Polymodal C-fiber Nociceptor 

Responses with a Generalized Linear Model and 

L1 norm Regularization 

Understanding how the expression of ion channels affects the responses of polymodal C-

fiber nociceptors to different modalities of stimulation is fundamental for understanding the 

encoding strategy of primary afferent neurons. Yet, less is known about the mechanism of 

mechanically and thermally activated ion channels accounting for pain sensation. A 

commonly used method in system neuroscience for understanding the computation 

carried out by a neural population is to predict the neural responses to the given stimulus 

using a generative model. A method that has often been neglected in studying nociceptors. 

In this study we focused on applying advanced statistical methods to give qualitative 

insights into the encoding strategy of transduction mechanisms at receptor sites. We 

computed a large dimensional space of stimulus features – strain components (force-

induced deformation of skin) and thermal components from the represented mechanical 

and heat stimuli. We then used a Generalized Linear Model (GLM) with a L1 norm 

regularization to model the neural responses while selecting the most predictive candidate 

features. Our results show that in a data set of 24 C-fibers, derivative of vertical 

compressive strain, maximum compressive and tensile strains are promising candidates 

to describe the mechanical transduction of C-fibers.  

3.1 Introduction  

Nociceptors are primary afferent neurons responding to tissue injury caused by thermal, 

mechanical or chemical noxious (painful) stimuli. Activation of specific receptors and ion 

channels in nerve endings of the nociceptors results in the initiation of action potentials 

that propagate along the axon of primary fibers, through a synaptic site in the dorsal horn 

in the spinal cord, to higher brain centers, where they are thought to be perceived as pain. 

The electrical activity of primary afferent neurons is primarily governed by the expression 

and function of ion channels. These include voltage-gated sodium, potassium and calcium 

channels, leak channels, and ligand-gated channels such as acid-sensing ion channels 
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and transient receptor potential (TRP) channels (see (Julius & Basbaum, 2001) (Waxman, 

Stephen G & Zamponi, 2014) (Caterina, et al., 1997) (Cho, et al., 2012) (Vriens, et al., 

2014) for review on molecular mechanism of pain). 

Many investigations of the neural mechanism underlying the responses of nociceptors to 

noxious stimuli are confronted with a similar challenge, namely identifying the mechanism 

which shapes the spatial and temporal dynamics of response discharges to different 

modalities of stimuli. In general, the underlying mechanism can be divided into two steps: 

(1) the transduction of external stimuli into electrical signals (proximal stimulus) by ion 

channels, and (2) the generation of action potentials. Remarkable advances have been 

made towards understanding ion channels expressed in innocuous mechanoreceptors 

(Delmas, et al., 2011) (Bensmaia, 2008) (Poole, et al., 2015) (Lewin & Moshourab, 2004). 

However, less is known about the ion channels that are responsible for transducing painful 

mechanical and heat stimulation in polymodal C-fiber nociceptors (Ranade, et al., 2014). 

Experimental approaches towards elucidating the functions of polymodal C-fibers are 

limited mainly because of the small diameter and free nerve endings of C-fibers that make 

them hard to localize, isolate, and consequently to access for standard patch clamp and 

electrophysiological recordings. 

Alternatively, descriptive or neural spiking models offer a promising framework for 

understanding how information about different stimulus modalities is encoded in 

sequences of action potentials of primary afferent neurons. In this regard mathematical 

models have been developed to study pain pathway at different levels; at molecular and 

cellular level (Britton, et al., 1995) (Britton & Skevington, 1989), at the central level of the 

spinal cord (Rho & Prescott, 2012), and in the brain (Cecchi, et al., 2012). Yet, the primary 

afferent nociceptors innervating the skin disperse their receptor sites over epidermal and 

dermal layers of skin (Breathnach, 1977). Each layer attenuates or amplifies the energy of 

thermal stimuli or produces complex mechanical deformations of skin tissue depending on 

its physical properties, histological structure, and thickness (Wang, et al., 2013). Hence, 

an adequate model of mechano-heat-sensitive receptor neurons requires to consider both 

the bio-thermo-mechanical responses of skin tissue and combination of different stimulus 

modalities by peripheral transduction mechanisms. So far some mathematical approaches 

have been developed to model the responses of heat-sensitive receptor neurons to 

attenuated thermal stimuli  (Henriques & Moritz, 1947) (Tillman, et al., 1995) (Xu, et al., 

2008) and responses of mechano-sensitive receptor neurons to skin deformations caused 

by mechanical stimuli (strains) (Phillips & Johnson, 1981b) (Sripati, et al., 2006) 

(Srinivasan & Dandekar, 1996) (Lesniak & Gerling, 2009) . The central assumption of 

these models is that the frequency of the neuronal firing emitted by the neurons depends 
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on the intensity of a particular combination of strains (e.g., compressive, tensile, vertical 

or horizontal and shear strain) in the local neighborhood of the receptor terminals or on 

the attenuated heat energy at the depth of receptor. However, none of these models 

suggested a combinatorial approach to model the responses of polymodal C-fibers to both 

attenuated thermal stimuli and mechanical strains. Further, these models have typically 

assumed the noise levels to be negligibly small and thus were limited to apply the classical 

statistical approaches.  

Advanced statistical models of signal transduction have been successful at inferring 

mechanisms of signal transduction in other domains of systems neuroscience such as 

vision (e.g. (Gerwinn, et al., 2010) (Pillow, et al., 2005)). However, in contrast to visual 

neurons, primary afferent nociceptors are unique because single primary sensory neurons 

have the ability to detect a wide range of stimulus modalities, including those of a physical 

and chemical nature (Basbaum, et al., 2009). Therefore, nociceptors must be equipped 

with a repertoire of diverse transduction devices. At the same time compared to 

experimental setups for recording from other sensory neurons, recording from C-fiber 

nociceptors has been proven as difficult and the data sets are typically small with few 

repetitions. Overall, statistical modeling of the response discharges in common data sets 

of recordings from C-fibers is challenging. 

In this study we seek to explore the potential uses of a Bayesian model to study the 

responses of primary afferent C-fiber nociceptors. With this framework we can not only 

focus on either mechanical or heat receptors but also infer the sensitivity of C-fiber 

nociceptors to both strain and heat components of stimuli. This study is organized as 

follow. In section “3.2.2.1 Force profile” we first obtained the stress and strain profiles 

arising from a mechanical force electrode applied to the dermal side of mouse hind-limb 

skin according to the continuum mechanics model suggested by Phillips and Johnson 

(Phillips & Johnson, 1981b). Furthermore, in section “3.2.2.2 Temperature profile” we used 

the estimated depth of all neurons reported in a previous study (Dezhdar, et al., 2015, in 

press) and estimated the temperature curves at the depth of receptor site. In section 

“Methods: Generalized linear Model (GLM) for receptors”,  we used these stress-strain 

patterns and estimated temperature curves to provide a link between the stimulus 

components and the discharge patterns of C-fiber nociceptors in terms of a generalized 

linear model (GLM) (Nelder & Wedderburn, 1972). Finally, because experimental data sets 

are often too small to fully identify the complete strain pattern, we regularized the GLM by 

the L1 norm of the regression coefficients (least absolute shrinkage and selection operator, 

LASSO) (Tibshirani, 1996), giving preference to sparse solutions for which only few strain 

and heat components are used to predict a neuron’s response. 
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Our results showed that applying a GLM with LASSO penalty provides a novel method of 

determining the stimulus sensitivity of C-fiber nociceptors and predicting the responses of 

these neurons. In other words, by choosing an appropriate statistical model and stimulus 

features one is able to model the responses of even a challenging data set of primary 

afferent nociceptors with a Bayesian method.  

3.2 Methods 

The continuum mechanics model used to compute the stress and resultant strain profiles 

in this study has been described in detail by Phillips and Johnson (Phillips & Johnson, 

1981b). Modeling the skin as a continuum assumes the multilayer skin tissue to be a 

homogenous, isotropic, and elastic medium whose mechanical properties can be 

approximated by those of an ideal medium and obey Hook’s law. Given the 

nonhomogeneous and non-isotropic structure of epidermis, dermis and subcutaneous 

tissue this assumption is unlikely to hold exactly. However, it has been shown that for skin 

deflections of 1 mm or less, violations of the assumption of homogeneity and isotropy have 

minor effects (Phillips & Johnson, 1981b). Therefore, we decided to use these 

assumptions to simplify modeling of the mechanical properties of skin tissue.  

Briefly, we assumed that the receptor site of a neuron is just underneath the center of the 

stimulus electrode and at an estimated depth that was determined using the method 

described in chapter 2 (Dezhdar, et al., 2015, in press). We then determined the strain 

profiles according to Phillips and Johnson (Phillips & Johnson, 1981b). In their study the 

strain profiles were determined in three steps. A complex spatial force profile at the surface 

was decomposed into the subcutaneous stresses by; (i) specifying stresses arising from 

single line loads, (ii) summing these to produce a composite stress pattern, and (iii) the 

stresses were used to compute subcutaneous strain profiles. For small deflections, the 

superposition principle holds approximately. Thus, a surface force pattern can be divided 

and treated as independent, individual subunits of line loads. By superposition, the 

stresses produced by these single line loads can be combined to produce any possible 

stress profile beneath the electrode. The combined stress profiles were used to compute 

the strain profiles in 14 locations at the estimated depth of the receptor site. In case of 

thermal stimuli we assumed that the whole area underneath the heat electrode and at the 

previously estimated depths (Dezhdar, et al., 2015, in press) homogenously underwent 

the same temperature changes. 
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3.2.1 Experimental data 

Experiments were performed in strict accordance with the Guide for the Care and Use of 

Laboratory Animals of the Max Delbrück Centre for Molecular Medicine. The protocol was 

approved by the Committee on the Ethics of Animal Experiments of Animal Welfare 

German authorities (LaGeSo; Permit Number: T (00383/12). The C-fiber responses of 

neurons used here were reported in a previous study where the responses to thermal 

stimuli were used to estimate the depth and threshold temperature of neurons (Dezhdar, 

et al., 2015, in press).  

3.2.1.1 Skin nerve preparation and identification of single C-fibers 

The skin-nerve preparation was used to record from single primary afferents (Milenkovic, 

et al., 2008) (Milenkovic, et al., 2007) . Mice were killed by CO2 inhalation for 2–4 min 

followed by cervical dislocation. The saphenous nerve and the shaved skin of the hind 

limb of the mouse were dissected free and placed in an organ bath at 32 °C. The chamber 

was perfused with a synthetic interstitial fluid (SIF buffer) the composition of which was (in 

mM): NaCl, 123; KCl, 3.5; MgSO4, 0.7; NaH2PO4, 1.7; CaCl2, 2.0; sodium gluconate, 9.5; 

glucose, 5.5; sucrose, 7.5; and HEPES, 10 at a pH of 7.4. The skin was placed with the 

corium side up in the organ bath. The saphenous nerve was placed in an adjacent 

chamber on a mirror to aid and under microscopy fine filaments were teased from the 

nerve and placed on the recording electrode. Electrical isolation was achieved with mineral 

oil.  

