Entwicklung und Einflussfaktoren der Entwicklung der motorischen Leistungsfähigkeit im Kindes- und Jugendalter

-Befunde der MoMo-Längsschnittstudie-

Zur Erlangung des akademischen Grades eines
DOKTORS DER PHILOSOPHIE
(Dr. phil.)
von der Fakultät für Natur- und Kulturwissenschaften, Mathematik und Sport
der Pädagogischen Hochschule Karlsruhe
angenommene

DISsertATION
von Claudia Annina Albrecht
aus Münster

Dekanin: Prof. Dr. Lindemann-Matthies
1. Gutachter: Prof. Dr. Annette Worth
2. Gutachter: Prof. Dr. Klaus Bös

Tag der mündlichen Prüfung: 16.12.2015
Inhaltsverzeichnis

1 **Einführung** .. 10

1.1. Begründung der Themenwahl und Problemstellung .. 11

1.2. Ziel- und Fragestellungen der Arbeit .. 15

1.3. Aufbau und Vorgehensweise .. 18

2 **Theoretischer Hintergrund** ... 20

2.1. Definition zentraler Begriffe und Abgrenzung des Untersuchungsgegenstandes ... 20

2.1.1. Motorische Leistungsfähigkeit .. 20

2.1.2. Differenzierung motorischer Fähigkeiten ... 25

2.1.3. Motorische Entwicklung ... 29

2.2. Entwicklungstheoretische Grundlagen .. 35

2.2.1. Paradigmen und Rahmentheorien der motorischen Entwicklung ... 36

2.2.2. Die Entwicklungspychologie der Lebensspanne Baltes (1990) .. 38

2.3. Entwicklungszeiträume und Entwicklungsverläufe der motor. Leistungsfähigkeit ... 53

2.3.1. Klassifizierung motorischer Entwicklungszeiträume für das Kindes-, Jugend- und frühe Erwachsenenalter .. 53

2.3.2. Entwicklungsverläufe der motorischen Leistungsfähigkeit im Kindes- und Jugendalter ... 57

3 **Forschungsstand: Entwicklung der motorischen Fähigkeit im Kindes- und Jugendalter** .. 66

3.1. Längsschnittstudien zur motorischen Leistungsfähigkeit - ein Literaturreview ... 68

3.1.1. Zusammenfassung und Einordnung der MoMo-Längsschnittstudie in den Forschungsstand .. 86

3.2. Einflussfaktoren der Entwicklung der motorischen Leistungsfähigkeit ... 91

3.2.1. Der Einfluss des Sozialstatus auf die Entwicklung der motorischen Leistungsfähigkeit ... 92

3.2.2. Der Einfluss des Aktivitätsverhaltens auf die Entwicklung der motorischen Leistungsfähigkeit .. 97

3.2.3. Der Einfluss der Körperkonstitution (Body-Mass-Index) auf die Entwicklung der motorischen Leistungsfähigkeit .. 104

3.3. Synthesen und Konsequenzen für die eigene Arbeit .. 109

3.3.1. Hypothesen zur Entwicklung der motorischen Leistungsfähigkeit ... 113

4 **Studienkonzeption der Motorik-Modul Längsschnittstudie** ... 116

4.1. Studienziele .. 117

4.2. Untersuchungsdesign ... 118

4.3. Untersuchungsstichprobe und Responder/ Non-Responder-Analysen ... 120
4.4. Untersuchungsmethoden ... 125
 4.4.1 Erfassung der motorischen Leistungsfähigkeit - das MoMo-Testprofil 125
 4.4.2 Erfassung der konstitutionellen Merkmale ... 127
 4.4.3 Fragebögen .. 127

4.5. Verfahren zur Datenverarbeitung und Datenanalyse .. 129
 4.5.1 Deskriptive Darstellung der Entwicklung der motorischen Leistungsfähigkeit 129
 4.5.2 Drop-Out Analysen .. 130
 4.5.3 Index- und Kategorienbildung ... 130
 4.5.4 Inferenzstatistische Überprüfung der Einflüsse der Körperkonstitution und des
 Aktivitätverhaltens .. 134
 4.5.5 Problematik der Standardisierung des Verfahrens zur Berechnung von
 Leistungsunterschieden und Vergleichbarkeit zwischen den Dimensionen : Berechnung von Z-
 Werten .. 138
 4.5.6 Statistische Überprüfung der Direktionalität ... 140
 4.5.7 Berechnung von Stabilitäten ... 140

5 Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit in
 Abhängigkeit von Alter und Geschlecht .. 141
 5.1. Entwicklung der aeroben Ausdauerleistungsfähigkeit .. 143
 5.1.1 Ergebnisse des Fahrrad-Ausdauertests- PWC 170 relativ .. 143
 5.2. Entwicklung der Kraftfähigkeit ... 146
 5.2.1 Ergebnisse der Testaufgabe Standweitsprung (Schnellkraft) 146
 5.2.2 Ergebnisse der Testaufgabe Liegestützen (Kraftausdauer) 150
 5.3. Entwicklung der Reaktionsschnelligkeit ... 153
 5.3.1 Ergebnisse des Reaktionstests ... 153
 5.4. Entwicklung der koordinativen Fähigkeiten .. 156
 5.4.1 Ergebnisse der Testaufgabe Seitliches Hin- und Herspringen (Großmotorische
 Koordination unter Zeitdruck) ... 156
 5.4.2 Ergebnisse der Testaufgabe Einbeinstand (Großmotorische Koordination unter
 Präzisionsdruck) ... 159
 5.4.3 Ergebnisse der Testaufgabe Balancieren rückwärts (Großmotorische Koordination unter
 Präzisionsdruck) ... 162
 5.4.4 Ergebnisse der Testaufgabe MLS Stifte einstecken (Feinmotorische Koordination unter
 Zeitdruck) .. 165
 5.4.5 Ergebnisse der Testaufgabe: MLS Liniennachfahren (Feinmotorische Koordination unter
 Präzisionsdruck) ... 168
 5.5. Entwicklung der Beweglichkeit ... 171
5.5.1 Ergebnisse der Testaufgabe Rumpfbeuge ... 171

5.6. Zusammenfassung: Entwicklungsverläufe nach Alter und Geschlecht 174

5.7. Stabilität der motorischen Leistungsfähigkeit .. 182

5.7.1 Zusammenfassung der Ergebnisse zur Stabilität der motorischen Leistungsfähigkeit .. 184

5.8. Direktionalität der Entwicklung der motorischen Leistungsfähigkeit 185

6. Darstellung der Ergebnisse zu ausgewählten Einflussfaktoren der Entwicklung der motorischen Leistungsfähigkeit .. 187

6.1. Einfluss des Sozialstatus auf die Entwicklung der motorischen Leistungsfähigkeit ... 187

6.1.1 Deskriptive Analyse zur Verteilung des Sozialstatus ... 188

6.1.2 Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung Ausdauerleistungsfähigkeit ... 188

6.1.3 Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung Kraftfähigkeit 189

6.1.4 Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der Reaktionsschnelligkeit ... 191

6.1.5 Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der Koordination 190

6.1.6 Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der Beweglichkeit 194

6.1.7 Zusammenfassung der Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der motorischen Leistungsfähigkeit .. 195

6.2. Der Einfluss der körperlich-sportlichen Aktivität auf die Entwicklung der motorischen Leistungsfähigkeit ... 197

6.2.1 Deskriptive Analyse der Aktivitätsentwicklung: körperliche Aktivität 197

6.2.2 Ergebnisse zum Einfluss der körperlichen Aktivität auf die Entwicklung der Ausdauerleistungsfähigkeit ... 199

6.2.3 Ergebnisse zum Einfluss der körperlichen Aktivität auf die Entwicklung der Kraftfähigkeit ... 200

6.2.4 Ergebnisse zum Einfluss der körperlichen Aktivität auf die Entwicklung der Reaktionsschnelligkeit ... 202

6.2.5 Ergebnisse zum Einfluss des körperlichen Aktivität auf die Koordination 203

6.2.6 Ergebnisse zum Einfluss der körperlichen Aktivität auf die Entwicklung der Beweglichkeit ... 207

6.2.7 Zusammenfassung: körperlich-sportliche Aktivität und Entwicklung der motorischen Leistungsfähigkeit ... 208

6.3. Der Einfluss der Vereinsaktivität auf die Entwicklung der motorischen Leistungsfähigkeit ... 211

6.3.1 Deskriptive Analyse der Aktivitätsentwicklung: Vereinsaktivität 211
6.3.2 Ergebnisse zum Einfluss der Vereinsaktivität auf die Entwicklung der Ausdauerleistungsfähigkeit ... 212
6.3.3 Ergebnisse zum Einfluss der Vereinsaktivität auf die Entwicklung der Kraftfähigkeit ... 214
6.3.4 Ergebnisse zum Einfluss der Vereinsaktivität auf die Entwicklung der Reaktionsschnelligkeit ... 216
6.3.5 Ergebnisse zum Einfluss der Vereinsaktivität auf die Koordination .. 217
6.3.6 Ergebnisse zum Einfluss der Vereinsaktivität auf die Entwicklung der Beweglichkeit ... 221
6.3.7 Zusammenfassung: Vereinsaktivität und Entwicklung der motorischen Leistungsfähigkeit ... 222
6.3.8 Zusammenfassung: Vergleich der Einflussfaktoren zur Aktivität ... 226

6.4. Der Einfluss des Body-Mass Index auf die Entwicklung der motorischen Leistungsfähigkeit .. 227
6.4.1 Deskriptive Analyse der BMI-Entwicklung ... 227
6.4.2 Ergebnisse zum Einfluss des BMI auf die Entwicklung der Ausdauerleistungsfähigkeit ... 228
6.4.3 Ergebnisse zum Einfluss des BMI auf die Entwicklung der Kraftfähigkeit .. 230
6.4.4 Ergebnisse zum Einfluss des BMI auf die Entwicklung der Reaktionsschnelligkeit ... 232
6.4.5 Ergebnisse zum Einfluss des BMI auf die Entwicklung der großmotorische Koordination ... 232
6.4.6 Ergebnisse zum Einfluss des BMI auf die Entwicklung der großmotorischen Koordination ... 234
6.4.7 Ergebnisse zum Einfluss des BMI auf die Entwicklung der feimmotorischen Koordination ... 235
6.4.8 Ergebnisse zum Einfluss des BMI auf die Entwicklung der Beweglichkeit ... 236
6.4.9 Zusammenfassung: Body-Mass-Index und Entwicklung der motorischen Leistungsfähigkeit ... 237

7 Entscheidung über die Hypothesen, Interpretation und Diskussion der Ergebnisse .. 241
7.1. Entwicklung der motorischen Leistungsfähigkeit in Abhängigkeit von Alter und Geschlecht .. 241
7.1.1 Gesamtdiskussion: motorische Entwicklung in Abhängigkeit von Alter und Geschlecht ... 241
7.2. Direktionalität ... 271
7.2.1 Diskussion und Einordnung der Ergebnisse: Direktionalität ... 272
7.3. Stabilität der Entwicklung der motorischen Leistungsfähigkeit ... 273
7.4. Einflussfaktoren auf die Entwicklung der motorischen Leistungsfähigkeit .. 276
7.4.1 Einfluss des Sozialstatus auf die Entwicklung der motorischen Leistungsfähigkeit...... 276
7.4.2 Übersicht über die Entscheidungen zu den Hypothesen zum Einfluss des Sozialstatus 284
7.4.3 Einfluss des Aktivitätsverhaltens auf die Entwicklung der motorischen Leistungsfähigkeit .. 286
7.4.4 Übersicht über die Entscheidungen zu den Hypothesen zum Aktivitätsverhalten 299
7.4.5 Einfluss der Körperkonstitution auf die Entwicklung der motorischen Leistungsfähigkeit ... 301
7.4.6 Übersicht über die Entscheidungen zu den Hypothesen zum Einfluss der Körperkonstitution (BMI) ... 310
7.4.7 Gesamtdiskussion Einflussfaktoren .. 312
7.4.8 Methodendiskussion .. 323

8 Zusammenfassung und Ausblick für Wissenschaft und Praxis................................. 332

8.1. Zusammenfassung ... 332

8.2. Ausblick für die Wissenschaft und Praxis .. 339
 8.2.1 Ausblick für die Wissenschaft .. 339
 8.2.2 Ausblick und Perspektiven für die Praxis ... 341
ABSTRACT

HINTERGRUND

Die in dieser Arbeit durchgeführten Analysen der MoMo-Längsschnittdaten leisten einen Beitrag, die bisherige Forschungslücke zur Entwicklung der motorischen Leistungsfähigkeit im Kindes- und Jugendalter zu schließen. Abgeleitet aus der metatheoretischen Rahmenkonzeption der Entwicklungspychologie der Lebensspanne (Baltes, 1990; Willimczik & Conzelmann, 1999) ist das Ziel dieser Arbeit:

2. Unter dem Leitsatz des „Kontextualismus“ die Beeinflussbarkeit der Entwicklung der motorischen Leistungsfähigkeit durch den Sozialstatus, durch das Aktivitätsverhalten (Vereinsmitgliedschaft, körperliche Aktivität) und durch die Körperkonstitution (BMI) zu analysieren.

Der Datensatz der MoMo-Längsschnittstudie ermöglicht die Beschreibung der motorischen Leistungsfähigkeit von Kindern und Jugendlichen im Alter von 4-23 Jahren und erlaubt aufgrund der großen Stichprobengröße auch die Durchführung von Subgruppenanalysen.

METHODIK

ERGEBNISSE

Die Analysen zur Stabilität zeigen im Verlauf der sechs Jahre überwiegend geringe bis mittlere Stabilitätskoeffizienten (männlich: r²=0,112 bis r²=0,601; weiblich: r²=0,058 bis r²=0,421).
Alter und Geschlecht erklären verglichen mit dem Sozialstatus, dem BMI und dem Aktivitätsverhalten den größten Varianzanteil an der Entwicklung der motorischen Leistungsfähigkeit im Verlauf der sechs Jahre aber auch am motorischen Ausgangsniveau der Längsschnittprobanden.

Der Sozialstatus beeinflusst bei 3 von 7 Testaufgaben (Seitliches Hin- und Herspringen und Balancieren rückwärts, Reaktionstest) die Entwicklung der motorischen Leistungsfähigkeit über die Zeit (Schereneffekt). Teilnehmer mit einem hohen Sozialstatus haben eine stärkere Leistungssteigerung als Teilnehmer mit einem niedrigen Sozialstatus. Es zeigen sich jedoch nur geringe Effektstärken.

Die Kinderaktivität beeinflusst bei 4 von 7 Testaufgaben die Entwicklung der motorischen Leistungsfähigkeit von t0 zu t1 (BMI 170 relativ, Standweitsprung, Rumpfbeuge, Seitliches Hin- und Herspringen, MLS Stifte einstecken, Reaktionstest). Ein Schereneffekt in der Entwicklung der motorischen Leistungsfähigkeit zwischen Teilnehmern, die zu beiden Messzeitpunkten im Verein sind und Teilnehmern, die zu beiden Messzeitpunkten nicht im Verein sind, wird deutlich. Die „Einsteiger“ erreichen vergleichbare oder sogar höhere Leistungssteigerungen über die Zeit, verglichen mit den „persistierten Vereinsmitgliedern“.

Die körperliche Aktivität beeinflusst bei 5 von 7 Testaufgaben die Entwicklung der motorischen Leistungsfähigkeit von t0 zu t1 (BMI 170 relativ, Standweitsprung, Rumpfbeuge, Seitliches Hin- und Herspringen, Balancieren rückwärts). Es zeigen sich größere Zuwächse für die „persistent Aktiven“ verglichen mit den „persistent Inaktiven“ (Schereneffekt).

Insgesamt zeigt sich der Einfluss des BMIs und des Aktivitätsverhaltens bereits ab der Altersgruppe 1 (4-5- Jährigen zu t0).

Die querschnittlichen Befunde der MoMo Baseline-Studie (vgl. Bös et al., 2009b) zum „Verlauf“ und zu den Einflussfaktoren der motorischen Leistungsfähigkeit lassen sich mehrheitlich durch die längsschnittlichen Analysen bestätigen. Neue Erkenntnisse liefern die längsschnittlichen Analysen im Hinblick auf die Veränderung der motorischen Leistungsfähigkeit im Verlauf der sechs Jahre. Damit verbunden ist der Gewinn an Informationen über die Bedeutung ausgewählter Einflussfaktoren für die Entwicklung der motorischen Leistungsfähigkeit und möglichen Entwicklungsveränderungen in Subgruppen (z.B. in „BMI-Wechslерgruppen“).

DISKUSSION UND AUSBlick

Schlüsselwörter: motorische Entwicklung, motorische Leistungsfähigkeit, Kinder, Jugendliche, Sozialstatus, BMI, Aktivitätsverhalten
Danksagung

Ich möchte mich an dieser Stelle bei all denjenigen, die mich in den letzten Jahren unterstützt und begleitet haben, ganz herzlich bedanken.

Zunächst gilt mein besonderer Dank meiner Doktormutter Prof. Dr. Annette Worth und Prof. Dr. Klaus Bös für die Ermöglichung und Unterstützung bei dieser Arbeit sowie für ihre wertvollen, richtungsweisenden Ratschläge, die sowohl fachlicher als auch persönlicher Natur waren.

All meinen Kolleginnen und Kollegen und Freunden am Institut für Sport- und Sportwissenschaft des Karlsruher Instituts für Technologie und der Pädagogischen Hochschule Karlsruhe und ganz speziell der MoMo-Arbeitsgruppe danke ich ebenfalls für die vielseitigen Tipps und Hilfestellungen. Allen voran gilt mein Dank Jennifer Oberger für die konstruktiven Anregungen und die methodisch-statistische Unterstützung.

Mein persönlicher Dank gilt meinen Freunden, insbesondere Sarah Heinisch, für die moralische Unterstützung während der Fertigstellung meiner Doktorarbeit.

Danken möchte ich vor allem auch meinen Eltern für ihre Unterstützung vor und während der Promotion.

Von ganzem Herzen danke ich meinem Freund Frank Nießner für sein Verständnis, seine unendliche Geduld, sein Vertrauen, seine Ermutigungen und seine Unterstützung bei der Verwirklichung meines Weges.

Ehningen im Oktober 2015

Teil A

Einführung, theoretischer Hintergrund
1 Einführung

Die motorische Leistungsfähigkeit\(^1\) stellt vor dem Hintergrund eines salutogenetischen Gesundheitsverständnisses einen wichtigen Schutzfaktor dar (vgl. Bös, Worth, Opper, Oberger & Woll, 2009b; Cantell, Crawford, Doyle-Baker, 2008; Stodden, Langendorfer, Roberton, 2009). Sie ist ein wichtiger Indikator für den Gesundheitszustand von Heranwachsenden (vgl. Stodden & Holfelder, 2013). Ortega, Ruiz, Castillo & Sjöström (2008, S.1) beschreiben die motorische Leistungsfähigkeit sogar als „one of the most important health markers, as well as a predictor of morbidity and mortality for cardiovascular disease (CVD) and for all causes“.

Nicht zuletzt aufgrund ihrer Bedeutung für die Gesundheit ist die motorische Leistungsfähigkeit und vor allem ihre Entwicklung im Kindes- und Jugendalter in der Fachwissenschaft und in den letzten Jahren auch in der Öffentlichkeit ein vielfach diskutiertes Thema.

Wie weit sollte die motorische Leistungsfähigkeit eines Grundschulkindes oder eines Jugendlichen zu einem bestimmten Zeitpunkt entwickelt sein?

Welche motorischen Fähigkeitsniveaus darf man voraussetzen?

In welchen Entwicklungsphasen hat man mit welchen typischen Risiken oder Problemen zu rechnen?

Durch welche Faktoren wird die Entwicklung der motorischen Leistungsfähigkeit beeinflusst?

Trotz der Relevanz der Thematik zeigt sich bei der Analyse des Forschungsstandes, dass nur andeutungsweise Aussagen darüber getroffen werden können, wie der Entwicklungsverlauf

\(^*\) Aus Gründen der besseren Lesbarkeit wird in dieser Arbeit nachfolgend bei Formulierungen, die sich auf beide Geschlechtergruppen beziehen, auf die Nennung beider Geschlechterformen verzichtet und nur die maskuline Form verwendet.

\(^1\) Im folgenden Absatz wird deutlich, dass sich eine Vielzahl an terminologisch verwandten Begrifflichkeiten zum Begriff der „(Entwicklung der) motorischen Leistungsfähigkeit“ finden z.B. körperliche Leistungsfähigkeit, (körperliche) Fitness, motorische Entwicklung. Eine operationale Klärung der Begrifflichkeiten erfolgt in Kapitel 2.1.

Im Rahmen der Motorik-Modul-Studie (MoMo-Studie) (Bös et al., 2009b) wurden erstmalig bundesweit repräsentative Motorikdaten anhand einer standardisierten Methodik erhoben. Die Fortsetzung der MoMo-Studie mittels eines Kohorten-Sequenzdesigns ermöglicht verlässliche Kohortenvergleiche und vor allem Längsschnittanalysen zur motorischen Leistungsfähigkeit von Kindern und Jugendlichen im Alter von vier bis 23 Jahren. Fragen zur Entwicklung der motorischen Leistungsfähigkeit in Abhängigkeit ausgewählter Einflussfaktoren können damit erstmalig auf einer verlässlichen Datenbasis beantwortet werden.

Hier setzt die vorliegende Arbeit an. Ziel ist die Analyse der Längsschnittdaten der MoMo-Studie zur motorischen Leistungsfähigkeit im Hinblick auf die oben genannten Fragestellungen.

1.1. Begründung der Themenwahl und Problemstellung

Relevanz des Themas: Warum?

2 Unter dem Selbstkonzept lassen sich alle Einstellungen und Überzeugungen zur eigenen Person fassen, die das Individuum aus den bisherigen Lebenserfahrungen gezogen hat (vgl. Zimmer 2001, S.52)
Grundlage für die Einordnung von eigenen Beobachtungen über motorische Veränderungen im Verlauf des Lebens aber auch für Unterrichts- und Übungsprogramme zur Förderung der motorischen Leistungsfähigkeit.

Für Entwicklungsprognosen und -interventionen bedarf es regelmäßiger Diagnosen der motorischen Leistungsfähigkeit, um Unterschiede im Entwicklungs- und Leistungsstand von Kindern und Jugendlichen objektiv sichtbar zu machen (vgl. Oberger, in Druck; Oberger et al., 2010).

Problemstellung

Um verlässliche Aussagen über motorische Entwicklungsverläufe und deren Einflussfaktoren im Kindes- und Jugendalter treffen zu können, werden repräsentative Stichproben über längere Zeiträume mit standardisierten und verlässlichen Methoden, die einen Vergleich der Befunde über mehrere Jahre ermöglichen benötigt (vgl. Bös, 2003a,b; Schneider, 1994).

1.2. Ziel- und Fragestellungen der Arbeit

Zur Analyse der Entwicklung der motorischen Leistungsfähigkeit und ihrer Einflussfaktoren stehen zahlreiche theoretische Konzepte zur Auswahl: Reifungstheorien, strukturfunktionalistische Sozialisationstheorien, handlungstheoretische Ansätze oder systemdynamische Ansätze (vgl. Willimczik & Singer, 2009a,b; Kapitel 2.2). Die Analyse der Daten und Interpretation der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit sowie die Analyse ihrer Einflussfaktoren erfolgt in der vorliegenden Arbeit auf der Grundlage der Entwicklungspsychologie der Lebensspanne (Baltes, 1990) (siehe Kapitel 2.2.2).
Willimczik und Singer (2009a) haben diese entwicklungspsychologische Rahmentheorie auf die motorische Entwicklung übertragen und eine übergordnete Kategorisierung vorgenommen.

Kategorie 1: Beschreibung und Interpretation von (motorischen) Entwicklungsverläufen der motorischen Leistungsfähigkeit anhand von Gewinn, Verlust, Direktionalität und Plastizität.

Kategorie 2: Analyse von (endogenen und exogenen) Einflussfaktoren auf die Entwicklung der motorischen Leistungsfähigkeit, hier als Kontextualismus bezeichnet. Diese beiden Kategorien werden in insgesamt sieben Leitsätzen konkretisiert (siehe Kapitel 2.2.2).

Zwei konkrete Zielsetzungen stehen im Vordergrund (siehe Abbildung 1):

1. Beschreibung der Entwicklung der motorischen Leistungsfähigkeit vom Kindes- ins junge Erwachsenenalter
2. Identifikation und Analyse des Einflusses ausgewählter Einflussfaktoren (hier Sozialstatus, Aktivität, Körperkonstitution) auf die Entwicklung der motorischen Leistungsfähigkeit.
Das Vorhaben der Arbeit geht somit über einen rein quantitativ-deskriptiven Ansatz hinaus und versucht über die Analyse des Einflusses ausgewählter Faktoren die Entwicklung der motorischen Leistungsfähigkeit zu erklären.

Aus den dargestellten zwei Zielsetzungen lassen sich folgende übergeordnete Forschungsfragen ableiten:

Forschungsfrage 1: Wie verläuft die Entwicklung der motorischen Leistungsfähigkeit vom Kindes- bis ins frühe Erwachsenenalter (4-23 Jahre) in Abhängigkeit von Alter und Geschlecht?

Forschungsfrage 2: Beeinflussen ausgewählte externe und interne Einflussfaktoren (z.B. der Sozialstatus, das Aktivitätsverhalten, die Körperkonstitution) die Entwicklung der motorischen Leistungsfähigkeit vom Kindes- bis ins frühe Erwachsenenalter (4-23 Jahre)?
1.3. Aufbau und Vorgehensweise

Im darauf folgenden Kapitel 3 wird sowohl der nationale als auch internationale aktuelle Forschungsstand zu Längsschnittuntersuchungen der motorischen Leistungsfähigkeit in einem Literaturreview aufgezeigt sowie die MoMo-Längsschnittstudie in den aktuellen Forschungsstand eingeordnet. Anschließend wird der Forschungsstand zum Einfluss des Sozialstatus, des Aktivitätsverhaltens und der Körperkonstitution wiedergegeben. Synthesen und Konsequenzen die sich aus dem aktuellen Forschungsstand für die Arbeit ergeben werden formuliert. Kapitel 3 endet mit der Formulierung der Hypothesen zur Entwicklung der motorischen Leistungsfähigkeit.

Anschließend wird in Kapitel 6 der Einfluss des Sozialstatus, des Aktivitätsverhaltens sowie der Körperkonstitution auf die Entwicklung der motorischen Leistungsfähigkeit überprüft. J
des Unterkapitel zu den Einflussfaktoren endet mit einer Zusammenfassung der Befunde (Sozialstatus: Kapitel 6.1.9; Aktivität: Kapitel 6.2.9, 6.3.9, 6.3.10; Körperkonstitution: 6.4.9). In Kapitel 7 erfolgt die Entscheidung über die in Kapitel 3.3.1 formulierte Hypothesen. Die Ergebnisse werden interpretiert und diskutiert und in Bezug zu den Ergebnissen der MoMo-Baseline Studie sowie zu weiteren publizierten Ergebnissen gesetzt. Hierbei wird auf die Leitsätze der Entwicklungspsychologie der Lebensspanne Bezug genommen. Das Kapitel behält die bereits im Theorie- und Ergebnisteil vorgenommene Gliederung bei und beginnt mit der Interpretation und Diskussion der Entwicklungsverläufe nach Alter und Geschlecht (Kapitel 7.1). In Kapitel 7.4 werden die Ergebnisse des Einflusses des Sozialstatus, des Aktivitätsverhaltens und der Körperkonstitution interpretiert und diskutiert. Am Ende jedes Kapitels findet sich eine Übersicht über die Entscheidung zu den Hypothesen (Kapitel 7.4.2, 7.4.4, 7.4.6). Das Kapitel endet mit einer Gesamtdiskussion (Kapitel 7.4.7). Anschließend findet eine ausführliche Diskussion der Methoden statt (Kapitel 7.4.8). Die Arbeit endet mit einer Zusammenfassung und einem Ausblick zu theoretischen und forschungspraktischen Konsequenzen (Kapitel 8). Empfehlungen zur Förderung der motorischen Leistungsfähigkeit im Kindes- und Jugendalter, die sich aus den vorliegenden Befunden ergeben, werden formuliert. Es folgen das Literaturverzeichnis, sowie abbildungs- und Tabellenverzeichnisse und der Anhang.
2 Theoretischer Hintergrund

2.1. Definition zentraler Begriffe und Abgrenzung des Untersuchungsgegenstandes

2.1.1 Motorische Leistungsfähigkeit

Bereits 1977 stellt Shepard fest: „The concept of physical fitness is unfortunately interpreted very differently from one investigator to another“ (Shepard, 1977, zitiert nach Shepard, 1986, S.1). Auch Bös und Mechling 1983 (S.99) weisen darauf hin, dass „die Begriffe Leistung und Leistungsfähigkeit zwar in Publikationen und Fachzeitschriften die mit am häufigsten verwendeten Begriffe darstellen, aber gleichzeitig nicht exakt genug bestimmt sind“.

Motorik

In der Fachliteratur finden sich verschiedene Unterscheidungen des Begriffs „Motorik“ (engl. motor system), wie z.B. Neuromotorik, Sensomotorik und Psychomotorik. Singer und Bös (1994) weisen deshalb darauf hin, dass eine motorische Aktion eng mit neurophysiologischen, sensorischen und psychischen Vorgängen zusammenhängt (Singer & Bös, 1994) und definieren Motorik wie folgt:

„Die Motorik umfasst (...) alle an der Steuerung und Kontrolle von Haltung und Bewegung beteiligten Prozesse und damit auch sensorische, perceptive, cognitive und motivationale Vorgänge. Haltung und Bewegung resultieren aus dem Zusammenspiel multipler Subsysteme.“ (Singer & Bös, 1994, S.17)

Leistung und Leistungsfähigkeit

Die Definition des Leistungsbegriffs bezieht sich im Folgenden lediglich auf die menschliche Leistung.

„Leistung läßt sich als Funktion von Leistungsfähigkeit und Leistungsbereitschaft auffassen, die sie bedingenden Konstituenten lassen sich in innere und äußere Bedingungen für das Leisten als menschliche Lebensäußerung aufspalten.“ (Klafki, 1964 zitiert nach Bös & Mechling, 1983, S. 98)

Motorische Leistungsfähigkeit

Im Folgenden soll der Begriff „motorische Leistungsfähigkeit“ von den oft synonym verwendeten Begriffen wie a) „körperliche Leistungsfähigkeit“, b) „Fitness“ und c) „sportbezogene Leistungsfähigkeit“ abgegrenzt werden.

Erstens die „total fitness“, welche eine umfassende Leistungsfähigkeit (mehr als körperliche Leistungsfähigkeit) im Sinne von „well being“ meint. Zweitens die „motor fitness“, welche der körperlichen Leistungsfähigkeit entspricht und oftmals synonym mit dem Begriff der motorischen Leistungsfähigkeit verwendet wird. Drittens die konditionelle Leistungsfähigkeit, im engeren Sinne als „physical fitness“ bezeichnet.

Wagner (2011, S.30) zufolge sollte der „Begriff der motorischen Leistungsfähigkeit dann verwendet werden, wenn es um die Voraussetzungen motorischer Leistungen, d.h. um die Qualität des zugrunde liegenden motorischen Systems bzw. der systemimmanenten motorischen Prozesse geht“.

Für diese Arbeit wird aufgrund der im Text dargestellten Begriffsdefinitionen der Begriff „motorische Leistungsfähigkeit“ gewählt. Mittels ausgewählter sportmotorischer Tests wird die motorische Leistung der Studienteilnehmer (Leistungsresultat) erfasst, um damit auf die dahinter liegenden motorischen Prozesse, also auf die motorische Leistungsfähigkeit, zu schließen.

(Motorische) Fähigkeiten und Fertigkeiten

Unterscheiden lassen sich allgemeine und spezielle Fähigkeiten und auf inhaltlicher Ebene unter anderem geistige (kognitive, etc.), körperliche oder motorische Fähigkeiten. Roth (1999) ordnet motorischen Konstrukten (Motorikmerkmalen) den Charakter nomothetischer, querschnittlich relativ konsistenter und längsschnittlich relativ stabiler Dispositionen oder Traits (Eigenschaften) zu. Zusammenfassend definiert Roth (1999) motorische Fähigkeiten wie folgt:
Theoretischer Hintergrund

Defintion und Systematisierung motorischer Fertigkeiten werden in der Sportwissenschaft unterschiedlich vorgenommen.

„Die an der Peripherie als objektiver Vorgang in Erscheinung tretende Ortsveränderung der Körpermasse im Raum und Zeit bezeichnet man als Bewegungsfertigkeit. Die Messung von motorischen Fähigkeiten mittels Test erfolgt immer auf der beobachtbaren Ebene von Bewegungsfertigkeiten.“ (Bös, 2001, S.4)

Nach Bös (1987, S. 102) besteht zwischen „[…] Fähigkeiten und Fertigkeiten eine enge gegenseitige Wechselbeziehung. Über die Anwendung der Fertigkeit wird eine Verbesserung der Fähigkeit erreicht, diese tragen ihrerseits über die Handlungsregulation zur qualitativen Verbesserung der Fertigkeiten bei“.

2.1.2 Differenzierung motorischer Fähigkeiten

Auf einer dritten Konstruktions Ebene werden die auf Ebene 2 genannten Basisfähigkeiten in zehn Beschreibungskategorien ausdifferenziert.

Roth (1982) gibt für die Basisfähigkeit Koordination zwei motorische Beschreibungskategorien an: die Koordination unter Zeitdruck und die Koordination bei Präzisionsaufgaben.

2.1.3 Motorische Entwicklung

Entwicklung

„Entwicklung“ ist nicht nur ein Begriff der (Entwicklungs-)Psychologie, sondern auch vieler weiterer wissenschaftlicher Disziplinen (z.B. Wirtschaftswissenschaften, Geschichte, etc.). Deshalb wird der Entwicklungsbe griff historisch, paradigmatisch und disziplin-bzw. bereichsspezifisch ganz unterschiedlich definiert. Es geht jedoch in allen Fällen darum, Veränderungen bestimmter Attribute über einen bestimmten Zeitraum zu analysieren. Die zentralen Bestimmungsstücke des Entwicklungsbe griffs sind somit (a) Veränderungen und (b) die Zeitachse (Phylogenese, Anthropogenese, Ontogenese, Aktualgenese).

1. Veränderungen über die Zeit
2. Zuordnung der Veränderungen zum Lebensalter
3. Überdauernde, langfristige Veränderungen
4. Geordnete, regelhafte Veränderungen (quantitativ = stetige Zunahme oder Wachstum, z.B. Körperlänge und qualitativ, z.B. Ausprägung koordinative Fähigkeiten)
5. Interindividuelle Veränderungen und intraindividuelle Veränderungen
6. Gerichtetheit der Veränderungen (natürliche Abfolge von Veränderungen, Unidirektonalität in Richtung Reifezustand)
7. Universalität bezogen auf Richtung und zeitliche Abfolge (nicht Entwicklungs geschwindigkeit oder Endzustand)
8. Irreversibilität der Veränderungen
9. „qualitativ-strukturelle Transformationen“ (Aufeinanderfolgen als unterschiedliche Qualität)

dahingehend interpretiert werden darf, dass das Lebensalter Ursache der Veränderung ist. In gleicher Weise äußert sich Munzert (2010, S.12): „Das Lebensalter dient zur Skalierung der beobachtbaren Funktionsveränderungen, verursacht werden sie durch die mit dem Alter verbundenen Lern-, Wachstums- und Reifungsprozesse“.

Vor allem das sechste (Unidirektionalität/ Reifezustand), siebte (Universalität) und achte (Irreversibilität der Veränderung) „Bestimmungsstück“ des allgemeinen Entwicklungsbegriffs stehen im Widerspruch zum Verständnis eines modernen Entwicklungsbegriffs.

Dieser Arbeit liegt also ein „weiter Entwicklungs begriff“ zugrunde (vgl. Montada, 1987; Trautner, 2006; Ulrich, 1986; Conzelmann, 1997; Okonek, 2000; Singer & Bös, 1994; Tittelbach, 2002; Willimczik, 1983). Zusammenfassend lassen sich für den Entwicklungs begriff folgende Kriterien festlegen:

Motorische Entwicklung

In Anlehnung an Willimczik und Singer (2009a, S. 21ff) wird unter motorischer Entwicklung

„[..] eine Reihe miteinander zusammenhängende, auf den motorischen Persönlichkeitsbereich bezogene Veränderungen verstanden, die bestimmten Orten des zeitlichen Kontinuums eines individuellen Lebenslaufes, vorzugsweise operationalisiert über das kalendarische Alter zuzuordnen sind“ (Willimczik & Singer, 2009a, S.21).

Als gemeinsamen Gegenstand der motorischen Entwicklung bezeichnen Willimczik und Singer (2009a) neben der beobachtbaren Bewegung und der Haltung die Motorik, wie sie der differenziellen Motorikforschung bzw. der fähigkeitsorientierten Betrachtungsweise zugrunde liegt (s. Kapitel 1.41 und 1.4.2). Weiterhin schließen Willimczik und Singer (2009a) zusätzlich zu den konditionellen und koordinativen Fähigkeiten die elementaren motorischen Fertigkeiten der Alltagsmotorik (z.B. Laufen, Springen, Werfen etc.) und die sportlichen Fertigkeiten (z.B. Diskuswurf, Kraulschwimmen etc.) in den Gegenstandsbereich ihrer Definition von motorischer Entwicklung ein.
Untersuchungsgegenstand der vorliegenden Arbeit stellt nicht die motorische Entwicklung in dieser „umfassenden“ Definition dar, sondern die Analyse der „Entwicklung der motorischen Leistungsfähigkeit“.

Zugrunde gelegt wird das Verständnis von motorischer Leistungsfähigkeit und Entwicklung (weite Definition), wie sie in den vorangegangenen Abschnitten definiert wurden. Gegenstandsbereich der „Entwicklung der motorischen Leistungsfähigkeit“ sind in dieser Arbeit die motorischen Fähigkeiten in der Differenzierung in konditionelle und koordinative Fähigkeiten.

In dieser Arbeit wird daher nicht von „der motorischen Entwicklung“ gesprochen, sondern von der „Entwicklung der motorischen Leistungsfähigkeit“.

Die Entwicklung der motorischen Leistungsfähigkeit soll hierbei in Anlehnung an Clark und Whithall (1989, S.183) als ein, die Lebensspanne umfassender Prozess verstanden werden.

„When motor development is defined as change over time in motor behavior, the focus is on motor performance (i.e., product), whereas when motor development is defined as a process, the emphasis is on the underlying mechanisms of change. Clearly, the proper definition of motor development includes both the product and process of change“ (Clark & Whithall, 1989, S.183).

Wie bereits in der Zielsetzung beschrieben, geht das Vorhaben der Arbeit über einen rein quantitativ-deskriptiven Ansatz hinaus (Produkt) und versucht über die Analyse des Einflusses ausgewählter Faktoren die Entwicklung der motorischen Leistungsfähigkeit zu erklären (Prozess).

Abgrenzungen: Reifung, motorisches Lernen, Sozialisation

Reifung

performen also um Veränderungen biologischer Ausstattung in Form von Funktionsreifung, handelt.

Motorisches Lernen

Aus dieser Differenzierung ergibt sich eine Vernachlässigung der neurophysiologischen Reifung, des Wachstums und anderer physiologischer Einflussgrößen im Rahmen von Lernmodellen, während Entwicklungskonzepte diese Größen und die erfahrungsbedingten Lernprozesse einbeziehen.

Sozialisation

2.2. Entwicklungstheoretische Grundlagen

„Das Studium der Entwicklung kann uns nicht mit letzten Wahrheiten versorgen, da die Forscher nicht immer übereinstimmen, was die Bedeutung ihrer Beobachtungen anbelangt. Hinzu kommt noch, dass Menschen ausgesprochen komplexe Wesen sind, bei denen sich Veränderungen sowohl im körperlichen Bereich als auch im kognitiven, emotionalen und sozialen Bereich abspielen können. Bis zum heutigen Tag gibt es noch keine Theorie, die all diese Aspekte abdecken und erklären könnte“ (Berk, 2005, S.5).

(2002, 2007a,b). Im Folgenden sollen die für die Sportwissenschaft wichtigen Rahmentheorien kurz vorgestellt werden.

2.2.1 Paradigmen und Rahmentheorien der motorischen Entwicklung

Wollny (2002, S.22) gibt für die Entwicklungspsychologie des 20. Jahrhunderts drei gedankliche Hauptstränge an:

(1) die deskriptiv-normative Entwicklungspsychologie beschreibt die Veränderung des Menschen unabhängig von interindividuellen und sozial-kulturellen Unterschieden,

(2) die differentielle Entwicklungspsychologie erklärt die ontogenetische Verläufe als Folge endogener und exogener Einflüsse,

(3) und die moderne Entwicklungspsychologie beruht sich auf die aktionalen und transaktionalen Modelle.

Zur Erklärung intraindividueller Veränderungen innerhalb der Entwicklung wurden in der Sportwissenschaft lange Zeit zwei Konzepte herangezogen:

(exogen bzw. mechanistische) Entwicklungskonzeptionen, (4) interaktionistische (handlungs-theoretische, ökologische und dialektische) Entwicklungskonzeptionen.

Tabelle 1 gibt eine Übersicht zu verschiedenen Rahmentheorien zur (motorischen) Entwicklung und ihren indisponiblen Kernen (Willimczik 2009a; Willimczik & Singer, 2009b).
Tabelle 1: Paradigmen und Rahmentheorien zur (motorischen) Entwicklung und ihre indisponiblen Kerne (entnommen aus Willimczik & Singer, 2009b, S. 38)

<table>
<thead>
<tr>
<th>Paradigma/Rahmentheorie</th>
<th>Indisponibler Kern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Organismisches Paradigma</td>
<td></td>
</tr>
<tr>
<td>a) Reifungstheorien</td>
<td>Ganzheitlichkeit; endogene Entwicklungssteuerung; diskontinuierliche Entwicklung; struktureller Zusammenhang; Vererbung</td>
</tr>
<tr>
<td>2. Mechanistisches Paradigma</td>
<td></td>
</tr>
<tr>
<td>a) Lerntheorien</td>
<td>Ganzheitlichkeit; exogene Entwicklungssteuerung; Lernen</td>
</tr>
<tr>
<td>b) Strukturfunktionalistische Sozialisationstheorien</td>
<td>Einfluss von Merkmalen der Sozialschicht auf die Entwicklung</td>
</tr>
<tr>
<td>- Schichtentheorie</td>
<td></td>
</tr>
<tr>
<td>- Rollentheorie</td>
<td>Einfluss des Rollenlebens auf die Entwicklung (Auseinandersetzung mit Verhaltenserwartungen, Rollenübernahme und Internalisierung)</td>
</tr>
<tr>
<td>3. Kontextuales Paradigma</td>
<td></td>
</tr>
<tr>
<td>a) Konstruktivismus</td>
<td>Einfluss Assimilation; Akkomodation; Äquilibration</td>
</tr>
<tr>
<td>b) Handlungstheoretische Ansätze</td>
<td>Interaktive Auseinandersetzung von Person und Umwelt; Aktivität von Person und Umwelt in einer dialektisch vermittelten Person-Umwelt-Transaktion; Handlungsumwelt des Individuums als historische Konstruktion</td>
</tr>
<tr>
<td>(Weiterführung in interaktionalen Sozialisationskonzeptionen)</td>
<td></td>
</tr>
<tr>
<td>c) Systemdynamischer Ansatz</td>
<td>Einfluss Ganzheitlichkeit; Hierarchische Organisation; dynamische Stabilität; Nichtlinearität; Embodiment; Synergetik</td>
</tr>
</tbody>
</table>

Ausführlicher werden dagegen im Folgenden die Grundgedanken der Entwicklungspsychologie der Lebensspanne nach Baltes (1990) beschrieben und diskutiert, da sie die theoretische Grundlage der vorliegenden Arbeit darstellt.

2.2.2 Die Entwicklungspsychologie der Lebensspanne Baltes (1990)

1. Entwicklung ist ein lebenslanger Prozess
2. Multidirektionalität: verschiedene Bereiche und Aspekte können einen unterschiedlichen Verlauf zeigen
4. Plastizität der Entwicklung
5. Geschichtliche Einbettung
6. Kontextualismus: Entwicklung ist eingebettet in Kontexte
7. Notwendigkeit einer multidisziplinären Betrachtung der Entwicklung

Nachfolgend wird dargestellt, wie sich diese Leitsätze auf die Motorik übertragen lassen. Willimczik und Singer (2009b) teilen die oben genannten Leitsätze für die Motorik in zwei übergeordnete Kategorien ein:
(1) Beschreibung und Interpretation des Entwicklungsverlaufs
(2) Einflussgrößen von Entwicklung

Einflussfaktoren der Entwicklung der motorischen Leistungsfähigkeit in Orientierung an der Entwicklungspychologie der Lebensspanne

<table>
<thead>
<tr>
<th>Kategorien</th>
<th>Leitorientierung</th>
<th>Annahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Motorische Entwicklung als Gewinn und Verlust</td>
<td>Motorische Entwicklung wird als Veränderung des Verhaltens und der Verhaltensmöglichkeiten im motorischen Persönlichkeitsbereich über die Zeit verstanden. Sie orientiert sich am Lebensalter, Veränderungen können sowohl positiv (Zunahme, Wachstum, Gewinn) als auch negativ (Abnahme, Abbau, Verlust) in Erscheinung treten</td>
</tr>
<tr>
<td></td>
<td>Multidirektionale Entwicklung motorischer Persönlichkeitsmerkmale</td>
<td>Die einzelnen Merkmale (Fähigkeiten, Fertigkeiten) entwickeln sich multidirektional. Dies bedeutet, dass der Grad der Zunahme oder Abnahme sowohl zwischen als auch innerhalb der motorischen Merkmale in den einzelnen Entwicklungsabschnitten (sehr) unterschiedlich, im Extremfall gegenläufig sein kann.</td>
</tr>
</tbody>
</table>

Ontogenetische, nach Alter gestufte Einflüsse

hängige Einflüsse hervorrufen. Viele dieser altersgebundenen Einflüsse werden von der Gesellschaft vorgegeben, um sicherzustellen, dass die jungen Menschen die nötigen Fähigkeiten erlernen, um sich in der Gesellschaft zurecht zu finden.

Nicht normative Einflüsse

Evolutionäre, geschichtliche Einflüsse

Abgeleitet aus den querschnittlichen Befunden der MoMo-Baseline Studie (vgl. Bös et al., 2009b) wird in der vorliegenden Arbeit der Einfluss des Alters13, des Geschlechts, des Sozialstatus, der Körperkonstitution und des Aktivitätsverhaltens auf die Entwicklung der motori-

13 Das Alter wird aus statistischen Gründen als „Einflussfaktor“ aufgeführt gemeint sind damit jedoch mit dem Alter korrelierende Prozesse oder Ereignisse, die eine Veränderung bewirken.
lichen Leistungsfähigkeit für relevant erachtet und auf längsschnittlicher Datenbasis untersucht.

Ahnert (2005, S. 37) fasst diese Systematisierung, wie in Abbildung 4 dargestellt, zusammen:

Direkte Ursachen/ Prozesse motorischer Verhaltensänderungen

- Reifung
- Wachstum
- Biologische Adaptation
- Lernen

Indirekte Ursachen: soziale, materielle, Umweltfaktoren, Persönlichkeit

Direkte Einflussgrößen können körperliche Belastungen im Beruf, Alltag oder im Training oder aber biologische Reifungs- bzw. Alternsprozesse umfassen; als indirekt anzusehen sind Persönlichkeitsmerkmale (z.B. die Motivdisposition) und das soziale Umfeld (z.B. Freundes-

In dieser Arbeit wird das Aktivitätsverhalten als exogene, direkte Einflussgrößen betrachtet, der Sozialstatus als indirekter, exogener Einflussfaktor und das Alter sowie das Geschlecht und die Körperkonstitution (BMI) als direkte, endogene Einflussfaktoren (vgl. Ahnert, 2005; Bös, 1994).

Zum Leitsatz der Plastizität

Kritische Beleuchtung der Metatheorie Entwicklungspsychologie der Lebensspanne

Die an der Lebensspanne orientierte Betrachtungsweise von motorischer Entwicklung wird von verschiedenen Standpunkten aus kritisch hinterfragt (z. B. Baur, 1989; Wollny, 2002; 2007 und Tittlbach, 2002). Die Einwände betreffen vor allem die empirische Überprüfbarkeit. Konkret wird auf die folgende Diskussions- oder Problempunkte verwiesen:

1. Theorienbildung
2. Empirische Überprüfbarkeit bzw. methodische Probleme (Leitsatz des Kontextualismus, statistische Überprüfung der Multidirektionalität)
3. Kritik an der Abgrenzung der Leitsätze
4. Neuigkeitswert

Im Folgenden werden die soeben aufgeführten Kritikpunkte naher betrachtet.

(1) **Theorienbildung**

Mit dem Fokus auf die gesamte Lebensspanne weist der Ansatz der Entwicklungspsychologie der Lebensspanne jedoch eine theoretische Ausrichtung auf.

diesem Abstraktionsniveau offen gehalten wird. Der Ansatz der Entwicklungspychologie der Lebensspanne bietet diesen metatheoretischen Rahmen, der es ermöglicht, verschiedene Theorien mit Blick auf die gesamte Lebensspanne nebeneinander unter einem Dach zu vereinen.

(2) Empirische Überprüfbarkeit:

In der Sportwissenschaft finden sich Studien im Kindes- und Jugendalter, welche explizit und theoretiegerecht die inhaltlichen Aussagen der Entwicklungspychologie der Lebensspanne aufgreifen, bisher nur in sehr geringem Umfang und auch nur für kleine Stichproben (siehe Tabelle 3).

Tabelle 3: Übersicht zu deutschsprachigen, sportwissenschaftlichen Studien, basierend auf der Entwicklungspychologie der Lebensspanne nach Baltes (1990)

<table>
<thead>
<tr>
<th>Autor (Jahr)</th>
<th>Inhalte</th>
</tr>
</thead>
</table>

Vor allem die Überprüfung des Leitsatzes „Kontextualismus“ in seiner Gesamtheit mit der Berücksichtigung der drei sehr unterschiedlicher Einflusskategorien, die zusätzlich ihre relativen Einflussgewichte über die Lebensspanne verändern, stellt eine Herausforderung dar:

(4) Kritik an Abgrenzung der Leitsätze

(5) Neuigkeitswert

Baltes, Reese & Lipsitt (1980) und Baltes (1990) sehen die Chance der Konzeption der Entwicklungspsychologie der Lebensspanne vor allem in Form eines heuristischen Rahmens:

„The multicausal model outlined can also be used, in a heuristic manner, as a scheme for integrating existing data and for generating new questions about the cause of life-span development“ (Baltes et al., 1980, S.76).

Die Entwicklungspsychologie der Lebensspanne als metatheoretische Rahmenkonzeption für die Entwicklung der motorischen Leistungsfähigkeit vom Kindes- bis in das frühere Erwachsenenalter

Das Konzept der Entwicklungspsychologie der Lebensspanne mit seinen Leitsätzen der lebenslangen Plastizität und der Beschreibung der Ontogenese als selektive Optimierung mit Kompensation hat in den letzten Jahren in Deutschland vor allem in der Altersforschung Anwendung gefunden (vertiefend hierzu z.B. Lehr, 2000). Dies bedeutet jedoch nicht, dass sich das Konzept der Entwicklungspsychologie der Lebensspanne nicht gleichermaßen als Rahmentheorie für das Kindes- bis ins frühe Erwachsenenalter eignet. Die in Kapitel 2.2.2 dargestellten Leitsätze (z.B. Gewinn und Verlust) lassen sich ebenso auf die kindliche Entwicklung übertragen. Hetherington und Baltes (1988) fassen die Bemühungen zur Entwicklungsforschung wie folgt zusammen:

“Child developmentists study the early years, lifespan developmentalists study the adult years or more commonly old age. Neither really are studying the life span. It is the old problem of the blind men feeling different parts of the elephant and describing it’s attributes“ (Hetherington & Baltes, 1988, S.2).
Die aktuelle, lebensspanneorientierte Auffassung von Entwicklung gibt keiner Altersstufe den Vorrang, sondern fokussiert das lebenslange Potenzial des Menschen, sich zu entwickeln. In jeder der hauptsächlichen Lebensabschnitte können Ereignisse auftreten oder Prozesse ablaufen, die eine gleich starke Auswirkung auf zukünftige Veränderungen haben können. Jeder der Lebensabschnitte hat seine eigenen, je spezifischen Herausforderungen und Möglichkeiten (vgl. Berk, 2005) „A key position in life-span development is that development is a lifelong process that one might say extends from sperm to worm“ (Hetherington & Baltes, 1988, S.2).

Die Entwicklungspsychologie der Lebensspanne fordert deshalb dazu auf, die Sichtweisen von Kindheitsforschern und Forschern, die die Altersspanne ab dem Erwachsenenalter thematisieren, zu verknüpfen. „As childhood developmentalists begin to examine long-term consequences, they often are less informed about what should be studied in adulthood. [...] Thus it seems that life-span oriented study of children requires knowledge about the aftermath of childhood and the adult social world (and its possible developmental course) in which children are embedded“ (Hetherington & Baltes, 1988, S.6).

Die Aufgabe, alle Altersspannen miteinander zu verknüpfen, meint jedoch nicht nur altersspezifische Informationen aneinanderzureihen. Es geht vielmehr darum, altersspezifische Konzepte und Ansätze mit dem Blick auf die gesamte Lebensspanne zu modifizieren. Der Blick auf die gesamte Lebensspanne kann zur Erklärung beitragen, in welchem Grad und in welcher Form die unterschiedlichen Altersabschnitte sich gegenseitig beeinflussen. Beispielsweise können Folgen und Beiträge der Entwicklung in der Kindheit zum späteren Leben analysiert werden. Eine Darstellung, die sich zuschreibt, die vollständige Lebensspanne zu be-
rücksichtigen, sollte deshalb ebenso das Wissen über die ontogenetischen Anfänge beinhalten (vgl. Hetherington & Baltes, 1988).

In der vorliegenden Arbeit werden in Orientierung an den zentralen Annahmen der Entwicklungspsychologie der Lebensspanne die Daten der MoMo-Längsschnittstudie zur Entwicklung der motorischen Leistungsfähigkeit von Kindern und Jugendlichen analysiert. Dabei erfolgt in einem ersten Schritt die Fokussierung auf die Beschreibung von Entwicklung anhand Gewinn, Verlust und Direktionalität in Abhängigkeit von Alter und Geschecht. Im zweiten Schritt wird unter dem Leitsatz des Contextualismus und hier unter der Kategorie der „ontogentisch, nach Alter gestuften Einflüsse“ der Einfluss des Sozialstatus (exogener, indirekter Einfluss), der Körperkonstitution (BMI endogener, direkter Einfluss) und des Aktivitätsverhaltens (exogener, direkter Einfluss) analysiert. Dabei soll der Ansatz der Entwicklungspsychologie der Lebensspanne nicht mehr und nicht weniger als (1) zur Begründung von Annahmen und zur Generierung von Hypothesen dienen, (2) eine theorieorientierte empirische Forschung anleiten und (3) einen konzeptionellen Bezugsrahmen bieten, in dem die gewonnenen empirischen Einzelhypothesen und Einzelbefunde verortet und für die Weiterentwicklung des Annahmezusammenhangs genutzt werden können.
2.3. Entwicklungszeiträume und Entwicklungsverläufe der motorischen Leistungsfähigkeit

2.3.1 Klassifizierung motorischer Entwicklungszeiträume für das Kindes-, Jugend- und frühe Erwachsenenalter

Tabelle 4: Eigene Klassifizierung motorischer Entwicklungszeiträume

<table>
<thead>
<tr>
<th>Lebensabschnitt</th>
<th>Alterszeitraum in vollendeten Lebensjahren (Altersgruppe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorschulalter</td>
<td>4-5 Jahre (Altersgruppe 1)</td>
</tr>
<tr>
<td>Grundschulalter</td>
<td>6-10 Jahre (Altersgruppe 2)</td>
</tr>
<tr>
<td>Pubertät</td>
<td>11-13 Jahre (Altersgruppe 3)</td>
</tr>
<tr>
<td>Adoleszenz</td>
<td>14-17 Jahre (Altersgruppe 4)</td>
</tr>
<tr>
<td>frühes Erwachsenenalter</td>
<td>18-23 Jahre (Altersgruppe 5)</td>
</tr>
</tbody>
</table>
Die in Tabelle 4 dargestellten Zeiträume bilden die Grundlage für die vorgenommene Einteilung der Stichprobe für die statistischen Analysen in Kapitel 5.

Das Alter bildet lediglich eine Orientierungshilfen bzw. einen Informationsrahmen und enthält keine eigenständige, erläuternde Funktion für die Entwicklungsverläufe. Die Beschreibung der Entwicklung der motorischen Leistungsfähigkeit in den einzelnen Altersabschnitten erfolgt im nachfolgenden Kapitel 2.3.2.

Zuvor werden, die in Tabelle 4 definierten Entwicklungszeiträume genauer betrachtet.

Kindesalter (Vorschul-und Grundschulalter)

Außerdem kommt es in dieser Zeit zur Differenzierung der kindlichen Persönlichkeitsstruktur.

Dem frühen Kindesalter folgt das *mittlere Kindesalter*. Diese Phase ist durch eine schnelle Zunahme der motorischen Lernfähigkeit gekennzeichnet. Meinel und Schnabel (2007) führen diesen Entwicklungstrend auf die überwiegend günstigen körperbaulichen Voraussetzungen, die Ausprägung und Qualifizierung einiger für die Lernfähigkeit wesentlichen psychischen Prozesse sowie vor allem auf den starken Anstieg koordinativer und einiger konditioneller Fähigkeiten zurück.

Der letzte Abschnitt des Kindesalters wird als *spätes Kindesalter* bezeichnet. Die Altersbegrenzungen im späten Kindesalter sind für Jungen und für Mädchen in Abhängigkeit der Geschlechtsreife unterschiedlich. Auf biologischer Ebene kommt es hier zum zweiten Gestaltwandel, der mit einem verstärkten Längenwachstum, vor allem der Gliedmaßen, verbunden ist. Im späten Kindesalter zeigen sich bereits sehr unterschiedliche motorische Profile. Zurückzuführen ist dies zum einen auf die unterschiedliche biologische Entwicklung, zum

Jugendalter (Adoleszenz, Pubertät)
Dem Kindesalter folgt das Jugendalter, eingeteilt in frühes und spätes Jugendalter.
Das späte Jugendalter (Adoleszenz) wird als Zeitraum zwischen Menarche/Spermache bis zum Erreichen der körperlichen Vollreife oder Maturität definiert. Markante motorische Entwicklungsmerkmale sind die ausgeprägte geschlechtsspezifische Differenzierung, die fortschreitende Individualisierung und die zunehmende Beständigkeit der motorischen Entwick-

Unsystematisches Training einzelner motorischer Fähigkeiten und Fertigkeiten im Jugendalter führt bereits zur Stagnation oder zu Rückschritten (vgl. Wollny, 2007a).

Als jugendliche Lebensaufgaben nennt Wollny (2007a) unter anderem das Ablösen vom Elternhaus, die schulische und berufliche Ausbildung, das Streben nach Selbstständigkeit und Eigenverantwortung, die Umstrukturierung allgemeiner Interessen und die verstärkte Zuwendung zu Gleichaltrigen (Peergroup).

Frühes Erwachsenenalter

Meinel und Schnabel (2007) bezeichnen diese Phase des frühen Erwachsenenalters auch als „Phase der vollständigen Ausprägung der menschlichen Motorik“.

2.3.2 Entwicklungsverläufe der motorischen Leistungsfähigkeit im Kindes- und Jugendalter

Zusammenfassend findet man für den stark idealisierten und durchschnittlichen Verlauf der Entwicklung der motorischen Leistungsfähigkeit (alle Dimensionen) über die Lebensspanne folgende Beschreibung:

Ist der Leistungshöhepunkt erreicht, stagniert die Entwicklung, um dann spätestens ab dem dritten Lebensjahrzehnt abzunehmen. Bös (1994) zufolge ist dies ab dem 35. Lebensjahr der Fall. Die Leistungsverluste sind auf zwei Faktoren zurückzuführen. Erstens auf den biolo-
Theoretischer Hintergrund

Abbildung 5 zeigt die stark idealisierten Kurven zur grundsätzliche Veränderung der allgemeinen körperlichen Leistungsfähigkeit über die Lebensspanne nach Weiss (1978), welche durch Befunde von Bös (1994) bestätigt werden können.

Abbildung 5: Modellkurve zum Entwicklungsverlauf der körperlichen Leistungsfähigkeit (Weiss 1978, S.58, aus Bös 1994, S.248)

schen Entwicklung über die Lebensspanne (vgl. Willimczik & Conzelmann, 1999; siehe Kapitel 2.2.2).

Der Einfluss von Alter und Geschlecht auf die Entwicklung der motorischen Leistungsfähigkeit ist unumstritten und vielfach belegt, deshalb erfolgt die Analyse der Entwicklung der motorischen Leistungsfähigkeit stets in dieser Arbeit stets nach Alter und Geschlecht differenziert.

Entwicklungsverlauf der Ausdauerleistungsfähigkeit im Kindes- und Jugendalter

Die aerobe Ausdauerleistungsfähigkeit stellt, die am häufigsten untersuchte Dimension der motorischen Leistungsfähigkeit dar (siehe Literaturreview Kapitel 3.1). Die Erfassungsmethoden der aeroben Ausdauerleistungsfähigkeit sind unterschiedlich (z.B. Fahrradergometer-Tests mit unterschiedlichen Belastungsprotokollen, unterschiedliche Lauftests, etc.).

Auch für die relative VO$_{2\text{max}}$ zeigt sich geschlechtsspezifische Unterschiede zugunsten der Jungen (vgl. Conzelmann, 2009). Die relative VO$_{2\text{max}}$ bleibt bei männlichen Studienteilnehmern im Kindes- und Jugendalter konstant. Für die weiblichen Studienteilnehmer zeigt sich ein früherer Kulminationspunkt, teilweise wird sogar bereits von einem Abfall der relativen VO$_{2\text{max}}$ berichtet.

Setzt man die VO$_{2\text{max}}$ in das Verhältnis zur fettfreien Masse (FFM) zeigt sich, dass die Jungen in der Adoleszenz eine 10% höhere VO$_{2\text{max}}$/kg FFM aufweisen (vgl. Malina et al., 2004).

Die absolute VO$_{2\text{max}}$ steigt bei beiden Geschlechtern im Kindesalter kontinuierlich an. Mädchen erreichen zu Beginn der Pubertät ihre höchste absolute VO$_{2\text{max}}$, Jungen in einem Alter von 18/19 Jahren.
Für die relative VO$_{2\text{max}}$ zeigt sich vom Kindes- bis ins früher Erwachsenenalter nahezu keine Veränderung. Jedoch zeigen sich auch für die relative VO$_{2\text{max}}$ geschlechtspezifische Unterschiede. Mädchen erreichen früher den Kulminationspunkt. Vereinzelt wird für die Mädchen bereits in der Kindheit ein Abfall der relativen VO$_{2\text{max}}$ nachgewiesen.

Entwicklungverlauf der Kraftfähigkeit im Kindes- und Jugendalter

In der Pubeszenz und Adoleszenz nimmt durch die starke Freisetzung der Sexualhormone, insbesondere durch den Anstieg des Testosterons und der damit verbundenen anabolen Wirkung die Muskelmasse sowie die Trainerbarkeit der Kraft bei den männlichen Jugendlichen
stark zu (vgl. Meinel & Schnabel, 2007; Menzi et al., 2007; Schmidtbleicher, 1994). Grafisch zeigt sich eine Schere zwischen den Geschlechtern.

Entwicklungsverlauf der Schnelligkeit im Kindes- und Jugendalter
„Schnelligkeit ist die Fähigkeit, unter ermüdungsfreien Bedingungen in maximal kurzer Zeit motorisch zu reagieren und/ oder zu agieren“ (Hohmann, Lames, Letzelter, 2002, S.87).

In der vorliegenden Studie wurde die Reaktionsschnelligkeit mit einem computerbasierten Reaktionsmessgerät erfasst. Aus diesem Grund wird lediglich diese genauer dargestellt. Die Reaktions-
schnelligkeit ist gesondert zu betrachten. Sie ist nur zu ca. 20% trainierbar. Die Reaktions-
schnelligkeit wird unter anderem von der Wahrnehmungs- und Antizipationsfähigkeit be-
stimmt, diese sind wiederum von neuronalen Ermüdungseinflüssen beeinflusst. (vgl.
Schmidtbleicher, 1994, 2009). Man unterscheidet zwischen Einfach- und Mehrfachauswahl-
reaktionen. Schmidtbleicher (2009) weist darauf hin, dass sich erhebliche Unterschiedezwi-
schen visuellem, akustischem und taktilem Reaktionvermögen ergeben.
Statistisch gesehen liegt der Altersabschnitt, in dem höchste Schnelligkeitsleistungen realisiert
werden, zwischen 20 und 30 Jahren, danach fällt die Schnelligkeitsleistung kontinuierlich ab.
Je höher der Einfluss der Kraft auf die Schnelligkeitsleistung (z.B. bei Sprüngen oder Wür-
fen) ist, desto deutlicher zeigen sich geschlechtsspezifische Unterschiede.
Da in der vorliegenden Untersuchung die optische Reaktionsschnelligkeit überprüft wurde
will diese gesonderter aufgeführt. Die optische Reaktionsschnelligkeit reduziert sich im
Grundschulalter mit zunehmendem Alter stark. Liegt sie im Alter von 6/7 Jahren noch bei 0,
50-0, 60 Sekunden, so reduziert sie sich im Alter von 10 Jahren auf 0,25- 0,20 Sekunden. Bis
zum 19. Lebensjahr verbessert sie sich weiter auf 0, 15 Sekunden. Die Reaktionsschnelligkeit
besitzt keine Generalitätscharakter, sondern unterscheidet sich im Hinblick auf die Extremitä-
ten (vgl. Schmidtbleicher, 1994).
Die optische Reaktionsschnelligkeit verbessert sich vom Grundschulalter bis zum 19. Lebens-
alter. Es zeigen sich keine geschlechtsspezifischen Unterschiede.

Entwicklungsverlauf der koordinativen Leistungsfähigkeit im Kindes- und Jugendalter

Die koordinative Gesamtentwicklung ist in den Altersjahrgängen 9/10 bei den Mädchen und
12/13 Jahren bei den Jungen nahezu abgeschlossen (75%). Eine Weiterentwicklung bedarf ab
diesem Zeitpunkt besonders intensiver Reize (vgl. Hirtz, 2002; Hirtz, Ockardt & Schwarzer,
2002; Meinel & Schnabel, 2007; Roth & Roth, 2009). Die dynamische Entwicklung zwischen
Ausreifung grundlegender Funktionen des zentralen Nervensystems, den starken Bewegungs-
drang und den Schulsportunterricht zurück geführt werden. Die Verlangsamung ab dem
Nervensystems und zweitens in der Umstrukturierung der Motorik aufgrund des zweiten Ge-
staltwandels (Geschlechtsreife und körperbauliche Veränderungen verbunden mit einer Ver-
schiebungen der Körperproportionen) begründet.

Die Entwicklung der koordinativen Leistungsfähigkeit ist gekennzeichnet durch eine frühe Phase des raschen Anstiegs, einer äußerst dynamische Phase im jüngeren Schulkindalter und einem schnellen Erreichen der optimalen Kompetenzausprägung. Ab dem 11./12. Lebensjahr verlangsamt sich die Entwicklung der koordinativen Fähigkeiten deutlich bzw. stagniert.

Zur Überprüfung der Koordinationsfähigkeit wurde in der vorliegenden Arbeit auch die feinmotorische Koordination erfasst. Da sich in der gesichteten Literatur hierzu keine typischen Entwicklungsverläufe ausfindig gemacht werden konnten werden die querschnittlichen Befunde der MoMo-Baseline Studie berichtet: Im Bereich der Feinmotorik schneiden Mädchen besser ab als die Jungen, vor allem in Aufgaben der Handgeschicklichkeit. Die Ergebnisse der MoMo-Baseline Studie (vgl. Bös et al., 2009b) zeigen, dass die Mädchen im MLS Liniennachfahren und beim MLS Stifte einstecken besser sind als die Jungen. Die Abnahme der Mittelwerte beim MLS Stifte einstecken im Altersgang ist für die Mädchen und Jungen jedoch gleich

Entwicklungsverlauf der Beweglichkeit im Kindes- und Jugendalter

Im allgemeinen nimmt die Beweglichkeit in den Beanspruchungsebenen der großen Körpergelenken bis etwa zum Ende des 20. Lebensjahres zu, dann folgt ein langsamer Rückgang.
3 Forschungsstand: Entwicklung der motorischen Fähigkeit im Kindes- und Jugendalter

„The importance of measuring and monitoring the fitness of children and youth is obvious but logistically challenging, and rarely done on large, representative national samples“ (Tremblay et al., 2011, S. 7).

5 Bei der klassischen Form des Längsschnitts „echter Längsschnitt“ oder auch „Verlaufsanalyse“ genannt werden dieselbe Personen über mehrere Erhebungswellen untersucht. Im Folgenden wird der Begriff Längsschnittstudie nur für Verlaufsanalysen verwendet und schließt reine Kohortenstudien aus.

Ziel des vorliegenden Kapitels ist es, eine möglichst vollständige Einbeziehung aller relevanten wissenschaftlichen Arbeiten zum Themenfeld „Längsschnittstudien zur Entwicklung der motorischen Leistungsfähigkeit von Kindern und Jugendlichen“ zu erstellen, die im Zeitraum 1989-2014 (vergangene 25 Jahre) publiziert wurden. Das Literaturreview fokussiert:

2. Die Sichtung der, in den ausgewählten Studien dargestellten Ergebnisse im Hinblick auf die Entwicklung der motorischen Leistungsfähigkeit.

Die Ergebnisse der in Tabelle 7 aufgeführten Studien sind die Basis des darauffolgenden Kapitels 3.2 in dem der Einfluss des Sozialstatus, des Aktivitätsverhaltens und der Körperkonstitution (BMI) analysiert werden. Außerdem stellt das Literaturreview die Grundlage für vergleichende Bewertungen der Ergebnisse der eigenen Längsschnittdaten im Interpretations- und Diskussionsteil der Arbeit dar.
3.1. Längsschnittstudien zur motorischen Leistungsfähigkeit - ein Literaturreview

Im folgenden Kapitel werden zunächst Einschlusskriterien definiert und die Methodik der Suche nach relevanten Literatur in Datenbanken und Suchmaschinen erläutert. Im Anschluss werden die Ergebnisse der Literaturrecherche tabellarisch dargestellt. Kapitel 3.1.1 dient der Einordnung der MoMo-Längsschnittstudie in den Forschungsstand.

Methodik

Datenbanken und Suchmaschinen

Tabelle 5 gibt einen Überblick über die Datenbanken, die im Zeitraum Mai 2014 bis September 2014 durchsucht wurden.

<table>
<thead>
<tr>
<th>Datenbanken und Suchmaschinen</th>
<th>Medline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google (google scholar und google books)</td>
<td>PubMed</td>
</tr>
<tr>
<td>Web of Science</td>
<td>SportDiscus</td>
</tr>
<tr>
<td>Web of knowledge</td>
<td>springerlink</td>
</tr>
<tr>
<td>Scopus</td>
<td></td>
</tr>
</tbody>
</table>

Einschlusskriterien

Folgenden Kriterien wurden bei der Auswahl der Längsschnittstudien berücksichtigt:

- Einer der Untersuchungszeitpunkte liegt in den letzten 25 Jahre (ab 1989)
- Studienteilnehmerzahl (N) von über 100 nach erstem Follow-Up
- Das Alter der Studienteilnehmer liegt zum ersten Erhebungszeitpunkt zwischen 4-17 Jahren
- Es handelt sich um einen observationale Längsschnittstudien (Interventionsstudien wurden ausgeschlossen)
- Es handelt sich um einen „echten Längsschnitt“, d.h. dieselben Versuchspersonen werden zu aufeinanderfolgenden Messzeitpunkten untersucht.