Single mechanically sensitive units were characterized by probing the skin with a glass 

rod for mechanically responsive receptive fields. Using an electrical stimulating electrode, 

we measured the conduction velocity (calculated by dividing conduction distance over 

electrical latency for the spike) to select C-fibers whose conduction velocity was in the C-

fiber range <1 m/s.  

3.2.1.2 Mechanical and thermal stimulation devices 

The mechanical stimulating probe is driven by a nanomotor (Kleindiek, Reutlingen, 

Germany) and is also equipped with a force transducer (Kleindiek, Reutlingen, Germany). 

The probe was a stainless steel rod and the diameter of the flat circular contact area was 

0.8 mm. The probe was placed onto a spot within the receptive field where the most 

reliable responses could be obtained. Mechanical thresholds for nociceptors were 

measured by reading off the force (obtained from the attached force transducer) at which 

the first spike was obtained. The signal driving the movement of the linear motor and raw 

electrophysiological data were collected with a Powerlab 4.0 system (ADInstruments) and 

spikes were discriminated off-line with the spike histogram extension of the software. 
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For heat stimulation, a Peltier element–based contact probe (4x3 mm surface) applied 

thermal stimuli (custom device built by the Yale School of Medicine Instrumentation Repair 

and Design) to the receptive field of identified C fibers.  

3.2.1.3 Mechanical and heat stimulation protocol 

Two stimulation protocols – for mechanical stimuli- sent as a pre-programmed series of 

commands to the nanomotor (Kleindiek, Reutlingen, Germany) were applied to all C-fibers. 

The mechanical stimulation protocol consisted of 3 ramp and hold stimuli of 400 µm 

indentation. The ramp durations was 8 s, 4 s, and 1 s, while the hold phase had a constant 

duration of 10 s. The interstimulation interval was 60 seconds. The order of stimulation 

was first heat and then mechanical from the slowest to fastest ramps.   Data were obtained 

from 11 C57Bl6/N wildtype mice. 

3.2.2 Strain and thermal components 

3.2.2.1 Force profile 

The surface force was applied by an electrode with a diameter of 0.8 mm on the corium 

side of the skin. We divided the spatial area underneath the electrode into 14 line loads. 

We assumed the center of the electrode is the origin of a Cartesian coordinate system with 

three orthogonal normal directions of x equivalent to the depth, y parallel to the surface 

and at right angles of line load and z parallel to the surface and along to the line load (see 

Figure 1).  

The effect of stress (force per area) and strains (fractional changes in length) in a 

continuum volume can usually be approximated by analyzing a small, isolated cube (see 

Figure 1). For a cube in static equilibrium (without acceleration or rotation) this results in 

three stress components along three orthogonal axes  and three shear stress components 

along three planes spanned by a pair of three  orthogonal axes. If the cube doesn’t change 

its volume, the stress components cause compression and expansion of the tissue, which 

is defined as strain. The relationship between stress and strain is governed by Hook’s law, 

from which follows that (i) the stress in any direction produces a strain in the same direction 

which is proportional to the stress, (ii) the shear strain can be observed when the sides of 

the cube are tangentially displaced, which is very likely in a complex structure such as 

skin, (iii) regardless of the stresses, compressive strain is always accompanied by tensile 

strain and vice versa, which means that it is not possible to infer from a compressive (or 

tensile) surface stimulus that the effective stimulus at the receptor site is compression (or 

tension) (Phillips & Johnson, 1981b) (Timoshenko & Goodier, 1970), (iv) the components 

of strain depend strongly on the orientation of the coordinate frame. 



 
41 

 

 

Figure 1. Schematic of force electrode applied on the surface of the skin. We divided the area underneath of the electrode into 
14 line loads and computed 5 strain components for each line load and 3 thermal components for the whole area. The principal 
components of stress 𝜎𝑥, 𝜎𝑦 and shear stress 𝜏𝑥𝑦 are defined for a small cube of skin underneath one line load. We assumed that 

the main escape of displaced tissue was along the z-axis of the line load and the strain along x-, y-axis were predominantly 
compressive. The terminal endings of the C-fibers were at given depths (Dezhdar, et al., 2015, in press) and undefined horizontal 
positions. We transformed then the principal axes to polar coordinates (Timoshenko & Goodier, 1970). Note that in our experimental 
condition, the electrode was applied on the dermal site of skin. 

 

To avoid a dependency of the strain components on the orientation of the coordinate frame 

the best strategy has been to transfer the strain components from Cartesian coordinates 

to a spherical or cylindrical system. In this way any formal strain in any direction is the 

fractional reduction in diameter in that direction. In the following we explain briefly the 

method suggested by Phillips and Johnson. For more details we refer the reader to ref. 

(Phillips & Johnson, 1981b).  

To compute the stress profiles independent to the orientation we first divided the area 

underneath the electrode into line loads. For the area underneath every line load we 

specified the complete stress field including 3 normal stress components 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 , and 3 

shear stress components 𝜏𝑥𝑦, 𝜏𝑦𝑧, 𝜏𝑥𝑧 in a Cartesian coordinate system (see Figure 1).  

Then, by rotation of axes, the stresses in any other coordinate frame and, in particular, the 

cylindrical coordinate frame can be found. Thus, according to Boussinesq and Wilson (11) 

for a line load P the principal stress-strain axes at any point beneath the surface are 

aligned with the cylindrical coordinates surrounding the line load. The normal stress 

components of one line load, transformed in cylindrical coordinates, are then the radial 

stress 𝜎𝑟, which is always compressive, the tangential stress perpendicular to the line load 

𝜎𝛩,  and the longitudinal stress 𝜎𝑧, aligned with the line load. After deformation, a small 
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sphere approximates an ellipsoid. If the coordinate system is aligned with the major and 

minor axes of the ellipsoid, these axes are called the principle axes and the normal 

stresses and strains are called the principle stresses and strains. The stress and strain 

along the minor axis of the ellipsoid are the maximum compressive stress and strain 

regardless of orientation. The stress and strain along the major axis are the maximum 

tensile stress and strain regardless of orientation. The shear strain cannot be specified 

without specifying a rectangular coordinate system. In this case we specified additionally 

the shear strain in a reference coordinate frame and manifested as a misalignment 

between the principle axes of ellipsoid and coordinate axes.  

In cases where every line load is a subunit of a more complex surface profile, all line loads’ 

individual cylindrical coordinates and the related single radial stress must be expressed in 

a single coordinate frame. To define a general coordinate frame for all line loads we first 

transformed the stress components aligned to the cylindrical coordinate of one line load 

into any arbitrary coordinate frame and rotated the principal axes. In this way transformed 

stress components of all line loads are independent of the orientation of the coordinate 

frame. 

The components of principal stresses 𝜎𝑥, 𝜎𝑦, and shear stress 𝜏𝑥𝑦, at point (𝑥, 𝑦) beneath 

the surface, implied by all line loads 𝑝𝑗, (𝑗 = −7, … 7) located at previously estimated depth 

(Dezhdar, et al., 2015, in press) and distance 𝑦𝑗 of the j-th line load (Phillips & Johnson, 

1981b), 

𝜎𝑥(𝑥, 𝑦) =
2𝑥3

𝜋
∑

𝑝𝑗

𝑟𝑗
4 ,

7

𝑗=−7

                                                    (3.1) 

𝜎𝑦(𝑥, 𝑦) =
2𝑥

𝜋
∑

(𝑦 − 𝑦𝑗)
2

𝑝𝑗

𝑟𝑗
4 ,

7

𝑗=−7

                                    (3.2) 

𝜏𝑥𝑦(𝑥, 𝑦) = 2𝑥2 ∑
(𝑦 − 𝑦𝑗)𝑝𝑗

𝜋𝑟𝑗
4 ,                                   (3.3)

7

𝑗=−7

 

where 𝑟𝑗 = (𝑥2 + (𝑦 − 𝑦𝑗)
2

)
1 2⁄

 . The maximum shear stress related to an arbitrary x, y 

frame is then 

𝜏𝑚𝑎𝑥 = ((
𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2)

1 2⁄

                                (3.4) 

The stresses along a coordinate frame independent to the orientation are then, 
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𝜎1 = (
𝜎𝑥 + 𝜎𝑦

2
) + 𝜏𝑚𝑎𝑥                                                   (3.5) 

𝜎2 = (
𝜎𝑥 + 𝜎𝑦

2
) − 𝜏𝑚𝑎𝑥,                                                  (3.6) 

where 𝜎1  and  𝜎2  are maximum and minimum compressive stresses in the x, y plane 

regardless of orientation.  

There are various possibilities for computing the strain components from stress 

components. The transduction process at receptor sites might be activated by tensile 

deformation, compressive deformation, or shear deformation. It might be sensitive to only 

horizontal direction, only vertical direction or in any direction. Additionally, there are two 

possibilities in continuum mechanics termed as 1) plane stress and 2) plane strain, and 

each of two can occur in conjunction with the other possibilities. Briefly, in the state of 

plane strain, it is assumed that the tissue cannot expand in z direction which implies that 

strain in this direction is zero, 𝜖𝑧 = 0. In the state of plane stress, the main escape of tissue 

is an elongation along the z axis. In this condition  𝜖𝑧 , is always negative and  𝜎𝑧 = 0 

(Timoshenko & Goodier, 1970). 

To compute the strain components from stress components we supposed that the skin 

tissue can be elongated along the line load and assumed the state of plane stress.  

The computed strain components are then (Phillips & Johnson, 1981b),  

Vertical compressive strain,  𝜖𝑥 =
1

𝐸
(𝜎𝑥 −

𝜎𝑦

2
) 

Maximum horizontal strain , 𝜖ℎ = 𝑚𝑎𝑥 (|𝜖𝑦|, |𝜖𝑧|)  

Maximum compressive strain regardless of orientation, 𝜖𝑐 =
1

𝐸
(𝜎1 −

𝜎2

2
) 

Maximum tensile strain regardless of orientation, 𝜖𝑡 = 𝑚𝑎𝑥 (−𝜖𝑧, −𝜖2) 

Maximum strain regardless of orientation weather tensile or compressive, 𝜖𝑚 =

𝑚𝑎𝑥 (𝜖𝑐 , 𝜖𝑡) 

With  𝜖𝑦 =
1

𝐸
 (𝜎𝑦, 𝜎𝑥 2⁄ ) and 𝜖𝑧 =

1

𝐸
 (

𝜎𝑦+𝜎𝑦

2
).  

Young’s modulus of elasticity, E, is a measure of skin’s resistance to deformation. 

Assuming an ideal medium, a given surface deformation produces the same 

subcutaneous distortion patterns independent of the property of the material. Thus, for a 

fixed displacement the effect of this proportionality factor cancels in the chain of 
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calculations following from surface displacement to subcutaneous strain (Phillips & 

Johnson, 1981b). Accordingly, we set E=1. 

As a brief summary, we first approximated the area underneath the electrode by line loads 

that would produce approximately the same force as the original stimuli. The stress profile 

produced by a single line load was computed and then these stress profiles were summed 

to produce the composite stress pattern. Finally, the composite stresses were used to 

specify the 5 strain components.  