Es wurden lediglich Längsschnittstudien, die sich mit der motorischen Entwicklung in der Normalbevölkerung befassen, einbezogen. Studien aus dem Bereich der Talentauswahl und des Leistungssports aber auch Studien mit Patientengruppen werden ausgeschlossen.
Suchstrategien

Tabelle 6: Suchstrategien in den Datenbanken

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Englisch</td>
</tr>
<tr>
<td>• Motorik</td>
<td>• motor performance</td>
</tr>
<tr>
<td>• körperliche Leistungsfähigkeit</td>
<td>• physical fitness</td>
</tr>
<tr>
<td>• Kinder</td>
<td>• children</td>
</tr>
<tr>
<td>• Kindesalter</td>
<td>• childhood</td>
</tr>
<tr>
<td>• Jugendliche</td>
<td>• adolescents/youth</td>
</tr>
<tr>
<td>• junges Erwachsenenalter</td>
<td>• adulthood</td>
</tr>
<tr>
<td>• längsschrittenlich</td>
<td>• longitudinal</td>
</tr>
<tr>
<td>• Kohorte</td>
<td>• cohort</td>
</tr>
<tr>
<td>• verfolgen</td>
<td>• tracking</td>
</tr>
<tr>
<td>• Entwicklung</td>
<td>• development</td>
</tr>
<tr>
<td>• Motorische Entwicklung</td>
<td>• motor development</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Beispiele für einfache Begriffskombination:</td>
<td></td>
</tr>
<tr>
<td>[motorische Entwicklung AND Kindheit]</td>
<td>[motor development AND childhood]</td>
</tr>
<tr>
<td>[motorische Entwicklung AND Jugendliche]</td>
<td>[motor development AND adolescents]</td>
</tr>
<tr>
<td>[motorische Leistungsfähigkeit AND längsschrittlich]</td>
<td>[motor performance AND longitudinal]</td>
</tr>
<tr>
<td></td>
<td>[motor development AND tracking]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[körperliche Leistungsfähigkeit AND motorische Leistungsfähigkeit AND Längsschnitt AND Entwicklung AND Jugendliche AND Kinder]</td>
<td>[physical fitness AND motor performance AND longitudinal AND development AND adolescents AND children]</td>
</tr>
<tr>
<td>[Kinder OR Kindheit] AND [Entwicklung AND körperliche Leistungsfähigkeit OR motorische Entwicklung]</td>
<td>[children OR childhood] AND [development AND physical fitness OR motor development]</td>
</tr>
</tbody>
</table>

Handsuche

Die nachfolgend in Tabelle 7 aufgeführten Studien sind nach dem Durchführungsdatum der Erhebung geordnet, wobei mit den aktuellsten Studien begonnen wird. Teilweise finden sich
| aktuelles Erhebungs-
| Erhebungs-
| wesentliche Publikationen: | Untersuchungstichprobe | Laufzeit | Messzeit-
-	Jahr, Studienname	N/ Geschlecht	Alter (Baseline)	der Studie	punkte	Land	Erfassung der motorischen Leistungsfähigkeit
Jahr	Autor(en), Jahr, Studienname						
Beunen et al., (2007), Maes et al., (1996); Peeters et al., (2005):	Leuven longitudinal twin study (Teil der The East Flanders Prospective Twin Survey (EFPTS))	Basline N=115 Zwillingspaare-> N=230	10 J. zur Baseline (jährliche Messungen)	seit 1985-		Belgien (East-Flanders)	Klimmzug, Vertikaler Sprung nach oben, 10x5m Shuttle-run, Plate Tapping, Einbeinstand, Sit-and-Reach, Beine anheben aus liegender Position (leg-lift), Laufbandtest (VO$_2$max)
		13. MZP: N=961 (m/w) im Jahr 2012	seit 1975-				
		andauernd (Publizierte Daten bis 2012)					
J.=Jahre; MZP=Messzeitpunkt; m=männlich; w=weiblich; K.A.=keine Angaben; Nges=Gesamtzahl							

Tabelle 7: Übersicht der Längsschnittstudien zur Entwicklung der motorischen Leistungsfähigkeit von Kindern und Jugendlichen
<table>
<thead>
<tr>
<th>aktuellstes Erhebungs- Jahr</th>
<th>wesentliche Publikationen: Autor(en), Jahr, Studienname</th>
<th>Untersuchungsstichprobe</th>
<th>Laufzeit der Studie</th>
<th>Messzeitpunkte</th>
<th>Land</th>
<th>Erfassung der motorischen Leistungs- fähigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>andauernd</td>
<td>Wagner & Woll (2013); Bös et al., (2009) Motorik-Modul- Studie (MoMo)</td>
<td>Baseline: N=4528 (m/w) 2.MZP N=2.807 (m/w) Alter zur Baseline 4-17 J. 2. MZP: 10-23 J. seit 2003- andauernd (Daten der ersten zwei MZPs 2003-2012)</td>
<td>2 MZPs</td>
<td>Deutschland</td>
<td>Fahrrad-Ausdauer- tets (PWC 170), seitliches Hin- und Herspringen, Einbeinstand, Balancieren rückwärts, Liegestützen, Standweitsprung, MLS Linien nachfahren, MLS Stifte einstecken, Reaktionstest (Computer)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aggio et al., (2012) East of England Healthy Hearts Study</td>
<td>Baseline: N=1500 (m/w) 2. MZP: N= 789 (m/w) Alter zur Baseline 11.5 (SD 0.5) (Alter zur Baseline Re-Assessment: 13.5± 0.5 J.) 2008-2010</td>
<td>2 MZPs</td>
<td>England</td>
<td>20m Shuttle-run)</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Westerståhl, & Aasa,(2013) the swedish physical activity and fitness cohort study SPAF</td>
<td>Baseline: N=425 (m/w) 2. MZP: N=276 3. MZP: N=212 (m/w) Alter zur Baseline 16 (Follow-up I: 34 J. /Follow-up II: 1974, 1992 und 2010</td>
<td>3 MZPs</td>
<td>Schweden</td>
<td>Feldtest zur Erhebung der Ausdauer, maximalKrafttest und Beweglichkeitstest (es liegen keine genaueren Angaben vor)</td>
<td></td>
</tr>
<tr>
<td>aktuellstes Erhebungs- jahr</td>
<td>wesentliche Publikationen: Autor(en), Jahr, Studienname</td>
<td>Untersuchungsstichprobe</td>
<td>Laufzeit der Studie</td>
<td>Messzeitpunkte</td>
<td>Land</td>
<td>Erfassung der motorischen Leistungsfähigkeit</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>-------------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Wick et al., (2013), Mühlbauer et al., (2014) EMOTIKON Studie</td>
<td>Baseine N=764 (m/w) 2. MZP: N=645 T4 N=341</td>
<td>9 J. zur Baseline (13 J. zum 4. MZP)</td>
<td>2006-2009</td>
<td>4 MZPs</td>
<td>Deutschland, Brandenburg 50-m Sprint, 3er-Hopp; 1kg-Vollball stoßen; 9 –min Ausdauerlauf, Rumpfbeuge aus dem Stand, Sternlauf (Koordination)</td>
</tr>
<tr>
<td></td>
<td>He et al., (2011)</td>
<td>BaseineN=2179 (m/w) 2. MZP: N=1795 (m/w)</td>
<td>Alter zur Baseline: 8-13 J. (18 Monate)</td>
<td>2006-2008</td>
<td>2 MZPs</td>
<td>China (Guangzhou) 20-m Multistage Fitness Test</td>
</tr>
<tr>
<td>aktuellstes Erhebungsjahr</td>
<td>wesentliche Publikationen: Autor(en), Jahr, Studienname</td>
<td>Untersuchungsstichprobe</td>
<td>Laufzeit der Studie</td>
<td>Messzeitpunkte</td>
<td>Land</td>
<td>Erfassung der motorischen Leistungsfähigkeit</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>------------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>aktuellstes Erhebungs-Jahr</td>
<td>wesentliche Publikationen: Autor(en), Jahr, Studienname</td>
<td>Untersuchungsstichprobe</td>
<td>Laufzeit der Studie</td>
<td>Messzeitpunkte</td>
<td>Land</td>
<td>Erfassung der motorischen Leistungsfähigkeit</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>2006</td>
<td>Kemper et al., (2001a, b), Kemper (2004); Ferreira et al., (2005); Minck et al.,(2000); Twisk et al (1995), Twisk et al., (2000, 2002); Wijnstok et al., (2013) Amsterdam Growth and Health Longitudinal Study (AGHLS)</td>
<td>Baseline: N=410 (m/w) 2.MZP: N=322 N im Jahr 2006=344</td>
<td>1977- letzte vergangene Erhebung im Jahr 2006: 10 MZPs</td>
<td>2006</td>
<td>Niederlande, Amsterdam</td>
<td>MOPER Fitnesstest vgl. (Kemper, 1979), Plate tapping, Halten im Hang mit gebeugten Armen (Augen über horizontaler Stamge; engl. flexed-arm hang), Armzugkraft (mit Dynamometer), 10 x 5 m Sprints, Sit-and-Reach, Vertikaler Sprung (standing high jump), 10 x Bein anheben (Knie getreckt, engl. leg lifts), VO₂max (maximaler Laufbandtests)</td>
</tr>
<tr>
<td>aktuellstes Erhebungs-Jahr</td>
<td>wesentliche Publikationen: Autor(en), Jahr, Studienname</td>
<td>Untersuchungsstichprobe</td>
<td>Laufzeit der Studie</td>
<td>Messzeitpunkte</td>
<td>Land</td>
<td>Erfassung der motorischen Leistungsfähigkeit</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>-------------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>------</td>
<td>--</td>
</tr>
</tbody>
</table>

Körerkoordinationstest für Kinder (vgl. KTK; Kiphard & Schilling, 1974) Balancieren rückwärts, Monopedales Überhüpfen, Seitliches Hin- und Herspringen, Seitliches Umsetzen Fahrrad-Ausdauertest (PWC 170) mit 23 Jahren
<table>
<thead>
<tr>
<th>aktuelles Erhebungs-</th>
<th>wesentliche Publikationen: Autor(en), Jahr, Studienname</th>
<th>Untersuchungsstichprobe</th>
<th>Laufzeit der Studie</th>
<th>Messzeitpunkte</th>
<th>Land</th>
<th>Erfassung der motorischen Leistungsfähigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>Cleland et al., (2009), Dwyer & Gibbons (1994)</td>
<td>N=2595 zur Baseline (m/w) 2. MZP: N=2.032</td>
<td>1985-2004</td>
<td>2 MZPs</td>
<td>Australien</td>
<td>maximaler Laufbandtest (VO2,max) und Fahrradergometer-Test PWC 170</td>
</tr>
<tr>
<td></td>
<td>Australian (Schools) Health and Fitness Survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aktuellstes Erhebungs- jahr</td>
<td>wesentliche Publikationen: Autor (en), Jahr, Studienname</td>
<td>Untersuchungsstichprobe</td>
<td>Laufzeit der Studie</td>
<td>Messzeitpunkte</td>
<td>Land</td>
<td>Erfassung der motorischen Leistungsfähigkeit</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>------------------------</td>
<td>--------------------</td>
<td>---------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Kristensen et al., (2006) Danish part of the European Youth Heart Study (EYHS)</td>
<td>Baseline: N=589 2. MZP: N= 384 (m/w)</td>
<td>Alter zur Baseline 8-10 J., Alter zum 2. MZP=14-16 J.</td>
<td>1997-2003</td>
<td>Dänemark, Odense</td>
<td>Fahrrad-Ergometertest (maximal), VO₂-max</td>
</tr>
<tr>
<td></td>
<td>Ortega & Labayen et al., (2011) Estonian and Swedish Sample of the European Youth Heart Study (EYHS)</td>
<td>2. MZP: N=598 (m/w)</td>
<td>Alter: 9,5 J. zur Baseline</td>
<td>1997-2003</td>
<td>Estland und Schweden</td>
<td>Fahrrad-Ergometertest (maximal), VO₂-max</td>
</tr>
<tr>
<td></td>
<td>Koutedakis et al., (2005)</td>
<td>Baseline: N=211 (m/w) 2. MZP: N=198</td>
<td>Alter 12,3 J. zur Baseline</td>
<td>1999-2002</td>
<td>Griechenland, Katerini</td>
<td>20m Shuttle-run (VO₂-max)</td>
</tr>
<tr>
<td>aktuellstes Erhebungs-jahr</td>
<td>wesentliche Publikationen: Autor(en), Jahr, Studienname</td>
<td>Untersuchungsstichprobe</td>
<td>Laufzeit der Studie</td>
<td>Messzeitpunkte</td>
<td>Land</td>
<td>Erfassung der motorischen Leistungsfähigkeit</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>aktuellstes Erhebungs-jahr</td>
<td>wesentliche Publikationen: Autor(en), Jahr, Studienname</td>
<td>Untersuchungsstichprobe</td>
<td>Laufzeit der Studie</td>
<td>Messzeitpunkte</td>
<td>Land</td>
<td>Erfassung der motorischen Leistungsfähigkeit</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>1999</td>
<td>Haubenstricker et al., (1997a, b); Branta et al., (1984) Motor Performance Study of Michigan State University (MPS)</td>
<td>Baseline: N=1200 (m/w) 2. MZP: N=954 38. MZP N=40</td>
<td>2,5 - 13 J. zur Baseline</td>
<td>1967 -1999</td>
<td>38 MZPs (halbjährlich)</td>
<td>USA (Michigan)</td>
</tr>
<tr>
<td>1996</td>
<td>Lambrechtsen et al., (1999); Rasmussen et al.,(2000) Odense Schoolchild Study</td>
<td>Baseline N=1,369 2. MZP: N= 900 (m/w)</td>
<td>8-10 J. zur Baseline; 19-20 zum 2. MZP</td>
<td>1985-1996</td>
<td>2 MZPs</td>
<td>Dänemark, Odensen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aktuellstes Erhebungs-jahr</td>
<td>wesentliche Publikationen: Autor(en), Jahr, Studienname</td>
<td>Untersuchungsstichprobe</td>
<td>Laufzeit der Studie</td>
<td>Messzeitpunkte</td>
<td>Land</td>
<td>Erfassung der motorischen Leistungsfähigkeit</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>------------------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>1994</td>
<td>Watanabe et al., (1998)</td>
<td>über alle MZPs: Ausdauertest: Nges=1028 m: N=512 ; w:N=516 50m- Sprint: Nges=1,720 m: N=825 und w: N=895</td>
<td>12,1-13,1 zur Baseline</td>
<td>1968-1994</td>
<td>5 MZPs Japan (Tokyo)</td>
<td>1.500 m Lauf (Jungen); 1.000 m Lauf (Mädchen.) 50 m Sprint Anmerkung: von 1968 bis 1989 wurden 12-13 Jährige getestet und jeweils für 5 Jahre jährlich getestet</td>
</tr>
</tbody>
</table>
| aktuellstes Erhebungs-
| wesentliche Publikationen: Autor(en), Jahr, Studienname | Untersuchungsstichprobe | Laufzeit der Studie | Messzeitpunkte | Land | Erfassung der motorischen Leistungsfähigkeit |
| Erhebungs-
<p>| N/ Geschlecht | Alter (Baseline) | |
| jahr | | | | |
| | | | | Ausdauerleistungsfähigkeit mit Fahrrad-Ergometer (PWC 150), Sit-ups (60 sec), Quadrizeps Muskulatur des linken Beines (maximal willentliche isometrische Kontraktion bei einem Knie-Winkel von 90 Grad) |
| | | | | Fahrrad-Ergometertest (VO₂ peak) und Handkrafttest Anmerkung: populationsbezogenen Längsschnittstudie |
| | | | | Fahrrad-Ergometer (VO₂ max), Muskelkraft: Maximal voluntary contraction (MVC) Dynamometer mit Dehnmesstreifen für Ellenbogenbeuger, Kniestrecker, Rumpfbeuger- und strecker Anmerkung: Repräsentativ für dänische 16-19-jährige Jugendliche |
| | | | | Standweitsprung, Fünfsprung ohne Anlauf, einbeiniger Reichsprung, Reichsprung nach Tiefsprung, Sprints (40 m, 60 m, 100 m), Hochsprung, Kugelstoßen |
| | | | | Verfahren zur Überprüfung Kraft und Beweglichkeit der Rumpfmuskulatur „Flexicurve Technique“ (vgl. Hyytiäinen et al., 1990) |</p>
<table>
<thead>
<tr>
<th>aktuellstes Erhebungs- Jahr</th>
<th>wesentliche Publikationen: Autor(en), Jahr, Studienname</th>
<th>Untersuchungsstichprobe</th>
<th>Laufzeit der Studie</th>
<th>Messzeitpunkte</th>
<th>Land</th>
<th>Erfassung der motorischen Leistungsfähigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pate et al., (1999)</td>
<td>zu allen drei MZPs: N=181 (m: N=82; w: N=99)</td>
<td>5., 6., 7. Klasse</td>
<td>keine Angaben</td>
<td>USA (South Carolina)</td>
<td>Fahrrad-Ergometer (PWC 170), Isometrische Kraftmessungen der Muskelgruppen im Bereich des Oberkörpers (Schulter, Arm) (vgl. Clark et al., 1952)</td>
</tr>
</tbody>
</table>

Tabelle 8: Übersicht über die Durchführungsländer der 52 Studien zur Entwicklung der motorischen Leistungsfähigkeit

<table>
<thead>
<tr>
<th>Land</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europa</td>
<td></td>
</tr>
<tr>
<td>Belgien</td>
<td>4</td>
</tr>
<tr>
<td>Deutschland</td>
<td>10</td>
</tr>
<tr>
<td>Schweiz</td>
<td>1</td>
</tr>
<tr>
<td>England</td>
<td>1</td>
</tr>
<tr>
<td>Schweden</td>
<td>3</td>
</tr>
<tr>
<td>Portugal</td>
<td>4</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>1</td>
</tr>
<tr>
<td>Niederlande</td>
<td>1</td>
</tr>
<tr>
<td>Dänemark</td>
<td>4</td>
</tr>
<tr>
<td>Estland</td>
<td>2</td>
</tr>
<tr>
<td>Norwegen</td>
<td>1</td>
</tr>
<tr>
<td>Griechenland</td>
<td>1</td>
</tr>
<tr>
<td>Schweiz</td>
<td>1</td>
</tr>
<tr>
<td>Frankreich</td>
<td>1</td>
</tr>
<tr>
<td>Neuseeland</td>
<td>2</td>
</tr>
<tr>
<td>Australien</td>
<td>3</td>
</tr>
<tr>
<td>USA</td>
<td>6</td>
</tr>
<tr>
<td>Canada</td>
<td>3</td>
</tr>
<tr>
<td>Südafrika</td>
<td>1</td>
</tr>
<tr>
<td>Japan</td>
<td>1</td>
</tr>
<tr>
<td>Israel</td>
<td>1</td>
</tr>
<tr>
<td>China</td>
<td>1</td>
</tr>
</tbody>
</table>

Keine Angaben N=2, *teilweise mehrere Länder pro Studie

Tabelle 9 gibt eine Übersicht über die Teilnehmerzahlen der Studien, die in das Literaturreview eingeschlossen wurden.

<table>
<thead>
<tr>
<th>Anzahl Studienteilnehmer zum 2. Messzeitpunkt (Follow-Up)</th>
<th>Anzahl Studien</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=100-300</td>
<td>25</td>
</tr>
<tr>
<td>N=301-500</td>
<td>11</td>
</tr>
<tr>
<td>N=501-700</td>
<td>4</td>
</tr>
<tr>
<td>N=701-1000</td>
<td>4</td>
</tr>
<tr>
<td>N=1001-1500</td>
<td>3</td>
</tr>
<tr>
<td>N=1501-2000</td>
<td>3</td>
</tr>
<tr>
<td>N=2000+</td>
<td>5</td>
</tr>
</tbody>
</table>
Bei den ausgewählten Studien zeigt sich eine große Spanne der abgedeckten Altersbereiche:

Drei von den 52 einbezogenen Studien dauern bis zum heutigen Zeitpunkt an, 22 der 52 Studien endeten innerhalb der letzten 10 Jahre (bis 2005).

Die motorische Leistungsfähigkeit wird in den aufgeführten Studien mit unterschiedlichen Feldtestbatterien und und Testprofilen erfasst. Diese unterscheiden sich zum einen im Um-

Deutlich wurde hierbei auch, dass zur Erfassung derselben motorische Leistungsfähigkeit unterschiedliche Tests verwendet werden, z.B. \(VO_{2\text{max}} \) mittels Fahrrad-Ergometertest, 6-Minuten-Lauf, Shuttle-Run, etc.).

Insgesamt unterscheiden sich die aufgeführten Studien deutlich in ihren Fragestellungen, Auswertungsstrategien und Ergebnisdarstellungen.

3.1.1 Zusammenfassung und Einordnung der MoMo-Längsschnittstudie in den Forschungsstand

Im folgenden Abschnitt wird die MoMo-Längsschnittstudie auf der Grundlage des durchgeführten Literaturreviews in den Forschungsstand der letzten 25 Jahre eingeordnet.

Im Rahmen der MoMo–Längsschnittstudie wurden 2.167 Kinder und Jugendliche im Alter von 4-17 Jahren zur Baseline (2003-2006) und 6 Jahre später (2009-2012) erneut auf ihre mo-
torische Leistungsfähigkeit hin getestet. Hierbei wurde ein Testprofil mit 12 sportmotorischen Tests eingesetzt (siehe Kapitel 4).

Betrachtet man die abgedeckten Altersspannen der Längsschnittstudien des Literaturreviews, so zeigt sich, dass weniger als die Hälfte der Längsschnittstudien (20 von 52) zur Entwicklung der motorischen Leistungsfähigkeit einen Zeitraum von über 10 Jahren erfassen bzw. erfasst haben (zum ersten Erhebungszeitpunkt oder vom ersten Erhebungszeitpunkt bis zum Follow-Up) und dabei den Übergang vom Kindes-, Jugend- bis ins Erwachsenenalter abbilden. Lediglich fünf dieser Studien erfassen die motorische Leistungsfähigkeit bereits im Vorschulalter. Diese fünf Studien unterscheiden sich von der MoMo-Längsschnittstudie in der Anzahl der Teilnehmer, dem Durchführungszeitraum und der eingesetzten Testverfahren:

- **Im Rahmen der Dunedin Multidisciplinary Health and Development Study** (vgl. Silva, 1990) wird die Entwicklung der motorische Leistungsfähigkeit bereits ab 3 Jahren erfasst. Bis zu einem Alter von 38 Jahren wurde die motorische Leistungsfähigkeit mit unterschiedlichen sportmotorischen Tests überprüft (N=991 zum 2. MZP; N=961 zum 13. MZP).

- **In der Healthy Hearts Longitudinal study of Cardiometabolic Health** (vgl. McGavock et al., 2007; McGavock et al., 2009) wird lediglich die Ausdauerleistungsfähigkeit (20-m Shuttle-run Test) von 5-19 Jährigen zur Baseline über 3 MZPs längsschnittlich verfolgt (N=351 zum 3. MZP).

- **Krombholz (2005)** untersuchte in seiner Studie 4-6-jährige Kindergartenkinder. Es handelt sich um eine Interventionsstudie zur Bewegungsförderung im Kindergarten, nur die Kontrollgruppe (N= 216 zum 3. MZP) wird mit Literaturreview einbezogen. Die Kinder wur-
den in sieben sportmotorischen Tests auf ihre motorische Leistungsfähigkeit hin zu 3 Messzeitpunkten überprüft.

Acht Studien (mit einem Alterszeitraum von über 10 Jahren) starten die Baseline-Erhebung im Grundschulalter:

- Im Rahmen des *Australian (Schools) Health and Fitness Surveys* wurden 7-15-jährige Kinder und Jugendliche nach 19 Jahren erneut mit einem maximalen Laufbandtest auf ihre Ausdauerleistungsfähigkeit hin überprüft (2. MZP N=2.032).

Acht weitere Studien untersuchen die Entwicklung der motorischen Leistungsfähigkeit ab dem Jugendalter:
- *The Swedish physical activity and fitness cohort study (SPAF)* (Westerståhl, & Aasa, 2013)
- *Northern Ireland Young Hearts Project* (Boreham, Ferreira, Twisk, Gallagher, Savage et al., 2004)
- *Swedish Activity and Fitness Study* (Barneckw- Bergkvist, Hedberg, Janlert & Jansson, 2001)
- *Danish Youth and Sports Study* (Andersen et al., 2004; Hasselstrøm, Hansen, Froberg & Andersen, 2002)

Insgesamt existieren international und national lediglich vier weitere Studie, die eine Studienteilnehmerzahl über zwei Messzeitpunkten von mehr als 2.000 Teilnehmern über zwei Messzeitpunkte aufweisen. Dies sind die Studie von:

- Cairney et al. (2010): N=3.956
- Die Analysen von London & Castrechini (2011), Data from the Youth Data Achive: N=2.735
- Cleland et al. (2009): N=2.032 (nur Ausdauerleistungsfähigkeit)

In den meisten in Tabelle 7 aufgeführten Längsschnittstudien wurden zusätzlich zur motorischen Leistungsfähigkeit das Aktivitätsverhalten oder die Körperkonstitution, seltener soziokulturelle Faktoren, wie z.B. der Sozialstatus erhoben. In nur wenigen Studien findet eine Kontrolle medierender und moderierender Einflussfaktoren (z.B. BMI und Aktivität) statt.

Die Auswertung des Forschungsstandes der letzten 25 Jahre zu Längsschnittstudien zur Entwicklung der motorischen Leistungsfähigkeit macht deutlich, dass keine direkt vergleichbaren Studien zur MoMo-Längsschnittstudie existieren, die eine ähnlich große Altersspanne (4-17 Jahren zum ersten Messzeitpunkt), einen Stichprobenumfang von über 2.000 Studienteilnehmern (zum zweiten Messzeitpunkt) und eine umfassende, mehrdimensionale Erfassung der motorischen Leistungsfähigkeit aufweisen. Entwicklungskurven für Kinder und Jugendliche in Deutschland (aber auch international) existieren somit nur für ausgewählte Altersgruppen und Testaufgaben, sodass eine vergleichende, graphische Darstellung von Entwicklungsverläufen zur motorischen Leistungsfähigkeit anhand der dokumentierten Längsschnittstudien nicht möglich ist.

In den meisten Längsschnittstudien wurden zusätzlich zur motorischen Leistungsfähigkeit das Aktivitätsverhalten oder die Körperkonstitution, seltener der Sozialstatus erhoben. Die Analysen zum Einfluss des Sozialstatus, des Aktivitätsverhaltens oder der Körperkonstitution auf die Entwicklung der motorischen Leistungsfähigkeit von Kindern und Jugendlichen in Deutschland (aber auch international) existieren lediglich für ausgewählte Altersgruppen und Testaufgaben. Ein Vergleich der Befunde wird hierbei zusätzlich dadurch erschwert, dass die Parameterisierung der Einflussfaktoren (z.B. Körperkonstitution: BMI, Fettfreiemasse, Haftfaltendicke etc.) in den verschiedenen Studien unterschiedlich vorgenommen wird.

3.2. Einflussfaktoren der Entwicklung der motorischen Leistungsfähigkeit

Im Rahmen der MoMo-Baseline Studie konnten ebenfalls die körperlich-sportliche Aktivität, sowie das Alter und das Geschlecht als Haupteinflussfaktoren identifiziert werden. Außerdem zeigte sich, dass die motorische Leistungsfähigkeit vom BMI und dem Sozialstatus beeinflusst wird (vgl. Bös et al., 2009b; Focke, Strutzenberger, Jekauc, Worth, Woll et al., 2013; Lämmle, Worth & Bös, 2012b; Worth, Oberger, Oppen, & Bös, 2008; Woll, Worth, Mündermann, Hölling, Jekauc et al., 2013).

Im Kapitel 2.2.2 wurde der theoretische Hintergrund zu den Einflussfaktoren vorgestellt und eine Verortung der in dieser Arbeit analysierten Einflussfaktoren in die Rahmenkonzeption „Entwicklungspsychologie der Lebensspanne“ vorgenommen. Kapitel 2.3.2 thematisierte den schematischen Verlauf der Entwicklung der motorischen Leistungsfähigkeit im Kindes- und Jugendalter in Abhängigkeit von Alter und Geschlecht.

Im Folgenden wird nun der Forschungsstand zu Entwicklungsverläufen der motorischen Leistungsfähigkeit im Kindes- und Jugendalter in Abhängigkeit soziodemografischer Variablen (Sozialstatus, Kapitel 3.2.1) und den für die Arbeit zentralen Einflussfaktoren Aktivitätsverhalten (Kapitel 3.2.2) und Körperkonstitution (BMI, Kapitel 3.2.3) anhand der im Literaturreview aufgeführten Längsschnittstudien dargestellt.

Tabelle 10 gibt zunächst eine Gesamtübersicht über die Studien des Literaturreviews, welche den Einfluss soziodemografischer Variablen, des Aktivitätsverhaltens oder der Körperzusammensetzung untersuchen.
3.2.1 Der Einfluss des Sozialstatus auf die Entwicklung der motorischen Leistungsfähigkeit

Nach Scheid (2009, S. 295) lassen sich die allgemein anerkannten soziokulturellen Einflussfaktoren in unterschiedliche Bereiche gliedern z.B.:

- Sozioökonomische Faktoren (soziale Schicht)
- Materielle Umwelt (Stadt/Land, Wohnungsgröße, Spielorte und Spielgeräte)
- Familiale Umwelt (Berufstätigkeit der Eltern, Geschwister, etc.)
- Soziale Umwelt (Kindergarten, Schule, etc.)

Nur wenige Längsschnittstudien untersuchen jedoch den Einfluss soziokultureller Faktoren auf die Entwicklung der motorischen Leistungsfähigkeit über die Lebensspanne. Die Ergeb-

Tabelle 10: Ausgewählte Einflussfaktoren der motorischen Leistungsfähigkeit, längsschnittliche Evidenz

<table>
<thead>
<tr>
<th>Ausgewählte Einflussfaktoren</th>
<th>soziodemographische und soziokulturelle Faktoren</th>
<th>Aktivität</th>
<th>Körperzusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kemper et al. (2001)</td>
<td>Minck et al. (2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Augste (2014)</td>
<td>Baquet et al. (2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>He et al. (2011)</td>
<td>Aires et al. (2010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kemper et al. (2001)</td>
<td>Minck et al. (2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Augste (2014)</td>
<td>Baquet et al. (2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aires et al. (2010)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Augste (2014)</td>
<td>Baquet et al. (2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Augste (2014)</td>
<td>Baquet et al. (2006)</td>
</tr>
</tbody>
</table>
nisse zu den soziokulturellen Faktoren sind in Tabelle 11 zusammengefasst, wobei sich die Parametrisierung soziokultureller Einflüsse uneinheitlich darstellt.

Der Einfluss des Sozialstatus auf die motorische Leistungsfähigkeit wird in der Literatur kontrovers diskutiert (Bös et al., 2009b; Klein, Fröhlich & Emrich, 2011). Die Ergebnisse aus Querschnittsstudien weisen darauf hin, dass kein direkter Einfluss besteht, sondern dass dieser Faktor seinen Einfluss auf die motorische Entwicklung hauptsächlich als Anrengungsbedingungen auf die körperlich-sportliche Aktivität nimmt (vgl. Ahnert, 2005).

Tabelle 11: Einfluss soziokultureller Faktoren auf die Entwicklung der motorischen Leistungsfähigkeit: Längsschnittliche Evidenz

<table>
<thead>
<tr>
<th>Autor (Jahr)</th>
<th>Tendenziale Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell et al. (2001)</td>
<td>Bewegungsverhalten der Eltern: Multiple Regressionsanalysen deuten darauf hin, dass die elterliche Aktivitätsverhalten und die elterliche Ausdauerleistungsfähigkeit (PWC 150) keine zusätzlichen, aufklärenden Wert an der motorischen Leistungsfähigkeit der Kinder leistet. Ausgenommen der elterliche Engeursfaktor (Daily Energie Expenditure), dieser erklärt 8% der Varianz der motorischen Leistungsfähigkeit bei den Jungen auf.</td>
</tr>
</tbody>
</table>

Einfluss des Sozialstatus auf die Ausdauerleistungsfähigkeit

In der MoMo-Baseline Studie zeigt eine Gesamtbetrachtung des Fahrrad-Ausdauertest, dass sowohl die Jungen als auch die Mädchen mit einem hohen Sozialstatus (Jungen: M=2,27 Watt/kg, SD=0,48; Mädchen: M=1,89 Watt/kg, SD=0,40) im Durchschnitt eine um 6% bzw. 8,3 % bessere Leistungsfähigkeit aufweisen im Vergleich zu den Kindern und Jugendlichen mit einem niedrigen Sozialstatus (Jungen: M=2,14 Watt/kg, SD=0,50; Mädchen: M=1,76 Watt/kg, SD=0,42) (vgl. Bös et al., 2009b).

Einfluss des Sozialstatus auf die Kraftfähigkeit

In der MoMo Baseline-Studie zeigte sich für den Standweitsprung, dass sowohl die Jungen als auch die Mädchen mit einem hohen Sozialstatus im Durchschnitt eine um 7 % bzw. 12 % bessere Leistungsfähigkeit aufweisen als die Jungen und Mädchen mit einem niedrigen Sozialstatus.

Einfluss des Sozialstatus auf die Reaktionsschnelligkeit

In der MoMo-Baseline Studie zeigt sich beim Reaktionstest, dass die Jungen mit einem hohen Sozialstatus (M=0,282s, SD=0,08) im Durchschnitt eine um 5% bessere Leistungsfähigkeit aufweisen als die Jungen mit einem niedrigen Sozialstatus (M=0,295s, SD=0,09). Bei den Mädchen ergeben sich keine relevanten Leistungsdifferenzen (vgl. Bös et al, 2009b).

Einfluss des Sozialstatus auf die Koordination

Alle Entwicklungslinien der koordinativen Fähigkeiten sind zum einen das Ergebnis biologischer Reifungsprozesse zum anderen Ausdruck des Umfangs und der Qualität der Bewegungsaktivität, der Bildungs- und Erziehungsarbeit und anderer gesellschaftlicher und sozialer Wirkfaktoren (vgl. Hirtz, 2002).

In der MoMo-Baseline Studie weisen die Ergebnisse der Testaufgaben Einbeinstand, Seitliches Hin- und Herspringen und Balancieren rückwärts in Abhängigkeit der Altersgruppe, unterschiedliche Ergebnisse zum Einfluss des Sozialstatus auf. Beim Seitlichen Hin- und Herspringen ist der Unterschied in der Altersgruppe der 14-17-Jährigen signifikant. Die Jungen
mit einem hohen Sozialstatus schnitten um 7,3% besser ab, die Mädchen um 9,2%. Beim Balancieren rückwärts zeigten sich bei den Mädchen ab der Altersgruppe der 6-10-Jährigen signifikante Unterschiede zugunsten der Mädchen mit einem hohen Sozialstatus (vgl. Bös et al., 2009b).

In der MoMo-Baseline Studie konnten im Bereich der feinmotorischen Koordination, erfasst durch die Testaufgaben MLS Stifte einstecken und MLS Linien nachfahren, für die gesamte Stichprobe keine Leistungsdifferenzen in Abhängigkeit des Sozialstatus nachgewiesen werden. Bei einer differenzierteren Betrachtung der Ergebnisse der beiden Testaufgaben für die einzelnen Altersgruppen, erweist sich der Sozialstatus erst bei den 14- bis 17-jährigen Jungen und Mädchen als relevante Einflussgröße (vgl. Bös et al., 2009b).

Einfluss des Sozialstatus auf die Beweglichkeit

In der MoMo-Baseline Studie verdeutlichen die Ergebnisse der Testaufgabe Rumpfbeuge, dass die Mädchen mit einem hohen Sozialstatus ($M=3,03, SD=11,89$) im Durchschnitt beweglicher sind als die Mädchen mit einem niedrigen Sozialstatus ($M=0,55, SD=7,81$). Dieser Leistungsunterschied beträgt 7%. Bei den Jungen ergeben sich keine signifikanten Unterschiede in Abhängigkeit des Sozialstatus (vgl. Bös et al., 2009b).
3.2.2 Der Einfluss des Aktivitätsverhaltens auf die Entwicklung der motorischen Leistungsfähigkeit

Die heterogenen Ergebnisse sind unter anderem auf die Vielzahl an unterschiedlichen Methoden (z.B. Akzelometer, Bewegungstagebücher, Fragebögen), die in den unterschiedlichen Studien zur Aktivitätserfassung eingesetzt werden, zurückzuführen (vgl. Fogelholm et al., 2008; Malina, 2001; Rauner, 2013).

Kemper und van Mechelen (1995) fanden im Rahmen der Amsterdam Growth- Study heraus, dass der Einfluss des habituellen Aktivitätsverhaltens vor allem ab der Pubertät eine Rolle spielt. Weiterhin deuten die Ergebnisse der Längsschnittstudien darauf hin, dass eine Verän-
Tabelle 12: Einfluss des Aktivitätsverhaltens auf die Entwicklung der motorischen Leistungsfähigkeit: Längsschnittliche Evidenz

<table>
<thead>
<tr>
<th>Autor (Jahr)</th>
<th>Tendenzielle Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kemper et al. (2001)</td>
<td>Die Entwicklung der aeroben Ausdauerleistungsfähigkeit im Alter zwischen 13 und 27 Jahren korreliert positiv mit der VO2 max. Bei den männlichen Teilnehmern ergaben sich signifikante Unterschiede zugunsten der Habituell Aktiven. Der Freizeitaktivitätsindex im jungen Erwachsenenalter und der VO2 max besteht ein sig. positiver Zusammenhang (r = 0.21). Der Einfluss von sitzenden Tätigkeiten auf die mittlere motorische Leistungsfähigkeit verschwindet aufgrund der gemeinsamen Varianz mit dem BMI.</td>
</tr>
<tr>
<td>Leverfe et al. (2002)</td>
<td>Der Energieverbrauch in der Freizeit im jungen Erwachsenenalter korreliert mit der VO2 max. Zwischen dem Freizeitaktivitätsindex im jungen Erwachsenenalter und der VO2 max besteht ein sig. positiver Zusammenhang (r = 0.21). Der Einfluss von sitzenden Tätigkeiten auf die mittlere motorische Leistungsfähigkeit verschwindet aufgrund der gemeinsamen Varianz mit dem BMI.</td>
</tr>
<tr>
<td>Auguste (2014)</td>
<td>Körperlich-sportliche Aktivität beeinflußt sowohl die aktuelle motorische Leistungsfähigkeit und die Entwicklung der motorischen Leistungsfähigkeit von Kindern (çintercept = .28, P = .001; tintercept = .27, P = .21). Der Einfluss von sitzenden Tätigkeiten auf die mittlere motorische Leistungsfähigkeit verschwindet aufgrund der gemeinsamen Varianz mit dem BMI.</td>
</tr>
<tr>
<td>He et al. (2011)</td>
<td>Aktive Kinder haben eine sig. höhere Ausdauerleistungsfähigkeit (von 0,42 bis 1,22 ml/kg/min) verglichen zur Referenzgruppe.</td>
</tr>
</tbody>
</table>
Einfluss des Aktivitätsverhaltens auf die Entwicklung der Ausdauerleistungsfähigkeit

Kemper und van Mechelen (1995) untersuchten im Rahmen der Amsterdam Growth-Study den Einfluss der habituellen Aktivität auf die maximale Sauerstoffaufnahmefähigkeit. Es zeigte sich, dass sowohl männliche als auch weibliche Studienteilnehmer mit einer hohen habituellen Aktivität ein besseres mittleres Niveau der VO$_{2\text{max}}$ aufweisen und zusätzlich ihre VO$_{2\text{max}}$ über den Studienzeitraum stärker steigern als die Studienteilnehmer mit einer geringen habituellen Aktivität. Die Unterschiede zugunsten der aktiven Jugendlichen treten verstärkt ab einem Alter von 16 Jahren auf.

Einfluss des Aktivitätsverhaltens auf die Entwicklung der Kraftfähigkeit

In der MoMo-Baseline Studie zeigten sich vor allem bei den Ergebnissen der konditionell determinierten Testaufgaben signifikante Unterschiede zugunsten der aktiven Kinder und Jugendliche. Bezogen auf die Kraft, erfasst mithilfe der Testaufgabe Liegestützen und dem Standweitsprung, zeigten sich für alle Altersgruppen von 4-17 Jahren signifikante Unterschiede: Hochaktive Mädchen schneiden im Vergleich zu inaktiven Mädchen bei den Liegestützen und dem Standweitsprung um 16% besser ab. Die hochaktiven Jungen sind um 13% bei den Liegestützen und um 14% beim Standweitsprung besser als die Inaktiven (vgl. Bös et al.,

Einfluss des Aktivitätsverhaltens auf die Entwicklung der Reaktionsschnelligkeit

Einfluss des Aktivitätsverhaltens auf die Entwicklung der Koordination
In der MoMo-Baseline Studie zeigte sich, dass sich das Aktivitätsverhalten (hoch aktiv versus inaktiv) auf die Leistungen beim Balancieren rückwärts auswirkt. 4- bis 5-Jährige, hoch aktiven Kinder balancieren fast fünf Schritte mehr als die gleichaltrigen Inaktiven (vgl. Bös et al., 2009b).

Ahnert (2005) untersuchte im Rahmen der Logik-Studie den Einfluss der habituellen sportlichen Aktivität auf die Leistungsentwicklung im Körper-Koordinationstest vom Kindes- bis ins frühe Erwachsenenalter. Deskriptiv betrachtet zeigten sich Unterschiede in Abhängigkeit des Aktivitätsniveaus:

Einfluss des Aktivitätsverhaltens auf die Entwicklung der Beweglichkeit

In der MoMo-Baseline Studie zeigten sich nur bei den Mädchen und nur in zwei Altersgruppen (6-10-Jährige und 14-17-Jährige) signifikante Unterschiede zwischen hochaktiven und inaktiven Kindern und Jugendlichen, die hochaktiven Mädchen waren beweglicher als die inaktiven Mädchen.
3.2.3 Der Einfluss der Körperkonstitution (Body-Mass-Index) auf die Entwicklung der motorischen Leistungsfähigkeit

Auch wenn die aufgeführten Erklärungsansätze nicht abschließend geklärt sind, so zeigt sich in Querschnittsstudien ein negativer Zusammenhang zwischen einem hohen BMI und der motorischen Leistungsfähigkeit (vgl. Castetbon & Andreyeva, 2012; D’Hondt et al., 2009; Fogelholm et al., 2008; Graf et al., 2007; Magnusson et al., 2008; Okely et al., 2004). Es ist davon auszugehen, dass zwischen der motorischen Leistungsfähigkeit und dem BMI kein linearer Zusammenhang, sondern eine umgekehrte U-Funktion besteht und sowohl extremes Untergewicht als auch Übergewicht die Entwicklung der körperlichen Leistungsfähigkeit beeinträchtigen (vgl. Dordel & Kleine, 2005).

6 Der BMI stellt nur ein grobes Maß zur Erfassung der Körperkonsitution dar. Andere Möglichkeiten zur Erfassung der Körperkonstitution sind z.B. Messung des Hüft- und Taillenumfangs, die Bioelektrische Impedanz Analyse, BOD POD Messung, DEXA Messung etc.
In der MoMo-Baseline Studie zeigten sich für die übergewichtigen und adipösen Kinder und Jugendlichen bei der Ausdauer, der Kraft und der großmotorischen Koordination schlechtere Ergebnisse (Jungen: -12% bzw. -19%; Mädchen -9% bis zu -19%). Es wurde deutlich, dass bei Testaufgaben, bei welchen das Körpergewicht getragen bzw. bewältigt werden muss, die übergewichtigen und adipösen Kinder und Jugendliche schlechter abschneiden als Normalgewichtige. Mit zunehmendem Alter werden diese Unterschiede deutlicher. Bei der Feinmotorik zeigten sich keine Unterschiede (vgl. Bös et al., 2009b; Woll et al., 2013). Zusammenfassend ist davon auszugehen, dass der BMI vorrangig die energetisch determinierten Fähigkeiten beeinflusst, die Beweglichkeit zeigt sich weitgehend unabhängig vom BMI und für die koordinativen Fähigkeiten zeigen sich in Abhängigkeit des motorischen Anteils keine oder moderat-negative Zusammenhänge (vgl. Bös et al., 2009b; Graf et al., 2007; Roth & Roth, 2009; Woll et al., 2013).

Tabelle 13 zeigt die Ergebnisse von Längsschnittstudien zum Einfluss des BMIs auf die motorische Entwicklung.

Die meisten der in Tabelle 7 aufgeführten Längsschnittstudien erfassen zusätzlich zur motorischen Leistungsfähigkeit den BMI. Analysiert wurde häufig der Einfluss der motorischen Leistungsfähigkeit auf den BMI (vgl. z.B. Aires et al., 2010) und nicht wie in dieser Arbeit, der Einfluss des BMIs auf die Entwicklung der motorischen Leistungsfähigkeit.

Tabelle 13: Einfluss der Körperkonstitution auf die Entwicklung der motorischen Leistungsfähigkeit: Längsschnittliche Evidenz

<table>
<thead>
<tr>
<th>Autor</th>
<th>Tendenzielle Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krug (2011)</td>
<td>Normalgewichtige dreijährige Kinder unterscheiden sich in ihrer motorischen Entwicklung lediglich in der Aufgabe Standweitsprung signifikant von übergewichtigen Kindern. Normalgewichtige verbessern sich dabei über die vier Jahre Untersuchungszeitraum um durchschnittlich 17,7 cm, untergewichtige um 15,7 cm und übergewichtige um 13,2 cm.</td>
</tr>
</tbody>
</table>

Im Folgenden wird der Einfluss des BMI auf die Entwicklung der einzelnen Dimensionen der Motorik betrachtet.
Einfluss des BMI auf die Entwicklung der Ausdauerleistungsfähigkeit

In der MoMo-Baseline Studie zeigten sich beim Fahrrad-Ausdauertest signifikante Unterschiede zwischen normalgewichtigen und übergewichtigen bzw. adipösen Kindern und Jugendlichen.

„Die Jungen erreichen eine um durchschnittlich 25 % und die Mädchen eine um 21 % bessere Testleistung in Relation zum Körpergewicht. Werden die von den Kindern und Jugendlichen beim Fahrrad-Ausdauertest erreichten Wattzahlen/ kg betrachtet, so erreichen sie im Durchschnitt 2,0 Watt/ kg (SD=0,50). Am besten schneiden hierbei die normalgewichtigen Kinder mit 2,1 Watt/ kg (SD=0,49) ab. Die Übergewichtigen treten durchschnittlich 1,7 Watt/ kg (SD=0,38) und die adipösen Kinder und Jugendlichen schaffen 1,6 Watt/ kg (SD=0,38)” (Bös et al., 2009b, S.271).

Malina et al. (2004) fassen die Ergebnisse aus Längsschnittstudien zum Zusammenhang der VO$_{2\max}$ mit dem Körpergewicht zusammen. Die Ergebnisse der Längsschnittstudie sind inkonsistent: Es zeigt sich eine leichte Abnahme der VO$_{2\max}$ in Relation zum Körpergewicht im Altersgang, in anderen Studien zeigt sich jedoch auch ein steiler Abfall. Es wird deutlich, dass das Körpergewicht über die untersuchte Altersspanne schneller ansteigt als die VO$_{2\max}$ besonders während der Pubertät. Die Veränderung der VO$_{2\max}$ im Kindes und Jugendalter hängt außerdem eng mit der fettfreien Körpermasse zusammen. Diese erklärt die Veränderung der VO$_{2\max}$ besser als die Gesamtkörpermasse. Die VO$_{2\max}$ in Relation zur fettfreien Körpermasse nimmt ebenfalls besonders nach der Pubertät ab.

Einfluss des BMI auf die Entwicklung der Kraftfähigkeit

Einfluss des BMI auf die Entwicklung der Reaktionsschnelligkeit

Zum Einfluss des BMI auf die Entwicklung der Reaktionsschnelligkeit konnten im Rahmen der durchgeführten Literaturrecherche keine längsschnittlichen Ergebnisse gefunden werden. In der MoMo-Baseline Studie zeigten sich beim Test der Reaktionsschnelligkeit keine signifikanten Unterschiede zwischen normalgewichtigen, übergewichtigen und adipösen Kindern und Jugendlichen (vgl. Bös et al., 2009b).

Einfluss des BMI auf die Entwicklung der Koordination

Auch beim Balancieren rückwärts schneiden normalgewichtige Jungen um durchschnittlich 14% bzw. 25% und Mädchen um 9% bzw. 20% besser ab als Gleichaltrige mit Übergewicht und Adipositas (vgl. Bös et al., 2009b).

In der MoMo-Baseline Studie zeigen sich bei den feinmotorischen Aufgaben MLS Linien nachfahren und MLS Stifte einstecken keine signifikanten Unterschiede zwischen normalgewichtigen, übergewichtigen und adipösen Kindern und Jugendlichen (vgl. Bös et al., 2009b).

Einfluss der Körperkonstitution auf die Entwicklung der Beweglichkeit

3.3. Synthesen und Konsequenzen für die eigene Arbeit

Entwicklungskurven für Kinder und Jugendliche in Deutschland (aber auch international) existieren somit nur für ausgewählte Altersgruppen und Testaufgaben, sodass eine vergleichende, graphische Darstellung von Entwicklungsverläufen zur motorischen Leistungsfähigkeit anhand der dokumentierten Längsschnittstudien nicht möglich ist.

Die meisten Längsschnittstudien wurden zusätzlich zur motorischen Leistungsfähigkeit das Aktivitätsverhalten oder die Körperkonstitution, seltener der Sozialstatus erhoben. Die Analysen zum Einfluss des Sozialstatus, des Aktivitätsverhaltens oder der Körperkonstitution für Kinder und Jugendliche in Deutschland (aber auch international) existieren ebenfalls nur für
ausgewählte Altersgruppen und Testaufgaben. Ein Vergleich der Befunde wird hierbei zusätzlich dadurch erschwert, dass die Parameterisierung der Einflussfaktoren in den verschiedenen Studien unterschiedlich vorgenommen wird.

Hier setzt die vorliegende Arbeit an. Folgende zwei übergeordnete Fragestellungen lassen sich formulieren.

Forschungsfrage 1: Wie verläuft die Entwicklung der motorischen Leistungsfähigkeit vom Kindes- bis ins frühere Erwachsenenalter (4-23 Jahre) in Abhängigkeit von Alter und Geschlecht?

a) Wie verläuft die Entwicklung der motorischen Leistungsfähigkeit (Ausdauer, Kraft, Reaktionsschnelligkeit, Koordination, Beweglichkeit) vom Kindes- bis in das frühe Erwachsenenalter (4-23 Jahre) hinsichtlich der Gewinn-Verlust-Dynamik in Abhängigkeit von Alter und Geschlecht?

c) Wie stabil ist die motorische Leistungsfähigkeit vom ersten (t0) bis zum zweiten Messzeitpunkt (t1)?

Entsprechend den im Kapitel 2.3.2 beschriebenen Verläufe zur Entwicklung der motorischen Leistungsfähigkeit wird erwartet, dass sich der Anstieg (Gewinn) der motorischen Leistungsfähigkeit in den einzelnen Altersgruppen unterschiedlich vollzieht. Es wird erwartet, dass die motorische Leistungsfähigkeit vom Kindesalter (AG 1: 4-5- Jährige und AG 2: 6-10- Jährige) bis zur Pubertät (AG 3: 11-13- Jährige) kontinuierlich zu nimmt und sich ab Altersgruppe 3 der Grad der Zunahme verringert (H 1.1). Unter Zugrundelegung der Annahmen der Entwicklungspsychologie der Lebensspanne wird davon ausgegangen, dass es über das Kindesalter bis ins junge Erwachsenenalter zu Veränderungen in der motorischen Leistungsfähigkeit kommen kann und motorische Entwicklung sowohl als Gewinn, als auch als Verlust verstanden werden muss.

Die Ergebnisse aus den in Kapitel 2.3.2 aufgeführten Längsschnittstudien lassen erwarten, dass sich in Abhängigkeit des Geschlechts Unterschiede zeigen (H 1.2). Geschlechtsspezifische Unterschiede in der Entwicklung der motorischen Leistungsfähigkeit zeigen sich vor allem in den konditionell determinierten Dimensionen.
Des Weiteren verdeutlichte das Kapitel 2.3.2, dass die Entwicklung der verschiedenen motorischen Dimensionen (Auszudauer, Kraft, Schnelligkeit und Beweglichkeit) unterschiedlich, also multidirekional, verläuft (Leitsatz der Multidirektionalität der motorischen Entwicklung) (H 1.3).

Aus der gesichteten Literatur geht hervor, dass es sich bei der motorischen Leistungsfähigkeit in Abhängigkeit der Dimension um ein zeitlich relativ stabiles Konstrukt handelt. Im Vorschulalter können unterschiedliche Reifungsgeschwindigkeiten zu Veränderungen der Leistungsrangfolge führen (vgl. Ahnert, 2005). Im Altersgang nehmen die Korrelationskoeffizienten zu (H 1.4). Es werden unterschiedliche Korrelationskoeffizienten für die Dimensionen der motorischen Leistungsfähigkeit erwartet.

Forschungsfrage 2: Beeinflussen ausgewählte externe und interne Einflussfaktoren die Entwicklung der motorischen Leistungsfähigkeit vom Kindes- bis ins frühe Erwachsenenalter (4-23 Jahre)?

a) Beeinflusst der Sozialstatus die Entwicklung der motorischen Leistungsfähigkeit vom Kindes- bis ins frühe Erwachsenenalter (4-23 Jahre). Zeigen sich in Abhängigkeit der Körperkonstitution Unterschiede in der Gewinn-Verlust-Dynamik und der Direktionalität?

b) Beeinflusst das Aktivitätsverhalten die Entwicklung der motorischen Leistungsfähigkeit vom Kindes- bis ins frühe Erwachsenenalter (4-23 Jahre). Zeigen sich in Abhängigkeit des Aktivitätsverhaltens Unterschiede in der Gewinn-Verlust-Dynamik und der Direktionalität?

c) Beeinflusst die Körperkonstitution die Entwicklung der motorischen Leistungsfähigkeit vom Kindes- bis ins frühe Erwachsenenalter (4-23 Jahre). Zeigen sich in Abhängigkeit der Körperkonstitution Unterschiede in der Gewinn-Verlust-Dynamik und der Direktionalität?

In Kapitel 3.2.1 wird der Forschungsstand zum Einfluss des Aktivitätsverhaltens auf die Entwicklung der motorischen Leistungsfähigkeit zusammengefasst. Es wird erwartet, dass sich die Entwicklung (Gewinn/Verlust) der motorischen Leistungsfähigkeit in Abhängigkeit des Sozialstatus unterschiedlich vollzieht (H 2.1). Es wird erwartet, dass sich in Abhängigkeit des Sozialstatus höhere Zuwächse für Studienteilnehmer mit einem höheren Sozialstatus als für Studienteilnehmer mit einem niedrigen Sozialstatus zeigen.
In Kapitel 3.2.2 wird der Forschungsstand zum Einfluss des Aktivitätsverhaltens auf die Entwicklung der motorischen Leistungsfähigkeit zusammengefasst. Es wird erwartet, dass sich die Entwicklung (Gewinn/Verlust) der motorischen Leistungsfähigkeit in Abhängigkeit des Aktivitätsverhaltens unterschiedlich vollzieht (H 2.2). Die Ergebnisse der Längsschnittstudien deuten daraufhin, dass eine Veränderung des Aktivitätsverhaltens nicht nur die aktuelle motorische Leistungsfähigkeit beeinflusst, sondern auch die Entwicklung der motorischen Leistungsfähigkeit (Steigung). Am besten schneiden die Kinder und Jugendlichen ab, die über das Kindes- und Jugendalter die körperlich-sportliche Aktivität aufrecht erhalten. Zusätzlich zeigen die Ergebnisse, dass es notwendig ist die Häufigkeit, die Intensität und die Dauer der Aktivität zu berücksichtigen, um die Befunde einzuordnen.

In Kapitel 3.2.3 wurde der Einfluss Körperkonstitution (BMI) auf die Entwicklung der motorischen Leistungsfähigkeit differenziert dargestellt. Es wird erwartet, dass sich die Entwicklung (Gewinn/Verlust) der motorischen Leistungsfähigkeit in Abhängigkeit des BMI unterschiedlich vollzieht (H 2.3). Die Längsschnittstudien bestätigen den bereits in Querschnittstudien postulierten negativen Zusammenhang zwischen einem hohen BMI und der motorischen Leistungsfähigkeit. In Abhängigkeit der Körperkonstitution zeigen sich größere Zuwächse für normalgewichtige Kinder- und Jugendliche als für Übergewichtige. Dabei zeigen die Ergebnisse aus Längsschnittstudien und aus der MoMo- Baseline Studie die Notwendigkeit einer Unterscheidung in koordinative und konditionelle Fähigkeiten auf.

Die Überprüfung der Hypothesen erfolgt für die Dimensionen Kraft und Schnelligkeit, Ausdauer, Koordination und Beweglichkeit getrennt. Diese Vorgehensweise trägt dem Leitsatz der Multidirektionalität der motorischen Entwicklung verschiedener Dimensionen Rechnung. Im Folgenden werden die Fragestellungen in operationalisierte und an das vorliegende Studiendesign angepasste Hypothesen transformiert.
3.3.1 Hypothesen zur Entwicklung der motorischen Leistungsfähigkeit

Die aus den Fragestellungen resultierenden Hypothesen sind analog in zwei große Themenbereiche gegliedert:

H1.1: Die Entwicklung der motorischen Leistungsfähigkeit (Ausdauer, Kraft, Reaktionsfähigkeit, Koordination, Beweglichkeit) unterscheidet sich zwischen den Altersgruppen 1 bis 4 signifikant.

H1.2: Die Entwicklung der motorischen Leistungsfähigkeit (Ausdauer, Kraft, Reaktionsfähigkeit, Koordination, Beweglichkeit) von männlichen und weiblichen Studienteilnehmern unterscheidet sich signifikant.

H1.3: Die verschiedenen Dimensionen der motorischen Leistungsfähigkeit (Ausdauer, Kraft, Reaktionsfähigkeit, Koordination, Beweglichkeit) entwickeln sich multidirektional. Der Grad der Zunahme bzw. der Abnahme der Leistungsfähigkeit zwischen den verschiedenen Dimensionen der motorischen Leistungsfähigkeit verläuft unterschiedlich.

H1.4: Die Stabilität der motorischen Leistungsfähigkeit (Ausdauer, Kraft, Reaktionsfähigkeit, Koordination, Beweglichkeit) erreicht über die Zeit mittelhohe bis hohe Werte.

Die zweite Forschungsfrage betrifft ausgewählte Einflussfaktoren der Entwicklung der motorischen Leistungsfähigkeit:

2. Identifikation und Analyse ausgewählter (interner und externer) Einflussfaktoren (Sozialstatus, Aktivitätsverhalten, BMI) der Entwicklung der motorischen Leistungsfähigkeit.

H2.1: Der Sozialstatus beeinflusst die Entwicklung der motorischen Leistungsfähigkeit (Ausdauer, Kraft, Reaktionsfähigkeit, Koordination, Beweglichkeit).

H2.2: Das Aktivitätsverhalten beeinflusst die Entwicklung der motorischen Leistungsfähigkeit (Ausdauer, Kraft, Reaktionsfähigkeit, Koordination, Beweglichkeit).
H2.2.1: Die körperliche Aktivität (Tage/Woche) beeinflusst die Entwicklung der motorischen Leistungsfähigkeit (Ausdauer, Kraft, Reaktionsschnelligkeit, Koordination, Beweglichkeit).

H2.2.2: Die Vereinsaktivität beeinflusst die Entwicklung der motorischen Leistungsfähigkeit (Ausdauer, Kraft, Reaktionsschnelligkeit, Koordination, Beweglichkeit).

H2.3: Die Körperkonstitution (BMI) beeinflusst die Entwicklung der motorischen Leistungsfähigkeit (Ausdauer, Kraft, Reaktionsschnelligkeit, Koordination, Beweglichkeit).
Teil B
Programmkonzeption, Untersuchungsmethoden, Ergebnisse
4 Studienkonzeption der Motorik-Modul Längsschnittstudie

Die enge Verknüpfung der MoMo-Längsschnittstudie mit der KiGGS-Studie ermöglicht es, interdisziplinäre Netzwerke zu bilden und organisatorische wie wissenschaftliche Synergieeffekte zu nutzen. Seit 2009 wird die MoMo-Baseline Studie als Verbundprojekt der Universität Konstanz7, dem Karlsruher Institut für Technologie (KIT)8 (Prof. Dr. Alexander Woll und Prof. Dr. Klaus Bös) sowie der Pädagogischen Hochschulen Schwäbisch Gmünd9 und Karlsruhe10 (Prof. Dr. Annette Worth) in Kooperation mit dem Robert Koch-Institut als Längsschnittstudie weitergeführt. Die MoMo-Längsschnittstudie mit dem Titel „Physical Fitness and Physical Activity as Determinants of Health Development in Children and Adolescents“ wird finanziert vom Bundesministerium für Bildung und Forschung (BMBF, Förderlinie „Langzeituntersuchungen in der Gesundheitsforschung“; Förderkennzeichen 01ER1503A; 01ER1503B) (vgl. Worth, Bös, Albrecht, Karger, Mewes et al. 2015).

7 Verbundpartner 2009-2012
8 Verbundpartner seit 2002
9 Verbundpartner 2009-2011
10 Verbundpartner seit 2011
4.1. Studienziele

Übergeordnete Ziele der MoMo-Längsschnittstudie sind es:

1. Die Entwicklung der motorischen Leistungsfähigkeit und der körperlich-sportlichen Aktivität (einschließlich Periodeneffekte) zu analysieren.

2. Interne (Alter, Geschlecht) und externe Faktoren (Wohnumgebung, Migrationshintergrund, Peer-Gruppen), die die Entwicklung der motorischen Leistungsfähigkeit und der körperlich-sportlichen Aktivität beeinflussen zu identifizieren.

4.2. Untersuchungsdesign

1. Längsschnittpläne (wiederholte Messungen derselben Versuchsperson)
2. Querschnittspläne als ‘unechte Längsschnitte’ (Messung von Versuchspersonen in unterschiedlichem Alter zu einem Zeitpunkt)
3. gemischte Längsschnittpläne (Kombination aus 1 und 2).

Der MoMo-Längsschnittstudie, welche die Basis der vorliegenden Arbeit ist, liegt Kohorten-Sequenz-Design zugrunde (vgl. Mewes et al., 2012).

Eine Diskussion der Vor- und Nachteile des Designs der MoMo-Längsschnittstudie finden sich in Kapitel 7.4.8.

Die MoMo-Baseline Studie

Grundlage für die MoMo-Längsschnittstudie ist die MoMo-Baseline Studie. In der MoMo-Baseline Studie wurde eine bundesweit repräsentativen Stichprobe von 4.528 Kindern und Jugendlichen im Alter von 4-17 Jahren von 2003-2006 in insgesamt 167 Orten (Samplepoints) in ganz Deutschland getestet und befragt. Die Stichprobenziehung erfolgte durch das RKI nach Vorgaben des Zentrums für Umfragen, Methoden und Analysen (ZUMA) in Mannheim (seit 2008: GESIS-Leibniz-Institut für Sozialwissenschaften). Es wurde eine 2-stufig ge-

Die MoMo-Längsschnittstudie

Für die erste Untersuchungswelle wurden erneut die 167 Samplepoints der MoMo-Baseline Studie ausgewählt. Zusätzlich zu den Teilnehmern der MoMo-Baseline Studie, welche längsschnittlich begleitet werden, wird die Stichprobe so erweitert, dass sich für jede Alterskohorte in der Altersgruppe von 4-17 Jahren ein repräsentativer Querschnitt ergibt. Hierbei handelt es sich um neue Kohorten (neu gezogene Stichprobe) bzw. um Teilnehmer aus der KiGGS-

Gegenstand dieser Arbeit sind die Längsschnittdaten, der Schwerpunkt liegt auf der Analyse der motorischen Leistungsfähigkeit. D.h. es werden die Daten der Studienteilnehmer einbezogen, die zur Baseline (t0) und zur Welle 1(t1) an den motorischen Tests teilgenommen haben.

4.3. Untersuchungsstichprobe und Responder/ Non-Responder-Analysen

11 In die „Motorik-Längsschnittstichprobe“ wurden Studienteilnehmer einbezogen, die zu t0 und t1 hinsichtlich Größe und Gewicht untersucht wurden.
Tabelle 14: Stichprobenbeschreibung der Motorik-Längsschnittstichprobe zu t0 (Alter, Größe, Gewicht, BMI)

<table>
<thead>
<tr>
<th></th>
<th>Baseline (t0)</th>
<th>Welle 1 (t1)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW</td>
<td>SD</td>
<td>MW</td>
</tr>
<tr>
<td>gesamt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alter (Jahre)</td>
<td>8,96</td>
<td>3,71</td>
<td>15,19</td>
</tr>
<tr>
<td>Größe (cm)</td>
<td>134,47</td>
<td>21,39</td>
<td>163,33</td>
</tr>
<tr>
<td>Gewicht (kg)</td>
<td>33,24</td>
<td>16,13</td>
<td>56,70</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>17,30</td>
<td>3,20</td>
<td>20,87</td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alter (Jahre)</td>
<td>8,97</td>
<td>3,69</td>
<td>15,21</td>
</tr>
<tr>
<td>Größe (cm)</td>
<td>135,50</td>
<td>22,07</td>
<td>166,52</td>
</tr>
<tr>
<td>Gewicht (kg)</td>
<td>33,80</td>
<td>16,90</td>
<td>59,61</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>17,28</td>
<td>3,11</td>
<td>21,01</td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alter (Jahre)</td>
<td>8,95</td>
<td>3,74</td>
<td>15,18</td>
</tr>
<tr>
<td>Größe (cm)</td>
<td>133,48</td>
<td>20,68</td>
<td>160,25</td>
</tr>
<tr>
<td>Gewicht (kg)</td>
<td>32,71</td>
<td>15,32</td>
<td>53,88</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>17,31</td>
<td>3,28</td>
<td>20,73</td>
</tr>
</tbody>
</table>

Die folgende Abbildung 7 zeigt die Verteilung des BMIs in der Motorik-Längsschnittstichprobe nach Altersjahrgängen und Geschlecht zur Baseline (t0). Anhang III enthält die Rohwerte des BMI nach Altersgruppen und für die Geschlechter getrennt für die Messzeitpunkte t0 und t1.

In allen Altersjahrgängen und zu beiden Messzeitpunkten beträgt der Anteil der Normalgewichtigen ca 80%. In der Baseline-Untersuchung (t0) nimmt der Anteil der Übergewichtigen im Altersgang zu. Die Betrachtung der Verteilung zum zweiten Messzeitpunkt Welle 1 (t1) zeigt, dass der Anteil der übergewichtigen und adipösen Studienteilnehmer in der Altersgruppe der 18-23-Jährigen am höchsten ist. Zum ersten Messzeitpunkt (t0) werden insgesamt 9,6% der Kinder und Jugendliche als übergewichtig oder adipös eingestuft, zur Welle 1 (t1) sind es 15,9%. Der Anteil der Untergewichtigen nimmt im Verlauf der sechs Jahre ab. Zum ersten Messzeitpunkt (t0) werden 7,6% als untergewichtig eingeordnet, zu t1 sind es 6,5%. Zum ersten Messzeitpunkt (t0) ist der Anteil der untergewichtigen Mädchen mit 9,5% in der Altersgruppe der 11-13-Jährigen am höchsten.

Studienkonzeption der Motorik-Modul Längsschnittstudie

Abbildung 7: Verteilung des BMI der Motorik-Längsschnittstichprobe zur Baseline (t0) nach Alter und Geschlecht

<table>
<thead>
<tr>
<th>Alter/Geschlecht</th>
<th>stark untergewichtig (<P3)</th>
<th>untergewichtig (P3 - <P10)</th>
<th>normalgewichtig (P10-P90)</th>
<th>übergewichtig (>P90 - P97)</th>
<th>adipös (>P97)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 4-5</td>
<td>6 (2,1 %)</td>
<td>12 (4,2 %)</td>
<td>249 (87,4 %)</td>
<td>12 (4,2 %)</td>
<td>6 (2,1 %)</td>
</tr>
<tr>
<td>M 6-10</td>
<td>5 (1,1 %)</td>
<td>39 (8,2 %)</td>
<td>390 (82,1 %)</td>
<td>25 (3,4 %)</td>
<td>16 (5,1 %)</td>
</tr>
<tr>
<td>M 11-13</td>
<td>1 (0,6 %)</td>
<td>11 (5,5 %)</td>
<td>142 (83,5 %)</td>
<td>12 (7,1 %)</td>
<td>4 (2,4 %)</td>
</tr>
<tr>
<td>M 14-17</td>
<td>1 (0,7 %)</td>
<td>5 (3,7 %)</td>
<td>110 (81,5 %)</td>
<td>10 (6,7 %)</td>
<td>9 (7,4 %)</td>
</tr>
<tr>
<td>W 4-5</td>
<td>5 (1,7 %)</td>
<td>15 (5,0 %)</td>
<td>256 (85,9 %)</td>
<td>13 (3,0 %)</td>
<td>9 (4,4 %)</td>
</tr>
<tr>
<td>W 6-10</td>
<td>8 (1,6 %)</td>
<td>29 (6,0 %)</td>
<td>401 (82,3 %)</td>
<td>37 (7,6 %)</td>
<td>12 (2,5 %)</td>
</tr>
<tr>
<td>W 11-13</td>
<td>4 (2,4 %)</td>
<td>12 (7,1 %)</td>
<td>131 (78,0 %)</td>
<td>17 (10,1 %)</td>
<td>4 (2,4 %)</td>
</tr>
<tr>
<td>W 14-17</td>
<td>2 (1,4 %)</td>
<td>8 (5,6 %)</td>
<td>111 (78,2 %)</td>
<td>14 (9,9 %)</td>
<td>7 (4,9 %)</td>
</tr>
<tr>
<td>Gesamt</td>
<td>32 (1,5 %)</td>
<td>131 (6,1 %)</td>
<td>1790 (82,9 %)</td>
<td>140 (6,5 %)</td>
<td>67 (3,1 %)</td>
</tr>
</tbody>
</table>

Abbildung 7: Verteilung des BMI in der Motorik-Längsschnittstichprobe zu t0

Responder/ Non-Responder Analyse:

Von den 4528 Studienteilnehmern der MoMo-Baseline Studie (t0) wurden in der Folgeuntersuchung (Welle 1, t1) 2167 Teilnehmer (♂ N=1067; ♀ N=1110) erneut auf die Motorik getestet. 2361 Studienteilnehmer (♂ N=1218; ♀ N=1067) der Baseline-Untersuchung nahmen 6 Jahre später nicht erneut an der Folgeuntersuchung teil. Dies entspricht einer Drop-Out-Rate von 52,14%.

Die Responder (Längsschnittprobanden) und Non-Responder („Aussteiger“) unterscheiden sich in Bezug auf den Sozialstatus, den BMI, das Aktivitätsverhalten (körperliche Aktivität Tage/Woche), die Vereinsaktivität und das Alter. Die Geschlechterverteilung unterscheidet sich statistisch nicht signifikant zwischen den beiden Gruppen. Tabelle 15 gibt einen Überblick über die Signifikanzwerte.
Abbildung 8 veranschaulicht die Unterschiede in der Altersverteilung von Motorik-Längsschnittprobanden und den Non-Respondern. Die Gruppe der Non-Responder (MW=10,87 Jahre ± 4,10) ist im Durchschnitt um fast 2 Jahre älter als die Längsschnittprobanden (8,96 Jahre ± 3,71).

Es zeigt sich, dass die Längsschnittprobanden bezogen auf die körperliche Aktivität (Tage/Woche für 60 Minuten) aktiver sind als die Non-Responder. 64,6% der Längsschnittprobanden geben an, an 4-7 Tagen die Woche für 60 Minuten körperlich aktiv zu sein, bei den Non-Respondern sind es 57,2%. Dementsprechend geben 42,8% der Non-Responder an lediglich an 0-3 Tagen pro Woche für 60 Minuten körperlich aktiv zu sein, bei den Längsschnittprobanden sind es 35,4%.
Tabelle 16: Unterschiede im Aktivitätsverhalten (körperl.) von Längsschnittprobanden vs. Non-Respondern zur Baseline (t0)

<table>
<thead>
<tr>
<th></th>
<th>weniger aktiv (0-3 Tage pro Woche)</th>
<th>mehr aktiv (4-7 Tage pro Woche)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Responder</td>
<td>903 (42,8 %)</td>
<td>1209 (57,2 %)</td>
</tr>
<tr>
<td>Responder</td>
<td>701 (35,4 %)</td>
<td>1277 (64,6 %)</td>
</tr>
</tbody>
</table>

Tabelle 16, dass die Längsschnittprobanden bezogen auf die Vereinsaktivität aktiver sind als die Non-Responder. 60,8% der Längsschnittprobanden geben an Mitglied im Verein zu sein, bei den Non-Respondern sind es 49,3%.

Tabelle 17: Unterschiede im Aktivitätsverhalten (Verein) von Längsschnittprobanden vs. Non-Respondern zur Baseline (t0)

<table>
<thead>
<tr>
<th></th>
<th>Verein ja</th>
<th>Verein nein</th>
<th>Verein früher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Responder</td>
<td>1156 (49,3 %)</td>
<td>767 (32,7 %)</td>
<td>423 (18,0 %)</td>
</tr>
<tr>
<td>Responder</td>
<td>1309 (60,8 %)</td>
<td>599 (27,8 %)</td>
<td>244 (11,3 %)</td>
</tr>
</tbody>
</table>

In der Längsschnittstichprobe ist der Anteil der Personen mit einem höheren und mittleren Sozialstatus größer als in der Stichprobe der Non-Responder. 29,8% der Längsschnittprobanden werden dem hohen Sozialstatus zugeordnet, bei den Non-Respondern sind es 20,9%. Deutlich wird der Unterschied bezogen auf den niedrigen Sozialstatus: 18,3% der Längsschnittprobanden und 32,9% der Non-Responder werden dieser Kategorie zugeordnet. Bei den Längsschnittprobanden werden 52,0% dem mittleren Sozialstatus zugeordnet, bei den Non-Respondern sind es 46,2% (vgl. Tabelle 17).

Tabelle 18: Unterschiede von Motorik-Längsschnittprobanden vs. Non-Respondern im Sozialstatus zur Baseline (t0)

<table>
<thead>
<tr>
<th></th>
<th>Niedriger Sozialstatus</th>
<th>Mittlerer Sozialstatus</th>
<th>Hoher Sozialstatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Responder</td>
<td>762 (32,9 %)</td>
<td>1070 (46,2 %)</td>
<td>483 (20,9 %)</td>
</tr>
<tr>
<td>Responder</td>
<td>395 (18,3 %)</td>
<td>1124 (52,0 %)</td>
<td>644 (29,8 %)</td>
</tr>
</tbody>
</table>

In der Gruppe der Non-Responder werden 16,3% der Kinder und Jugendlichen als übergewichtig/adipös eingegrade, bei den Längsschnittprobanden sind es 9,6%. Der Anteil der Untergewichtigen ist in beiden Gruppen nahezu gleich (Längsschnittprobanden: 7,5%; Non-Responder: 7,3%). Bei den Längsschnittprobanden ist der Anteil der Normalgewichtigen höher (82,9%) im Vergleich zu den Non-Respondern (76,4%) (vgl. Tabelle 18).

Tabelle 19: Unterschiede von Motorik-Längsschnittprobanden vs. Non-Respondern in den BMI-Kategorien zur Baseline (t0)

<table>
<thead>
<tr>
<th></th>
<th>Untergewicht</th>
<th>Normalgewicht</th>
<th>Übergewicht und Adipositas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Responder</td>
<td>172 (7,3 %)</td>
<td>1798 (76,4 %)</td>
<td>383 (16,3 %)</td>
</tr>
<tr>
<td>Responder</td>
<td>163 (7,5 %)</td>
<td>1793 (82,9 %)</td>
<td>207 (9,6 %)</td>
</tr>
</tbody>
</table>
4.4. Untersuchungsmethoden

4.4.1 Erfassung der motorischen Leistungsfähigkeit- das MoMo-Testprofil

Die MoMo-Motoriktests wurde im Jahr 2002 am Institut für Sport und Sportwissenschaft des Karlsruher Instituts für Technologie entwickelt (vgl. Bös, Oberger, Worth, Opper, Romahn et al., 2008; Bös, Worth, Heel, Opper, Romahn et al., 2004b, Bös, Worth, Heel, Opper, Romahn et al., 2004c und Bös et al.,2009b). Die Systematisierung nach Bös (1987; 1994; 2001) bildet die theoretische Grundlage für die motorischen Tests (siehe Kapitel 2.1.2).

Die nachfolgende Tabelle bildet die Taxonomie nach Fähigkeiten und Aufgabenstruktur der in der MoMo-Studie eingesetzten Testaufgaben ab.
Tabelle 20: Taxonomie von Testaufgaben nach Fähigkeiten und Aufgabenstruktur (ergänzte Tabelle nach Bös et al., 2008)

<table>
<thead>
<tr>
<th>Aufgabenstruktur</th>
<th>Motorische Fähigkeiten</th>
<th>Passive Systeme der Energieübertragung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ausdauer AA</td>
<td>Kraft KA</td>
</tr>
<tr>
<td>Großmotorik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lokomotionsbewegungen</td>
<td>Gehen</td>
<td>Standweite (SW)</td>
</tr>
<tr>
<td></td>
<td>Sprünge</td>
<td>Messplatte (KMP)</td>
</tr>
<tr>
<td>Großmotorische Teilkörperbewegungen</td>
<td>Obere Extremi-täten</td>
<td>Liegestützen (LS)</td>
</tr>
<tr>
<td></td>
<td>Rumpf</td>
<td>Sit-ups (SU) (seit Welle 1)</td>
</tr>
<tr>
<td></td>
<td>Untere Extremi-täten</td>
<td>Fahrrad-Ausdauertest (RAD)</td>
</tr>
<tr>
<td>Haltung</td>
<td>Ganzkörper</td>
<td>Einbeinstand (EINB)</td>
</tr>
<tr>
<td>Feinmotorik</td>
<td>Hand</td>
<td>Reaktions-test (REAK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anm.: AA = aerobe Ausdauer; KA = Kraftausdauer; SK = Schnellkraft; RS = Reaktionsschnelligkeit; KZ = Koordination unter Zeitdruck; KP = Koordination als Präzisionsaufgabe; B = Beweglichkeit

Im Verlauf der MoMo-Studie wurde das Testinstrumentarium aufgrund technischer Neuerungen sowie neuer Erkenntnisse geringfügig angepasst. Dies betrifft zum einen die Hinzunahme der Testaufgabe Sit-ups ab der Welle 1 und die Ergänzung um die Bioelektrische Impedanz Analyse (BIA) (vgl. Worth et al., 2015).

Im Anhang I befindet sich eine differenzierte Aufstellung der eingesetzten Testverfahren und der anthropometrischen Messungen zu den unterschiedlichen Messzeitpunkten.

Erfassung der motorischen Leistungsfähigkeit im Feld

4.4.2 Erfassung der konstitutionellen Merkmale

4.4.3 Fragebögen

MoMo Aktivitätsfragebogen zur Erfassung der körperlich-sportlichen Aktivität

Fragebogen des Rober-Koch-Instituts: Erfassung des Sozialstatus nach Winkler

In der vorliegenden Arbeit wird als eine mögliche Determinante von motorischer Leistungs fähigkeit neben dem Aktivitätsverhalten und der Körperkonstitution der Einfluss des sozialen Status genauer untersucht.

4.5. Verfahren zur Datenverarbeitung und Datenanalyse

Die Messdaten der sportmotorischen Tests und der schriftlichen Befragungen wurden digitalisiert und mittels SPSS 20 analysiert.

Für die vorliegenden Analysen wurde der Datensatz in der Version vom 21.10.2014 zugrunde gelegt. Es wurden nur die Teilnehmer in die längsschnittlichen Analysen einbezogen, die zur Baseline-Untersuchung (t0) und zur Welle1-Untersuchung (t1) an den Motoriktests teilgenommen haben. Es wurde stets mit dem ungewichteten Längsschnittdatensatz gearbeitet. Zur Überprüfung, der im vorangegangenen Kapitel 3.3 aufgezeigten operationalen Hypothesen, dienen die im Folgenden beschriebenen Verfahren.

4.5.1 Deskriptive Darstellung der Entwicklung der motorischen Leistungsfähigkeit

In der vorliegenden Arbeit meint Entwicklung die Veränderung innerhalb des „6-Jahres Intervalls“ vom ersten (t0) zum zweiten Messzeitpunkt (t1), parametrisiert über die Steigung von t0 zu t1.

Anhand der Längsschnittdaten können Entwicklungsverläufe für die einzelnen motorischen Fähigkeiten anhand von Geradenscharen dargestellt werden. Die Geradenscharen ergeben sich aus den linearen Verbindungen des ersten (t0) und zweiten Messzeitpunktes (t1), die für jede Altersgruppe von 4-17 Jahren gezeichnet werden können. Die Geradenscharen geben Auskunft über Gewinn, Verlust und Direktionalität der Entwicklung der motorischen Leistungsfähigkeit.

Mit dieser Vorgehensweise wird zunächst ein rein quantitativ-deskriptiver Ansatz verfolgt. Beim quantitativ-deskriptiven Ansatz wird angenommen, dass sein explizit oder implizit erhobener Anspruch auf die Beschreibung eines Entwicklungsverlaufs beschränkt bleibt, den beobachteten Entwicklungsverlauf also nicht erklären will.

Deskriptiv wurde das arithmetische Mittel (MW), die Standardabweichung (SD) sowie das 95% Konfidenzintervall berechnet.
4.5.2 Drop-Out Analysen

Zur Charakterisierung der Personen, die zwar zur Baseline-Untersuchung (t0) teilgenommen haben aber nicht an der Welle 1 (t1) wurde eine „Responder-/ Non-Responder-Variable“ gebildet. Als Motorik-Längsschnittprobanden wurden Studienteilnehmer kategorisiert, die zu t0 und t1 bezüglich Größe und Gewicht untersucht wurden. Dadurch ist sichergestellt, dass die Studienteilnehmer an den Motoriktests t0 und t1 teilgenommen haben. Zusätzlich wurde berücksichtigt, ob ein Wiederteilnahme-Gewichtungsfaktor hinterlegt wurde. Im Anhang II findet sich eine Tabelle, welche die einzelnen Schritte zur Bildung der „Responder-/ Non-Responder-Variable“ darstellt.

4.5.3 Index- und Kategorienbildung

Bildung von Altersgruppen

Das vollendete Lebensalter wurde aus dem exakten Alter der MoMo-Stichprobe zur Baseline (t0) berechnet. Es wurde folgende Einteilung vorgenommen: 4,0-4,99 Jahre = 4 Jahre; 5,0-5,99 Jahre = 5 Jahre, etc. Die Altersgruppen (AG) wurden wie folgt gebildet:

AG 1: (0 thru 5.99=1) AG 2: (6 thru 10.99=2); AG 3 (11 thru 13.99=3), AG 4 (14 thru 17.99=4).

Bildung des Sozialstatus nach Winkler

„Lagen zu allen Variablen gültige Daten vor, ergab sich der Indexwert aus der Summe der einzelnen Punktwerte. Fehlte bei einer der Variablen die Angabe, wurde das arithmetische Mittel der Werte der anderen Variablen eingesetzt. Wenn bei mehr als einer Variable der Wert fehlte, wurde der Index nicht berechnet“ (Lampert & Kurth, 2007 2946f).

Bildung der „BMI-Entwicklungsgruppen“

Perzentile ≥ 97 = Adipositas
Perzentile ≥ 90 = Übergewicht
Perzentile < 90 und Perzentile > 10 = Normalgewicht
Perzentile ≤ 10 = Untergewicht
Perzentile ≤ 3 = starkes Untergewicht.
Für die Kategorisierung in die „BMI-Entwicklungsgruppen“ wurden die fünf Gruppen in zwei Gruppen zusammengefasst, somit bestehen vier unterschiedliche Kombinationen von „BMI-Entwicklungsgruppen“ von t0 zu t1 (siehe Abbildung 9):

Bildung der „Aktivitäts-Entwicklungsgruppen“ (körperliche Aktivität Tagen/ Woche für 60 Minuten)

Für die Bildung der „Aktivitäts-Entwicklungsgruppen“ wurden zwei Fragen aus dem MoMo Aktivitätsfragebogen herangezogen.

1. An wie vielen der letzten sieben Tage waren Sie/warst Du für mindestens 60 min am Tag körperlich aktiv?
2. An wie vielen Tagen einer normalen Woche sind Sie/warst Du für mindestens 60 min am Tag körperlich aktiv?

Die Fragen beziehen sich auf die gesamte Zeit, die die Studienteilnehmer jeden Tag körperlich aktiv sind. Dabei können Auswahlmöglichkeiten von 0 Tage bis 7 Tage angegeben werden.