As a 6th strain component we chose the derivative of vertical compressive strain 
𝜕𝜖𝑥

𝜕𝑡
=

∆𝜖𝑥

∆𝑡
 

to describe the sensitivity of receptor neurons to the changes of vertical compression in 

every time bin. 

Due to the elasticity of the skin, it acts like a spatial low-pass filter for pressure stimuli. 

Thus, fine details of mechanical information about the spatial variation of the surface 

stimulus become weaker as the receptor is located at greater depth (Sripati, et al., 2006). 

Therefore, an accurate estimation of the depth is important. We determined the depth of 

receptor terminals using the method from the study in previous chapter 2 (Dezhdar, et al., 

2015, in press) resulting in depth estimates between 0.1 mm and 1.5 mm from the surface.  

We calculated strain profiles for all 24 neurons at these depths. 

3.2.2.2 Temperature profile 

According to the laws of Thermodynamics, during conduction of heat through a physical 

medium thermal energy is exchanged until a thermal equilibrium is reached. The transfer 

of heat depends on the thermal properties of the mediums. Because skin in not a perfect 

heat conductor, the energy of a stimulus is attenuated by the skin’s different layers. This 

implies that first, the temperature at the location of receptor differs from the applied 

temperature at the surface and second the skin tissue changes its volume in response to 

changes in temperature, a process which is called thermal tension. 

In previous study (Dezhdar, et al., 2015, in press) we studied the transfer of thermal stimuli 

in skin and used the heat transfer function to estimate the depth and threshold 

temperatures of receptor neurons and time to threshold. In this study we used these values 

to estimate the attenuated temperature profiles at receptor depth. The central equation to 

estimate the temperature at receptor depth is given by Henriques (Henriques & Moritz, 

1947), 

𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + (𝑇0 − 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒)
2

√𝜋
∫ 𝑒−𝑥2

𝑑𝑥
𝛾 √𝜏⁄

0
, 



 
45 

 

where 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑑𝑙 , 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 refer to temperature at the receptors’ depth and at the surface of 

skin, 𝛾 refers to normalized depth and 𝜏 is the estimated time to threshold. Tracing this 

equation for all temperatures of thermal stimuli we were able to reconstruct the thermal 

stimuli 𝑇 at the depth of receptors.  

The thermal tension is provided by the equation  𝜖𝑇 = 𝛼∆𝑇 , where  𝛼
10−4

°𝐶
 is thermal 

expansion coefficient. We assumed 𝛼 = 1 (Xu, et al., 2008). 

Finally, we selected the derivative of temperature profile  
𝜕𝑇

𝜕𝑡
 as the 3rd thermal component. 

Note that all thermal profiles were estimated at each neurons estimated depth but over the 

whole area underneath of the heat electrode.  

3.2.3 Generalized Linear Model (GLM) for receptors 

Generalized linear models are a commonly used statistical method for modeling the 

relationship between neural responses and stimuli. To predict the spike counts from the 

strain and thermal features we assumed that the number of spikes 𝑌𝑖 in bin i was a random 

variable with Poisson distribution (𝑟𝑖), where the rate 𝑟𝑖 was dependent on the vector of 

features 𝑋𝑖 in bin i: 

𝑟𝑖 = exp(∑ 𝛽𝑗𝑋𝑖𝑗),                                                                        (3.7) 

𝑘

𝑗=1

 

where 𝑋𝑖𝑗 denotes the average value of the j-th feature in the i-th bin. Here the term feature 

refers either to the properties of the heat stimulus or the strain components as described 

in the previous section. 

Estimates of the regression weights 𝛽𝑗  can be obtained through maximum likelihood 

estimation (McCullagh & Nelder, 1989) (Paninski, 2004). However, the number of 

regression weights k that we obtained using this approach was relatively large. In cases 

where the dimension of parameter space was large but the data was limited, maximum 

likelihood estimation was impaired and regularization was necessary to avoid overfitting. 

Therefore, we used the LASSO algorithm (Tibshirani, 1996) (Friedman, et al., 2010) to 

drive unneeded parameters to zero. Briefly, this was done by maximizing a penalized log- 

likelihood function with a penalty that was proportional to the L1 norm of the parameter 

vector. Thus, the vector  𝛽̂ of estimated regression weights was the one that minimized the 

loss function, 
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𝐿(𝛽) = 𝑛𝑟𝑖 − ∑ 𝑌𝑖 log(𝑟𝑖) + 𝜆 ∑|𝛽𝑗|,                                        (3.8)

𝑘

𝑗=1

𝑛

𝑖=1

 

where  𝜆 > 0  is the strength of the regularization and was chosen to maximize cross-

validated likelihood (100-fold cross validation). The idea is to minimize the negative log- 

likelihood function (the first two terms in the equation), while penalizing constellations for 

which the number of non-zero 𝛽𝑗 is large. 

The LASSO penalty (L1 norm) prefers the solution with fewer nonzero parameter values. 

It has thus a tendency to select one feature from a group of highly correlated features and 

deselect the others. This property is advantageous in our sparse data set of 24 neurons in 

which the features (strain and thermal components) are highly correlated and all stimuli 

were applied once without any repetitions.  

To increase the computational power of GLM and simplify the log-likelihood we binned the 

feature vector and spike counts into equidistant discretization points. The choice of time 

bin size is a difficult problem that may critically affect the outcome of the model. A fine time 

bin that retains precise spike times might result in a large number of discretization points, 

and increase the number of features for the likelihood function drastically. On the other 

hand, a large time bin may impair the convergence of the optimization process. Adding 

discretization points in an adaptive fashion when required could be a compromise. 

However, in our sparse data set without repetition, an adaptive bin width did not improve 

the optimization of log-likelihood, but rather had a negative impact.  

Further, estimating the bin width for all neurons individually resulted in different optimal bin 

widths for different neurons, which renders a summary analysis difficult. Hence, we 

attempt to find a joint bin width for all neurons. To this end we estimated the mean firing 

rate of all neurons’ responses to mechanical and thermal stimuli using a Nadaraya-Watson 

kernel estimator (Nadaraya, 1964) (Watson , 1964) while we optimized the bandwidth of 

the kernel with leave-one-out cross-validation. Accordingly the optimal bandwidth is the 

one which minimizes the cross-validation score or minimizes the risk function.  

The 10-fold Cross-Validation of kernel optimization resulted in an optimal bandwidth of 270 

ms in our data set. We then chose the bandwidth of the estimated bandwidth of Nadaraya-

Watson kernel estimation as the ‘optimal’ bin width of discretization points. 
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3.3 Results 

It is assumed that polymodal C-fiber nociceptors are activated by specific components of 

deformation (i.e., strain) of the tissue at the site of the receptor. In this study we considered 

6 strain components and 3 thermal components (all candidate variables and their effect 

on receptor are summarized in Table 1). However, it is unclear which components account 

for the activation of a given receptor neuron. To select the components that exhibit the 

strongest effects on the observed spike trains of single neurons we applied a GLM to 

predict the responses while shrinking the components and setting the components with a 

low weight to zero using LASSO penalty (Friedman, et al., 2010). The goal of this analysis 

is mainly to find out whether we could use this probabilistic approach to select and identify 

components of mechanical strain that would generally account well for receptor activation. 

 

Table 1. Summary of stimuli components. 

Stimuli component Effect on the receptor 

vertical compressive strain, 𝜖𝑥 Elongation along the axis perpendicular to the skin surface 

Maximum horizontal strain, 𝜖ℎ Maximum elongation parallel to the skin surface 

Maximum compressive strain regardless of 

orientation, 𝜖𝑐  

Maximum compression in any direction 

Maximum tensile strain regardless of 

orientation, 𝜖𝑡 

Maximum elongation in any direction 

Maximum strain regardless of orientation 
weather tensile or compressive, 𝜖𝑚 

Maximum deformation in any direction, compressive or tensile 

Derivative of vertical compressive strain,
𝜕𝜖𝑥

𝜕𝑡
 Temporal changes of elongation along the axis perpendicular to 

the skin surface 

Temperature T Temperature in a horizontal plane parallel to the surface at the 
estimated depth of receptors 

Derivative of temperature, 
𝜕𝑇

𝜕𝑡
 Temporal changes of temperature in a horizontal plane parallel to 

the surface at the estimated depth of receptors 

Thermal tension, 𝜖𝑇 Deformation in any direction proportional to temperature changes 

 

We analyzed a data set of responses from 24 neurons to a series of ramp and hold force 

and heat stimuli with ramp phases of three different velocities. The vector of responses 𝑌 

consisted of concatenated binned spike trains of three mechanical stimuli and three 

thermal stimuli (see Methods for more details). By choosing the origin at the center of the 

heat and mechanical electrode we took advantage of the symmetry of the components 

and considered only one half of the area underneath the mechanical electrode, from line 

load at position 1 to the line load at position 7, respectively (see Figure 1). To fit the GLM 

to the data and estimate the weights β, we maximized the log-likelihood function of the 
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Poisson distribution, while regularizing the weights using the L1 norm. The strength of 

regularization was chosen to maximize cross-validated log-likelihood. As we described in 

section Methods we binned the feature vectors and the vectors of spike trains to increase 

the prediction power of the GLM. Accordingly, we chose 5 arbitrary bin widths of {100 ms, 

250 ms, 500 ms, 750 ms, 1000 ms} and one optimized bin width of 270 ms (see Methods 

for choice of bin widths) and estimated and regularized weights  𝛽𝑖  of 9 stimulus 

components. 

The analysis addressed the following questions: Which strain components are mostly 

involved in activation of single neurons and to what extent do the neurons respond to these 

components?   How are the weight values of responding neurons distributed? What is the 

spatial distribution of the receptor sites with respect to different positions of line loads 

relative to the center of the electrode? And the final goal was to demonstrate the 

applicability of a sparse regularized GLM methods to studying primary afferent C-fibers. 

Further, we were interested in how the choice of bin width affected the results. Our 

experience showed that for the finest bin width of 100 ms the GLM model often failed to 

converge. To study the stability of the GLM model to predict the responses for different 

discretization widths we first estimated the regularized weights of all 9 stimulus 

components for five models M1 to M5 with bin widths M1=100 ms, M2=250 ms, M3=500 

ms, M4=750 ms, and M5=1000 ms. We then computed for each model the mean of 

estimated weights for single components underneath of each line load. Finally we obtained 

the Euclidian distance of the mean values between different models; d(M2-M1), d(M3-M2), 

d(M4-M3), and d(M5-M4). The Euclidian distances of mean weights between two models 

with adjacent bin widths revealed that the largest distance was observed mainly between 

models M1 with discretization width 100 ms and M2 with a discretization width of 250 ms 

for all positions (see Figure 2). For the models with a discretization width equal to or above 

250 ms, d(M3-M2), d(M4-M3), and d(M5-M4) the Euclidian distances of mean weights 

remained small and almost constant. The small variance of mean values suggested that 

the estimated weights of all models with bin widths equal to or above 250 ms converge a 

stable regime in terms of the choice of bin width. The estimated weights reported for the 

‘optimal’ bin width of 270 ms were in this regime of stable results, while the weights 

reported for a bin width of 100 ms were not and were likely to be biased. To visualize this 

variances we showed all results for both bin widths of 100 ms and 270 ms. 
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Figure 2. Euclidian distances of mean weights of stimuli components between two adjacent models of bin widths; M1:100ms, 
M2: 250ms, M3:500ms, M4:750ms, M5:1000ms.  (a) Maximum horizontal strain regardless of orientation at different locations. (b) 
Maximum compressive strain regardless of orientation. (c) Maximum tensile strain regardless of orientation. (d) Maximum strain 
regardless of orientation whether tensile or compressive. (e) Vertical compressive strain. (f) Derivative of vertical compressive strain. 
(g) Thermal components. 