Aus den beiden genannten Fragebogenitems wurde ein Mittelwerts-Index gebildet:
((Frage 1+ Frage 2)/ 2).

Dieser Index wurde wie folgt umkodiert:
0- 3 Tage= geringere Aktivität und 4-7 Tage= höhere Aktivität.

Somit bestehen vier unterschiedliche Kombinationen von „Aktivitäts-Entwicklungsgruppen“ von t0 zu t1 (siehe Abbildung 10):
Die Gruppen werden in der Arbeit wie folgt bezeichnet:

- Aktivität von mindestens 60 Minuten an 0-3 Tagen pro Woche zu t0 und t1= „persisten
tent Inaktive“
- Aktivität von mindestens 60 Minuten an 4-7 Tagen pro Woche zu t0 und t1= „persisten
tent Aktive“
- Aktivität von mindestens 60 Minuten an 4-7 Tagen pro Woche zu t0 und lediglich an
0-3 Tagen pro Woche zu t1= „Reduzierer“
- Aktivität von mindestens 60 Minuten an 0-3 Tagen pro Woche zu t0 und Steigerung
auf 4-7 Tage pro Woche zu t1= „Steigerer“

Bildung der „Vereinsaktivitäts-Entwicklungsgruppen“

Die „Vereinsaktivitäts-Entwicklungsgruppen“ wurden ebenfalls auf Grundlage der Antworten des MoMo-Aktivitätsfragebogens gebildet. Die Frage lautete „Bist du Mitglied in einem
Sportverein?“ Nur eine Antwortmöglichkeit war erlaubt. Für die Kategorisierung in die Vereins-Entwicklungsgruppen wurden die vier Gruppen in zwei Gruppen zusammengefasst, so
mit bestehen vier unterschiedliche Kombinationen von Vereinsaktivitäts-Entwicklungsgruppen von t0 zu t1 (siehe Abbildung 11 und Abbildung 12):

Abbildung 10: Kategorisierung in „Aktivitäts-Entwicklungsgruppen“ (Tage/Woche für 60 Minuten) auf Grundlage der Antwortkategorien des MoMo- Aktivitätsfragebogens

Abbildung 11: Zusammenfassung der Antwortkategorien der Vereinsmitgliedschaft
4.5.4 Inferenzstatistische Überprüfung der Einflüsse der Körperkonstitution und des Aktivitätverhaltens

Zur Überprüfung der im vorangegangenen Kapitel 3.3 aufgezeigten operationalen Hypothesen dienen die im Folgenden erläuterten statistischen Verfahren. Eine tabellarische Übersicht findet sich weiter unten (siehe Tabelle 21).

Die Analyse wurde dabei separat für das Ausgangsniveau (t0) und die Veränderungsraten (Steigung von t0 zu t1; Zeiteffekt) durchgeführt (siehe Kapitel 5).

Varianzanalysen mit und ohne Messwiederholung

1. Analyse von Unterschieden in der Entwicklung vom ersten (t0) zum zweiten (t1) Messzeitpunkt

 a) Modell: Altersgruppe Geschlecht*Zeit (siehe Kapitel 5)

 Für das Modell Altersgruppe*Geschlecht*Zeit über die gesamte Altersspanne (4-17 Jahre zu t0) wurden zunächst vierfaktorielle Varianzanalyse mit Messwiederholung (rmANOVA) berechnet. Um die unterschiedliche Entwicklungen in den einzelnen Altersgruppen und Geschlechtern genauer zu identifizieren wurden in einem nächsten Schritt dreifaktorielle Varianzanalysen mit Messwiederholung für die Altersgruppe getrennt und zweifaktorielle Varianzanalysen für Altersgruppe und das Geschlecht getrennt berechnet.

 b) Analyse der ausgewählten Einflussfaktoren (siehe Kapitel 6)

 Um unterschiedliche Entwicklungen der „Sozialstatus-Gruppen“, der „Aktivitätsentwicklungsgruppen“ der „BMI-Entwicklungsgruppen“ zu identifizieren wurden zunächst vierfaktoriellen Varianzanalyse mit Messwiederholung (vierfaktorielle rmANOVA) über die gesamte Altersspanne berechnet (Kovariate Alter t0 exakt oder Altersgruppe; Zwischensubjektfaktor: Sozialstatus-, BMI-, Aktivitätsgruppe und Geschlecht).

 Um mögliche Unterschiede in der Entwicklung zwischen den Sozialstatus-, BMI-, Aktivitätsgruppen genauer identifizieren zu können, werden einfaktorielle Varianzanalysen (ANOVA) über die Differenzen \(\Delta_{t1-t0} \) für das Geschlecht getrennt berechnet (Abhängige Variable: Differenz \(\Delta_{t1-t0} \) (Item); unabhängige Variable: Sozialstatus-, BMI-, Aktivitätsgruppen).

 Um die mögliche unterschiedliche Entwicklungen in den einzelnen Altersgruppen und Geschlechtern genauer zu identifizieren wurden zweifaktorielle Varianzanalysen mit Messwiederholung differenziert nach Altersgruppe und Geschlecht berechnet (Zwischensubjektfaktoren: Sozialstatus-, BMI-, Aktivitätsgruppe; Kovarianz vollendetes Alter zu t0).

2. Analyse von Unterschieden im Ausgangsniveau t0: Univariate Varianzanalysen und einfaktorielle Varianzanalysen

 Um Unterschiede jeweils zum ersten (t0) aber auch zum zweiten (t1) Messzeitpunkt zu identifizieren wurden für jeden Testaufgabe univariate Varianzanalysen (Zwischensubjektfaktoren:

Tabelle 21: Übersicht über Zwischensubjektfaktoren und Kovariaten bei den durchgeführten Varianzanalysen

<table>
<thead>
<tr>
<th>Verfahren</th>
<th>Ziel der Analyse</th>
<th>Kovariate</th>
<th>Zwischensubjektfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entwicklung in Abhängigkeit von Alter und Geschlecht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zweifaktorielle univariate Varianzanalyse</td>
<td>Unterschiede im Ausgangsniveau (t0) und im Endniveaux (t1) (getrennt berechnet für jeden MZP)</td>
<td>-</td>
<td>UV: Altersgruppen t0 (5-gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UV: Geschlecht t0 (2 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AV: Testitem t0 oder Testitem t2</td>
</tr>
<tr>
<td>Dreifaktorielle univariate rm ANOVA</td>
<td>Einfluss von Alter und Geschlecht: Gesamtmodell</td>
<td>-</td>
<td>UV: Geschlecht t0(2 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UV: Altersgruppen t0 (5 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zeit</td>
</tr>
<tr>
<td>Zweifaktorielle univariate rm ANOVA</td>
<td>Einfluss von Geschlecht: Aufgeteilt nach Altersgruppen</td>
<td>-</td>
<td>Geschlecht t0(2 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zeit</td>
</tr>
<tr>
<td>Einfaktorielle rm ANOVA</td>
<td>Zeitefekt Aufgeteilt nach Altersgruppen und Geschlecht</td>
<td>-</td>
<td>Zeit</td>
</tr>
<tr>
<td>Zweiaaktorielle univariate Varianzanalyse</td>
<td>Aufgeklärte Varianz für Δt1-t0 des jeweiligen Testitems für das Modell Altersgruppe*Geschlecht</td>
<td>-</td>
<td>UV: Altersgruppen t0 (5-gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UV: Geschlecht t0 (2 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AV: Testitem Δt1-t0</td>
</tr>
<tr>
<td>Einflussfaktor: Sozialstatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dreifaktorielle univariate Varianzanalyse</td>
<td>Unterschiede im Ausgangsniveau (t0) und im Endniveaux (t1) (getrennt berechnet für jeden MZP)</td>
<td>-</td>
<td>UV: Altersgruppen t0 (5-gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UV: Geschlecht t0 (2 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UV: Sozialstatus t0 (3 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AV: Testitem t0 oder Testitem t2</td>
</tr>
<tr>
<td>Vierfaktorielle univariate rm ANOVA</td>
<td>Einfluss des Sozialstatus: Gesamtmodell</td>
<td>-</td>
<td>Geschlecht t0(2 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Altersgruppen t0 (5 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sozialstatus t0 (3 gestuft)</td>
</tr>
<tr>
<td>dreifaktorielle univariate rm ANOVA</td>
<td>Einfluss des Sozialstatus: Aufgeteilt nach Altersgruppen</td>
<td>Alter t0 exakt</td>
<td>Geschlecht t0(2 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sozialstatus t0 (3 gestuft)</td>
</tr>
<tr>
<td>zweifaktorielle univariate rm ANOVA</td>
<td>Einfluss des Sozialstatus: Aufgeteilt nach Altersgruppen und Geschlecht</td>
<td>Alter t0 exakt</td>
<td>Sozialstatus t0 (3 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dreifaktorielle univariate Varianzanalyse</td>
<td>Aufgeklärte Varianz für Δt1-t0 des jeweiligen Testitems für das Modell SozialstatusAltersgruppeGeschlecht</td>
<td>-</td>
<td>UV: Altersgruppen t0 (5-gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UV: Geschlecht t0 (2 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UV: Sozialstatus (3 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AV: Testitem Δt1-t0</td>
</tr>
<tr>
<td>Einflussfaktor: körperliche Aktivität (Tage/ Woche für 60 Minuten)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dreifaktorielle univariate Varianzanalyse</td>
<td>Unterschiede im Ausgangsniveau (t0) und im Endniveaux (t1) (getrennt berechnet für jeden MZP)</td>
<td>-</td>
<td>UV: Altersgruppen t0 (4-gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UV: Geschlecht t0 (2 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UV: Aktivitätsgruppen (4 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AV: Testitem t0 oder Testitem t2</td>
</tr>
<tr>
<td>Vierfaktorielle univariate rm ANOVA</td>
<td>Einfluss der Aktivitätsgruppe: Gesamtmodell</td>
<td>Alter t0 exakt</td>
<td>UV: Aktivitätsgruppe (4 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UV: Geschlecht t0 (2 gestuft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zeit</td>
</tr>
<tr>
<td>Zweifaktorielle univariate rm ANOVA</td>
<td>Einfluss der Aktivitätsgruppe: Aufgeteilt nach Altersgruppen und Geschlecht</td>
<td>Alter t0 exakt</td>
<td>UV: Aktivitätsgruppen (4 gestuft) Zeit</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>----------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Einfaktorielle Varianzanalyse</td>
<td>Unterschiede im Ausgangsniveau (t0) und im Endniveau (t1) nach Altersgruppen und Geschlecht getrennt (getrennt berechnet für jeden MZP)</td>
<td>-</td>
<td>UV: Aktivitätsgruppe (4 gestuft) AV: Testitem t0 oder Testitem t1</td>
</tr>
<tr>
<td>Zweifaktorielle Varianzanalyse</td>
<td>Unterschiede für die Differenz Δt1-t0 des jeweiligen Testitems nach Geschlecht getrennt</td>
<td>-</td>
<td>UV: Aktivitätsgruppe (4 gestuft) UV: Altersgruppen t0 (4-gestuft) AV: Differenz Testitem t1- Testitem t0 Δt1-t0</td>
</tr>
<tr>
<td>Dreifaktorielle univariate Varianzanalyse</td>
<td>Aufgeklärte Varianz für die Differenz Δt1-t0 des jeweiligen Testitems für das Modell AktivitätsgruppeAltersgruppeGeschlecht</td>
<td>-</td>
<td>UV: Altersgruppen t0 (4-gestuft) UV: Geschlecht t0 (2 gestuft) UV: Aktivitätsgruppe (4 gestuft) AV: Differenz Testitem t1- Testitem t0 Δt1-t0</td>
</tr>
</tbody>
</table>

Einflussfaktor Vereinsaktivität

Dreifaktorielle Univariate Varianzanalyse	Unterschiede im Ausgangsniveau (t0) und im Endniveau (t1) (getrennt berechnet für jeden MZP)	-	UV: Altersgruppen t0 (4-gestuft) UV: Geschlecht t0 (2 gestuft) UV: Vereins- Entwicklungsgruppen (4 gestuft) AV: Testitem t0 oder Testitem t2
Zweifaktorielle univariate rm ANOVA	Einfluss der Vereinsaktivitäts-Gruppe: Gesamtmodell	Alter t0 exakt	UV: Vereinsaktivitäts-Gruppe (4-gestuft) UV: Geschlecht t0 Zeit
Zweifaktorielle Varianzanalyse	Unterschiede im Ausgangsniveau (t0) und im Endniveau (t1) nach Altersgruppen und Geschlecht getrennt (getrennt berechnet für jeden MZP)	-	UV: Vereinsaktivitätsgruppen (4 gestuft) AV: Testitem t0 oder Testitem t2
Dreifaktorielle univariate Varianzanalyse	Unterschiede für die Differenz Δt1-t0 des jeweiligen Testitems nach Geschlecht getrennt	-	UV: Vereinsaktivitäts-Gruppe (4-gestuft) UV: Altersgruppen t0 (4-gestuft) AV: Differenz Testitem t1- Testitem t0 Δt1-t0
Dreifaktorielle univariate Varianzanalyse	Aufgeklärte Varianz für Δt1-t0 des jeweiligen Testitems für das Modell Vereinsaktivitäts*Altersgruppe*Geschlecht	-	UV: Altersgruppen t0 (4-gestuft) UV: Geschlecht t0 (2 gestuft) UV: Vereinsaktivitäts-Gruppen (4 gestuft) AV: Testitem Δt1-t0

Einflussfaktor BMI

Dreifaktorielle Univariate Varianzanalyse	Unterschiede im Ausgangsniveau (t0) und im Endniveau (t1) (getrennt berechnet für jeden MZP)	-	UV: Altersgruppen t0 (4-gestuft) UV: Geschlecht t0 (2 gestuft) UV: BMI-Gruppen (4 gestuft) AV: Testitem t0 oder Testitem t2
Vierfaktorielle univariate rm ANOVA	Einfluss der BMI-Entwicklungsgruppe: Gesamtmodell	Alter t0 exakt	BMI-Gruppen (4 gestuft)
Zweifaktorielle univariate rm ANOVA	Einfluss der BMI-Entwicklung: Aufgeteilt nach Altersgruppen und Geschlecht	Alter t0 exakt	BMI-Gruppen (4 gestuft)
Einfaktorielle Varianzanalyse	Unterschiede im Ausgangsniveau (t0) und im Endniveau (t1) nach Altersgruppen und Geschlecht getrennt (getrennt berechnet für jeden MZP)	-	UV: BMI-Gruppen (4 gestuft) AV: Testitem t0 oder Testitem t2
Zweifaktorielle Varianzanalyse	Unterschiede für die Differenz Δt1-t0 des jeweiligen Testitems nach Geschlecht getrennt	-	UV: BMI-Gruppen (4 gestuft) UV: Altersgruppen t0 (4-gestuft) AV: Differenz Testitem t1- Testitem t0 Δt1-t0
Dreifaktorielle univariate Varianzanalyse	Aufgeklärte Varianz für Δt1-t0 des jeweiligen Testitems für das Modell BMI-Gruppe*Altersgruppe*Geschlecht	-	UV: Altersgruppen t0 (4-gestuft) UV: Geschlecht t0 (2 gestuft) UV: BMI-Gruppen (4 gestuft) AV: Testitem Δt1-t0

Inferenzstatistische Überprüfung des Leistungszuwachs, Stagnation oder Leistungsabnahme

Die Inferenzstatistische Überprüfung des Leistungszuwachses auf Jahresebene (Geradenscharren, Kapitel 5) vom ersten (t0) zum zweiten Messzeitpunkt (t1) wird mittels T-Tests für eine Stichprobe überprüft. Der Testwert gegen den getestet wird, wird auf Null gesetzt. D.h. wenn die Differenz Δ_{t1-t0} nicht mehr von Null signifikant unterschiedlich ist wird von einer Stagnation ausgegangen.

4.5.5 Problematik der Standardisierung des Verfahrens zur Berechnung von Leistungsunterschieden und Vergleichbarkeit zwischen den Dimensionen : Berechnung von Z-Werten

Zentrales Vorhaben der Arbeit ist es darzustellen und zu beschreiben, wie sich die motorische Leistungsfähigkeit über die Zeit bzw. über das Alter verändert. Ein Vergleich dieser Veränderungen (Differenzwerte) über die Zeit soll zwischen verschiedenen Dimensionen und unterschiedlichen Gruppen erfolgen.

Berechnung geschlechts- und altersunspezifischer Z-Werte

Um Unterschiede in der motorische Leistungsfähigkeit und in der Veränderung über die Zeit (Entwicklung) zwischen den Dimensionen vergleichbar zu machen, wurde eine Z-Wert Standardisierung vorgenommen. Die Standardisierung erfolgte an der gesamten Längsschnittstichprobe (t0 und t1). Somit wird die Standardisierung an der gesamten Altersrange von 4-23 Jahren als Basis möglicher Wertebereiche durchgeführt (+/- 3 Standardabweichungen) 99,7% aller Werte sind abgedeckt, damit auch das theoretische Maxima. Dazu wird zunächst der Mittelwert und die Standardabweichungen der Motorikergebnisse aller Längsschnittprobanden zu beiden Messzeitpunkten (4-23 Jahre) ermittelt. Diese dienten der Z-Wert Standardisierung mittels nachfolgender Formel:

\[
Z = 100 + 10 \times \left(\text{individueller Wert} - \text{Mittelwert}_{(LS 4-23)} / \text{Standardabweichung}_{LS 4-23} \right)
\]

Es wurde sich gegen eine Standardisierung an den MoMo-Baseline-Normwerten entschieden, da diese zum Zeitpunkt der Erstellung der Arbeit lediglich bis 17 Jahren vorliegen.
4.5.6 Statistische Überprüfung der Direktionalität

Als eine Möglichkeit der Überprüfung der Direktionalität wurde auf den T-Test für abhängige Stichproben zurückgegriffen. Dabei wird die Direktionalität bzw. Multidirektionalität zwischen den Dimensionen (Kapitel 5.8) mit Hilfe des T-Tests für abhängige Stichproben über die Differenzen der einzelnen Items statistisch überprüft. Die Differenzen Δ_{t1-t0} entsprechen den unterschiedlichen Steigungen der Testitems vom ersten zum zweiten Messzeitpunkt. Der T-Test wird für die Altersgruppen AG 1-AG 4 getrennt berechnet.

4.5.7 Berechnung von Stabilitäten

5 Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit in Abhängigkeit von Alter und Geschlecht

Kapitel 5 dient der Beantwortung der ersten Fragestellung:

Forschungsfrage 1: Wie verläuft die Entwicklung der motorischen Leistungsfähigkeit vom Kindes- bis ins frühere Erwachsenenalter (4-23 Jahre) in Abhängigkeit von Alter und Geschlecht?

In Kapitel 5.1-5.5 werden die Ergebnisse zum Einfluss von Alter und Geschlecht im Detail dargestellt. In Kapitel 5.6. werden diese Ergebnisse zusammengefasst.

Im Folgenden werden exemplarisch anhand der Testaufgabe Standweitsprung die statistischen Vorgehensweisen erläutert.

In den durchgeführten Analysen zur Beantwortung der ersten Fragestellung werden sowohl die Entwicklung der motorischen Leistungsfähigkeit von \(t_0\) zu \(t_1\) (Veränderung/Steigung im Verlauf der sechs Jahre) als auch Unterschiede im Ausgangsniveau (\(t_0\)) der Längsschnittprobanden analysiert (siehe Abbildung 13).

Abbildung 13: Grafische Darstellung der Gesamtanalyse (4-17 Jahre zu \(t_0\)), vierfaktorielle Varianzanalyse mit Messwiederholung

\(^\text{12}\) Die Testaufgabe „Sit-ups“ wurde erst ab Welle 1 durchgeführt, bei der Testaufgabe „Kraftmessplatte“ existieren zu \(t_1\) zu viele fehlende Werte, sodass diese beiden Testaufgaben nicht in die Längsschnittanalysen einbezogen wurden.
Die vorliegenden Daten der 10 Testitems werden mittels Varianzanalyse mit Messwiederholung analysiert (vierfaktoriell). Im ersten Schritt wird überprüft, ob ein signifikanter Effekt über die Zeit vorliegt. D.h., ob eine Veränderung (Gewinn oder Verlust) der motorischen Leistungsfähigkeit im Verlauf der sechs Jahre zu beobachten ist. Ist dies der Fall wird überprüft, ob eine signifikante Interaktion des Zeitintervalls mit dem Geschlecht und /oder der Altersgruppe besteht. Das würde bedeuten die Geschlechter und /oder die Altersgruppen entwickeln sich in ihrer motorischen Leistungsfähigkeit im Verlauf der sechs Jahre unterschiedlich (unterschiedliche Gewinn-Verlust-Dynamik). Ist dies nicht der Fall, wird überprüft, ob eine der drei soziodemografischen Variablen das Ausgangsniveau (t_0) beeinflusst. Es ist möglich, dass die Entwicklung zwischen den Gruppen parallel und somit vergleichbar, aber auf einem unterschiedlichen Leistungsniveau verläuft.

Abbildung 14: Altersgruppenspezifische Darstellung der drei faktoriellen Varianzanalyse

Die Analysen zum Einfluss des Sozialstatus, des Aktivitätsverhaltens und der Körperkonstitution werden analog durchgeführt (siehe Kapitel 6).
5 Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

Die errechneten Mittelwerte und Standardabweichungen der 10 Testitems (Rohwerte) der Längsschnittprobanden von Baseline (t0) und Welle 1 (t1) in Abhängigkeit nach Alter und Geschlecht, Sozialstatus, Aktivitätsverhalten und BMI sind dem Anhang VI bis VII zu entnehmen.

5.1. Entwicklung der aeroben Ausdauerleistungsfähigkeit

5.1.1 Ergebnisse des Fahrrad-Ausdauertests- PWC 170 relativ

Abbildung 15: Leistungsveränderung beim Fahrrad-Ausdauertest (PWC 170 relativ) von Baseline (t0) zur Welle 1 (t1), männlich, Geradenschar

Abbildung 16: Leistungsveränderung beim Fahrrad-Ausdauertest (PWC 170 relativ) von Baseline (t0) zur Welle 1 (t1), weiblich, Geradenschar
Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

Abbildung 17: Leistungsveränderung beim Fahrrad-Ausdauertest (PWC absolut) von Baseline (t0) zur Welle 1 (t1), weiblich, männlich, Geradenscharen

Der Fahrrad-Ausdauertest wird erst ab einem Alter von 6 Jahren durchgeführt, deshalb entfällt die Altersgruppe 1.

Betrachtet man den Leistungszuwuchs zwischen den Messzeitpunkten t0 und t1 beim Standweitsprung von männlichen und weiblichen Teilnehmern auf Jahrgangseben, so zeigt sich nahezu kein Zuwachs im Verlauf der sechs Jahre für die Ausdauerleistungsfähigkeit relativiert am Körpergewicht der Studienteilnehmer. Illustriert wird das durch die geringen Anstieg der Geradenscharen im Verlauf des Kindes- und Jugendalters (Tabelle mit Mittelwerten und Standardabweichungen siehe Anhang IV). Der one-sample t-Test ist für die meisten Altersjahrgängen nicht signifikant vom Wert Null unterschiedlich. Bei den weiblichen Studienteilnehmern zeigt sich lediglich bei den 11-, 12- und 15-Jährigen (zu t0) eine signifikante Abnahme der Leistungsfähigkeit.

Bei den männlichen Studienteilnehmern zeigt sich für die 6-10-Jährigen eine signifikante Zunahme der Leistungsfähigkeit im Verlauf der sechs Jahre, bei den 13-17-Jährigen zeigt sich eine signifikante Abnahme der Ausdauerleistungsfähigkeit.

13 Gesamtbetrachtung meint die Analyse für die gesamte Altersspanne von 4-17 Jahren zur Baseline.
5 Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

Tabelle 22: Veränderung der Leistung beim Fahrrad-Ausdauertest (PWC 170) nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupeffekt Zeit</td>
<td>F₁,1135=11,24</td>
<td>.00</td>
<td>.010</td>
<td>1,00%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschlecht</td>
<td>F₁,1135=251,09</td>
<td>.00</td>
<td>.181</td>
<td>18,10%</td>
</tr>
<tr>
<td>Altersgruppe (AG)</td>
<td>F₁,1135=0,57</td>
<td>.57 (n.s.)</td>
<td>.001</td>
<td>0,10%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Geschlecht</td>
<td>F₁,1135=3,46</td>
<td>.06 (n.s.)</td>
<td>.003</td>
<td>0,30%</td>
</tr>
<tr>
<td>Zeit*AG</td>
<td>F₁,1135=21,43</td>
<td>.00</td>
<td>.036</td>
<td>3,60%</td>
</tr>
<tr>
<td>ZeitAGGeschlecht</td>
<td>F₁,1135=4,41</td>
<td>.012</td>
<td>.008</td>
<td>0,80%</td>
</tr>
</tbody>
</table>

Das Modell „Zeit*Altersgruppe*Geschlecht“ erklärt an der Differenz Δ t₁-t₀ 5,3 % der Varianz.

Da die Interaktionen mit der Altersgruppe signifikant werden wird die Varianzanalyse mit Messwiederholung für die Altersgruppen differenziert durchgeführt (siehe Tabelle 23). Es zeigt sich in allen Altersgruppen ein signikanter Zeiteffekt. In der Altersgruppe 4 zeigt sich keine signifikante Zeit*Geschlecht-Interaktion.

Tabelle 23: Ergebnisse der zweifaktoriellen Varianzanalyse für den Fahrrad-Ausdauertest (relative PWC 170)

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F₁,685=13,59</td>
<td>.00</td>
<td>.019</td>
<td>F₁,685=12,79</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F₁,243=5,58</td>
<td>.02</td>
<td>.022</td>
<td>F₁,243=4,66</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F₁,207=26,94</td>
<td>.00</td>
<td>.115</td>
<td>F₁,207=1,90</td>
</tr>
</tbody>
</table>

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t₀ untersucht. Die Ergebnisse der zweifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt (t₀) zeigen: das Geschlecht (F₁,1141=172,55; p=.00; eta²=.132) beeinflusst das Ausgangsniveau. Männliche Teilnehmer erreichen zu t₀ eine höhere relative Wattzahl als weibliche. Die Altersgruppen unterscheiden sich ebenfalls in der Leistung im Ausgangsniveau (F₂,1141=11,70; p=.00; eta²=.020) ausgenommen Altersgruppe 3 und 4. Am besten schneidet die Altersgruppe 4 der 14-17-Jährigen ab.
5.2. Entwicklung der Kraftfähigkeit

5.2.1 Ergebnisse der Testaufgabe Standweitsprung (Schnellkraft)

Abbildung 18: Leistungsveränderung beim Standweitsprung von Baseline (t0) zur Welle 1 (t1), männlich, Geradenscharen

Abbildung 19: Leistungsveränderung beim Standweitsprung von Baseline (t0) zur Welle 1 (t1), weiblich, Geradenscharen

Die Gesamtbetrachtung ergibt eine mittlere Leistungssteigerung von t0 zu t1 (von 4-17-Jährigen zu t0) beim Standweitsprung 46,9 cm bei den männlichen Studienteilnehmern. Bei den weiblichen Studienteilnehmern entspricht die mittlere Leistungssteigerung 28,8 cm (vgl. Anhang IV).

Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Standweitsprung von männlichen und weiblichen Teilnehmern in den einzelnen Jahrgängen, so zeigt sich eine Reduktion mit zunehmenden Alter. D.h. der Leistungszuwachs nimmt mit zunehmendem Alter der Teilnehmer ab. Illustriert wird das durch die abflachenden Steigungen der Geradenschar mit zunehmendem Alter (Tabelle mit Mittelwerten und Standardabweichungen siehe Anhang IV).
Auf Ebene der Altersgruppen bedeutet dies bei den weiblichen Studienteilnehmern, dass in der Altersgruppe 3 lediglich eine Leistungssteigerung von 1,3 cm beim Standweitsprung stattfindet. In der Altersgruppe 4 (14-17-Jährige) kommt es bei den weiblichen Studienteilnehmern bereits zur Reduktion der Standweitsprungleistung über die Zeit.

Bei einer differenzierten Betrachtung der einzelnen Jahrgänge wird deutlich, dass sich bei den weiblichen Studienteilnehmern im Altersjahrgang der 11-Jährigen (17 Jahre zu t1) der Steigerungskoeffizient nicht mehr signifikant vom Wert 0 unterscheidet (one-sample t-Test vs. 0; t=1,71; df=50; p=.09), d.h. kein signifikanter Leistungszuwachs mehr stattfindet (Stagnation). 10-jährige (16 Jahre zu t1) weibliche Studienteilnehmer haben im Verlauf der sechs Jahre eine Leistungssteigerung von ca. 14 cm, 11-jährige (17 Jahre zu t1) haben eine Leistungssteigerung von ca. 5 cm. Bei 13-jährigen (19 Jahre zu t1) weiblichen Studienteilnehmern ergibt sich erstmals, deskriptiv eine Abnahme der Leistungsfähigkeit im Verlauf der sechs Jahre von ca. 2 cm. Diese Leistungsreduktion Δt1-t0 unterscheidet sich erstmals bei den 15-jährigen weiblichen Teilnehmern signifikant von Null (Δt1-t0 MW=-6,31 cm; one-sample t-Test vs. 0; t=-3,16; df=39= p=.00).

Beim Standweitsprung steigern die männlichen Studienteilnehmer in der Altersgruppe der 11-13-Jährigen (AG 3) ihre Standweitsprungleistung um 47 cm. In der Altersgruppe 4 zeigt sich deskriptiv für die männlichen Studienteilnehmer eine deutliche Reduktion der Steigung (Δt1-t0 MW =12,4 cm). Die Steigung unterscheidet sich dennoch signifikant von Null, d.h. die Leistung nimmt weiterhin zu.

Weiterhin wird deutlich, dass die 15-jährigen (t0) männlichen Studienteilnehmer im Verlauf der sechs Jahre eine Leistungssteigerung von ca. 12 cm, im Alter von 16 Jahren (22 Jahre zu t1) um ca. 4 cm aufweisen. Diese augenscheinliche Stagnation zeigt sich auch in der statistischen Überprüfung: Die 16-Jährigen (22 Jahre zu t1) haben keinen signifikanten Leistungszuwachs (Stagnation) (one-sample t-Test vs. 0; t=1,176; df=33; p=.25). Im Altersjahrgang der 17-Jährigen (23 Jahre zu t1) zeigt sich jedoch wiederum ein Anstieg um 7 cm der sich signifikant von Null unterscheidet (one-sample t-Test vs. 0; t=2,12; df=22; p=.046), so dass weitere Messzeitpunkte benötigt werden, um das Eintreten einer Stagnation statistisch zu belegen.

Tabelle 24 zeigt die Ergebnisse der dreifaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung zeigt eine signifikante Veränderung der Standweitsprungleistung im Verlauf der sechs Jahre. Signifikant werden außerdem die Wechselwirkungen des Zeitintervalls mit der Altersgruppe (Varianzaufklärung 50,30 %) und dem Geschlecht (24,10 %). Die Zuwächse von t0 zu t1 beim Standweitsprung sind bei den weiblichen Teilnehmern geringer
als bei den männlichen Teilnehmern. Die Altersgruppen unterscheiden sich alle signifikant voneinander, die größten Zuwächse finden sich in der Altersgruppe 1. Mit zunehmendem Alter in den höheren Altersgruppen reduziert sich der Zuwachs.

Tabelle 24: Veränderung der Standwettsprungleistung nach Altersgruppen und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>$F_{1,2120}=3999,79$</td>
<td>.00</td>
<td>.654</td>
<td>65,40%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschlecht</td>
<td>$F_{1,2120}=674,60$</td>
<td>.00</td>
<td>.241</td>
<td>24,10%</td>
</tr>
<tr>
<td>Altersgruppe (AG)</td>
<td>$F_{1,2120}=714,77$</td>
<td>.00</td>
<td>.503</td>
<td>50,30%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Geschlecht</td>
<td>$F_{1,2120}=83,98$</td>
<td>.00</td>
<td>.106</td>
<td>10,60%</td>
</tr>
<tr>
<td>Zeit*AG</td>
<td>$F_{1,2120}=487,63$</td>
<td>.00</td>
<td>.408</td>
<td>40,80%</td>
</tr>
<tr>
<td>ZeitAGGeschlecht</td>
<td>$F_{1,2120}=83,98$</td>
<td>.00</td>
<td>.106</td>
<td>10,60%</td>
</tr>
</tbody>
</table>

Das Modell „Zeit*Altersgruppe*Geschlecht“ erklärt an der Differenz Δ_{t1-t0} 50,3 % der Varianz.

Da die Interaktionen mit der Altersgruppe signifikant werden wird die Varianzanalyse mit Messwiederholung für die Altersgruppen differenziert durchgeführt (siehe Tabelle 25). Es zeigt sich für alle Altersgruppen ein signifikanter Zeiteffekt. Die aufgeklärte Varianz für die Interaktion Zeit*Geschlecht nimmt bis zur Altersgruppe 3 zu und in der Altersgruppe 4 ab und ist mit 59% in Altersgruppe 3 am größten. Es zeigt sich keine signifikante Wechselwirkung des Zeitintervalls mit dem Geschlecht in der Altersgruppe 1.

Tabelle 25: Ergebnisse der zweifaktoriellen Varianzanalyse für den Standwettsprung

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Zeit*Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-Wert</td>
<td>Signifikanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haupteffekt Zeit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (4-5 Jahre)</td>
<td>$F_{1,575}=4472,03$</td>
<td>.00</td>
<td>.886</td>
<td></td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>$F_{1,947}=3415,70$</td>
<td>.00</td>
<td>.783</td>
<td></td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>$F_{1,325}=521,98$</td>
<td>.00</td>
<td>.616</td>
<td></td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>$F_{1,273}=11,95$</td>
<td>.00</td>
<td>.420</td>
<td></td>
</tr>
<tr>
<td>Zeit*Sex</td>
<td>$F_{1,575}=0,30$</td>
<td>.59 (n.s.)</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$F_{1,947}=203,17$</td>
<td>.00</td>
<td>.177</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$F_{1,325}=468,57$</td>
<td>.00</td>
<td>.590</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$F_{1,273}=55,55$</td>
<td>.00</td>
<td>.169</td>
<td></td>
</tr>
</tbody>
</table>

Da sich in den Altersgruppe 2 bis 4 signifikante Unterschiede in Abhängigkeit des Geschlechts zeigen wird die Varianzanalyse für die Altersgruppe und das Geschlecht differenziert berechnet.

In der Altersgruppe 1 zeigen sich für beide Geschlechter die größten Zuwächse im Verlauf der sechs Jahre. In Altersgruppe 3 (11-13 Jahre zu t0) stagniert der Leistungszuwachs bei den weiblichen Jugendlichen, (weiblich: AG 3; Zeit: $F_{1,163}= 0,911$; $p=.34$; $eta^2 = .0006$). In Altersgruppe 4 zeigt sich bereits eine Abnahme der Leistung (weiblich AG 4; Zeit: $F_{1,1}= 13,53$; $p=.00$; $eta^2 = .088$), während die männlichen Jugendlichen ihre Leistungsfähigkeit weiter stei-
gern können. In Altersgruppe 4 (14-17 Jahre zu t0) vermindert sich der Zuwachs bei den männlichen Jugendlichen im Verlauf der sechs Jahre ebenfalls. Es zeigt sich jedoch in allen Altersgruppen eine signifikante Leistungsveränderung über die Zeit.

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t0 untersucht. Die Ergebnisse der zweifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt (t0) zeigen: das Geschlecht ($F_{1,2128}=215,59; p=,00; \eta^2=.092$) und die Altersgruppen ($F_{1,2128}=1250,33; p=,00; \eta^2=.64$) beeinflussen das Ausgangsniveau t0 beim Standweitsprung. Männliche Teilnehmer haben ein besseres Ausgangsniveau als weibliche. Die Altersgruppe 1 weist das geringste Ausgangsniveau auf. Das Leistungsniveau steigt ab Altersgruppe 1 mit zunehmendem Alter in den höheren Altersgruppen an.
5 Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

5.2.2 Ergebnisse der Testaufgabe Liegestützen (Kraftausdauer)

Abbildung 20: Leistungsveränderung bei den Liegestützen von Baseline (t0) zur Welle 1 (t1), männlich, Geradenscharen

Abbildung 21: Leistungsveränderung bei den Liegestützen von Baseline (t0) zur Welle 1 (t1), weiblich, Geradenscharen

Die Testaufgabe Liegestützen wird erst ab einem Alter von sechs Jahren durchgeführt, deshalb entfällt die Altersgruppe 1 bei dieser Testaufgabe.

Die Gesamtbetrachtung ergibt bei den männlichen Teilnehmern eine mittlere Leistungssteigerung um 4 Liegestützen im Vergleich zum Ausgangsniveau t0. Bei den weiblichen Studienteilnehmer entspricht die mittlere Steigerung 2 Liegestützen des Ausgangsniveaus t0 (vgl. Anhang IV).

Eine Betrachtung differenziert nach Altersgruppen und Geschlecht verdeutlicht, dass die Leistungssteigerung bei den männlichen Teilnehmern in Altersgruppe 3 ca. 4 Liegestützen beträgt, bei den weiblichen nur ca. eine Liegestütze. Bei den weiblichen Studienteilnehmern stagniert die Entwicklung ab der Altersgruppe der 14-17-Jährigen (AG 4). Die männlichen Studienteilnehmer der Altersgruppe 4 können ihre Leistung nochmal um 3 Liegestützen steigern.
Bei einer differenzierten Betrachtung der einzelnen Jahrgänge zeigt sich bei den männlichen Teilnehmer eine Abnahme des Leistungszuwachses zwischen den Messzeitpunkten t₀ und t₁ mit steigendem Alter, dennoch ist der Steigungskoeffizient in allen Altersjahrgang signifikant von Null unterschiedlich (Tabelle mit Mittelwerten und Standardabweichungen siehe Anhang IV). Das heißt in den Altersjahrgängen ergibt sich bis zum maximal untersuchten Alterszeitraum (23 Jahre zu t₁) eine Leistungssteigerung im Verlauf der sechs Jahre.

Auch bei den weiblichen Studienteilnehmern reduziert sich der Leistungszuwachs bei den Liegestützen mit steigendem Alter. Insbesondere zeigt sich hierbei, dass sich im Altersjahrgang der 11-jährigen (17 Jahre zu t₁) weiblichen Teilnehmer der Steigerungskoeffizient nicht mehr signifikant vom Wert 0 unterscheidet (Δt₁-t₀ MW=1 Liegestützen; one-sample t-Test vs. 0; t=1,91; df=51= p=.06), d.h. kein signifikanter Leistungszuwachs mehr stattfindet (Stagnation). Eine Reduktion der Leistungsfähigkeit ist statistisch im untersuchten Alterszeitraum nicht nachzuweisen.

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>F₁,₁₅₁₆₆,₇₆₆</td>
<td>.00</td>
<td>.₁₉₄</td>
<td>₁₉₄₀%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschlecht</td>
<td>F₁,₁₅₁₆,₄₄₂</td>
<td>.00</td>
<td>.₅₂₀</td>
<td>₅₂₀₀%</td>
</tr>
<tr>
<td>Altersgruppe (AG)</td>
<td>F₃,₁₅₁₆,₆₄₈</td>
<td>.00</td>
<td>.₁₂₅</td>
<td>₁₂₅₀%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Geschlecht</td>
<td>F₁,₁₅₁₆,₉₈₉</td>
<td>.00</td>
<td>.₀₅₂</td>
<td>₅₂₀%</td>
</tr>
<tr>
<td>Zeit*AG</td>
<td>F₁,₁₅₁₆,₃₈₂</td>
<td>.00</td>
<td>.₀₄₂</td>
<td>₄₂₀%</td>
</tr>
<tr>
<td>ZeitAGGeschlecht</td>
<td>F₁,₁₅₁₆,₉₈₉</td>
<td>.00</td>
<td>.₀₆₈</td>
<td>₆₈₀%</td>
</tr>
</tbody>
</table>

Tabelle 26: Veränderung der Leistung bei den Liegestützen nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung
5 Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

Das Modell „Zeit*Altersgruppe*Geschlecht“ erklärt an der Differenz Δt_{1-0} 10,9 % der Varianz. Da die Interaktionen mit der Altersgruppe signifikant werden, wird die Varianzanalyse mit Messwiederholung für die Altersgruppen differenziert berechnet (siehe Tabelle 27).

Es zeigt sich eine signifikante Entwicklung über die Zeit in allen Altersgruppen. Die Zeit*Geschlecht Interaktion wird in allen Altersgruppen signifikant.

Tabelle 27: Ergebnisse der zweifaktoriellen Varianzanalyse für die Liegestützen

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>Haupteffekt Zeit</th>
<th>Zeit*Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-Wert</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>$F_{1,933}=605,92$</td>
<td>.00</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>$F_{1,322}=114,18$</td>
<td>.00</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>$F_{1,271}=33,08$</td>
<td>.00</td>
</tr>
</tbody>
</table>

Da sich in den Altersgruppen 2 bis 4 signifikante Unterschiede in Abhängigkeit des Geschlechts zeigen, wird die Varianzanalyse für die Altersgruppe und das Geschlecht differenziert berechnet (einfaktorielle rmpANOVA): Für die männlichen Teilnehmer zeigt sich in allen Altersgruppen eine signifikante Veränderung über die Zeit. Bei den weiblichen Teilnehmern zeigt sich im Gegensatz zu den männlichen bereits ab der Altersgruppe 3 keine Entwicklung über die Zeit (Stagnation) (weiblich AG 3; Zeit: $F_{1,161}=3,85$; $p=.05$; $\eta^2=.023$; AG 4: $F_{1,139}=0,01$; $p=.92$; $\eta^2=.00$).

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t_0 untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t_0 zeigen, es besteht kein geschlechtsspezifischer signifikanter Unterschied bei den Liegestützen zu t_0 ($F_{1,1532}=2,30$; $p=.13$; $\eta^2=.00$). Die Altersgruppen 2 bis 4 unterscheiden sich im Ausgangsniveau ($F_{2,1532}=145,07$; $p=.00$; $\eta^2=.16$). Das Ausgangsniveau ist für die Altersgruppe 2 am geringsten und steigt mit zunehmendem Alter in den höheren Altersgruppen an.
5.3. Entwicklung der Reaktionsschnelligkeit

5.3.1 Ergebnisse des Reaktionstests

Abbildung 22: Leistungsveränderung beim Reaktionstest von Baseline (t0) zur Welle 1 (t1), männlich, Geradenscharen

Abbildung 23: Leistungsveränderung beim Reaktionstest von Baseline (t0) zur Welle 1 (t1), weiblich, Geradenscharen

Die Gesamt betrachtung im Verlauf der sechs Jahre ergibt bei den männlichen Teilnehmer eine Steigerung der Reaktionszeit von 0,32 Sekunden auf 0,25 Sekunden und bei den weiblichen Teilnehmer von 0,33 Sekunden auf 0,26 Sekunden (siehe Anhang IV). Betrachtet man die Verbesserungen der Reaktionszeiten zwischen den Messzeitpunkten t0 und t1 einzelner Jahrgänge, so zeigt sich, dass der Leistungszuwachs mit steigendem Alter der Teilnehmer abnimmt. Illustriert wird das durch die abflachenden negativen Steigungen der Geradenscharen mit zunehmendem Alter (Tabelle mit Mittelwerten und Standardabweichungen siehe Anhang IV). Insbesondere zeigt sich hierbei, dass sich im Alter von 11-Jahren bei den weiblichen Studententeilnehmer und im Alter von 12 Jahren bei den männlichen Teilnehmer der Steigerungskoeffizient nicht mehr signifikant vom Wert 0 unterscheidet (one-sample t-Test vs. 0; männlich:}
Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

t=-1,52; df=66= p=.13; weiblich: t=-0,89; df=52= p=.38), d.h. kein signifikanter Leistungszuwachs mehr stattfindet (Stagnation).

Tabelle 28: Veränderung der Reaktionszeiten nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>F_{1,2122}=1151,18</td>
<td>.00</td>
<td>.352</td>
</tr>
<tr>
<td>Zwischensubjektfekte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschlecht</td>
<td>F_{1,2122}=863,97</td>
<td>.00</td>
<td>.550</td>
</tr>
<tr>
<td>Altersgruppe (AG)</td>
<td>F_{3,2122}=22,15</td>
<td>.00</td>
<td>.010</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Geschlecht</td>
<td>F_{1,2122}=1,86</td>
<td>.173 (n.s.)</td>
<td>.001</td>
</tr>
<tr>
<td>Zeit*AG</td>
<td>F_{3,2122}=560,51</td>
<td>.00</td>
<td>.483</td>
</tr>
<tr>
<td>ZeitAGGeschlecht</td>
<td>F_{2,2122}=5,49</td>
<td>.00</td>
<td>.008</td>
</tr>
</tbody>
</table>

Das Modell „Zeit*Altersgruppe*Geschlecht“ erklärt an der Differenz Δt_{0-t_1} 48,7 % der Varianz.

Da die Interaktionen mit der Altersgruppe signifikant werden, wird die Varianzanalyse mit Messwiederholung für die Altersgruppen differenziert durchgeführt (siehe Tabelle 29). Die zweifaktorielle Varianzanalyse (rmp ANOVA) zeigt, dass sich in der Altersgruppe 1 (4-5 Jahre zu t0) die größten Verbesserungen der Reaktionszeiten im Verlauf der sechs Jahre zeigen. In Altersgruppe 2 (6-10 Jahre zu t0) gehen die Leistungszuwächse zurück bei den weiblichen und den männlichen Jugendlichen. Ab Altersgruppe 3 (11-13 Jahre zu t0) bleibt die Veränderung der Reaktionszeit im Verlauf der sechs Jahre stabil. In der Altersgruppe 4 kommt es zu einer Leistungsreduktion. Entgegen der Gesamtbetrachtung wird jedoch die Wechselwirkung des Zeitintervalls mit dem Geschlecht in den Altersgruppen 1 bis 4 signifikant, jedoch nur in der Altersgruppe 1 auf dem 0,01 Signifikanzniveau.
Berechnet man die Varianzanalyse für Geschlecht und Altersgruppen differenziert (einfaktorielle rmANOVA), zeigt sich für die männlichen und weiblichen Studienteilnehmer in allen Altersgruppen eine signifikante Entwicklung über die Zeit. Bei den männlichen Studienteilnehmern kommt es in der Altersgruppe 4 zu einer Abnahme der Leistung beim Reaktionstest. Bei den weiblichen Teilnehmern zeigt sich bereits in Altersgruppe 3 eine Stagnation in der Entwicklung der Leistungsfähigkeit ($F_{1,165}=0,60; \ p=0,44; \ \eta^2=0,004$) und in der Altersgruppe 4, wie bei den männlichen Studienteilnehmern, eine signifikante Abnahme der Leistungsfähigkeit.

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t0 untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t0 zeigen, dass es einen geschlechtsspezifischen signifikanten Leistungsunterschied beim Reaktionstest im Ausgangsniveau ($F_{1,2130}=13,18; \ p=0,00; \ \eta^2=0,006$) gibt. Männliche Studienteilnehmer haben eine kürzere Reaktionszeit zu t0. Ebenso unterscheiden sich die Altersgruppen unterscheiden sich ebenfalls im Ausgangsniveau ($F_{3,2130}=992,75; \ p=0,00; \ \eta^2=0,584$). Die Reaktionszeiten verkürzen sich mit zunehmendem Alter, somit werden die besten Leistungen in Altersgruppe 4 erzielt.
5.4. Entwicklung der koordinativen Fähigkeiten

5.4.1 Ergebnisse der Testaufgabe Seitliches Hin- und Herspringen (Großmotorische Koordination unter Zeitdruck)

Eine Gesamtbetrachtung ergibt für die männlichen Studienteilnehmer im Verlauf der sechs Jahre eine Verbesserung um ca. 23 Sprünge beim Seitlichen Hin- und Herspringen, bei den weiblichen Studienteilnehmer um ca. 22 Sprünge.

Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Seitlichen Hin- und Herspringen von männlichen und weiblichen Teilnehmern in einzelnen Jahrgängen, so zeigt sich eine Reduktion mit steigendem Alter. D.h. der Leistungszuwachs nimmt mit steigendem Alter der Teilnehmer ab. Illustriert wird das durch die abflachenden Steigungen der Geradenschar mit zunehmendem Alter. Deskriptiv zeigt sich eine deutliche Reduzie-
Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

157

Tabelle 30 zeigt die Ergebnisse der dreifaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamt betrachtung verdeutlicht eine signifikante Veränderung der Leistung beim Seitlichen Hin- und Herspringen im Verlauf der sechs Jahre. Signifikant werden außerdem die Wechselwirkungen des Zeitintervalls mit der Altersgruppe (Varianzaufklärung 50,80 %) und dem Geschlecht (3,20 %). Der Post-hoc Test über die Differenzen Δ_{t1-t0} ergibt signifikante Unterschiede zwischen allen Altersgruppen. In der Altersgruppe 1 (4-5 Jahre zu t0) zeigen sich die größten Zuwächse über die Zeit (männlich Δ_{t1-t0} MW=22,6 Sprünge, weiblich Δ_{t1-t0} MW=22,0 Sprünge). Ab Altersgruppe 3 verringert sich der Leistungszuwachs bei den weiblichen und männlichen Teilnehmern deutlich. Bei den männlichen Teilnehmern lässt sich dennoch bis zur Altersgruppe 4 eine Leistungssteigerung beim Seitlichen Hin- und Herspringen verzeichnen. Männliche Teilnehmer verbessern ihre Leistung insgesamt stärker im Verlauf der sechs Jahre als weibliche.

| Tabelle 30: Veränderung der Leistung beim Seitlichen Hin- und Herspringen nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung |
|---------------------------------|-------------|----------|----------|
| Haupteffekt | $F_{1,2105}$=7091,24 | .00 | .771 | 77,10% |
| Zwischensubjekteffekte | $F_{1,2105}$=8,81 | .00 | .004 | 0,40% |
| Altersgruppe (AG) | $F_{3,2105}$=907,12 | .00 | .564 | 56,40% |
| Wechselwirkungen | $F_{1,2105}$=70,66 | .00 | .032 | 3,20% |
| Zeit*Geschlecht | $F_{3,2105}$=725,56 | .00 | .508 | 50,80% |
| Zeit*AG | $F_{3,2105}$=6,29 | .00 | .009 | 0,90% |

Das Modell „Zeit*Altersgruppe*Geschlecht“ erklärt an der Differenz Δ_{t1-t0} 51,9 % der Varianz.

157
Da die Interaktionen mit der Altersgruppe signifikant werden wird die Varianzanalyse mit Messwiederholung für die Altersgruppen differenziert berechnet (siehe Tabelle 31). Es ergibt sich in allen vier Altersgruppen ein Zuwachs im Verlauf der sechs Jahre. Bezogen auf die Entwicklung der Leistung beim Seitliches Hin- und Herspringen von t0 zu t1 zeigen sich unterschiedliche Zuwächse für die Geschlechter in den Altersgruppen 2 bis 4 zugunsten der männlichen Teilnehmer.

<p>| Tabelle 31: Ergebnisse der zweifaktoriellen Varianzanalyse beim Seitlichen Hin- und Herspringen |
|---|---|</p>
<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>Haupteffekt Zeit</th>
<th>Zeit*Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-Wert</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>1 (4-5 Jahre)</td>
<td>F_{1,568} = 8751,24</td>
<td>.00</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F_{1,944} = 5892,98</td>
<td>.00</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F_{1,320} = 414,33</td>
<td>.00</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F_{1,273} = 237,63</td>
<td>.00</td>
</tr>
</tbody>
</table>

Da sich in den Altersgruppen 2 bis 4 signifikante Zeit*Geschlecht-Interaktionen zeigen wird die Varianzanalyse für die Altersgruppe und das Geschlecht differenziert durchgeführt. Es ist für die männlichen und weiblichen Teilnehmer in allen Altersgruppen ein signifikanter Zuwachs im Verlauf der sechs Jahre gegeben.

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t0 untersucht. Die Ergebnisse der zweifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t0 zeigen, dass kein signifikanter, geschlechterspezifischer Unterschied beim Seitlichen Hin- und Herspringen zu t0 (F_{1,2105}=3,46; p=.06; eta^2=.002) besteht. Die Altersgruppen hingegen unterscheiden sich im Ausgangsniveau (F_{3,2105}=1735,71; p=.00; eta^2=.71). Das Ausgangsniveau ist für die Altersgruppe 1 am geringsten und steigt mit zunehmendem Alter in den höheren Altersgruppen an.
5.4.2 Ergebnisse der Testaufgabe Einbeinstand (Großmotorische Koordination unter Präzisionsdruck)

Eine Gesamtbetrachtung (4-17 Jährige zu t0) ergibt beim Einbeinstand für die männlichen Studienteilnehmer eine Verbesserung (Reduktion) der Bodenkontaktzahl im Mittel um 9,3 Bodenkontakte und für die weiblichen Teilnehmer um 8,3 Bodenkontakte. Die weiblichen Studienteilnehmer haben ein mittleres Ausgangsniveau (t0) von 10,7 Bodenkontakten und reduzieren diese auf 2,5 Bodenkontakte, die männlichen Studienteilnehmer starten mit einem mittleren Ausgangsniveau von 12,6 Bodenkontakten und reduzieren diese auf 2,5 Bodenkontakte (vgl. Anhang IV).

Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Einbeinstand von männlichen Teilnehmern für die einzelnen Jahrgänge, so zeigt sich eine Reduk-
Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

Mit steigendem Alter nimmt der Leistungszuwachs der Teilnehmer ab. Illustriert wird dies durch die abflachenden Steigungen der Geradenschar mit zunehmendem Alter. Deskriptiv zeigt sich eine deutliche Abnahme der Leistungssteigerung im Verlauf der sechs Jahre bei den männlichen Teilnehmern beim Einbeinstand ab Altersjahr- gang der 9- bzw. 8-Jährigen zu t0 (15 Jahre zu t1). Insbesondere zeigt sich beim Einbeinstand, dass sich ab 17 Jahren (23 Jahre zu t1) der Steigerungskoeffizient nicht mehr signifikant vom Wert 0 unterscheidet (one-sample t-Test vs. 0; t=1,176; df=33= p=.25), d.h. kein signifikanter Leistungszuwachs mehr stattfindet (Stagnation).

Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Einbeinstand von weiblichen Teilnehmern für einzelne Jahrgänge, so zeigt sich ebenfalls eine Reduktion mit steigendem Alter. D.h. der Leistungszuwachs nimmt mit steigendem Alter der weiblichen Teilnehmer ab. Bei den weiblichen Teilnehmern zeigt sich deskriptiv ein verringerter Leistungszuwachs im Verlauf der sechs Jahre beim Einbeinstand verstärkt ab den Altersjahrgängen der 9- bzw. 8-Jährigen zu t0 (15/16 Jahre zu t1). Insbesondere zeigt sich beim Einbeinstand, dass sich ab 16 Jahren (22 Jahre zu t1) der Steigerungskoeffizient nicht mehr signifikant vom Wert 0 unterscheidet (one-sample t-Test vs. 0; t=1,56; df=31= p=.13), d.h. kein signifikanter Leistungszuwachs mehr stattfindet (Stagnation).

Tabelle 32 zeigt die Ergebnisse der dreifaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung ergibt eine signifikante Verbesserung der Leistung beim Einbeinstand im Verlauf der sechs Jahre. Signifikant werden außerdem die Wechselwirkungen des Zeitintervalls mit der Altersgruppe (Varianzaufklärung 46,9%) und dem Geschlecht (Varianzaufklärung 0,5%). Der Post-hoc Test macht signifikante Unterschiede zwischen allen Altersgruppen, außer zwischen der Altersgruppe 3 und 4 sichtbar. Das bedeutet, mit zunehmendem Alter reduziert sich der Leistungszuwachs, die größten Zuwächse zeigen sich in Altersgruppe 1 (AG 1: männlich: Reduktion um MW_{Δt1-t0}=19,1 Bodenkontakte, weiblich: Reduktion um MW Δ_{t1-t0}=18,2 Bodenkontakte). Bezogen auf die Entwicklung der Leistung beim Einbeinstand von t0 zu t1 zeigen sich geschlechtsspezifische Unterschiede zugunsten der männlichen Studienteilnehmer. Diese reduzieren ihre Bodenkontakte (Fehleranzahl) beim Einbeinstand in allen Altersgruppen stärker als die weiblichen.
Tabelle 32: Veränderung der Leistung beim Einbeinstand nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupeffekt</td>
<td>F_{1,2114}=2186,74</td>
<td>.00</td>
<td>.508</td>
<td>50,08%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschlecht</td>
<td>F_{1,2114}=30,89</td>
<td>.00</td>
<td>.014</td>
<td>1,40%</td>
</tr>
<tr>
<td>Altersgruppe (AG)</td>
<td>F_{3,2114}=383,57</td>
<td>.00</td>
<td>.352</td>
<td>35,20%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Geschlecht</td>
<td>F_{1,2114}=10,14</td>
<td>.00</td>
<td>.005</td>
<td>0,50%</td>
</tr>
<tr>
<td>Zeit*AG</td>
<td>F_{1,2114}=624,21</td>
<td>.00</td>
<td>.469</td>
<td>46,90%</td>
</tr>
<tr>
<td>ZeitAGGeschlecht</td>
<td>F_{1,2114}=0,984</td>
<td>0,40 (n.s.)</td>
<td>.001</td>
<td>0,10%</td>
</tr>
</tbody>
</table>

Das Modell „Zeit*Altersgruppe*Geschlecht“ erklärt an der Differenz Δ_{t1-t0} 47,2% der Varianz.

Da die Interaktionen mit der Altersgruppe signifikant werden, wird die Varianzanalyse mit Messwiederholung für die Altersgruppen differenziert durchgeführt (siehe Tabelle 33).

Eine signifikant unterschiedliche Entwicklung zwischen männlichen und weiblichen Teilnehmern zeigt sich in den Altersgruppen 2 und 3. Männliche Teilnehmer verbessern ihre Leistung in diesen Altersgruppe stärker als weibliche (AG 2: männlich: MW_{t1-t0}=-8,1 Bodenkontakte, weiblich: MW_{t1-t0}=-6,3 Bodenkontakte; AG 3: männlich: MW_{t1-t0}=-2,9 Bodenkontakte, weiblich: MW_{t1-t0}=-2,0 Bodenkontakte vgl. Anhang IV).

Tabelle 33: Ergebnisse der zweifaktoriellen Varianzanalyse beim Einbeinstand

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>F-Wert Zeit</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Zeit*Sex</th>
<th>F-Wert Signifikanz</th>
<th>Eta²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (4-5 Jahre)</td>
<td>F_{1,561}=3723,45</td>
<td>.00</td>
<td>.300</td>
<td></td>
<td>F_{1,561}=2,36</td>
<td>.013</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F_{1,947}=908,64</td>
<td>.00</td>
<td>.320</td>
<td></td>
<td>F_{2,947}=14,10</td>
<td>.00</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F_{1,334}=88,22</td>
<td>.00</td>
<td>.000</td>
<td></td>
<td>F_{1,334}=2,56</td>
<td>.00</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F_{1,276}=49,72</td>
<td>.00</td>
<td>.020</td>
<td></td>
<td>F_{1,276}=0,99</td>
<td>.32</td>
</tr>
</tbody>
</table>

Wird die Varianzanalyse für die Altersgruppe und das Geschlecht differenziert durchgeführt, ergibt sich für die männlichen und die weiblichen Teilnehmer in allen Altersgruppen ein signifikanter Zuwachs im Verlauf der sechs Jahre.

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t0 untersucht. Die Ergebnisse der zweifaktoriellen univariaten Varianzanalyse zeigen, dass ein signifikanter, geschlechtsspezifischer Unterschied beim Einbeinstand besteht (F_{1,2126}=27,50; p=.00; eta²=.013). Ebenso unterscheiden sich die Altersgruppen im Ausgangsniveau t0 (AG: F_{3,2126}=631,45; p=.00; eta²=.472). Der Post-hoc Test zeigt, dass sich außer der Altersgruppen 3 und 4, alle vier Altersgruppen untereinander unterscheiden. Die Leistung zu t0 steigt von Altersgruppe 1 bis 3 an und stagniert dann. Die weiblichen Teilnehmer erreichen zu t0 bessere Werte als die
männlichen Teilnehmer (Gesamt betrachtung männlich: MW$_{t0}$=12,6 Bodenkontakte; weiblich: MW$_{t0}$=10,7 Bodenkontakte vgl. Anhang IV).

5.4.3 Ergebnisse der Testaufgabe Balancieren rückwärts (Großmotorische Koordination unter Präzisionsdruck)

Abbildung 28: Leistungsveränderung beim Balancieren rückwärts von der Baseline (t0) zur Welle 1 (t1), männlich, Geradenschar

Abbildung 29: Leistungsveränderung beim Balancieren rückwärts von der Baseline (t0) zur Welle 1 (t1), weiblich, Geradenschar

Die Gesamt betrachtung ergibt für die männlichen Studienteilnehmer beim Balancieren rückwärts eine mittlere Leistungssteigerung von 22,9 Schritte, bei den weiblichen um 23,7 Schritte (vgl. Anhang IV). Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Balancieren rückwärts von männlichen Teilnehmern in den einzelnen Jahrgängen, so zeigt sich eine Reduktion mit steigendem Alter. D.h. der Leistungszuwachs nimmt mit steigendem Alter der Teilnehmer ab. Illustriert wird das durch die abflachenden Steigungen.
der Geradenschar mit zunehmendem Alter. Deskriptiv zeigt sich eine deutliche verringerte Leistungssteigerung im Verlauf der sechs Jahre bei den männlichen Teilnehmern beim Balancieren rückwärts ab dem Jahrgang der 9-Jährigen zu t_0 (15 Jahre zu t_1). Beim Balancieren rückwärts zeigt sich für die männlichen Teilnehmer in den untersuchten Altersjahrgängen immer eine von Null signifikant unterschiedliche Leistungssteigerung, so dass weitere Messzeitpunkte benötigt werden um das Eintreten einer Stagnation für das Balancieren rückwärts statistisch zu belegen.

Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten t_0 und t_1 beim Balancieren rückwärts von weiblichen Teilnehmern in den einzelnen Jahrgängen, so zeigt sich ebenfalls eine Reduktion mit steigendem Alter. D.h. der Leistungszuwachs nimmt mit steigendem Alter der weiblichen Teilnehmer ab. Bei den weiblichen Teilnehmern zeigt sich deskriptiv ein verringrigerter Leistungszuwachs im Verlauf der sechs Jahre beim Balancieren rückwärts verstärkt ab einem Alter von 9 bzw. 8 Jahren zu t_0 (15/16 Jahre zu t_1). Beim Balancieren rückwärts stagniert die Leistungsentwicklung ab 17 Jahren (zu t_0; 23 Jahre zu t_1) (one-sample t-Test vs. 0; $t=0,79$; $df=30\Rightarrow p=,44$).

Tabelle 34 zeigt die Ergebnisse der dreifaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung ergibt einen signifikanten Leistungszuwachs beim Balancieren rückwärts im Verlauf der sechs Jahre. Signifikant werden außerdem die Wechselwirkungen des Zeitintervalls mit der Altersgruppe (Varianzaufklärung 34,9%), nicht jedoch mit dem Geschlecht. Der Post-hoc Test macht signifikante Unterschiede bezogen auf die Leistungsentwicklung zwischen allen Altersgruppen, außer zwischen der Altersgruppe 3 und 4 (Stagnation) sichtbar. In der Altersgruppe 1 zeigen sich die größten Verbesserungen über die Zeit (männlich: Verbesserung um $MW_{\Delta t1-0}=22,9$ Schritte; weiblich: Verbesserung um $MW_{\Delta t1-0}=23,7$ Schritte). Diese Verbesserung nimmt in den nachfolgenden Altersgruppen deutlich ab.

Tabelle 34: Veränderung der Leistung beim Balancieren rückwärts nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>η^2</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt</td>
<td>$F_{1,2143}=2131,87$</td>
<td>.00</td>
<td>.499</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td>Geschlecht</td>
<td>$F_{1,2143}=42,41$</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>Altersgruppe (AG)</td>
<td>$F_{3,2143}=260,07$</td>
<td>.00</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td>Zeit*Geschlecht</td>
<td>$F_{1,2143}=3,26$</td>
<td>.07 (n.s.)</td>
</tr>
<tr>
<td></td>
<td>Zeit*AG</td>
<td>$F_{1,2143}=382,64$</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>ZeitAGGeschlecht</td>
<td>$F_{2,2143}=1,73$</td>
<td>.16 (n.s.)</td>
</tr>
</tbody>
</table>
Das Modell „Zeit*Altersgruppe*Geschlecht“ erklärt an der Differenz Δt1-t0 35,1 % der Varianz.
Da die Interaktionen mit der Altersgruppe signifikant werden wird die Varianzanalyse mit Messwiederholung für die Altersgruppen differenziert berechnet (siehe Tabelle 35). In allen Altersgruppen sind signifikante Leistungsveränderungen über die Zeit gegeben. Die Interaktion des Zeitintervalls mit dem Geschlecht wird lediglich in der Altersgruppe 2 signifikant jedoch nicht auf 0,01-Signifikanz-Niveau.

Tabelle 35: Ergebnisse der zweifaktoriellen Varianzanalyse beim Balancieren rückwärts

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>Haupteffekt Zeit</th>
<th>Zeit*Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-Wert</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>1 (4-5 Jahre)</td>
<td>F1,575 = 3386,62</td>
<td>.00</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F1,959 = 1012,52</td>
<td>.00</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F1,3335 = 120,13</td>
<td>.00</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F1,274 = 66,19</td>
<td>.00</td>
</tr>
</tbody>
</table>

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t0 untersucht. Die Ergebnisse der zweifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt (t0) zeigen, dass ein signifikanter, geschlechtsspezifischer Unterschied beim Balancieren rückwärts zu t0 besteht (F1,2151=36,18; p=.00; eta²=.017). Beim Einbeinstand ergeben sich zu t0 für die weiblichen Studienteilnehmer höhere Werte als für die männlichen Teilnehmer. Sie balancieren im Durchschnitt 3 Schritte mehr als die männlichen Teilnehmer (Gesamtbetrachtung männlich: MW₉ₐ= 24,3 Schritte; weiblich: MW₉ₑ=26,9 Schritte). Ebenso unterscheiden sich die Altersgruppen im Ausgangsniveau (F3,2151=514,90; p=.00; eta²=.42). Der Post-hoc Test ergibt signifikante Leistungsunterschiede zu t0 zwischen allen vier Altersgruppen, außer der Altersgruppe 3 und 4. Die Leistung im Ausgangsniveau nimmt mit zunehmendem Alter in den höheren Altersgruppen zu, d.h. in Altersgruppe 3 und 4 werden die besten Leistungen erzielt.
5.4.4 Ergebnisse der Testaufgabe MLS Stifte einstecken (Feinmotorische Koordination unter Zeitdruck)

Eine Gesamtbetrachtung ergibt im Verlauf der sechs Jahre bei den männlichen Studienteilnehmern eine mittlere Leistungssteigerung von $MW_{Δt0-t1}=15,4$ Sekunden und für die weiblichen von $MW_{Δt0-t1}=14,1$ Sekunden (vgl. Anhang IV). Betrachtet man die Verbesserung der Leistung beim Stifte einstecken zwischen den Messzeitpunkten t0 und t1 für die einzelnen Jahrgänge so zeigt sich, dass der Leistungszuwachs mit steigendem Alter der Teilnehmer abnimmt. Illustriert wird das durch die abflachenden negativen Steigungen der Geradenscharen mit zunehmendem Alter. Der Steigerungskoeffizient unterscheidet sich sowohl bei den männlichen als auch bei den weiblichen Teilnehmern in jedem Altersjahrgang signifikant vom
Wert 0. Weitere Messzeitpunkte werden benötigt, um das Eintreten einer Stagnation statistisch, auf Jahrgangsebene genau zu belegen.

Tabelle 36 zeigt die Ergebnisse der dreifaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung ergibt eine signifikante Veränderung der Leistung beim Stifte einstecken im Verlauf der sechs Jahre. Signifikant werden außerdem die Wechselwirkungen des Zeitintervalls mit der Altersgruppe (aufgeklärte Varianz 56,4 %) und dem Geschlecht (aufgeklärte Varianz 0,40 %). Es zeigen sich geschlechtsspezifische Differenzen bezogen auf die Entwicklung der Leistung beim Stifte einstecken von t0 zu t1 zugunsten der männlichen Teilnehmer. Sie reduzieren die benötigte Zeit beim Stifte einstecken in allen Altersgruppen stärker als die weiblichen. In der Altersgruppe 1 werden die größten Verbesserungen im Verlauf der sechs Jahre sichtbar (männlich Δ_{t1-t0}: Verbesserung MW= 30,5 Sekunden; weiblich: Δ_{t1-t0}: Verbesserung MW= 28,4 Sekunden). Bereits ab Altersgruppe 2 (6-10 Jahre zu t0) verringert sich der Leistungszuwachs bei den weiblichen und männlichen Teilnehmern. Dennoch ist in allen Alters gruppen eine Leistungssteigerung im Verlauf der sechs Jahre gegeben.

<table>
<thead>
<tr>
<th>Tabelle 36: Veränderung der Leistung beim Stifte einstecken nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-Wert</td>
</tr>
<tr>
<td>Haupeffekt</td>
</tr>
<tr>
<td>Geschlecht</td>
</tr>
<tr>
<td>Altersgruppe (AG)</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
</tr>
<tr>
<td>Zeit*Geschlecht</td>
</tr>
<tr>
<td>Zeit*AG</td>
</tr>
<tr>
<td>ZeitAGGeschlecht</td>
</tr>
</tbody>
</table>

Das Modell „Zeit*Altersgruppe*Geschlecht“ erklärt an der Differenz Δ_{t1-t0} 56,5% der Varianz.

Da die Interaktionen mit der Altersgruppe signifikant werden, wird die Varianzanalyse mit Messwiederholung für die Altersgruppen differenziert durchgeführt (siehe Tab. 37). In allen Altersgruppen ist eine Leistungsveränderung über die Zeit gegeben. Geschlechtsspezifische Unterschiede zeigen sich in den Altersgruppen 1 und 2 zugunsten der männlichen Studienteilnehmer.
5 Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

Tabelle 37: Ergebnisse der zweifaktoriellen Varianzanalyse beim MLS Stifte einstecken

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>Haupteffekt Zeit</th>
<th>Zeit*Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-Wert</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>1 (4-5 Jahre)</td>
<td>$F_{1,157} = 3852.34$</td>
<td>,00</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>$F_{1,152} = 2214.28$</td>
<td>,00</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>$F_{1,132} = 417.41$</td>
<td>,00</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>$F_{1,271} = 160.82$</td>
<td>,00</td>
</tr>
</tbody>
</table>

Wird die Varianzanalyse differenziert nach Alter und Geschlecht durchgeführt, ergibt sich sowohl bei den weiblichen als auch bei den männlichen Teilnehmern in allen Altersgruppen eine signifikante Leistungsveränderung über die Zeit.

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t_0 untersucht. Die Ergebnisse der zweifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t_0 zeigen, dass ein signifikanter, geschlechtsspezifischer Unterschied beim Stifte einstecken zu t_0 bestehst ($F_{1,213} = 37.93$; $p=,00$; $\eta^2=,018$). Das Ausgangsniveau (t_0) der weiblichen Studententeilnehmer ist höher als das der männlichen (Gesamtbetrachtung männlich: $MW_{t_0} = 58.7$ Sekunden; weiblich $MW_{t_0}=55.6$ Sekunden).

Ebenso unterscheiden sich die Altersgruppen im Ausgangsniveau ($F_{3,213} = 1189.77$; $p=,00$; $\eta^2=,63$). Der Post- hoc-Test macht sichtbar, dass sich alle vier Altersgruppen untereinander unterscheiden. Die Leistung im Ausgangsniveau steigt mit zunehmendem Alter in den höheren Altersgruppen an, d.h. in Altersgruppe 4 werden die besten Leistungen erzielt.
5.4.5 Ergebnisse der Testaufgabe: MLS Liniennachfahren (Feinmotorische Koordination unter Präzisionsdruck)

Eine Gesamtbetrachtung ergibt für die männlichen Studienteilnehmer im Ausgangsniveau (t0) eine mittlere Leistung von 0,81 Sekunden „freifahrende Zeit pro Fehler“. Die männlichen Teilnehmer verbessern sich über die Zeit auf 1,84 Sekunden „freifahrende Zeit pro Fehler“. Weibliche Teilnehmer haben zu t0 eine mittlere „freifahrende Zeit pro Fehler“ von 1,06 Sekunden und verbessern diese Leistung auf 2,26 Sekunden zum zweiten Messzeitpunkt (vgl. Anhang IV).

Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim MLS Linien nachfahren von männlichen und weiblichen Teilnehmern für die einzelnen Jahrgänge, so ergibt sich ein nahezu linear, gleichmäßig ansteigender Leistungszuwachs mit steigendem Alter der Teilnehmer. Bei den weiblichen und männlichen Studienteilnehmern ist der Stei-
gerungskoeffizient mit 16 Jahren (22 Jahre zu t1) nicht mehr signifikant vom Wert 0 unterschiedlich (one-sample t-Test vs. 0: männlich t=1,27; df=31= p=.21; weiblich: t=1,94; df=32= p=.06). D.h. es ist kein signifikanter Leistungszuwachs über die Zeit gegeben (Stagnation). Bei den 17-Jährigen (23 Jahre zu t1) zeigt sich jedoch wiederum ein Anstieg, der sich signifikant von Null unterscheidet. Weitere Messzeitpunkte werden benötigt, um das Eintreten einer Stagnation statistisch zu belegen.

<table>
<thead>
<tr>
<th>Tabelle 38: Veränderung der Leistung beim MLS Linien nachfahren (Formel: freifahrende Zeit pro Fehler) nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt</td>
</tr>
<tr>
<td>Zeit</td>
</tr>
<tr>
<td>Geschlecht</td>
</tr>
<tr>
<td>Altersgruppe (AG)</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
</tr>
<tr>
<td>Zeit*Geschlecht</td>
</tr>
<tr>
<td>Zeit*AG</td>
</tr>
<tr>
<td>ZeitAGGeschlecht</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
</tr>
<tr>
<td>Altersgruppe F-Wert Signifikanz Eta² Erklärte Varianz</td>
</tr>
<tr>
<td>1 (4-5 Jahre) F_{1,572}= 709,51 .00 .554</td>
</tr>
<tr>
<td>2 (6-10 Jahre) F_{1,929}= 488,97 .00 .345</td>
</tr>
<tr>
<td>3 (11-13 Jahre) F_{1,319}= 83,04 .00 .207</td>
</tr>
<tr>
<td>4 (14-17 Jahre) F_{1,266}= 58,46 .00 .180</td>
</tr>
</tbody>
</table>

Das Modell „Zeit*Altersgruppe*Geschlecht“ erklärt an der Differenz Δₜ₁₋ₜ₀ 10,0 % der Varianz.

Da die Interaktionen mit der Altersgruppe signifikant werden wird die Varianzanalyse mit Messwiederholung für die Altersgruppen differenziert durchgeführt (siehe Tabelle 39). In allen Altersgruppen ist eine signifikante Leistungsveränderung über die Zeit gegeben. Geschlechtspezifische Unterschiede in der Entwicklung der Leistung beim MLS Linien nachfahren zeigen sich lediglich in den Altersgruppen 1 und 2.

<table>
<thead>
<tr>
<th>Tabelle 39: Ergebnisse der zweifaktoriellen Varianzanalyse beim MLS Linien nachfahren einstecken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altersgruppe</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>F-Wert</td>
</tr>
<tr>
<td>1 (4-5 Jahre)</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
</tr>
</tbody>
</table>
Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t_0 untersucht. Die Ergebnisse der zweifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t_0 zeigen, dass ein signifikanter, geschlechtsspezifischer Unterschied beim MLS Linien nachfahren zu t_0 besteht ($F_{1,2094}=61,59; p=.00; \eta^2=.029$). Zu t_0 erreichen die weiblichen Studienteilnehmer bessere Werte (längere frei-fahrende Zeit pro Fehler) beim MLS Linien nachfahren als die männlichen Teilnehmer (Gesamtbetrachtung: männlich $M_{W_{t_0}}=0,81$ Sekunden; weiblich: $M_{W_{t_0}}=1,10$ Sekunden). Ebenso unterscheiden sich die Altersgruppen im Ausgangsniveau (t_0) ($AG: F_{3,2094}=202,57; p=.00; \eta^2=.226$). Der Post-hoc Test macht sichtbar, dass sich außer der Altersgruppe 3 und 4, alle vier Altersgruppen untereinander unterscheiden. Die Leistung im Ausgangsniveau nimmt mit zunehmendem Alter zu, d.h. in den Altersgruppen 3 und 4 werden die besten Leistungen erzielt.
5.5. Entwicklung der Beweglichkeit

5.5.1 Ergebnisse der Testaufgabe Rumpfbeuge

Abbildung 34: Leistungsveränderung bei der Rumpfbeuge von Baseline (t0) zur Welle 1 (t1), männlich, Geradenscharen

Abbildung 35: Leistungsveränderung bei der Rumpfbeuge von Baseline (t0) zur Welle 1 (t1), weiblich, Geradenscharen

Die Gesamtbetrachtung ergibt für die weibliche Teilnehmer zum ersten Messzeitpunkt (t0) eine Leistung, die 1,90 cm unterhalb des Fußsohlenniveaus liegt. Im Verlauf der sechs Jahre verbessern die weiblichen Studienteilnehmer ihre Leistung auf ein Niveau, welches zum zweiten Messzeitpunkt (t1) 3,3 cm unterhalb des Fußsohlenniveaus liegt. Männliche Teilnehmer erreichen zu t0 eine Leistung, die 1,67 cm oberhalb des Fußsohlenniveaus liegt. Zum zweiten Messzeitpunkt (t1) verschlechtern die männlichen Teilnehmern sich auf ein Leistungsniveau, welches 2,20 cm oberhalb des Fußsohlenniveaus liegt. Die Gesamtbetrachtung macht sichtbar, dass die männlichen Teilnehmer ihre Beweglichkeitsleistung verschlechtern,
während die weiblichen Teilnehmer ihre Beweglichkeitsleitung verbessern (Gesamtbetrachtung: männlich $\Delta_{t1-t0} \approx -0,53$ cm; weiblich $\Delta_{t1-t0} \approx 1,43$ cm) (vgl. Anhang IV).

Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten $t0$ und $t1$ beim der Rumpfbeuge von männlichen Teilnehmern für die einzelnen Jahrgänge, so zeigt sich in den Altersjahrgängen von 4-8 Jahren (Alter zu $t0$) eine Abnahme der Rumpfbeuge-Beweglichkeit. In den Altersjahrgängen von 10-15 Jahren (Alter zu $t0$) zeigt sich eine Zunahme der Rumpfbeugeleistung. Im Altersjahrgang der 16-Jährigen (22 Jahre zu $t1$) ist der Steigerungskoeffizient nicht mehr signifikant vom Wert 0 unterschiedlich (one-sample t-Test vs. 0; $t=0,79$; $df=33=p=,44$). D.h. es findet kein signifikanter Leistungszuwachs mehr statt (Stagnation). 15-jährige ($t0$) männliche Studienteilnehmer haben über die Zeit noch eine Leistungssteigerung von ca. 3 cm, im Alter von 16 Jahren (22 Jahre zu $t1$) um ca. 1 cm.

Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten $t0$ und $t1$ bei der Rumpfbeuge von weiblichen Teilnehmern für die einzelnen Jahrgänge, so ist in den Altersjahrgängen von 4-6 Jahren (Alter zu $t0$) keine signifikante Leistungsveränderung über die Zeit gegeben. Erst ab 7 Jahren (Alter zu $t0$) zeigt sich eine signifikante Zunahme der Rumpfbeugebeweglichkeit (one-sample t-Test vs. 0; $t=3,42$; $df=89=p=,001$). Es tritt dann eine Abnahme der Leistungssteigerung mit steigendem Alter ein, d.h. der Leistungszuwachs nimmt mit steigendem Alter der weiblichen Teilnehmer ab. Illustriert wird das durch die abflachenden Steigungen der Geradenschar mit zunehmendem Alter im Alter von 7-12 Jahren (zu $t0$). Insbesondere zeigt sich hierbei, dass sich bei den 13-Jährigen (20 Jahre zu $t1$) der Steigerungskoeffizient nicht mehr signifikant vom Wert 0 unterscheidet (one-sample t-Test vs. 0; $t=1,64$; $df=48=p=,12$), d.h. kein signifikanter Leistungszuwachs mehr gegeben ist (Stagnation).

11-jährige ($t0$) weibliche Studienteilnehmer zeigen im Verlauf der sechs Jahre noch eine Leistungssteigerung von ca. 4,5 cm, im Alter von 12 Jahren (18 Jahre zu $t1$) um ca. 1,8 cm, mit 13 Jahren von 1,6 cm, mit 14 Jahren tritt der erste Verlust von -0,4 cm ein und mit 15 Jahren von -1,6 cm.

Tabelle 40 zeigt die Ergebnisse der dreifaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung ergibt eine signifikante Veränderung der Beweglichkeitsleistung im Verlauf der sechs Jahre. Signifikant werden außerdem die Wechselwirkungen des Zeitintervalls mit der Altersgruppe (aufgeklärte Varianz 2,90 %) und dem Geschlecht (aufgeklärte Varianz 0,30 %). Es zeigt sich in Altersgruppe 1 zunächst eine Abnahme der Beweglichkeit über die Zeit, in Altersgruppe 2 und 3 zeigt sich eine Steigerung und in Altersgruppe 4 eine Stagnation. Die Gesamtbetrachtung der männlichen Teilnehmer verdeutlicht eine Verschlechte-
Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

rung der Beweglichkeitsleistung im Verlauf der sechs Jahre, während die weiblichen Teilnehmer ihre Beweglichkeitsleistung verbessern (über alle Altersgruppen: männlich $\Delta_{t_{1}-t_{0}}$: MW= -0,53 cm; weiblich $\Delta_{t_{1}-t_{0}}$: MW=1,43 cm).

Tabelle 40: Veränderung der Leistung bei der Rumpfbeuge nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschlecht</td>
<td>F_{1,2130}=18,62</td>
<td>.00</td>
<td>.01</td>
<td>0,90%</td>
</tr>
<tr>
<td>Altersgruppe (AG)</td>
<td>F_{3,2130}=6,68</td>
<td>.01</td>
<td>.003</td>
<td>0,30%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschlecht</td>
<td>F_{1,2130}=172,78</td>
<td>.00</td>
<td>.075</td>
<td>7,50%</td>
</tr>
<tr>
<td>Altersgruppe (AG)</td>
<td>F_{3,2130}=6,68</td>
<td>.01</td>
<td>.003</td>
<td>0,30%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Geschlecht</td>
<td>F_{1,2130}=6,83</td>
<td>.01</td>
<td>.003</td>
<td>0,30%</td>
</tr>
<tr>
<td>Zeit*AG</td>
<td>F_{1,2130}=22,14</td>
<td>.00</td>
<td>.029</td>
<td>2,90%</td>
</tr>
<tr>
<td>ZeitAGGeschlecht</td>
<td>F_{1,2130}=20,15</td>
<td>.00</td>
<td>.028</td>
<td>2,80%</td>
</tr>
</tbody>
</table>

Da die Interaktionen mit der Altersgruppe signifikant werden, wird die Varianzanalyse mit Messwiederholung für die Altersgruppen differenziert durchgeführt (siehe Tabelle 41).

Tabelle 41: Ergebnisse der zweifaktoriellen Varianzanalyse bei der Rumpfbeuge

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>F-Wert Zeit</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>F-Wert Zeit*Sex</th>
<th>Signifikanz</th>
<th>Eta²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (4-5 Jahre)</td>
<td>F_{1,276}=35,19</td>
<td>.00</td>
<td>.113</td>
<td>F_{1,190}=0,08</td>
<td>0,77 (n.s.)</td>
<td>.000</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F_{1,190}=4,94</td>
<td>.03</td>
<td>.028</td>
<td>F_{3,481}=58,81</td>
<td>.00</td>
<td>.169</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F_{1,167}=1,37</td>
<td>.00</td>
<td>.039</td>
<td>F_{3,165}=27,73</td>
<td>.000</td>
<td>.144</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F_{1,2276}=3,10</td>
<td>.00</td>
<td>.037</td>
<td>F_{1,2276}=10,51</td>
<td>.00</td>
<td>.037</td>
</tr>
</tbody>
</table>

In allen Altersgruppen ist eine signifikante Leistungsveränderung über die Zeit gegeben. In Altersgruppe 3 zeigen sich keine geschlechtsspezifischen Unterschiede bezogen auf die Veränderung der Beweglichkeit im Verlauf der sechs Jahre.

Da sich in den Altersgruppe 1, 2 und 4 signifikante Zeit*Geschlecht-Interaktionen zeigen, wird die Varianzanalyse für die Altersgruppe und das Geschlecht differenziert berechnet:

Tabelle 42: Ergebnisse der einfaktoriellen Varianzanalyse bei der Rumpfbeuge

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>F-Wert männlich: Zeiteffekt</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>F-Wert weiblich: Zeiteffekt</th>
<th>Signifikanz</th>
<th>Eta²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (4-5 Jahre)</td>
<td>F_{1,276}=35,19</td>
<td>.00</td>
<td>.113</td>
<td>F_{1,190}=0,08</td>
<td>0,77 (n.s.)</td>
<td>.000</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F_{1,190}=4,94</td>
<td>.03</td>
<td>.028</td>
<td>F_{3,481}=58,81</td>
<td>.00</td>
<td>.169</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F_{1,167}=1,37</td>
<td>.00</td>
<td>.039</td>
<td>F_{3,165}=27,73</td>
<td>.000</td>
<td>.144</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F_{1,2276}=3,10</td>
<td>.00</td>
<td>.037</td>
<td>F_{1,2276}=10,51</td>
<td>.00</td>
<td>.037</td>
</tr>
</tbody>
</table>

In den Altersgruppen 2 bis 3 ist bei den weiblichen Studienteilnehmern eine Verbesserung der Beweglichkeit gegeben. In Altersgruppe 1 und 4 liegt keine signifikante Leistungsverände-
5 Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

...Kern...{Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht...}

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t0 untersucht. Die Ergebnisse der zweifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t0 zeigen, dass ein geschlechterspezifischer signifikanter Unterschied bei der Rumpfbeuge zu t0 besteht (F_{1,213}=150,79; p=.00; \eta^2=.066). Weibliche Studienteilnehmer erreichen zu t0 bessere Werte bei der Rumpfbeuge als männliche zu t0. Die Altersgruppen unterscheiden sich ebenfalls im Ausgangsniveau (F_{3,213}=13,28; p=.00; \eta^2=.018). In Altersgruppe 1 und der Altersgruppe 4 werden die besten Leistungen bei der Rumpfbeuge erreicht.

5.6. Zusammenfassung: Entwicklungsverläufe nach Alter und Geschlecht

Im Folgenden findet sich eine Übersicht über die Geradenscharen (Z-Wert transformiert) für die unterschiedlichen Fähigkeitsbereiche und denen ihnen zugehörigen 10 Testitems. Die Geradenscharen ergeben sich aus den linearen Verbindungen des ersten (t0) und zweiten Messzeitpunktes (t1). Sie werden für jeden Altersjahrgang von 4-17 Jahren gezeichnet. Im Gegensatz zur detaillierten Darstellung der Kurvenscharen in vorangegangenen Kapiteln 5.1 bis 5.5, werden im Folgenden die Rohwerte -aus welchen sich die Geradenscharen ergeben- Z-Wert transformiert (siehe Kapitel 4.5.5) und in einer Grafik für beide Geschlechter dargestellt. Diese Transformation ermöglicht, die Verläufe der Geradenscharen direkt zwischen den 10 einzelnen Testitems und somit auch zwischen den Fähigkeitsbereichen zu vergleichen.

Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 von männlichen und weiblichen Teilnehmern für die einzelnen Jahrgänge, so zeigt sich bei 8 von 10 Testitems eine Reduktion mit zunehmendem Alter. D.h. der Leistungszuwachs nimmt mit zunehmendem Alter der Teilnehmer ab. Illustriert wird das durch die abflachenden Steigungen der Geradenschar mit zunehmendem Alter (nicht bei: PWC 170 relativ, Rumpfbeuge). Vor allem bei den konditionellen Testaufgaben (Standweitsprung, Liegestützen, PWC 170 relativ) zeigen sich unterschiedliche Verläufe zwischen den Geschlechtern (Schereneffekt bei Standweitsprung, Liegestützen). Gewinn, Stagnation und Verlust treten zu unterschiedlichen Zeitpunkten ein. Bei den weiblichen Teilnehmer kann bei 7 von 10 Testaufgaben statistisch eine Stagnation oder ein Verlust in der Entwicklung der motorischen Leistungsfähigkeit festge-
5 Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

stellt werden (nicht beim: Seitlichen Hin- und Herspringen, MLS Stifte einstecken, MLS Linien nachfahren). Die Stagnation bei den weiblichen Teilnehmern tritt bei den konditionellen Testaufgaben (Standweitsprung, Liegestützen, PWC 170 relativ) ab 11 Jahren (zu t0) ein. Beim Reaktionstest zeigt sich ebenfalls eine Stagnation ab 11 Jahren (t0), beim Einbeinstand ab 10 Jahren (t0), beim Balancieren rückwärts ab 17 Jahren (t0) und beim der Rumpfbeuge ab 13 Jahren (t0). Bei den männlichen Studienteilnehmern zeigt sich bei 4 von 10 Testaufgaben eine Stagnation (Stagnation beim Einbeinstand ab 17 Jahren zu t0, PWC 170 relativ ab 13 Jahren zu t0, Reaktionstest ab 12 Jahren zu t0, Rumpfbeuge ab 16 Jahren zu t0).

Abbildung 36: Leistungsveränderung beim Fahrrad-Ausdauertest PWC 170 relativ von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre)

Abbildung 37: Leistungsveränderung beim Standweitsprung von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre)
5 Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

Abbildung 38: Leistungsveränderung bei den Liegestützen von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre)

Abbildung 39: Leistungsveränderung beim Reaktionstest von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre)

Abbildung 40: Leistungsveränderung beim Seitlichen Hin- und Herspringen von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre)
Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

Abbildung 41: Leistungsveränderung beim Einbeinstand von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre)

Abbildung 42: Leistungsveränderung beim Balancieren rückwärts von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre)

Abbildung 43: Leistungsveränderung beim MLS Stifte einstecken von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre)
5 Darstellung der Ergebnisse zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

Abbildung 44: Leistungsveränderung beim MLS Linien nachfahren von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre)

Abbildung 45: Leistungsveränderung der Rumpfbeuge von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre)

Tabelle 43 gibt einen Gesamtüberblick über die Ergebnisse der dreifaktoriellen Varianzanalyse (Zeit*Altersgruppe*Geschlecht) für die 10 Testitems der MoMo-Längsschnittstudie.

Betrachtet man die Entwicklung der motorischen Leistungsfähigkeit zwischen den Messzeitpunkten t0 und t1 nach Alter (Altersgruppe), so ist bei allen 10 Testaufgaben ein signifikanter Alterseffekt gegeben.

Betrachtet man die Entwicklung der motorischen Leistungsfähigkeit zwischen den Messzeitpunkten t0 und t1 nach Geschlecht, so ist bei 6 von 10 Testaufgaben ein signifikanter Effekt des Geschlechts gegeben. Kein Einfluss des Geschlechts auf die Entwicklung der motorischen Leistungsfähigkeit im Verlauf der sechs Jahre zeigt sich beim Reaktionstest, beim Balancie-
ren rückwärts, beim MLS Linien nachfahren und beim Fahrrad-Ausduerstest (relative PWC 170).

Im Modell „Zeit*Altersgruppe*Geschlecht“ entfällt auf das Alter bei 9 von 10 Testaufgaben - verglichen mit dem Geschlecht- der größere aufgeklärte Varianzanteil (ausgenommen Liegestützen).

Tabelle 43: Überblick der statistischen Überprüfung des Einflusses der Altersgruppe und des Geschlechts auf die Entwicklung der motorischen Leistungsfähigkeit und das Ausgangsniveau (t0) (Gesamtbetrachtung über die 4-17 Jährigen zu t0)

<table>
<thead>
<tr>
<th>Testaufgabe</th>
<th>Entwicklung (Zeit*Gruppe)</th>
<th>Ausgangsniveau (t0)</th>
<th>Kapitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWC 170 relativ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe</td>
<td>✓</td>
<td>etα²=0,036</td>
<td>✓ etα²=0,020</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>✗</td>
<td>✓ etα²=0,132</td>
<td>✓ etα²=0,135</td>
</tr>
<tr>
<td>Standweitsprung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe</td>
<td>✓</td>
<td>etα²=0,408</td>
<td>✓ etα²=0,639</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>✓</td>
<td>etα²=0,106</td>
<td>✓ etα²=0,092</td>
</tr>
<tr>
<td>Liegestützen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe</td>
<td>✓</td>
<td>etα²=0,042</td>
<td>✓ etα²=0,16</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>✓</td>
<td>etα²=0,088</td>
<td>✗</td>
</tr>
<tr>
<td>Reaktionstest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe</td>
<td>✓</td>
<td>etα²=0,483</td>
<td>✓ etα²=0,584</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>✗</td>
<td>✓ etα²=0,086</td>
<td>✗</td>
</tr>
<tr>
<td>Seitliches Hin-und Herspringen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe</td>
<td>✓</td>
<td>etα²=0,508</td>
<td>✓ etα²=0,712</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>✓</td>
<td>etα²=0,032</td>
<td>✗</td>
</tr>
<tr>
<td>Einbeinstand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe</td>
<td>✓</td>
<td>etα²=0,469</td>
<td>✓ etα²=0,472</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>✓</td>
<td>etα²=0,035</td>
<td>✓ etα²=0,013</td>
</tr>
<tr>
<td>Balancieren rückwärts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe</td>
<td>✓</td>
<td>etα²=0,349</td>
<td>✓ etα²=0,419</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>✗</td>
<td>✓ etα²=0,017</td>
<td>✗</td>
</tr>
<tr>
<td>MLS Linien nachfahren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe</td>
<td>✓</td>
<td>etα²=0,104</td>
<td>✓ etα²=0,226</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>✗</td>
<td>✓ etα²=0,029</td>
<td>✗</td>
</tr>
<tr>
<td>MLS Stifte einsteeken</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe</td>
<td>✓</td>
<td>etα²=0,564</td>
<td>✓ etα²=0,627</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>✓</td>
<td>etα²=0,010</td>
<td>✓ etα²=0,018</td>
</tr>
<tr>
<td>Rumpfbeuge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altersgruppe</td>
<td>✓</td>
<td>etα²=0,029</td>
<td>✓ etα²=0,018</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>✓</td>
<td>etα²=0,003</td>
<td>✓ etα²=0,066</td>
</tr>
</tbody>
</table>

Die Betrachtung der motorischen Leistungsfähigkeit der Längsschnittprobanden zu t0 nach Alter (Altersgruppe) ergibt signifikante Alterseffekte bei 10 von 10 Testaufgaben.

Die Betrachtung der motorischen Leistungsfähigkeit der Längsschnittprobanden zu t0 nach Geschlecht ergibt signifikante Geschlechtseffekte bei 9 von 10 Testaufgaben. Lediglich beim Seitlichen Hin- und Herspringen zeigen sich keine geschlechtsspezifischen Unterschiede im Ausgangsniveau (t0).

Abbildung 46 veranschaulichen grafisch in Form von „Leistungsprofilen“ für den ersten (t0) und zweiten Messzeitpunkt (t1) den Einfluss des Geschlechtes auf das Leistungsniveau zu t0 und t1 für die 10 Testaufgaben.

Abbildung Abbildung 47 veranschaulichen grafisch in Form von „Entwicklungsprofilen“ im Verlauf der sechs Jahre, den Einfluss des Geschlechtes auf die Entwicklung der Leistung (Δt1- t0) für die 10 Testaufgaben.
Zur Darstellung der Profile wurden die Z-Wert standardisierten Werte herangezogen. Die Darstellung in Z-Werten (siehe Kapitel 4.5.5) (Y-Achse) ermöglicht einen Vergleich zwischen den unterschiedlichen Testaufgaben, welche auf der X-Achse abgebildet werden. Somit ergeben sich drei Profile: a) für den ersten Messzeitpunkt t0, b) den zweiten Messzeitpunkt t1 und c) die Entwicklung. Diese können jeweils für männliche und weibliche Studienteilnehmer abgebildet und verglichen werden.

Abbildung 46: Leistungsniveaus zu t0 und t1 in Abhängigkeit des Geschlechts (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte)

Abbildung 47: Entwicklung der Leistung von t0 zu t1 in Abhängigkeit des Geschlechts (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte)
Tabelle 44 gibt einen Überblick über die aufgeklärte Varianz der Entwicklung der motorischen Leistungsfähigkeit \(\Delta t1-t2 \). Das Modell umfasst die Zwischensubjektfaktoren Geschlecht und Altersgruppe. Die höchste Varianzaufklärung findet sich für das MLS Stifte einstecken (56,5%), für das seitliche Hin- und Herspringen (51,9%) und den Standweitsprung (50,3%). Die kleinste Varianzaufklärung des Modells findet sich für die Entwicklung der Leistung beim MLS Linien nachfahren (1,0%), bei der relativen Ausdauerleistungsfähigkeit (5,3%) und der Rumpfbeuge (7,3%).

\[
\begin{array}{|l|c|c|}
\hline
\text{Testaufgabe} & \text{SEX*ALTERSGRUPPE} & \text{angepasstes } R^2 \\
\hline
\Delta \text{PWC rel.} & 0,053 & 0,049 \\
\Delta \text{PWC} & 0,375 & 0,372 \\
\Delta \text{Standweitsprung} & 0,503 & 0,502 \\
\Delta \text{Liegestützen} & 0,109 & 0,106 \\
\Delta \text{Reaktionstest} & 0,487 & 0,486 \\
\Delta \text{Seitliches Hin- und Herspringen} & 0,519 & 0,518 \\
\Delta \text{Balancieren rückwärts} & 0,351 & 0,349 \\
\Delta \text{Einbeinstand} & 0,472 & 0,470 \\
\Delta \text{MLS Stifte einstecken} & 0,565 & 0,564 \\
\Delta \text{MLS Linien nachfahren} & 0,010 & 0,007 \\
\Delta \text{Rumpfbeuge} & 0,073 & 0,070 \\
\hline
\end{array}
\]

Differenz t2-t1; Interaktion: SEX*ALTERSGRUPPE
5.7. Stabilität der motorischen Leistungsfähigkeit

Diese Werte werden in Tabelle Tabelle 45 für das Geschlecht und die Altersgruppen angegeben.

Tabelle 45: Stabilität der motorischen Leistungsfähigkeit über den Untersuchungszeitraum t0 bis t1 von 6 Jahren

<table>
<thead>
<tr>
<th>Altersgruppe (t0)</th>
<th>sex</th>
<th>N</th>
<th>r</th>
<th>p</th>
<th>Fisher Z-Transform.</th>
<th>r²</th>
<th>sex</th>
<th>N</th>
<th>p</th>
<th>Fisher Z-Transform.</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Standweitsprung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gesamt</td>
<td></td>
</tr>
<tr>
<td>4-5 Jahre</td>
<td>männlich</td>
<td>280</td>
<td>0.459 **</td>
<td>0.496</td>
<td>0.211</td>
<td>297</td>
<td>0.433 **</td>
<td>0.464</td>
<td>0.188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-10 Jahre</td>
<td>männlich</td>
<td>470</td>
<td>0.664 **</td>
<td>0.800</td>
<td>0.441</td>
<td>479</td>
<td>0.542 **</td>
<td>0.607</td>
<td>0.294</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-13 Jahre</td>
<td>männlich</td>
<td>163</td>
<td>0.556 **</td>
<td>0.627</td>
<td>0.309</td>
<td>164</td>
<td>0.715 **</td>
<td>0.893</td>
<td>0.509</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-17 Jahre</td>
<td>männlich</td>
<td>133</td>
<td>0.729 **</td>
<td>0.927</td>
<td>0.531</td>
<td>142</td>
<td>0.821 **</td>
<td>1.160</td>
<td>0.674</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>weiblich</td>
<td>1046</td>
<td>0.775 **</td>
<td>1.333</td>
<td>0.601</td>
<td>1082</td>
<td>0.491 **</td>
<td>0.537</td>
<td>0.241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liegestützen</td>
<td></td>
</tr>
<tr>
<td>4-5 Jahre</td>
<td>männlich</td>
<td>459</td>
<td>0.377 **</td>
<td>0.397</td>
<td>0.142</td>
<td>476</td>
<td>0.208 **</td>
<td>0.211</td>
<td>0.043</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-10 Jahre</td>
<td>männlich</td>
<td>162</td>
<td>0.368 **</td>
<td>0.386</td>
<td>0.135</td>
<td>162</td>
<td>0.521 **</td>
<td>0.578</td>
<td>0.271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-13 Jahre</td>
<td>männlich</td>
<td>133</td>
<td>0.457 **</td>
<td>0.494</td>
<td>0.209</td>
<td>140</td>
<td>0.319 **</td>
<td>0.331</td>
<td>0.102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>weiblich</td>
<td>754</td>
<td>0.453 **</td>
<td>0.488</td>
<td>0.206</td>
<td>778</td>
<td>0.301 **</td>
<td>0.311</td>
<td>0.091</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaktionszeit</td>
<td></td>
</tr>
<tr>
<td>4-5 Jahre</td>
<td>männlich</td>
<td>279</td>
<td>0.257 **</td>
<td>0.263</td>
<td>0.066</td>
<td>293</td>
<td>0.207 **</td>
<td>0.210</td>
<td>0.043</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-10 Jahre</td>
<td>männlich</td>
<td>466</td>
<td>0.178 **</td>
<td>0.180</td>
<td>0.032</td>
<td>483</td>
<td>0.259 **</td>
<td>0.265</td>
<td>0.067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-13 Jahre</td>
<td>männlich</td>
<td>166</td>
<td>0.28 **</td>
<td>0.288</td>
<td>0.078</td>
<td>166</td>
<td>0.375 **</td>
<td>0.394</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-17 Jahre</td>
<td>männlich</td>
<td>134</td>
<td>0.169 *</td>
<td>0.171</td>
<td>0.029</td>
<td>143</td>
<td>0.265 **</td>
<td>0.271</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>weiblich</td>
<td>1045</td>
<td>0.374 **</td>
<td>0.393</td>
<td>0.14</td>
<td>1085</td>
<td>0.394 **</td>
<td>0.417</td>
<td>0.155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWC 170</td>
<td></td>
</tr>
<tr>
<td>4-5 Jahre</td>
<td>männlich</td>
<td>357</td>
<td>0.356 **</td>
<td>0.356</td>
<td>0.127</td>
<td>330</td>
<td>0.338 **</td>
<td>0.352</td>
<td>0.114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-10 Jahre</td>
<td>männlich</td>
<td>119</td>
<td>0.302 **</td>
<td>0.302</td>
<td>0.091</td>
<td>126</td>
<td>0.487 **</td>
<td>0.532</td>
<td>0.237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-13 Jahre</td>
<td>männlich</td>
<td>100</td>
<td>0.454 **</td>
<td>0.490</td>
<td>0.206</td>
<td>109</td>
<td>0.506 **</td>
<td>0.557</td>
<td>0.256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>weiblich</td>
<td>576</td>
<td>0.335 **</td>
<td>0.348</td>
<td>0.112</td>
<td>565</td>
<td>0.39 **</td>
<td>0.319</td>
<td>0.156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWC 170</td>
<td></td>
</tr>
<tr>
<td>4-5 Jahre</td>
<td>männlich</td>
<td>357</td>
<td>0.593 **</td>
<td>0.682</td>
<td>0.352</td>
<td>331</td>
<td>0.475 **</td>
<td>0.517</td>
<td>0.226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-10 Jahre</td>
<td>männlich</td>
<td>120</td>
<td>0.339 **</td>
<td>0.353</td>
<td>0.115</td>
<td>128</td>
<td>0.492 **</td>
<td>0.539</td>
<td>0.242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-13 Jahre</td>
<td>männlich</td>
<td>100</td>
<td>0.473 **</td>
<td>0.517</td>
<td>0.226</td>
<td>112</td>
<td>0.605 **</td>
<td>0.701</td>
<td>0.366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>weiblich</td>
<td>577</td>
<td>0.76 **</td>
<td>0.518</td>
<td>0.578</td>
<td>571</td>
<td>0.435 **</td>
<td>0.466</td>
<td>0.189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beweglichkeit</td>
<td></td>
</tr>
<tr>
<td>4-5 Jahre</td>
<td>männlich</td>
<td>277</td>
<td>0.499 **</td>
<td>0.548</td>
<td>0.249</td>
<td>297</td>
<td>0.565 **</td>
<td>0.640</td>
<td>0.319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-10 Jahre</td>
<td>männlich</td>
<td>470</td>
<td>0.557 **</td>
<td>0.628</td>
<td>0.311</td>
<td>482</td>
<td>0.643 **</td>
<td>0.763</td>
<td>0.414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-13 Jahre</td>
<td>männlich</td>
<td>168</td>
<td>0.715 **</td>
<td>0.897</td>
<td>0.511</td>
<td>166</td>
<td>0.779 **</td>
<td>1.043</td>
<td>0.607</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-17 Jahre</td>
<td>männlich</td>
<td>136</td>
<td>0.736 **</td>
<td>0.942</td>
<td>0.541</td>
<td>142</td>
<td>0.726 **</td>
<td>0.920</td>
<td>0.527</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>weiblich</td>
<td>1051</td>
<td>0.592 **</td>
<td>0.681</td>
<td>0.351</td>
<td>1087</td>
<td>0.656 **</td>
<td>0.786</td>
<td>0.431</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* ** Korrelation ist bei Niveau 0.01 signifikant (zweiseitig).

Bei den weiblichen Studienteilnehmern zeigt sich bei 2 von 10 Testaufgaben eine kontinuierliche Zunahme des Korrelationskoeffizienten von Altersgruppe 1 bis Altersgruppe 4 (Standweitsprung, PWC relativ). Bei 4 von 10 Testaufgaben zeigt sich bei den weiblichen Studienteilnehmern eine Zunahme des Korrelationskoeffizienten bis Altersgruppe 3 und dann eine Abnahme in der Altersgruppe 4 (Liegestützen, Reaktionstest, Beweglichkeit, Balancieren rückwärts). Beim Seitlichen Hin- und Herspringen und beim MLS Stifte einstecken, zeigt sich

Tabelle: Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

<table>
<thead>
<tr>
<th>Altersgruppe (in Jahren)</th>
<th>Geschlecht</th>
<th>N</th>
<th>r</th>
<th>p</th>
<th>Fisher Z-Transform.</th>
<th>r^2</th>
<th>Geschlecht</th>
<th>N</th>
<th>r</th>
<th>p</th>
<th>Fisher Z-Transform.</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-5</td>
<td>männlich</td>
<td>275</td>
<td>0,405</td>
<td>**</td>
<td>0,430</td>
<td>0,397</td>
<td>weiblich</td>
<td>295</td>
<td>0,397</td>
<td>**</td>
<td>0,420</td>
<td>0,157</td>
</tr>
<tr>
<td>6-10</td>
<td>weiblich</td>
<td>465</td>
<td>0,47</td>
<td>**</td>
<td>0,510</td>
<td>0,41</td>
<td>männlich</td>
<td>481</td>
<td>0,41</td>
<td>**</td>
<td>0,436</td>
<td>0,168</td>
</tr>
<tr>
<td>11-13</td>
<td>männlich</td>
<td>160</td>
<td>0,482</td>
<td>**</td>
<td>0,526</td>
<td>0,232</td>
<td>weiblich</td>
<td>162</td>
<td>0,483</td>
<td>**</td>
<td>0,527</td>
<td>0,233</td>
</tr>
<tr>
<td>14-17</td>
<td>weiblich</td>
<td>133</td>
<td>0,746</td>
<td>**</td>
<td>0,964</td>
<td>0,556</td>
<td>männlich</td>
<td>142</td>
<td>0,647</td>
<td>**</td>
<td>0,770</td>
<td>0,419</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>1033</td>
<td>0,615</td>
<td>**</td>
<td>0,717</td>
<td>0,378</td>
<td>weiblich</td>
<td>1080</td>
<td>0,511</td>
<td>**</td>
<td>0,564</td>
<td>0,261</td>
</tr>
</tbody>
</table>

Entwicklung des Standweitspringens

- 4-5 Jahre: 0,273, ** 0,280, 0,075
- 6-10 Jahre: 0,385, ** 0,406, 0,148
- 11-13 Jahre: 0,471, ** 0,511, 0,222
- 14-17 Jahre: 0,614, ** 0,715, 0,377
- Gesamt: 0,341, ** 0,355, 0,116

Entwicklung des Einbeinstandes

- 4-5 Jahre: 0,279, 0,316, ** 0,327, 0,1
- 6-10 Jahre: 0,362, ** 0,379, 0,131
- 11-13 Jahre: 0,497, ** 0,545, 0,247
- 14-17 Jahre: 0,462, ** 0,500, 0,213
- Gesamt: 0,372, ** 0,391, 0,138

Entwicklung des Balancierens rückwärts

- 4-5 Jahre: 0,282, 0,482, ** 0,526, 0,233
- 6-10 Jahre: 0,362, ** 0,412, 0,152
- 11-13 Jahre: 0,497, ** 0,475, 0,195
- 14-17 Jahre: 0,462, ** 0,457, 0,183
- Gesamt: 0,56, ** 0,633, 0,313

Entwicklung des MLS Stifte einstecken

- 4-5 Jahre: 0,183, 0,183, * 0,185, 0,033
- 6-10 Jahre: 0,326, ** 0,338, 0,106
- 11-13 Jahre: 0,304, ** 0,314, 0,093
- 14-17 Jahre: 0,373, ** 0,392, 0,139
- Gesamt: 0,414, ** 0,440, 0,171

** **Korrelation ist bei Niveau 0,01 signifikant (zweiseitig).**
zunächst von Altersgruppe 1 zu Altersgruppe 2 eine Abnahme des Koeffizienten, dann aber eine kontinuierliche Zunahme. Wie bereits bei den männlichen Studienteilnehmern zeigt sich beim MLS Liniennachfahren aber auch beim Einbeinstand eine differentielle Entwicklung des Korrelationskoeffizienten über die Altersgruppen 1 bis 4.

Bei den männlichen Studienteilnehmern zeigt sich der höchste Korrelationskoeffizient für die Leistung beim Standweitsprung \((r=0,775; r^2=0,601)\) gefolgt vom Seitlichen Hin- und Her- springen \((r=0,615; r^2=0,378)\). Bei den weiblichen Studienteilnehmer zeigt sich der höchste Korrelationskoeffizient für die Leistung bei der Rumpfbeuge \((r=0,656; r^2=0,421)\) gefolgt vom Standweitsprung \((r=0,601; r^2=0,241)\). Bei den männlichen Studienteilnehmern zeigen sich die kleinsten Korrelationskoeffizienten für die relative Leistung bei Fahrradausdauertest \((PWC_{real.}: r=0,335; r^2=0,112)\) und beim Einbeinstand \((r=0,341; r^2=0,116)\). Bei den weiblichen Teilnehmern ist der Koeffizient ebenfalls beim Einbeinstand \((r=0,242; r^2=0,058)\) und bei den Liegestützen am kleinsten \((r=0,301, r^2=0,091)\).

5.7.1 Zusammenfassung der Ergebnisse zur Stabilität der motorischen Leistungsfähigkeit

Die Ergebnisse zur Stabilität der 10 Testaufgaben lassen erkennen, dass die Stabilitätskoeffizienten in Abhängigkeit von der betrachteten Altersgruppe, also der Höhe des Ausgangsalters und der betrachteten motorischen Fähigkeit variieren.

Beim Vergleich der Korrelationskoeffizienten der Altersgruppen 1 und 4 zeigt sich bei den männlichen Studienteilnehmern bei 8 von 10 Testaufgaben ein Anstieg des Korrelationskoeffizienten (Abnahme bei Reaktionstest; MLS Stifte einstecken).

Beim Vergleich der Korrelationskoeffizienten der Altersgruppen 1 und 4 zeigt sich bei den weiblichen Studienteilnehmern bei allen Testaufgaben ein Anstieg der Korrelationskoeffizienten.

Bei den männlichen Studienteilnehmern liegt der Korrelationskoeffizient zwischen \(r=0,775; r^2=0,601\) beim Standweitsprung und \(r=0,335; r^2=0,112\) für die relative Leistung bei Fahrradausdauertest. Bei den weiblichen Studienteilnehmern liegt der Korrelationskoeffizient zwischen \(r=0,656; r^2=0,421\) für die Leistung bei der Rumpfbeuge \(r=0,242; r^2=0,058\) für den Einbeinstand.

Zusammenfassend zeigen sich im Verlauf der sechs Jahre überwiegend geringe bis mittlere Korrelationskoeffizienten für die motorischen Leistungsfähigkeit bei den 10 Testaufgaben. Die Stabilitäten der motorischen Leistungsfähigkeit liegen unter den Stabilitäten für die somatischen Merkmale wie z. B. der Körperförite \((r=0,799\) oder dem Körpervicht \(r=0,789)\).
5.8. Direktionalität der Entwicklung der motorischen Leistungsfähigkeit

Abbildung 48 verdeutlicht, dass die Entwicklung der motorischen Leistungsfähigkeit in fast allen Altersgruppen und nahezu zwischen allen Dimensionen unterschiedlich und somit multidirektional verläuft.

![Diagramm der Direktionalität motorischer Entwicklung](image)

Abbildung 48: Direktionalität der Entwicklung der motorischen Leistungsfähigkeit zwischen ausgewählten Dimensionen (Fehlerbalken entsprechen 95%-Konfidenzintervall)

Der T-Test für abhängige Stichproben über die Differenzen von t0 zu t1 (Δ_{t1-t0}) der verschiedenen Dimensionen wird durch die einzelnen Testaufgaben (PWC realtiv, Standweitsprung, Balancieren rückwärts, Reaktionstest und Rumpfbeuge) parametrisiert. Es werden zwischen nahezu allen Dimensionen der motorischen Leistungsfähigkeit in allen Altersgruppen signifikante Unterschiede deutlich. Eine unidirektionale Entwicklung von t0 zu t1 zeigt sich für die Rumpfbeuge und den Standweitsprung in der Altersgruppe 4 und für die Rumpfbeuge und das Balancieren rückwärts in den Altersgruppen 3 und 4 sowie für die relative PWC 170 und die Rumpfbeuge in den Altersgruppen 2 und 4 und der relativen PWC 170 und dem Reaktionstest in der Altersgruppe 2 (vgl. Abbildung 48).

Festgestellt werden kann: Die Entwicklung der motorischen Leistungsfähigkeit verläuft unterschiedlich zwischen den Dimensionen und somit multidirektional.
<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>T-test für abhängige Stichproben</th>
<th>t</th>
<th>df</th>
<th>p</th>
<th>Multidirektionalität</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG 1</td>
<td>Rumpfbeuge Δ_{t1-t0} - Standweitsprung Δ_{t1-t0}</td>
<td>-28,40</td>
<td>540</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 2</td>
<td>Rumpfbeuge Δ_{t1-t0} - Standweitsprung Δ_{t1-t0}</td>
<td>-19,87</td>
<td>931</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 3</td>
<td>Rumpfbeuge Δ_{t1-t0} - Standweitsprung Δ_{t1-t0}</td>
<td>-2,04</td>
<td>313</td>
<td>0,04</td>
<td>✔</td>
</tr>
<tr>
<td>AG 4</td>
<td>Rumpfbeuge Δ_{t1-t0} - Standweitsprung Δ_{t1-t0}</td>
<td>0,81</td>
<td>269</td>
<td>0,42</td>
<td>×</td>
</tr>
<tr>
<td>AG 1</td>
<td>Rumpfbeuge Δ_{t1-t0} - Balancieren rw. Δ_{t1-t0}</td>
<td>-33,42</td>
<td>543</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 2</td>
<td>Rumpfbeuge Δ_{t1-t0} - Balancieren rw. Δ_{t1-t0}</td>
<td>-15,49</td>
<td>933</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 3</td>
<td>Rumpfbeuge Δ_{t1-t0} - Balancieren rw. Δ_{t1-t0}</td>
<td>0,28</td>
<td>315</td>
<td>0,78</td>
<td>×</td>
</tr>
<tr>
<td>AG 4</td>
<td>Rumpfbeuge Δ_{t1-t0} - Balancieren rw. Δ_{t1-t0}</td>
<td>-1,82</td>
<td>269</td>
<td>0,07</td>
<td>×</td>
</tr>
<tr>
<td>AG 1</td>
<td>Reaktionstest Δ_{t1-t0} - Standweitsprung Δ_{t1-t0}</td>
<td>-22,08</td>
<td>543</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 2</td>
<td>Reaktionstest Δ_{t1-t0} - Standweitsprung Δ_{t1-t0}</td>
<td>-12,16</td>
<td>933</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 3</td>
<td>Reaktionstest Δ_{t1-t0} - Standweitsprung Δ_{t1-t0}</td>
<td>4,68</td>
<td>315</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 4</td>
<td>Reaktionstest Δ_{t1-t0} - Standweitsprung Δ_{t1-t0}</td>
<td>2,98</td>
<td>269</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 1</td>
<td>Reaktionstest Δ_{t1-t0} - Balancieren rw. Δ_{t1-t0}</td>
<td>-2,49</td>
<td>543</td>
<td>0,01</td>
<td>✔</td>
</tr>
<tr>
<td>AG 2</td>
<td>Reaktionstest Δ_{t1-t0} - Balancieren rw. Δ_{t1-t0}</td>
<td>-5,89</td>
<td>933</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 3</td>
<td>Reaktionstest Δ_{t1-t0} - Balancieren rw. Δ_{t1-t0}</td>
<td>-8,88</td>
<td>315</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 4</td>
<td>Reaktionstest Δ_{t1-t0} - Balancieren rw. Δ_{t1-t0}</td>
<td>-9,94</td>
<td>269</td>
<td>0,00</td>
<td>✔</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>T-test für abhängige Stichproben</th>
<th>t</th>
<th>df</th>
<th>p</th>
<th>Multidirektionalität</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG 1</td>
<td>Balancieren rw. Δ_{t1-t0} - Standweitsprung Δ_{t1-t0}</td>
<td>12,54</td>
<td>540</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 2</td>
<td>Balancieren rw. Δ_{t1-t0} - Standweitsprung Δ_{t1-t0}</td>
<td>-4,34</td>
<td>931</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 3</td>
<td>Balancieren rw. Δ_{t1-t0} - Standweitsprung Δ_{t1-t0}</td>
<td>-4,13</td>
<td>313</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 4</td>
<td>Balancieren rw. Δ_{t1-t0} - Standweitsprung Δ_{t1-t0}</td>
<td>5,33</td>
<td>269</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 1</td>
<td>Reaktionstest Δ_{t1-t0} - PWC rel. Δ_{t1-t0}</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✔</td>
</tr>
<tr>
<td>AG 2</td>
<td>Reaktionstest Δ_{t1-t0} - PWC rel. Δ_{t1-t0}</td>
<td>1,02</td>
<td>679</td>
<td>0,31</td>
<td>×</td>
</tr>
<tr>
<td>AG 3</td>
<td>Reaktionstest Δ_{t1-t0} - PWC rel. Δ_{t1-t0}</td>
<td>-2,23</td>
<td>241</td>
<td>0,03</td>
<td>✔</td>
</tr>
<tr>
<td>AG 4</td>
<td>Reaktionstest Δ_{t1-t0} - PWC rel. Δ_{t1-t0}</td>
<td>-5,25</td>
<td>205</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 1</td>
<td>Balancieren rw. Δ_{t1-t0} - PWC rel. Δ_{t1-t0}</td>
<td>-26,22</td>
<td>685</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 2</td>
<td>Balancieren rw. Δ_{t1-t0} - PWC rel. Δ_{t1-t0}</td>
<td>-10,51</td>
<td>244</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 3</td>
<td>Balancieren rw. Δ_{t1-t0} - PWC rel. Δ_{t1-t0}</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✔</td>
</tr>
<tr>
<td>AG 4</td>
<td>Balancieren rw. Δ_{t1-t0} - PWC rel. Δ_{t1-t0}</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✔</td>
</tr>
<tr>
<td>AG 1</td>
<td>Rumpfbeuge Δ_{t1-t0} - PWC rel. Δ_{t1-t0}</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✔</td>
</tr>
<tr>
<td>AG 2</td>
<td>Rumpfbeuge Δ_{t1-t0} - PWC rel. Δ_{t1-t0}</td>
<td>-1,35</td>
<td>679</td>
<td>0,18</td>
<td>×</td>
</tr>
<tr>
<td>AG 3</td>
<td>Rumpfbeuge Δ_{t1-t0} - PWC rel. Δ_{t1-t0}</td>
<td>-6,21</td>
<td>242</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 4</td>
<td>Rumpfbeuge Δ_{t1-t0} - PWC rel. Δ_{t1-t0}</td>
<td>-1,43</td>
<td>207</td>
<td>0,16</td>
<td>×</td>
</tr>
<tr>
<td>AG 1</td>
<td>Standweitsprung Δ_{t1-t0} - PWC rel. Δ_{t1-t0}</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✔</td>
</tr>
<tr>
<td>AG 2</td>
<td>Standweitsprung Δ_{t1-t0} - PWC rel. Δ_{t1-t0}</td>
<td>-43,78</td>
<td>681</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 3</td>
<td>Standweitsprung Δ_{t1-t0} - PWC rel. Δ_{t1-t0}</td>
<td>-12,71</td>
<td>239</td>
<td>0,00</td>
<td>✔</td>
</tr>
<tr>
<td>AG 4</td>
<td>Standweitsprung Δ_{t1-t0} - PWC rel. Δ_{t1-t0}</td>
<td>-2,93</td>
<td>206</td>
<td>0,00</td>
<td>✔</td>
</tr>
</tbody>
</table>
6 Darstellung der Ergebnisse zu ausgewählten Einflussfaktoren der Entwicklung der motorischen Leistungsfähigkeit

Kapitel 6 widmet sich der zweiten Fragestellung. Die Ergebnisse zum Einfluss des Sozialstatus, des Aktivitätsverhaltens und der Körperkonstitution werden dargestellt.

Forschungsfrage 2: Wie verläuft die Entwicklung der motorischen Leistungsfähigkeit vom Kindes- bis ins frühe Erwachsenenalter (4-23 Jahre) in Abhängigkeit ausgewählter externer und interner Einflussfaktoren (Sozialstatus, Aktivitätsverhalten, Körperkonstitution)?

Zur Beantwortung der zweiten Fragestellung werden die Daten folgender Testaufgaben, stellvertretend für die unterschiedlichen Dimensionen der Motorik, auf den Einfluss des Aktivitätsverhaltens und der Körperkonstitution analysiert: PWC 170 relativ (relative Ausdauerleistungsfähigkeit), Standweitsprung (Kraft), Reaktionstest (Reaktionsschnelligkeit), Balancieren rückwärts (großmotorische Koordination unter Präzisionsdruck), Seitliches Hin- und Her springen (großmotorische Koordination unter Zeitdruck), Rumpfbeuge (Beweglichkeit), Stifte einstecken (feinmotorische Koordination).

Der Sozialstatus wird durch den Winkler-Index, das Aktivitätsverhalten wir durch die Vereinsmitgliedschaft und die körperliche Aktivität an 60 Minuten am Tag pro Woche parametriert. Als eine Variable der Körperkonstitution wird der BMI herangezogen.

6.1. Einfluss des Sozialstatus auf die Entwicklung der motorischen Leistungsfähigkeit

Im Folgenden wird der Einfluss des Sozialstatus auf die motorische Leistungsfähigkeit (ausgewählte Testaufgaben für die Dimensionen Ausdauer, Kraft, Schnelligkeit, Beweglichkeit, Koordination) untersucht.

Die errechneten Mittelwerte der einzelnen Testitems (Rohwerte) der Längsschnittprobanden von Baseline (t0) und Welle1 (t1) in Abhängigkeit von Alter, Geschlecht und Sozialstatus-Gruppe befinden sich im Anhang V. Die vierfaktorielle Varianzanalyse wird kontrolliert für das Geschlecht und das Alter (Altersgruppe) (siehe Kapitel 4.5.4). Dargestellt wird im Folgenden lediglich der Effekt der Sozialstatus-Gruppe, sowie die Interaktion der Sozialstatus-Gruppe mit dem Zeitintervall und die „Zeit*Sozialstaus-Gruppen*Geschlecht“- Interaktion.
6 Darstellung der Ergebnisse zu ausgewählten Einflussfaktoren

6.1.1 Deskriptive Analyse zur Verteilung des Sozialstatus

Abbildung 49 zeigt die Verteilung des Sozialstatus in der Motorik-Längsschnittstichprobe zum ersten Messzeitpunkt t0. 52% der Studienteilnehmer werden dem mittleren Sozialstatus zugeordnet, 18,3% dem niedrigen Sozialstatus und 29,8% dem hohen Sozialstatus.

Abbildung 49: Verteilung des Sozialstatus in der Motorik-Längsschnittstichprobe zu t0

<table>
<thead>
<tr>
<th>Sozialstatus</th>
<th>gesamt männlich</th>
<th>männlich</th>
<th>weiblich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niedriger</td>
<td>395 (18,3 %)</td>
<td>200 (18,8 %)</td>
<td>195 (17,8 %)</td>
</tr>
<tr>
<td>Mittlerer</td>
<td>1124 (52 %)</td>
<td>551 (51,7 %)</td>
<td>573 (52,2 %)</td>
</tr>
<tr>
<td>Hoher</td>
<td>644 (29,8 %)</td>
<td>315 (29,5 %)</td>
<td>329 (30 %)</td>
</tr>
</tbody>
</table>

6.1.2 Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung Ausdauerleistungsfähigkeit

Fahrrad-Ausdauertest

Der Fahrrad-Ausdauertest wird erst ab einem Alter von 6 Jahren durchgeführt, deshalb entfällt die Altersgruppe 1.

6 Darstellung der Ergebnisse zu ausgewählten Einflussfaktoren

Tabelle 47: Veränderung der Leistung bei Fahrrad-Ausdauertest (PWC 170 relativ) nach Alter (Altersgruppe) Geschlecht und Sozialstatus-Gruppe, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifizanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>F₁,₁₁₁₂=11,99</td>
<td>.00</td>
<td>.01</td>
<td>1,10%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sozialstatus-Gruppe</td>
<td>F₂,₁₁₁₂=7,26</td>
<td>.00</td>
<td>.01</td>
<td>1,30%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Sozialstatus-Gruppe</td>
<td>F₂,₁₁₁₂=0,46</td>
<td>.63 (n.s.)</td>
<td>.00</td>
<td>0,10%</td>
</tr>
<tr>
<td>ZeitGeschlechtSozialstatus-Gruppe</td>
<td>F₂,₁₁₁₂=2,631</td>
<td>0,07 (n.s.)</td>
<td>.01</td>
<td>0,05%</td>
</tr>
</tbody>
</table>

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t₀ in Abhängigkeit der Sozialstatus-Gruppe untersucht. Es zeigen sich signifikante Unterschiede im Ausgangsniveau (t₀) bezogen auf den Sozialstatus (F₂,₁₁₁₂=4,19; p=.02; eta²=.007). Die Gruppe mit einem niedrigen Sozialstatus unterscheidet sich von der Gruppe mit einem mittleren und hohen Sozialstatus. Die Gruppe mit einem niedrigen Sozialstatus lassen die geringste Leistungsfähigkeit beim Fahrrad-Ausdauertest erkennen.

6.1.3 Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung Kraftfähigkeit

Standweitsprung

Tabelle 47 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung verdeutlicht, dass keine signifikant unterschiedlichen Leistungsveränderungen beim Standweitsprung über die Zeit in Abhängigkeit des Sozialstatus gegeben ist.

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifizanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>F₁,₁₁₂₀=3369,00</td>
<td>.00</td>
<td>.61</td>
<td>61,60%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sozialstatus-Gruppe</td>
<td>F₂,₁₁₂₀=25,46</td>
<td>.00</td>
<td>.02</td>
<td>2,40%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Sozialstatus-Gruppe</td>
<td>F₂,₁₁₂₀=0,919</td>
<td>.40 (n.s.)</td>
<td>.00</td>
<td>0,10%</td>
</tr>
<tr>
<td>ZeitGeschlechtSozialstatus-Gruppe</td>
<td>F₂,₁₁₂₀=0,788</td>
<td>0,45 (n.s.)</td>
<td>.00</td>
<td>0,10%</td>
</tr>
</tbody>
</table>

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t₀ in Abhängigkeit der Sozialstatus-Gruppe untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt (t₀) zeigen, dass der Sozialstatus (F₂,₁₁₁₂=20,49; p=.00; eta²=.02) das Ausgangsniveau t₀ beim Standweitsprung beeinflusst. Teilnehmer mit einem hohen Sozialstatus haben ein besseres Ausgangsniveau als Teilnehmer mit einem niedrigen Sozialstatus.
6.1.4 Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der Reaktions- schnelligkeit

Reaktionsschnelligkeit

Tabelle 49 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung zeigt eine signifikant unterschiedliche Veränderung der Leistung beim Reaktionstest im Verlauf der sechs Jahre in Abhängigkeit der Sozialstatus-Gruppe (aufgeklärte Varianz 0,50 %). Der Post-hoc Test (Scheffé) zeigt jedoch keine signifikanten Unterschiede zwischen den Sozialstatusgruppen.

Tabelle 49: Veränderung der Leistung beim Reaktionstest nach Alter (Altersgruppe) Geschlecht und Sozialstatus-Gruppe, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>(F_{1,2102}=951,77)</td>
<td>.00</td>
<td>.31</td>
<td>31,20%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sozialstatus-Gruppe</td>
<td>(F_{2,2102}=0,96)</td>
<td>.39 (n.s.)</td>
<td>.00</td>
<td>0,10%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Sozialstatus-Gruppe</td>
<td>(F_{2,2102}=5,08)</td>
<td>.01</td>
<td>.01</td>
<td>0,50%</td>
</tr>
<tr>
<td>ZeitGeschlechtSozialstatus-Gruppe</td>
<td>(F_{2,2102}=0,41)</td>
<td>.66 (n.s.)</td>
<td>.00</td>
<td>0,00%</td>
</tr>
</tbody>
</table>

Wird die Varianzanalyse für die Altersgruppe und das Geschlecht differenziert durchgeführt, wird die Wechselwirkungen mit dem Sozialstatus lediglich in der Altersgruppe 1 signifikant, allerdings nicht auf dem 0,01 Signifikanzniveau (in AG 1: Zeit*Sozialstatus: \(F_{2, 563}= 3,16 p=.04\); \(\eta^2= ,01\)).

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t0 in Abhängigkeit der Sozialstatus-Gruppe untersucht. Es zeigen sich keine signifikante Unterschiede im Ausgangsniveau t0 bezogen auf den Sozialstatus (\(F_{2,2125}=0,57\); \(p=,56\); \(\eta^2=,00\)).

6.1.5 Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der Koordination

Balancieren rückwärts

Tabelle 50 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung verdeutlicht, dass signifikant unterschiedliche Leistungsveränderungen beim Balancieren rückwärts im Verlauf der sechs Jahre, in Abhängigkeit der Sozialstatus-Gruppe (Varianzaufklärung 0,5%) gegeben sind. Studienteilnehmer mit einem hohen Sozialstatus haben eine stärkere Leistungssteigerung als Studienteilnehmer mit einem niedrigen Sozialstatus.
6 Darstellung der Ergebnisse zu ausgewählten Einflussfaktoren

Tabelle 50: Veränderung der Leistung beim Balancieren rückwärts nach Alter (Altersgruppe) Geschlecht und Sozialstatus-Gruppe, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th>Haupteffekt</th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozialstatus-Gruppe</td>
<td>F₁,2₁₁₅=1705,08</td>
<td>.00</td>
<td>.45</td>
<td>44,50%</td>
</tr>
</tbody>
</table>

Die Sozialstatus beeinflusst in den Altersgruppen 1 und 4 die Entwicklung beim Balancieren rückwärts (siehe Tabelle 51).

Tabelle 51: Ergebnisse der dreifaktoriellen Varianzanalyse beim Balancieren rückwärts

<table>
<thead>
<tr>
<th>Zeit*Sozialstatus</th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (4-5 Jahre)</td>
<td>F₁,5₆₈=3,18</td>
<td>.04</td>
<td>.010</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F₁,₉₅₄=0.98</td>
<td>.38 (n.s.)</td>
<td>.000</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F₁,₃₃₀=0.05</td>
<td>.95 (n.s.)</td>
<td>.000</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F₁,₂₆₇ = 3,93</td>
<td>.02</td>
<td>.030</td>
</tr>
</tbody>
</table>

Männliche Teilnehmer mit einem hohen Sozialstatus verbessern sich um \(MW_{Δt₁-t₀} = 13,6 \) Schritte; Teilnehmer mit einem niedrigen Sozialstatus zeigen eine Verbesserung um: \(MW_{Δt₁-t₀} = 11,5 \) Schritte. Besonders auffällig ist der Unterschied in der Entwicklung der Leistung in der Altersgruppe 4: männliche Teilnehmer mit einem niedrigen Sozialstatus verbessern ihre Leistung über die Zeit um \(MW_{Δt₁-t₀} = 0,8 \) Schritte; männliche Teilnehmer mit einem hohen Sozialstatus um \(MW_{Δt₁-t₀} = 6,1 \) Schritte.

Weibliche Teilnehmer mit einem hohen Sozialstatus verbessern sich um 2,7 Schritte mehr als weibliche Teilnehmer mit einem niedrigen Sozialstaus (Gesamtbetrachtung: höherer Sozialstatus: Verbesserung um \(MW_{Δt₁-t₀} = 12,7 \) Schritte; niedriger Sozialstatus: Verbesserung um \(MW_{Δt₁-t₀} = 10,0 \) Schritte). Diese unterschiedlichen Verbesserungen werden vor allem in der Altersgruppe 1 deutlich, in Altersgruppe 4 zeigen sich hingegen keine deutlichen Unterschiede.

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau \(t₀ \) in Abhängigkeit der Sozialstatus-Gruppen untersucht. In Abhängigkeit der Sozialstatus-Gruppen zeigt sich kein signifikanter Unterschied auf 0,01 Signifikanzniveau im Ausgangsniveau (Sozialstatus: \(F₂,2₁₄₇=3,80; p=,02; \text{eta}²=,00 \)).

191
Seitliches Hin- und Herspringen

Tabelle 52 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamt betrachtung zeigt eine signifikant unterschiedliche Leistungsveränderung beim Seitlichen Hin- und Herspringen im Verlauf der sechs Jahre in Abhängigkeit der Sozialstatus-Gruppe (aufgeklärte Varianz 1,10 %). Die Teilnehmer mit einem hohen Sozialstatus haben eine signifikant größere Leistungssteigerung im Verlauf der sechs Jahre verglichen mit Teilnehmern mit einem niedrigen Sozialstatus.

Bei den männlichen Studienteilnehmern zeigen sich geringe Differenzen bezogen auf den Sozialstatus. D.h. männliche Studienteilnehmer mit einem hohen Sozialstatus springen im Durchschnitt 2 Sprünge mehr in 15 Sekunden (männlich: Δt1-t0 hoher Sozialstatus: MW=17,1 Sprünge; Δt1-t0 niedriger Sozialstatus: MW=15,00 Sprünge).

Bei den weiblichen Studienteilnehmern zeigen sich ebenfalls geringen Differenzen in den Zuwächsen beim Seitlichen Hin- und Herspringen im Verlauf der sechs Jahre (Gesamtbetrachtung: Δt1-t0 hoher Sozialstatus: MW=14,9 Sprünge; Δt1-t0 niedriger Sozialstatus: MW=11,7 Sprünge). Diese Differenzen werden vor allem in der Altersgruppe 1 deutlich.

Da die Interaktionen mit der Altersgruppe signifikant werden wird die Varianzanalyse mit Messwiederholung für die Altersgruppen differenziert durchgeführt (siehe Tabelle 53).

Tabelle 53: Ergebnisse der dreifaktoriellen Varianzanalyse beim Seitlichen Hin- und Herspringen

<table>
<thead>
<tr>
<th>Zeit*Sozialstatus</th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (4-5 Jahre) F_1,310= 8,29</td>
<td>.00</td>
<td>.030</td>
<td></td>
</tr>
<tr>
<td>2 (6-10 Jahre) F_1,939 = 1,42</td>
<td>0,24 (n.s.)</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>3 (11-13 Jahre) F_1,311 = 1,86</td>
<td>0,16 (n.s.)</td>
<td>.010</td>
<td></td>
</tr>
<tr>
<td>4 (14-17 Jahre) F_1,267= 4,74</td>
<td>.01</td>
<td>.030</td>
<td></td>
</tr>
</tbody>
</table>

Die Wechselwirkungen mit dem Sozialstatus werden in Altersgruppe 1 und 4 signifikant, die aufgeklärte Varianz liegt in beiden Altersgruppen bei 3 %.
Da sich in allen Altersgruppen signifikante Zeit*Geschlecht-Interaktionen zeigen, wird die Varianzanalyse für die Altersgruppen und das Geschlecht differenziert berechnet (siehe Tabelle 54).

Tabelle 54: Ergebnisse der zweifaktoriellen Varianzanalyse beim Seitlichen Hin- und Herspringen

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>männlich: Zeit*Sozialstatus</th>
<th>weiblich: Zeit*Sozialstatus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-Wert</td>
<td>Sig.</td>
</tr>
<tr>
<td>1 (4-5 Jahre)</td>
<td>(F_{1,271} = 81,53)</td>
<td>0,22 (n.s.)</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>(F_{1,40} = 1,23)</td>
<td>0,29 (n.s.)</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>(F_{1,158} = 3,91)</td>
<td>0,02</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>(F_{1,129} = 4,13)</td>
<td>0,02</td>
</tr>
</tbody>
</table>

Es zeigt sich für die männlichen Studienteilnehmer in Altersgruppe 1 und 2 keine signifikante Zeit*Sozialstatus-Interaktion. In Altersgruppe 3 und 4 wird diese Interaktion signifikant. Die aufgeklärte Varianz liegt zwischen 5% und 6%. Bei den weiblichen Studienteilnehmern wird die Zeit*Sozialstatus-Interaktion in der Altersgruppe 1 signifikant und erklärt 6% der Varianz.

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t0 in Abhängigkeit der Sozialstatus-Gruppen untersucht. Es zeigen sich auf dem 0,01Signifikanzniveau keine statistisch bedeutsamen Unterschiede im Ausgangsniveau (t0) in Abhängigkeit des Sozialstatus (\(F_{2,210} = 3,14; p = .04; \eta^2 = .00\)).

MLS Stifte einstecken

6 Darstellung der Ergebnisse zu ausgewählten Einflussfaktoren

Tabelle 55: Veränderung der Leistung beim MLS Stifte einstecken nach Alter (Altersgruppe), Geschlecht und Sozialstatus-Gruppe, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupeffekt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F_{1,2106}=3200,25</td>
<td>.00</td>
<td>.60</td>
<td>60,30%</td>
</tr>
<tr>
<td>Zwischensubjektfekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sozialstatus-Gruppe</td>
<td>F_{2,2106}=0,95</td>
<td>.39 (n.s.)</td>
<td>.00</td>
<td>0,10%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Sozialstatus-Gruppe</td>
<td>F_{2,2106}=0,59</td>
<td>.55 (n.s.)</td>
<td>.00</td>
<td>0,10%</td>
</tr>
<tr>
<td>ZeitGeschlechtSozialstatus-Gruppe</td>
<td>F_{2,2106}=0,67</td>
<td>.51 (n.s.)</td>
<td>.00</td>
<td>0,10%</td>
</tr>
</tbody>
</table>

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t0 in Abhängigkeit der Sozialstatus-Gruppen untersucht. Es zeigen sich keine signifikanten Unterschiede zu t0 in Abhängigkeit des Sozialstatus (F_{2,2130}=0,57; p=.57; \eta^2=.00).

6.1.6 Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der Beweglichkeit

Rumpfbeuge

Tabelle 56: Veränderung der Leistung beim MLS Stifte einstecken nach Alter (Altersgruppe), Geschlecht und Sozialstatus-Gruppe, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F_{1,2110}=14,27</td>
<td>.00</td>
<td>.01</td>
<td>0,70%</td>
</tr>
<tr>
<td>Zwischensubjektfekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sozialstatus-Gruppe</td>
<td>F_{2,2110}=0,85</td>
<td>.43 (n.s.)</td>
<td>.00</td>
<td>0,10%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Sozialstatus-Gruppe</td>
<td>F_{2,2110}=0,47</td>
<td>.62 (n.s.)</td>
<td>.00</td>
<td>0,00%</td>
</tr>
<tr>
<td>ZeitGeschlechtSozialstatus-Gruppe</td>
<td>F_{2,2110}=0,47</td>
<td>.63 (n.s.)</td>
<td>.00</td>
<td>0,00%</td>
</tr>
</tbody>
</table>

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t0 in Abhängigkeit der Sozialstatus-Gruppen untersucht. Bezogen auf die Sozialstatus-Gruppen zeigt sich auch hier kein signifikanter Leistungsunterschied zu t0 (Sozialstatus: F_{2,2090}=2,24; p=.11; \eta^2=.02).
6.1.7 Zusammenfassung der Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der motorischen Leistungsfähigkeit

Tabelle 57 gibt einen Überblick über die Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der motorischen Leistungsfähigkeit bei den sieben ausgewählten Testaufgaben der MoMo-Längsschnittstudie.

Der Sozialstatus beeinflusst die Entwicklung der motorischen Leistungsfähigkeit bei 3 von 7 Testaufgaben. Der Einfluss ist beim Reaktionstest und bei den beiden Testitmen der großmotorischen Koordination (Seitliches Hin- und Herspringen, Balancieren rückwärts) gegeben. Es zeigen sich jedoch lediglich sehr geringe Effektstärken.

Table 57: Zusammenfassung der statistischen Überprüfung des Einflusses des Sozialstatus auf das Ausgangsniveau (t0) sowie die Entwicklung (Zeit*Gruppe-Interaktion (4-17 Jahre zu t0)

<table>
<thead>
<tr>
<th>Testaufgabe/Dimension</th>
<th>Entwicklung (Zeit*Gruppe)</th>
<th>Ausgangsniveau (t0)</th>
<th>Kapitel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signifikanz</td>
<td>Effektstärke</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>PWC 170 relativ Ausdauer</td>
<td>Sozialstatus-Gr.</td>
<td>✗</td>
<td>✓ (p=0.02)</td>
</tr>
<tr>
<td>Standweitsprung Kraft</td>
<td>Sozialstatus-Gr.</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Reaktionstest Reaktionsgeschwindigkeit</td>
<td>Sozialstatus-Gr.</td>
<td>✓</td>
<td>etα2=0.005</td>
</tr>
<tr>
<td>Balancieren rückwärts großmotor. Koordination/Präzision</td>
<td>Sozialstatus-Gr.</td>
<td>✓</td>
<td>etα2=0.002</td>
</tr>
<tr>
<td>Seitliches Hin- und Herspringen großmotor. Koordination (Zeitdruck)</td>
<td>Sozialstatus-Gr.</td>
<td>✓</td>
<td>etα2=0.005</td>
</tr>
<tr>
<td>MLS Stifte einstecken feinmotor. Koordination (Zeitdruck)</td>
<td>Sozialstatus-Gr.</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Rumpfbewege Beweglichkeit</td>
<td>Sozialstatus-Gr.</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

Das motorische Ausgangsniveau der Längsschnittprobanden wird bei 4 von 7 Testaufgaben vom Sozialstatus beeinflusst. Dies ist der Fall für die konditionell determinierten Testaufgaben (PWC 170 relativ, Standweitsprung) und die Testaufgaben der großmotorischen Koordination (Balancieren rückwärts, Seitliches Hin- und Herspringen). Auch beim Einfluss des Sozialstatus auf das motorische Ausgangsniveau der Längsschnittprobanden zeigen sich sehr geringe Effektstärken.

Abbildung 50 veranschaulicht grafisch, in Form von „Leistungsprofilen“ für den ersten (t0) und zweiten Messzeitpunkt (t1), den Einfluss des Sozialstatus auf das Leistungsniveau zu t0 und t1 der sieben Testaufgaben. Abbildung 51 veranschaulicht in Form von „Entwicklungsprofilen“ im Verlauf der sechs Jahre den Einfluss des Sozialstatus auf die Entwicklung der Leistung (Δt1- t0) der sieben Testaufgaben.

Die Bildung von Z-Werten (siehe Kapitel 4.5.5) (Y-Achse) ermöglicht einen Vergleich zwischen den unterschiedlichen Testaufgaben, welche auf der X-Achse abgebildet werden. Somit ergeben sich drei Profile: für den ersten Messzeitpunkt t0, den zweiten Messzeitpunkt t1
(Abbildung 50) und die Entwicklung (Abbildung 51). Diese können jeweils für Studententeilnehmer mit einem hohen und niedrigen Sozialstatus abgebildet und verglichen werden.

![Abbildung 50: Leistungsniveau zu t0 und t1 in Abhängigkeit des Sozialstatus (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte)](image)

![Abbildung 51: Entwicklung der Leistung von t0 zu t1 in Abhängigkeit des Sozialstatus (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte)](image)

Tabelle 58 gibt einen Überblick über die aufgeklärte Varianz der Entwicklung der motorischen Leistungsfähigkeit Δt1-t2 für das Modell „Geschlecht*Altersgruppe*Sozialstatus“. Die höchste Varianzaufklärung zeigt sich beim Reaktionstest (52,8%) und für das seitliche Hin- und Herspringen (52,8%) und für den Standweitsprung (50,6%). Die geringste Varianzaufklärung erweist sich für die relative PWC 170 (6,7 %) und das Linien nachfahren (1,2%).
6.2. Der Einfluss der körperlich-sportlichen Aktivität auf die Entwicklung der motorischen Leistungsfähigkeit

Im Folgenden wird der Einfluss der körperlich-sportlichen Aktivität auf die motorische Leistungsfähigkeit (ausgewählte Testaufgaben für jede Dimension: Ausdauer, Kraft, Schnelligkeit, Beweglichkeit, Koordination) untersucht.

Die errechneten Mittelwerte der einzelnen Testitems (Rohwerte) der Längsschnittprobanden von Baseline (t0) und Welle1 (t1) in Abhängigkeit von Alter, Geschlecht und Aktivitätsgruppe (körperliche Aktivität) sind im Anhang VI. Die vierfaktorielle Varianzanalyse wird kontrolliert für das Geschlecht und das Alter (exakt) (siehe Kapitel 4.5.4). Dargestellt wird im Folgenden lediglich der Effekt der Aktivitätsgruppe, sowie die Interaktion der Aktivitätsgruppe mit dem Zeitintervall und die „Zeit*Aktivitätsgruppen*Geschlecht“-Interaktion.

6.2.1 Deskriptive Analyse der Aktivitätsentwicklung: körperliche Aktivität

Für die vorliegenden Analysen wurden die Studententeilnehmer entsprechend ihrer Angaben im MoMo-Aktivitätsfragebogen zur habituellen und aktuellen körperlichen Aktivität pro Woche in Gruppen eingeteilt (siehe detailliert: Kapitel 4.5.3). Die Fragen\(^\text{14}\) zur körperlichen Aktivität:

\(^{14}\) Frage 1: An wie vielen der letzten sieben Tage waren Sie/ Du für mindestens 60 min am Tag körperlich aktiv?
Frage 2: An wie vielen Tagen einer normalen Woche sind Sie/ Du für mindestens 60 min am Tag körperlich aktiv?
beziehen sich auf die gesamte Zeit in der zuletzt vergangenen Woche bzw. einer normalen Woche, welche die Studienteilnehmer jeden Tag körperlich aktiv sind/ waren. Dabei können Auswahlmöglichkeiten von 0 Tage bis 7 Tage pro Woche angegeben werden. Erfragt werden die aktuelle und die habituelle körperliche Aktivität. Aus den beiden Fragebogenitems wird ein Index gebildet. Der Index wird umkodiert in die folgenden zwei Gruppen:

0-3 Tage = geringere Aktivität
4-7 Tage = höhere Aktivität.

Somit bestehen vier unterschiedliche Kombinationsmöglichkeiten für die Bildung von „Aktivitäts-Entwicklungsgruppen“ im Verlauf der sechs Jahre (t0 bis t1): „persistent Aktive“, „persistent Inaktive“, „Steigerer“, „Reduzierer“.

Abbildung 52: Verteilung der „Aktivitäts-Wechslergruppen“ (Tage/Woche) nach Geschlecht, 0-3 Tage: geringere wöchentliche körperliche Aktivität („Inaktive“) und 4-7 Tage: höhere wöchentliche körperliche Aktivität („Aktive“)

<table>
<thead>
<tr>
<th>Aktivitäts-Wechslergruppen (Tage/Woche)</th>
<th>männlich</th>
<th>weiblich</th>
</tr>
</thead>
<tbody>
<tr>
<td>höhere Aktivität t0 & t1</td>
<td>734 (37,4 %)</td>
<td>420 (43,7 %)</td>
</tr>
<tr>
<td>geringere Aktivität t0 & t1</td>
<td>370 (18,9 %)</td>
<td>144 (15,0 %)</td>
</tr>
<tr>
<td>reduzierte Aktivität</td>
<td>533 (27,2 %)</td>
<td>239 (24,8 %)</td>
</tr>
<tr>
<td>reduzierte Aktivität</td>
<td>323 (16,5 %)</td>
<td>159 (16,5 %)</td>
</tr>
</tbody>
</table>

Insgesamt geben 37,4% der Studienteilnehmer an, 4-7 Tagen in der Woche für mindestens 60 Minuten am Tag körperlich aktiv zu sein, und behalten dieses Verhalten auch im Verlauf der sechs Jahre bei (folgend als „persistent Aktive“ bezeichnet). 18,9% zählen zu den weniger Aktiven zu beiden Messzeitpunkten, d.h. sie sind lediglich an 0-3 Tagen pro Woche für mindestens 60 Minuten am Tag körperlich aktiv („persistent Inaktive“). 16,5% der Studienteilnehmer steigern ihr Aktivitätsverhalten über die Zeit („Aktivitäts-Steigerer“). Fast doppelt so viele Studienteilnehmer (27,2%) reduzieren ihre wöchentliche, körperliche Aktivität vom ersten zum zweiten Messzeitpunkt („Aktivitäts-Reduzierer“).
Die Anzahl der „persistent Aktiven“ (zu t0 und t1) ist bei den männlichen Studienteilnehmern höher (43,7%) als bei den weiblichen Studienteilnehmern (31,5%). Etwas mehr weibliche (29,5%), im Vergleich zu männlichen Studienteilnehmer (24,8%), reduzieren ihre Aktivität im Verlauf der sechs Jahre. Der Anteil an Personen, die zu beiden Messzeitpunkten eine geringe Aktivität aufweisen, ist in der Gruppe der 14-17-Jährigen am höchsten (34,9%) und in der Gruppe der 4-5-Jährigen mit 12% am geringsten. Der größte Anteil an Studienteilnehmer, welche ihren körperlichen Aktivität vom ersten zum zweiten Messzeitpunkt reduzieren, findet sich in der Altersgruppe der 4-5-Jährigen mit 29%, gefolgt von der Altersgruppe der 6-10-Jährigen mit 28,7%. Der Anteil der Teilnehmer, die ihre Aktivität reduzieren steigt mit zunehmendem Alter. Diese Ergebnisse stimmen mit dem aktuellen Forschungsstand überein: Dumith, Gigante, Domingues, & Kohl (2011) fanden in ihrem Review zu Längsschnittstudien zum Aktivitätsverhalten 10-19-Jähriger in 26 Studien eine Reduzierung der Aktivität ab der Adoleszenz.

Im Folgenden wird der Einfluss des Aktivitätsverhaltens auf die motorische Leistungsfähigkeit untersucht. Für diese Analysen werden ausgewählte Motoriktests zu den verschiedenen Motorikdimensionen herangezogen.

6.2.2 Ergebnisse zum Einfluss der körperlichen Aktivität auf die Entwicklung der Ausdauerleistungsfähigkeit

Fahrrad-Ausdauertest

Der Post-hoc Test (Scheffé) für die zweifaktorielle Varianzanalyse über die Differenz Δ_{t1-t0} differenziert nach Geschlecht veranschaulicht, dass bei den männlichen Teilnehmern die „persistent Aktiven“ ihre Leistung von t0 zu t1 signifikant mehr steigern als die „persistent Inaktiven“ und die Teilnehmer, die ihre Aktivität von t0 zu t1 reduzieren. Bei den weiblichen Teilnehmern wird deutlich, dass die „persistent Aktiven“ ihre Leistung von t0 zu t1 signifikant mehr steigern als die Teilnehmer, die ihre Aktivität von t0 zu t1 reduzieren.

Tabelle 59: Veränderung der Leistung beim Fahrrad-Ausdauertest (PWC 170 relativ) nach Alter (exakt), Geschlecht und Aktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung
Da die Interaktionen des Zeitintervalls mit dem Alter ($F_{1,1015}=32,15; \ p=,00; \ \eta^2=,031$) und dem Geschlecht ($F_{1,1015}=6,51; \ p=,01; \ \eta^2=,006$) signifikant werden, wird die Varianzanalyse zusätzlich für die Altersgruppe und das Geschlecht differenziert durchgeführt (siehe Tabelle 60).

Lediglich in der Altersgruppe 3 bei den männlichen Teilnehmern zeigen sich signifikante Unterschiede bezogen auf die Leistungsveränderungen in Abhängigkeit der Aktivitätsgruppe.

Tabelle 60: Veränderung der Leistung beim Fahrrad-Ausdauertest (PWC 170 relativ) in Abhängigkeit der Aktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>männlich: Zeit*Aktivitätsgruppe</th>
<th>weiblich: Zeit*Aktivitätsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (6-10 Jahre)</td>
<td>$F_{1,314}=1,50$, 0,21 (n.s.)</td>
<td>$F_{1,201}=2,56$, 0,06 (n.s.)</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>$F_{1,104}=2,26$, 0,09 (n.s.)</td>
<td>$F_{1,108}=1,37$, 0,26 (n.s.)</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>$F_{1,83}=3,05$, 0,09</td>
<td>$F_{1,94}=1,31$, 0,28 (n.s.)</td>
</tr>
</tbody>
</table>

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t_0 in Abhängigkeit der Aktivitätsgruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t_0 zeigen, dass ein signifikanter Unterschied beim Fahrrad-Ausdauertest zwischen den vier Aktivitätsgruppen besteht ($F_{3,1030}=9,88; \ p=,00; \ \eta^2=,029$). „Persistente Aktive“ schneiden zum ersten Messzeitpunkt beim Fahrrad-Ausdauertest besser ab, als die Teilnehmer der anderen Aktivitätsgruppen. Teilnehmer, die ihre Aktivität im Verlauf der sechs Jahre reduzieren, zeigen zu t_0 bessere Leistungen beim Fahrrad-Ausdauertest als Teilnehmer, die ihre Aktivität im Verlauf der sechs Jahre steigern.

6.2.3 Ergebnisse zum Einfluss der körperlichen Aktivität auf die Entwicklung der Kraftfähigkeit
Standweitsprung

Tabelle 61 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung zeigt eine signifikant unterschiedliche Leistungsveränderung beim Standweitsprung im Verlauf der sechs Jahre in Abhängigkeit der Aktivitätsgruppen. Der Post-hoc Test (Scheffé) für die zweifaktorielle Varianzanalyse über die Standweitsprung-Differenz Δt1-t0 differenziert nach Geschlecht verdeutlicht, dass bei den männlichen Teilnehmern die „persistent Inaktiven“ ihre Leistung von t0 zu t1 signifikant weniger steigern als alle anderen Aktivitätsgruppen. Die „Aktivitäts-Steigerer“ haben einen signifikant größere Leistungssteigerung über die Zeit als die „persistent Aktiven“ . Bei den weiblichen Teilnehmern zeigt sich, dass die „persistent“ Aktiven ihre Leistung von t0 zu t1 signifikant mehr steigern als alle anderen Aktivitätsgruppen. Die „persistent Inaktiven“ steigern ihre Leistung von t0 zu t1 signifikant weniger als alle anderen Aktivitätsgruppen.

Tabelle 61: Veränderung der Standweitsprungleistung nach Alter (exakt), Geschlecht und Aktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>F_{1,1913}=3550,61</td>
<td>.00</td>
<td>.65</td>
<td>65,00%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>körperliche Aktivität</td>
<td>F_{3,1913}=13,80</td>
<td>.00</td>
<td>.02</td>
<td>2,10%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*köAktivitätsgruppe</td>
<td>F_{3,1913}=10,11</td>
<td>.00</td>
<td>.02</td>
<td>2,00%</td>
</tr>
<tr>
<td>ZeitGeschlechtköAktivitätsgruppe</td>
<td>F_{3,1913}=13,80</td>
<td>.00</td>
<td>.02</td>
<td>2,10%</td>
</tr>
</tbody>
</table>

Da die Interaktionen des Zeitintervalls mit dem Alter (F_{1,1913}=1218,20; p=.00; eta²=.39) und dem Geschlecht (F_{1,1913}=340,56; p=.00; eta²=.15) signifikant werden, wird die Varianzanalyse zusätzlich für die Altersgruppen und das Geschlecht differenziert durchgeführt (siehe Tabelle 62). Bei den weiblichen Teilnehmern ist sich lediglich in der Altersgruppe 2 eine signifikante Interaktion des Zeitintervalls mit der Aktivitätsgruppe gegeben.

Bei den männlichen Teilnehmern zeigt sich in den Altersgruppen 1 bis 3 eine signifikante Interaktion des Zeitintervalls mit der Aktivitätsgruppe.
Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t0 in Abhängigkeit der Aktivitätsgruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t0 zeigen, dass ein signifikanter Unterschied beim Standweitsprung zwischen den vier Aktivitätsgruppen zu t0 besteht (F\textsubscript{3,1922}=5,64; p=.00; \eta2=.01). „Persistent Inaktive“ schneiden zum ersten Messzeitpunkt beim Standweitsprung besser ab, als „persistent Aktive“ und Teilnehmer, die ihre Aktivität von t0 zu t1 reduziert haben. Teilnehmer, die ihre Aktivität im Verlauf der sechs Jahre steigern, demonstrieren zu t0 bessere Leistungen beim Standweitsprung als „persistent Aktive“ und als „Aktivitäts-Reduzierer“.

6.2.4 Ergebnisse zum Einfluss der körperlichen Aktivität auf die Entwicklung der Reaktionsschnelligkeit

Reaktionstest

Tabelle 63 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamt betrachtung verdeutlicht, dass keine signifikant unterschiedlichen Leistungsveränderungen beim Reaktionstest im Verlauf der sechs Jahre in Abhängigkeit der Aktivitätsgruppen gegeben sind.

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>männlich: Zeit*Aktivitätsgruppe</th>
<th>weiblich: Zeit*Aktivitätsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (4-5 Jahre)</td>
<td>F\textsubscript{1,246}= 4,43</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F\textsubscript{1,417}= 3,52</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F\textsubscript{1,144}= 5,19</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F\textsubscript{1,114}= 1,35</td>
<td>Signifikanz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>männlich: Zeit*Aktivitätsgruppe</th>
<th>weiblich: Zeit*Aktivitätsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (4-5 Jahre)</td>
<td>F\textsubscript{1,208}= 0,40</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F\textsubscript{1,424}= 7,96</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F\textsubscript{3,344}= 0,40</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F\textsubscript{3,325}= 1,39</td>
<td>Signifikanz</td>
</tr>
</tbody>
</table>

Tabelle 63: Veränderung der Leistung beim Reaktionstest nach Alter (exakt), Geschlecht und Aktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta2</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptidefekt Zeit</td>
<td>F\textsubscript{1,1919}=2850,43</td>
<td>.00</td>
<td>.60</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td>körperliche Aktivität</td>
<td>F\textsubscript{1,1919}=0,98</td>
<td>.40</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td>Zeit*kö. Aktivitätsgruppe</td>
<td>F\textsubscript{1,1919}=1,21</td>
<td>.31 (n.s.)</td>
</tr>
<tr>
<td>ZeitGeschlecht kö. Aktivitätsgruppe</td>
<td>F\textsubscript{1,1919}=0,71</td>
<td>.55 (n.s.)</td>
<td>.00</td>
</tr>
</tbody>
</table>
Die geschlechts- und altersspezifische Analyse bestätigt das Ergebnis des Gesamtbetrachtungs in Tabelle 63. Sowohl bei den weiblichen Teilnehmern als auch bei den männlichen zeigt sich in keiner Altersgruppe eine signifikante Interaktion des Zeitintervalls mit der Aktivitätsgruppe.

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t0 in Abhängigkeit der Aktivitätsgruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t0 verdeutlichen, dass kein signifikanter Unterschied beim Reaktionstest zu t0 zwischen den vier Aktivitätsgruppen besteht (F₃,1928=0,58; p=.63; eta²=.00).

6.2.5 Ergebnisse zum Einfluss des körperlichen Aktivität auf die Koordination

Großmotorische Koordination bei dynamischen Präzisionsaufgaben: Balancieren rückwärts

Tabelle 64 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung zeigt eine signifikant unterschiedliche Veränderung der Leistung beim Balancieren rückwärts im Verlauf der sechs Jahre in Abhängigkeit der Aktivitätsgruppen. Der Post-hoc Test (Scheffé) der zweifaktoriellen Varianzanalyse für die Standweitsprung-Differenz Δt₁-t₀ differenziert nach Geschlecht veranschaulicht, dass bei den männlichen Teilnehmern die „persistent Inaktiven“ ihre Leistung von t0 zu t1 signifikant weniger steigern als die „persistent Aktiven“ und die Teilnehmer, die ihre Aktivität von t0 zu t1 reduzieren. Außerdem verbessern die persistent Aktiven ihre Leistung signifikant mehr als die „persistent Inaktiven“ (Schereneffekt). Bei den weiblichen Teilnehmern verbessern „persistent“ Aktiven ihre Balancierleistung signifikant mehr als alle anderen Gruppen. Die „persistent inaktiven“ Teilnehmer haben einen geringeren Leistungszuwachs als die Teilnehmer, die ihre Aktivität im Verlauf der sechs Jahre reduzieren.

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>F₁,₁₉₁₆=2065,24</td>
<td>.00</td>
<td>.52</td>
<td>51,60%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>körperliche Aktivität</td>
<td>F₃,₁₉₁₆=6,97</td>
<td>.00</td>
<td>.01</td>
<td>1,10%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*kö.Aktivitätsgruppe</td>
<td>F₁,₁₉₁₆=3,34</td>
<td>.02</td>
<td>.01</td>
<td>0,50%</td>
</tr>
<tr>
<td>ZeitGeschlechtkö.Aktivitätsgruppe</td>
<td>F₁,₁₉₁₆=1,21</td>
<td>.31 (n.s.)</td>
<td>.00</td>
<td>0,20%</td>
</tr>
</tbody>
</table>

Tabelle 64: Veränderung der Leistung beim Balancieren rückwärts nach Alter (exakt), Geschlecht und Aktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung
Die Interaktionen des Zeitintervalls mit dem Alter wird signifikant \((F_{1,1936}=835,85; \ p=,00; \ \eta^2=.302)\), die Interaktion mit dem Geschlecht nicht \((F_{1,1936}=1,56; \ p=.21; \ \eta^2=.001)\).

Wird die Varianzanalyse zusätzlich für die Altersgruppe und das Geschlecht differenziert berechnet (siehe Tabelle 65) ist lediglich vereinzelt ein Einfluss der körperlichen Aktivität auf die leistungsveränderung gegeben.

Tabelle 65: Veränderung der Leistung beim Balancieren rückwärts in Abhängigkeit der Aktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>männlich: Zeit*Aktivitätsgruppe</th>
<th>weiblich: Zeit*Aktivitätsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-Wert</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>1 (4-5 Jahre)</td>
<td>F_{1,3,245} = 2,52</td>
<td>0,06 (n.s.)</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F_{1,1,53} = 1,53</td>
<td>0,21 (n.s.)</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F_{1,1} = 2,67</td>
<td>.049</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F_{1,1,11} = 0,94</td>
<td>0,43 (n.s.)</td>
</tr>
</tbody>
</table>

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau \(t_0\) in Abhängigkeit der Aktivitätsgruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt \(t_0\) zeigen, dass kein signifikanter Unterschied beim Balancieren rückwärts zu \(t_0\) zwischen den vier Aktivitätsgruppen besteht \((F_{3,1945}=1,60; \ p=.19; \ \eta^2=.00)\).

Großmotorische Koordination unter Zeitdruck: Seitliches Hin- und Herspringen

Der Post-hoc Test (Scheffé) für die zweifaktorielle Varianzanalyse über die Sprung-Differenz \(\Delta_{t1-t0}\) differenziert nach Geschlecht verdeutlicht, dass bei den männlichen Teilnehmern die „persistent Aktiven“ ihre Leistung im Verlauf der sechs Jahre signifikant stärker steigern als alle anderen Aktivitätsgruppen. Die männlichen Inaktiven zeigen einen signifikant geringeren Zuwachs als alle anderen Aktivitätsgruppen. Bei den weiblichen Teilnehmern steigern die „persistent Aktiven“ ihre Leistung signifikant mehr als alle anderen Gruppen. Außerdem zeigt sich für die „persistent inaktiven“, weiblichen Teilnehmer ein geringerer Leistungszuwachs als für alle anderen Aktivitätsgruppen. Darüber hinaus haben weiblichen Teilnehmer, die ihre Aktivität reduzieren, dennoch eine höhere Leistungssteigerung im über die Zeit als, die Teilnehmer die ihre Aktivität steigern.
6 Darstellung der Ergebnisse zu ausgewählten Einflussfaktoren

Tabelle 66: Veränderung der Leistung beim Seitlichen Hin- und Herspringen nach Alter (exakt), Geschlecht und Aktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>F<sub>1,1901</sub>=6391,47</td>
<td>.00</td>
<td>.77</td>
<td>77.10%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>körperliche Aktivität</td>
<td>F<sub>1,1901</sub>=13,79</td>
<td>.00</td>
<td>.02</td>
<td>2.10%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*kö.Aktivitätsgruppe</td>
<td>F<sub>1,1901</sub>=6,08</td>
<td>.00</td>
<td>.01</td>
<td>1.00%</td>
</tr>
<tr>
<td>ZeitGeschlechtkö.Aktivitätsgruppe</td>
<td>F<sub>1,1901</sub>=0,81</td>
<td>.49 (n.s.)</td>
<td>.00</td>
<td>0.10%</td>
</tr>
</tbody>
</table>

Da die Interaktionen des Zeitintervalls mit dem Alter (F_{1,1913}=1218,20; p=,00; eta²=.39) und dem Geschlecht (F_{1,1913}=340,56; p=,00; eta²=.15) signifikant werden, wird die Varianzanalyse zusätzlich für die Altersgruppen und das Geschlecht differenziert durchgeführt (siehe Tabelle 67).

Sowohl bei den männlichen als auch bei den weiblichen Teilnehmern zeigt sich in der Altersgruppe 1 eine signifikante Zeit* Aktivitätsgruppen-Interaktion. „Persistet aktive“ Teilnehmer verbessern sich deutlicher, als „persistent inaktive“ Teilnehmer.

Tabelle 67: Veränderung der Leistung beim Seitlichen Hin- und Herspringen in Abhängigkeit der Aktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>männlich: Zeit*Aktivitätsgruppe</th>
<th>weiblich: Zeit*Aktivitätsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-Wert</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>1 (4-5 Jahre)</td>
<td>F<sub>3,245</sub>= 4,64</td>
<td>.00</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F<sub>1,412</sub>= 1,73</td>
<td>0,16 (n.s.)</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F<sub>1,142</sub>= 2,67</td>
<td>0,06 (n.s.)</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F<sub>1,114</sub>= 0,48</td>
<td>0,70 (n.s.)</td>
</tr>
</tbody>
</table>

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t0 in Abhängigkeit der Aktivitätsgruppen untersucht.

Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t0 zeigen, dass kein signifikanter Unterschied zwischen den vier Aktivitätsgruppen besteht (F_{3,1910}=1,95; p=,.12; eta²=.00).
Feinmotorische Koordination unter Zeitdruck: MLS Stifte einstecken

Tabelle 68 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung zeigt keine signifikant unterschiedliche Veränderung der Leistung beim Stifte einstecken im Verlauf der sechs Jahre in Abhängigkeit der „Aktivitäts-Entwicklungsgruppen“.

Tabelle 68: Veränderung der Leistung beim Stifte einstecken nach Alter (exakt), Geschlecht und Aktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>F_{1,1922}=4249,06</td>
<td>,00</td>
<td>,69</td>
<td>68,90%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>körperliche Aktivität</td>
<td>F_{3,1922}=1,68</td>
<td>,17 (n.s.)</td>
<td>,00</td>
<td>0,30%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*kö.Aktivitätsgruppe</td>
<td>F_{3,1922}=1,27</td>
<td>,28 (n.s.)</td>
<td>,00</td>
<td>0,20%</td>
</tr>
<tr>
<td>ZeitGeschlechtkö.Aktivitätsgruppe</td>
<td>F_{3,1922}=2,50</td>
<td>,06 (n.s.)</td>
<td>,00</td>
<td>0,40%</td>
</tr>
</tbody>
</table>

Die geschlechts- und altersspezifische Analyse bestätigt das Ergebnis des Gesamtbetrachtung in Tabelle 68. Sowohl bei den weiblichen Teilnehmern als auch bei den männlichen zeigt sich in keiner Altersgruppe eine signifikante Interaktion des Zeitintervalls mit der Aktivitätsgruppe.

Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t₀ in Abhängigkeit der Aktivitätsgruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t₀ zeigen, dass kein signifikanter Unterschied beim MLS Stifte einstecken zwischen den vier Aktivitätsgruppen besteht (F_{3,193}=0,45; p=.72; eta²=.00).
6.2.6 Ergebnisse zum Einfluss der körperlichen Aktivität auf die Entwicklung der Beweglichkeit

Rumpfbeuge

Tabelle Tabelle 69 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung zeigt eine signifikant unterschiedliche Veränderung der Leistung bei der Rumpfbeuge im Verlauf der sechs Jahre in Abhängigkeit der Aktivitätsgruppen. Der Post-hoc Test (Scheffé) für die zweifaktorielle Varianzanalyse über die Differenz $\Delta t_1 - t_0$ differenziert nach Geschlecht zeigt, dass die männlichen „Aktivitäts-Reduzierer“ ihre Leistung von t_0 zu t_1 signifikant weniger steigern als die „persistent Aktiven“ und als die Teilnehmer, die ihre Aktivität von t_0 zu t_1 steigern (Schereneffekt). Bei den weiblichen Teilnehmern zeigt der Post-hoc Test keine signifikanten Unterschiede bezogen auf die Leistungsveränderung zwischen den Aktivitätsgruppen.

Tabelle 69: Veränderung der Leistung beim Rumpfbeuge nach Alter (exakt), Geschlecht und Aktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>$F_{1,1926} = 37.22$</td>
<td>.00</td>
<td>.02</td>
<td>1.90%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>körperliche Aktivität</td>
<td>$F_{3,1926} = 6.89$</td>
<td>.00</td>
<td>.01</td>
<td>1.10%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*ko.Aktivitätsgruppe</td>
<td>$F_{3,1926} = 6.01$</td>
<td>.00</td>
<td>.01</td>
<td>0.90%</td>
</tr>
<tr>
<td>ZeitGeschlecht ko.Aktivitätsgruppe</td>
<td>$F_{3,1926} = 3.18$</td>
<td>.02</td>
<td>.01</td>
<td>0.05%</td>
</tr>
</tbody>
</table>

Da die Interaktionen des Zeitintervalls mit dem Alter ($F_{1,1926} = 55.18 ; p=0.00; \eta^2=0.03$) und dem Geschlecht ($F_{1,1926} = 33.23 ; p=0.00; \eta^2=0.017$) signifikant werden, wird die Varianzanalyse zusätzlich für die Altersgruppen und das Geschlecht differenziert durchgeführt (vgl. Tabelle 70).

Tabelle 70: Veränderung der Leistung bei der Rumpfbeuge in Abhängigkeit der Aktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>männlich: Zeit*Aktivitätsgruppe</th>
<th>weiblich: Zeit*Aktivitätsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-Wert</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>1 (4-5 Jahre)</td>
<td>$F_{1,240} = 3.22$</td>
<td>.02</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>$F_{1,417} = 4.29$</td>
<td>.01</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>$F_{1,190} = 1.37$</td>
<td>0.25 (n.s.)</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>$F_{1,117} = 2.08$</td>
<td>0.11 (n.s.)</td>
</tr>
</tbody>
</table>

Bei den weiblichen Teilnehmern zeigt sich in keiner Altersgruppe eine signifikante Interaktion des Zeitintervalls mit der Aktivitäts-Entwicklungsgruppe. Bei den männlichen Teilnehmern zeigt sich in den Altersgruppen 1 und 2 eine signifikante Interaktion des Zeitintervalls mit der Aktivitätsgruppe. „Persistent Aktive“ verbessern sich deutlicher „persistent Inaktive“. 207
Die Stichprobe wird zusätzlich auf Unterschiede im Ausgangsniveau t0 in Abhängigkeit der Aktivitätsgruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt (t0) zeigen, dass kein signifikanter Unterschied bei der Rumpfbeuge zu t0 zwischen den vier Aktivitätsgruppen gegeben ist (F3,1935=1,30; p=.27; eta²=.00).

6.2.7 Zusammenfassung: körperlich-sportliche Aktivität und Entwicklung der motorischen Leistungsfähigkeit

Tabelle 71 gibt einen Gesamtüberblick über die Ergebnisse zum Einfluss der körperlichen Aktivität auf die Entwicklung der motorischen Leistungsfähigkeit bei den sieben ausgewählten Testaufgaben der MoMo-Längsschnittstudie. Die körperliche Aktivität beeinflusst die Entwicklung der Leistung im Verlauf der sechs Jahre bei 5 der 7 Testaufgaben. Der Einfluss zeigt sich bei den konditionell determinierten Testaufgaben (Standweitsprung, PWC 170 relativ) und der großmotorischen Koordination (Balancieren rückwärts, Seitliches Hin- und Herspringen) sowie der Beweglichkeit (Rumpfbeuge), nicht jedoch bei der Feinmotorik (MLS Stifte einstecken) und der Reaktionsschnelligkeit.

Die körperliche Aktivität beeinflusst lediglich bei den zwei konditionell determinierten Testaufgaben (PWC 170 relativ, Standweitsprung) das Ausgangsniveau (t0) der Teilnehmer.

Tabelle 71: Zusammenfassung der statistischen Überprüfung des Einflusses der körperlichen Aktivität (Tage/Woche) auf die Zeit*Gruppe-Interaktion (4-17 Jahre zu t0) und das Ausgangsniveau t0

<table>
<thead>
<tr>
<th>Testaufgabe/Dimension</th>
<th>Entwicklung (Zeit*Gruppe)</th>
<th>Ausgangsniveau (t0)</th>
<th>Kapitel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signifikanz</td>
<td>Effektstärke</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>PWC 170 relativ</td>
<td>Aktivitäts-Entw.-Gr.</td>
<td>✓</td>
<td>eta²=0,02</td>
</tr>
<tr>
<td>Kraft</td>
<td>Aktivitäts-Entw.-Gr.</td>
<td>✓</td>
<td>eta²=0,02</td>
</tr>
<tr>
<td>Reaktionstest</td>
<td>Aktivitäts-Entw.-Gr.</td>
<td>✕</td>
<td>✕</td>
</tr>
<tr>
<td>Beweglichkeit</td>
<td>Aktivitäts-Entw.-Gr.</td>
<td>✓</td>
<td>eta²=0,01</td>
</tr>
<tr>
<td>Balancieren rückwärts</td>
<td>Aktivitäts-Entw.-Gr.</td>
<td>✓</td>
<td>eta²=0,01</td>
</tr>
<tr>
<td>Großmotor. Koordination (Präzision)</td>
<td>Aktivitäts-Entw.-Gr.</td>
<td>✓</td>
<td>eta²=0,01</td>
</tr>
<tr>
<td>MLB Stifte einstecken</td>
<td>Aktivitäts-Entw.-Gr.</td>
<td>✕</td>
<td>✕</td>
</tr>
</tbody>
</table>

Abbildung 53 veranschaulichen grafisch in Form von „Leistungsprofilen“ für den ersten (t0) und zweiten Messzeitpunkt (t1) den Einfluss der körperlichen Aktivität (Tage/Woche) auf das Leistungsniveau zu t0 und t1 für die sieben ausgewählten Testaufgaben des MoMo-Testprofils.
Abbildung 54 veranschaulichen grafisch in Form von „Entwicklungsprofilen“ im Verlauf der sechs Jahre den Einfluss der körperlichen, wöchentlichen Aktivität auf die Entwicklung der Leistung (Δt1 - t0) für die sieben ausgewählten Testaufgaben des MoMo-Testprofils.

Abbildung 53: Leistung zum Ausgangsniveau (t0) in Abhängigkeit der Aktivitätsgruppe (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte)

Abbildung 54: Entwicklung der Leistung von t0 zu t1 in Abhängigkeit der körperlichen Aktivität (Δt1 - t0) für die sieben ausgewählten Testaufgaben des MoMo-Testprofils.
Für die körperliche Aktivität zeigen sich bei den männlichen Teilnehmern für die „persistent Aktiven“ bei 4 von 7 Testaufgaben signifikant stärkere Zuwächse verglichen mit „persistent Inaktiven“ (PWC 170 relativ, Standweitsprung, Seitliches Hin- und Herspringen, Balancieren rückwärts). Bei den weiblichen Studienteilnehmern zeigen die „persistent Aktiven“ bei 3 von 7 (Standweitsprung, Seitliches in- und Herspringen, Balancieren rückwärts) Testaufgaben eine signifikant stärkere Leistungssteigerung im Verlauf der sechs Jahre im Vergleich zu den „persistent Inaktiven“.

Vergleich „Aktivitätssteigerer“ und „persistent Aktive“

Tabelle 72 gibt einen Überblick über die aufgeklärte Varianz der Entwicklung der motorischen Leistungsfähigkeit Δt1-t2 für das Modell „Geschlecht*Altersgruppe*körperliche Aktivität“.

<table>
<thead>
<tr>
<th>Testaufgabe</th>
<th>SEXALTERSGRUPPEKÖ.AKTIVITÄT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R²</td>
</tr>
<tr>
<td>ΔPWC rel.</td>
<td>.090</td>
</tr>
<tr>
<td>ΔPWC</td>
<td>.425</td>
</tr>
<tr>
<td>ΔStandweitsprung</td>
<td>.529</td>
</tr>
<tr>
<td>ΔReaktionstest</td>
<td>.509</td>
</tr>
<tr>
<td>ΔRumpfbeuge</td>
<td>.095</td>
</tr>
<tr>
<td>ΔSeitliches Hin- und Herspringen</td>
<td>.529</td>
</tr>
<tr>
<td>ΔBalancieren rückwärts</td>
<td>.372</td>
</tr>
<tr>
<td>ΔMLS Stifte einstecken</td>
<td>.567</td>
</tr>
</tbody>
</table>

Differenz t2-t1; Interaktion: SEX*ALTERSGRUPPE*KÖ.AKTIVITÄT
Die höchste Varianzaufklärung zeigt sich bei der Testaufgabe MLS Stifte einstecken (56,7%) für den Standweitsprung (52,9%) und das seitliche Hin- und Herspringen (52,9%). Die geringste Varianzaufklärung zeigt sich für die relative PWC 170 (9%) und die Rumpfbeuge (9,5%).

6.3. Der Einfluss der Vereinsaktivität auf die Entwicklung der motorischen Leistungsfähigkeit

Im Folgenden wird der Einfluss der Vereinsaktivität auf die motorische Leistungsfähigkeit (ausgewählte Testaufgaben für jede Dimensionen Ausdauer, Kraft, Schnelligkeit, Beweglichkeit, Koordination) untersucht.

Die errechneten Mittelwerte der einzelnen Testitems (Rohwerte) der Längsschnittprobanden von Baseline (t0) und Welle1 (t1) in Abhängigkeit von Alter, Geschlecht und Aktivitätsgruppe (Vereinsaktivität) befinden sich im Anhang VII. Die vierfaktorielle Varianzanalyse wird kontrolliert für das Geschlecht und das Alter (exakt) (siehe Kapitel 4.5.4). Dargestellt wird im Folgenden lediglich der Effekt der Vereinsaktivitätsgruppe sowie die Interaktion der Aktivitätsgruppe mit dem Zeitintervall und die „Zeit*Vereinsaktivitätsgruppen*Geschlecht-Interaktion“.

6.3.1 Deskriptive Analyse der Aktivitätsentwicklung: Vereinsaktivität

Für die vorliegenden Analysen wurden die Studententeilnehmer entsprechend ihrer Angaben im MoMo-Aktivitätsfragebogen zur Vereinsaktivität in Gruppen eingeteilt (siehe detailliert Kapitel 4.5.3). Erfragt wird die Mitgliedschaft im Verein (ja/ nein). Somit bestehen vier unterschiedliche Kombinationsmöglichkeiten für die „Vereinsaktivitätsgruppen“ im Verlauf der sechs Jahre vom ersten zum zweiten Messzeitpunkt (t0 bis t1).
Insgesamt sind fast die Hälfte der Längsschnittprobanden über beide Messzeitpunkte im Verein aktiv (45,4 %). 22,4 % der Längsschnittprobanden geben an, nicht im Verein zu sein. Der Anteil der „Einsteiger“ (16,3 %) und „Aussteiger“ (15,9 %) ist nahezu gleich groß. Der Anteil der „Aussteiger“ ist bei den weiblichen Studienteilnehmer (27,1 %) höher als bei den männlichen (17,6 %). In der Altersgruppe der 11-13-Jährigen ist der Anteil der „Aussteiger“ mit 25,2 % am höchsten. In der Altersgruppe der 14-17-Jährigen geben nur noch 5,5 % der Studienteilnehmer an über den Untersuchungszeitraum mit der Vereinsaktivität begonnen zu haben. Bei den 4-5-Jährigen beträgt die Einstiegsquote 27,5 %.

6.3.2 Ergebnisse zum Einfluss der Vereinsaktivität auf die Entwicklung der Ausdauerleistungsfähigkeit

Fahrrad-Ausdauertest

Tabelle 73 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung verdeutlicht, dass eine signifikant unterschiedliche Veränderung der relativen Leistung beim Fahrrad-Ausdauertest (PWC 170 relativ/ KG) im Verlauf der sechs Jahre in Abhängigkeit der Vereinsaktivitätsgruppen gegeben ist. Der Post-hoc Test der zweifaktoriellen Varianzanalyse über die Standweitsprung-Differenz Δ_{t1-t0} differenziert nach Geschlecht macht sichtbar, dass bei den männlichen Teilnehmern die Vereinsmitglieder ($t0$ und $t1$) im Vergleich zu den weiblichen Teilnehmern signifikant höhere Leistungen aufweisen.
t1) ihre Leistung im Verlauf der sechs Jahre signifikant mehr steigern als die Teilnehmer, die nie im Verein sind. Bei den weiblichen Studienteilnehmern zeigt sich kein signifikanter Unterschied zwischen den Vereinsaktivitätsgruppen.

Tabelle 73: Veränderung der Ausdauerleistungsfähigkeit (PWC 170 relativ) nach Alter, Geschlecht und Vereinsaktivitätsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupeffekt Zeit</td>
<td>$F_{1,1105}=30,60$</td>
<td>,00</td>
<td>0,02</td>
<td>1,80%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vereinsaktivitätsgruppe</td>
<td>$F_{3,1105}=21,20$</td>
<td>,00</td>
<td>0,05</td>
<td>5,40%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Vereinsaktivitätsgruppe</td>
<td>$F_{3,1105}=3,11$</td>
<td>,03</td>
<td>0,01</td>
<td>0,80%</td>
</tr>
<tr>
<td>ZeitGeschlechtVereinsaktivitätsgruppe</td>
<td>$F_{3,1105}=0,84$</td>
<td>0,47 (n.s.)</td>
<td>0,00</td>
<td>0,20%</td>
</tr>
</tbody>
</table>

Da die Interaktionen des Zeitintervalls mit dem Alter ($F_{1,1105}=24,42; p=,00; \text{eta}^2=,02$) und dem Geschlecht ($F_{1,1105}=4,40; p=,04; \text{eta}^2=,004$) signifikant werden, wird die Varianzanalyse zusätzlich für die Altersgruppen und das Geschlecht differenziert berechnet (siehe Tabelle 74).

Tabelle 74: Veränderung der Leistung beim Fahrrad-Ausdauertest in Abhängigkeit der Vereinsaktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>männlich: Zeit*Vereinsaktivitätsgruppe</th>
<th>weiblich: Zeit*Vereinsaktivitätsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-Wert</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>Altersgruppe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>$F_{3,312}=1,36$</td>
<td>0,26 (n.s.)</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>$F_{3,109}=0,80$</td>
<td>0,50 (n.s.)</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>$F_{3,93}=1,52$</td>
<td>0,22 (n.s.)</td>
</tr>
</tbody>
</table>

Wird die Varianzanalyse differenziert nach Altersgruppe und Geschlecht durchgeführt zeigt sich bei den weiblichen Teilnehmern in den Altersgruppen 2 und 4 eine signifikante Zeit*Vereinsaktivitätsgruppen-Interaktion. Weibliche Teilnehmer, die „persistiert im Verein“ sind verbessern sich deutlicher als Teilnehmer, die zu beiden Messzeitpunkten nicht im Verein sind. Für die männlichen Teilnehmer hingegen zeigt sich in keiner der Altersgruppe eine signifikante Zeit*Vereinsaktivitätsgruppen-Interaktion.

Die Stichprobe wird zusätzlich auf Leistungsunterschiede im Ausgangsniveau t_0 in Abhängigkeit der Vereinsaktivitätsgruppen untersucht.

Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t_0 zeigen, dass ein signifikanter Unterschied beim Fahrrad-Ausdauertest zu t_0 zwischen den vier Vereinsaktivitätsgruppen besteht ($F_{3,1120}=8,12; p=,00; \text{eta}^2=,022$). Teilnehmer, die zu t_0 und t_1 im Verein sind, schneiden zum ersten Messzeitpunkt besser ab als die Teilnehmer aller anderen Vereinsaktivitätsgruppen und „Aussteiger“ schneiden besser ab als die „Einsteiger“. 213
6.3.3 Ergebnisse zum Einfluss der Vereinsaktivität auf die Entwicklung der Kraftfähigkeit

Standweitsprung

Tabelle 75 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamt betrachtung verdeutlicht, dass eine signifikant unterschiedliche Veränderung der Standweitsprungleistung im Verlauf der sechs Jahre in Abhängigkeit der Vereinsaktivitätsgruppen gegeben ist. Der Post-hoc Test der zweifaktorielle Varianzanalyse über die Standweitsprung-Differenz \(\Delta t_1-t_0 \) differenziert nach Geschlecht macht sichtbar, dass bei den männlichen Teilnehmern die „Einsteiger“ ihre Leistung über die Zeit signifikant mehr steigern als die anderen Gruppen. Männliche Vereinsmitglieder (t0 & t1) steigern ihre Leistung um 48,5 cm und die „Nicht-Vereinsmitglieder“ um 41,26 cm. Außerdem steigern die Teilnehmer, die zu t0 und t1 im Verein sind ihre Leistung über die Zeit mehr als die „Aussteiger“ und die Teilnehmer, die nie im Verein sind. Die Gruppe der „Aussteiger“ unterscheidet sich im Leistungszuwachs nicht signifikant von den Teilnehmern, die nie im Verein sind. Teilnehmer, die zu t0 und t1 im Verein sind, steigern ihre Leistung über die Zeit signifikant mehr als Teilnehmer, die zu beiden Messzeitpunkten nicht im Verein sind (Schereneffekt).

Weiblichen Teilnehmer, die zu t0 und t1 im Verein sind steigern ihre Leistung signifikant mehr als Teilnehmer, die nie im Verein sind oder im Verlauf der sechs Jahre ausgesteigen. Weibliche Studienteilnehmer, die zu beiden Messzeitpunkten im Verein sind steigern ihre Leistung im Mittel um 34,88 cm beim Standweitsprung, Nicht-Vereinsmitglieder lediglich um 21,75 cm.

Zwischen weiblichen Teilnehmer, die zu t0 und t1 im Verein sind und den weiblichen „Einsteigern“ bestehen keine Unterschiede bezogen auf die Leistungsveränderung über die Zeit. Weibliche „Einsteiger“ haben jedoch einen größeren Zuwachs beim Standweitsprung als die weiblichen „Aussteiger“. Weibliche „Aussteiger“ und weibliche Teilnehmer, die nie im Verein sind haben keinen unterschiedlichen Leistungszuwachs im Verlauf der sechs Jahre beim Standweitsprung.
6 Darstellung der Ergebnisse zu ausgewählten Einflussfaktoren

Tabelle 75: Veränderung der Standweitsprungleistung nach Alter, Geschlecht und Vereinsaktivitätsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>3687,76</td>
<td>.00</td>
<td>.55</td>
<td>55,20%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vereinsmitgliedschaftsgruppe</td>
<td>34,61</td>
<td>.00</td>
<td>.05</td>
<td>4,80%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Vereinsgruppe</td>
<td>7,80</td>
<td>.00</td>
<td>.01</td>
<td>1,10%</td>
</tr>
<tr>
<td>ZeitGeschlechtVereinsgruppe</td>
<td>3,52</td>
<td>.01</td>
<td>.01</td>
<td>0,50%</td>
</tr>
</tbody>
</table>

Da die Interaktionen des Zeitintervalls mit dem Alter ($F_{1,2060} = 1233,04; p = .00; \eta^2 = .374$) und dem Geschlecht ($F_{1,2060} = 311,77; p = .00; \eta^2 = .131$) signifikant werden, wird die Varianzanalyse zusätzlich für die Altersgruppen und das Geschlecht differenziert durchgeführt (siehe Tabelle 76).

Tabelle 76: Veränderung der Leistung beim Standweitsprung in Abhängigkeit der Vereinsaktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>männlich: Zeit*Aktivitätsgruppe</th>
<th>weiblich: Zeit*Aktivitätsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altersgruppe</td>
<td>F-Wert</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>1 (4-5 Jahre)</td>
<td>$F_{1,264} = 0,77$</td>
<td>0,51 (n.s.)</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>$F_{1,452} = 4,65$</td>
<td>0,03</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>$F_{1,153} = 0,47$</td>
<td>0,70 (n.s.)</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>$F_{1,126} = 0,44$</td>
<td>0,73 (n.s.)</td>
</tr>
</tbody>
</table>

Berechnet man die Varianzanalyse differenziert nach Altersgruppen und Geschlecht, wird bei den weiblichen Teilnehmern in den Altersgruppen 2 und 4 eine signifikante Zeit*Vereinsaktivitätsgruppen-Interaktion deutlich. Für die männlichen Teilnehmer hingegen zeigt sich lediglich in den Altersgruppen 2 eine signifikante Zeit*Vereinsaktivitätsgruppen-Interaktion. Teilnehmer, die zu beiden Messzeitpunkten im Verein sind verbessern sich mehr, als Teilnehmer, die nicht im Verein sind.

Die Stichprobe wird zusätzlich auf Leistungsunterschiede im Ausgangsniveau t_0 in Abhängigkeit der Vereinsaktivitätsgruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t_0 zeigen, dass ein signifikanter Unterschied beim Standweitsprung zwischen den vier Vereinsaktivitätsgruppen besteht ($F_{3,2069} = 16,09; p = .00; \eta^2 = .02$). Der Post-hoc Test (Scheffé) macht sichtbar, dass die Gruppe der „Einsteiger“ zum ersten Messzeitpunkt signifikant schlechter abschneidet als alle anderen Vereinsaktivitäts-Entwicklungsgruppen und, dass die „Aussteiger“ signifikant besser abschneiden als alle anderen Gruppen. Zwischen den beiden Gruppen „nie im Verein“ und „persistent im Verein“ besteht zum ersten Messzeitpunkt kein signifikanter Leistungsunterschied.
6.3.4 Ergebnisse zum Einfluss der Vereinsaktivität auf die Entwicklung der Reaktions schnelligkeit

Reaktionstest

Tabelle 77 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamt betrachtung verdeutlicht, dass eine signifikant unterschiedliche Leistungsveränderung der Reaktionszeit im Verlauf der sechs Jahre in Abhängigkeit der Vereinsaktivitätsgruppen gegeben ist. Der Post-hoc Test (Scheffé) für die zweifaktorielle Varianzanalyse über die Differenz \(\Delta t_{1-0} \) differenziert nach Geschlecht macht sichtbar, dass bei den männlichen Teilnehmern die „Einsteiger“ ihre Leistung im Verlauf der sechs Jahre signifikant mehr steigern als die anderen Gruppen. Bei den weiblichen Teilnehmern zeigt sich ein signifikant größerer Leistungszuwachs für die weiblichen Teilnehmer, die zu t0 und t1 im Verein sind gegenüber den weiblichen Teilnehmern, die im Verlauf der sechs Jahre ausgestiegen sind und den Teilnehmern, die zu beiden Messzeitpunkten nicht im Verein sind. Weibliche „Einsteiger“ verbessern ihre Reaktionszeit mehr als die weiblichen „Aussteiger“ und die weiblichen Teilnehmer, die zu beiden Messzeitpunkten nicht im Verein sind.

Tabelle 77: Veränderung der Reaktionszeit nach Alter, Geschlecht und Vereinsaktivitätsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>F(_{1,2061})=3210,25</td>
<td>.00</td>
<td>0,61</td>
<td>60,90%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vereinsmitgliedschaftsgruppe</td>
<td>F(_{1,2061})=12,18</td>
<td>.00</td>
<td>0,02</td>
<td>1,70%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Vereinsgruppe</td>
<td>F(_{3,2061})=3,44</td>
<td>.02</td>
<td>0,01</td>
<td>0,50%</td>
</tr>
<tr>
<td>ZeitGeschlechtVereinsgruppe</td>
<td>F(_{3,2061})=0,76</td>
<td>.51</td>
<td>0.00</td>
<td>0,10%</td>
</tr>
</tbody>
</table>

Da die Interaktionen des Zeitintervalls mit dem Alter (F\(_{1,2061}\)=1804,43; p=,00; eta²=,467) und dem Geschlecht (F\(_{1,2061}\)=4,60; p=,03; eta²=,002) signifikant werden, wird die Varianzanalyse zusätzlich für die Altersgruppen und das Geschlecht differenziert berechnet (siehe Tabelle 78).

Tabelle 78: Veränderung der Leistung beim Reaktionstest in Abhängigkeit der Vereinsaktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>männlich: Zeit*Vereinsaktivitätsgruppe</th>
<th>weiblich: Zeit*Vereinsaktivitätsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-Wert</td>
<td>Signifikanz</td>
<td>Eta²</td>
</tr>
<tr>
<td>1 (4-5 Jahre)</td>
<td>F(_{1,132})=0,70</td>
<td>0,56 (n.s.)</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F(_{1,140})=0,20</td>
<td>0,90 (n.s.)</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F(_{1,132})=0,29</td>
<td>0,83 (n.s.)</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F(_{1,132})=3,21</td>
<td>0,03</td>
</tr>
</tbody>
</table>
Berechnet man die Varianzanalyse aufgeteilt nach Altersgruppen und Geschlecht wird bei den weiblichen und männlichen Teilnehmern in der Altersgruppe 4 eine signifikante Zeit*Vereinsaktivitätsgruppen-Interaktion deutlich.

Die Stichprobe wird zusätzlich auf Leistungsunterschiede im Ausgangsniveau t0 in Abhängigkeit der Vereinsaktivitätsgruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t0 zeigen, dass kein signifikanter Leistungsunterschied beim Reaktionstest zwischen den vier Vereinsaktivitätsgruppen \((F_{3,2070} = 2,23; \ p = 0,08; \ \text{eta}^2 = 0,0) \) besteht.

6.3.5 Ergebnisse zum Einfluss der Vereinsaktivität auf die Koordination

Großmotorische Koordination bei dynamischen Präzisionsaufgaben: Balancieren rückwärts

Tabelle 79 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung (4-17-Jährige zu t0) verdeutlicht, dass keine signifikant unterschiedliche Veränderung der Balancierleistung im Verlauf der sechs Jahre in Abhängigkeit der Vereinsaktivitätsgruppen gegeben ist.

Tabelle 79: Veränderung der Balancierleistung nach Alter, Geschlecht und Vereinsaktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>F_{2,2081} = 2310.92</td>
<td>0,00</td>
<td>.53</td>
<td>52,60%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vereinsmitgliedschaftsgruppe</td>
<td>F_{1,2082} = 27,73</td>
<td>0,00</td>
<td>.04</td>
<td>3,80%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Vereinsgruppe</td>
<td>F_{3,2082} = 1,94</td>
<td>.12 (n.s.)</td>
<td>.00</td>
<td>0,30%</td>
</tr>
<tr>
<td>ZeitGeschlechtVereinsgruppe</td>
<td>F_{3,2082} = 1,59</td>
<td>.19 (n.s.)</td>
<td>.00</td>
<td>0,20%</td>
</tr>
</tbody>
</table>

Die geschlechts- und altersspezifische Analyse bestätigt das Ergebnis der Gesamtbetrachtung in Tabelle 79 bezogen auf die Leistungsveränderung. Sowohl bei den weiblichen Teilnehmern als auch bei den männlichen zeigt sich in keiner Altersgruppe eine signifikante Interaktion des Zeitintervalls mit der Vereinsaktivitätsgruppe.

Die Stichprobe wird zusätzlich auf Leistungsunterschiede im Ausgangsniveau t0 in Abhängigkeit der Vereinsaktivitätsgruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t0 zeigen, dass ein signifikanter Unterschied beim Balancieren rückwärts zwischen den vier Vereinsaktivitätsgruppen besteht \((F_{3,2091} = 9,62; \ p = 0,00; \ \text{eta}^2 = 0,01) \). Der Post-hoc Test (Scheffé) macht sichtbar, dass die Gruppe der „Einstein
Ger" zum ersten Messzeitpunkt signifikant schlechter abschneidet als alle anderen Vereinsaktivitätsgruppen. Außerdem besteht zum ersten Messzeitpunkt ein signifikanter Unterschied zwischen den Teilnehmern, die zu t0 und t1 nicht im Verein sind und den „Aussteiger“. Die „Aussteiger“ erreichen beim Balancieren rückwärts zum ersten Messzeitpunkt bessere Leistungen.

Großmotorische Koordination unter Zeitdruck: Seitliches Hin- und Herspringen
Tabelle 80 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung verdeutlicht, dass eine signifikant unterschiedliche Leistungsveränderung beim Seitlichen Hin- und Herspringen im Verlauf der sechs Jahre in Abhängigkeit der Vereinsaktivitätsgruppen gegeben ist. Der Post-hoc Test (Scheffé) für die zweifaktorielle Varianzanalyse über die Differenz \(\Delta_{t1-t0} \) beim seitlichen Hin- und Herspringen differenziert nach Geschlecht macht sichtbar, dass bei den männlichen Teilnehmern die „Einsteiger“ ihre Leistung über die Zeit signifikant mehr steigern als die anderen Gruppen. Männliche Teilnehmer, die zu beiden Messzeitpunkten im Verein sind verbessern ihre Leistung beim Seitlichen Hin- und Herspringen um ca. 17 Sprünge; Teilnehmer, die nie Verein sind, um ca. 13 Sprünge. Außerdem steigern die Teilnehmer, die zu t0 und t1 im Verein sind ihre Leistung mehr als die „Aussteiger“ und die Teilnehmer, die weder zu t0 noch zu t1 im Verein sind.

Bei den weiblichen Teilnehmern wird ein signifikant geringerer Leistungszuwachs beim Seitlichen Hin- und Herspringen für die weiblichen Teilnehmer, die zu t0 und t1 nicht Verein sind gegenüber den weiblichen Teilnehmern, die zu beiden Messzeitpunkten im Verein sind oder über die Zeit die Sportvereinsaktivität aufgenommen haben, deutlich. Weibliche Teilnehmer, die zu beiden Messzeitpunkten im Verein sind verbessern ihr Leistung um 16 Sprünge und weibliche „Nicht-Vereinsmitglieder“ um 12 Sprünge. Weibliche Teilnehmer, die über die Zeit ausgestiegen sind steigern ihre Leistung signifikant weniger als die „Einsteiger“ und die Teilnehmern, die zu t0 und t1 im Verein sind.
Tabelle 80: Veränderung der Leistung beim Seitlichen Hin- und Herspringen in Abhängigkeit nach Alter, Geschlecht und Vereinsaktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>η^2</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>$F_{1,2046}=7098.64$</td>
<td>.00</td>
<td>.78</td>
<td>77.60%</td>
</tr>
<tr>
<td>Zwischensubjekteleffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vereinsmitgliedschaftsgruppe</td>
<td>$F_{1,2046}=58.06$</td>
<td>.00</td>
<td>.08</td>
<td>7.80%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Vereinsgruppe</td>
<td>$F_{3,2046}=12.06$</td>
<td>.00</td>
<td>.02</td>
<td>1.70%</td>
</tr>
<tr>
<td>ZeitGeschlechtVereinsgruppe</td>
<td>$F_{3,2046}=0.87$</td>
<td>.46 (n.s.)</td>
<td>.00</td>
<td>0.10%</td>
</tr>
</tbody>
</table>

Da die Interaktionen des Zeitintervalls mit dem Alter ($F_{1,2046}=2184.97; \ p=0.00; \ \eta^2=516$) und dem Geschlecht ($F_{1,2046}=48.63; \ p=0.00; \ \eta^2=0.23$) signifikant werden, wird die Varianzanalyse zusätzlich für die Altersgruppen und das Geschlecht differenziert durchgeführt (siehe Tabelle 81). Für die männlichen und weiblichen Teilnehmer ist in den Altersgruppen 1 und 2 eine signifikante Zeit*Vereinsaktivitätsgruppen-Interaktion gegeben.

Tabelle 81: Veränderung der Leistung beim Seitlichen Hin- und Herspringen in Abhängigkeit der Vereinsaktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>männlich: Zeit*Aktivitätsgruppe</th>
<th>weiblich: Zeit*Aktivitätsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-Wert</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>1 (4-5 Jahre)</td>
<td>$F_{3,250}=8.88$</td>
<td>.00</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>$F_{1,447}=6.85$</td>
<td>.00</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>$F_{1,150}=1.19$</td>
<td>0.32 (n.s.)</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>$F_{1,136}=1.22$</td>
<td>0.30 (n.s.)</td>
</tr>
</tbody>
</table>

Die Stichprobe wird zusätzlich auf Leistungsunterschiede im Ausgangsniveau t_0 in Abhängigkeit der Vereinsaktivitätsgruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t_0 zeigen, dass ein signifikant Leistungsunterschied beim Seitlichen Hin- und Herspringen zwischen den vier Vereinsaktivitätsgruppen besteht ($F_{1,2055}=19.53; \ p=0.00; \ \eta^2=0.03$). Der Post-hoc Test (Scheffé) veranschaulicht, dass die „Einsteiger“ zum ersten Messzeitpunkt signifikant schlechter abschneiden als alle anderen Vereinsaktivitätsgruppen. Zusätzlich erreichen die „Aussteiger“ signifikant bessere Leistungen zu t_0 als alle anderen Gruppen. Zwischen den beiden Gruppen „nie im Verein“ und „persistently im Verein“ besteht zu t_0 kein signifikanter Leistungsunterschied.
Feinmotorische Koordination unter Zeitdruck: MLS Stifte einstecken

Tabelle 82 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung verdeutlicht, dass eine signifikant unterschiedliche Leistungsveränderung beim Stifte einstecken im Verlauf der sechs Jahre in Abhängigkeit der Vereinsaktivitätsgruppen gegeben ist.

Der Post-hoc Test (Scheffé) für die zweifaktorielle Varianzanalyse über die Differenz Δt_{1-0} für das Geschlecht differenziert macht sichtbar, dass bei den männlichen Teilnehmern die „Einsteiger“ ihre Leistung über die Zeit signifikant mehr steigern als die andern Vereinsaktivitätsgruppen. Bei den weiblichen Teilnehmern verbessern die weiblichen „Aussteiger“ ihre Leistung über die Zeit signifikant weniger als die anderen Vereinsaktivitätsgruppen. Ebenso zeigen die weiblichen „Einsteiger“ einen signifikant geringeren Leistungszuwachs als die weiblichen Teilnehmer, die zu t_0 und zu t_1 nicht im Verein sind.

Tabelle 82: Veränderung der Leistung beim Stifte einstecken nach Alter, Geschlecht und Vereinsaktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>F$_{1,2067}$=4848,75</td>
<td>.00</td>
<td>.70</td>
<td>70,10%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vereinsmitgliedschaftsgruppe</td>
<td>F$_{1,2067}$=67,38</td>
<td>.00</td>
<td>.03</td>
<td>3,20%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Vereinsgruppe</td>
<td>F$_{1,2067}$=8,25</td>
<td>.00</td>
<td>.01</td>
<td>1,20%</td>
</tr>
<tr>
<td>ZeitGeschlechtVereinsgruppe</td>
<td>F$_{1,2067}$=2,30</td>
<td>.08 (n.s.)</td>
<td>.00</td>
<td>0,30%</td>
</tr>
</tbody>
</table>

Da die Interaktionen des Zeitintervalls mit dem Alter ($F_{1,2067}=2082,16; p=,00; \text{eta}^2=,502$) und dem Geschlecht ($F_{1,2067}=20,01; p=,00; \text{eta}^2=,010$) signifikant werden, wird die Varianzanalyse zusätzlich für die Altersgruppen und das Geschlecht differenziert durchgeführt (siehe Tabelle 83). Sowohl bei den weiblichen Teilnehmern als auch bei den männlichen zeigt sich in keiner Altersgruppe eine signifikante Zeit*Vereinsaktivitätsgruppen-Interaktion.

Tabelle 83: Veränderung der Leistung beim MLS Stifte einstecken in Abhängigkeit der Vereinsaktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>männlich: Zeit*Aktivitätsgruppe</th>
<th>weiblich: Zeit*Aktivitätsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-Wert</td>
<td>Signifikanz</td>
<td>Eta²</td>
</tr>
<tr>
<td>1 (4-5 Jahre)</td>
<td>F$_{1,320}=0,58$</td>
<td>0,63 (n.s.)</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F$_{1,422}=1,33$</td>
<td>0,27 (n.s.)</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F$_{1,132}=1,18$</td>
<td>0,32 (n.s.)</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F$_{1,127}=0,83$</td>
<td>0,48 (n.s.)</td>
</tr>
</tbody>
</table>

Die Stichprobe wird zusätzlich auf Leistungsunterschiede im Ausgangsniveau t_0 in Abhängigkeit der Vereinsaktivitätsgruppen untersucht. Die Ergebnisse der dreifaktoriellen univaria-
6 Darstellung der Ergebnisse zu ausgewählten Einflussfaktoren

ten Varianzanalyse für den ersten Messzeitpunkt t0 zeigen, dass kein signifikanter Unter-
schied beim Stifte einstecke zwischen den vier Vereinsaktivitätsgruppen auf einem Signifi-
kanz-Niveau von <.01 besteht (F_{3,2076}=2.65; p=.05; \eta^2=.00).

6.3.6 Ergebnisse zum Einfluss der Vereinsaktivität auf die Entwicklung der Beweg-
lichkeit

Rumpfbeuge
Tabelle 84 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung verdeutlicht, dass eine signifikant unterschiedliche Veränderung der Beweglichkeitsleistung im Verlauf der sechs Jahre in Abhängigkeit der Vereinsaktivitäts-
gruppe gegeben ist. Der Post-hoc Test (Scheffé) für die zweifaktorielle Varianzanalyse über die Differenz \Delta_{t1-t0} differenziert nach Geschlecht macht sichtbar, dass bei den männlichen Teilnehmern kein signifikanter Effekt der Vereinsaktivitätsgruppe auf die Veränderung der Beweglichkeitsleistung \Delta_{t1-t0} besteht. Bei den weiblichen Teilnehmern hingegen haben werden signifikant größere Leistungsverbesserung bei der Rumpfbeuge für die Teilnehmer, die zu t0 und t1 im Verein sind gegenüber den Teilnehmern, die innerhalb sechs Jahres Intervall nie im Verein sind deutlich.

Tabelle 84: Veränderung der Beweglichkeitsleistung nach Alter, Geschlecht und Vereinsaktivitätsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>\eta^2</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>F_{1,2069}=38.22</td>
<td>.00</td>
<td>.02</td>
<td>1.80%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vereinsmitgliedschaftsgruppe</td>
<td>F_{1,2069}=12.39</td>
<td>.00</td>
<td>.02</td>
<td>1.80%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*Vereinsgruppe</td>
<td>F_{3,2069}=5.08</td>
<td>.00</td>
<td>.01</td>
<td>0.70%</td>
</tr>
<tr>
<td>ZeitGeschlechtVereinsgruppe</td>
<td>F_{3,2069}=2.05</td>
<td>.11 (n.s.)</td>
<td>.00</td>
<td>0.30%</td>
</tr>
</tbody>
</table>

Da die Interaktionen des Zeitintervalls mit dem Alter (F_{1,2069}=58.59; p=.00; \eta^2=.028) und dem Geschlecht (F_{1,2069}=34.49; p=.00; \eta^2=.016) signifikant werden, wird die Varianzanalyse zusätzlich für die Altersgruppe und das Geschlecht differenziert durchgeführt (siehe Tabelle 85).
6 Darstellung der Ergebnisse zu ausgewählten Einflussfaktoren

Tabelle 85: Veränderung der Leistung bei der Rumpfbeuge in Abhängigkeit der Vereinsaktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>männlich: Zeit*Vereinsaktivitätsgruppen-Interaktion</th>
<th>weiblich: Zeit*Vereinsaktivitätsgruppen-Interaktion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-Wert</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>1 (4-5 Jahre)</td>
<td>F_{3,261}= 0,10</td>
<td>0,96 (n.s.)</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F_{3,452}= 1,92</td>
<td>0,13 (n.s.)</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F_{3,158}= 1,70</td>
<td>0,17 (n.s.)</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F_{3,120}= 0,43</td>
<td>0,73 (n.s.)</td>
</tr>
</tbody>
</table>

Wird die Varianzanalyse differenziert nach Altersgruppen und Geschlecht durchgeführt, zeigt sich bei den weiblichen Teilnehmern in der Altersgruppe 2 eine signifikante Zeit*Vereinsaktivitätsgruppen-Interaktion. Weibliche Teilnehmer, die zu beiden Messzeitpunkten im Verein sind, verbessern sich mehr als Teilnehmer, die zu beiden Messzeitpunkten nicht im Verein sind. Bei den männlichen Teilnehmern ist in keiner Altersgruppe eine signifikante Zeit*Vereinsaktivitätsgruppen-Interaktion gegeben.

Die Stichprobe wird zusätzlich auf Leistungsunterschiede im Ausgangsniveau t₀ in Abhängigkeit der Vereinsaktivitätsgruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt (t₀) zeigen, dass ein signifikanter Leistungsunterschied bei der Rumpfbeuge zwischen den vier Vereinsaktivitätsgruppen besteht (F_{3,2078}=10,05; p=,00; eta²=,02). Der Post-hoc Test (Scheffé) macht sichtbar, dass die Teilnehmer, die zu t₀ und t₁ im Verein sind, bereits zum ersten Messzeitpunkt besser bei der Rumpfbeuge abschneiden als die Teilnehmer, die zu t₀ und t₁ nicht im Verein sind.

6.3.7 Zusammenfassung: Vereinsaktivität und Entwicklung der motorischen Leistungsfähigkeit

Tabelle 86 gibt einen Überblick über die Ergebnisse zum Einfluss der Vereinsaktivität auf die Entwicklung der motorischen Leistungsfähigkeit bei den sieben ausgewählten Testaufgaben der MoMo-Längsschnittstudie. Die Vereinsaktivität beeinflusst die Entwicklung der Leistung im Verlauf der sechs Jahre bei 6 der 7 Testaufgaben. Der Einfluss zeigt sich lediglich beim Balancieren rückwärts nicht.

Darüber hinaus beeinflusst die Vereinsaktivität das Ausgangsniveau (t₀) der Studienteilnehmer bei 5 der 7 Testaufgaben. Beim Reaktionstest und in der Feinkoordination (MLS Stifte einstecken) zeigen sich keine signifikanten Unterschiede im Ausgangsniveau (t₀).
Tabelle 86: Zusammenfassung der statistischen Überprüfung des Einflusses vom Vereinsmitgliedschaft- Entwicklungskonspen auf das Ausgangsniveau- und das Welle 1 Niveau sowie die Zeit*Gruppe-Interaktion (4-17 Jahre zu t0)

<table>
<thead>
<tr>
<th>Testaufgabe/Dimension</th>
<th>Entwicklung (Zeit*Gruppe)</th>
<th>Ausgangsniveau (t0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signifikanz</td>
<td>Effektstärke</td>
</tr>
<tr>
<td>PWC 170</td>
<td>✓</td>
<td>(\eta^2 = 0,008)</td>
</tr>
<tr>
<td>Ausdauer</td>
<td>✓</td>
<td>(\eta^2 = 0,01)</td>
</tr>
<tr>
<td>Standweitsprung Kraft</td>
<td>✓</td>
<td>(\eta^2 = 0,01)</td>
</tr>
<tr>
<td>Reaktionstest</td>
<td>✓</td>
<td>(\eta^2 = 0,01)</td>
</tr>
<tr>
<td>Reaktionsgeschwindigkeit</td>
<td>✓</td>
<td>(\eta^2 = 0,01)</td>
</tr>
<tr>
<td>Beweglichkeit</td>
<td>✓</td>
<td>(\eta^2 = 0,01)</td>
</tr>
<tr>
<td>Balancieren rückwärts</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>großmotor. Koordination (Präzision)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seitliches Hin- und Herspringen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>großmotor. Koordination (Zeitdruck)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLS Stifte einstecken</td>
<td>✓</td>
<td>(\eta^2 = 0,01)</td>
</tr>
<tr>
<td>feinmotor. Koordination (Zeitdruck)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 56 veranschaulicht grafisch in Form von „Leistungsprofilen“ für den ersten (t0) und zweiten Messzeitpunkt (t1) den Einfluss der Vereinsaktivität auf das Leistungsniveau zu t0 und t1 für die sieben Testaufgaben.

Abbildung 57 veranschaulichen grafisch in Form von „Entwicklungsprofilen“ im Verlauf der sechs Jahre den Einfluss der Vereinsaktivität auf die Entwicklung der Leistung (\(\Delta t1 - t0 \)) für die sieben Testaufgaben.

Die Bildung von Z-Werten (siehe Kapitel 4.5.5) (Y-Achse) ermöglicht einen Vergleich zwischen den unterschiedlichen Testaufgaben, welche auf der X-Achse abgebildet werden. Somit ergeben sich drei Profile: für den ersten Messzeitpunkt t0, den zweiten Messzeitpunkt t1 (Abbildung 56) und die Entwicklung (Abbildung 57). Diese können jeweils für Studienteilnehmer, die zu beiden Messzeitpunkten im Verein sind und Studienteilnehmer, die nie im Verein aktiv sind abgebildet und verglichen werden.
Männliche Teilnehmer, die zu beiden Messzeitpunkten im Verein aktiv sind verbessern ihre Leistung über die Zeit bei 3 von 7 Testaufgaben deutlicher als die Teilnehmer, die zu beiden Messzeitpunkten nicht im Verein sind (PWC 170 relativ, Standweitsprung, Seitliches Hin- und Herspringen).

Weibliche Teilnehmer, die zu beiden Messzeitpunkten im Verein aktiv sind steigern bei 4 von 7 Testaufgaben ihre Leistung über die Zeit deutlicher als die Teilnehmer, die zu beiden Mess-
zeitpunkten nicht im Verein sind (Standweitsprung, Seitliches Hin- und Herspringen, Rumpfbeuge, Reaktionstest).

Vergleich Einsteiger und „persisten im Verein aktive“

Tabelle 87 gibt einen Überblick über die aufgeklärte Varianz der Entwicklung der motorischen Leistungsfähigkeit Δt1-t2 für das Modell „Geschlecht*Altersgruppe*Vereinsaktivitätsgruppe“.

Die höchsten Varianzaufklärungen sind bei den Testaufgaben MLS Stifte einstecken (57,2%), seitliches Hin- und Herspringen (54,3%) und beim Standweitsprung (51,5%) gegeben. Die geringsten Varianzaufklärungen zeigen sich für die relative PWC 170 (7,7 %) und die Rumpfbeuge (8,6 %).

<table>
<thead>
<tr>
<th>Testaufgabe</th>
<th>SEXALTERSGRUPPEVEREINSAKTIVITÄT</th>
<th>R²</th>
<th>angepasstes R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔPWC rel.</td>
<td>.077</td>
<td>.057</td>
<td></td>
</tr>
<tr>
<td>ΔPWC</td>
<td>.391</td>
<td>.379</td>
<td></td>
</tr>
<tr>
<td>ΔStandweitsprung</td>
<td>.515</td>
<td>.508</td>
<td></td>
</tr>
<tr>
<td>ΔReaktionstest</td>
<td>.493</td>
<td>.485</td>
<td></td>
</tr>
<tr>
<td>ΔRumpfbeuge</td>
<td>.086</td>
<td>.072</td>
<td></td>
</tr>
<tr>
<td>ΔSeitliches Hin- und Herspringen</td>
<td>.543</td>
<td>.536</td>
<td></td>
</tr>
<tr>
<td>ΔBalancieren rückwärts</td>
<td>.357</td>
<td>.348</td>
<td></td>
</tr>
<tr>
<td>ΔMLS Stifte einstecken</td>
<td>.572</td>
<td>.565</td>
<td></td>
</tr>
</tbody>
</table>

Differenz t2-t1; Interaktion: SEX*ALTERSGRUPPE*VEREINSAKTIVITÄT
6.3.8 Zusammenfassung: Vergleich der Einflussfaktoren zur Aktivität

Die Vereinsaktivität sowie die körperliche Aktivität (60 Minuten an Tagen/ Woche) beeinflussen bei den konditionellen Fähigkeiten (Standweitsprung, PWC 170 relativ) die Entwicklung im Verlauf der sechs Jahre und darüber hinaus das motorische Ausgangsniveau t0 der Längsschnittprobanden.

Bei der Reaktionsschnelligkeit zeigt sich nur ein sehr schwacher Einfluss der Vereinsaktivität auf die Entwicklung der Reaktionsleistungsfähigkeit. Die körperliche Aktivität hat keinen Einfluss auf die Entwicklung der Reaktionsschnelligkeit.

Die Entwicklung der großmotorischen Koordination stellt sich in Abhängigkeit der Aktivitätsformen (Vereinsaktivität oder körperliche Aktivität) differenzierte dar:

Die Vereinsaktivität beeinflusst die Entwicklung über die Zeit beim Seitlichen Hin- und Herspringen. Die körperliche Aktivität beeinflusst die Entwicklung über die Zeit beim Seilchen Hin- und Herspringen und darüber hinaus beim Balancieren rückwärts. Die körperliche Aktivität (60 Minuten an Tage/ Woche) beeinflusst das motorische Ausgangsniveau der Längsschnittprobanden zu t0 bei keinem großmotorischen Koordinations-Item. Die Vereinsaktivität beeinflusst das motorische Ausgangsniveau (t0) der Längsschnittprobanden bei den großmotorischen Koordinations-Items (Balancieren rückwärts, seitlichem Hin- und Herspringen).

Bei der Feinmotorik (MLS Stifte einstecken) ist ebenfalls nur ein sehr schwacher Einfluss der Vereinsaktivität auf die Entwicklung im Verlauf der sechs Jahre gegeben. Die körperliche Aktivität hat keinen Einfluss auf die Entwicklung der Feinmotorik (MLS Stifte einstecken).

Die Vereinsaktivität beeinflusst das die Entwicklung der Rumpfbeugeleistung und darüber hinaus das Ausgangsniveau (t0), während die körperliche Aktivität lediglich die Entwicklung beeinflusst und dies vor allem bei den männlichen Studienteilnehmern.

Insgesamt ist die Varianzaufklärung der Vereinsaktivität auf die motorischen Ausgangsleistungen (t0) größer, als die der körperlichen Aktivität.
6.4. Der Einfluss des Body-Mass Index auf die Entwicklung der motorischen Leistungsfähigkeit

Im Folgenden wird der Einfluss des Body-Mass Index (BMI) auf die Entwicklung der motorischen Leistungsfähigkeit (ausgewählte Testaufgaben für jede Dimensionen Ausdauer, Kraft, Schnelligkeit, Beweglichkeit, Koordination) untersucht.

Die errechneten Mittelwerte der einzelnen Testitems (Rohwerte) der Längsschnittprobanden von Baseline (t0) und Welle1 (t1) in Abhängigkeit von Alter, Geschlecht und BMI-Gruppe befinden sich im Anhang VIII. Die vierfaktorielle Varianzanalyse wird kontrolliert für das Geschlecht und das Alter (exakt) (siehe Kapitel 4.5.4). Dargestellt wird im Folgenden lediglich der Effekt der BMI-Gruppe sowie die Interaktion der BMI-Gruppe mit dem Zeitintervall und die Zeit*BMI-Gruppen*Geschlecht-Interaktion.

6.4.1 Deskriptive Analyse der BMI-Entwicklung

<table>
<thead>
<tr>
<th>Häufigkeit in %</th>
<th>Verteilung der BMI-Wechslergruppen</th>
</tr>
</thead>
<tbody>
<tr>
<td>80,3</td>
<td>persistent normalgewichtig*</td>
</tr>
<tr>
<td>10,9</td>
<td>Zunehmer</td>
</tr>
<tr>
<td>2,3</td>
<td>Abnehmer</td>
</tr>
<tr>
<td>6,6</td>
<td>persistent übergewichtig*</td>
</tr>
<tr>
<td>82,0</td>
<td>persistent normalgewichtig*</td>
</tr>
<tr>
<td>7,7</td>
<td>Zunehmer</td>
</tr>
<tr>
<td>3,6</td>
<td>Abnehmer</td>
</tr>
<tr>
<td>6,8</td>
<td>persistent übergewichtig*</td>
</tr>
</tbody>
</table>

männlich: 80,3% persistent normalgewichtig, 10,9% Zunehmer, 2,3% Abnehmer, 82,0% persistent normalgewichtig
weiblich: 7,7% Zunehmer, 3,6% Abnehmer, 6,8% persistent übergewichtig
6 Darstellung der Ergebnisse zu ausgewählten Einflussfaktoren

6.4.2 Ergebnisse zum Einfluss des BMI auf die Entwicklung der Ausdauerleistungsfähigkeit

Fahrrad-Ausduerertest

Tabelle 88 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung verdeutlicht, dass eine signifikant unterschiedliche Veränderung der Ausdauerleistung (PWC 170 relativ) im Verlauf der sechs Jahre in Abhängigkeit der BMI-Gruppen gegeben ist. Der Post-hoc Test der zweifaktorielle Varianzanalyse über die Differenz Δ_{t1-t0} differenziert nach Geschlecht, macht sichtbar, dass bei den männlichen Teilnehmern, die „Abnehmer“ ihre Leistung im Verlauf der sechs Jahre signifikant mehr verbessern als die anderen BMI-Gruppen. Zusätzlich zeigt sich das die „persistente Normalgewichtigen“ ihre Aus-
dauerleistung mehr steigern als die „Zunehmer”. Die Normalgewichtigen verbessern ihre Leistungsfähigkeit über die Zeit um 0,61 Z-Punkte, während die „Zunehmer“ ihre Leistungsfähigkeit um 5,3 Z-Punkte verschlechtern. Bei den weiblichen Studienteilnehmern verbessern die „Zunehmer“ ihre Leistung signifikant weniger, als die „persistent Normalgewichtigen“ und die „Abnehmer“.

Tabelle 88: Veränderung der Ausdauerleistungsfähigkeit (PWC 170 relativ) nach Alter, Geschlecht und BMI-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>F_{1,120}=25,96</td>
<td>.00</td>
<td>.02</td>
<td>2,20%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI-Gruppe</td>
<td>F_{3,120}=36,42</td>
<td>.00</td>
<td>.09</td>
<td>8,80%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*BMI-Gruppe</td>
<td>F_{1,120}=16,26</td>
<td>.00</td>
<td>.04</td>
<td>4,10%</td>
</tr>
<tr>
<td>ZeitGeschlechtBMI-Gruppe</td>
<td>F_{1,120}=1,89</td>
<td>0,13 (n.s.)</td>
<td>.01</td>
<td>0,50%</td>
</tr>
</tbody>
</table>

Da die Interaktionen des Zeitintervalls mit dem Alter (F_{1,2129}=39,55; \ p=.00; \ \eta^2=.034) und dem Geschlecht (F_{1,2129}=12,82; \ p=.00; \ \eta^2=.011) signifikant werden, wird die Varianzanalyse zusätzlich für die Altersgruppe und das Geschlecht differenziert durchgeführt (siehe Tabelle 89).

Für die männlichen Studienteilnehmer ist eine signifikant unterschiedliche Entwicklung der Ausdauerleistungsfähigkeit in Abhängigkeit der BMI-Gruppe in den Altersgruppe 2 und 3 gegeben und bei den weiblichen Studienteilnehmern in der Altersgruppe 2.

Tabelle 89: Veränderung der Ausdauerleistungsfähigkeit in Abhängigkeit der BMI-Gruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>männlich: Zeit*BMI- Gruppe</th>
<th>weiblich: Zeit*BMI- Gruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-Wert</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F_{3,351}= 5,41</td>
<td>.000</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F_{3,114}= 6,21</td>
<td>.000</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F_{3,94}= 2,57</td>
<td>.06 (n.s.)</td>
</tr>
</tbody>
</table>

Die Stichprobe wird zusätzlich auf Leistungsunterschiede im Ausgangsniveau t0 in Abhängigkeit der BMI-Gruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt (t0) zeigen, dass ein signifikanter Unterschied beim Fahrrad-Ausdauertest zwischen den vier BMI-Gruppen besteht (F_{3,1138}=18,67; \ p=.00;
6 Darstellung der Ergebnisse zu ausgewählten Einflussfaktoren

6.4.3 Ergebnisse zum Einfluss des BMI auf die Entwicklung der Kraftfähigkeit

Standweitsprung

Tabelle 90 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung verdeutlicht, dass eine signifikant unterschiedliche Veränderung der Standweitsprungleistung im Verlauf der sechs Jahre in Abhängigkeit der BMI-Gruppen gegeben ist. Der Post-hoc Test der zweifaktorielle Varianzanalyse über die Standweitsprung-Differenz Δt1-t0 differenziert nach Geschlecht, macht sichtbar, dass bei den männlichen Teilnehmern die „persistent Normalgewichtigen“ ihre Leistung über die Zeit signifikant mehr verbessern als die „Zunehmer“ und die „persistent Übergewichtigen“. Bei den weiblichen Studienteilnehmern verbessern die „persistent Übergewichtigen“ ihre Leistung über die Zeit signifikant weniger verglichen mit allen anderen BMI-Gruppen. Darüber hinaus ist der Zuwachs in der Sprungweite bei den „persistent Normalgewichtigen“ signifikant höher als bei den weiblichen „Zunehmern“. Bei einer differenzierten Betrachtung nach Geschlecht verbessern die weiblichen Normalgewichtigen steigern ihre Leistung beim Standweitsprung im Durchschnitt um 31 cm; die „persistent Übergewichtigen“ um 11 cm. Die männlichen normalgewichtigen Studienteilnehmer steigern ihre Leistung im Durchschnitt um 50 cm über die Zeit; die „persistent Übergewichtigen“ um 36 cm. In Z-Punkten ausgedrückt bedeutet dies für die „persistent Normalgewichtigen“ eine Steigerung um 10,1 Z-Punkte im Verlauf der sechs Jahre und für die „persistent Übergewichtigen“ eine Steigerung um 6,0 Z-Punkte.

| Tabelle 90: Veränderung der Standweitsprungleistung nach Alter, Geschlecht und BMI-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung |
|-----------------|-----------------|-----------------|-----------------|
| | F-Wert | Signifikanz | Eta² | Erklärte Varianz |
| Haupteffekt Zeit | F₁,₁₂₁₁=2606,19 | ,00 | ,55 | 55,20% |
| Zwischensubjekteffekte | | | | |
| BMI-Gruppe | F₃,₁₂₁₁=87,52 | ,00 | ,11 | 1,11% |
| Wechselwirkungen | | | | |
| Zeit*BMI-Gruppe | F₁₂₁₁=25,75 | ,00 | ,04 | 3,50% |
| Zeit*Geschlecht*BMI-Gruppe | F₁₂₁₁=1,97 | ,12 (n.s.) | ,00 | 0,30% |
Da die Interaktionen des Zeitintervalls mit dem Alter (F\(_{1,2112}\)=1395,33; p=.00; eta\(^2\)=.398) und dem Geschlecht (F\(_{1,2112}\)=111,95; p=.00; eta\(^2\)=.050) signifikant werden, wird die Varianzanalyse zusätzlich für die Altersgruppen und das Geschlecht differenziert durchgeführt (siehe Tabelle 91).

Tabelle 91: Veränderung der Leistung beim Standweitsprung in Abhängigkeit der BMI-Gruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>männlich: Zeit*BMI-Gruppe</th>
<th>weiblich: Zeit*BMI-Gruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-Wert Signifikanz Eta(^2)</td>
<td>F-Wert Signifikanz Eta(^2)</td>
</tr>
<tr>
<td>1 (4-5 Jahre)</td>
<td>F(_{3,275})= 11,31 .00 .110</td>
<td>F(_{3,383})= 4,19 .01 .040</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F(_{3,275})= 10,94 .00 .070</td>
<td>F(_{3,473})= 7,72 .00 .050</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F(_{3,158})= 2,83 .000 .150</td>
<td>F(_{3,190})= 0,64 0,59 (n.s.) .010</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F(_{3,248})= 0,63 0,63 (n.s.) .020</td>
<td>F(_{3,190})= 1,09 0,36 (n.s.) .020</td>
</tr>
</tbody>
</table>

Wird die Varianzanalyse differenziert nach Altersgruppen und Geschlecht durchgeführt ist bei den weiblichen Teilnehmern in den Altersgruppen 1 und 2 eine signifikante Zeit*BMI-Gruppen-Interaktion gegeben. Bei den männlichen Teilnehmern wird sich in den Altersgruppen 1 bis 3 eine signifikante Zeit*BMI-Gruppen-Interaktion deutlich.

Die Stichprobe wird zusätzlich auf Leistungsunterschiede im Ausgangsniveau t0 in Abhängigkeit der BMI-Gruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt (t0) zeigen, dass ein signifikanter Unterschied beim Standweitsprung zwischen den vier BMI-Gruppen (F\(_{3,2121}\)=137,91; p=.00; eta\(^2\)=.05) besteht. Der Post-hoc Test macht sichtbar, dass sich „persistent Normalgewichtige“ signifikant von „Abnehmern“ und den „persistent Übergewichtigen“ unterscheiden. Normalgewichtige erbringen zu t0 die besseren Leistungen. Außerdem unterscheiden sich „Zunehmer“ signifikant von „persistent Übergewichtigen“ und den „Abnehmern“. Die „Zunehmer“ erbringen zu t0 die besseren Leistungen.
6.4.4 Ergebnisse zum Einfluss des BMI auf die Entwicklung der Reaktionsschnelligkeit

Reaktionstest

Tabelle 92: Veränderung der Leistung beim Reaktionstest in Abhängigkeit nach Alter, Geschlecht und BMI-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>F<sub>1,2114</sub>=2421,17</td>
<td>.00</td>
<td>0,53</td>
<td>53,00%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI-Gruppe</td>
<td>F<sub>3,2114</sub>=3,39</td>
<td>.02</td>
<td>.01</td>
<td>0,05%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*BMI-Gruppe</td>
<td>F<sub>3,2114</sub>=1,03</td>
<td>.38 (n.s.)</td>
<td>.00</td>
<td>0,10%</td>
</tr>
<tr>
<td>ZeitGeschlechtBMI-Gruppe</td>
<td>F<sub>3,2114</sub>=1,4</td>
<td>.24 (n.s.)</td>
<td>.00</td>
<td>0,20%</td>
</tr>
</tbody>
</table>

Die Interaktionen des Zeitintervalls mit dem Alter (F_{1,2114}=1945,16; p=.00; eta²=.479) wird signifikant, nicht jedoch dem Geschlecht (F_{1,2114}=0,30; p=.59; eta²=.00).

Die Stichprobe wird zusätzlich auf Leistungsunterschiede im Ausgangsniveau t0 in Abhängigkeit der BMI-Gruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt (t0) zeigen, dass kein signifikanter Unterschied beim Reaktionstest zum ersten Messzeitpunkt (t0) zwischen den vier BMI-Gruppen besteht (F_{3,2123}=0,53; p=.66; eta²=.00).

6.4.5 Ergebnisse zum Einfluss des BMI auf die Entwicklung die großmotorische Koordination

Großmotorische Koordination bei dynamischen Präzisionsaufgaben: Balancieren rückwärts

Tabelle 93 zeigt die Ergebnisse der vierfaktoriellen Varianzanalyse mit Messwiederholung. Die Gesamtbetrachtung verdeutlicht, dass eine signifikant unterschiedliche Leistungsveränderung beim Balancieren rückwärts im Verlauf der sechs Jahre in Abhängigkeit der BMI-Gruppen gegeben ist. Der Post-hoc Test für die zweifaktorielle Varianzanalyse über die Differenz Δ_{t1-t0} differenziert nach Geschlecht veranschaulicht, dass bei den männlichen Teilnehmern die „persistent Normalgewichtigen“ ihre Leistung über die Zeit signifikant mehr verbessern als die „Zunehmer“. Die „Abnehmer“ steigern ihre Leistung über die Zeit signifikant mehr als die

Die weiblichen „persistent Normalgewichtigen“ steigern ihre Leistung beim Balancieren im Verlauf der sechs Jahre durchschnittlich um 13 Schritte; die „persistent Übergewichtigen“ lediglich um 10 Schritte. Die männlichen „persistent Normalgewichtigen“ steigern ihre Leistung im Durchschnitt um 12 Schritte über die Zeit; die „persistent Übergewichtigen“ um 8 Schritte. In Z-Punkten ausgedrückt bedeutet dies eine Leistungssteigerung um 7,5 Z-Punkte für die Übergewichtigen und um 10,5 Z-Punkte für die Normalgewichtigen.

Tabelle 93: Veränderung der Leistung beim Balancieren rückwärts nach Alter, Geschlecht und BMI-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>F_{1,2136}=1799.25</td>
<td>.00</td>
<td>.46</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI-Gruppe</td>
<td>F_{1,2136}=61.49</td>
<td>.00</td>
<td>.08</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*BMI-Gruppe</td>
<td>F_{1,2136}=6.47</td>
<td>.00</td>
<td>.01</td>
</tr>
<tr>
<td>ZeitGeschlechtBMI-Gruppe</td>
<td>F_{1,2136}=3.32</td>
<td>.02</td>
<td>.00</td>
</tr>
</tbody>
</table>

Die Interaktionen des Zeitintervalls mit dem Alter (F_{1,2136}=1001.67; p=.00; eta²=.32) wird signifikant, nicht jedoch die Interaktion des Zeitintervalls mit dem Geschlecht (F_{1,2136}=2.72; p=.10; eta²=.001).