 

Figure 3 shows how many neurons were sensitive to any of the thermal- and strain 

components over all 14 positions underneath of line loads. Each bar in Figure 3 refers to 

a line load at a location relative to center and shows the number of neurons that responded 

to every single stimulus component at this location. The neurons that responded to the 

stimulus showed non-zero weights 𝛽𝑗.  

According to Figure 3 maximum compressive strain regardless of orientation, 𝜖𝑐  and 

maximum strain regardless of orientation whether tensile or compressive, 𝜖𝑚 showed the 

lowest activation ability. The number of responding neurons decreases for locations farther 

from the center. This observation held for all other strain components, which indicated that 

the receptor sites of neurons were mostly located directly under the center of the electrode 

or slightly lateral to the center. 
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Figure 3. The number of neurons with non-zero weights obtained by a Lasso regularization and GLM for two different bin 

widths. For every neuron the responses were estimated using 6 strain components 𝜖𝑥 , 𝜖ℎ, 𝜖𝑐 , 𝜖𝑡 , 𝜖𝑚, and 
𝜕𝜖𝑥

𝜕𝑡
 in 7 different positions 

underneath the force electrode and 3 thermal components. If the neurons did not respond to the stimuli component the corresponding 
weight set to zero according to the Lasso method. (a) Results for a temporal resolution of 100 ms binning. (b) Results for a temporal 
resolution of 270 ms binning. 

 

For the location directly under the center (position 1 in Figure 3) we counted the number 

of responding neurons for both, fine and optimal bin widths. For bin width 270 ms (100 

ms), 12(12) out of 24 responded to vertical compressive strain𝜖𝑥, 22(17) to derivative of 

vertical strain  
𝜕𝜖𝑥

𝜕𝑡
, 7(8) to maximum horizontal strain 𝜖ℎ, 11(16) to maximum tensile strain 

regardless of orientation 𝜖𝑡 , and 5(8) to maximum compressive strain regardless of 

orientation𝜖𝑐 . The lowest number of responding neurons 3(1) related to the maximum 

strain regardless of orientation, whether tensile or compressive,  𝜖𝑚 . According to the 

definition of 𝜖𝑚 = 𝑚𝑎𝑥 (𝜖𝑐 , 𝜖𝑡), this strain component is highly correlated with the maximum 

tensile strains and consequently the weights for 𝜖𝑚 set to zero in the LASSO regularization 
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for many neurons. The highest sensitivity were obtained for the derivative of the vertical 

compressive strain. The results showed non-zero weights for all 24 neurons to attenuated 

thermal stimuli 𝑇. 22(21) neurons showed sensitivity to derivative of thermal stimuli and 

19(23) to the thermal tension, 𝜖𝑇. 

To determine the stability of the results in terms of the variance of the estimated weights 

for each component in a population of 24 neurons we computed the standard error of 

weights over all locations. Figures 4 shows the standard errors of the weights of single 

strain components for all horizontal positions underneath the line loads (positions 1,…,7) 

and the area underneath of the heat electrode both at previously estimated depths 

(Dezhdar, et al., 2015, in press). 

 

 

Figure 4 . Standard errors of weights. Data for 24 neurons and 6 single strain components over 7 horizontal positions. Thermal 
components refer to the whole area underneath of thermal electrode. The strain and thermal components were obtained at the 
estimated depth of receptors. The strain components are as follow; Maximum horizontal strain, 𝜖ℎ. Maximum compressive strain 

regardless of orientation, 𝜖𝑐. Maximum tensile strain regardless of orientation, 𝜖𝑡. Maximum strain regardless of orientation, whether 

tensile or compressive, 𝜖𝑚. Vertical compressive strain, 𝜖𝑥. Derivative of vertical compressive strain 
𝜕𝜖𝑥

𝜕𝑡
. Attenuated heat stimuli,𝑇, 

derivative of heat, 
𝜕𝑇

𝜕𝑡
, thermal expansion, 𝜖𝑇 for the whole area beneath the heat electrode at the depth of receptor. (a) Results of 

discretization width of 100 ms. (b) Results of discretization width of 270 ms. 
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Figure 4a shows the results for the fine bin width of 100 ms and Fig. 4b for the optimized 

bin width of 270 ms. For all stimulus components the neurons responded mainly to 

locations at the center of the electrode (position 1). According to Figure 4 in general, for 

finer bin width (100 ms) the estimated weights showed a higher variance and larger error 

bars. This result is consistent with the results of Euclidian distance analysis.  

3.4 Discussion   

The mechanism with which primary afferent C-fibers perform the transduction of 

mechanical force and thermal changes into action potentials is still poorly understood at 

the molecular level. In part because it is difficult to isolate the free nerve endings and 

consequently measure the transducer currents. Several models have been developed to 

characterize the stimulus components that evoke transformation from static mechanical 

stimuli into proximal signals for mechanosensitive slowly adapting A-fiber (SA1) and 

rapidly adapting A-fibers (RA). The candidate variables that have been proposed to drive 

transduction are mainly the maximum compressive strain (Phillips & Johnson, 1981b), 

strain energy density (Dandekar & Srinivasan, 1997) (Srinivasan & Dandekar, 1996), 

stress (Del Prete, et al., 2003) (Khalsa, et al., 1996), tensile strain and changes in receptor 

area (Sripati, et al., 2006). In general these variables are physical quantities that are 

closely correlated and related to local membrane stretch (Sripati, et al., 2006) and may be 

distinguished using a wide variety of not only static but dynamical stimuli. In this study we 

focused in selecting from the highly correlated candidate variable those strain components 

that are most predictive of the neural responses of C-fiber nociceptors. One result of the 

present study was to provide a probabilistic model for studying the primary afferent 

responses. 

The computation of strain components in this study was based on continuum mechanics 

model suggested by Phillips and Johnson (Phillips & Johnson, 1981b). We divided the 

area underneath the electrode into 14 line loads to provide a finer spatial profile for the 

spatial distribution of receptors sites. The candidate variable were computed for a given 

receptor location (𝑥, 𝑦𝑖), in which x refers to depth of receptor and 𝑦𝑖, i=-7,…,7, refers to 

the location of line loads. The depth of receptor was estimated in a previous study 

(Dezhdar, et al., 2015, in press). Previous studies showed that stress and strain 

components are strongly affected by receptor depth (Sripati, et al., 2006) (Srinivasan & 

Dandekar, 1996), our model therefore provides a more accurate estimate of the candidate 
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variables, whereas, the predecessor models assumed either a constant depth or have 

estimated depth as a model parameter.  

According to our results, neuronal responses of C-fibers were explained most effectively 

by the following stimulus properties: In 22 out of 24 neurons, the “derivative of vertical 

compressive strain 
𝛥𝜖𝑥

𝛥𝑡
 “  (based on a bin width of 270 ms) was important to predict the 

neuronal response. The second components were “maximum tensile strain regardless of 

orientation, 𝜖𝑡  “ (11 out of 24 neurons based on bin width of 270 ms) and “vertical 

compressive strain, 𝜖𝑥 “ (12 out of 24 neurons based on bin width of 270 ms). These results 

suggest that the receptor neurons are most sensitive to temporary compression of receptor 

surface area and relative stretch of surface area. However, the vertical compressive strain 

and maximum horizontal tensile strain are highly correlated. The maximum horizontal 

strain is large when the electrode is above the receptor and the receptor is compressed in 

the vertical direction but elongated along the horizontal. An alternative way to distinguish 

tensile and compressive components more efficaciously might be to realize experiments 

in which a force electrode is applied independently in both vertical and tangential direction. 

 In our modeling framework we assumed that each line load delivered equal force normal 

to the surface of the skin. Consequently, all line loads induce an equal skin tissue 

displacement even for the line loads along the edges of the electrode. This simplification 

was a trade-off between a uniform feature space and flexibility of the model to describe 

the edge enhancement. Therefore, our framework cannot provide a model to predict the 

edge enhancement of receptor neurons. However, whether individual mechanoreceptors 

of C-fibers are edge enhancement sensitive or orientation sensitive is unknown. Our 

results and previously reported results of slowly adapting (SA1) and rapidly adapting (RA) 

mechanoreceptors responses  suggests that these receptor neurons are not orientation 

sensitive (Sripati, et al., 2006).   

Our results showed that assuming the recordings of 24 neurons as the realization of 24 

repetitions of one neuron resulted in more stable GLM convergence and parameter 

estimation. The experimental design used in this study sacrificed the repeatability to obtain 

wide-ranging thermal and mechanical responses. This shortcoming calls for an 

experimental design with repeated observation of each stimulus. The other source of error 

(between the observed data and model) might be raised by the simple skin model. We 

assumed skin as a homogenous and isotropic model. In our experimental set up of single 

neurons the shaved skin was dissected from the dermal side and the electrode was applied 

at the corium side of skin. This experimental contingency provided a better access to the 

nerve endings but caused the thickness of the dissected layer and the skin model to remain 



 
54 

 

unknown and variying among neurons. Therefore, we assumed skin as a one layer, 

homogenous and isotropic model and didn’t consider a more complex and multilayer 

model. 

This study suggested a model for describing the sensitivity of C-fibers to heat and strain 

features and provided a first approximation of the transduction dynamics of these 

nociceptors. To capture the temporal dynamics of the firing rates of C-fibers, we suggest 

to extend this model with the biophysical properties of the afferent neurons, such as the 

mechanisms of action potential generation, relative and absolute refractoriness, and rate 

of adaptation. To this end we suggest to incorporate the outcome of our sparse GLM into 

a spiking neuron model or a descriptive model of firing rate and adaptation. Such a general 

framework offers a characterization of spatiotemporal dynamics of neural representation 

of different stimulus modalities conveyed through the same polymodal sensory channel. 
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Chapter 4 

4 A Parametric Model of Firing Rates and 

Adaptation: a Study of Discharge Responses of 

Primary Afferent Neurons and Nociceptors 

Nociceptors are primary afferent neurons responding to tissue injury caused by noxious 

mechanical, chemical, or thermal stimuli. Spikes evoked from these neurons are 

transmitted to the central nervous system and are thought to be perceived as pain. In this 

study, we assess the processing taking place in peripheral pathway of primary afferents 

using probabilistic models. We introduce parametric models of stimulus-driven 

instantaneous firing rate. Each model consisted of two coupled ordinary differential 

equations (ODEs) describing the rate of an inhomogeneous point process; either a 

Poisson process or a Gamma process. These models describe how the neuron’s temporal 

dynamics depend on stimulation. We fitted the models on response discharges of 

polymodal, unmyelinated C-fibers, and thinly myelinated A-fibers recorded in an in vitro 

mouse skin preparation. Our models characterize the responses of single neurons to 

different stimulus modalities and provide a parametric framework to study the potential 

differences in temporal dynamics of responses.  

4.1 Introduction 

Nociceptors are primary afferent neurons responding to noxious (painful) stimuli. The 

functionality of these neurons is crucial for a living organism to interact with the 

environment and avoid harmful stimuli. The key role of these neurons has subjected them 

to intensive investigations in several research areas, using pharmacological and 

electrophysiological to psychophysical methods, and, at the molecular and cellular levels, 

to more abstract mathematical and computational neurosciences. In recent years and in 

the light of improving advanced statistical models to describe the coding strategies of 

single neurons as well as heterogeneous populations of neurons, research in nociception 

received more attention from neuroscientists. In this regard pain studies can benefit from 

the mathematical and computational methods. However, the relatively dynamical 

experimental set ups of recordings from nociceptors often make multiple recordings of the 
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same stimulus condition infeasible. A typical data set of nociceptor recordings thus often 

consists only of single recordings of different stimulus conditions and are limited to small 

numbers of neurons. The limitations in number of recorded neurons and number of trials 

often make data sets of nociceptors inappropriate for standard statistical inference and 

machine learning methods. In this study we introduced methods to validate the models 

based on single neuron statistics. Thus the models provide a framework to study the 

temporal dynamics of responses even with different modalities of stimuli and amount 

different data sets.  

Main class of nociceptors, called C-fibers, have small diameter unmyelinated axons (Woolf 

& Ma, 2007) bundled in fascicles surrounded by Schwann cells and support conduction 

velocities of 0.25–1.25 m/s (Julius & Basbaum, 2001). Initial fast-onset pain is mediated 

by A𝛿-fiber nociceptors whose axons are myelinated and support conduction velocities of 

approximately 5–30 m/s (Kumazawa , et al., 1996). The majority of C-fibers are polymodal. 

They respond to mechanical pressure, chemical irritants and have been referred to as the 

main population responding to thermal stimuli (Patapoutian, et al., 2003). Although 

different modalities of stimuli can trigger spikes in the same C-fiber neuron, these 

modalities thought to be perceived as distinct qualities at the end of the processing 

pathway. One of the main questions of pain studies has been to explain how, and at which 

level of processing, discrimination of different stimulus modalities takes place. Addressing 

this question will give valuable insights into the encoding strategy of these neurons, their 

transduction mechanism and the constituting ion channels.  

Recent studies strengthen the hypothesis that different noxious stimulus modalities can 

be distinguished from the earliest stages of processing (Cavanaugh, et al., 2009) and 

spatiotemporal dynamics of responses might code the differences between the distinct 

modalities (Milenkovic, et al., 2014). Yet, the histological structure, geometry and small 

diameters of C-fibers make them hard to isolate and access for standard 

electrophysiological measurements of transducer currents. On the other hand, different 

stimulus modalities such as heat and mechanical pressure impart different physical effects 

on the skin and hence their impacts may not be directly comparable. Consequently, a 

direct comparison of their discharge patterns might be fundamentally inappropriate. To 

overcome these limitations, in this study, we suggested to characterize the responses of 

single neurons to stimulus modalities by sets of model parameters and to compare each 

neuron’s best fitting parameters instead of a direct comparison of their spike trains. To this 

end we introduced a parametric model of coupled ordinary differential equations of 

instantaneous firing rate and adaptation. We assumed that the neurons’ spikes were 

generated by a point process and estimated the model parameters. We investigated two 
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types of ordinary differential equations (ODEs); one describing a linear adaptation process 

and another describing a nonlinear, divisive adaptation. We examined the models in data 

sets of measurements from C-fiber and A 𝛿 -fiber nociceptors and A-fiber 

mechanoreceptors. The data sets were collected from previous studies. Thus, to record 

from these neurons different stimulation protocols were employed. However, our modeling 

approach provides model validation based on single neuron statistics. Thus, although 

different nociceptors and different modalities were employed, we were able to compare 

the estimated parameters of each neuron as a result of the modeling process.  

4.2 Methods 

The model we introduced to describe the instantaneous firing rate of responses consisted 

of two coupled ordinary differential equations (ODEs) of firing rate and adaptation. The 

main idea behind using a system of ODEs was to describe the changes in firing rate at 

each instant of time 𝑡 for the next instant of time 𝑡 + ∆𝑡, which lies infinitesimally in the 

future, and to describe these changes as a function of all model parameters at time 𝑡. The 

parametric model consisted of four parameters describing the coupling of firing rate and 

adaptation, the neuron’s sensitivity to the input stimulation, and two parameters that 

describes firing rate and adaptation. In addition the models included a parameter to 

estimate the spontaneous activity of neurons. To estimate the parameters we fitted the 

model to the firing rate of a single neuron using maximum likelihood estimation.  

4.2.1 Experimental data 

The main focus of this study was to develop a parametric model of single neurons and 

identify their response characteristics by the model parameters rather than by a direct 

comparison of their spike trains. We therefore were able to use spike trains recorded with 

different stimulation protocols. All data sets have been reported in previous studies 

(Wetzel, et al., 2007) (Moshourab, et al., 2013). The in vitro skin-nerve preparation to 

record from primary neurons, characterization of single units and mechanical and thermal 

devices were used as previously reported (Wetzel, et al., 2007) (Moshourab, et al., 2013) 

(Milenkovic, et al., 2008) and described in chapters 2 and 3. 

The mechanical stimulation protocol consisted of an ascending series of ramp and hold 

stimuli, sent as a pre-programmed series of commands to the nanomotor that controlled 

the steel rod for mechanical stimulation. The magnitude of the displacements of the rod 

was between 10 and 800 µ𝑚 . The standard ramp speed used in the ascending series had 

a constant velocity of 1435  µ𝑚𝑠−1 . This protocol was employed on C-fibers, slowly 
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adapting mechanoreceptors (SA), and Aδ-mechano-nociceptors (AMs), all fibers with 

predominantly static responses. Only for a group of 10 mechano-heat sensitive C-fibers 

(C-MH) a controlled ramp and hold heat stimulation was applied and the responses were 

recorded. During the ramp duration of 10 s, the base temperature of these neurons were 

increased from 15 °C to 52°C and held for 5 s. The remaining C-fibers were tested for their 

heat responsiveness with an uncontrolled heat stimulation. A preheated synthetic 

interstitial fluid (SIF buffer) was applied on the receptive field isolated with a small metal 

ring (see (Moshourab, et al., 2013) (Milenkovic, et al., 2008) for more details of SIF buffer 

compositions).  

Mechanical stimulation protocols were quite heterogeneous and most notably, the 

magnitude of force levels was only known up to an unknown scale factor. We therefore 

decided to only model the neurons’ responses to the highest force level. Furthermore, 

because of the uncontrolled heat stimulation of the SIF buffer, we restricted our modeling 

efforts to discriminate between heat and mechanical responses to the responses of 10 C-

MH neurons. 

4.2.2 Model  

Each neuron was described by two state variables, an instantaneous firing rate 𝑟(𝑡) and a 

latent adaptation 𝐴(𝑡) (we will often drop the argument t for notational clarity). The dynamic 

of these state variables were described by the equations  

{

𝑑𝑟

𝑑𝑡
= 𝑎(𝑟 − 𝐸(𝑠, 𝐴))

𝑑𝐴

𝑑𝑡
= 𝑐 𝑟 − 𝑑 𝐴          

                                                                (4.1) 

with parameters 𝑎, 𝑐, 𝑑 > 0. Despite its simplicity, the ordinary differential equation offers 

a strong model of describing the spike rate of a single neuron in response to stimulation, 

and physiological relevant model parameters (Wilson, 2005). This model has been proven 

as successful model to describe the firing rates of visual neurons in response to stimuli of 

varying contrast or intensity in the past (Sclar, et al., 1990) (Albrecht & Hamilton, 1982). 

According to equation (4.1) the firing rate converges to a steady state 𝐸(𝑠, 𝐴), which is 

determined by stimulation s and an abstract adaptation variable A that summarizes all 

possible physiological adaptation mechanisms. To derive a mathematical expression of 

adaptation we considered two alternatives, linear adaptation 𝐸(𝑠, 𝐴) = 𝑟0 − 𝑏𝑙𝑖𝑛𝑠 − 𝐴 and 

nonlinear adaptation 𝐸(𝑠, 𝐴) = 𝑟0 +
𝑏𝑛𝑜𝑛𝑙𝑖𝑛

1+𝐴
𝑠. 
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The parameterization of the steady states 𝐸(𝑠, 𝐴) adds two more parameters to the model, 

namely the level of spontaneous activity 𝑟0and the stimulation sensitivity 𝑏𝑙𝑖𝑛 or 𝑏𝑛𝑜𝑛𝑙𝑖𝑛. 

We estimated the mean firing rate 𝑟 of responses in time intervals of 1 ms. We assumed 

that the mean firing rate of each instant of time over the whole trial’s duration is the rate 

function of a point process. 

Our first assumption was that the neurons’ spikes were generated by an inhomogeneous 

Poisson process with time-varying rate function r(t). A Poisson process is a stochastic 

process, for which the number of (spikes) events observed in a given time interval  

 [𝑡𝑖 , 𝑡𝑖+1)  follows a Poisson distribution 1  with rate parameter  𝜆𝑖 = ∫ 𝑟(𝑡′)𝑑𝑡′𝑡𝑖+1

𝑡𝑖
,  𝑖 =

1, … , 𝑛 − 1. We obtained the log-likelihood function of observing 𝑘 spike counts, given sets 

of parameters 𝜃 = {𝑎, 𝑏𝑙𝑖𝑛, 𝑏𝑛𝑜𝑛𝑙𝑖𝑛, 𝑐, 𝑑, 𝑟0}  

ln ℓ(𝜃|𝑘) = ln ∏
𝜆𝑖

𝑘𝑖𝑒−𝜆𝑖

𝑘𝑖!

𝑛−1

𝑖=0

                                                            (4.2) 

and selected the set of parameters which maximized the log-likelihood function using the 

Nelder-Mead simplex algorithm (Nelder & Mead, 1965) implemented in the python 

package scipy.optimize (Jones, et al., 2001 --). 

We also considered the alternative assumption that the spikes were generated by an 

inhomogeneous Gamma process. We assumed that, (1) the process started with an event 

at time point 𝑡 = 𝑡0 and 𝑡0 → −∞, and we considered the development of the process from 

the origin 𝑡 = 0 onwards. (2) If 𝑡1, … , 𝑡𝑛  were the times of first n events, the first time 

interval 𝑥1 is exponentially distributed and the n inter-spike time intervals {𝑥2, 𝑥3, … , 𝑥𝑛} 

were distributed according to a Gamma distribution with a rate function 𝜆𝑖 = ∫ 𝑟(𝑡′)𝑑𝑡′𝑡𝑖+1

𝑡𝑖
. 