Tabelle 94: Veränderung der Leistung beim Balancieren rückwärts in Abhängigkeit der BMI-Gruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th>Alter</th>
<th>männlich: Zeit*BMI-Gruppe</th>
<th>weiblich: Zeit*BMI-Gruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (4-5 Jahre)</td>
<td>F_{1,2136}=5.59</td>
<td>.00</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F_{1,2136}=2.65</td>
<td>.048</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F_{1,2136}=8.44</td>
<td>.000</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F_{1,2136}=2.15</td>
<td>0.10 (n.s.)</td>
</tr>
</tbody>
</table>

Bei den weiblichen Teilnehmern ist sich in der Altersgruppe 4 eine Wechselwirkung des Zeitintervalls mit der BMI-Entwicklung gegeben. Für die männlichen Teilnehmer zeigt sich in den Altersgruppen 1, 2 und 3 eine signifikante Zeit*BMI-Gruppen-Interaktion.

Die Stichprobe wird zusätzlich auf Leistungsunterschiede im Ausgangsniveau t0 in Abhängigkeit der BMI-Gruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Vari-
anzalyse für den ersten Messzeitpunkt t0 zeigen, dass ein signifikanter Unterschied beim Balancieren rückwärts zwischen den vier BMI-Gruppen besteht (F_{3,2145}=28,02; \ p=,00; \ \eta^2=.04). Der Post-hoc Test macht sichtbar, dass sich „persistent Normalgewichtige“ signifikant von allen anderen BMI-Gruppen unterscheiden, sie erbringen bessere Leistungen zu t0.

6.4.6 Ergebnisse zum Einfluss des BMI auf die Entwicklung der großmotorischen Koordination

Großmotorische Koordination unter Zeitdruck: Seitliches Hin und Herspringen

| Tabelle 95: Veränderung der Leistung beim Seitlichen Hin und Herspringen nach Alter, Geschlecht und BMI-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung |
|---|---|---|---|
| **F-Wert** | **Signifikanz** | **Eta^2** | **Erklärte Varianz** |
| Haupteffekt Zeit | F_{1,2099}=5133,27 | .00 | .71 | 71,00% |
| Zwischensubjekteffekte | | | | |
| BMI-Gruppe | F_{3,2209}=32,97 | .00 | .05 | 4,50% |
| Wechselwirkungen | | | | |
| Zeit*BMI-Gruppe | F_{3,2209}=5,99 | .00 | .01 | 0,80% |
| Zeit*Geschlecht*BMI-Gruppe | F_{3,2209}=0,28 | .28 (n.s.) | .00 | 0,00% |

Da die Interaktionen des Zeitintervalls mit dem Alter (F_{1,2099}=2405,76; \ p=,00; \ \eta^2=.543) und dem Geschlecht (F_{1,2099}=17,05; \ p=,00; \ \eta^2=.008) signifikant werden, wird die Varianzanalyse zusätzlich für die Altersgruppen und das Geschlecht differenziert durchgeführt (siehe Tabelle 96).
6 Darstellung der Ergebnisse zu ausgewählten Einflussfaktoren

Tabelle 96: Veränderung der Leistung beim Seitlichen Hin- und Herspringen in Abhängigkeit der BMI-Gruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>männlich: Zeit*BMI- Gruppe</th>
<th>weiblich: Zeit*BMI- Gruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-Wert</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>1 (4-5 Jahre)</td>
<td>F₁,₁₂₃ = 6,56</td>
<td>.00</td>
</tr>
<tr>
<td>2 (6-10 Jahre)</td>
<td>F₁,₁₄₀ = 3,30</td>
<td>.020</td>
</tr>
<tr>
<td>3 (11-13 Jahre)</td>
<td>F₁,₁₁₅ = 0,27</td>
<td>0,85 (n.s.)</td>
</tr>
<tr>
<td>4 (14-17 Jahre)</td>
<td>F₁,₁₃₇ = 0,32</td>
<td>0,99 (n.s.)</td>
</tr>
</tbody>
</table>

Für die männlichen und weiblichen Studienteilnehmer zeigt sich in den Altersgruppen 1 und 2 eine signifikante Zeit*BMI-Gruppen-Interaktion.

Die Stichprobe wird zusätzlich auf Leistungsunterschiede im Ausgangsniveau t₀ in Abhängigkeit der BMI-Gruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t₀ zeigen, dass ein signifikanter Leistungsunterschied beim Seitlichen Hin- und Herspringen zwischen den vier BMI-Entwicklungsgruppen besteht (F₃,₂₁₀₈ =13,78; p=.00; eta²=.02). Im Post-hoc Test werden jedoch keine signifikanten Unterschiede zwischen den Gruppen sichtbar.

6.4.7 Ergebnisse zum Einfluss des BMI auf die Entwicklung die feinmotorischen Koordination

Feinmotorische Koordination unter Zeitdruck: MLS Stifte einstecken

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>Eta²</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>F₁,₂₁₁₈ =3569,90</td>
<td>.00</td>
<td>.63</td>
<td>62,80%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td>F₃,₂₁₁₈ =7,96</td>
<td>.00</td>
<td>.01</td>
<td>1,10%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td>F₃,₂₁₁₈ =1,10</td>
<td>.35 (n.s)</td>
<td>.00</td>
<td>0,20%</td>
</tr>
<tr>
<td>Zeit*BMI-Gruppe</td>
<td>F₃,₂₁₁₈ =1,01</td>
<td>.39 (n.s)</td>
<td>.00</td>
<td>0,10%</td>
</tr>
<tr>
<td>ZeitGeschlechtBMI-Gruppe</td>
<td>F₃,₂₁₁₈ =1,01</td>
<td>.39 (n.s)</td>
<td>.00</td>
<td>0,10%</td>
</tr>
</tbody>
</table>

Die Interaktionen des Zeitintervalls mit dem Alter (F₁,₂₁₁₈ =2227,59; p=.00; eta²=.51) wird signifikant. Die Interaktionen des Zeitintervalls mit dem Geschlecht wird nicht signifikant
(F_{1,2118}=2.58; p=.11; \eta^2=.001). Bei den weiblichen Teilnehmern zeigt sich in keiner Altersgruppe eine signifikante Wechselwirkung der BMI-Gruppe mit dem Zeitintervall. Bei den männlichen Teilnehmern zeigt sich lediglich in der Altersgruppe 3 eine signifikante Interaktion des Zeitintervalls mit der BMI-Gruppe (F_{3,157}=3.59; p=.01; \eta^2=.06).

Die Stichprobe wird zusätzlich auf Leistungsunterschiede im Ausgangsniveau t0 in Abhängigkeit der BMI-Gruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t0 zeigen, dass kein signifikanter Unterschied beim MLS Stifte einstecken zwischen den vier BMI-Gruppen auf 0.01- Signifikanz-Niveau besteht (F_{3,2127}=2.76; p=.05; \eta^2=.00).

6.4.8 Ergebnisse zum Einfluss des BMI auf die Entwicklung der Beweglichkeit

Rumpfbeuge

Tabelle 98: Veränderung der Leistung bei der Rumpfbeuge nach Alter, Geschlecht und BMI-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung

<table>
<thead>
<tr>
<th></th>
<th>F-Wert</th>
<th>Signifikanz</th>
<th>(\eta^2)</th>
<th>Erklärte Varianz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupteffekt Zeit</td>
<td>(F_{1,2124}=12.35)</td>
<td>.00</td>
<td>.01</td>
<td>0,60%</td>
</tr>
<tr>
<td>Zwischensubjekteffekte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI-Gruppe</td>
<td>(F_{3,2124}=34.68)</td>
<td>.00</td>
<td>.02</td>
<td>1,60%</td>
</tr>
<tr>
<td>Wechselwirkungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeit*BMI-Gruppe</td>
<td>(F_{3,2124}=1.50)</td>
<td>.21 (n.s.)</td>
<td>.00</td>
<td>0,20%</td>
</tr>
<tr>
<td>ZeitGeschlechtBMI-Gruppe</td>
<td>(F_{3,2124}=2.26)</td>
<td>.08 (n.s.)</td>
<td>.00</td>
<td>0,30%</td>
</tr>
</tbody>
</table>

Da die Interaktionen des Zeitintervalls mit dem Alter (F_{1,2124}=50.69; p=.00; \eta^2=.023) und dem Geschlecht (F_{1,2124}=7.92; p=.01; \eta^2=.004) signifikant werden, wird die Varianzanalyse zusätzlich für die Altersgruppen und das Geschlecht differenziert durchgeführt.

Wird die Varianzanalyse differenziert nach Altersgruppen und Geschlecht durchgeführt, ist bei den weiblichen Teilnehmern in keiner Altersgruppe eine signifikante Zeit*BMI-Gruppen-Interaktion gegeben. Für die männlichen Teilnehmer zeigt sich ebenfalls lediglich in der Altersgruppe 2 eine signifikante Zeit*BMI-Gruppen-Interaktion (\(\bar{\eta}^2\) Zeit*BMI-Gruppe: AG 2: \(F_{3,465}=3.15; p=.03; \eta^2=.02\).
Die Stichprobe wird zusätzlich auf Leistungsunterschiede im Ausgangsniveau t0 in Abhängigkeit der BMI-Gruppen untersucht. Die Ergebnisse der dreifaktoriellen univariaten Varianzanalyse für den ersten Messzeitpunkt t0 zeigen, dass kein signifikanter Unterschied bei der Rumpfbeuge zwischen den vier BMI-Entwicklungsgruppen besteht (F\(_{3,2133}=2,31;\ p=,07;\ \eta^2=,00)\).

6.4.9 Zusammenfassung: Body-Mass-Index und Entwicklung der motorischen Leistungsfähigkeit

Tabelle 99 gibt einen Überblick über die Ergebnisse zum Einfluss des BMI auf die Entwicklung der motorischen Leistungsfähigkeit bei den sieben ausgewählten Testaufgaben der Mo-Mo-Längsschnittstudie.

<table>
<thead>
<tr>
<th>Testaufgabe/Dimension</th>
<th>Entwicklung (Zeit*Gruppe)</th>
<th>Ausgangsniveau (t0)</th>
<th>Signifikanz</th>
<th>Effektstärke</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWC 170 relativ Ausdauer</td>
<td>BMI-Entw.-Gr.</td>
<td>✓</td>
<td>eta(^2)=0,041</td>
<td>✓</td>
</tr>
<tr>
<td>Standweitsprung Kraft</td>
<td>BMI-Entw.-Gr.</td>
<td>✓</td>
<td>eta(^2)=0,035</td>
<td>✓</td>
</tr>
<tr>
<td>Reaktionstest Reaktionsschnelligkeit</td>
<td>BMI-Entw.-Gr.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Balancieren rückwärts großmotor. Koordination/Präzision</td>
<td>BMI-Entw.-Gr.</td>
<td>✓</td>
<td>eta(^2)=0,010</td>
<td>✓</td>
</tr>
<tr>
<td>Seitliches Hin- und Herspringen großmotor. Koordination (Zeitdruck)</td>
<td>BMI-Entw.-Gr.</td>
<td>✓</td>
<td>eta(^2)=0,010</td>
<td>✓</td>
</tr>
<tr>
<td>MLS Stifte einstecken feinmotor. Koordination (Zeitdruck)</td>
<td>BMI-Entw.-Gr.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Rumpfbeuge Beweglichkeit</td>
<td>BMI-Entw.-Gr.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

Bei 4 von 7 Testaufgaben zeigt sich eine signifikant unterschiedliche Entwicklung der Leistung im Verlauf der sechs Jahre in Abhängigkeit der BMI-Gruppe. Dies ist der Fall bei den konditionell determinierten Testaufgaben und den Testaufgaben der großmotorischen Koordination (PWC 170 relativ, Standweitsprung, Balancieren rückwärts, Seitliche Hin- und Herspringen).

Bei diesen vier Testaufgaben zeigt sich ebenfalls ein signifikanter Einfluss der BMI-Gruppe auf das motorische Ausgangsniveau t0 der Längsschnittprobanden.

Tabelle 100 gibt einen Überblick über die aufgeklärte Varianz der Entwicklung der motorischen Leistungsfähigkeit \(\Delta t1-t2\) für das Modell „Geschlecht*Altersgruppe*BMI-Gruppe“.

237
Die höchsten Varianzaufklärungen zeigen sich bei den Testaufgaben MLS Stifte einstecken (56,8%), beim Seitlichen Hin- und Herspringen (53,0%) und beim Standweitsprung (52,7%). Die geringsten Varianzaufklärungen zeigen sich für die relative PWC 170 (11,1 %) und die Rumpfbeuge (8,8 %).

Abbildung 59 veranschaulicht grafisch in Form von „Leistungsprofilen“ für den ersten (t0) und zweiten Messzeitpunkt (t1) den Einfluss der BMI-Gruppe auf das Leistungsniveau zu t0 und t1 für die sieben Testaufgaben. Abbildung 60 veranschaulichen grafisch in Form von „Entwicklungsprofilen“ im Verlauf der sechs Jahre den Einfluss der BMI-Gruppe auf die Entwicklung der Leistung (Δt1- t0) für die sieben Testaufgaben.

Die Bildung von Z-Werten (siehe Kapitel 4.5.5) (Y-Achse) ermöglicht einen Vergleich zwischen den unterschiedlichen Testaufgaben, welche auf der X-Achse abgebildet werden. Somit ergeben sich drei Profile: für den ersten Messzeitpunkt t0, den zweiten Messzeitpunkt t1 (Abbildung 59) und die Entwicklung (Abbildung 60). Diese können jeweils für Studienteilnehmer, die zu beiden Messzeitpunkten übergewichtig/adipös sind und für Studienteilnehmer, die zu beiden Messzeitpunkten normalgewichtig sind abgebildet und verglichen werden.

Tabelle 100: aufgeklärte Varianz für die Entwicklung der motorischen Leistungsfähigkeit Δt1-t2 des Modells Geschlecht*Altersgruppe*BMI-Gruppe

<table>
<thead>
<tr>
<th>Testaufgabe</th>
<th>SEXALTERSGRUPPEBMI-GRUPPE</th>
<th>(R^2)</th>
<th>angepasstes (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \text{PWC rel.})</td>
<td>(,111)</td>
<td>(,093)</td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{PWC})</td>
<td>(,390)</td>
<td>(,377)</td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{Standweitsprung})</td>
<td>(,527)</td>
<td>(,520)</td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{Reaktionstest})</td>
<td>(,495)</td>
<td>(,487)</td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{Rumpfbeuge})</td>
<td>(,088)</td>
<td>(,075)</td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{Seitliches Hin- und Herspringen})</td>
<td>(,530)</td>
<td>(,523)</td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{Balancieren rückwärts})</td>
<td>(,370)</td>
<td>(,361)</td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{MLS Stifte einstecken})</td>
<td>(,568)</td>
<td>(,562)</td>
<td></td>
</tr>
</tbody>
</table>

Differenz t2-t1; Interaktion: SEX*ALTERSGRUPPE*BMI-GRUPPE
Abbildung 59: Leistung zu t0 und t1 in Abhängigkeit der BMI-Gruppe (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte)

Abbildung 60: Entwicklung der Leistung von t0 zu t1 in Abhängigkeit der BMI-Gruppe (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte)

Die männlichen „persistent Normalgewichtigen“ verbessern bei 2 von 7 Testaufgaben ihre Leistung über die Zeit signifikant mehr als die „persistent Übergewichtigen“ (Standweitsprung und Seitliches- Hin und Herspringen). Bei den weiblichen Studienteilnehmern zeigt sich bei 3 von 7 Testaufgaben (Standweitsprung und Seitliches- Hin und Herspringen, Balancieren rückwärts) ein signifikant stärkerer Leistungszuwachs der „persistent Normalgewichtigen“ verglichen mit den „persistent Übergewichtigen“.

Die „persistent Übergewichtigen“ erreichen bei 4 von 7 Testaufgaben zum zweiten Messzeitpunkt nicht das Leistungsniveau der „persistent Normalgewichtigen“. Bei den konditionell determinierten Testaufgaben und den Testaufgaben der großmotorischen Koordination (PWC

Die weiblichen „Zunehmer“ verbessern ihre Leistung im Verlauf der sechs Jahre bei 2 von 7 Testaufgaben (PWC 170 relativ, Standweitsprung) signifikant weniger als „persistent Normalgewichtige“. Insgesamt weisen die „Zunehmer“ zum zweiten Messzeitpunkt bei 5 von 7 Testaufgaben eine geringere Leistungsfähigkeit als die „persistent Normalgewichtigen“ auf (keine Unterschiede bei Reaktionstest und Rumpfbeuge).

7 Entscheidung über die Hypothesen, Interpretation und Diskussion der Ergebnisse

Im Folgenden werden die in Kapitel 5 und 6 dargestellten Ergebnisse zusammengefasst und vor der dem Hintergrund der dargestellten theoretischen Grundlagen sowie des beschriebenen Forschungsstandes interpretiert und diskutiert. Es erfolgt die Entscheidung über die in Kapitel 3.3.1 formulierten Hypothesen.

In Kapitel 7.1 bis 7.3 erfolgt dies für die dargestellten Entwicklungsverläufe der motorischen Leistungsfähigkeit in den Bereichen Ausdauer, Kraft, Reaktionsschnelligkeit, Koordination und Beweglichkeit nach Alter und Geschlecht sowie für die Ergebnisse zur Direktionalität und Stabilität.

In Kapitel 7.4 werden die Ergebnisse zum Einfluss des Sozialstatus, Aktivitätsverhalten (körperliche und Vereinsaktivität) und Körperkonstitution (BMI) auf die Entwicklung der verschiedenen Dimensionen der Motorik interpretiert und diskutiert.

7.1. Entwicklung der motorischen Leistungsfähigkeit in Abhängigkeit von Alter und Geschlecht

Die Analysen geben Antwort auf die erste Zielsetzung der Arbeit (Kapitel 1.2) : „Beschreibung und Kennzeichnung von motorischen Entwicklungsmustern (Gewinn/Verlust/ Direktionalität) in Abhängigkeit von Alter und Geschlecht.“

Interpretation und Diskussion der Ergebnisse zum Einfluss von Alter und Geschlecht auf die Entwicklung der Ausdauerleistungsfähigkeit (Fahrrad-Ausdauertest)

eines großen, schweren Studienteilnehmers größer ist als die eines kleinen, leichten, so dass die relative Leistung einen Vergleich aller Studienteilnehmer ermöglicht.

„Growth in VO\textsubscript{2\text{max}}, however, is influenced by growth in body size, so controlling for changes in body size during growth is essential.“ (Malina, Bouchard & Bar-Or, 2004, S. 243). „However, how the various allometric analyses influence our understanding of changes in VO\textsubscript{2\text{max}} that occur with growth and maturation during childhood and adolescence is not clear“ (Malina, Bouchard & Bar-Or, 2004, S. 245).

Für die Entwicklung der relativen Ausdauerleistungsfähigkeit nach Alter und Geschlecht wurden folgenden Hypothesen formuliert:

\(H_{1,1} \): Es besteht ein signifikanter Unterschied zwischen den Altersgruppen 1 bis 4 in der Entwicklung der Ausdauerleistungsfähigkeit.

Eine Betrachtung der Ausdauerleistungsfähigkeit zu \(t_0 \) nach Alter (Altersgruppe) ergibt signifikante Leistungsunterschiede. In Altersgruppe 2 werden die geringsten Ausgangsleistungen erbracht. Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten \(t_0 \) und \(t_1 \) beim Fahrrad-Ausdauertest (PWC relativ) nach Alter, so ergibt die Gesamtbetrachtung mittels Varianzanalyse mit Messwiederholungen eine signifikante Zeit*Altersgruppen-Interaktion. Dies bedeutet, dass sich die Altersgruppen über die Zeit unterschiedlich entwickeln und sich somit unterschiedliche Steigungskoeffizienten für die Altersgruppen ergeben. Die Altersgruppe erklärt im Modell (Altersgruppe*Geschlecht*Zeit) an der Entwicklung der Standweitsprungleistung 3,6% der Varianz auf. Über die Zeit werden also lediglich geringe Leistungszuwächse für alle Altersgruppen sichtbar.

Eine Betrachtung der relativen Ausdauerleistungsfähigkeit beim Fahrrad-Ausdauertest zu t0 nach Geschlecht ergibt signifikante Geschlechtereffekte. Männliche Teilnehmer erreichen bereits zu t0 eine höhere relative Wattzahl als die weiblichen Teilnehmer.

Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Fahrrad-Ausdauertest nach Geschlecht, so ergibt die Gesamtbetrachtung für beide Geschlechter vergleichbare Steigungskoeffizienten und somit ähnliche Entwicklungsverläufe mit sehr geringen Leistungsverbesserungen über die Zeit.

Bei einer differenzierten Betrachtung der einzelnen Jahrgänge wird jedoch deutlich, dass bei den weiblichen Teilnehmern ab ca. 11-Jahren eine Stagnation bzw. signifikante Abnahme gegeben ist (siehe Abbildung 16). Bei den männlichen Studienteilnehmern zeigt sich eine signifikante Abnahme der relativen Ausdauerleistungsfähigkeit ab einem Alter von ca. 13 Jahren (siehe Abbildung 15).

Einordnung der Ergebnisse zum Einfluss von Alter und Geschlecht auf die Entwicklung der Ausdauerleistungsfähigkeit (Fahrrad-Ausdauertest)

im Verlauf der sechs Jahre für die Ausdauerleistungsfähigkeit relativiert am Körpergewicht der Studienteilnehmer zeigt.

Allerdings werden in diesen Studien für die relative VO\textsubscript{2max} geschlechtsspezifische Unterschiede zugunsten der Jungen berichtet. Die relative VO\textsubscript{2max} bleibt bei männlichen Studienteilnehmern im Kindes- und Jugendalter konstant. Mädchen erreichen früher den Kulminationspunkt. Für die Mädchen wird bereits in der Kindheit ein Abfall der relativen VO\textsubscript{2max} nachgewiesen (vgl. Conzelmann, 2009; Malina et al., 2004).

Malina et al. (2004) diskutieren eine Abnahme der relativen VO\textsubscript{2max} wie folgt: „In general, body weight appears to increase at a faster rate than VO\textsubscript{2max}, particularly during and after the adolescent growth spurt and sexual maturity“ (Malina et al., 2004, S. 243). Die Autoren setzten die Ausdauerleistungsfähigkeit zusätzlich in das Verhältnis zur fettfreien Masse (FFM): „Changes in VO\textsubscript{2max} tend to be more closely related to FFM than to total-body mass.“ (Malina et al., 2004, S.243). Dennoch zeigen sich auch bei dieser Vorgehensweise geschlechtsspezifische Unterschiede zugunsten der männlichen Studienteilnehmer und eine Abnahme der Leistungsfähigkeit/ kg FFM während und nach der Pubertät bleibt bestehen.

In der vorliegenden Untersuchung zeigen die Ergebnisse der Gesamtbetrachtung (4-17 Jahre zu t0) zum Einfluss des Geschlechts auf die Entwicklung der Ausdauerleistungsfähigkeit hingegen keine unterschiedlichen Zuwachsraten im Verlauf der sechs Jahre für die relative PWC 170. Somit können die Ergebnisse zum Einfluss des Geschlechts der querschnittlichen Analysen der MoMo-Baseline Studie (vgl. Bös et al., 2009) ebenfalls nicht längsschnittlich bestätigt werden. Der Anstieg der relativen Ausdauerleistungsfähigkeit im Altersgang ist in der Baseline-Studie für die Jungen deutlich größer als für die Mädchen (vgl. Bös et al., 2009).

Eine differenzierte längsschnittliche Betrachtung der vorliegenden Ergebnisse für die einzelnen Jahrgänge gibt jedoch Hinweise auf geschlechtsspezifische Unterschiede in der Entwicklung. Der Eintritt des Kulminationspunkt deutet sich auch in der vorliegenden Studie bei den weiblichen Studienteilnehmern früher an.

Darüber hinaus besteht in den längsschnittlichen Analysen bereits im Ausgangsniveau ein Leistungsunterschied zugunsten der männlichen Studienteilnehmer, der bis zum zweiten Messzeitpunkt erhalten bleibt.

In der Literatur wird die relative Ausdauerleistungsfähigkeit zur Beobachtung von Entwicklungsverläufen kritisch diskutiert:
„This longitudinal „uncoupling“ of mass-relative aerobic power and endurance fitness leads also to the conclusion that improvements in endurance performance with growth are not caused by increased capacity of the oxygen delivery chain (relative to he child’s size)” (Rowland, 2005, S.98f.)

Interpretation und Diskussion der Ergebnisse zum Einfluss von Alter und Geschlecht auf die Kraftfähigkeit (Standweitsprung und Liegestützen)

Die Kraftfähigkeit wurde anhand der Testaufgaben Standweitsprung und Liegestützen erfasst. Dabei erfassen die Liegestützen die dynamische Kraftausdauer der oberen Extremitäten und der Standweitsprung die Schnellkraft der unteren Extremitäten.

Für die Entwicklung der Kraftfähigkeiten nach Alter und Geschlecht wurden folgende Hypothesen formuliert:

\(H_{1.1} \): Die Entwicklung der Kraftfähigkeit unterscheidet sich zwischen den Altersgruppen 1 bis 4 signifikant.

Standweitsprung

Eine Betrachtung der Schnellkraftfähigkeit beim Standweitsprung zu t0 nach Alter ergibt signifikante Leistungsunterschiede. Die Altersgruppe 1 weist das geringste Ausgangsniveau auf. Das Leistungsniveau steigt ab Altersgruppe 1 mit zunehmendem Alter in den höheren Altersgruppen an.

Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Standweitsprung so ergibt die Gesamtbetrachtung mittels Varianzanalyse mit Messwiederholungen eine signifikante Zeit*Altersgruppen-Interaktion. Dies bedeutet, dass sich die Altersgruppen über die Zeit unterschiedlich entwickeln und sich unterschiedliche Steigungs-koefizienten für die Altersgruppen ergeben. Die Altersgruppe klärt im Modell (Altersgrup-

Liegestützen

Eine Betrachtung der Kraftausdauer bei den Liegestützen zu t_0 nach Alter ergibt signifikante Leistungsunterschiede. Das Ausgangsniveau ist für die Altersgruppe 2 am geringsten und steigt mit zunehmendem Alter in den höheren Altersgruppen an. Betrachtet man anschließend den Leistungszuwuchs zwischen den Messzeitpunkten t_0 und t_1 bei den Liegestützen, so ergibt die Varianzanalyse mit Messwiederholungen eine signifikante Zeit*Altersgruppen-Interaktion. Dies bedeutet, dass sich die Altersgruppen über die Zeit unterschiedlich entwickeln und sich unterschiedliche Steigungskoeffizienten für die Altersgruppen ergeben. Die Altersgruppe klärt im Modell (Altersgruppe*Geschlecht*Zeit) neben dem Faktor Geschlecht an der Entwicklung der Leistung bei den Liegestützen 4,2%. Über die Zeit werden also verglichen mit dem Schnellkraftitem Standweitsprung lediglich geringe Leistungszuwächse für alle Altersgruppen sichtbar.

Eine Überprüfung des Einflussfaktors Alter auf die Entwicklung der Leistung bei den Liegestützen mittels Post-hoc Test ergibt signifikante Unterschiede zwischen allen Altersgruppen 1-4. Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten t_0 und t_1 bei den Liegestützen, so zeigt sich eine Reduktion mit steigendem Alter. Bei den Liegestützen zeigen sich die größten Zuwächse im Verlauf der sechs Jahre in der Altersgruppe 2 (6-10 Jahre zu t_0). Jüngere Studienteilnehmer verbessern ihre Kraftausdauer bei den Liegestützen stärker als ältere. Die Hypothese kann somit bestätigt werden.
H$_{12}$ K&RS: Die Entwicklung der Kraftfähigkeit von männlichen und weiblichen Studienteilnehmern unterscheidet sich signifikant.

Standweitsprung

Bei einer differenzierten Betrachtung der einzelnen Jahrgänge wird jedoch deutlich, dass bei den weiblichen Teilnehmern ab ca. 11-Jahren (17 Jahre zu t1) eine Stagnation gegeben ist. Ab ca. 15 Jahren ist eine signifikante Abnahme der Leistungsfähigkeit beim Standweitsprung bei den weiblichen Teilnehmern nachzuweisen (siehe Abbildung 19). Bei den männlichen Studienteilnehmern zeigt sich keine eindeutige Stagnation der Leistungssteigerung im Verlauf der sechs Jahre, so dass weitere Messzeitpunkte benötigt werden um das Eintreten einer Stagnation statistisch zu belegen (siehe Abbildung 18).

Der Einfluss des Geschlechts auf die Entwicklung der Schnellkraft beim Standweitsprung von t0 zu t1 erweist sich als signifikant. Männliche Studienteilnehmer haben einen stärkeren Leistungszuwachs beim Standweitsprung über die Zeit als weibliche Studienteilnehmer. Die Hypothese wird angenommen.

Liegestützen

Eine Betrachtung der Kraftausdauer bei den Liegestützen zu t0 nach Geschlecht ergibt keine signifikanten Leistungsunterschiede. Männliche und weibliche Teilnehmer haben ein vergleichbares Leistungsniveau zu t0. Betrachtet man anschließend den Leistungszuwachs zwi-
schen den Messzeitpunkten t0 und t1 bei den Liegestützen, so beeinflusst Geschlecht die Entwicklung im Verlauf der sechs Jahre (signifikante Geschlecht*Zeit-Interaktion). Dies bedeutet, dass sich männliche und weibliche Studienteilnehmer über die Zeit (6 Jahre) unterschiedlich entwickeln und sich somit unterschiedliche Steigungskoeffizienten für die Geschlechter ergeben. Auch bei den Liegestützen zeigen sich die geschlechtsspezifischen Unterschiede besonders deutlich ab der Altersgruppe der 11-13-Jährigen. Das Geschlecht erklärt im Modell (Altersgruppe*Geschlecht*Zeit) neben dem Faktor Altersgruppe an der Entwicklung der Leistung des Standweitsprungs 6,8% der Varianz. Das Geschlecht erklärt an der Entwicklung der Leistung bei den Liegestützen mehr Varianz als das Alter. Generell erklären beide Faktoren jedoch nur zu einer geringen Varianzaufklärung der Leistungsveränderung bei.

Bei einer differenzierten Betrachtung der einzelnen Jahrgänge wird deutlich, dass bei den weiblichen Teilnehmern ab ca. 11 Jahren (17 Jahre zu t1) kein signifikanter Leistungszuwachs mehr stattfindet (Stagnation) (Abbildung 21). Ein Abbau ist statistisch bis zum Alterszeitraum vom 17 Jahren nicht nachzuweisen. Für die männlichen Teilnehmer zeigt sich mit zunehmendem Alter ebenfalls eine Abnahme des Leistungszuwachses zwischen den Messzeitpunkten t0 und t1, dennoch ist der Steigungskoeffizient in allen Altersjahrhunderten signifikant von Null unterschiedlich. D.h. bei den männlichen Teilnehmern findet in den Altersjahrzehnten bis zum maximal untersuchten Alterszeitraum (23 Jahre zu t1) eine Leistungssteigerung im Verlauf der sechs Jahre statt (Abbildung 20).

Der Einfluss des Geschlechts auf die Entwicklung der Kraftausdauer bei den Liegestützen von t0 zu t1 erweist sich als signifikant. Männliche Studienteilnehmer haben einen stärkeren Leistungszuwachs bei den Liegestützen über die Zeit als weibliche Studienteilnehmer. Die Hypothese wird angenommen.

Einordnung der Ergebnisse zum Einfluss von Alter und Geschlecht auf die Entwicklung der Kraftfähigkeit (Standweitsprung und Liegestützen)

Interpretation und Diskussion der Ergebnisse zum Einfluss von Alter und Geschlecht auf die Entwicklung der Reaktionsschnelligkeit (Reaktionstest)

Zur Erfassung der Reaktionsschnelligkeit diente ein computergestützter Reaktionstest. Für die Entwicklung der Reaktionsschnelligkeit nach Alter und Geschlecht wurden folgende Hypothesen formuliert:

\[H_{1, RS} \] Die Entwicklung Reaktionsschnelligkeit unterscheidet sich zwischen den Altersgruppen 1 bis 4 signifikant.

Eine Betrachtung der Reaktionsschnelligkeit zu t0 nach Alter ergibt signifikante Alterseffekte. Die Reaktionszeiten verkürzen sich mit zunehmendem Alter, somit werden die besten Leistungen in Altersgruppe 4 erzielt.

Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Reaktionstest in Abhängigkeit der Altersgruppen, so ergibt die Gesamt betrachtung mittels Varianzanalyse mit Messwiederholungen eine signifikante Zeit*Altersgruppen-Interaktion. Die Altersgruppe klärt im Modell (Altersgruppe*Geschlecht*Zeit) neben dem Faktor Geschlecht an der Entwicklung der Reaktionsschnelligkeit 48,3% der Varianz auf.

H$_{1.2 \, \text{RS}}$: Die Entwicklung der Reaktionsschnelligkeit von männlichen und weiblichen Studienteilnehmern unterscheidet sich signifikant.

Der Einfluss des Geschlechts auf die Entwicklung der Reaktionsschnelligkeit von t0 zu t1 erweist sich als nicht signifikant. Die Entwicklung der Reaktionsschnelligkeit von männlichen und weiblichen Studienteilnehmern verläuft ähnlich. Die Hypothese wird verworfen.

Einordnung der Ergebnisse zum Einfluss von Alter und Geschlecht auf die Entwicklung der Reaktionsschnelligkeit (Reaktionstest)

Die Ergebnisse zum Einfluss des Alters auf die Entwicklung der Reaktionsschnelligkeit stimmen mit den Ergebnissen aus der Literatur nur teilweise überein. In Abhängigkeit des Alters zeigen sich unterschiedliche Zuwachsraten in der Entwicklung der Reaktionsschnelligkeit. Die längsschnittlichen Ergebnisse für die männlichen Teilnehmer verdeutlichen, dass es ab einem Alter von 12 Jahren zu t0 (18 Jahre zu t1) und bei den weiblichen Teilnehmern ab 11 Jahren zu t0 zu keiner weiteren Steigerung der Reaktionsschnelligkeit kommt. Die Entwicklung der Reaktionsschnelligkeit nähert sich der physikalischen Grenze der Reaktionsschnelligkeit an. Diese liegt bei etwa 0,15 Sekunden. Alle Werte unterhalb dieser Zeit wurden beim computergestützten Reaktionstest nicht berücksichtigt, da sie als unwahrscheinlich ange-
nommen werden. Selbiges zeigte sich in den querschnittlichen Analysen der MoMo-Baseline Studie. Schmidtbleicher (1994) berichtet hingegen von einer Verbesserung der Reaktions-
schnelligkeit bis zum 19. Lebensjahr.
Die Ergebnisse zum Einfluss des Geschlechts auf die Entwicklung der Reaktionsschnelligkeit stimmen mit den Ergebnissen aus der Literatur überein. In der vorliegenden Untersuchung wird die Entwicklung der Reaktionsschnelligkeit nicht vom Geschlecht beeinflusst. Diese Er-
gebnisse bestätigen die querschnittlichen Befunde der MoMo-Baseline Studie (vgl. Bös et al.,
2009) und auch die Ergebnisse von Schmidtbleicher (1994). In beiden Studien wurden eben-
falls keine geschlechtsspezifischen Unterschiede auf die Entwicklung der Reaktionsschnellig-
keit nachgewiesen.

Interpretation und Diskussion des Einfluss von Alter und Geschlecht auf die Entwicklung der Koordination (Seitliches Hin- und Herspringen, Einbeinstand, Balancieren rückwärts, MLS Stifte einstecken, MLS Liniennachfahren)
Die großmotorische Koordination bei statischen und dynamischen Präzisionsaufgaben der Studienteilnehmer wurde anhand der Testaufgaben Einbeinstand und Balancieren rückwärts erfasst. Die großmotorische Koordination unter Zeitdruck wurde mit dem Seitlichen Hin- und Herspringen und die Feinmotorik für Präzisionsaufgaben und die Feinmotorik unter Zeitdruck wurden mit dem MLS Linien nachfahren und dem MLS Stifte einstecken erfasst.
Für die Entwicklung der Koordination nach Alter und Geschlecht wurden folgende Hypothe-
sen formuliert:

\[H_{1.1}^{Ko} \] Die Entwicklung der Koordination unterscheidet sich zwischen den Altersgruppen 1 bis 4 signifikant.

Großmotorische Koordination unter Präzisionsdruck (statisch) (Balancieren rückwärts)
Eine Betrachtung der Leistungsfähigkeit beim Balancieren rückwärts zu t0 nach Alter ergibt signifikante Alterseffekte. Die Leistung im Ausgangsniveau nimmt mit zunehmendem Alter in den höheren Altersgruppen zu, sodass in Altersgruppe 3 und 4 die besten Leistungen erzielt werden.
Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Balancieren rückwärts in Abhängigkeit der Altersgruppen, so zeigt die Gesamtbetrach-
tung mittels Varianzanalyse mit Messwiederholungen eine signifikante Zeit*Altersgruppen-
Interaktion. Dies bedeutet, dass sich die Altersgruppen über die Zeit unterschiedlich entwickeln und sich somit unterschiedliche Steigungskoeffizienten für die Altersgruppen ergeben. Die Altersgruppe klärt im Modell (Altersgruppe*Geschlecht*Zeit) neben dem Faktor Geschlecht für die Entwicklung der Leistung bei Balancieren rückwärts 34,9% auf.

\textit{Großmotorische Koordination unter Präzisionsdruck (dynamisch) (Einbeinstand)}

Eine Betrachtung der Leistungsfähigkeit beim Einbeinstand zu t0 nach Alter ergibt signifikante Alteereffekte. Die Leistung im Ausgangsniveau t0 steigt von Altersgruppe 1 bis 3 an und stagniert dann. Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Einbeinstand in Abhängigkeit der Altersgruppen, so zeigt die Gesamtbetrachtung mittels Varianzanalyse mit Messwiederholungen eine signifikante Zeit*Altersgruppen-Interaktion. Dies bedeutet, dass sich die Altersgruppen über die Zeit unterschiedlich entwickeln und sich somit unterschiedliche Steigungskoeffizienten für die Altersgruppen ergeben. Die Altersgruppe klärt im Modell (Altersgruppe*Geschlecht*Zeit) neben dem Faktor Geschlecht für die Entwicklung der Leistung beim Einbeinstand 46,9% der Varianz auf.

Eine Überprüfung des Einflussfaktors Alter auf die Entwicklung der Leistungsfähigkeit beim Einbeinstand mittels Post-hoc Test ergibt signifikante Unterschiede zwischen den einzelnen Altersgruppen, außer zwischen den Altersgruppen 3 und 4. Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Einbeinstand von männlichen Teilnehmern, so wird eine Reduktion mit steigendem Alter deutlich.

Großmotorische Koordination unter Zeitdruck: Seitliches Hin- und Herspringen
Eine Betrachtung der Leistungsfähigkeit beim seitlichen Hin- und Herspringen zu t0 nach Alter ergibt signifikante Alterseffekte. Das Ausgangsniveau ist für die Altersgruppe 1 am geringsten und steigt mit zunehmendem Alter in den höheren Altersgruppen an. Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim seitlichen Hin- und Herspringen in Abhängigkeit der Altersgruppen, so zeigt die Gesamtbetrachtung mittels Varianzanalyse mit Messwiederholungen eine signifikante Zeit*Altersgruppen-Interaktion. Dies bedeutet, dass sich die Altersgruppen über die Zeit unterschiedlich entwickeln und sich somit unterschiedliche Steigungskoeffizienten für die Altersgruppen ergeben. Die Altersgruppe klärt im Modell (Altersgruppe*Geschlecht*Zeit) neben dem Faktor Geschlecht für die Entwicklung der Leistung beim Seitlichen Hin- und Herspringen 50,8% der Varianz auf.

MLS Stifte einstecken
Eine Betrachtung der Leistungsfähigkeit beim MLS Stifte einstecken zu t0 nach Alter ergibt signifikante Alterseffekte. Die Leistung im Ausgangsniveau steigt mit zunehmendem Alter in den höheren Altersgruppen an, sodass in Altersgruppe 4 die besten Leistungen erzielt werden. Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim MLS Stifte einstecken in Abhängigkeit der Altersgruppen, so zeigt die Gesamtbetrach-
tung mittels Varianzanalyse mit Messwiederholungen eine signifikante Zeit*Altersgruppen-Interaktion. Dies bedeutet, dass sich die Altersgruppen über die Zeit unterschiedlich entwickeln und sich somit unterschiedliche Steigungskoeffizienten für die Altersgruppen ergeben. Die Altersgruppe erklärt im Modell (Altersgruppe*Geschlecht*Zeit) neben dem Faktor Geschlecht an der Entwicklung der Leistung beim MLS Stifte einstecken 56,4% der Varianz.

MLS Linien nachfahren

Eine Betrachtung der Leistungsfähigkeit beim MLS Linien nachfahren zu t0 nach Alter ergibt signifikante Alterseffekte. Die Leistung im Ausgangsniveau t0 nimmt mit zunehmendem Alter in den höheren Altersgruppen zu, sodass in den Altersgruppen 3 und 4 die besten Leistungen erzielt werden. Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim MLS Linien nachfahren nach Alter, so zeigt die Gesamtbetrachtung für die Altersgruppen vergleichbare Steigungskoeffizienten und somit ähnliche Entwicklungsverläufe (keine signifikante Zeit*Altersgruppen-Interaktion).

H$_{12}$ Ko: Die Entwicklung der Koordination von männlichen und weiblichen Studienteilnehmern unterscheidet sich signifikant.

Balancieren rückwärts

Eine Betrachtung der Leistungsfähigkeit beim Balancieren rückwärts zu t0 nach Geschlecht ergibt signifikante Leistungsunterschiede. Die weiblichen Studienteilnehmer zeigen bessere Leistungen zu t0. Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Balancieren rückwärts, so beeinflusst das Geschlecht die Entwicklung im Verlauf der sechs Jahre nicht (keine signifikante Geschlecht*Zeit-Interaktion). Die Gesamtbetrachtung ergibt für beide Geschlechter vergleichbare Steigungskoeffizienten und somit ähnliche Entwicklungsverläufe beim Balancieren rückwärts über die Zeit.

Bei einer differenzierten Betrachtung der einzelnen Jahrgänge wird jedoch deutlich, dass bei den weiblichen Teilnehmern ab ca. 17-Jahren (23 Jahre zu t1) eine Stagnation der Entwicklung der Leistung beim Balancieren rückwärts gegeben ist. Bei den weiblichen Teilnehmern zeigt sich jedoch deskriptiv ein verringelter Leistungszuwachs im Verlauf der sechs Jahre beim Balancieren rückwärts verstärkt ab der Altersgruppe der 9- bzw. 8-Jährigen zu t0 (15/16 Jahre zu t1) (siehe Abbildung 29).

Beim Balancieren rückwärts zeigt sich für die männlichen Teilnehmer in den untersuchten Altersjahrgängen immer eine von Null signifikant unterschiedliche Leistungssteigerung, so dass weitere Messzeitpunkte benötigt werden, um das Eintreten einer Stagnation für das Balancieren rückwärts statistisch zu belegen. Deskriptiv zeigt sich jedoch eine deutliche Reduzierung der Leistungssteigerung im Verlauf der sechs Jahre bei den männlichen Teilnehmern beim Balancieren rückwärts ab der Altersjahrgang der 9-Jährigen zu t0 (15 Jahre zu t1) (siehe Abbildung 29).

Der Einfluss des Geschlechts auf die Entwicklung der Leistung beim Balancieren rückwärts von t0 zu t1 erweist sich als nicht signifikant. Die Entwicklung der Leistung von männlichen und weiblichen Studienteilnehmern verläuft ähnlich. Die Hypothese wird verworfen.
Einbeinstand

Eine Betrachtung der Leistungsfähigkeit beim Einbeinstand zu t0 nach Geschlecht ergibt signifikante Leistungsunterschiede. Die weiblichen Studienteilnehmer zeigen bessere Leistungen zu t0. Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Einbeinstand, so beeinflusst das Geschlecht die Entwicklung im Verlauf der sechs Jahre (signifikante Geschlecht*Zeit-Interaktion). Dies bedeutet, dass sich männliche und weibliche Studienteilnehmer beim Einbeinstand über die Zeit (6 Jahre) unterschiedlich entwickeln und sich somit unterschiedliche Steigungskoeffizienten für die Geschlechter ergeben. Das Geschlecht klärt im Modell (Altersgruppe*Geschlecht*Zeit) neben dem Faktor Altersgruppe an der Entwicklung der Leistung beim Einbeinstand lediglich 0,5% der Varianz auf. Über die Zeit werden also lediglich sehr geringe Leistungszuwächse für die Geschlechter sichtbar. Berechnet man die Varianzanalyse differenziert nach Altersgruppen, zeigt sich nur in der Altersgruppe 2 (6-10 Jahre zu t0) ein signifikanter Zeit*Geschlecht-Effekt. Bei einer differenzierten Betrachtung der einzelnen Jahrgänge wird jedoch deutlich, dass bei den weiblichen Teilnehmern ab ca. 16 Jahren (22 Jahre zu t1) eine Stagnation der Entwicklung der Leistung beim Einbeinstand gegeben ist (siehe Abbildung 27). Bei den männlichen Studienteilnehmern zeigt sich ab einem Alter von 17 Jahren (23 Jahre zu t1) kein signifikanter Leistungszuwachs mehr (Stagnation) (siehe Abbildung 26).

Der Einfluss des Geschlechts auf die Entwicklung der Leistung beim Einbeinstand von t0 zu t1 erweist sich als signifikant. Männliche Studienteilnehmer reduzieren ihre absolute Bodenkontaktanzahl mehr als weibliche Studienteilnehmer. Weibliche Studienteilnehmer starten jedoch mit einem besseren Ausgangsniveau (t0). Die Hypothese wird angenommen.

Seitliches Hin- und Herspringen

Eine Betrachtung der Leistungsfähigkeit beim Seitlichen Hin- und Herspringen zu t0 nach Geschlecht ergibt keine signifikanten Leistungsunterschiede. Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Seitlichen Hin- und Herspringen, so beeinflusst das Geschlecht die Entwicklung im Verlauf der sechs Jahre (signifikante Geschlecht*Zeit-Interaktion). Dies bedeutet, dass sich männliche und weibliche Studienteilnehmer beim Seitlichen Hin- und Herspringen über die Zeit (6 Jahre) unterschiedlich entwickeln und sich somit unterschiedliche Steigungskoeffizienten für die Geschlechter

Der Einfluss des Geschlechts auf die Entwicklung der Leistung beim Seitlichen Hin- und Herspringen von t0 zu t1 erweist sich als signifikant. Im Mittel verbessern die männlichen Studienteilnehmer ihre Leistung mehr als die weiblichen. Die Wechselwirkung des Zeitintervalls mit dem Geschlecht wird deutlich, dass bei beiden Geschlechtern in den einzelnen Jahrgängen stets eine von Null signifikant unterschiedliche Leistungssteigerung vorliegt, so dass weitere Messzeitpunkte benötigt werden, um das Eintreten einer Stagnation für die Entwicklung beim seitlichen Hin- und Herspringen statistisch zu belegen (siehe Abbildung 24 und Abbildung 25).

MLS Stifte einstecken

Eine Betrachtung der Leistungsfähigkeit beim MLS Stifte einstecken zu t0 nach Geschlecht ergibt signifikante Leistungsunterschiede. Das Ausgangsniveau (t0) der weiblichen Studienteilnehmer ist höher als das der männlichen. Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim MLS Stifte einstecken, so beeinflusst das Geschlecht die Entwicklung im Verlauf der sechs Jahre (signifikante Geschlecht*Zeit-Interaktion). Dies bedeutet, dass sich männliche und weibliche Studienteilnehmer beim Seitlichen MLS Stifte einstecken über die Zeit (6 Jahre) unterschiedlich entwickeln und sich somit unterschiedliche Steigungskoeffizienten für die Geschlechter ergeben. Das Geschlecht klärt im Modell (Altersgruppe*Geschlecht*Zeit) neben dem Faktor Altersgruppe an der Entwicklung der Leistung beim MLS Stifte einstecken 0,4% der Varianz auf. Über die Zeit werden also lediglich sehr geringe Leistungszuwächse für die Geschlechter sichtbar. Bei einer differenzierten Betrachtung der einzelnen Jahrgänge wird deutlich, dass bei beiden Geschlechtern in den einzelnen Jahrgängen stets eine von Null signifikant unterschiedliche Leistungssteigerung vorliegt, so dass weitere Messzeitpunkte benötigt werden, um das Eintreten einer Stagnation für die Entwicklung der Leistung beim MLS Stifte einstecken zu belegen. Deskriptiv zeigt sich beim MLS Stifte einstecken jedoch eine deutliche Reduzierung der Leistungssteigerung
im Verlauf der sechs Jahre bei den männlichen Teilnehmern ab der Altersjahrgang der 8-Jährigen (zu t0), bei den weiblichen ab der Altersjahrgang der 7-Jährigen (zu t0) (siehe Abbildung 30 und Abbildung 31).

Der Einfluss des Geschlechts auf die Entwicklung der Leistung beim MLS Stifte einstecken von t0 zu t1 erweist sich als signifikant. Über die Zeit werden jedoch lediglich sehr geringe Leistungszuwächse für die Geschlechter sichtbar. Die mittlere Leistungsssteigerung im Verlauf der sechs Jahre ist bei den männlichen Studienteilnehmern größer als bei den weiblichen Studienteilnehmern. Allerdings befinden sich die weiblichen Studienteilnehmer auf einem höheren Ausgangsniveau (t0). Die Hypothese wird angenommen.

MLS Linien nachfahren

Der Einfluss des Geschlechts auf die Entwicklung der Leistung beim MLS Linien nachfahren von t0 zu t1 erweist sich als nicht signifikant. Die Entwicklung der Reaktionsschnelligkeit von männlichen und weiblichen Studienteilnehmern verläuft ähnlich. Die Hypothese wird für das MLS Linien nachfahren verworfen.
Einordnung der Ergebnisse zum Einfluss von Alter und Geschlecht auf die Entwicklung der Koordination

Bei 4 von 5 koordinativen Fähigkeiten beeinflusst das Alter (Altersgruppe) die Entwicklung der Leistungsfähigkeit im Verlauf der sechs Jahre (ausgenommen MLS Stifte einstecken). Unterschiede in den verschiedenen koordinativen Fähigkeiten ergeben sich hinsichtlich des Eintrittszeitpunkts der Reduktion des Leistungszuwachses:

Beim Stifte einstecken, beim Balancieren rückwärts und beim Einbeinstand verringert sich, deskriptiv betrachtet, der Leistungsanstieg im Verlauf der sechs Jahre erstmalig bereits zwischen den Altersjahrgängen der 7-Jährigen und 9-Jährigen (zu t0) und somit früher als bei den konditionellen Fähigkeiten. Beim Seitlichen Hin-und Herspringen, eine Testaufgabe, die zum Teil konditionell determiniert ist, zeigt sich hingegen erst ab dem Altersjahrgang der 11-Jährigen (zu t0) ein vermindelter Leistungsanstieg im Verlauf der sechs Jahre.

Bei 4 von 5 koordinativen Fähigkeiten (ausgenommen Seitlichen Hin-und Herspringen) zeigen sich im Ausgangsniveau (t0) signifikante, geschlechtsspezifische Unterschiede zugunsten der weiblichen Teilnehmer. Die Effektstärken des Geschlechts auf die Leistung des Ausgangsniveaus sind allerdings eher gering ausgenommen beim Ausdauertest (PWC 170 relativ) ($\eta^2=0.132$). Die Unterschiede im Ausgangsniveau sind dafür verantwortlich, dass sich die Entwicklung der koordinativen Leistungsfähigkeit bei den weiblichen Teilnehmern auf einem höheren Niveau vollzieht als bei den männlichen Teilnehmern.

Interpretation und Diskussion der Ergebnisse zum Einfluss von Alter und Geschlecht auf die Entwicklung der Beweglichkeit (Rumpfbeuge)

Für die Entwicklung der Beweglichkeit nach Alter und Geschlecht wurden folgenden Hypothesen formuliert:

\(H_{1.1, b} \): Die Entwicklung der Beweglichkeit unterscheidet sich zwischen den Altersgruppen 1 bis 4 signifikant.

Eine Betrachtung der Beweglichkeitsleistung zu t0 nach Alter (Altersgruppe) ergibt signifikante Leistungsunterschiede. In Altersgruppe 1 und der Altersgruppe 4 werden die besten Leistungen bei der Rumpfbeuge erreicht.

Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 bei der Rumpfbeuge nach Alter, so zeigt die Gesamtbetrachtung mittels Varianzanalyse mit
Messwiederholungen eine signifikante Zeit*Altersgruppen-Interaktion. Dies bedeutet, dass sich die Altersgruppen über die Zeit unterschiedlich entwickeln und sich somit unterschiedliche Steigungskoeffizienten für die Altersgruppen ergeben. Die Altersgruppe erklärt im Modell (Altersgruppe*Geschlecht*Zeit) neben den Faktoren Geschlecht und Sozialstatus an der Entwicklung allerdings lediglich 2,9% der Varianz. Über die Zeit werden also lediglich geringe Leistungszuwächse für alle Altersgruppen sichtbar. Die Varianzaufklärung im Gesamtmodell (Altersgruppe*Geschlecht*Zeit) für den Zeiteffekt beträgt lediglich 0,9%, dies deutet daraufhin, dass sich für die Rumpfbeugeleistungen über das Kindes- und Jugendalter generell keine deutlichen Veränderungsraten ergeben.

Eine Überprüfung des Einflussfaktors Alter (Altersgruppe) auf die Entwicklung der Leistungsfähigkeit bei der Rumpfbeuge mittels Post-hoc Test macht sichtbar, dass sich die Altersgruppe der 14-17-Jährigen (AG 4) signifikant von der Altersgruppe der 6-10-Jährigen (AG 2) und der 11-13-Jährigen (AG 3) unterscheidet. Bei der Testaufgabe Rumpfbeuge zeigen sich die größten Zuwächse im Verlauf der sechs Jahre bei den weiblichen Teilnehmern in der Altersgruppe 3 (11-13 Jahre zu t0), bei den männlichen in der Altersgruppe 4.

Die Hypothese kann somit nur teilweise bestätigt werden, da sich die Entwicklung der Rumpfbeugeleistung in den Altersgruppen 1, 2 und 3 nicht voneinander unterscheidet.

H_{12b}: Die Entwicklung der Beweglichkeit von männliche und weiblichen Studienteilnehmern unterscheidet sich signifikant.

Eine Betrachtung der Beweglichkeitsleistung zu t0 nach Geschlecht ergibt signifikante Leistungsunterschiede. Weibliche Studienteilnehmer erreichen zu t0 bessere Werte bei der Rumpfbeuge als männliche zu t0. Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 bei der Rumpfbeuge, so beeinflusst das Geschlecht die Entwicklung im Verlauf der sechs Jahre (signifikante Geschlecht*Zeit-Interaktion). Dies bedeutet, dass männliche und weibliche Studienteilnehmer ihre Rumpfbeuge-Beweglichkeit im Verlauf der Zeit unterschiedlich entwickeln und sich somit unterschiedliche Steigungskoeffizienten für die Geschlechter ergeben. Das Geschlecht klärt im Modell (Altersgruppe*Geschlecht*Zeit) neben dem Faktor Altersgruppe an der Entwicklung der Rumpfbeugeleistung lediglich 0,3% der Varianz auf. Bei der Gesamtbetrachtung über die Zeit werden also le-
diglich geringe geschlechtsspezifische Unterschiede in der Entwicklung der Rumpfbeugeleistung sichtbar. Bei den männlichen Studienteilnehmern zeigen sich negative Werte für die mittlere Leistungssteigerung und bei den weiblichen Teilnehmern zeigt sich eine Verbesserung.

Bei einer differenzierten Betrachtung der einzelnen Jahrgänge bei den männlichen Teilnehmer zeigt sich in den Altersjahrgängen von 4-8 Jahren (Alter zu t0) eine Abnahme der Rumpfbeuge-Beweglichkeit. In den Altersjahrgängen von 10-15 Jahren (Alter zu t0) zeigt sich eine Zunahme der Rumpfbeugeleistung. In der Altersjahrgang der 16-Jährigen (22 Jahre zu t1) findet kein signifikanter Leistungszuwachs mehr statt (Stagnation) (siehe Abbildung 34).

Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 bei der Rumpfbeuge von weiblichen Teilnehmern, so zeigt sich in den Altersjahrgängen von 4-6 Jahren (Alter zu t0) keine Entwicklung über die Zeit. Erst ab dem Altersjahrgang der 7-Jährigen (Alter zu t0) zeigt sich eine signifikante Zunahme der Rumpfbeugeleistung. Es tritt dann eine Reduktion mit steigendem Alter ein, d.h. der Leistungszuwachs nimmt mit steigendem Alter der weiblichen Teilnehmer ab. Illustriert wird das durch die abflachenden Steigungen der Geradenschar mit zunehmendem Alter zwischen dem Altersjahrgang der 7-12-Jährigen. Insbesondere zeigt sich hierbei, dass in der Altersjahrgang der 13-Jährigen (20 Jahre zu t1) kein signifikanter Leistungszuwachs mehr stattfindet (Stagnation) (siehe Abbildung 35).

Der Einfluss des Geschlechts auf die Entwicklung der Beweglichkeit bei der Rumpfbeuge von t0 zu t1 erweist sich als signifikant. Die weiblichen Studienteilnehmer ahben einen stärkeren Leistungszuwachs im Verlauf der sechs Jahre sowie ein höheres Ausgangsniveau zu t0 verglichen mit den männlichen Studienteilnehmern. Die Hypothese wird angenommen.

Einordnung der Ergebnisse zum Einfluss von Alter und Geschlecht auf die Entwicklung der Beweglichkeit

Gaschler (1994) berichtet, dass die Beugefähigkeit im Hüftgelenk und im Bereich der Wirbelsäule bis ins Jugendalter zunimmt. Eine Zunahme der Beweglichkeitsleistung im Verlauf der sechs Jahre kann in den vorliegenden längsschnittlichen Analysen für die männlichen Studienteilnehmer erst ab dem Altersjahrgang der 10-Jährigen zu t0, bei den weiblichen ab dem Altersjahrgang der 7-Jährigen belegt werden. Davor zeigt sich bei den männlichen Stud-
7.1.1 Gesamtdiskussion: motorische Entwicklung in Abhängigkeit von Alter und Geschlecht

In der vorliegenden Arbeit wurde in einem ersten Auswertungsschritt die Entwicklung der motorischen Dimensionen Ausdauer, Kraft, Reaktionsschnelligkeit, Koordination und Beweglichkeit analysiert. Erstellt wurden anhand der MoMo-Längsschnittdaten Entwicklungsverläufe differenziert nach Alter und Geschlecht.

Alter

Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 für die einzelnen motorischen Dimensionen nach Alter, so ergibt die Gesamtbetrachtung mittels Varianzanalyse mit Messwiederholungen bei allen 10 Testaufgaben signifikante Zeit*Altersgruppen-Interaktion. Dies bedeutet, dass sich die Altersgruppen über die Zeit unterschiedlich entwickeln und sich somit unterschiedliche Steigungskoeffizienten in den Altersgruppen für die Leistungsveränderung ergeben. Die Ergebnisse der MoMo-Längsschnittstudie zeigen, dass das Alter bei 9 von 10 Testaufgaben die dominante Einflussgröße der Entwicklung der motorischen Leistungsfähigkeit im Verlauf der sechs Jahre ist. Dieses Ergebnis deckt sich mit den bisherigen querschnittlichen Befunden der MoMo-Baseline Studie (vgl. Bös et al., 2009). Einzig bei den Liegestützen erklärt das Geschlecht mehr Varianz an der Entwicklung der Leistungsfähigkeit als das Alter (Zeit*Altersgruppe: \eta^2 = 0.042 Zeit*Geschlecht: \eta^2 = 0.068).

Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 bei den konditionellen (Standweitsprung und Liegestützen ausgenommen: PWC 170 relativ) und den großmotorischen Testaufgaben zur Koordination (Balancieren rückwärts, Einbeinstand, Seitliches Hin- und Herspringen), so zeigt sich für beide Bereiche eine Reduktion mit zunehmendem Alter. Das heißt, der Leistungszuwachs geht mit zunehmendem Alter der Teilnehmer zurück. Illustriert wird das durch die abflachenden Steigungen der Geradenscharen mit zunehmendem Alter. Die größten Leistungszuwächse finden sich in den Altersgruppen 1 (4-5 Jahre zu t0) und 2 (6-10 Jahre zu t0). Eine gesonderte Betrachtung bedarf die Analyse der Ausdauerleistungsfähigkeit. Hier wurden die Ergebnisse der relativen Ausdauer herangezogen. Damit wurde der Einfluss des Körpergewichts relativiert. Erwartungsgemäß zeigt die deskriptive Betrachtung der Kurvenschar und die Analyse des Zeiteffektes für die am Körpergewicht relativierte Ausdauerleistungsfähigkeit (PWC 170 relativ) nur sehr geringe Leistungsveränderun-
Für die Entwicklung der Reaktionsfähigkeit zeigt sich, dass diese ebenfalls mit zunehmendem Alter abnimmt.
Die feinmotorische Leistungsfähigkeit (MLS Stifte einstecken, und MLS Liniennachfahren) steigt -ebenso wie die großmotorische Koordination- bis ins junge Erwachsenenalter an.

Geschlecht
Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 für die einzelnen motorischen Dimensionen nach Geschlecht, so ergibt die Gesamtbetrachtung mittels Varianzanalyse mit Messwiederholungen bei 6 von 10 Testaufgaben eine signifikante Zeit*Altersgruppen-Interaktion. Dies bedeutet, dass sich männliche und weibliche Teilnehmer bei 6 von 10 Testaufgaben über die Zeit unterschiedlich entwickeln und sich somit unterschiedliche Steigungskoeffizienten für die Leistungsveränderung bei den Geschlechtern ergeben. Beim Standweitsprung, bei den Liegestützen, beim Seitenl-Gin- und Herspringen, beim Einbeinstand, beim MLS Stifte einstecken und beim Rumpfbeugen zeigt sich ein Einfluss des Geschlechts auf die Entwicklung der Leistungsfähigkeit von t0 zu t1.
Bei den weiblichen Studienteilnehmern stagniert die Entwicklung beim Standweitsprung und bei den Liegestützen ab einem Alter von ca. 11 Jahren, während die männlichen Studienteilnehmer ihre Leistung im weiteren Verlauf der Adoleszenz in den konditionell orientierten motorischen Beschreibungskategorien (Standweitsprung, Liegestützen, ausgenommen PWC relativ) noch steigern können. Bei den Testaufgaben der großmotorischen Koordination zeigen sich für beide Geschlechter Zuwächse bis ins junge Erwachsenenalter.
Eine Gesamtbetrachtung ergibt für die Entwicklung der Reaktionsschnelligkeit keine signifikanten Unterschiede zwischen männlichen und weiblichen Studienteilnehmern.
Die Gesamtbetrachtung ergibt keine geschlechtsspezifischen Unterschiede in der Entwicklung der Leistung beim MLS Liniennachfahren. Dagegen wird für die Entwicklung der Leistungsfähigkeit beim MLS Stifte einstecken ein schwacher signifikanter Geschlechtseffekte auf die Entwicklung deutlich, der praktisch nicht bedeutsam ist (eta²=.004).

Der Einfluss von Alter und Geschlecht auf die Entwicklung der motorischen Leistungsfähigkeit, vor allem bei konditionell determinierten Fähigkeiten, ist in der Literatur vielfach belegt. Zurückgeführt werden können die Leistungsunterschiede zwischen den Geschlechtern ab der Pubertät unter anderem auf die hormonell bedingten Leistungszuwächse der Muskelmasse,
die auch zu einer besseren Trainierbarkeit vor allem der Kraft determinierter Aufgaben bei
den männlichen Studienteilnehmern führt (vgl. Schmidtbleicher, 1994).
Geschlechtsunterschiede im Ausgangsniveau und in der Entwicklung der motorischen Leis-
tungsfähigkeit können neben biologisch-genetischen Faktoren, die verstärkt erst ab der Puber-
tät wirken, auch auf Umwelteinflüsse (sozial konstruiert) und Selbstkonstruktionsprozesse zu-
rückzuführen sein. Es ist anzunehmen, dass diese Einflüsse kombiniert und bereits schon im
Kleinkindalter wirken (vgl. Alfermann, 2009). Diese Annahme wird auch im Rahmen der
Entwicklungspychologie der Lebensspanne vor allem unterer dem Leistatsz des Kontextual-
ismus (vgl. Baltes, 1990 siehe Kapitel 2.2.2) getroffen, welche dieser Arbeit zugrunde geleg-
ten wird. Männliche und weibliche Studienteilnehmer unterscheiden sich z.B. in der Aus-
übung körperlich-sportlicher Aktivitäten. Jungen favorisieren vermehrt Ballsportarten, Mäd-
chen hingegen Indivdualsportarten mit Körperspruch (vgl. Bös et al., 2009). Auch die vor-
liegenden Analysen zeigen z.B., dass sich geschlechtsspezifische Unterschiede in den absolu-
ten Zahlen der Mitgliedschaften im Sportverein zeigen. Bei den weiblichen Studienteilnehmern
sind 40,9% zum ersten und zum zweiten Messzeitpunkt Mitglied in einem Sportverein, bei
den männlichen sind es 50,1%. Bei den weiblichen Teilnehmern sind 27,1% zu beiden Mess-
zeitpunkten nicht im Verein aktiv, bei den männlichen sind es hingegen nur 17,6%. Diese
Tatsache kann unter anderem zu geschlechtsspezifischen Unterschieden in der Entwicklung
der motorischen Leistungsfähigkeit führen. An dieser Stelle sind jedoch vertiefende Analysen
durchzuführen, welche die Unterschiede im Aktivitätsverhalten von Mädchen und Jungen
aufdecken. Alfermann (2009, S.259) regt weiterhin an, neben den quantitativ messbaren Mo-
torikleistungen auch Unterschiede in der Bewegungsqualität herauszustellen um Mechanis-
men, welche zu geschlechtsspezifischen Unterschieden in der Entwicklung der motorischen
Leistungsfähigkeit führen genauer zu untersuchen.

Das Modell (Geschlecht*Altersgruppe*Zeit) hat die größte Varianzaufklärung bei den Test-
aufgaben MLS Stifte einstecken (56,5%), Seitliches Hin- und Herspringen (51,9%) und
Standweitsprung (50,3%) (siehe Tabelle 44). D.h. bei diesen drei Testaufgaben erklären Alter
und Geschlecht mehr als die Hälfte der Varianz an der Entwicklung der Leistungsfähigkeit im
Verlauf der sechs Jahre.

Zusätzlich wurde überprüft, ob zum ersten Messzeitpunkt (t0) signifikante Unterschiede im
Leistungsniveau in Abhängigkeit von Alter und Geschlecht bestehen. Eine Betrachtung der
motorischen Leistungsfähigkeit zu t0 nach Alter (Altersgruppe) ergibt signifikante Leistung-
Unterschiede bei allen 10 Testaufgaben. Eine Betrachtung der motorischen Leistungsfähigkeit der Längsschnittprobanden nach Geschlecht zu t0 ergibt bei 8 von 10 Testaufgaben signifikante Leistungsunterschiede. Auch für die Leistung zum ersten Messzeitpunkt ist das Alter die zentrale „Einflussgröße“. Lediglich bei der Rumpfbeuge und beim Fahrrad-Ausduertest (PWC 170 relativ) ist der Geschlechtseffekt auf das Ausgangsniveau (t0) der motorischen Leistungsfähigkeit stärker als der Alterseffekt (Rumpfbeuge: Altersgruppe: $\eta^2=0.018$; Geschlecht: $\eta^2=0.066$; PWC 170 relativ: Altersgruppe: $\eta^2=0.020$; Geschlecht: $\eta^2=0.132$).

Das Kraftausdauer- und Schnellkraftniveau (Liegestützen und Standweitsprung) zu t0 (Standweitsprung) sowie die großmotorische Koordination (Seitliches Hin- und Herspringen, Einbeinstand und Balancieren rückwärts) steigen bei beiden Geschlechtern vom Kindesalter bis in die Pubertät an.

Abschließend werden die Erkenntnisse zu den Entwicklungsverläufen anhand der „echten“ Verläufe den Ergebnissen der Baseline „unechte Verläufe“ gegenübergestellt.

Die Analyse der Längsschnittdaten zur Entwicklung der motorischen Leistungsfähigkeit in Abhängigkeit des Alters bestätigen für alle Fähigkeitsbereiche (alle 10 Testaufgaben) die querschnittlichen Befunde der Baseline-Studie. Die Befunde der Baseline-Studie zum Einfluss des Geschlechts zeigen sich dagegen im Längsschnitt nicht für alle untersuchten Motorikbereiche (Bestätigung bei 7 der 10 analysierten Testaufgaben). So können die Ergebnisse beim MLS Stifte einstecken und beim MLS Linien nachfahren und für die relative Ausdauerleistungsfähigkeit nur teilweise bestätigt werden.

Tabelle 101 gibt eine Gesamtübersicht über die Entscheidungen zu den formulierten Hypothesen zur Entwicklung der motorischen Leistungsfähigkeit in Abhängigkeit von Alter und Geschlecht und stellt diese den querschnittlichen Befunden aus der MoMo-Baseline Studie gegenüber.
Tabelle 101: Entscheidungen zu den Hypothesen zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht

<table>
<thead>
<tr>
<th>Hypothese</th>
<th>Befunde der MoMo-Motorik-Längsschnittstichprobe zur Entwicklung der motorischen Leistungsfähigkeit</th>
<th>Befunde der MoMo-Baseline-Stichprobe durch Längsschnitt bestätigt?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altersgruppe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1.1A</td>
<td>Hypothese für PWC relativ wird verworfen: Unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) nur zwischen AG 2 und AG 3 (11-13 Jahre) und AG 4 (14-17 Jahre), AG 4 (14-17 Jahre) unterscheidet sich nicht mehr von AG 3.</td>
<td>Bestätigt: Alter ist bei PWC 170 signifikanter Einflussfaktor der MLF in der MoMo-Baseline Studie. Sowohl für die absolute wie für die relative Ausdauer-LF steigen die Mittelwerte im Altersgang an. Der Anstieg in der Ausdauer-LF im Altersgang ist für die Jungen deutlich größer als für die Mädchen. Bei der absoluten Ausdauer-LF ist dieser Interaktionsfaktor stärker ausgeprägt als bei der relativen.</td>
</tr>
<tr>
<td>H1.1K</td>
<td>Hypothese bestätigt für Standweitsprung und Liegestützen: Unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in allen 4 Altersgruppen.</td>
<td>Bestätigt: Alter bei beiden Testaufgaben signifikanter Einflussfaktor der MLF in der MoMo-Baseline Studie</td>
</tr>
<tr>
<td>H1.1KoS</td>
<td>Hypothese nur zum Teil bestätigt für Einbeinstand und Balancieren rückwärts: Unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in Abhängigkeit der Altersgruppen. Ab der Altersklasse der 9-Jährigen deskriptiv deutlicher Rückgang des Zuwachses im Verlauf der sechs Jahre, dennoch weiterer Anstieg bis ins junge Erwachsenenalter. Auf Altersgruppen-Ebene kein Unterschied zwischen AG 3 (11-13 J.) und AG 4 (14-17 J.).</td>
<td>Bestätigt Erfolge der MoMo-Baseline Studie für den Einbeinstand, das Balancieren rückwärts, das seitliche Hin- und Herspringen, das MLS Linien nachfahren und das MLS Stifte einstecken</td>
</tr>
<tr>
<td>H1.1Ko</td>
<td>Hypothese bestätigt für seitl. Hin- und Herspringen: Unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in Abhängigkeit der Altersgruppen. Ab der Altersklasse der 11-Jährigen deskriptiv deutlicher Rückgang des Zuwachses im Verlauf der sechs Jahre, dennoch weiterer Anstieg bis ins junge Erwachsenenalter.</td>
<td></td>
</tr>
<tr>
<td>H1.1B</td>
<td>Hypothese muss für MLS Linien nachfahren verworfen werden: keine unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in Abhängigkeit der Altersgruppen.</td>
<td></td>
</tr>
<tr>
<td>H1.1B</td>
<td>Hypothese bestätigt für MLS Stifte einstecken: Unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in Abhängigkeit der Altersgruppe. Ab der Altersklasse der 7.-8-Jährigen(0) zeigt sich deskriptiv deutliche Reduktion des Leistungszuwachses.</td>
<td></td>
</tr>
<tr>
<td>H1.1B</td>
<td>Hypothese nur zum Teil bestätigt: Unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) nur für die AG 4 (14-17 J.) im Vergleich zu AG 2 (6-10 J.) und AG 3 (11-13 J.)</td>
<td>Bestätigt für Rumpfbeuge: Der signifikante Alterseffekt ist mit lediglich 2 % Varianzaufklärung nicht praktisch bedeutsam</td>
</tr>
<tr>
<td>Hypothese</td>
<td>Befunde der MoMo-Motorik-Längsschnittstichprobe zur Entwicklung der motorischen Leistungsfähigkeit</td>
<td>Befunde der MoMo-Baseline-Stichprobe durch Längsschnitt bestätigt?</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>H_{1,2,K}</td>
<td>Hypothese bestätigt für Standweitsprung und Liegestützen: Unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in Abhängigkeit des Geschlechts zugunsten der männlichen Teilnehmer (deskriptiv besonders deutlich ab AG 3 (11-13 J.))</td>
<td>Bestätigt für Standweitsprung und Liegestützen: In der MoMo-Baseline Studie zeigten sich ebenfalls signifikante Unterschiede bei den Liegestütze und beim Standweitsprung in Abhängigkeit des Geschlechts.</td>
</tr>
<tr>
<td>H_{1,2,RS}</td>
<td>Hypothese für Reaktionsschnelligkeit wird verworfen: keine unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in Abhängigkeit des Geschlechts.</td>
<td>Bestätigt: Beim Reaktionstest zeigten sich in der MoMo-Baseline Studien ebenfalls keine signifikanten Unterschiede in Abhängigkeit des Geschlechts.</td>
</tr>
<tr>
<td>H_{1,2,Ro}</td>
<td>Hypothese bestätigt für MLS Stifte einstecken: Unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in Abhängigkeit der Geschlechts (geringer Effekt).</td>
<td>Für seitliches Hin- und Herspringen bestätigt: Die Mädchen und Jungen zeigen eine vergleichbare Leistungsfähigkeit. Der Leistungsanstieg beim seitlichen Hin- und Herspringen im Altersgang ist für die Jungen und Mädchen etwa gleich groß.</td>
</tr>
<tr>
<td>H_{1,2,B}</td>
<td>Hypothese für Rumpfbeuge bestätigt: Unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in Abhängigkeit des Geschlechts. Weibliche Teilnehmer haben stärkere Zuwächse.</td>
<td>Bestätigt für die Rumpfbeuge: in MoMo-Baseline Studie eindeutig und starker Geschlechtsfekt. Dabei sind die Mädchen durchgängig besser als die Jungen.</td>
</tr>
</tbody>
</table>
7.2. Direktionalität

Ein weiteres Ziel der vorliegenden Arbeit ist die vergleichende Analyse der Entwicklungsverläufe der einzelnen motorischen Dimensionen (Ausdauer, Kraft, Schnelligkeit, Koordination, Beweglichkeit). In Orientierung am Konzept der Lebensspanne und dem Leitsatz zur Direktionalität (Kapitel 2.2.2) wird von unterschiedlichen Verläufen ausgegangen. Der Leitsatz der Direktionalität besagt, dass der Grad der Zunahme oder Abnahme sowohl zwischen als auch innerhalb der motorischen Merkmale in den einzelnen Entwicklungsabschnitten (sehr) unterschiedlich, im Extremfall gegenläufig sein kann. Folgende Hypothese wurde formuliert:

\[H_{1.4} : \text{Die motorische Leistungsfähigkeit entwickelt sich multidirektional. Der Grad der Zunahme bzw. der Abnahme der Leistungsfähigkeit zwischen den einzelnen motorischen Fähigkeiten verläuft unterschiedlich.} \]

Die Entwicklungsverläufe der motorischen Dimensionen Ausdauer, Kraft, Schnelligkeit, Koordination und Beweglichkeit sind in fast allen Altersgruppen unterschiedlich d.h. sie weisen jeweils einen unterschiedlichen Grad der Zunahme oder Abnahme auf siehe Abbildung 48, Kapitel 5.8. Je nach betrachteten Fähigkeiten zeigt sich eine mehr oder weniger deutliche Multidirektionalität.

Der T-Test für abhängige Stichproben über die Differenzen von t0 zu t1 (\(\Delta t_1-t_0\)) der verschiedenen Dimensionen zeigt zwischen nahezu allen Dimensionen der motorischen Leistungsfähigkeit in allen Altersgruppen signifikante Unterschiede. Eine unidirektionale Entwicklung von t0 zu t1 zeigt sich für die Rumpfbeuge und den Standweitsprung in der Altersgruppe 4 und für die Rumpfbeuge und das Balancieren rückwärts in den Altersgruppen 3 und 4 sowie für die relative PWC und die Rumpfbeuge in den Altersgruppen 2 und 4 und der relativen PWC und dem Reaktionstest in der Altersgruppe 2. Die Hypothese kann somit bestätigt werden.

7.2.1 Diskussion und Einordnung der Ergebnisse: Direktionalität

Die Ergebnisse der MoMo-Längsschnittstudie zeigen für die Kraft, die Koordination und die Reaktionsschnelligkeit die stärksten Zuwächse in den Altersgruppen 1 und 2. In der AG 3 verringern sich die Zuwachsraten. Ab der Pubertät kommt es je nach betrachteter motorischer Dimension zur Stagnation, zur Reduktion aber auch zu weiteren Leistungssteigerung. Deutlich wird somit, dass sich besonders ab der Pubertät eine vermehrte Multidirektionalität zwischen den Fähigkeiten zeigt. Die Zuwachsraten der Beweglichkeit stellen sich über das gesamte Kindes- und Jugendalter als sehr gering dar.

Die vorliegenden Analysen verdeutlichen, dass eine differenzierte Betrachtungsweise der Fähigkeitsbereiche vor allem mit zunehmendem Alter (ab AG 3), sinnvoll scheint. Die Zusammenfassung einzelner Fähigkeiten zu komplexen Fähigkeitsindikatoren könnte dazu führen, dass die Unterschiedlichkeit im Entwicklungsverlauf einzelner Fähigkeiten verdeckt wird. Die Direktionalität der Entwicklung der Motorikdimensionen in Abhängigkeit verschiedener Einflussfaktoren (Geschlecht, Sozialstatus, Aktivitätsverhalten, Körperkonstitution), wird in Kapitel 5.1-5.6 und 6.1-6.4 aufgezeigt und diskutiert.
7.3. Stabilität der Entwicklung der motorischen Leistungsfähigkeit

Die Ergebnisse zur Stabilität der motorischen Fähigkeitsbereiche Ausdauer, Kraft, Schnelligkeit, Koordination und Beweglichkeit zeigen, dass die Stabilitätskoeffizienten im Verlauf der sechs Jahre in Abhängigkeit von der betrachteten Altersgruppe (also der Höhe des Alters zu t0), des Geschlechts und der betrachteten motorischen Fähigkeit variieren.