The log-likelihood of observing inter-spike intervals given sets of parameters 𝜃 =

{𝑎, 𝑏𝑙𝑖𝑛, 𝑏𝑛𝑜𝑛𝑙𝑖𝑛, 𝑐, 𝑑, 𝑟0} and shape parameter {𝜅}  is (Berman, 1981), 

ℓ𝑒𝑥𝑝(𝜃|𝑥1) = 𝜆(𝑡1)𝑒−𝜆(𝑡1) 

ℓ𝑔𝑎𝑚𝑚𝑎(𝜃, 𝜅|𝑥𝑖) = [∏ 𝜆(𝑡𝑖)

𝑛

𝑖=2

{Λ(𝑡𝑖) − Λ(𝑡𝑖−1)}𝜅−1 ]𝑒−Λ(𝑡𝑛)/{Γ(κ)}n        (4.3) 

ln ℓ(𝜃, 𝜅|𝑥𝑖) = ln ℓ𝑒𝑥𝑝 + ln ℓ𝑔𝑎𝑚𝑚𝑎                                              (4.4) 

                                                           
1 Note that there are two different mathematical concepts involved here that are both named after Simeon Denis Poisson (1781-1840). 

The first one is the Poisson distribution, which describes a distribution of counts. The second one is the Poisson process, which 
describes a distribution of event sequences. 
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In this equation Λ(𝑡) =  ∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
.  

We estimated the model parameters 𝜃 and shape parameter 𝜅 using maximum likelihood 

estimation. Note that for the Gamma process, we need to express the likelihood in terms 

of inter-spike intervals rather than spike counts, which turned out to be considerably less 

stable numerically. 

4.2.3 Goodness-of-fit 

Typical goodness of fit testing uses the fact that for large data sets, the deviance (derived 

from the model’s log-likelihood) converges in distribution to a Chi-square distribution. Yet, 

this isn’t necessarily true for smaller data sets (Wichmann & Hill, 2001), where “small” data 

sets can consist of several thousand observations. We therefore evaluated how well the 

introduced model described the observed spike train using a Monte-Carlo method to 

simulate the null-hypothesis. The measure for the Monte-Carlo hypothesis testing method 

is a p-value. To test a null-hypothesis 𝐻0, we specify a test statistic 𝑇. If the observed value 

of the test statistic is 𝑡𝑜𝑏𝑠, then the p-value is: 

𝑝 = 𝑃(𝑇 ≥ 𝑡𝑜𝑏𝑠|𝐻0)                                                             (4.5) 

Then large values of  𝑇  provide evidence against the hypothesis  𝐻0 . To evaluate this 

probability we need the distribution of 𝑇 when 𝐻0 is true. 

Our null-hypothesis was that the spikes were generated by the point process under 

consideration (either Poisson, or Gamma). Thus, for the Poisson model, we sampled 1000 

spike trains from a Poisson process with the modeled rate function given by equation (4.1). 

For the Gamma model, we sampled 1000 spike trains from a Gamma process with the 

modeled rate function given by equation (4.1) and the additional irregularity parameter 𝜅 . 

Then the test statistic 𝑇 was the log-likelihood of rate functions of the simulated spike trains 

under the respective model and 𝑡𝑜𝑏𝑠 was the log-likelihood of the observed spike train. 

Thus, the probability P was approximated as the fraction of sampled spike trains for which 

the log-likelihood exceeded the log-likelihood of the observed spike train. The null-

hypothesis is rejected if the value of the log-likelihood of simulated spike trains were larger 

than the log-likelihood of the observed spike train for more than 95% of the simulated spike 

trains. In other words, we sampled spike trains from the fitted model to approximate the 

distribution of likelihoods under the null-hypothesis that the fitted model is correct and then 

used standard null-hypothesis testing to compare the observed spike train to this 

distribution. We reported the p-value of this test. 
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4.2.4 Sampling methods 

To sample a large number of spike trains from a Poisson process, we assumed that for 

every single neuron the spikes in each time bin were Poisson distributed with a rate given 

by the fitted firing rate model. 

In sampling from an inhomogeneous Gamma process we employed the alternative method 

of deriving the inhomogeneous Gamma process introduced by Berman (Berman, 1981), 

who pointed out that for a Gamma process, differences in cumulative rate are Gamma 

distributed. Thus, samples from a Gamma process can be generated by generating a 

sequence of Gamma random variables di , 𝑖 = 1, … , 𝑛 and then selecting time points 𝑡𝑖 

such that 

∑ di

𝑗

𝑖=1

= ∫ 𝜆(𝑥)𝑑𝑥

𝑡𝑗

0

 

Here, 𝜆(𝑥) is the firing rate function given by the fitted model. 

4.2.5 Model selection 

To select which models of adaptation describe our data “better” we used the Akaike 

Information Criterion (AIC) (Akaike, 1974). The AIC is a model selection criterion, which 

provides a relative measure of goodness of fit while penalizing more complex models. This 

approach uses the maximum of the likelihood function as the goodness-of-fit measure and 

the number of parameters 𝑘 as the complexity of the model. The model selection criterion 

is a tradeoff between these two measures. 

𝐴𝐼𝐶 =  −2 log ℓ(𝜃|𝑘) + 2𝑘 

Thus, the preferred model is the one for which the AIC is smaller. In our modeling 

framework, however, both models; linear and nonlinear adaptation have the same number 

of parameters. Therefore, the negative maximum of log-likelihood provided the measure 

for model selection. The preferred model was the model with the higher log-likelihood.   

4.3 Results 

In this study we developed parametric models of temporal changes in firing rates of primary 

afferent neurons as function of four model parameters and spontaneous firing rate. Given 

any stimulus, the goal was to predict the neural response, and to estimate the model 

parameters of single neurons as well as possible, as this can give insights into the 

computations carried out by the neurons.  
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4.3.1 Descriptive model of firing rate and adaptation 

Our first assumption was that the spikes were generated by an inhomogeneous Poisson 

process. We tested this assumption on 53 thermally and mechanically evoked response 

discharges of 48 C-fibers including 30 polymodal C-fibers and 18 heat insensitive C-fibers.  

For all neurons the neural responses to mechanical stimulation was recorded. But only for 

10 out of 48 neurons we applied a controlled heat stimulation and recorded thermally 

evoked responses. The remaining 38 neurons were tested for their heat responsiveness 

with uncontrolled heat stimuli. Hence, we did not consider the heat evoked responses of 

neurons in the second group. In the first group 6 out of 10 neurons responded to controlled 

heat stimuli. We refer to the heat responses of this group as ‘Heat’. 9 out of 10 responded 

to controlled mechanical stimuli. We refer to mechanically evoked responses of this group 

as ‘Mechanical’.  24 out of 38 neurons of second group were sensitive to heat stimuli. We 

refer to mechanically evoked responses of this group as ‘C-MH’ and 14 out of 38 were 

heat insensitive. We refer to the mechanically evoked responses of this group as ‘C-M’. 

In Figure 1a-b we reported the p-values for all fitted responses as result of the goodness-

of-fit test for the firing rate models based on a Poisson process and two types of 

adaptations; a linear adaptation (Figure 1a) and nonlinear adaptation (Figure 1b).  The p-

value refers to the fraction of sampled spike trains for which the negative log-likelihood 

exceeded the negative log-likelihood of the observed spike train. The gray bars of Figure 

1a-b show the significance levels of the test (see 2.3 for more details). For all responses 

with a p-value above significance level, the hypothesis that the spikes were generated by 

the corresponding model was rejected. Figure 1a shows that all 53 response discharges 

were well described by the nonlinear model, while the linear model (Figure 1b) failed to 

describe the firing rate variations for 3 out of 53 responses (p<0.05, Monte-Carlo 

simulation of expected model responses).  

Figure 1c shows the results of model selection analysis (AIC). For responses with positive 

AIC, the test was in favor of model with nonlinear adaptation and for negative AIC, the test 

was in favor of model with linear adaptation. The model selection analysis (AIC) shows 

that in cases where the linear model failed to describe the firing rate the AIC was 

significantly in favor of nonlinear adaptation ℓ𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 − ℓ𝑙𝑖𝑛𝑒𝑎𝑟 ≫ 0 (see Figure 1c). 
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Figure 1. The results of goodness-of-fit for Poisson-generated spike trains according to Monet-Carlo simulation and model 
selection test (AIC) for two models; a linear model and a nonlinear model. Each point represents the results of one spike train of 
single neuron. The data set included 48 neuron and 53 spikes trains. ‘Heat’ responses refer to responses of polymodal C-fibers to 
controlled heat stimulation ‘Mechanical’ refer to responses of the same neuron to mechanical stimulation. ‘C-MH’ refer to mechanically 
evoked responses of second group of polymodal C-fibers. ‘C-M’ refer to mechanically evoked responses of a group of mechanical 
sensitive and heat insensitive C-fibers. (a) p-value of Monte-Carlo test for nonlinear model and Poisson assumption. (b) p-value of 
Monte-Carlo test for linear model and Poisson assumption. For a value in the gray bar the null-hypothesis was rejected. (c) Model 
selection according to AIC. For responses with values smaller than zero, the test may be in favor of the linear model and for values 
above zero the test may be in favor of nonlinear model.  In (a-c) the box plots represents the distribution of values for each group of 
neurons. The whiskers show the range of the estimates. Flier points are those past the end of the whiskers.  

 

Figure 2a shows for an example neuron the estimated firing rates of mechanically evoked 

responses for two adaptation models with the assumption that the spike trains were 

generated by a Poisson process. Both estimated firing rates have their peaks during the 

first 2 s after spike onset and within the ramp phase of the stimulation. The linear model 

shows a fast adaptation of the firing rate while the nonlinear model converges slowly 

towards the base line. To compare the two models, we simulated spike trains given the 

firing rate of the selected model and reported p-value of Monte-Carlo test as described by 

equation (4.5) and of the following form: If the fitted model described the observed spike 

train correctly, then the log-likelihoods of spike trains simulated from the fitted model 

should not differ significantly from log-likelihood of the observed spike train (see Figure 

2c). The p-value we report refers to the null-hypothesis that the fitted model is correct. 
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Figure 2. Estimated firing rates and histogram of the simulated p-values of Monte-Carlo test for an example neuron and two 
adaptation models. The hypothesis was that the spikes were generated by a Poisson process. (a) The estimated firing rates for 
two adaptation models for an example neuron. The spike train shows the observed spike train. (b) The observed spike train of the 
example neuron and the simulated spike trains from the model with nonlinear adaptation. For each spike train the log-likelihood of 
observing this spike train given the estimated parameter was calculated. (c) Histogram of negative log-likelihood of simulated spike 
trains. The line shows the negative log-likelihood of the observed spike train. The p-value of Monte-Carlo test indicates that the 
hypothesis is not rejected. 

 

By observing the simulated and recorded spike trains the recorded spike train seemed to 

show more regularity in spike-timing in comparison to the simulated spike trains. We 

supposed that the fully random nature of the Poisson process contributed to the irregularity 

of the simulated spike trains. To test this observation we asked if a more elaborate point 

process, a Gamma process, captured the spiking dynamics and regularity of spike trains 

more accurately. To this end we examined a superset of spike responses of 80 C-fiber 

nociceptors, including the 38 C-fibers of previous analysis of Poisson assumption. In 

addition, this data set included slowly adapting SAs mechanoreceptors, and A𝛿 mechano-

nociceptors (AMs). As all neurons in this data set were stimulated by the same mechanical 

protocol, this dataset provided a uniform initial condition to examine the assumption. 

However, we emphasize that our models and model validation method (Monte-Carlo test 

of single neurons) are based on statistical characterization of single neurons and thus 

provide a framework to compare the temporal dynamics of responses even with different 

modalities and intensity of stimulations. 

Modeling the spike trains using an inhomogeneous Gamma process required estimation 

of an additional parameter 𝜅 to assess the regularity of the observed spike trains. Figure 

3a illustrates schematically how the shape parameter 𝜅 affects the regularity of simulated 
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spike trains. Note that for 𝜅 = 1, the Gamma process turns into a Poisson process. Figure 

3b shows the distribution of the estimated 𝜅 values. The estimated shape parameter 𝜅 for 

64 out of 80 neurons were larger than 1 (see Fig 3b). This results might explain the 

irregularity observed by the Poisson-generated spike trains compared with the observed 

spike train. However, an analysis of the distribution of shape parameters in each group 

(boxplots in Fig 3b) indicated that the shape parameters are not very far from 1. Although 

there seems to be evidence that the inter-spike intervals are less dispersed than expected 

for a Poisson process, there are too few data to reject the Poisson hypothesis.  

 

 

Figure 3. A schematic of how shape parameter 𝜿 affects the spiking patterns of simulated spike trains and variation of 𝜿  for 

all observed spike trains. (a) Each spike train is a realization of a Gamma process with varying shape parameter. The black curve 
illustrates the rate function of Gamma distribution. (b) Estimated shape parameter 𝜅 of Gamma process as a measure for the regularity 

of the spike trains. The data set included C-fibers (C, iC). Slowly adaptation A-fibers mechanoreceptors (SA, iSA). A𝜹-fiber mechano-

nociceptors (AM, iAM). (c) p-value of Monte-Carlo test for nonlinear model and Gamma assumption. (b-c)The box plots represents 
the distribution of values for each group of neurons. The whiskers show the range of the estimates. Flier points are those past the end 
of the whiskers.  
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To test the goodness-of-fit for a Gamma process we test the hypothesis that the spikes 

were generated by a Gamma process and reported the p-value of Monte-Carlo simulation 

as described in section 2.3. As Figure 3c shows the Gamma process failed to describe 8 

out of 80 neurons for the selected nonlinear model (p<0.05, Monte-Carlo simulation of 

expected model responses).  

4.3.2 Discriminant analysis of estimated parameters 

The main idea of developing a parametric model of responses was to compare the model 

parameters instead of comparing the spike trains directly, as the temporal dynamics of 

responses to different stimulus modalities might give insights into the encoding 

mechanisms of distinct modalities. In this way we were able to span a parametric space in 

which the neural responses were represented by their parameters and to be potentially 

classified into distinct stimulus responses such as thermal or mechanical. To this end we 

characterized the responses of 10 C-MH polymodal C-fibers of first group including both 

heat evoked and mechanically evoked responses. We then applied a discriminant analysis 

test to classify the estimated parameters 𝜃 = {𝑎, 𝑏, 𝑐, 𝑑}. Only this data set provided neural 

responses to controlled heat stimuli. Our results showed no classification of responses to 

thermal and mechanical stimuli. Yet, the small number of neurons which responded to 

thermal stimuli (6 neurons), may explain this observation.   

To summarize the results, we developed a probabilistic framework to characterize the 

temporal dynamics of responses as a function of stimulation. We proposed a method to 

validate the models based on single neuron statistics. This framework allowed us to 

compare the responses of single neurons to different stimulus modalities and conditions. 

Both linear and nonlinear models described the Poisson-generated and Gamma-

generated spikes reasonably well. 

4.4 Discussion 

In this study we introduced a parametric model of single neurons to characterize the 

temporal dynamics of their responses to different stimulus-modalities. Each neuron was 

described by two variables, instantaneous firing rate and adaptation. We chose two types 

of adaptation, linear and nonlinear divisive adaptation. We assumed that the spikes were 

generated by one of two inhomogeneous point process: A Poisson process that assumed 

the inter-spike intervals were independent and a Gamma process that assumed that 

successive inter-spike intervals were dependent, the first spike occurred at time point in 

infinity, and the origin is at time point zero. 
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We suggested that the estimated parameters can span a parameter space. In such a 

parameter space the response discharges evoked by different stimulus modalities and/or 

conditions can be represented as a point. This characterization of responses allowed us 

to compare the specific and defined properties of the neural responses even in cases 

where the stimulation itself was not directly comparable, such as heat stimulus and 

mechanical pressure applied on the same polymodal C-fiber.  

To test the goodness-of-fit we applied a null-hypothesis test. Here, we used likelihood as 

a test statistic, and simulated the null-distribution of the test statistic. In a classical setting, 

one might have used deviance instead of likelihood (deviance is a monotonic 

transformation of likelihood) and use an asymptotic chi-square distribution for the 

deviance. We decided to deviate from this classical approach, mostly because our dataset 

was very small. Strictly speaking, the chi-square distribution is a good approximation of 

the null distribution of deviance only in the limit of infinite data. It has been shown 

(Wichmann & Hill, 2001) that for small data sets, this approximation can be very bad and 

that deviations from the chi-square distribution are quite unsystematic. This motivated us 

to explicitly simulate the null-distribution to achieve the results that are still valid for the 

small data sets used in this study. Yet, approximating the null-hypothesis by samples 

implies that the reported p-values are subject to a small amount of sampling error. Yet, the 

sampling error is much easier to characterize than the inaccuracies of the chi-square 

approximation. 

Our results showed that both adaptation models and both assumed point process 

described the neurons reasonably well. However, our model provides some evidence in 

favor of a Poisson process and nonlinear adaptation for mechanical responses. This 

observation can be supported by the previous studies. Previous studies have shown that 

the transduction mechanism of mechanoreceptors are a more nonlinear process 

(Johnson, 2001) (Phillips & Johnson, 1981a) (Phillips & Johnson, 1981b) (Sripati, et al., 

2006). Transduction mechanism of noxious cold seems to be a more linear process (Dubin 

& Patapoutian, 2010) (Vriens, et al., 2014). Preliminary data show a higher spontaneous 

activity of primary afferent neurons during conditions of inflammatory and persistent pain. 

Thus, we see modeling of spontaneous activity as an important long term goal of our 

models. Yet, modeling spike trains as realizations of an inhomogeneous Gamma process 

has to assume that spontaneous activity is close to zero. Furthermore, the additional 

shape parameter 𝜅  increases the complexity of the Gamma process compared to a 

Poisson process. Thus, parsimony implies that based on our data, the Poisson process 

should be the preferred model. Yet, we acknowledge that reliably fitting the spikes as a 

realization of a Gamma process requires more and more reliable data. Current results 
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suggest that the Poisson assumption overestimates the irregularity of peripheral neurons 

(Farkhooi, et al., 2009), so that with a larger data set the Gamma process might indeed 

prove a good model. Therefore, we believe that a nonlinear adaptation under an 

inhomogeneous Poisson assumption offers a good framework for modeling the responses 

to thermal and mechanical stimulation in our rather limited data set. 

Yet, analyzing the estimated parameters revealed that the parameter spaces of thermal 

and mechanical responses of a small data set overlapped. This result might be due to the 

small number of neurons but it also might be due to the single stimulus recordings which 

resulted in lack of fit (the difference between observed and predicted firing rates).  

The parametric model developed in our study served a direct link between the stimulus 

signal and discharge rate and is entirely descriptive. Modifying this model by a mechanistic 

model that specifies the transduction mechanism or a spike generation mechanism may 

improve the prediction power of our model. An alternative approach to improve this model 

might be by adding two additional stages to the model. First it might be expanded to include 

the propagation of the stimulus within the skin from surface to the receptor terminal 

endings. In this way we could include information about histological properties of receptors 

terminals and skin (i.e. depth of receptor neuron, branching of terminals). Moreover, a 

stimulus propagation model might offer a generalization to make different modalities 

comparable. Second our model might be improved by including a transducer stage to 

describe the dynamics of underlying transduction at receptor terminals.  

We suppose that such a three stage model provide a framework to capture different 

features of stimulus and transduction mechanism. The realization of a more complex 

model, however, increases the risk of overfitting and requires a reliable data set of 

recordings from polymodal C-fibers to guarantee an effective characterization of both, 

average responses and stochasticity. The different stochastic processes studied here 

mainly differ in the variability they expect for a given neuron. Characterizing a neuron’s 

variability requires multiple repetitions of the same stimulus to be recorded. Clearly, as 

more repetitions are recorded, this characterization will become more accurate. We 

therefore suggest a controlled experimental protocol of only one condition for which the 

thermal and mechanical stimulation start just above their threshold to provide for a 

comparable initial condition of neurons and to increase the number of repetitions. 

Furthermore, an equal ramp velocity of thermal and mechanical stimulus might retain 

neurons in some similar dynamical conditions. Different levels of ramp velocities might 

offer studying different dynamical systems of neurons.  
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The descriptive model developed in this study allows for a quantitative characterization of 

nociceptors and thus provides a basis from which these more detailed mechanistic models 

can start. 
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Chapter 5 

5 General Discussion 

5.1 Summary 

The basic circuitry of the “pain pathway” is well known – it consists of specialized sensory 

fibers known as nociceptors projecting to specific spinal cord neurons, which in turn project 

on to the thalamus and cerebral cortex (Woolf & Ma, 2007). However, it is still far from 

understood how the activity in nociceptor populations individually and collectively is related 

to the perception of pain. Some undefined properties of this circuity, such as dissociation 

between the nociceptor activities and behavioral responses indicating pain (Prescott, et 

al., 2014), and central and peripheral sensitization illustrate the need for more quantitative 

approaches to the nociceptive system, specifically at the peripheral level and for the main 

class of nociceptors, the polymodal C-fibers. Although, different stimulus modalities, like 

noxious heat and mechanical stimuli, are conveyed through the same multimodal C-fibers, 

these stimuli are perceived as distinct qualities. Yet it is difficult to address how and at 

which level in the pain circuity the discrimination of different modalities occurs (Mendell, 

2011). Addressing these questions requires an adequate identification of expression and 

functionality of the constituted ion channels and transduction mechanism. The early 

attempts to record transduction currents for nociceptors were partially unsuccessful 

because of the difficulties in isolating and recording single neurons. Thus, despite 

remarkable advances in identifying the ion channels expressed in transduction of different 

stimulus modalities, less in known about their mechanism. Hence, computational and 

modeling approaches might offer strong tools to fill the gap of knowledge and to give 

insights into the neural representation of different stimulus modalities and underlying 

encoding mechanism. Nevertheless, small data sets of recordings, lack of repetition in 

recordings of single stimulus from one side and difficulties in choosing the right statistical 

model and prior distributions from the other side make using advanced statistical models 

less feasible. In the present study, I introduced methods to circumvent these difficulties 

and to develop novel statistical framework to characterize the responses of polymodal C-

fibers to different stimulus modalities.  
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In general, detecting and encoding noxious stimuli involves three main processes: transfer 

of a stimulus in the skin to the receptor site(s), generation of a receptor potential to trigger 

action potentials and generation of spike trains. Similarly, a general modeling framework 

may consider these three steps. 