Beim Vergleich der Korrelationskoeffizienten der Altersgruppen 1 und 4 zeigt sich bei den männlichen Studienteilnehmern für die motorische Leistungsfähigkeit bei 8 von 10 Testaufgaben ein Anstieg des Korrelationskoeffizienten (Abnahme bei Reaktionstest; MLS Stifte einstecken).

Bei den männlichen Studienteilnehmern liegt der Korrelationskoeffizient zwischen r=0,775 ($r^2=0,601$) beim Standweitsprung und r=0,335 ($r^2=0,112$) für die relative Leistung bei Fahrrad-Ausdauertest.

Bei den weiblichen Studienteilnehmern ergibt sich beim Vergleich der Korrelationskoeffizienten der Altersgruppen 1 und 4 für die motorische Leistungsfähigkeit bei 10 von 10 Testaufgaben ein Anstieg der Korrelationskoeffizienten. Der Anstieg der Korrelationskoeffizienten von Altersgruppe 1 zur Altersgruppe 4 können darauf zurückgeführt werden, dass durch unterschiedliche Reifungsgeschwindigkeiten noch starke Veränderungen in der Leistungsrangfolge bei Kindern im Grundschulalter zu erwarten sind (vgl. Ahnert, Bös & Schneider, 2003). Dennoch zeigen sich bereits in der Altersgruppe 1 (4-5 Jahre zu t0 und 10-11 Jahre zu t1) also vom Vorschul- bis in das Grundschulalter geringe bis mittlere 6-Jahres-Stabilitäten, welche Werte von r=0,207 (Reaktionstest weiblich) und r=0,565 (Rumpfbeuge bei den weiblichen Teilnehmern) annehmen.

Bei den weiblichen Studienteilnehmern liegt der Korrelationskoeffizient zwischen r=0,656 ($r^2=0,421$) für die Leistung bei der Rumpfbeuge r=0,242; ($r^2=0,058$) für den Einbeinstand. Zusammenfassend zeigen sich im Verlauf der sechs Jahre überwiegend geringe bis mittlere Korrelationskoeffizienten für die motorische Leistungsfähigkeit bei den 10 Testaufgaben. Die Stabilitäten der motorischen Leistungsfähigkeit liegen unter den Stabilitäten für die somatischen Merkmale wie z. B. der Körpergröße (r=0,799 oder dem Körpergewicht r=0,0789).

fanden sich bei den Mädchen geringe Stabilitätskoeffizienten. Die vorliegenden Ergebnisse können diese Aussage nicht generell bestätigen. Je nach Testaufgabe zeigen sich einmal für die männlichen Teilnehmer und einmal für die weiblichen Teilnehmer höhere Korrelationskoeffizienten.

Die höchsten Stabilitäten fanden sich ebenfalls für die Beweglichkeit beim Sit-and-reach (r=0,710) für die Schnellkraft beim Standweitsprung zeigte sich ein Korrelationskoeffizient von r=0,610.

Auch Marshall et al. (1998) finden im Alterszeitraum von 9-12 Jahren (männlich N=213; weiblich N=201) für die Beweglichkeit (Sit-and-Reach Test) ähnlich hohe Korrelationskoeffizienten männlich r=0,67, weiblich r=0,72.

Schott (2000) untersuchten die Stabilität der motorischen Leistungsfähigkeit unter anderem im Alterszeitraum von 10 bis 19 Jahren. Es fanden sich mittelhohe Stabilitäten für die Beweglichkeit r=0,66 (Rumpfbeuge) und die Maximalkraft r=0,60 (Muskellkraftmessstuhl), die Koordination bei Präzisionsaufgaben r=0,50 (Bewegungskoordinationstest) und die Schnelligkeit r=0,49 (20-m-Sprint). Geringe Stabilitäten zeigten sich für die Kraftausdauer (Liegestützen r=0,39; Sit-ups: r=0,40), die Koordination unter Zeitdruck (r=0,026) und die aeroben Ausdauer (Walk-Test r=0,34.)

Im Rahmen der Amsterdam Growth-Study fanden Mechelen und Kemper (1995a,b) für einen Zeitraum von 15 Jahren (13 bis 27 Jahre) nur geringe Werte für die Stabilität bei der relativen Ausdauer (männlich r=0,30; weiblich: r=0,36).
In der vorliegenden Studie ergeben sich für die relative Ausdauer für die männlichen Studienteilnehmer ebenfalls lediglich geringe Korrelationskoeffizienten zwischen $r=0,0302$ und $0,454$. Für die weiblichen Studienteilnehmer hingegen steigt der Korrelationskoeffizient deutlich von Altersgruppe 2 ($r=0,338$) zu Altersgruppe 4 ($r=0,506$) an und erreicht mittelhohe Werte.

Die Tatsache, dass sich jedoch bereits ab dem Vorschulalter mittelhohe Korrelationskoeffizienten zeigen bedeutet, dass bereits in der Kindheit wesentliche Grundlagen geschaffen werden, welche die weitere motorische Entwicklung über das Zeitintervall von sechs Jahren mitbestimmen.
7.4. Einflussfaktoren auf die Entwicklung der motorischen Leistungsfähigkeit

7.4.1 Einfluss des Sozialstatus auf die Entwicklung der motorischen Leistungsfähigkeit

Interpretation und Diskussion der Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der Ausdauerleistungsfähigkeit (Fahrrad-Ausdauertest)

Für die Entwicklung der relativen Ausdauerleistungsfähigkeit nach Sozialstatus wurden folgende Hypothese formuliert:

\[H_{13A}: \text{Der Sozialstatus beeinflusst die Entwicklung der Ausdauerleistungsfähigkeit.} \]

Die Hypothese bezogen auf die Entwicklung der relativen Ausdauerleistungsfähigkeit in Abhängigkeit des Sozialstatus wird verworfen. Der Sozialstatus beeinflusst die Entwicklung der relativen Ausdauerleistungsfähigkeit im Verlauf der sechs Jahre nicht (keine signifikante Sozialstatus*Zeit-Interaktion).

Einordnung der Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der Ausdauerleistungsfähigkeit (Fahrrad-Ausdauertest)

Die vorliegenden eigenen Längsschnittbefunde zeigen weder einen positiven noch einen negativen Einfluss des Sozialstatus auf die Entwicklung der relativen Ausdauerleistungsfähigkeit. Eine Betrachtung der Ausdauerleistungsfähigkeit zu t0 nach Sozialstatus ergibt hingegen signifikante Leistungsunterschiede zugunsten der Teilnehmer mit einem hohen Sozialstatus. Diese festgestellten Unterschiede im Ausgangsniveau der Längsschnittprobanden bleiben über den Verlauf der sechs Jahre erhalten.

Interpretation und Diskussion der Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der Kraftfähigkeit (Standweitsprung)

Für die Entwicklung der Kraftfähigkeit nach Sozialstatus wurden folgende Hypothese formuliert:

\[H_{1,3, \text{K}}: \text{Der Sozialstatus beeinflusst die Entwicklung der Kraftfähigkeit.} \]

Eine Betrachtung der Kraftfähigkeit zu \(t_0 \) nach Sozialstatus ergibt signifikante Leistungsunterschiede. Die Gruppe mit einem niedrigen Sozialstatus unterscheidet sich von der Gruppe mit einem mittleren und hohen Sozialstatus, hierbei erbringt die Gruppe mit dem niedrigen Sozialstatus die geringste Leistungsfähigkeit beim Standweitsprung. Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten \(t_0 \) und \(t_1 \) beim Standweitsprung nach Sozialstatus, so zeigt die Varianzanalyse mit Messwiederholungen für die Gesamtbetrachtung keine signifikant unterschiedliche Veränderung der Leistung im Verlauf der sechs Jahre in Abhängigkeit der Sozialstatus-Gruppe. Studien Teilnehmer mit einem hohen bzw. niedrigen Sozialstatus haben vergleichbare Steigungskoeffizienten und somit ähnliche Entwicklungsverläufe über die Zeit.

Die Hypothese bezogen auf die Entwicklung der Kraftfähigkeit in Abhängigkeit des Sozialstatus wird verworfen. Der Sozialstatus beeinflusst die Entwicklung der Kraftfähigkeit im Verlauf der sechs Jahre nicht (keine signifikante Sozialstatus*Zeit-Interaktion).

Einordnung der Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der Kraftfähigkeit (Standweitsprung)

In der MoMo-Baseline Studie (Bös et al., 2009) zeigten sich für den Standweitsprung bessere Ergebnisse für Mädchen und Jungen mit einem hohen Sozialstatus. Freitas et al. (2007) konnten in ihrer Längsschnittstudie für ausgewählte Altersgruppen einen Einfluss des Sozialstatus auf das Ausgangsniveau der Kraftfähigkeit nachweisen. Dies allerdings nur für die Rumpfmuskulatur und bei den Sit-ups.

Anhand der vorliegenden Längsschnittdaten konnte kein signifikanter Einfluss des Sozialstatus auf die Entwicklung der Standweitsprungleistung im Verlauf der sechs Jahre nachgewiesen werden. Eine Betrachtung der Ausdauerleistungsfähigkeit zu \(t_0 \) nach Sozialstatus ergibt
hingegen signifikante Leistungsunterschiede zugunsten der Teilnehmer mit einem hohen Sozialstatus. Dies zeigt sich vor allem mit zunehmendem Alter deutlicher.

Interpretation und Diskussion der Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der Reaktionsschnelligkeit (Reaktionstest)

Für die Entwicklung der Reaktionsschnelligkeit nach Sozialstatus wurden folgende Hypothesen formuliert:

\[H_{1,3\text{RS}}: \text{Der Sozialstatus beeinflusst die Entwicklung der Reaktionsschnelligkeit.} \]

Eine Betrachtung der Reaktionsschnelligkeit zu t0 nach Sozialstatus ergibt keine signifikanten Leistungsunterschiede.

Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Reaktionstest nach Sozialstatus, so zeigt die Varianzanalyse mit Messwiederholungen für die Gesamtbetrachtung eine signifikant unterschiedliche Veränderung der Leistung im Verlauf der sechs Jahre in Abhängigkeit der Sozialstatus-Gruppe (signifikante Sozialstatus*Zeit-Interaktion). Das Ergebnis deutet jedoch auf einen sehr schwachen Effekt des Sozialstatus auf die Entwicklung der Reaktionsschnelligkeit hin. Der signifikanten Sozialstatus*Zeit-Interaktion wird deshalb keine praktische Bedeutsamkeit zugeschrieben.

Die Hypothese bezogen auf die Entwicklung der Reaktionsschnelligkeit in Abhängigkeit des Sozialstatus wird verworfen. Der Sozialstatus beeinflusst die Entwicklung der Reaktionsschnelligkeit nicht.

Einordnung der Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der Reaktionsschnelligkeit (Reaktionstest)

Interpretation und Diskussion der Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der Koordination (Balancieren rückwärts, Seitliches Hin- und Herspringen und MLS Stifte einstecken)

Für die Entwicklung der Koordination nach Sozialstatus wurden folgende Hypothese formuliert:

\[H_{1.3} \text{ Ko}: \text{ Der Sozialstatus beeinflusst die Entwicklung der Koordination (großmotorisch und feinmotorisch).} \]

Balancieren rückwärts

Eine Betrachtung der Leistungsfähigkeit beim Balancieren rückwärts zu t0 nach Sozialstatus ergibt keine signifikanten Leistungsunterschiede. Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Balancieren rückwärts nach Sozialstatus, so zeigt die Varianzanalyse mit Messwiederholungen für die Gesamtbetrachtung eine signifikant unterschiedliche Veränderung der Leistung im Verlauf der sechs Jahre in Abhängigkeit der Sozialstatus-Gruppe (signifikante Sozialstatus*Zeit-Interaktion). Der Sozialstatusklärt im Modell (Altersgruppe*Geschlecht*Sozialstatus) an der Entwicklung der Leistung beim Balancieren rückwärts 0,5% Varianz auf. Über die Zeit werden also lediglich geringe Unterschiede der Leistungsveränderung für die Sozialstatus-Gruppen sichtbar.

Seitliches- Hin-und Herspringen

Eine Betrachtung der Leistungsfähigkeit beim Seitlichen Hin- und Herspringen zu t0 nach Sozialstatus ergibt keine signifikanten Leistungsunterschiede. Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Seitlichen Hin- und Herspringen nach Sozialstatus, so zeigt die Varianzanalyse mit Messwiederholungen für die Gesamtbetrachtung eine signifikant unterschiedliche Veränderung der Leistung im Verlauf der sechs Jahre in Abhängigkeit der Sozialstatus-Gruppe (signifikante Sozialstatus*Zeit-Interaktion). Der Sozialstatus klärt im Modell (Altersgruppe*Geschlecht*Sozialstatus) neben den Faktoren Geschlecht und Altersgruppe an der Entwicklung der Leistung beim Seitlichen Hin- und Herspringen 1,1% Varianz auf.

MLS Stifte einstecken

Die Hypothese bezogen auf die Entwicklung der feinmotorischen Koordination in Abhängigkeit des Sozialstatus wird verworfen. Der Sozialstatus beeinflusst die Entwicklung der Leistung beim MLS Stifte einstecken im Verlauf der sechs Jahre nicht (keine signifikante Sozialstatus*Zeit-Interaktion).

Einordnung der Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der Koordination (Balancieren rückwärts, seitliches Hin- und Herspringen, MLS Stifte einstecken)

Interpretation und Diskussion der Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der Beweglichkeit (Rumpfbeuge)

Für die Entwicklung der Beweglichkeit nach Sozialstatus wurden folgende Hypothese formuliert:

\[H_{1.3.b}: \text{Der Sozialstatus beeinflusst die Entwicklung der Beweglichkeit.} \]

Eine Betrachtung der Beweglichkeitsleistung zu t0 nach Sozialstatus ergibt keine signifikanten Leistungsunterschiede. Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Rumpfbeugen nach Sozialstatus, so zeigt die Varianzanalyse mit Messwiederholungen für die Gesamtbetrachtung keine signifikant unterschiedliche Veränderung der Leistung im Verlauf der sechs Jahre in Abhängigkeit der Sozialstatus-Gruppe. Studien Teilnehmer mit einem hohen bzw. niedrigen Sozialstatus haben vergleichbare Steigungskoeffizienten und somit ähnliche Entwicklungsverläufe über die Zeit.

Die Hypothese bezogen auf die Entwicklung der Beweglichkeit in Abhängigkeit des Sozialstatus wird verworfen. Der Sozialstatus beeinflusst die Entwicklung der Leistung beim Rumpfbeugen im Verlauf der sechs Jahre nicht (keine signifikante Sozialstatus*Zeit-Interaktion).

Einordnung der Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der Beweglichkeit (Rumpfbeuge)

Der Sozialstatus beeinflusst die Entwicklung der Rumpfbeugeleistung in der vorliegenden Längsschnittstudie nicht. Ebenfalls zeigten sich keine Unterschiede im Ausgangsniveau t0 der Längsschnittprobanden in Abhängigkeit des Sozialstatus. Freitas et al. (2007) fanden hingegen beim Sit-and Reach-Test statistisch signifikante Unterschiede im Ausgangsniveau bei den Jungen ab der Altersgruppe der 10-11-Jährigen und bei Mädchen in der Altersgruppe der 15-18-Jährigen zugunsten der Studienteilnehmer mit einem hohen Sozialstatus. In der MoMo-Baseline Studie zeigt sich bei der Gesamtbetrachtung der Rumpfbeuge, dass die Mädchen mit einem hohen Sozialstatus (MW=3,03 cm; SD=11,89) im Durchschnitt beweglicher sind als die Mädchen mit einem niedrigen Sozialstatus (MW=0,55 cm; SD=7,81). Dieser Leistungsunterschied betrug 7 % (p=0,000; \(\eta^2 = 0,012 \)). Bei den Jungen ergaben sich keine signifikanten Unterschiede (vgl. Bös et al., 2009). Diese querschnittlichen Ergebnisse konnten im Längsschnitt nicht bestätigt werden.
7.4.2 Übersicht über die Entscheidungen zu den Hypothesen zum Einfluss des Sozialstatus

Der Sozialstatus beeinflusst bei 3 von 7 Testaufgaben die Entwicklung der motorischen Leistungsfähigkeit. Dies ist der Fall beim Reaktionstest und bei den beiden Testitems der großmotorischen Koordination (Seitliches Hin- und Herspringen, Balancieren rückwärts). Es zeigen sich lediglich sehr geringe Effektstärken. Beim Reaktionstest verschwindet der Einfluss des Sozialstatus bei der nach Altersgruppen und Geschlecht differenzierten Analyse.

Das motorische Ausgangsniveau der Längsschnittprobanden wird bei 4 von 7 Testaufgaben beeinflusst, dies ist der Fall für die konditionell determinierten Testitems (PWC relativ, Standweitsprung) und die Testitems der großmotorischen Koordination (Balancieren rückwärts, Seitliches Hin- und Herspringen). Auch beim Einfluss des Sozialstatus auf das motorische Ausgangsniveau t0 der Längsschnittprobanden zeigen sich sehr geringe Effektstärken.

Abschließend werden die Erkenntnisse zu den Entwicklungsverläufen anhand der „echten“ Verläufe den Ergebnissen der Baseline „unechte Verläufe“ gegenübergestellt.

Tabelle 102 gibt eine Gesamtübersicht über die Entscheidungen zu den formulierten Hypothesen zur Entwicklung der motorischen Leistungsfähigkeit in Abhängigkeit des Sozialstatus und stellt diese den querschnittlichen Befunden aus der MoMo-Baseline Studie gegenüber. Die Längsschnittergebnisse zur Entwicklung der motorischen Leistungsfähigkeit bestätigen bei 3 von 7 analysierten Motorikbereichen die querschnittlichen Befunde der Baseline-Studie auch für die längsschnittliche Entwicklung (Balancieren rückwärts, Seitliches Hin- und Herspringen, MLS Stifte einstecken). Bei 2 untersuchten Motorikbereichen werden die Ergebnisse zur Leistungsveränderung teilweise bestätigt (Reaktionstests, Rumpfbeuge). Für die Entwicklung der Ausdauerleistungsfähigkeit (PWC 170 relativ) und die Kraftfähigkeit (Standweitsprung) werden die Ergebnisse der Baseline-Studie nicht bestätigt.
<table>
<thead>
<tr>
<th>Hypothese</th>
<th>Befunde der MoMo-Motorik-Längsschnittstichprobe zur Entwicklung der motorischen Leistungsfähigkeit</th>
<th>Befunde der MoMo-Baseline-Stichprobe durch Längsschnitt bestätigt?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothese</td>
<td>Befunde der MoMo-Motorik-Längsschnittstichprobe zur Entwicklung der motorischen Leistungsfähigkeit</td>
<td>Befunde der MoMo-Baseline-Stichprobe durch Längsschnitt bestätigt?</td>
</tr>
<tr>
<td>H1.3 A</td>
<td>Hypothese wird für PWC 170 (relativ) verworfen: keine unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in Abhängigkeit des Sozialstatus</td>
<td>H1.3 A</td>
</tr>
<tr>
<td>H1.3 K</td>
<td>Hypothese wird für Standweitsprung verworfen: keine unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in Abhängigkeit des Sozialstatus</td>
<td>H1.3 K</td>
</tr>
<tr>
<td>H1.3 RS</td>
<td>Hypothese wird für Reaktionstest verworfen: Es zeigt sich in der Gesamtbetrachtung ein schwacher Einfluss des Sozialstatus auf die Entwicklung im Verlauf der sechs Jahre (Steigung), der aber nach Aufteilung in die Altersgruppen verschwindet</td>
<td>H1.3 RS</td>
</tr>
<tr>
<td>H1.3 Ko</td>
<td>Hypothese bestätigt für Balancieren rückwärts und seitliches Hin- und Herspringen: Unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in Abhängigkeit des Sozialstatus (geringer Effekt) Hypothese für Feinmotorik-Item (MLS Stifte einstecken) verworfen: keine unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in Abhängigkeit des Sozialstatus Bestätigt für Feinmotorik: Bei Feinmotorik-Items zeigen sich kein signifikanter Einfluss des Sozialstatus auf die MLF in der Baseline-Studie</td>
<td>H1.3 Ko</td>
</tr>
<tr>
<td>H1.3 B</td>
<td>Hypothese für Rumpfbeuge wird verworfen: keine unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in Abhängigkeit des Sozialstatus</td>
<td>H1.3 B</td>
</tr>
</tbody>
</table>
7.4.3 Einfluss des Aktivitätsverhaltens auf die Entwicklung der motorischen Leistungsfähigkeit

Die Hypothesen zum Einfluss des Aktivitätsverhaltens beziehen sich jeweils auf den Einfluss der körperlichen Aktivität (60 Minuten pro Tag/Woche) und die Vereinsaktivität.

Interpretation und Diskussion der Ergebnisse zum Einfluss des Aktivitätsverhaltens auf die Entwicklung der Ausdauerleistungsfähigkeit (Fahrrad-Ausduerertest)

Für die Entwicklung der relativen Ausdauerleistungsfähigkeit in Abhängigkeit des Aktivitätsverhalten (körperliche Aktivität und Vereinsaktivität) wurden folgende Hypothese formuliert:

$H_{2.1K}$: Das Aktivitätsverhalten beeinflusst die Entwicklung der Ausdauerleistungsfähigkeit.

Eine Betrachtung der Ausdauerleistungsfähigkeit zu t_0 nach Aktivitätsverhalten ergibt signifikante Leistungsunterschiede in Abhängigkeit der körperlichen Aktivität und der Vereinsmitgliedschaft. „Persistent Aktive“ schneiden zum ersten Messzeitpunkt beim Fahrrad-Ausduerertest besser ab, als die Teilnehmer der anderen Aktivitätsgruppen. Teilnehmer, die ihre Aktivität im Verlauf der sechs Jahre reduzieren, zeigen zu t_0 bessere Leistungen beim Fahrrad-Ausduerertest als Teilnehmer, die ihre Aktivität im Verlauf der sechs Jahre steigern. Teilnehmer, die zu t_0 und t_1 im Verein sind, schneiden zum ersten Messzeitpunkt besser ab als die Teilnehmer aller anderen Vereinsaktivitätsgruppen und „Aussteiger“ schneiden besser ab als die „Einsteiger“.

Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t_0 und t_1 beim Fahrrad-Ausduerertest (PWC relativ) nach Aktivitätsverhalten, so zeigt die Gesamtbetrachtung mittels Varianzanalyse mit Messwiederholungen für die Entwicklung der relativen PWC 170 für beiden Aktivitätsformen eine signifikante Zeit*Aktivitätsgruppen-Interaktion. Dies bedeutet, dass sich in Abhängigkeit der Aktivitätsgruppen über die Zeit unterschiedlich hohe Steigungskoeffizienten ergeben. Das heißt die Entwicklung der relativen Ausdauerleistungsfähigkeit verläuft in Abhängigkeit der Aktivitätsgruppe unterschiedlich. Die Aktivitätsgruppe klärt im Modell (Alter*Geschlecht*Aktivitätsgruppe*Zeit) neben den Faktoren Geschlecht und Alter an der Entwicklung relativen Leistung beim Fahrrad-Ausduerertest bei der Vereinsaktivität 0,8 % und bei der körperliche Aktivität 2,0 % auf.

1 Gesamte Zeit die, die Studienteilnehmern jeden Tag körperlich aktiv sind in den letzten 7 Tagen und in einer normalen Woche (Index)
Bei einer differenzierten Betrachtung nach Altersgruppe und Geschlecht wird bei den weiblichen Teilnehmern in den Altersgruppen 2 und 4 eine signifikante Zeit*Vereinsaktivitätsgruppen Interaktion. Für die männlichen Teilnehmer hingegen zeigt sich in keiner der Altersgruppe eine signifikante Zeit*Vereinsaktivitätsgruppen-Interaktion.

Für die körperliche Aktivität verschwindet der Einfluss bei der differenzierten Betrachtung nach Altersgruppe und Geschlecht nahezu ganz. Lediglich in der Altersgruppe 3 bei den männlichen Teilnehmern zeigen sich signifikante Unterschiede in Abhängigkeit der Aktivitätsgruppe.

Insgesamt sind die Effektstärken gering. Der Einfluss der körperlichen Aktivität verschwindet bei der nach Altersgruppen und Geschlecht differenzierten Analyse nahezu vollständig.

Einordnung der Ergebnisse zum Einfluss des Aktivitätsverhaltens auf die Entwicklung der Ausdauerleistungsfähigkeit (Fahrrad-Ausduauerstest)

Kemper und van Mechelen (1995) untersuchten im Rahmen der Amsterdam Growth-Study den Einfluss der habituellen Aktivität auf die maximale Sauerstoffaufnahmefähigkeit. Es zeigte sich, dass sowohl männliche als auch weibliche Studienteilnehmer mit einer hohen habituellen Aktivität ein besseres mittleres Niveau der VO$_{2\text{max}}$ aufweisen und zusätzlich ihre VO$_{2\text{max}}$ über den Studienzeitraum stärker steigern als die Studienteilnehmer mit einer geringen habituellen Aktivität.

Interpretation und Diskussion der Ergebnisse zum Einfluss des Aktivitätsverhaltens auf die Entwicklung der Kraftfähigkeit (Standweitsprung)

Für die Entwicklung der relativen Kraftfähigkeit in Abhängigkeit des Aktivitätsverhalten (körperliche Aktivität und Vereinsaktivität) wurden folgende Hypothese formuliert:

H$_{2.1K}$: Das Aktivitätsverhalten beeinflusst die Entwicklung der Kraftfähigkeit.

Eine Betrachtung der Kraftfähigkeit zu t0 nach Aktivitätsverhalten ergibt signifikante Leistungsunterschiede in Abhängigkeit der körperlichen Aktivität und der Vereinsmitgliedschaft. „Persistent Inaktive“ schneiden zum ersten Messzeitpunkt beim Standweitsprung besser ab, als „persistent Aktive“ und Teilnehmer, die ihre Aktivität von t0 zu t1 reduziert haben. Teilnehmer, die ihre Aktivität im Verlauf der sechs Jahre steigern, demonstrieren zu t0 bessere Leistungen beim Standweitsprung als „persistent Aktive“ und als „Aktivitäts-Reduzierer“. Die Gruppe der „Vereins-Einsteiger“ schneidet zum ersten Messzeitpunkt signifikant schlechter ab als alle anderen „Vereinsaktivitäts-Entwicklungsgruppen“. Die „Aussteiger“ erreichen
signifikant bessere Leistungen zu t0 als alle anderen Gruppen. Zwischen den beiden Gruppen „nie im Verein“ und „persistent im Verein“ besteht zum ersten Messzeitpunkt kein signifikanter Leistungsunterschied.

Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Standweitsprung nach Aktivitätsverhalten, so zeigt die Gesamt betrachtung mittels Varianzanalyse mit Messwiederholungen für die Entwicklung der Schnellkraft für beiden Aktivitätsformen eine signifikante Zeit*Aktivitätsgruppen-Interaktion. Dies bedeutet, dass sich in Abhängigkeit der Aktivitätsgruppen über die Zeit unterschiedlich hohe Steigungskoeffizienten ergeben. Das heißt die Entwicklung der Kraftfähigkeit verläuft in Abhängigkeit der Aktivitätsgruppe unterschiedlich. Die Aktivitätsgruppe klärt im Modell (Alter*Geschlecht*Aktivitätsgruppe*Zeit) neben den Faktoren Geschlecht und Alter an der Entwicklung der Standweitsprungleistung für die Vereinsaktivität 1\% und für die körperliche Aktivität 2\% der Varianz auf.

Der Einfluss der Vereinsaktivitätsgruppen auf die Entwicklung der Standweitsprungleistung ist bei männlichen und weiblichen Studienteilnehmern unterschiedlich. Bei den weiblichen Teilnehmern werden die Unterschiede besonders in der Altersgruppe 3 deutlich: Weibliche Teilnehmer, die zu beiden Messzeitpunkten keine Vereinsmitglied sind, haben deskriptiv betrachtet kaum noch eine Leistungssteigerung (MW_{\Delta t1-t0} = 0,14 cm), ebenso wie die „Einsteiger“ (MW_{\Delta t1-t0} = 0,44 cm); bei den „Aussteigern“ zeigt sich sogar bereits eine Reduktion (MW_{\Delta t1-t0} = -1,17 cm). Weibliche Studienteilnehmer, die jedoch zu beiden Messzeitpunkten im Verein aktiv sind, zeigen auch noch in der Altersgruppe 3 einen Zuwachs (MW_{\Delta t1-t0} = 5,39 cm).
Für die Vereinsaktivität wird deutlich, dass sich vergleichbare oder sogar größere Zuwachsraten (bei männlichen Studienteilnehmern) im Verlauf der sechs Jahre in der Standweitsprungleistung für die „Vereins-Einsteiger“ zeigen. Obwohl die Zuwachsraten vergleichbar oder sogar höher sind, erreichen die „Vereins-Einsteiger“ zum zweiten Messzeitpunkt (t1) dennoch nicht das Niveau der „persistenten Vereinsmitglieder“.
Für die körperliche Aktivität zeigt sich, dass „Aktivitäts-Steigerer“ vergleichbare Zuwachsraten und auch ein vergleichbares Leistungsniveau zum zweiten Messzeitpunkt (t1) erreichen verglichen mit den „persistent Aktiven“.

Einordnung der Ergebnisse zum Einfluss des Aktivitätsverhaltens auf die Entwicklung der Kraftfähigkeit (Standweitsprung)
Interpretation und Diskussion der Ergebnisse zum Einfluss des Aktivitätsverhaltens auf die Entwicklung der Reaktionsschnelligkeit (Reaktionstest)

Für die Entwicklung der Reaktionsschnelligkeit in Abhängigkeit des Aktivitätsverhalten (körperliche Aktivität und Vereinsaktivität) wurden folgende Hypothese formuliert:

H2.1 K: Das Aktivitätsverhalten beeinflusst die Entwicklung der Reaktionsschnelligkeit.

Eine Betrachtung der Ausdauerleistungsfähigkeit zu t0 nach Aktivitätsverhalten ergibt keine signifikanten Leistungsunterschiede in Abhängigkeit der körperlichen Aktivität und der Vereinsmitgliedschaft.

Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Reaktionstest nach der körperlichen Aktivität so zeigt die Gesamtbetrachtung mittels Varianzanalyse mit Messwiederholungen für die Entwicklung Reaktionsschnelligkeit keine signifikante Zeit*Aktivitätsgruppen-Interaktion. Dies bedeutet, dass sich in Abhängigkeit der körperlichen Aktivität über die Zeit keine unterschiedliche Leistungsveränderung ergibt.

Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Reaktionstest nach der Vereinsaktivität so zeigt die Gesamtbetrachtung mittels Varianzanalyse mit Messwiederholungen für die Entwicklung Reaktionsschnelligkeit eine signifikante Zeit*Aktivitätsgruppen-Interaktion. Dies bedeutet, dass sich in Abhängigkeit der Vereinsaktivitätsgruppen über die Zeit unterschiedlich hohe Steigungskoeffizienten ergeben. Das heißt die Entwicklung Reaktionsschnelligkeit verläuft in Abhängigkeit der Vereinsaktivitätsgruppe unterschiedlich. Die Vereinsaktivitäts-Gruppe klärt im Modell (Alter*Geschlecht*Aktivitätsgruppe*Zeit) neben den Faktoren Geschlecht und Alter an der Entwicklung Reaktionsschnelligkeit 0,5% der Varianz auf.

Bei einer differenzierten Betrachtung nach Altersgruppe und Geschlecht zeigt sich bei den weiblichen Teilnehmern ein signifikant größerer Leistungszuwachs für die weiblichen Teilnehmer, die zu t0 und t1 im Verein sind, gegenüber den weiblichen Teilnehmern, die im Verlauf der sechs Jahre ausgestiegen sind. Weibliche „Einsteiger“ verbessern ihre Reaktionszeit signifikant mehr als die weiblichen „Aussteiger“ und die Teilnehmer, die zu beiden Messzeitpunkten nicht im Verein sind. Bei den männlichen Teilnehmern verbessern die „Einsteiger“ ihre Leistung über die Zeit signifikant mehr als die anderen Vereinsaktivitäts-Gruppen.
Die Hypothese, bezogen auf die Entwicklung der Reaktionsschnelligkeit in Abhängigkeit der körperlichen Aktivität und der Vereinsaktivität kann nur für die Vereinsaktivität angenommen werden. Aufgrund der sehr geringen deskriptiven Mittelwertsunterschiede kommt den Effekten der Vereinsaktivität auf die Entwicklung und das mittlere Niveau der Reaktionsschnelligkeit jedoch nur eine geringe praktische Bedeutung zu.

Einordnung der Ergebnisse zum Einfluss des Aktivitätsverhaltens auf die Entwicklung der Reaktionsschnelligkeit (Reaktionstest)

Interpretation und Diskussion der Ergebnisse zum Einfluss des Aktivitätsverhaltens auf die Entwicklung der Koordination (Seitliches Hin- und Herspringen, Balancieren rückwärts, MLS Stifte einstecken)

Für die Entwicklung der Koordination in Abhängigkeit des Aktivitätsverhaltens (körperliche Aktivität und Vereinsaktivität) wurden folgende Hypothese formuliert:

H_{2.1 ko}: Das Aktivitätsverhalten beeinflusst die Entwicklung der Koordination (großmotorisch und feinmotorisch).

Seitliches Hin- und Herspringen

Eine Betrachtung der Leistung beim Seitlichen Hin- und Herspringen zu t0 nach der körperlichen Aktivität ergibt keine signifikanten Leistungsunterschiede. Eine Betrachtung der Kraftfähigkeit zu t0 nach der Vereinsaktivität ergibt signifikante Leistungsunterschiede. Die „Einsteiger” schneiden zum ersten Messzeitpunkt signifikant schlechter ab als alle anderen Ver-
einsaktivitäts-Gruppen. Zusätzlich erreichen die „Aussteiger“ signifikant bessere Leistungen zu t0 als alle anderen Gruppen. Zwischen den beiden Gruppen „nie im Verein“ und „persistent im Verein“ besteht zu t0 kein signifikanter Leistungsunterschied.

Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Seitlichen Hin- und Herspringen nach Aktivitätsverhalten, so zeigt die Gesamtbetrachtung mittels Varianzanalyse mit Messwiederholungen für die Entwicklung der großmotorischen Koordination unter Zeitdruck für beiden Aktivitätsformen eine signifikante Zeit*Aktivitätsgruppen-Interaktion. Dies bedeutet, dass sich in Abhängigkeit der Aktivitätsgruppen über die Zeit unterschiedlich hohe Steigungskoeffizienten ergeben. Das heißt die Entwicklung der großmotorischen Koordination unter Zeitdruck verläuft in Abhängigkeit der Aktivitätsgruppe unterschiedlich. Die Aktivitätsgruppe klärt im Modell (Alter*Geschlecht*Aktivitätsgruppe*Zeit) neben den Faktoren Geschlecht und Alter an der Entwicklung der Leistung beim Seitlichen Hin- und Herspringen für die Vereinsaktivität 1,7 % und für die körperliche Aktivität 1,0 % der Varianz auf.

Bei der körperlichen Aktivität zeigen die männlichen „persistent Aktiven“ eine ähnliche Leistungssteigerung verglichen mit den männlichen „Aktivität-Steigerern“. Diese ist höher als die der männlichen Teilnahme, die ihre Aktivität reduzieren und der „persistent Inaktiven“. Bei den weiblichen Teilnehmern haben die „persistent Aktiven“ die größte Leistungssteigerung über die Zeit.

Sie erreichen jedoch nicht das Leistungsniveau zum zweiten Messzeitpunkt, welches die „persistenten Vereinsmitglieder“ erreichen.
Für die körperliche Aktivität zeigt sich, dass die „Aktivitäts-Steigerer“ vergleichbare Zuwachsraten und auch ein vergleichbares Leistungsniveau zum zweiten Messzeitpunkt (t1) erreichen, verglichen mit den „persistent Aktiven“.

Weiterhin verdeutlicht die Gesamtbetrachtung, dass die Leistungsentwicklung der Teilnehmer, die zu t0 und t1 im Verein sind höher ist als die der „Aussteiger“ (Schereneffekt).
Bei der körperlichen Aktivität zeigt sich, dass die „persistent Aktiven“ einen signifikant höheren Leistungszuwachs haben als die Teilnehmer, die ihre Aktivität im Verlauf der sechs Jahre reduzieren oder steigern (Schereneffekt).

Balancieren rückwärts

Eine Betrachtung der Leistung beim Balancieren rückwärts zu t0 nach der körperlichen Aktivität ergibt keine signifikanten Leistungsunterschiede. Eine Betrachtung der Leistung beim Balancieren rückwärts zu t0 nach der Vereinsaktivität ergibt signifikante Leistungsunterschiede. Die Gruppe der „Einsteiger“ zum ersten Messzeitpunkt schneidet signifikant schlechter ab als alle anderen Vereinsaktivitätsgruppen. Außerdem besteht zum ersten Messzeitpunkt ein signifikanter Unterschied zwischen den Teilnehmern, die zu t0 und t1 nicht im Verein sind und den „Aussteiger“. Die „Aussteiger“ erreichen beim Balancieren rückwärts zum ersten Messzeitpunkt bessere Leistungen.

Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Balancieren rückwärts nach Aktivitätsverhalten, so zeigt die Gesamtbetrachtung mittels Varianzanalyse mit Messwiederholungen für die Entwicklung der großmotorischen Koordination unter Präzisionsdruck für die körperliche Aktivität eine signifikante Zeit*Aktivitätsgruppen-Interaktion. Dies bedeutet, dass sich in Abhängigkeit der körperlichen Aktivität über die Zeit unterschiedlich hohe Steigungskoeffizienten ergeben. Das heißt die Entwicklung der großmotorischen Koordination unter Präzisionsdruck verläuft in Abhängigkeit der körperlichen Aktivität unterschiedlich. Die Aktivitätsgruppe klärt im Modell (Alter*Geschlecht*Aktivitätsgruppe*Zeit) neben den Faktoren Geschlecht und Alter an der Entwicklung der Leistung beim Balancieren rückwärts d für die körperliche Aktivität 0,5 % der Varianz auf.
Die Vereinsaktivität beeinflusst die Entwicklung der Leistung beim Balancieren rückwärts nicht. Dies bedeutet, dass sich in Abhängigkeit der Vereinsaktivität über die Zeit keine unterschiedliche Leistungsveränderung ergibt.

Die Hypothese, bezogen auf die Entwicklung der großmotorischen Koordination unter Präzisionsdruck in Abhängigkeit der körperlichen Aktivität und der Vereinsaktivität kann nur für die körperliche Aktivität angenommen werden.

Die „persistent Aktiven“ haben einen höheren Leistungszuwachs beim Balancieren rückwärts als die „persistent Inaktiven“ (Schereneffekt). Die „Aktivitäts-Steigerer“ haben vergleichbare Zuwachsraten und auch ein vergleichbares Leistungsniveau zum zweiten Messzeitpunkt (t1) verglichen mit den „persistent Aktiven“.

Eine für Altersgruppen und Geschlecht differenzierte Analyse macht sichtbar, dass sich die Unterschiede in der Entwicklung der Balancierleistung in Abhängigkeit der körperlichen Aktivität jedoch lediglich für die männlichen Teilnehmer in Altersgruppe 3 und für die weiblichen in Altersgruppe 1 zeigen.

Die Vereinsaktivität beeinflusst die Entwicklung der Balancierleistung im Verlauf der sechs Jahre nicht. Die Hypothese für den Einfluss der Vereinsaktivität auf die Entwicklung der Balancierleistung wird verworfen. Es zeigt sich eine schwacher signifikanter Einfluss ($\eta^2=0.01$) der Vereinsaktivität auf das Ausgangsniveau zugunsten der „persistenten Vereinsmitglieder“. Dieser bleibt über den Verlauf der sechs Jahre erhalten.

MLS Stifte einstecken

Eine Betrachtung der feinmotorischen Koordination zu t0 nach Aktivitätsverhalten ergibt keine signifikanten Leistungsunterschiede in Abhängigkeit der körperlichen Aktivität und der Vereinsmitgliedschaft.

Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim MLS Stifte einstecken nach der körperlichen Aktivität so zeigt die Gesamtbetrachtung mittels Varianzanalyse mit Messwiederholungen für die Entwicklung feinmotorischen Koordination keine signifikante Zeit*Aktivitätsgruppen-Interaktion. Dies bedeutet, dass sich in Abhängigkeit der körperlichen Aktivität über die Zeit keine unterschiedliche Leistungsveränderung ergibt.
Betrachtet man den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim MLS Stifte einstecken nach der Vereinsaktivität so zeigt die Gesamtbetrachtung mittels Varianzanalyse mit Messwiederholungen für die Entwicklung feinmotorischen Koordination eine signifikante Zeit*Aktivitätsgruppen-Interaktion. Dies bedeutet, dass sich in Abhängigkeit der Vereins-Aktivitätsgruppen über die Zeit unterschiedlich hohe Steigungskoeffizienten ergeben. Das heißt die Entwicklung der feinmotorischen Koordination verläuft in Abhängigkeit der Vereinsaktivitäts-Gruppe unterschiedlich. Die Vereinsaktivitäts-Gruppe klärt im Modell (Alter*Geschlecht*Aktivitätsgruppe*Zeit) neben den Faktoren Geschlecht und Alter an der Entwicklung Reaktionsschnelligkeit 1,2% der Varianz auf. In den geschlechts- und altersgruppenpezifischen Analysen verschwindet dieser Effekt gänzlich, sodass ihm keine praktische Bedeutsamkeit zukommt.

Die Hypothese, bezogen auf die Entwicklung der feinmotorischen Koordination in Abhängigkeit der körperlichen Aktivität und der Vereinsaktivität muss wird verworfen. Die Vereinsaktivität und die körperliche Aktivität beeinflussen die Entwicklung der Leistung beim MLS Stifte einstecken im Verlauf der sechs Jahre nicht.

Einordnung der Ergebnisse zum Einfluss des Aktivitätsverhaltens auf die Entwicklung der Koordination (Seitliches Hin- und Herspringen, Balancieren rückwärts, MLS Stifte einstecken)

Roth und Roth (2009) berichten, dass sich mit zunehmenden Motorikanteilen bei Koordinationsaufgaben der positive Einfluss der Sportaktivität erhöht. Selbiges zeigt sich auch für die Entwicklung der koordinative Leistungsfähigkeit in den vorliegenden Analysen. Analysiert wurden drei Koordinationsitems (Seitliches Hin- und Herspringen, Balancieren rückwärts, MLS Stifte einstecken). Lediglich beim Seitlichen Hin- und Herspringen –einer Testaufgabe bei der neben der Koordination auch die Kraftausdauer leistungsDeterminierend wirken kann – zeigt sich ein deutlicher Einfluss der Vereinsaktivität und der körperlichen Aktivität auf die Entwicklung der Leistung im Verlauf der sechs Jahre (Schereneffekt). Beim Balancieren rückwärts wurde ein schwacher Einfluss der körperlichen Aktivität auf die Entwicklung der Balancierleistung deutlich und dies lediglich für vereinzelte Altersgruppen. Für die Feinmotorik (MLS Stifte einstecken) zeigt sich keine unterschiedliche Leistungsentwicklung im Verlauf der sechs Jahre in Abhängigkeit der Aktivitätsgruppen (Vereinsaktivität und körperliche
Aktivität). Die vorliegenden deskriptiven Befunde deuten darauf hin, dass das Aktivitätsverhalten und hier vor allem die Vereinsaktivität das Ausgangsniveau der Koordination beeinflusst und weniger die Entwicklung im Verlauf der sechs Jahre.

In der MoMo-Baseline Studie schnitten die Hochaktiven beim Seitlichen Hin- und Herspringen in fast jeder Altersgruppe signifikant besser ab als die Inaktiven. Beim Balancieren rückwärts zeigte sich dieser Unterschied nur in ausgewählten Altersgruppen. Beim MLS Stifte einstecken wurde in nahezu keiner Altersgruppe ein signifikanter Einfluss des Aktivitätsverhaltens deutlich (vgl. Bös et al., 2009).

Interpretation und Diskussion der Ergebnisse zum Einfluss des Aktivitätsverhaltens auf die Entwicklung der Beweglichkeit (Rumpfbeuge)

Für die Entwicklung der Beweglichkeit in Abhängigkeit des Aktivitätsverhaltens (körperliche Aktivität und Vereinsaktivität) wurden folgende Hypothese formuliert:

H2.1.B: Das Aktivitätsverhalten beeinflusst die Entwicklung der Beweglichkeit.

Eine Betrachtung der Beweglichkeit zu t0 nach der Vereinsaktivität ergibt signifikante Leistungsunterschiede. Die Teilnehmer, die zu t0 und t1 im Verein sind schneiden bereits zum ersten Messzeitpunkt besser bei der Rumpfbeuge ab als die Teilnehmer, die zu t0 und t1 nicht im Verein sind. Eine Betrachtung der Beweglichkeit zu t0 nach der körperlichen Aktivität ergibt keine signifikanten Leistungsunterschiede.

Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim der Rumpfbeuge nach Aktivitätsverhalten, so zeigt die Gesamtbetrachtung mittels Varianzanalyse mit Messwiederholungen für die Entwicklung der Rumpfbeuge-Leistung für beiden Aktivitätsformen eine signifikante Zeit*Aktivitätsgruppen-Interaktion. Dies bedeutet, dass sich in Abhängigkeit der Aktivitätsgruppen über die Zeit unterschiedlich hohe Steigungskoeffizienten ergeben. Das heißt die Entwicklung der Beweglichkeit verläuft in Abhän-
gigkeit der Aktivitätsgruppe unterschiedlich. Die Aktivitätsgruppe klärt im Modell (Alter*Geschlecht*Aktivitätsgruppe*Zeit) neben den Faktoren Geschlecht und Alter an der Entwicklung der Beweglichkeit bei der Vereinsaktivität 0,7 % und bei der körperliche Aktivität 0,9 % auf.

Bei einer differenzierten Betrachtung des Einflusses der körperlichen Aktivität nach Altersgruppe und Geschlecht zeigt sich nur für die männlichen Teilnehmer eine signifikante Aktivitätsgruppen*Zeit- Interaktion. Die „persistent Aktiven“ haben einen größeren Leistungszuwachs als die „persistent Inaktiven“.

Die Analyse der Vereinsaktivität ergibt ein umgekehrtes Bild: die Vereinsaktivität beeinflusst die Entwicklung der Beweglichkeit der weiblichen Studienteilnehmer, nicht aber die der männlichen Teilnehmer. Die weiblichen Studienteilnehmer, die zu beiden Messzeitpunkten im Verein sind, zeigen einen größeren Zuwachs in der Beweglichkeitsleistung im Vergleich zu den weiblichen Teilnehmern, die nie im Verein gewesen sind.

Die Hypothese bezogen auf die Entwicklung der Rumpfbeweglichkeit kann somit für die Vereinsaktivität für die weiblichen Studienteilnehmer und für die körperliche Aktivität für die männlichen Studienteilnehmer angenommen werden. Es zeigt sich ein signifikanter Einfluss der Aktivitätsgruppe auf die Entwicklung der Beweglichkeitsleistung im Verlauf der sechs Jahre, wobei jeweils die „persistent Aktiven“ einen stärkeren Zuwachs aufweisen als die „persistent Inaktiven“ (Schereeneffekt).

Für beide Aktivitätsformen zeigt sich, dass „Aktivitäts-Steigerer/ Einsteiger“ vergleichbare Zuwachsraten und auch ein vergleichbares Leistungsniuevzum zweiten Messzeitpunkt (t1) erreichen verglichen mit den „persistent Aktiven“.

Einordnung der Ergebnisse zum Einfluss des Aktivitätsverhaltens auf die Entwicklung der Beweglichkeit (Rumpfbeuge)

Der Einfluss des Aktivitätsverhaltens auf die Entwicklung der Beweglichkeit stellt sich differenziert dar als der Einfluss auf die Kraftfähigkeit oder Ausdauerleistungsfähigkeit. Auch der Forschungsstand hierzu ist heterogen. Kemper und van Mechelen (1995) konnten im Rahmen der Amsterdam Growth-Study bei den weiblichen Teilnehmern einen signifikanten Interaktionseffekt der habituellen Aktivität auf die Beweglichkeitsleistung beim Sit-and-Reach Test zugunsten der aktiven weiblichen Studienteilnehmer finden. In der MoMo-
Baseline Studie zeigten sich bei den Mädchen und dort lediglich in zwei Altersgruppen (6-10-jährige und 14-17-jährige) signifikante Unterschiede in der Beweglichkeitsleistung zugunsten der hochaktiven Mädchen (vgl. Bös et al., 2009). Die Analyse der vorliegenden Längsschnittdaten zur Entwicklung der Beweglichkeit zeigt ebenfalls, dass die Vereinsaktivität lediglich die Leistung bei den weiblichen Teilnehmern beeinflusst. Insgesamt ist der aufgeklärte Varianzanteil für die Entwicklung der Beweglichkeitsleistung, der auf die Aktivitätsgruppen zurückgeführt werden, kann verglichen mit den konditionell determinierten Testaufgaben gering.

7.4.4 Übersicht über die Entscheidungen zu den Hypothesen zum Aktivitätsverhalten

Eine Betrachtung der motorischen Leistungsfähigkeit der Längsschnittprobanden zu t0 nach der Vereinsaktivität ergibt bei 5 der 7 Testaufgaben signifikante Leistungsunterschiede. Beim Reaktionstest und in der Feinkoordination zeigen sich keine signifikanten Unterschiede im Ausgangsniveau (t0).

Eine Betrachtung der motorischen Leistungsfähigkeit der Längsschnittprobanden zu t0 nach der körperlichen Aktivität ergibt bei 2 der 7 Testaufgaben signifikante Leistungsunterschiede (PWC 170 relativ, Standweitsprung).

Die Vereinsaktivität beeinflusst darüber hinaus bei 6 der 7 Testaufgaben die Entwicklung der motorischen Leistungsfähigkeit im Verlauf der sechs Jahre. Dieser Einfluss zeigt sich nur beim Balancieren rückwärts nicht.

Die körperliche Aktivität beeinflusst bei 5 der 7 Testaufgaben die Entwicklung der motorischen Leistungsfähigkeit im Verlauf der sechs Jahre. Der Einfluss zeigt sich bei den konditional determinierten Testaufgaben (Standweitsprung, PWC 170 relativ) und der großmotorischen Koordination (Balancieren rückwärts, Seitliches Hin- und Herspringen), sowie der Beweglichkeit (Rumpfbeuge), nicht jedoch bei der Feinmotorik (MLS Stifte einstecken) und der Reaktionsschnelligkeit.

Tabelle 103 gibt einen Überblick über die Entscheidungen zu den formulierten Hypothesen zum Einfluss des Aktivitätsverhaltens auf die Entwicklung der motorischen Leistungsfähigkeit. Die Ergebnisse zum Einfluss des Aktivitätsverhaltens der MoMo- Längsschnittstudie werden den Befunden der MoMo-Baseline Studie gegenübergestellt. Die Längsschnittergeb-
nisse bestätigen bei allen 7 analysierten Testaufgaben die querschnittlichen Befunde der Baseline-Studie auch für die längsschnittliche Entwicklung der motorischen Leistungsfähigkeit.

Tabelle 103: Entscheidungen zu den Hypothesen zur Entwicklung der motorischen Leistungsfähigkeit in Abhängigkeit des Aktivitätsverhaltens

<table>
<thead>
<tr>
<th>Hypothese</th>
<th>Befunde der MoMo-Motorik-Längsschnittstichprobe zur Entwicklung der motorischen Leistungsfähigkeit</th>
<th>Befunde der MoMo-Baseline-Stichprobe durch Längsschnitt bestätigt?</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂,1 K</td>
<td>Hypothese bestätigt für Standweitsprung: Unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in Abhängigkeit der Aktivitäts-Wechslergruppen (Vereinsmitgliedschaft und körperliche Aktivität). Die stärksten Zuwächse zeigen sich für die persistenten Aktiven und die Einsteiger, allerdings erreichen die Einsteiger nicht das Niveau der persistenten Aktiven zu t₁.</td>
<td>Bestätigt für Standweitsprung: in der MoMo-Baseline Studie zeigten sich signifikante Unterschiede beim Standweitsprung in Abhängigkeit des Aktivitätsverhaltens</td>
</tr>
<tr>
<td>H₂,1 RS</td>
<td>Hypothese für Reaktionsschnelligkeit nur für Vereinsaktivität bestätigt: für körperliche Aktivität verworfen. Aufgrund der sehr geringen deskriptiven Mittelwertsunterschiede kommt den Effekten der Vereinsaktivität auf die Veränderung über die Zeit (Steigung) und auf das mittlere Niveau der Reaktionsschnelligkeit keine praktische Bedeutsamkeit zu.</td>
<td>Bestätigt für Reaktionstest: in der MoMo-Baseline Studie zeigte sich bei den Jungen nur in der AG 4-5 J. und in der AG 6-10 J., bei den Mädchen in der AG 4-5 J. ein signifikanter Einfluss der Aktivität auf die Reaktionsschnelligkeit</td>
</tr>
</tbody>
</table>
7.4.5 Einfluss der Körperkonstitution auf die Entwicklung der motorischen Leistungsfähigkeit

Interpretation und Diskussion der Ergebnisse zum Einfluss der Körperkonstitution auf die Entwicklung der Ausdauerleistungsfähigkeit (Fahrrad-Ausdauertest)

Für die Entwicklung der relativen Ausdauerleistungsfähigkeit in Abhängigkeit der Körperkonstitution (BMI) wurden folgende Hypothese formuliert:

H₂₂,ι : Die Körperkonstitution (BMI) beeinflusst die Entwicklung der Ausdauerleistungsfähigkeit.

Die Hypothese, bezogen auf die Entwicklung der Ausdauerleistungsfähigkeit in Abhängigkeit der BMI-Gruppen wird angenommen. „ Persistent Normalgewichtige“ steigern ihre Leistung im Verlauf der sechs Jahre signifikant mehr als die „Zunehmer“. „ Abnehmer“ zeigen eine vergleichbare (weiblich) oder stärkere (männlich) Leistungssteigerung und auch ein vergleichbares Leistungsniveau zum zweiten Messzeitpunkt (t₁) verglichen mit den „ persistent Normalgewichtigen“.
Die Leistungssteigerung im Verlauf der sechs Jahre beim Fahrrad-Ausdauertest ist nicht signifikant unterschiedlich zwischen „persistent Normalgewichtigen“ und den „persistent Übergewichtigen“. Dennoch haben die „persistent“ Übergewichtigen sowohl zum ersten als auch zum zweiten Messzeitpunkt eine signifikant schlechtere, relative Ausdauerleistungsfähigkeit als die „persistent Normalgewichtigen“.

Einordnung der Ergebnisse zum Einfluss der Körperkonstitution auf die Entwicklung der Ausdauerleistungsfähigkeit (Fahrrad-Ausdauertest)

Interpretation und Diskussion der Ergebnisse zum Einfluss der Körperkonstitution auf die Entwicklung der Kraftfähigkeit (Standweitsprung)

Für die Entwicklung der Kraftfähigkeit in Abhängigkeit der Körperkonstitution (BMI) wurden folgende Hypothese formuliert:

H₂₂₂K: Die Körperkonstitution (BMI) beeinflusst die Entwicklung der Kraftfähigkeit.

Die Hypothese bezogen auf die Entwicklung der Kraftfähigkeit beim Standweitsprung in Abhängigkeit der BMI-Gruppen wird angenommen: „Persistent normalgewichtige“ Teilnehmer verbessern ihre Leistung im Verlauf der sechs Jahre signifikant mehr als die „Zunehmer“ und die „persistent Übergewichtigen“.

Der Zuwachs im Verlauf der sechs Jahre beim Standweitsprung zwischen „persistent Normalgewichtigen“ und den „Abnehmer“ ist vergleichbar. Dennoch erreichen die „Abnehmer“ zum zweiten Messzeitpunkt (t1) nicht das Leistungsniveau der „persistent Normalgewichtigen“. „Persistent Normalgewichtige“ steigern ihre Leistung im Verlauf der sechs Jahre signifikant mehr als die ”Zunehmer“.

Einordnung der Ergebnisse zum Einfluss der Körperkonstitution auf die Entwicklung der Kraftfähigkeit (Standweitsprung)

Die querschnittlichen Befunde der MoMo-Baseline Studie können für die Entwicklung der Kraftfähigkeit im Verlauf der sechs Jahre bestätigt werden. In der MoMo-Baseline Studie zeigen sich beim Standweitsprung signifikante Unterschiede zwischen Übergewichtigen und Normalgewichtigen zugunsten der Normalgewichtigen (vgl. Bös et al., 2009). Die vorliegenden, längsschnittlichen Daten zeigen, dass sich für die „persistent übergewichtigen“ Studententeilnehmer zum einen ein schlechteres Ausgangsniveau (t0) zeigt, zum anderen die Leistungssteigerung im Verlauf der sechs Jahre signifikant geringer ausfällt. Es wird deutlich, dass Teilnehmer, die ihre BMI-Gruppe wechseln und ihren BMI im Verlauf der sechs Jahre reduzieren, zum zweiten Messzeitpunkt (t1) dennoch nicht das Leistungsniveau beim Standweitsprung der „persistent Normalgewichtigen“ erreichen.

Interpretation und Diskussion der Ergebnisse zum Einfluss der Körperkonstitution auf die Entwicklung der Reaktionsschnelligkeit (Reaktionstest)

Für die Entwicklung der Reaktionsschnelligkeit in Abhängigkeit der Körperkonstitution (BMI) wurden folgende Hypothese formuliert:

\[H_{2.2.RS} : \text{Die Körperkonstitution (BMI) beeinflusst die Entwicklung der Reaktionsschnelligkeit.} \]

Eine Betrachtung der Reaktionsschnelligkeit zu t0 nach BMI-Gruppen ergibt keine signifikanten Leistungsunterschiede.

Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Reaktionstest nach BMI-Gruppen, so zeigt die Varianzanalyse mit Messwiederholungen für die Gesamtbetrachtung keine signifikant unterschiedliche Veränderung der Leistung beim Reaktionstest im Verlauf der sechs Jahre in Abhängigkeit der BMI-Gruppen. Normalgewichtige oder übergewichtige Studienteilnehmer haben vergleichbare Steigungskoeffizienten und somit ähnliche Entwicklungsverläufe über die Zeit.

Einordnung der Ergebnisse zum Einfluss der Körperkonstitution auf die Entwicklung der Reaktionsschnelligkeit (Reaktionstest)

In der MoMo-Baseline-Studie konnten keine signifikanten Unterschiede beim Reaktionstest in Abhängigkeit der BMI-Gruppe gefunden werden (vgl. Bös et al., 2009) und auch für die Entwicklung der Leistung beim Reaktionstest über die Zeit zeigt sich keine unterschiedliche Leistungssteigerung in Abhängigkeit der BMI-Gruppen.
Interpretation und Diskussion der Ergebnisse zum Einfluss der Körperkonstitution auf die Entwicklung der Koordination (Seitliches Hin- und Herspringen, Balancieren rückwärts und MLS Stifte einstecken)

Für die Entwicklung der Koordination nach der Körperkonstitution (BMI) wurden folgende Hypothese formuliert:

\[H_{2.2.Ko} : \text{Die Körperkonstitution (BMI) beeinflusst die Entwicklung der Koordination (großmotorisch und feinmotorisch).} \]

Balancieren rückwärts

Eine Betrachtung der großmotorischen Koordination unter Präzisionsdruck zu t0 nach BMI-Gruppen ergibt signifikante Leistungsunterschiede. „Persistent Normalgewichtige“ unterscheiden sich signifikant von allen anderen BMI-Gruppen, sie erbringen bessere Leistungen zu t0. Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Balancieren rückwärts nach BMI-Gruppen, so zeigt die Gesamtbetrachtung mittels Varianzanalyse mit Messwiederholungen für die Entwicklung der großmotorischen Koordination eine signifikante Zeit*BMI-Gruppen-Interaktion. Dies bedeutet, dass sich in Abhängigkeit der BMI-Gruppe über die Zeit unterschiedlich hohe Steigungskoeffizienten ergeben. Das heißt die Entwicklung der großmotorischen Koordination beim Balancieren rückwärts verläuft in Abhängigkeit der BMI-Gruppe unterschiedlich. Die BMI-Gruppe erklärt im Modell (Alter*Geschlecht*BMI-Gruppe*Zeit) neben den Faktoren Geschlecht und Alter an der Entwicklung der Balancierleistung 1,0% der Varianz.

Bei einer differenzierten Betrachtung nach Geschlecht verbessern sowohl die weiblichen als auch die männlichen „persistent Normalgewichtige“ ihre Leistung beim Balancieren rückwärts mehr als die „persistent Übergewichtigen“.

Die Hypothese bezogen auf die Entwicklung der großmotorischen Koordination beim Balancieren rückwärts in Abhängigkeit der BMI-Gruppen wird angenommen. Eine Überprüfung des Einflussfaktors BMI auf die Entwicklung der Leistungsfähigkeit beim Balancieren rückwärts mittels Post-hoc Test ergibt sowohl bei den männlichen als auch bei den weiblichen Teilnehmern größere Zuwächse im Verlauf der sechs Jahre für die „persistent Normalgewichtigen“ verglichen mit den „persistent Übergewichtigen“ (Schereneffekt).
Der Zuwachs der „persistent Normalgewichtigen“ und der „Abnehmer“ ist nicht signifikant unterschiedlich. Zum zweiten Messzeitpunkt (t1) erreichen die „Abnehmer“ annähernd das Leistungsniveau der „persistent Normalgewichtigen“.

Beim Balancieren rückwärts schneiden die „Zunehmer“ bereits zum ersten Messzeitpunkt schlechter ab als die Normalgewichtigen, dieses schlechtere Niveau bleibt auch im Verlauf der sechs Jahre erhalten.

Seitliches Hin- und Herspringen

Bei einer differenzierten Betrachtung nach Geschlecht verbessern sowohl die weiblichen als auch die männlichen „persistent Normalgewichtige“ ihre Leistung beim Seitlichen Hin-und Herspringen mehr als die „persistent Übergewichtigen“.

Der Zuwachs der „persistent Normalgewichtigen“ und der „Abnehmer“ ist nicht signifikant unterschiedlich. Zum zweiten Messzeitpunkt (t1) erreichen die „Abnehmer“ annähernd das Leistungsniveau der „persistent Normalgewichtigen“.

MLS Stifte einstecken

Eine Betrachtung der feinmotorischen Koordination zu t0 nach BMI-Gruppen ergibt keine signifikanten Leistungsunterschiede.

Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim MLS Stifte einstecken nach BMI-Gruppen, so zeigt die Varianzanalyse mit Messwiederholungen für die Gesamtbetrachtung keine signifikant unterschiedliche Veränderung der Leistung beim MLS Stifte einstecken im Verlauf der sechs Jahre in Abhängigkeit der BMI-Gruppen. Normalgewichtige oder übergewichtige Studienteilnehmer haben vergleichbare Steigungskoeffizienten und somit ähnliche Entwicklungsverläufe über die Zeit.

Die Hypothese, bezogen auf die Entwicklung der feinmotorischen Koordination beim MLS Stifte einstecken in Abhängigkeit der BMI-Gruppen wird verworfen. Die Körperkonstitution (BMI) beeinflusst die Entwicklung der feinmotorischen Koordination im Verlauf der sechs Jahre nicht.

Einordnung der Ergebnisse zum Einfluss der Körperkonstitution auf die Entwicklung der Koordination (seitliches Hin- und Herspringen, Balancieren rückwärts, MLS Stifte einstecken)

In der MoMo-Baseline-Untersuchung zeigen sich beim Seitlichen Hin- und Herspringen und beim Balancieren rückwärts signifikante Unterschiede zugunsten der Normalgewichtigen (vgl. Bös et al., 2009). Die Ergebnisse der MoMo-Baseline Studie können für die Entwicklung der großmotorischen Koordination im Verlauf der sechs Jahre bestätigt werden. Die vorliegenden Daten zeigen, dass sich für die „persistent übergewichtigen“ Teilnehmer nicht nur ein schlechteres Ausgangsniveau zeigt, sondern auch die Leistungssteigerung signifikant geringer ausfällt (Schereneffekt).

Interpretation und Diskussion der Ergebnisse zum Einfluss der Körperkonstitution auf die Entwicklung der Beweglichkeit

Für die Entwicklung der Beweglichkeit in Abhängigkeit der Körperkonstitution (BMI) wurden folgende Hypothese formuliert:

\[H_{22B} : \text{Die Körperkonstitution (BMI) beeinflusst die Entwicklung der Beweglichkeit.} \]

Eine Betrachtung der Beweglichkeitsleistung zu t0 nach BMI-Gruppen ergibt keine signifikanten Leistungsunterschiede.

Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 beim Rumpfbeugen nach BMI-Gruppen, so zeigt die Varianzanalyse mit Messwiederholungen für die Gesamtbetrachtung keine signifikant unterschiedliche Veränderung der Beweglichkeitsleistung beim Rumpfbeugen im Verlauf der sechs Jahre in Abhängigkeit der BMI-Gruppen. Normalgewichtige oder übergewichtige Studienteilnehmer haben vergleichbare Steigungskoeffizienten und somit ähnliche Entwicklungsverläufe über die Zeit.

Eine differenziert Betrachtung nach Geschlecht und Altersgruppe bestätigt die Ergebnisse der varianzanalytischen Gesamtbetrachtung für die weiblichen Studienteilnehmer. Es zeigt sich in keiner Altersgruppe eine signifikante Zeit*BMI-Gruppen-Interaktion. Bei den männlichen Teilnehmern zeigt sich in der Altersgruppe 2 eine signifikante Zeit*BMI-Gruppen-Interaktion mit einer geringe Effektstärke \(\eta^2=0,02 \), welche deshalb keine praktische Bedeutsamkeit besitzt.

Einordnung der Ergebnisse zum Einfluss der Körperkonstitution auf die Entwicklung der Beweglichkeit (Rumpfbeuge)

7.4.6 Übersicht über die Entscheidungen zu den Hypothesen zum Einfluss der Körperkonstitution (BMI)

Tabelle 104 gibt einen Überblick über die Entscheidungen zu den formulierten Hypothesen zum Einfluss der Körperkonstitution (BMI). Zudem werden die Ergebnisse zum Einfluss der Körperkonstitution (BMI) der MoMo-Längsschnittstudie den Befunden der MoMo-Baseline
Studie gegenübergestellt. Die Längsschnittergebnisse zur Entwicklung der motorischen Leistungsfähigkeit im Verlauf der sechs Jahre bestätigen bei allen sieben analysierten motorischen Fähigkeitsbereichen die querschnittlichen Befunde der Baseline-Studie auch für die längsschnittliche Entwicklung.

Tabelle 104: Entscheidungen zu den Hypothesen zur Entwicklung der motorischen Leistungsfähigkeit in Abhängigkeit der Körperform (BMI)

<table>
<thead>
<tr>
<th>Hypothese</th>
<th>Befunde der MoMo-Motorik-Längsschnittstichprobe zur Entwicklung der motorischen Leistungsfähigkeit</th>
<th>Befunde der MoMo-Baseline-Stichprobe durch Längsschnitt bestätigt?</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2.2 K</td>
<td>Hypothese bestätigt für Standweitsprung: Unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in Abhängigkeit der BMI-Gruppen. Persistente Normalgewichtige haben besseres Ausgangsniveau (t0) und stärkere Steigung als Zunehmer und persistente Übergewichtige. Entwicklung im Verlauf der sechs Jahre (Steigung) bei Abnehmern und persistent Normalgewichtigen vergleichbar, allerdings erreichen die Abnehmer zu t1 nicht das Niveau der persistent Normalgewichtigen.</td>
<td>Bestätigt: signifikanter Einfluss des BMI auf Standweitsprungleistung in der MoMo-Baseline Studie</td>
</tr>
<tr>
<td>H2.2 R5</td>
<td>Hypothese für Reaktionsschnelligkeit wird verworfen: keine unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung)</td>
<td>Bestätigt: kein signifikanter Einfluss der BMIs auf die Reaktionsschnelligkeit in der MoMo-Baseline Studie</td>
</tr>
<tr>
<td>H2.2 B</td>
<td>Hypothese wird für Rumpfbeuge verworfen: keine unterschiedliche Entwicklung im Verlauf der sechs Jahre (Steigung) in Abhängigkeit der BMI-Gruppe.</td>
<td>Bestätigt: Insgesamt deuten die Ergebnisse der MoMo-Baseline Studie darauf hin, dass sich übergewichtige und adipöse Kinder und Jugendliche in ihrer Beweglichkeitsleistung nicht von den normalgewichtigen Altersgenossen unterscheiden</td>
</tr>
</tbody>
</table>
7.4.7 Gesamtdiskussion Einflussfaktoren

Einfluss des Sozialstatus auf die Entwicklung der motorischen Leistungsfähigkeit

Der Einfluss soziokultureller und soziodemografischer Faktoren, wie z.B. der Sozialstatus auf die motorische Leistung, wird in der Literatur kontrovers diskutiert (vgl. Bös et al., 2009; Großarth, 2009; Klein et al., 2011; siehe auch Kapitel 3.2). Die Ergebnisse aus Querschnittsstudien weisen darauf hin, dass kein direkter Einfluss soziokultureller Faktoren auf die motorische Leistungsfähigkeit besteht. Die wenigen längsschnittlichen Studien belegen einen heterogenen Forschungsstand. Mehrheitlich zeigt sich jedoch kein Einfluss des Sozialstatus auf die Entwicklung der motorischen Leistungsfähigkeit (vgl. Ahnert, 2005).

Eine Betrachtung der motorischen Leistungsfähigkeit zu t0 nach Sozialstatus ergibt lediglich bei den konditionellen Testaufgaben und der großmotorischen Koordination einen signifikanten Einfluss des Sozialstatus auf das Ausgangsniveau (t0) zugunsten der Studienteilnehmer mit einem hohen Sozialstatus. Die Effektstärken ($\eta^2=0.00-0.02$) sind als gering zu beurteilen. Betrachtet man anschließend den Leistungszuwachs zwischen den Messzeitpunkten t0 und t1 der motorischen Leistungsfähigkeit nach Sozialstatus so zeigt sich ebenfalls bei 4 von 7 analysierten Testaufgaben kein signifikanter Einfluss des Sozialstatus auf die Entwicklung der motorischen Leistungsfähigkeit. Beim Reaktionstest, beim Seitlichen Hin- und Herspringen und beim Balancieren rückwärts beeinflusst der Sozialstatus die Leistungsentwicklung im Verlauf der sechs Jahre. Die Effekte müssen allerdings als schwach bewertet werden ($\eta^2=0.002$ bis $\eta^2=0.01$). Beim Reaktionstest verschwindet der Einfluss des Sozialstatus bei der nach Altersgruppen und Geschlecht differenzierten Analyse.

In der MoMo-Baseline Studie zeigt sich, dass der Einfluss des Sozialstatus mit zunehmendem Alter steigt, dieser Befund konnte im Längsschnitt nicht bestätigt werden. Die leicht unterschiedlichen Befunde zwischen den querschnittlichen Analysen der MoMo-Baseline Studie und den Ergebnissen zur Entwicklung der motorischen Leistungsfähigkeit in Abhängigkeit des Sozialstatus könnten auf die Stichprobenerverzerrung (im Hinblick auf einen erhöhten Anteil an Teilnehmern mit einem hohen Sozialstatus) in der Längsschnittstichprobe zurückzuführen sein.

Einfluss des Aktivitätsverhaltens auf die Entwicklung der motorischen Leistungsfähigkeit

Insgesamt geben 37,4% der Längsschnittstichprobe an, an 4-7 Tagen in der Woche mindes tens 60 Minuten am Tag körperlich aktiv zu sein und behalten dieses Verhalten auch im Verlauf der sechs Jahre bei („persistente Aktive“). 18,9% zählen zu den Inaktiven zu beiden Messzeitpunkten, d.h. sie sind lediglich an 0-3 Tagen pro Woche für mindestens 60 Minuten am Tag körperlich aktiv („persistente Inaktive“). 16,5% der Studienteilnehmer steigern ihr Aktivitätsverhalten („Steigerer“). Fast doppelt so viele Studienteilnehmer (27,2%) reduzieren ihre wöchentliche, körperliche Aktivität im Verlauf der sechs Jahre („Reduzierer“). Der Anteil der Teilnehmer, die ihre Aktivität reduzieren steigt mit zunehmendem Alter.

Die deskriptiven Analysen zur Vereinsaktivität zeigen, dass insgesamt fast die Hälfte der Längsschnittprobanden (45,4%) über beide Messzeitpunkte im Verein aktiv sind. 22,4% der Längsschnittprobanden geben an, nicht im Verein zu sein. Der Anteil der „Einsteiger“ (16,3%) und „Aussteiger“ (15,9%) ist nahezu gleich groß. In der Altersgruppe der 11-13-Jährigen (zu t0) ist der Anteil der „Aussteiger“ mit 25,2% am höchsten. Mit steigendem Alter wird der Anteil der Vereinsmitglieder geringer.
Die Ergebnisse der im Literaturreview analysierten Längsschnittstudien deuten darauf hin, dass eine Veränderung des Aktivitätsverhaltens nicht nur die aktuelle motorische Leistungsfähigkeit beeinflusst, sondern auch die Entwicklung der motorischen Leistungsfähigkeit (Augste et al., 2014; Baquet et al., 2006; Kemper, 1995). Am besten schneiden die Kinder und Jugendlichen ab, welche über das Kindes- und Jugendalter die körperlich-sportliche Aktivität konstant aufrecht erhalten (vgl. Aires et al., 2010; Baquet et al., 2006). Dies gilt vor allem für die konditionellen Testaufgaben und hier vor allem für die Ausdauerleistungsfähigkeit. Der Forschungsstand belegt einen eindeutigen und signifikanten Einfluss der Aktivität auf die *konditionellen Fähigkeiten.*

Der Einfluss der körperlich-sportlichen Aktivität vor allem auf die konditionellen Fähigkeiten sind sportbiologisch darin zu begründen, dass die Größe und Funktionsfähigkeit, der für die körperliche Leistungsfähigkeit wichtigen Organe, etwa zu 30-40% von der Quantität und Qualität spezifischer Beanspruchungen abhängt (vgl. Weineck, 2010).

Ebenfalls nicht eindeutig ist der Forschungsstand in Bezug auf Personen, die ihr Aktivitätsverhalten in einem definierten Zeitraum verändern, das heißt verringern oder steigern (vgl. Augste, 2014; Aires et al., 2010; Baquet et al., 2006).

Die Ergebnisse der vorliegenden Analysen stimmen mit den Befunden aus der Literatur überein: Das Ausgangsniveau und das mittlere Leistungsniveau ist bei den Studienteilnehmern, die im Verlauf der sechs Jahre „persistent aktiv“ sind, höher als bei den „persistent Inaktiven“. Dies zeigt sich vor allem bei den konditionell determinierten Testaufgaben (Standweitsprung, PWC 170 relativ), aber auch für die Beweglichkeit (Rumpfbeugen).

Die körperliche Aktivität beeinflusst bei 5 von den 7 ausgewählten Testaufgaben die Entwicklung. Bei 5 von 7 Testaufgaben zeigt sich ein Schereneffekt zwischen den Teilnehmern die „persistent körperlich aktiv“ sind und den Teilnehmern die „persistent körperlich inaktiv“ sind (ausgenommen Reaktionstest und MLS Stifte einstecken). Auch hier haben die „persistent Aktiven“ einen stärkeren Zuwachs über die Zeit als die „persistent Inaktiven“.
Die Vereinsaktivität beeinflusst bei 6 von den 7 ausgewählten Testaufgaben die Entwicklung der motorischen Leistungsfähigkeit im Verlauf der sechs Jahre. Bei 4 von 7 Testaufgaben zeigt sich ein Schereneffekt zwischen den Teilnehmern die „persistent“ im Verein sind und den Teilnehmern, die zu beiden Messzeitpunkten nicht im Verein sind. Dies ist der Fall bei den konditionellen Testaufgaben, der Rumpfbeuge und beim Seitlichen Hin- und Herspringen. „Persistent Aktive“ haben einen stärkeren Zuwachs über die Zeit als die „persistent Inaktiven“.

Der Einfluss des Aktivitätsverhaltens auf das Ausgangsniveau (t0) und auf die Entwicklung der Leistung beim Balancieren rückwärts und bei der Feinmotorik (Stifte einstecken) wurde nicht signifikant bzw. ist schwach, verglichen mit dem Einfluss des Aktivitätsverhaltens auf die Entwicklung der Leistung beim Seitlichen Hin- und Herspringen. Diese Ergebnisse lassen vermuten, dass sich ein höheres Aktivitätsniveau weniger auf rein koordinative Fähigkeiten auswirkt als auf konditionelle bzw. koordinative Fähigkeiten mit konditionellen Anteilen, wie beispielsweise bei der Testaufgabe Seitliches Hin- und Herspringen.

Im Rahmen der Amsterdam Growth- Study (vgl. Kemper & van Mechelen, 1995) wurde deutlich, dass der Einfluss des habituellen Aktivitätsverhaltens vor allem ab der Pubertät eine Rolle spielt. Selbiges zeigte sich in den vorliegenden Längsschnitts-Analysen für den Einfluss der Vereinsaktivität beim Standweitsprung vor allem bei den weiblichen Studienteilnehmern.

Es ist zu erwarten, dass sich die Effekte verstärken, wenn Angaben zur Häufigkeit und Intensität einbezogen werden.

Zusammenfassend zeigen die Ergebnisse, dass das Ausgangsniveau der motorischen Leistungsfähigkeit -aber auch Gewinn und Verlust im Verlauf der sechs Jahre- im Kindes- und im Jugendalter vor allem bei den konditionellen Fähigkeiten (Standweitsprung, PWC 170) durch das Aktivitätsverhalten positiv beeinflusst werden.

Der deutlichere Einfluss der Vereinssportaktivität, verglichen mit dem Einfluss zur körperlichen Aktivität, könnte möglicherweise darauf zurückzuführen sein, dass die Aktivität im Verein vermehrt Aktivitäten im höheren Intensitätsbereich umfasst.