In chapter 2, I studied the interaction of heat energy and skin. Transfer of heat energy in 

the material is a well-studied theory and an established model in pain studies to estimate 

the location (e.g depth) and activation threshold temperature of C-fiber nociceptors from 

temporal dynamics of their responses to heat ramped stimuli (Henriques & Moritz, 1947) 

(Tillman, et al., 1995) (Stoll & Greene, 1959) (Hardy & Stolwijk, 1966). To summarize, in 

classical approaches, it is assumed that the first spike after stimulus onset is the exact 

time of reaching the threshold temperature (threshold time) and the corresponding 

stimulus temperature on surface at this time is called the surface threshold temperature. 

Knowing these two parameters for two or more experimental conditions provides a system 

of equations to estimate the threshold temperature and the depth of receptor terminals. In 

classical approaches an accurate estimation of threshold time is therefore crucial. Small 

inaccuracies in spike time measurement, internal random processes which could result in 

a delay between reaching the threshold and generation of first spike, and trial-to-trial 

variability of neural responses, would result in misinterpretation of depth and threshold 

temperatures and sometimes make depth estimation impossible. To improve the 

estimation of depth and threshold temperature and to make this approach more flexible 

for challenging data sets, I modified the classical model by taking noise into account in the 

system, and by solving the heat equation as a part of a Bayesian model. The Bayesian 

framework allows one to add additional information as prior knowledge to improve the 

estimation. Two challenges emerged: First, to find the appropriate probability density 

functions of prior distributions, when such information does not exist or has not been 

reported in an appropriate statistical format in the literature; second, to overcome 

computational difficulties that one may face using sampling methods.  

Another new aspect of the probabilistic approach presented here, was a statistical model 

of the skin. In this model I used Monte-Carlo sampling to estimate physical properties of 

dermal and epidermal layers of a two layer skin model. The results showed that the 

probabilistic model is capable of providing estimates of threshold and depth for cases 

where the classical method is failing. The highlight of this approach was adding noise in a 

way that represent the randomness but is still biophysically meaningful and offering a 

method to solve the probabilistic formulation of heat equation and noise. 
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In chapter 3, I studied different strain profiles of skin at the location of receptor terminals, 

using the depth estimates from chapter 2. Strain or deformation of skin tissue caused by 

a force-induced stress is the way how a mechanical stimulus affects the skin. The obtained 

strain and thermal components were used to define a large dimensional space of input 

components that I used to predict the neural responses and to model the transduction of 

single neurons.  

To model the neural responses as point processes I used a Generalized Linear Model 

(GLM) with a L1 norm regularization (Tibshirani, 1996). To summarize, I assumed that the 

spikes were generated by a Poisson process with a rate function that was estimated by 

maximizing a penalized log-likelihood function. The penalty was proportional to the L1 

norm of the parameter vector. The idea behind using a sparse regularization was to select 

those stimulus components that strongly affect the discharge of single neurons, and 

deselect the dependent and correlating components. The results indicated that the 

receptor neurons showed most sensitivity to the temporal changes of vertical strain and 

compressive as well as tensile strains regardless of orientation. I concluded that these 

components might be interpreted as the stimulus aspects to which the receptor membrane 

respond. Using a L1 norm regularization is mostly efficient in setups with a large number 

of candidate features of which only a few are likely to be useful in the end. In this case, the 

L1 regularization allows an automatic identification of those dimensions of this high 

dimensional feature space that drive the neural responses. Hence, finding a large 

dimensional space of strain and heat parameters and reducing it to only the most relevant 

features through the application of a probabilistic model resolves previous inconclusive 

reports about the relevant feature that drive C-fibers (Sripati, et al., 2006) (Johnson, 2001). 

In this way using a LASSO regularization could potentially be used to characterize 

individual ion channels rather than complete neurons.  

In chapter 4, I introduced parametric models of stimulus-driven instantaneous firing rates 

of single neurons to characterize the temporal dynamics of firing rates. These models 

described how the neuron’s temporal dynamics depend on stimulation modality. To 

estimate the parameters, I assumed that the spike trains were generated by a point 

process. These models are of descriptive nature – they illustrate the temporal dynamics 

of the firing rate, while estimating stimulus relevant parameter. Four model parameters 

were estimated; one parameter to capture the stimulus sensitivity, two parameters to 

represent the firing rate and adaptation, and a coupling parameter that links the firing rate 

to the adaptation. Particularly, these parameters can be used to characterize each 

neurons’ responses to different stimulus modalities as a point in a four dimensional 

parameter space. A representation of neural responses in a parametric space offers a 
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platform to discriminate the thermal and mechanical responses at peripheral level in a 

substantial data set. 

5.2 Moving Towards a General Model  

So far the models describe separately the main processes of responding to noxious 

stimuli: the effect of stimuli at the receptor site, the dynamics of transducer, and the 

dynamics of firing rate and adaptation. I asked how one can realize a general framework, 

which includes all three steps. This general framework would offer a completely Bayesian 

approach to give a parametric characterization of the transduction and temporal dynamics 

of firing rate to different stimulus modalities in primary C-fibers and hence, might provide 

a basic for discrimination of stimulus modalities. 

To this end I sought to extend the differential equation (4.1) with the regularized strain and 

thermal components obtained by sparse GLM model (equation (3.7)). In other words, I 

replaced a direct stimulus signal s and used the selected vector of non-zero strain and 

thermal components 𝛽𝑖𝑋𝑖𝑗 as an input layer of the differential equation model, 

{

𝑑𝑟

𝑑𝑡
= 𝑎(𝑟 − 𝐸(𝑋, 𝐴))

𝑑𝐴

𝑑𝑡
= 𝑐 𝑟 − 𝑑 𝐴          

                                                                     (5.1) 

where 𝐸(𝑋, 𝐴) =  𝑟0 +
𝑏𝑛𝑜𝑛𝑙𝑖𝑛

1+𝐴
 𝛽𝑖𝑋𝑖𝑗 . 

However, the attempts to fit the combined differential equation model (equation 5.1) of 

spike trains as realization of both Poisson and Gamma processes faced technical 

difficulties in the convergence process. It seemed that a naïve attempt to combine these 

models might fail, mainly because of either the differential equation model, or design of 

the main data set, or a combination of both together. The differential equation model (4.1) 

converged successfully for a preliminary data set of responses evoked by a different 

mechanical protocol as showed in chapter 4. For most neurons, the response showed an 

initial peak of the firing rate, followed by a relatively stable plateau of firing activity. Direct 

comparison of the mean firing rate of the preliminary data set and main data set of 24 C-

fibers, indicated a more pronounced activity peak at the onset of firing and a higher mean 

firing rate during the response plateau in the preliminary data set. The higher activity of 

neurons in the preliminary data set referred to the stronger mechanical stimulus used to 

evoke the responses of these neurons compared to the applied stimulus level of main data 

set. Whereas, the neurons of the main data set showed a peak firing rate at the ramp-
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phase and a sparse spiking in the hold-phase. Therefore, I speculate the sparser response 

discharges in the main data set might be the reason why the ODE model cannot fit this 

data. The other reason for a failure compared to the preliminary data set might be a failure 

of optimization because of the number of likelihood functions that were to be maximized 

simultaneously. In chapter 4 the ODE models were fitted to the single spike trains of either 

one mechanical or one heat stimulus while for the main data set the model was supposed 

to be fitted on three mechanical and/or three heat stimuli.  

Therefore, this results suggest that the differential equations developed in chapter 4 are 

intended to model the response to a single stimulus. Future work will have to extend this 

model to be able to handle multiple different stimuli simultaneously. 

5.3 Outlook of Future Investigations  

For further investigations I suggest to modify the GLM model of transduction equation (3.7) 

to capture the temporal dynamics of the firing rate, for example by directly incorporating 

the rate of adaptation into the GLM model. Analogous to the strain and thermal 

components one can convolve the recent history of spike train with a feedback filter and 

estimate the superimposed space of stimulus components and spike history filter outputs 

with a GLM model as described in chapter 3. The additional regularization of the parameter 

space with L1 norm penalty offers a method to not only select the stimulus components 

but to estimate the weights of spike history filter outcomes. This combined model offers a 

framework to connect the temporal dynamics of action potential generation to the temporal 

dynamics of proximal stimulus of transduction mechanism. The difficulty of this method is 

to find an appropriate feedback filter which improves the estimation power of GLM while 

avoiding the overfitting of data.   

Fründ et al. (Fründ, et al., 2014) used geometrically decaying history weights and applied 

an orthogonalization procedure to reduce interdependencies between the different 

features. An alternative model was suggested by Gerwinn et al. (Gerwinn, et al., 2010). In 

their work, the authors studied the stimulus selectivity of a population of retinal ganglion 

cells by fitting GLM with history terms and cross-neuron terms. For the features describing 

the spiking history, they used the density function of a Gamma distribution. In a similar 

way I suggest to use a density function of an Exponential distribution. Exponential filters 

have long been used successfully in spiking neuron models (see for example the many 

applications in the book by Dayan & Abbot (Dayan & Abbott, 2001)). However, finding the 

right filter requires a systematic analysis of filter parameters such as mean and variance 
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for the density function of either Exponential, or Normal, or Gamma distribution, or bin 

width and number of bins for a box filter. 

C-fibers are recorded in a relatively dynamical setting and the number of repeated 

recordings in response to the same stimulus is often very limited. Therefore, an effective 

stimulus protocol is usually a tradeoff between multiple recordings of one stimulus or single 

recordings of different experimental conditions. In this study the experimental protocol was 

in favor of different experimental conditions (e.g. different ramp velocities). For further 

investigations I suggest an experimental protocol of repeated recordings of one 

intermediate ramp velocity of suprathreshold mechanical and heat stimuli separately and 

simultaneously. This would require finely localized application of both, heat and 

mechanical force. Laser technology allows for such localized generation of heat 

(Marchandise, et al., 2014) (Mouraux, et al., 2012) (Olausson, 1998) and could in 

conjunction with a regular mechanical stimulation protocol potentially achieve such 

combined stimulation of the receptor. In this way evoked spike trains comprehend 

information of both mechanical and thermal transducer. Thus, a sparse GLM analyzing of 

single modality responses versus the multimodality responses might give valuable insights 

into how and to what extent the mechanical and thermal sensitive ion channels share 

and/or compete their broad dynamic range. 

As a last word, a common characteristic of a research project is to raise more questions 

and this study in not an exception. Nevertheless, the main contribution of this work was to 

introduce a basic for applying advanced statistical models to study nociceptors and pain 

circuity at the earliest stage of processing. I have demonstrated the utility of probabilistic 

approaches in the research field related to peripheral encoding of pain. Progresses in 

recording techniques to obtain larger data sets from one side and application of modern 

tools from statistics and machine learning that allow for identification of pain pathway from 

the other side offer a promising future for the study of pain systems. 
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