„The objective is not only to fight sedentary lifestyles and increase calorie expenditure by increasing physical activity, but also to ensure that such physical activity is vigorous enough to improve physical fitness. Such vigorous activity not only improves the calorie expenditure associated with exercise, but also increases, or at least preserves, muscle mass, thus increasing basal calorie expenditure also“ (Ortega et al., 2013, S. 467).
Einfluss des BMIs auf die Entwicklung des motorischen Leistungsfähigkeit

Insgesamt sind 81,2% der Studienteilnehmer normalgewichtig und bleiben dies auch im Verlauf der sechs Jahre ("persistent Normalgewichtige"). 9,3% der Studienteilnehmer nehmen im Verlauf der sechs Jahre zu, d.h. sie wechseln die BMI-Gruppe von normalgewichtig in die Gruppe der Übergewichtigen und Adipösen ("Zunehmer"). Nur 2,9% der Teilnehmer nehmen im Verlauf der sechs Jahre ab ("Abnehmer"). 6,7% der Studienteilnehmer werden zum ersten Messzeitpunkt als übergewichtig/adipös eingestuft und bleiben dies auch zum zweiten Messzeitpunkt ("persistent Übergewichtige").

Bei der Interpretation der Ergebnisse gilt es zu berücksichtigen, dass die Gruppe der "persistent" Übergewichtigen und die beiden "Wechslergruppen" sehr klein im Vergleich zur Gruppe der "persistent" Normalgewichtigen ist. Die Gruppenunterschiede sind zum einen darin begründet, dass sich der BMI als sehr stabil über das Kindes- und Jugendalter darstellt (vgl. Graf, Dordel, Tokarski, Predel, 2006; Ortega et al., 2013) und zum anderen die Längsschnittstichprobe eine positive Selektion aufweist, das heißt eher normalgewichtige als übergewichtige Teilnehmer an der zweiten Untersuchung teilnehmen.

chinesischen Kindern (8-13 Jahre). Im Fokus stand hier jedoch der Einfluss des Ausgangsniveaus der Ausdauerleistungsfähigkeit auf die Entwicklung des BMI.

In der MoMo-Baseline Studie konnte ein schlechteres Abschneiden Übergewichtiger, vor allem bei ganzkörperlichen Aufgaben, bei welchen das Körpergewicht bewältigt werden muss, nachgewiesen werden. Die Replikation der Befunde im Längsschnitt unterstreicht die praktische Relevanz des Einflusses des BMI auf die motorische Leistungsfähigkeit, auch wenn die Effekte des BMI auf die ganzkörperlichen Tests, verglichen mit den Effekten des Alters und des Geschlechts, als geringe einzustufen sind (siehe Kapitel 5.6).

Mit der Analyse der Längsschnittdaten konnte somit belegt werden, dass sich für die „persisten
tent übergewichtigen“ Kinder und Jugendlichen nicht nur ein schlechteres Ausgangsniveau zeigt, sondern auch die Leistungssteigerung im Verlauf der sechs Jahre signifikant geringer ausfällt (Schereneffekt).

Der Einfluss der BMI-Gruppe ist mehrheitlich bereits bei den beiden jüngeren Alters gruppen 1 (4-5 –Jährige) und 2 (6-10 –Jährige) gegeben. Dies betont noch einmal mehr die Wichtig keit einer frühen Übergewichtsprävention.

Die ermittelten Leistungsunterschiede im Ausgangsniveau und in der Entwicklung der motorischen Leistungsfähigkeit in Abhängigkeit von der BMI-Gruppe können verschiedene Ursachen haben. In der Literatur werden am häufigsten zwei Hypothesen zur Begründung der Leistungsunterschieden herangezogen:

Um den Einfluss von Muskelmasse und Fettmasse auf die motorischen Leistungsfähigkeit genauer zu untersuchen, wurde zum zweiten Messzeitpunkt (t1) eine zusätzliche Messung der Körperkonstitution mittels Bioelektrischer-Impedanz-Messung durchgeführt (siehe Worth et al., 2014). Diese Messungen sollten zukünftig für detailliertere Analysen herangezogen werden.

Um diesen Hypothesen und Befunden nachzugehen, wurde mittels einfaktorieller Varianzanalyse überprüft, ob sich die „Vereinswechslergruppen“ in ihrem Ausgangs-BMI (t0) unterscheiden. Es zeigen sich signifikante Unterschiede (F$_{3,2105}$=26,58; p=.00). Der Post-hoc Test (Scheffé) macht sichtbar, dass die Teilnehmer, die zu beiden Messzeitpunkten im Verein aktiv sind, einen niedrigeren BMI zu t0 haben als Teilnehmer, die nie im Verein sind, und als die „Aussteiger“. Die „Aussteiger“ haben außerdem zu t0 bereits einen höheren BMI als die „Einsteiger“. Auch für die „Wechslergruppen“ der körperlichen Aktivität zeigen sich signifikante Unterschiede im BMI zu t0 (F$_{3,1958}$=30,19; p=.00). Die „persistent Aktiveren“ haben einen niedrigeren BMI zu t0 als die „persistent Inaktiven“ und die Teilnehmer, die ihre Aktivität im Verlauf der sechs Jahre steigern. Außerdem haben die „persistent Inaktiven“ einen höheren BMI zu t0 als die Teilnehmer, die ihre Aktivität reduzieren.

Insgesamt stärken die Befunde die Annahme zur „Activity deficit hypothesis“. Eine geringere körperlich-sportliche Aktivität scheint somit -zumindest teilweise- für die schlechteren Leistungen der Übergewichtigen verantwortlich zu sein.

Gesamtdiskussion

Mittels der in der vorliegenden Arbeit eingesetzten statistischen Verfahren (Varianzanalyse mit Messwiederholung) konnte in einem ersten Schritt der Einfluss des Sozialstatus, des Aktivitätsverhaltens und des BMIs auf die Entwicklung der motorischen Leistungsfähigkeit im Verlauf der sechs Jahre (Gewinn, Verlust, Stagnation) und auf das Ausgangsniveau der motorischen Leistungsfähigkeit der Längsschnittprobanden analysiert werden. Es wurde gezeigt, dass Gewinn und Verlust in der motorischen Entwicklung vor allem bei den kategorisierter Testaufgaben vom Aktivitätsniveau und dem BMI beeinflusst werden. Der Einfluss des Sozialstatus auf Gewinn und Verlust der motorischen Leistungsfähigkeit spielt eine untergeordnete Rolle, da sich lediglich bei 2 von 7 Testaufgaben ein Einfluss zeigt, der nur geringe Effektstärken aufweist.

Eine Antwort auf die Frage nach Ursachen und Wirkungen wird in Folgepublikationen mittels Cross-lagged-Panel-Design und Latent-Growth-Curve-Analysen vorgenommen (siehe hierzu Kapitel 7.4.8 Methodendiskussion). Das heißt, die Erforschung, inwieweit der Sozialstatus, das Aktivitätsverhalten, der BMI und die motorische Leistungsfähigkeit sich untereinander bedingen, ob Moderator- oder Mediatoreffekte vorliegen, kann nur durch weiterführende Analysen der MoMo-Längsschnittdaten beurteilt werden. Eine wichtige Voraussetzung hierfür ist die Gewinnung weiterer Längsschnittdaten, wie sie derzeit in der Fortführung der MoMoMoMo-Längsschnittstudie erfolgt (s. hierzu Worth et al., 2015).

Insgesamt zeigt sich der Einfluss des BMI und des Aktivitätsverhaltens bereits ab der Altersgruppe der 4-5-Jährigen (AG 1). Der BMI erklärt im Vergleich zur körperlichen Aktivität und zur Vereinsaktivität am Ausgangsniveau (t0) mehr Varianz. Die Vereinsaktivität hat einen stärkeren Einfluss auf das Ausgangsniveau (t0) als die körperliche Aktivität. Für die Zeit*Gruppen-Interaktionen, also die Erklärung des Gewinns oder Verlusts im Verlauf der sechs Jahre zeigen sich für die analysierten Einflussfaktoren (Sozialstatus, Aktivitätsverhalten, BMI) geringe Effektstärken.

In zukünftigen Analysen sollten deshalb zusätzlich Auswertungsstrategien zum Einsatz kommen, die die Analyse einer größeren Anzahl von Einflussfaktoren und ihrer Wirkungseffekte in einem Modell zulassen (z.B. latente Wachstumskurvenmodelle). Dies ermöglicht auch die
Analyse mehrerer Einzeleffekte, die isoliert betrachtet zu schwachen oder nicht signifikanten Effekten führen (z.B. Sozialstatus). Die Aufsummierung und gegenseitige Potenzierung solcher isolierter Einflussfaktoren könnte möglicherweise zu einem bedeutenden Gesamteffekt führen.

7.4.8 Methodendiskussion

Im Folgenden werden Stärken, Schwächen und Weiterentwicklungspotenziale, die das Studien-Design und die vorgenommenen statistischen Auswertungsverfahren betreffen, diskutiert.

Längsschnittdesign

Stichprobe

Bei Längsschnittstudien sollte stets das Problem der Panelmortalität und damit der Verlust der Repräsentativität der Studie diskutiert werden. Häufig sind die Drop-Outs von Studienteilnehmern nicht zufällig, sondern systematisch. Das heißt die Panelmortalität bestimmter Bevölkerungs- oder Risikogruppen ist gegenüber anderen erhöht. In der vorliegenden Studie lag die Drop-Out-Rate bei 52,14%.

Durch eine spezielle Längsschnittgewichtung ist es prinzipiell möglich, die Längsschnittstichprobe so zu gewichten, dass sie repräsentativ für die Bevölkerung zum Zeitpunkt der MoMo-Baseline Studie ist. Grundsätzlich sollte jedoch durch die Präzisierung der Fragestellung kritisch diskutiert werden, ob die Notwendigkeit der Repräsentativität der Längsschnittstudie und somit eine Generalisierbarkeit auf die Bevölkerung gegeben sein muss (vgl. Matton, Beunen, Duvigneaud, Wijndaele, Philippaerts et al., 2007). Die vorliegenden Analysen richten den Fokus auf die Beeinflussbarkeit und Erklärung sowie auf die Stabilität und damit auch verbunden auf eine mögliche Prognostizierbarkeit der Entwicklung der motorischen Leistungsfähigkeit. Um repräsentative Aussagen über die motorische Leistungsfähigkeit zu treffen, eignen sich möglicherweise die extra repräsentativ gezogenen MoMo-Baselinesdaten (t0) und die erneut gezogene Querschnittsstichprobe zur Welle 1 (t1) besser. Die grafische Aufbereitung der Geradenscharen (Kapitel 5) zeigen jedoch, dass diese mehrheitlich mit den Mittelwertsverläufen der repräsentativen Baseline übereinstimmen. Neben der Darstellung der Entwicklung der motorischen Leistungsfähigkeit anhand von Geradenscharen war es das Ziel, die in der MoMo-Baseline Studie auf querschnittlicher Datenbasis analysierten Einflussfaktoren, im Längsschnitt zu untersuchen. Mehrheitlich konnten die in der Baseline gefundenen Einflüsse im Längsschnitt bestätigt werden.
Methoden

Erfassung der Aktivität

In der Fortführung der MoMo-Studie kommen deshalb ab Welle 2 (t2) zusätzlich zum Fragebogen Akzelerometermessungen (Actigraph) zum Einsatz.
Erfassung der Körperkonstitution

Im Rahmen des Motoriktests wurden die konstitutionellen Merkmale wie Größe und Gewicht der Studienteilnehmer erfasst. Aus diesen Daten wurde der Body-Mass-Index berechnet. Der BMI stellt zur Beurteilung der Körperkonstitution vor allem in großen epidemiologischen Studien ein anerkanntes Maß dar, er korreliert mit der Fettmasse und dem Hüftumfang. Bei der Interpretation der Einflüsse des BMIs auf die Entwicklung der motorischen Leistungsfähigkeit ist zu berücksichtigen, dass der BMI nicht die Variationen der fettfreien Masse und der Fettmasse erfasst (vgl. Aires et al., 2010). In der MoMo-Studie Welle 2 (t2) werden die anthropometrischen Messungen deshalb um die bioelektrische Impedanzanalyse ergänzt, welche es ermöglichen, die Körperkonstitution detaillierter zu erfassen.

Statistische Auswertungsstrategien

326
Im Folgenden werden zwei alternative Analysemöglichkeiten zur Varianzanalyse mit Messwiederholung dargestellt, die zum Teil die angesprochenen Probleme im Design kompensieren können (z.B. Modellierung von Entwicklungsverläufen über das Alter, nicht über die Messzeitpunkte) und somit einen Beitrag zur Beantwortung weiterführender Fragestellungen leisten könnten. Eine ausführliche Darstellung methodologischer Probleme bei der längsschnittlichen Analyse motorischer Entwicklungsverläufe findet sich auch bei Schneider (1994).

Latente Wachstumskurvenmodelle

Während die Varianzanalyse mit Messwiederholung auf der Idee der Zerlegung von Varianzen basiert, liegen den Verfahren wie dem latenten Wachstumskurvenmodell (englisch „latent growth curve model“ bzw. „latent trajectory model, LGC“) ein faktoranalytischer Hintergrund zugrunde. Völckle (2007) betrachtet die Varianzanalyse mit Messwiederholung als Spezialfall von LGC-Modellen. „Latent growth curve modeling must not be viewed as just another “tool in the toolbox of methods”, but should be understood as a very general data analytic system for repeated measures designs which incorporates paired t-tests, repeated measures ANOVA, and MANOVA as special cases“ (Völckle, 2007, S. 378).

Grenzt man die varianzanalytische Herangehensweise von der Herangehensweise der LGC-Modelle ab, zeigen sich die Nachteile der ersteren vor allem in den starken Restriktionen (Sphärizitätsannahme, perfekte Reliabilität, Robustheit, Äquidistanz der Zeit).

Für die vorliegende Arbeit ergibt sich jedoch viel mehr ein inhaltlicher Aspekt zugunsten einer alternativen Analyse der Daten mittels LGC-Modellen. Während die Varianzanalyse den Fokus auf Gruppenunterschieden und nicht auf individuelle Veränderungen legt, können mittels latenten Wachstumskurvenmodellen auch individuelle Verläufe modelliert werden. „In LGC-Modellen wird, basierend auf den Wiederholungsmessungen, eine einzelne Wachstumskurve (Trajektorie) für jede Person über alle Messzeitpunkte hinweg geschätzt, die Kurve besteht aus einem latenten Intercept-Faktor und einem latenten Slope-(Steigungs-)Faktor“ (Christ, Schmidt, Schlüter, Wagner, 2006, S. 175). Veränderungswerte werden somit als Variablen in das Modell aufgenommen. Dies erlaubt, dass Veränderungen direkt als Funktion anderer Variablen behandelt werden können „While interindividual differences in intraindividual change are treated as error variance in traditional methods, they are of primary interest in latent growth curve modeling“ (Völckle, 2007, S. 377).

Weiterhin können sowohl lineare als auch non-lineare Verläufe über das Alter modelliert werden. Fehlende Werte stellen kein Ausschlusskriterium dar.

Cross-lagged Panel:

Abbildung 61: Grafisches Beispiel für die Testung einer möglichen Modellannahme mittels Cross-lagged-Panel-Design anwendet auf die Fragestellung der Arbeit

Neuere Ansätze kombinieren die oben bereits beschriebenen latenten Wachstumskurvenmodelle mit dem Cross-lagged-Panel-Design (siehe hierzu Christ et al., 2006).
Stärken

8 Zusammenfassung und Ausblick für Wissenschaft und Praxis

In diesem abschließenden Kapitel werden die Ergebnisse der vorliegenden Arbeit zusammengefasst und Perspektiven für Wissenschaft und Praxis abgeleitet.

8.1. Zusammenfassung

Abgeleitet aus der metatheoretischen Rahmenkonzeption der Entwicklungspsychologie der Lebensspanne (Baltes, 1990; Willimczik & Conzelmann, 1999) ist das Ziel dieser Arbeit:

2. Unter dem Leitsatz des „Kontextualismus“ die Beeinflussbarkeit der Entwicklung der motorischen Leistungsfähigkeit durch den Sozialstatus, durch das Aktivitätsverhalten (Vereinsmitgliedschaft, körperliche Aktivität) und durch die Körperkonstitution (BMI) zu analysieren.
8 Zusammenfassung und Ausblick für Wissenschaft und Praxis

Für die Arbeit lassen sich folgende zentrale Ergebnisse zusammenfassen:

Entwicklungsverläufe der motorischen Fähigkeiten Ausdauer, Kraft, Reaktionsschnelligkiet, Koordination und Beweglichkeit nach Alter und Geschlecht

• Das Alter beeinflusst bei allen 10 Testaufgaben die Entwicklung der motorischen Leistungsfähigkeit und das motorische Ausgangsniveau (t0) der Längsschnittprobanden. Der Einfluss des Alters zeigt sich vor allem bis Altersgruppe 3 (11-13 Jahre zu t0). Für die Beweglichkeit, die relative Ausdauerleistungsfähigkeit und das MLS Linien nachfahren zeigt sich nur ein schwacher Einfluss des Alters (Altersgruppe) im Kindes- und Jugendalter.

• Das Geschlecht beeinflusst bei 6 von 10 Testaufgaben die Entwicklung der motorischen Leistungsfähigkeit im Verlauf der sechs Jahre und bei 8 von 10 Testaufgaben das motorische Ausgangsniveau der Längsschnittprobanden zu t0. Bei den konditionellen Testaufgaben (Standweitsprung und Liegestützen) zeigen sich größere Zuwächse zugunsten der männlichen Studienteilnehmer und bei der Beweglichkeit zugunsten der weiblichen Studienteilnehmer. Kein Einfluss zeigte sich bei der Reaktionsschnelligkeit. Bei den koordinativen Fähigkeiten zeigt sich nur ein schwacher Einfluss des Geschlechts. Es zeigt sich kein Einfluss des Geschlechts auf die Entwicklung der am Körpergewicht relativierten Ausdauerleistungsfähigkeit (PWC 170 relativ).

• Im Modell Zeit*Altersgruppe*Geschlecht entfällt auf das Alter bei 9 von 10 Testaufgaben der größere aufgeklärte Varianzanteil verglichen mit dem Geschlecht (ausgenommen Liegestützen).

• Die Entwicklung der motorischen Leistungsfähigkeit im Verlauf der sechs Jahre verläuft zwischen den einzelnen Dimensionen multidirektional.

• Die Tatsache dass sich bereits ab dem Grundschulalter (4-5 Jahre) bereits mittelhohe Korrelationskoeffizienten zeigen bedeutet, dass bereits in der Kindheit wesentliche Grundlagen geschaffen werden, die die weitere motorische Entwicklung über das Zeitintervall von sechs Jahren mitbestimmen.

\[15\] Entwicklung meint hier die Steigung von t0 zu t1 im Verlauf der sechs Jahre
Ergebnisse zum Einfluss des Sozialstatus auf die Entwicklung der motorischen Fähigkeiten

- Der Sozialstatus beeinflusst bei 3 von 7 Testaufgaben die Entwicklung der motorischen Leistungsfähigkeit. Dies ist der Fall bei den koordinativen Aufgaben (Seitliches Hin- und Herspringen, Balancieren rückwärts) und beim Reaktionstest. Nicht jedoch bei den konditionellen Aufgaben (Standweitsprung, Liegestützen, PWC 170 relativ) und der Beweglichkeit. Es zeigen sich geringe Effektstärken. Es zeigen sich ein schwache Effekt des Sozialstatus auf das motorische Ausgangsniveau der Längsschnittprobanden zu t0 bei den konditionell determinierten Testaufgaben (Standweitsprung, relative PWC 170) und der großmotorischen Koordination (Seitliches Hin- und Herspringen, Balancieren rückwärts).
- Das Modell (Zeit, Geschlecht, Altersgruppe, Sozialstatus) hat die höchste Varianzaufklärung für die Testitems Seitliches Hin- und Herspringen ($r^2=0.528$), Reaktionstest ($r^2=0.528$) und Standweitsprung ($r^2=0.506$).

Ergebnisse zum Einfluss der Körperkonstitution (BMI) auf die Entwicklung der motorischen Fähigkeiten

Bei der Beweglichkeit, der Reaktionsschnelligkeit und der Feinkoordination zeigt sich kein Einfluss auf die Entwicklung im Verlauf der sechs Jahre und auch nicht auf das motorische Ausgangsniveau der Längsschnittprobanden zu t0.

Der Einfluss der BMI-Gruppe tritt mehrheitlich bereits in den beiden jüngeren Altersgruppen 1 (4-5 –Jährige) und 2 (6-10 –Jährige) auf.

Die höchste Varianzaufklärung (Modell: Zeit, Geschlecht, Altersgruppe, BMI) zeigt sich bei der Testaufgabe MLS Stifte einstecken ($r^2=0,568$), für das seitliche Hin- und Herspringen ($r^2=0,530$) und für den Standweitsprung ($r^2=0,527$).

Ergebnisse zum Einfluss des Aktivitätsverhaltens auf die Entwicklung der motorischen Fähigkeiten

- Die Vereinsaktivität beeinflusst bei 6 von den 7 ausgewählten Testaufgaben die Entwicklung der motorischen Leistungsfähigkeit im Verlauf der sechs Jahre. Die körperliche Aktivität beeinflusst bei 5 von den 7 ausgewählten Testaufgaben die Entwicklung.
- Der Einfluss der Vereinsaktivität und der körperlichen Aktivität auf die Entwicklung im Verlauf der sechs Jahre zeigt sich bei den konditionellen Fähigkeiten (Standweitsprung, PWC 170), der Beweglichkeit (Rumpfbeuge) und der großmotorischen Koordination unter Zeitdruck (Seitliches Hin und Herspringen). Die Entwicklung der großmotorischen Koordination unter Präzisionsdruck (Balancieren rückwärts) wird von der körperlichen Aktivität nicht jedoch von der Vereinsaktivität beeinflusst. Bei der Reaktionsschnelligkeit und der Feinmotorik (MLS Stifte einstecken) zeigt sich nur ein schwacher Einfluss der Vereinsaktivität auf die Entwicklung, die körperliche Aktivität beeinflusst die Entwicklung der Leistungsfähigkeit in diesen beiden Items nicht.

Vereinsaktivität:

- Es zeigt sich ein Schereneffekt in der Entwicklung der Leistungsfähigkeit zwischen Teilnehmern, die zu beiden Messzeitpunkten im Verein aktiv sind und Teilnehmern, die nicht im Verein aktiv sind (männlich: bei 3 von 7 Testaufgaben; weiblich: 4 von 7 Testaufgaben). Dies ist vor allem der Fall bei den konditionellen Fähigkeiten und der großmotorischen Koordination.
- Für die Vereinsaktivität zeigt sich, dass die „Einsteiger“ vergleichbare oder sogar höhere Leistungssteigerungen im Verlauf der sechs Jahre aufweisen. Die „Vereins-Einsteiger“ er-
reichen jedoch bei 6 von 7 Testaufgaben nicht das Leistungsniveau zum zweiten Messzeitpunkt, welches die Teilnehmer aufweisen, die zu beiden Messzeitpunkten im Verein sind.

- Das Modell (Zeit, Geschlecht, Altersgruppe, Vereinsaktivitätsgruppe) hat die höchste Varianzauklärung für die Testitems Seitliches Hin- und Herspringen ($r^2=0,543$), MLS Stifte einstecken ($r^2=0,572$) und Standweitsprung ($r^2=0,515$).

Körperliche Aktivität:

- Das Modell (Zeit, Geschlecht, Altersgruppe, körperl. Aktivitätsgruppe) hat die höchste Varianzauklärung für die Testitems Seitliches Hin- und Herspringen ($r^2=0,529$), MLS Stifte einstecken ($r^2=0,567$) und Standweitsprung ($r^2=0,529$).

Ausgangsniveau t0:

- Die Vereinsaktivität beeinflusst bei 5 von 7 Testaufgaben das motorische Ausgangsniveau der Längsschnittprobanden zu t0. Dies ist der Fall für die konditionellen Fähigkeiten (Standweitsprung, PWC 170), die Beweglichkeit (Rumpfbeuge) und die großmotorischen Koordination (Balancieren rückwärts, Seitliches Hin und Herspringen).

- Die körperliche Aktivität (Tage/Woche) beeinflusst lediglich bei 2 von 5 Testaufgaben das motorische Ausgangsniveau der Längsschnittprobanden zu t0, dies ist der Fall bei den konditionellen Fähigkeiten (Standweitsprung, PWC 170 relativ).

- Generell hat die Vereinsaktivität einen deutlicheren Einfluss auf das motorische Ausgangsniveau (t0) der Längsschnittprobanden als die körperliche Aktivität (Tage/Woche).
Zusammenfassende Betrachtungen der Einflussfaktoren

- Alter und Geschlecht erklären -verglichen mit dem Sozialstatus, dem BMI und dem Aktivitätsverhalten- den größten Varianzanteil an der Entwicklung der motorischen Leistungsfähigkeit im Verlauf der sechs Jahre sowie am motorischen Ausgangsniveau der Längsschnittprobanden (t0).

- Insgesamt zeigt sich der Einfluss des BMIs und des Aktivitätsverhaltens bereits ab der Altersgruppe 1 (4-5 Jahre zu t0). Der BMI erklärt im Vergleich zur körperlichen Aktivität und zur Vereinsaktivität am Ausgangsniveau der Längsschnittprobanden zu t0 mehr Varianz. Für die Zeit*Gruppen-Interaktionen -also die Erklärung der Entwicklung in Form von Gewinn oder Verlust im Verlauf der sechs Jahre- zeigen sich für den Sozialstatus, das Aktivitätsverhalten und den BMI geringere Effektstärken als für das Geschlecht und die Altersgruppe.

Die querschnittlichen Befunde der MoMo-Baseline Studie zum „Verlauf“ und zu den Einflussfaktoren der motorischen Leistungsfähigkeit lassen sich mehrheitlich durch die in dieser Arbeit ermittelten längsschnittlichen Befunde bestätigen (vgl. Tabelle 102 bis Tabelle 104). Neue Erkenntnisse liefern die längsschnittlichen Analysen in Hinblick auf die Veränderung der motorischen Leistungsfähigkeit im Verlauf der sechs Jahre. Damit verbunden ist der Gewinn an Informationen über die Bedeutung ausgewählter Einflussfaktoren für eine altersgerechte motorische Entwicklung und mögliche Entwicklungsvorgänge in Subgruppen (z.B. „Zunehmer“, „Abnehmern“, „persistently Normalgewichtige“ oder „persistently Übergewichtige“).

Der Einfluss des BMIs und des Aktivitätsverhaltens auf die Entwicklung der motorischen Leistungsfähigkeit, vor allem bei den konditionellen Fähigkeiten (Schereneffekte), kann bereits im Vor- und Grundschulalter nachgewiesen werden. Diese Ergebnisse bestätigen die Annahmen, dass in der Kindheit wesentliche motorische Grundlagen geschaffen werden, welche die motorische Entwicklung bis ins frühe Erwachsenenalter mitbestimmen. Auch die relativ hohe Stabilität der motorischen Leistungsfähigkeit ab dem Grundschulalter zeigt, dass bereits in jungen Jahren die Grundlagen für eine gute motorische Leistungsfähigkeit geschaffen werden können.
8 Zusammenfassung und Ausblick für Wissenschaft und Praxis

8.2. Ausblick für die Wissenschaft und Praxis

Aus den Ergebnissen der vorliegenden Arbeit lassen sich für die Förderung der Entwicklung der motorischen Leistungsfähigkeit Empfehlungen für die Praxis auf verschiedenen Ebenen formulieren. Außerdem können Perspektiven für die zukünftige Forschung im Bereich der motorischen Entwicklung von Kindern und Jugendlichen aufgezeigt werden. Dies betrifft vor allem Verbesserungspotenziale im Studiendesign und in den Strategien zur statistischen Auswertung von Längsschnittstudien (siehe hierzu ausführlich Kapitel 7.4.8).

8.2.1 Ausblick für die Wissenschaft

In der Methodendiskussion (Kapitel 7.4.8) wurden bereits die Stärken, Schwächen und Entwicklungspotenziale der durchgeführten Studie und der statistischen Analysen diskutiert. Daraus lassen sich Konsequenzen für die zukünftige Forschung im Bereich der Entwicklung der motorischen Leistungsfähigkeit ableiten. Diese betreffen das längsschnittliche Studiendesign, die Stichprobe, die Auswahl der eingesetzten Methoden und die statistischen Auswertungsstrategien.

In einem ersten Schritt konnte gezeigt werden, dass der BMI und das Aktivitätsverhalten vor allem bei den konditionell determinierten Testaufgaben das Ausgangsniveau (t=0) und auch die Entwicklung der motorischen Leistungsfähigkeit im Verlauf der sechs Jahre beeinflussen. In weiterführenden Analysen sollte mit statistischen Verfahren, die eine flexiblere Modellierung von Einflussfaktoren ermöglichen, zusätzlich überprüft werden, welchen Einfluss das Ausgangsniveau der motorischen Leistungsfähigkeit auf die Entwicklungsveränderung über den untersuchten Entwicklungszeitraum hat.

Neben den bereits ausgewählten Einflussfaktoren bietet die umfassende Kopplung des MoMo-Längsschnittdatensatzes mit den Variablen der KiGGS-Studie eine Vielzahl an weiteren potenziellen Einflussfaktoren, die in Betracht gezogen werden können (z.B. Inaktivitätsverhalten, Migrationshintergrund, Wohnumfeld; vgl. Albrecht et al., 2014; Bös et al., 2009;).

Als eine von wenigen Panel-Studien zur motorischen Leistungsfähigkeit mit einer Stichprobengröße von über 2.000 Studienteilnehmern bietet die MoMo-Längsschnittstudie das Potenzial für alternative Auswertungsstrategien, wie z.B. latente Wachstumskurvenmodelle, die zur Beantwortung komplexer Fragestellungen herangezogen werden können.
8.2.2 Ausblick und Perspektiven für die Praxis

Die vorliegenden Ergebnisse untermauern die Notwendigkeit der Forderungen von Weineck (2010), Ortega et al. (2013) und Kemper (2004): Die Macht der gesunden Verhaltensweisen, wie z.B. Bewegungsgewohnheiten, frühzeitig auszubilden. „The primary prevention of many adult diseases in fact is a pediatric problem. Public Health policies on prevention should take account of this knowledge that prevention is expected to be most fruitful when started early in life“ (Kemper, 2004, S. 22).

Dieses Wissen kann sich die Gesundheitspolitik zu Nutze machen, um Personen mit potenziellen Risikofaktoren zu identifizieren und ihnen zielgerichtete Interventionen zur Förderung der motorischen Leistungsfähigkeit anzubieten (vgl. Kemper, 2004).

Ansatzpunkte zur Verbesserung der motorischen Leistungsfähigkeit vom Kindes- bis ins junge Erwachsenenalter betreffen zum einen die Gestaltung von Präventionsprogrammen und -maßnahmen (Dauer, Intensität, Inhalte), die Zielgruppe und das Setting. Somit können die Ergebnisse der Studie einen wichtigen Beitrag zur Qualitätsverbesserung von Maßnahmen der
Zusammenfassung und Ausblick für Wissenschaft und Praxis

Sport- und Gesundheitspolitik leisten. Konkret lassen sich folgende Schlussfolgerungen für die Praxis ziehen:

• Erste Analysen der MoMo-Längsschnittdaten (Albrecht et al., 2014) und weitere aktuelle Literatur (vgl. Titze & Oja, 2014) deuten darauf hin, dass es sich beim Inaktivitätsverhalten neben dem Aktivitätsverhalten um einen eigenständigen Risikofaktor für die Entwicklung der motorischen Leistungsfähigkeit handelt. Deshalb sollte neben dem Aktivitätsverhalten auch das Inaktivitätsverhalten, d.h. lange Sitzzeiten in der Schule oder bei der Arbeit, passive Transportwege im Alltag, passive Freizeitangebote wie TV schauen, Video- und Computerspiele spielen bei Empfehlungen zur Förderung der motorischen Leistungsfähigkeit berücksichtigt werden. Sitzende Tätigkeit in der Freizeit soll auf eine altersangemessene Dauer begrenzt werden und dies im Wesentlichen durch eine Limitierung des Mediendekonsums (unter 3 Jahre 0 Minuten; 1 bis 6 Jahre maximal 30 Minuten; bis 11 Jahre ma-

- Die Analyse der „Entwicklungsgruppen“ (Aktivität und BMI) verdeutlicht, dass die Studienteilnehmer, die die gesunden Verhaltensweisen wie beispielsweise die Vereinsaktivität oder einen BMI im Normalbereich im Verlauf der sechs Jahre konstant aufrechthalteten, die beste motorische Leistungsfähigkeit zum zweiten Messzeitpunkt zeigten. Für die Praxis bedeutet dies, dass der Fokus auf die Regelmäßigkeit und die nachhaltige, dauerhafte Bindung an körperlich-sportliche Aktivität gelegt werden sollte.

- Die Analysen zur Direktionalität der Entwicklung der motorischen Leistungsfähigkeit zeigen, dass sich deutliche Unterschiede im Entwicklungsverlauf einzelner Fähigkeiten ergeben. Für die Praxis bedeutet dies, dass eine Auswertung des Entwicklungsstandes und des Entwicklungsschrittes fähigkeitsspezifisch vorgenommen werden sollten und nicht anhand eines komplexen Fähigkeitsindexes.

Spiel und Sport in den verlängerten Schultag integrieren, müssen und werden bereits entwickelt.

Literaturverzeichnis

347

359

Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>AG</td>
<td>Altersgruppe</td>
</tr>
<tr>
<td>BMI</td>
<td>Body-Mass Index</td>
</tr>
<tr>
<td>Bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>d.h.</td>
<td>Das heißt</td>
</tr>
<tr>
<td>Etc.</td>
<td>et cetera</td>
</tr>
<tr>
<td>f.</td>
<td>und folgende Seite</td>
</tr>
<tr>
<td>ff.</td>
<td>und folgende zwei Seiten</td>
</tr>
<tr>
<td>H</td>
<td>Hypothese</td>
</tr>
<tr>
<td>KiGGS</td>
<td>Kinder und Jugend Gesundheitssurvey</td>
</tr>
<tr>
<td>LF</td>
<td>Leistungsfähigkeit</td>
</tr>
<tr>
<td>LS</td>
<td>Längsschnitt</td>
</tr>
<tr>
<td>MLF</td>
<td>Motorische Leistungsfähigkeit</td>
</tr>
<tr>
<td>MoMo</td>
<td>Motorik-Modul</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>MZP</td>
<td>Messzeitpunkt</td>
</tr>
<tr>
<td>RKI</td>
<td>Robert Koch-Institut</td>
</tr>
<tr>
<td>rmp ANOVA</td>
<td>Repeated measurement ANOVA; Varianzanalyse mit Messwiederholung</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>Vgl.</td>
<td>vergleiche</td>
</tr>
<tr>
<td>z.B.</td>
<td>Zum Beispiel</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abbildung 1: Zielsetzungen der Arbeit .. 17
Abbildung 2: Differenzierung motorischer Fähigkeiten (nach Bös, 1987, S.94) 28
Abbildung 3: Systematik der Annahmen und der wichtigsten Einflussfaktoren der Entwicklungs-
psychologie der Lebensspanne ergänzt um die in der Arbeit analysierten Einflussfaktoren (in Anlehnung an Baltes, 1979,
S.25 und Willimczik, 2009a, S.354) .. 42
Abbildung 4: Ursachen motorischer Verhaltensänderungen (nach Ahnert, 2005, S. 37; in Anlehnung an
Willimczik & Conzelmann, 1999) .. 44
Abbildung 5: Modellkurve zum Entwicklungsverlauf der körperlichen Leistungsfähigkeit (Weiss 1978, S.58,
aus Bös 1994, S.248) ... 58
Abbildung 6: Studien-Design der MoMo-Längsschnittstudie (Kohorten-Sequenz-Design) in Anlehnung an
Mewes et al. (2012) und Wagner et al. (2013) .. 119
Abbildung 7: Verteilung des BMI in der Motorik-Längsschnittstichprobe zu t0 122
Abbildung 8: Unterschiede in der Altersverteilung von Respondern (Motorik-Längsschnittprobanden)
und Non-Respondern zur Baseline (t0) .. 123
Abbildung 9: Kategorisierung in „BMI-Entwicklungsgruppen“ auf Grundlage der Zentilen nach Kromeyer-
Hauschild (2001) .. 132
Abbildung 10: Kategorisierung in „Aktivitäts-Entwicklungsgruppen“ (Tage/Woche für 60 Minuten) auf
Grundlage der Antwortkategorien des MoMo- Aktivitätsfragebogens 133
Abbildung 11: Zusammenfassung der Antwortkategorien der Vereinsmitgliedschaft 133
Abbildung 12: Kategorisierung in „Vereins-Entwicklungsgruppen“ auf Grundlage der zusammengefassten
Antwortkategorien des MoMo-Aktivitätsfragebogens .. 134
Abbildung 13: Grafische Darstellung der Gesamtanalyse (4-17 Jahre zu t0), fourfaktorielle Varianzanalyse mit
Messwiederholung ... 141
Abbildung 14: Altersgruppenspezifische Darstellung der dreifaktoriellen Varianzanalyse 142
Abbildung 15: Leistungsveränderung beim Fahrrad- Ausdauertest (PWC 170 relativ) von Baseline (t0) zur
Welle 1 (t1), männlich, Geradenscharen .. 143
Abbildung 16: Leistungsveränderung beim Fahrrad- Ausdauertest (PWC 170 relativ) von Baseline (t0) zur
Welle 1 (t1), weiblich, Geradenscharen .. 143
Abbildung 17: Leistungsveränderung beim Fahrrad- Ausdauertest (PWC absolut) von Baseline (t0) zur Welle
1 (t1), weiblich, männlich, Geradenscharen ... 144
Abbildung 18: Leistungsveränderung beim Standweitsprung von Baseline (t0) zur Welle 1 (t1), männlich,
Geradenscharen .. 146
Abbildung 19: Leistungsveränderung beim Standweitsprung von Baseline (t0) zur Welle 1 (t1), weiblich,
Geradenscharen ... 146
Abbildung 20: Leistungsveränderung bei den Liegestützen von Baseline (t0) zur Welle 1 (t1), männlich,
Geradenscharen ... 150
Abbildung 21: Leistungsveränderung bei den Liegestützen von Baseline (t0) zur Welle 1 (t1), weiblich,
Geradenscharen ... 150
Abbildung 22: Leistungsveränderung beim Reaktionstest von Baseline (t0) zur Welle 1 (t1), männlich, Geradenscharen ... 153
Abbildung 23: Leistungsveränderung beim Reaktionstest von Baseline (t0) zur Welle 1 (t1), weiblich, Geradenscharen ... 153
Abbildung 24: Leistungsveränderung beim Seitlichen Hin-und Herspringen von der Baseline (t0) zur Welle 1 (t1), männlich, Geradenscharen .. 156
Abbildung 25: Leistungsveränderung beim Seitlichen Hin-und Herspringen von der Baseline (t0) zur Welle 1 (t1), weiblich, Geradenscharen .. 156
Abbildung 26: Leistungsveränderung beim Einbeinstand von Baseline (t0) zur Welle 1 (t1), männlich, Geradenscharen ... 159
Abbildung 27: Leistungsveränderung beim Einbeinstand von Baseline (t0) zur Welle 1 (t1), weiblich, Geradenscharen ... 159
Abbildung 28: Leistungsveränderung beim Balancieren rückwärts von der Baseline (t0) zur Welle 1 (t1), männlich, Geradenscharen .. 162
Abbildung 29: Leistungsveränderung beim Balancieren rückwärts von der Baseline (t0) zur Welle 1 (t1), weiblich, Geradenscharen .. 162
Abbildung 30: Leistungsveränderung beim MLS Stifte einstecken von der Baseline (t0) zur Welle 1 (t1), männlich, Geradenscharen .. 165
Abbildung 31: Leistungsveränderung beim MLS Stifte einstecken von der Baseline (t0) zur Welle 1 (t1), weiblich, Geradenscharen .. 165
Abbildung 32: Leistungsveränderung beim MLS Linien nachfahren von der Baseline (t0) zur Welle 1 (t1), männlich, Geradenscharen .. 168
Abbildung 33: Leistungsveränderung beim MLS Linien nachfahren von der Baseline (t0) zur Welle 1 (t1), weiblich, Geradenscharen .. 168
Abbildung 34: Leistungsveränderung bei der Rumpfbeuge von Baseline (t0) zur Welle 1 (t1), männlich, Geradenscharen ... 171
Abbildung 35: Leistungsveränderung bei der Rumpfbeuge von Baseline (t0) zur Welle 1 (t1), weiblich, Geradenscharen ... 171
Abbildung 36: Leistungsveränderung beim Fahrrad-Ausdauertest PWC 170 relativ von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre) .. 175
Abbildung 37: Leistungsveränderung beim Standweitsprung von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre) .. 175
Abbildung 38: Leistungsveränderung bei den Liegestützen von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre) .. 176
Abbildung 39: Leistungsveränderung beim Reaktionstest von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre) .. 176
Abbildung 40: Leistungsveränderung beim Seitlichen Hin- und Herspringen von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre) .. 176
Abbildung 41: Leistungsveränderung beim Einbeinstand von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre) .. 177
Abbildung 42: Leistungsveränderung beim Balancieren rückwärts von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre) 177
Abbildung 43: Leistungsveränderung beim MLS Stifte einstecken von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre) 177
Abbildung 44: Leistungsveränderung beim MLS Linien nachfahren von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre) 178
Abbildung 45: Leistungsveränderung der Rumpfbeuge von Baseline (t0) zur Welle 1 (t1), Geradenscharen Z-Werte standardisiert an Gesamtstichprobe der Längsschnittprobanden (4-23 Jahre) 178
Abbildung 46: Leistungsniveau zu t0 und t1 nach Geschlecht (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte) 180
Abbildung 47: Entwicklung der Leistung von t0 zu t1 nach Geschlecht (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte) 180
Abbildung 48: Direktionalität der Entwicklung der motorischen Leistungsfähigkeit zwischen ausgewählten Dimensionen (Fehlerbalken entsprechen 95%-Konfidenzintervall) ... 185
Abbildung 49: Verteilung des Sozialstaus in der Motorik-Längsschnittstichprobe zu t0 ... 188
Abbildung 50: Leistungsniveau zu t0 und t1 in Abhängigkeit des Sozialstatus (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte) 196
Abbildung 51: Entwicklung der Leistung von t0 zu t1 in Abhängigkeit des Sozialstatus (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte) ... 196
Abbildung 52: Verteilung der „Aktivitäts-Wechslergruppen“ (Tage/Woche) nach Geschlecht, 0-3 Tage: geringere wöchentliche körperliche Aktivität („Inaktive“) und 4-7 Tage: höhere wöchentliche körperliche Aktivität („Aktive“) ... 198
Abbildung 53: Leistung zum Ausgangsniveau (t0) in Abhängigkeit der Aktivitätsgruppe (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte) ... 209
Abbildung 54: Entwicklung der Leistung von t0 zu t1 in Abhängigkeit der Aktivitätsgruppe (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte) ... 209
Abbildung 55: Verteilung der Vereinsaktivitätsgruppen nach Geschlecht ... 212
Abbildung 56: Leistungsniveau zu t0 und t1 in Abhängigkeit der Vereinsaktivitätsgruppe (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte) ... 224
Abbildung 57: Entwicklung der Leistung von t0 zu t1 in Abhängigkeit der Vereinsaktivitätsgruppe (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte) ... 224
Abbildung 58: Verteilung der BMI-Wechslergruppen nach Geschlecht ... 228
Abbildungsverzeichnis

Abbildung 59: Leistung zu t0 und t1 in Abhängigkeit der BMI-Gruppe (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte).............239
Abbildung 60: Entwicklung der Leistung von t0 zu t1 in Abhängigkeit der BMI-Gruppe (Z-Werte standardisiert an Gesamtlängsschnittstichprobe der 4-23-Jährigen; Signifikanzwerte beziehen sich auf die Rohwerte) ..239
Abbildung 61: Grafisches Beispiel für die Testung einer möglichen Modellannahme mittels Cross-lagged-Panel-Design angewandt auf die Fragestellung der Arbeit ..329
Tabellenverzeichnis

Tabelle 1: Paradigmen und Rahmentheorien zur (motorischen) Entwicklung und ihre indisponiblen Kerne
(entnommen aus Willimczik & Singer, 2009b, S. 38) ...38
Tabelle 2: Annahmenkern zum Forschungsprogramm „Motorische Entwicklung in der Lebensspanne"
(modifiziert nach Willimczik & Conzelmann, 1999, S. 64) ..41
Tabelle 3: Übersicht zu deutschsprachigen, sportwissenschaftlichen Studien, basierend auf der
Entwicklungspsychologie der Lebensspanne nach Baltes (1990) ...47
Tabelle 4: Eigene Klassifizierung motorischer Entwicklungszeiträume ..53
Tabelle 5: Übersicht der verwendeten Suchmaschinen für die Literaturrecherche68
Tabelle 6: Suchstrategien in den Datenbanken ...69
Tabelle 7: Übersicht über Längsschnittstudien zur Entwicklung der motorischen Leistungsfähigkeit von Kinder und Jugendlichen ...71
Tabelle 8: Übersicht über die Durchführungsländer der 52 Studien zur Entwicklung der motorischen
Leistungsfähigkeit ...84
Tabelle 9: Übersicht über Studienteilnehmerzahlen der 52 Studien der Literaturrecherche zur Entwicklung der
motorischen Leistungsfähigkeit ..84
Tabelle 10: Ausgewählte Einflussfaktoren der motorischen Leistungsfähigkeit, längsschnittliche Evidenz 92
Tabelle 11: Einfluss soziokultureller Faktoren auf die Entwicklung der motorischen Leistungsfähigkeit:
Längsschnittliche Evidenz ..93
Tabelle 12: Einfluss des Aktivitätsverhaltens auf die Entwicklung der motorischen Leistungsfähigkeit:
Längsschnittliche Evidenz ..100
Tabelle 13: Einfluss der Körperkonstitution auf die Entwicklung der motorischen Leistungsfähigkeit:
Längsschnittliche Evidenz ..106
Tabelle 14: Stichprobenbeschreibung der Motorik-Längsschnittstichprobe zu t0 (Alter, Größe, Gewicht, BMI)
..121
Tabelle 15: Statistische Überprüfung der Unterschiede zwischen Respondern und Non-Respondern123
Tabelle 16: Unterschiede im Aktivitätsverhalten (körperl.) von Längsschnittprobanden vs. Non-Respondern zur
Baseline (t0) ...124
Tabelle 17: Unterschiede im Aktivitätsverhalten (Verein) von Längsschnittprobanden vs. Non-Respondern zur
Baseline (t0) ...124
Tabelle 18: Unterschiede von Motorik-Längsschnittprobanden vs. Non-Respondern im Sozialstatus zur Baseline
(t0) ..124
Tabelle 19: Unterschiede von Motorik-Längsschnittprobanden vs. Non-Respondern im BMI-Kategorien zur
Baseline (t0) ...124
Tabelle 20: Taxonomie von Testaufgaben nach Fähigkeiten und Aufgabenstruktur (ergänzte Tabelle nach Bös et
al., 2008) ..126
Tabelle 21: Übersicht über Zwischensubjektfaktoren und Kovariaten bei den durchgeführten Varianzanalysen
..136

366
Tabelle 22: Veränderung der Leistung beim Fahrrad-Ausdauertest (PWC 170) nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung ...145
Tabelle 23: Ergebnisse der zweifaktoriellen Varianzanalyse für den Fahrrad-Ausdauertest (relative PWC 170) ...145
Tabelle 24: Veränderung der Standweitsprungleistung nach Altersgruppen und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung ...148
Tabelle 25: Ergebnisse der zweifaktoriellen Varianzanalyse für den Standweitsprung ...148
Tabelle 26: Veränderung der Leistung bei den Liegestützen nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung ...151
Tabelle 27: Ergebnisse der zweifaktoriellen Varianzanalyse für die Liegestützen ...152
Tabelle 28: Veränderung der Reaktionszeiten nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung ...154
Tabelle 29: Ergebnisse der zweifaktoriellen Varianzanalyse für den Reaktionstest ...155
Tabelle 30: Veränderung der Leistung beim Seitlichen Hin- und Herspringen nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung ...157
Tabelle 31: Ergebnisse der zweifaktoriellen Varianzanalyse beim Seitlichen Hin- und Herspringen ...158
Tabelle 32: Veränderung der Leistung beim Einbeinstand nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung ...161
Tabelle 33: Ergebnisse der zweifaktoriellen Varianzanalyse beim Einbeinstand ...161
Tabelle 34: Veränderung der Leistung beim Balancieren rückwärts nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung ...163
Tabelle 35: Ergebnisse der zweifaktoriellen Varianzanalyse beim Balancieren rückwärts ...164
Tabelle 36: Veränderung der Leistung beim Stifte einstecken nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung ...166
Tabelle 37: Ergebnisse der zweifaktoriellen Varianzanalyse beim MLS Stifte einstecken ...167
Tabelle 38: Veränderung der Leistung beim MLS Linien nachfahren (Formel: freifahrende Zeit pro Fehler) nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung ...169
Tabelle 39: Ergebnisse der zweifaktoriellen Varianzanalyse beim MLS Liennachfahren einstecken ...169
Tabelle 40: Veränderung der Leistung bei der Rumpfbeuge nach Altersgruppe und Geschlecht, Ergebnisse der Varianzanalyse mit Messwiederholung ...173
Tabelle 41: Ergebnisse der zweifaktoriellen Varianzanalyse bei der Rumpfbeuge ...173
Tabelle 42: Ergebnisse der einfaktoriellen Varianzanalyse bei der Rumpfbeuge ...173
Tabelle 43: Überblick der statistischen Überprüfung des Einflusses der Altersgruppe und des Geschlechts auf die Entwicklung der motorischen Leistungsfähigkeit und das Ausgangsniveau (t0) (Gesamtbetrachtung über die 4-17 Jährigen zu t0) ..179
Tabelle 44: aufgeklärte Varianz für die Entwicklung der motorischen Leistungsfähigkeit Δt1-t0 des Modells Geschlecht*Altersgruppe ..181
Tabelle 45: Stabilität der motorischen Leistungsfähigkeit über den Untersuchungszeitraum t0 bis t1 von 6 Jahren ..182
Tabellenverzeichnis

Tabelle 46: Ergebnisse des T-Tests für abhängige Stichproben für die unterschiedlichen Dimensionen (Kraft, Koordination, Beweglichkeit, Schnelligkeit) ... 186

Tabelle 47: Veränderung der Leistung bei Fahrrad-Ausdauertest (PWC 170 relativ) nach Alter (Altersgruppe) Geschlecht und Sozialstatus-Gruppe, Ergebnisse der Varianzanalyse mit Messwiederholung 189

Tabelle 48: Veränderung der Leistung bei Standweitsprung nach Alter (Altersgruppe), Geschlecht und Sozialstatus-Gruppe, Ergebnisse der Varianzanalyse mit Messwiederholung .. 189

Tabelle 49: Veränderung der Leistung beim Reaktionstest nach Alter (Altersgruppe) Geschlecht und Sozialstatus-Gruppe, Ergebnisse der Varianzanalyse mit Messwiederholung .. 190

Tabelle 50: Veränderung der Leistung beim Balancieren rückwärts nach Alter (Altersgruppe) Geschlecht und Sozialstatus-Gruppe, Ergebnisse der Varianzanalyse mit Messwiederholung .. 191

Tabelle 51: Ergebnisse der dreifaktoriellen Varianzanalyse beim Balancieren rückwärts .. 191

Tabelle 52: Veränderung der Leistung beim Seitlichen Hin- und Herspringen nach Alter (Altersgruppe), Geschlecht und Sozialstatus-Gruppe, Ergebnisse der Varianzanalyse mit Messwiederholung 192

Tabelle 53: Ergebnisse der dreifaktoriellen Varianzanalyse beim Seitlichen Hin- und Herspringen 192

Tabelle 54: Ergebnisse der zweifaktoriellen Varianzanalyse beim Seitlichen Hin- und Herspringen 193

Tabelle 55: Veränderung der Leistung beim MLS Stifte einstecken nach Alter (Altersgruppe), Geschlecht und Sozialstatus-Gruppe, Ergebnisse der Varianzanalyse mit Messwiederholung .. 194

Tabelle 56: Veränderung der Leistung beim MLS Stifte einstecken nach Alter (Altersgruppe), Geschlecht und Sozialstatus-Gruppe, Ergebnisse der Varianzanalyse mit Messwiederholung .. 194

Tabelle 57: Zusammenfassung der statistischen Überprüfung des Einflusses des Sozialstatus auf das Ausgangsniveau (t0) sowie die Entwicklung, Zeit*Gruppe-Interaktion (4-17 Jahre zu t0) .. 195

Tabelle 58: Aufgeklärte Varianz für die Entwicklung der motorischen Leistungsfähigkeit Δt1-t2 des Gesamtmodells Geschlecht*Altersgruppe*Sozialstatus ... 197

Tabelle 59: Veränderung der Leistung beim Fahrrad-Ausdauertest (PWC 170 relativ) nach Alter (exakt), Geschlecht und Aktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung 199

Tabelle 60: Veränderung der Leistung beim Fahrrad-Ausdauertest (PWC 170 relativ) in Abhängigkeit der Aktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung .. 200

Tabelle 61: Veränderung der Standweitsprungrleistung nach Alter (exakt), Geschlecht und Aktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung .. 201

Tabelle 62: Veränderung der Leistung beim Standweitsprung in Abhängigkeit der Aktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung .. 202

Tabelle 63: Veränderung der Leistung beim Reaktionstest nach Alter (exakt), Geschlecht und Aktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung .. 203

Tabelle 64: Veränderung der Leistung beim Balancieren rückwärts nach Alter (exakt), Geschlecht und Aktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung .. 204

Tabelle 65: Veränderung der Leistung beim Balancieren rückwärts in Abhängigkeit der Aktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung .. 204

Tabelle 66: Veränderung der Leistung beim Seitlichen Hin- und Herspringen nach Alter (exakt), Geschlecht und Aktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung .. 205

368
Tabelle 67: Veränderung der Leistung beim Seitlichen Hin- und Herspringen in Abhängigkeit der Aktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung ..205
Tabelle 68: Veränderung der Leistung beim Stifte einstecken nach Alter (exakt), Geschlecht und Aktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung ..206
Tabelle 69: Veränderung der Leistung beim der Rumpfbeuge nach Alter (exakt), Geschlecht und Aktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung ..207
Tabelle 70: Veränderung der Leistung bei der Rumpfbeuge in Abhängigkeit der Aktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung ..207
Tabelle 71: Zusammenfassung der statistischen Überprüfung des Einflusses der körperlichen Aktivität (Tage/Woche) auf die Zeit*Gruppe-Interaktion (4-17 Jahre zu t0) und das Ausgangsniveau t0 ..208
Tabelle 72: aufgeklärte Varianz für die Entwicklung der motorischen Leistungsfähigkeit Δt1-t2 des Modells Geschlecht*Altersgruppe*Aktivitätsgruppe ...210
Tabelle 73: Veränderung der Ausdauerleistungsfähigkeit (PWC 170 relativ) nach Alter, Geschlecht und Vereinsaktivitätsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung ..213
Tabelle 74: Veränderung der Leistung beim Fahrrad-Ausduerfest in Abhängigkeit der Vereinsaktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung ..213
Tabelle 75: Veränderung der Standweitsprungleistung nach Alter, Geschlecht und Vereinsaktivitätsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung ..215
Tabelle 76: Veränderung der Leistung beim Standweitsprung in Abhängigkeit der Vereinsaktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung ..215
Tabelle 77: Veränderung der Reaktionszeit nach Alter, Geschlecht und Vereinsaktivitätsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung ..216
Tabelle 78: Veränderung der Leistung beim Reaktionstest in Abhängigkeit der Vereinsaktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung ..216
Tabelle 79: Veränderung der Balancierleistung nach Alter, Geschlecht und Vereinsaktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung ..217
Tabelle 80: Veränderung der Leistung beim Seitlichen Hin- und Herspringen in Abhängigkeit nach Alter, Geschlecht und Vereinsaktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung ..219
Tabelle 81: Veränderung der Leistung beim Seitlichen Hin- und Herspringen in Abhängigkeit der Vereinsaktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung ..219
Tabelle 82: Veränderung der Leistung beim Stifte einstecken nach Alter, Geschlecht und Vereinsaktivitäts-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung ..220
Tabelle 83: Veränderung der Leistung beim MLS Stifte einstecken in Abhängigkeit der Vereinsaktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung ..220
Tabelle 84: Veränderung der Beweglichkeitsleistung nach Alter, Geschlecht und Vereinsaktivitätsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung ..221
Tabelle 85: Veränderung der Leistung bei der Rumpfbeuge in Abhängigkeit der Vereinsaktivitätsgruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung ..222

369
Tabellenverzeichnis

Tabelle 86: Zusammenfassung der statistischen Überprüfung des Einflusses vom Vereinsmitgliedschaft-Entwicklungsgruppen auf das Ausgangsniveau- und das Welle 1 Niveau sowie die Zeit*Gruppe-Interaktion (4-17 Jahre zu t0) .. 223
Tabelle 87: aufgeklärte Varianz für die Entwicklung der motorischen Leistungsfähigkeit Δt1-t2 des Modells Geschlecht*Altersgruppe*Vereinsaktivitätsgruppe ... 225
Tabelle 88: Veränderung der Ausdauerleistungsfähigkeit (PWC 170 relativ) nach Alter, Geschlecht und BMI-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung ... 229
Tabelle 89: Veränderung der Ausdauerleistungsfähigkeit in Abhängigkeit der BMI-Gruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung ... 229
Tabelle 90: Veränderung der Standweitsprungleistung nach Alter, Geschlecht und BMI-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung ... 230
Tabelle 91: Veränderung der Leistung beim Standweitsprung in Abhängigkeit der BMI-Gruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung ... 231
Tabelle 92: Veränderung der Leistung beim Reaktionstest in Abhängigkeit nach Alter, Geschlecht und BMI-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung ... 232
Tabelle 93: Veränderung der Leistung beim Balancieren rückwärts nach Alter, Geschlecht und BMI-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung ... 233
Tabelle 94: Veränderung der Leistung beim Balancieren rückwärts in Abhängigkeit der BMI-Gruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung ... 233
Tabelle 95: Veränderung der Leistung beim Seitlichen Hin und Herspringen nach Alter, Geschlecht und BMI-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung ... 234
Tabelle 96: Veränderung der Leistung beim Seitlichen Hin- und Herspringen in Abhängigkeit der BMI-Gruppe, Ergebnisse der zweifaktoriellen Varianzanalyse mit Messwiederholung ... 235
Tabelle 97: Veränderung der Leistung beim Stifte einstecken nach Alter, Geschlecht und BMI-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung ... 235
Tabelle 98: Veränderung der Leistung bei der Rumpfbeuge nach Alter, Geschlecht und BMI-Entwicklungsgruppen, Ergebnisse der Varianzanalyse mit Messwiederholung ... 236
Tabelle 99: Zusammenfassung der statistischen Überprüfung des Einflusses des BMI Zeit*Gruppe-Interaktion (4-17 Jahre zu t0) und das Ausgangsniveau (t0) ... 237
Tabelle 100: aufgeklärte Varianz für die Entwicklung der motorischen Leistungsfähigkeit Δt1-t2 des Modells Geschlecht*Altersgruppe*BMI-Gruppe .. 238
Tabelle 101: Entscheidungen zu den Hypothesen zur Entwicklung der motorischen Leistungsfähigkeit nach Alter und Geschlecht .. 269
Tabelle 102: Entscheidungen zu den Hypothesen zur Entwicklung der motorischen Leistungsfähigkeit nach Sozialstatus ... 285
Tabelle 103: Entscheidungen zu den Hypothesen zur Entwicklung der motorischen Leistungsfähigkeit in Abhängigkeit des Aktivitätsverhaltens .. 300
Tabelle 104: Entscheidungen zu den Hypothesen zur Entwicklung der motorischen Leistungsfähigkeit in Abhängigkeit der Körperkonstitution (BMI) ... 311
Anhang

I. Entwicklung des Testinstrumentariums der MoMo-Längsschnittstudie zur Anthropometrie und den motorischen Tests

II. Bildung der Responder-Non-Respondervariablen

III. Mittelwerte des BMI (Rohwerte der Längsschnittprobanden) von der MoMo-Baseline Studie (t0) und der MoMo-Welle 1 Studie (t1) in Abhängigkeit von Altersgruppe, Geschlecht und Sozialstatus

IV. Mittelwerte der 10 Testitems der Längsschnittstichprobe nach Altersgruppe und Geschlecht zur Baseline-Studie (t0) und zur Welle 1 (t1)

V. Mittelwerte der 7 Testitems der Längsschnittstichprobe nach Geschlecht und Sozialstatus zur Baseline-Studie (t0) und zur Welle 1 (t1)

VI. Mittelwerte der 7 Testitems der Längsschnittstichprobe nach Geschlecht und Aktivitätsverhalten (körperliche Aktivität) zur Baseline-Studie (t0) und zur Welle 1 (t1)

VII. Mittelwerte der 7 Testitems der Längsschnittstichprobe nach Aktivitätsverhalten (Ver einsaktivität) zur Baseline-Studie (t0) und zur Welle 1 (t1)

VIII. Mittelwerte der 7 Testitems der Längsschnittstichprobe nach Geschlecht und Body Mass-Index zur Baseline-Studie (t0) und zur Welle 1 (t1)

IX. Selbstständigkeitserklärung
Anthropometrische Messungen

<table>
<thead>
<tr>
<th>Messung</th>
<th>Baseline</th>
<th>Welle 1</th>
<th>Welle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blutdruck</td>
<td>◆</td>
<td>○</td>
<td>◆</td>
</tr>
<tr>
<td>Größe (cm)</td>
<td>◆</td>
<td>○</td>
<td>◆</td>
</tr>
<tr>
<td>Gewicht (kg)</td>
<td>◆</td>
<td>○</td>
<td>◆</td>
</tr>
<tr>
<td>Taillenumfang/ Hüftumfang</td>
<td>◆</td>
<td>○</td>
<td>◆ (nur Taille)</td>
</tr>
<tr>
<td>Messung der Körperzusammensetzung</td>
<td>--------</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Bioelektrische Impedanz Analyse (BIA, Data Input Software)</td>
<td>--------</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

KiGGS: Querschnitt- & Längsschnittprobanden *MoMo: -----: nicht erhoben* *Zusätzlich Segement-Messung bei der Bioelektrischen Impedanz Analyse (BIA)*
Anhang I

Sportmotorische Tests

<table>
<thead>
<tr>
<th>Welle 1</th>
<th>Welle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Koordination</td>
<td></td>
</tr>
<tr>
<td>Reaktionstest</td>
<td>Reaktionstest</td>
</tr>
<tr>
<td>Reaktionszeit: Mittelwert aus allen sieben Zeiten</td>
<td>Reaktionszeit: Mittelwert aus allen sieben Zeiten</td>
</tr>
<tr>
<td>Gesamtdauer und Fehlerkontakte</td>
<td>Gesamtdauer und Fehlerkontakte</td>
</tr>
<tr>
<td>Zeit in Sekunden für 15 Stifte</td>
<td>Zeit in Sekunden für 15 Stifte</td>
</tr>
<tr>
<td>Fehler in 60 Sek.</td>
<td>Fehler in 60 Sek.</td>
</tr>
<tr>
<td>Einbeinstand</td>
<td>Einbeinstand</td>
</tr>
<tr>
<td>Balancieren rückwärts</td>
<td>Balancieren rückwärts</td>
</tr>
<tr>
<td>Sprungweite in cm</td>
<td>Sprungweite in cm</td>
</tr>
<tr>
<td>Anzahl in 40 Sek.</td>
<td>Anzahl in 40 Sek.</td>
</tr>
<tr>
<td>Kraft- Zeitverlauf der Bodenreaktionskraft</td>
<td>Kraft- Zeitverlauf der Bodenreaktionskraft</td>
</tr>
<tr>
<td>Kraftmessplatte</td>
<td>Kraftmessplatte</td>
</tr>
<tr>
<td>Seitliches Hin- und Herspringen</td>
<td>Seitliches Hin- und Herspringen</td>
</tr>
<tr>
<td>Anzahl in 15 Sek.</td>
<td>Anzahl in 15 Sek.</td>
</tr>
<tr>
<td>Anzahl in 40 Sek.</td>
<td>Anzahl in 40 Sek.</td>
</tr>
<tr>
<td>Abstand Fingerspitze zum Nullniveau in cm</td>
<td>Abstand Fingerspitze zum Nullniveau in cm</td>
</tr>
<tr>
<td>Sit-ups</td>
<td>Sit-ups</td>
</tr>
<tr>
<td>Stabilisieren</td>
<td>Stabilisieren</td>
</tr>
<tr>
<td>Kraft</td>
<td>Kraft</td>
</tr>
<tr>
<td>Ausdauer</td>
<td>Ausdauer</td>
</tr>
<tr>
<td>Fahrrad-Ausdauertest</td>
<td>Fahrrad-Ausdauertest</td>
</tr>
<tr>
<td>Die maximal erreichte Wattzahl. Die PWC 170 (wir berechnen) Wattzahl (Last) und Puls pro Stufe</td>
<td>Die maximal erreichte Wattzahl. Die PWC 170 (wir berechnen) Wattzahl (Last) und Puls pro Stufe</td>
</tr>
<tr>
<td>Testzeit bei Testabbruch: Gesamtdauer</td>
<td>Testzeit bei Testabbruch: Gesamtdauer</td>
</tr>
<tr>
<td>Fahrer-Ausdauer</td>
<td>Fahrer-Ausdauer</td>
</tr>
</tbody>
</table>

Anmerkungen:
- KiGGS: MoMo: nicht erhoben
- Ausdauer: inkl. Laktat-Messung
II. Bildung der Responder-Non-Resonder Variablen

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Syntax</th>
</tr>
</thead>
</table>
| 1 | DATASET ACTIVATE DataSet1.
 | RECODE WiederTNGewicht (0 thru 50=1) (ELSE=0) INTO LSresponse.
 | VARIABLE LABELS LSresponse 'LSresponse'.
 | EXECUTE. |
| 2 | RECODE größe_t1 (MISSING=0) (ELSE=1) INTO Größe_vorhanden_t1.
 | VARIABLE LABELS größe_vorhanden_t1 'größe_vorhanden_t1'.
 | EXECUTE.
 | RECODE größe_t2 (MISSING=0) (ELSE=1) INTO Größe_vorhanden_t2.
 | VARIABLE LABELS größe_vorhanden_t2 'größe_vorhanden_t2'.
 | EXECUTE. |
| 3 | COMPUTE Motorik_LS_Responder=LSresponse * Größe_vorhanden_t1 * Größe_vorhanden_t2.
 | EXECUTE.
 | ****0= kein Längsschnitt- Motorik Proband****1= Längsschnitt –Motorik-Proband**** |
Kennwerte des Body-Mass-Index (Rohwerte der Längsschnittprobanden) von der MoMo-Baseline Studie (t0) und der MoMo-Welle 1 Studie (t1) in Abhängigkeit von Altersgruppe, Geschlecht und Sozialstatus

<table>
<thead>
<tr>
<th>BMI in kg/m²</th>
<th>Geschlecht</th>
<th>Altersgruppe</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>männlich</td>
<td>t0</td>
<td>t1</td>
<td>Diff. 4-7 J.</td>
<td>Diff. 10-23 J.</td>
<td>Diff. 4-5 J.</td>
<td>Diff. 6-11 J.</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>17,6</td>
<td>21,0</td>
<td>3,5</td>
<td>3,1</td>
<td>16,5</td>
<td>20,8</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>9,7</td>
<td>4,2</td>
<td></td>
<td></td>
<td>1,5</td>
<td>3,4</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>1066</td>
<td>1066</td>
<td></td>
<td></td>
<td>285</td>
<td>285</td>
</tr>
<tr>
<td>weiblich</td>
<td>x</td>
<td>17,3</td>
<td>20,7</td>
<td>3,4</td>
<td>3,3</td>
<td>1,6</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>3,3</td>
<td>4,1</td>
<td></td>
<td></td>
<td>1,6</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>1097</td>
<td>1097</td>
<td></td>
<td></td>
<td>299</td>
<td>299</td>
</tr>
<tr>
<td>hoch (t0)</td>
<td>x</td>
<td>16,9</td>
<td>20,3</td>
<td>3,4</td>
<td>3,4</td>
<td>1,4</td>
<td>2,8</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>2,7</td>
<td>3,7</td>
<td></td>
<td></td>
<td>1,4</td>
<td>2,8</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>314</td>
<td>314</td>
<td></td>
<td></td>
<td>81</td>
<td>81</td>
</tr>
<tr>
<td>mittel (t0)</td>
<td>x</td>
<td>17,8</td>
<td>21,0</td>
<td>3,2</td>
<td>3,2</td>
<td>1,6</td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>13,2</td>
<td>4,1</td>
<td></td>
<td></td>
<td>1,6</td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>551</td>
<td>551</td>
<td></td>
<td></td>
<td>147</td>
<td>147</td>
</tr>
<tr>
<td>niedrig (t0)</td>
<td>x</td>
<td>18,0</td>
<td>22,2</td>
<td>4,2</td>
<td>4,2</td>
<td>1,3</td>
<td>3,9</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>3,7</td>
<td>4,8</td>
<td></td>
<td></td>
<td>1,3</td>
<td>3,9</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>hoch (t0)</td>
<td>x</td>
<td>16,8</td>
<td>20,1</td>
<td>3,3</td>
<td>3,3</td>
<td>1,3</td>
<td>2,6</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>2,5</td>
<td>3,4</td>
<td></td>
<td></td>
<td>1,3</td>
<td>2,6</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>328</td>
<td>328</td>
<td></td>
<td></td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>mittel (t0)</td>
<td>x</td>
<td>17,2</td>
<td>20,6</td>
<td>3,4</td>
<td>3,4</td>
<td>1,7</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>3,1</td>
<td>3,8</td>
<td></td>
<td></td>
<td>1,7</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>571</td>
<td>571</td>
<td></td>
<td></td>
<td>161</td>
<td>161</td>
</tr>
<tr>
<td>niedrig (t0)</td>
<td>x</td>
<td>18,3</td>
<td>22,1</td>
<td>3,7</td>
<td>3,7</td>
<td>1,9</td>
<td>3,6</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>4,4</td>
<td>5,4</td>
<td></td>
<td></td>
<td>1,9</td>
<td>3,6</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>195</td>
<td>195</td>
<td></td>
<td></td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>
IV. Mittelwerte der 10 Testitems der Längsschnittstichprobe nach Altersgruppe und Geschlecht zur Baseline (t0) und zur Welle 1
Mittelwerte der 10 Testitems der Längsschnittstichprobe nach Altersgruppe und Geschlecht zur Baseline (t0) und zur Welle 1

PWC 170 relativ

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>t0</th>
<th>t1</th>
<th>Diff t1-t0</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>männlich</td>
<td>2.2</td>
<td>2.3</td>
<td>0.1</td>
<td>2.1</td>
<td>2.3</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>SD</td>
<td>0.5</td>
<td>0.6</td>
<td>0.2</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>N</td>
<td>576</td>
<td>576</td>
<td></td>
<td>357</td>
<td>357</td>
<td>119</td>
<td>100</td>
</tr>
</tbody>
</table>

Standweitsprung (LS N=2128)

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>t0</th>
<th>t1</th>
<th>Diff t1-t0</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>männlich</td>
<td>133,8</td>
<td>180,8</td>
<td>46,9</td>
<td>129,7</td>
<td>179,6</td>
<td>162,2</td>
<td>198,1</td>
</tr>
<tr>
<td>SD</td>
<td>39,9</td>
<td>33,6</td>
<td></td>
<td>21,6</td>
<td>28,7</td>
<td>21,3</td>
<td>31,2</td>
</tr>
<tr>
<td>N</td>
<td>1046</td>
<td>1046</td>
<td></td>
<td>470</td>
<td>470</td>
<td>163</td>
<td>133</td>
</tr>
</tbody>
</table>

Liegestützen (LS N=1532)

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>t0</th>
<th>t1</th>
<th>Diff t1-t0</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>männlich</td>
<td>11,6</td>
<td>15,5</td>
<td>3,9</td>
<td>10,4</td>
<td>14,7</td>
<td>12,8</td>
<td>14,4</td>
</tr>
<tr>
<td>SD</td>
<td>4,0</td>
<td>4,0</td>
<td></td>
<td>3,8</td>
<td>3,9</td>
<td>3,0</td>
<td>3,7</td>
</tr>
<tr>
<td>N</td>
<td>754</td>
<td>754</td>
<td></td>
<td>459</td>
<td>459</td>
<td>162</td>
<td>133</td>
</tr>
</tbody>
</table>

Standweitsprungleistung in cm

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>t0</th>
<th>t1</th>
<th>Diff t1-t0</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>männlich</td>
<td>x</td>
<td>122,2</td>
<td>150,9</td>
<td>28,8</td>
<td>122,3</td>
<td>152,6</td>
<td>154,5</td>
</tr>
<tr>
<td>SD</td>
<td>33,1</td>
<td>22,4</td>
<td></td>
<td>19,5</td>
<td>20,2</td>
<td>20,4</td>
<td>22,6</td>
</tr>
<tr>
<td>N</td>
<td>1082</td>
<td>1082</td>
<td></td>
<td>497</td>
<td>497</td>
<td>164</td>
<td>142</td>
</tr>
</tbody>
</table>
Mittelwerte der 10 Testitems der Längsschnittstichprobe nach Altersgruppe und Geschlecht zur Baseline (t0) und zur Welle 1

Reaktionstest (LS N=2130)

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Mittelwerte</th>
<th>4-17 J.</th>
<th>10-23 J.</th>
<th>Diff t1-t0</th>
<th>4-5 J.</th>
<th>10-11 J.</th>
<th>Diff t1-t0</th>
<th>6-10 J.</th>
<th>12-16 J.</th>
<th>Diff t1-t0</th>
<th>11-13 J.</th>
<th>17-19 J.</th>
<th>Diff t1-t0</th>
<th>14-17 J.</th>
<th>20-23 J.</th>
<th>Diff t1-t0</th>
</tr>
</thead>
<tbody>
<tr>
<td>männlich</td>
<td>x</td>
<td>0,32</td>
<td>0,25</td>
<td>-0,07</td>
<td>0,43</td>
<td>0,27</td>
<td>-0,15</td>
<td>0,31</td>
<td>0,25</td>
<td>-0,06</td>
<td>0,25</td>
<td>0,24</td>
<td>-0,01</td>
<td>0,23</td>
<td>0,24</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,09</td>
<td>0,04</td>
<td>-0,15</td>
<td>0,08</td>
<td>0,04</td>
<td>0,06</td>
<td>0,06</td>
<td>0,04</td>
<td>-0,05</td>
<td>0,03</td>
<td>0,03</td>
<td>0,01</td>
<td>0,03</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1045</td>
<td>1045</td>
<td></td>
<td>279</td>
<td>279</td>
<td></td>
<td>466</td>
<td>466</td>
<td></td>
<td>166</td>
<td>166</td>
<td></td>
<td>134</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td>x</td>
<td>0,33</td>
<td>0,26</td>
<td>-0,08</td>
<td>0,46</td>
<td>0,28</td>
<td>-0,18</td>
<td>0,32</td>
<td>0,25</td>
<td>-0,07</td>
<td>0,24</td>
<td>0,25</td>
<td>0,07</td>
<td>0,23</td>
<td>0,25</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,11</td>
<td>0,04</td>
<td>-0,18</td>
<td>0,09</td>
<td>0,04</td>
<td>0,07</td>
<td>0,07</td>
<td>0,04</td>
<td>-0,05</td>
<td>0,03</td>
<td>0,03</td>
<td>0,02</td>
<td>0,02</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1085</td>
<td>1085</td>
<td></td>
<td>293</td>
<td>293</td>
<td></td>
<td>483</td>
<td>483</td>
<td></td>
<td>166</td>
<td>166</td>
<td></td>
<td>143</td>
<td>143</td>
<td></td>
</tr>
</tbody>
</table>

Seitliches Hin- und Herspringen (LS N=2113)

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Mittelwerte</th>
<th>4-17 J.</th>
<th>10-23 J.</th>
<th>Diff t1-t0</th>
<th>4-5 J.</th>
<th>10-11 J.</th>
<th>Diff t1-t0</th>
<th>6-10 J.</th>
<th>12-16 J.</th>
<th>Diff t1-t0</th>
<th>11-13 J.</th>
<th>17-19 J.</th>
<th>Diff t1-t0</th>
<th>14-17 J.</th>
<th>20-23 J.</th>
<th>Diff t1-t0</th>
</tr>
</thead>
<tbody>
<tr>
<td>männlich</td>
<td>x</td>
<td>20,9</td>
<td>37,2</td>
<td>16,3</td>
<td>9,9</td>
<td>32,5</td>
<td>22,6</td>
<td>19,3</td>
<td>37,3</td>
<td>18,0</td>
<td>32,1</td>
<td>41,0</td>
<td>8,9</td>
<td>35,9</td>
<td>42,2</td>
<td>6,3</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>10,8</td>
<td>7,5</td>
<td>-16,3</td>
<td>4,0</td>
<td>6,4</td>
<td>22,6</td>
<td>6,3</td>
<td>6,8</td>
<td>15,5</td>
<td>5,6</td>
<td>6,6</td>
<td>133</td>
<td>7,6</td>
<td>7,1</td>
<td>6,3</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1033</td>
<td>1033</td>
<td></td>
<td>275</td>
<td>275</td>
<td></td>
<td>465</td>
<td>465</td>
<td></td>
<td>160</td>
<td>160</td>
<td></td>
<td>133</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td>x</td>
<td>21,5</td>
<td>35,6</td>
<td>14,1</td>
<td>10,6</td>
<td>32,5</td>
<td>22,0</td>
<td>20,2</td>
<td>35,7</td>
<td>15,5</td>
<td>33,7</td>
<td>38,4</td>
<td>4,7</td>
<td>34,8</td>
<td>38,4</td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>10,5</td>
<td>6,3</td>
<td>-14,1</td>
<td>3,5</td>
<td>5,7</td>
<td>22,0</td>
<td>6,5</td>
<td>5,7</td>
<td>11,5</td>
<td>5,2</td>
<td>5,9</td>
<td>142</td>
<td>5,7</td>
<td>6,8</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1080</td>
<td>1080</td>
<td></td>
<td>295</td>
<td>295</td>
<td></td>
<td>481</td>
<td>481</td>
<td></td>
<td>162</td>
<td>162</td>
<td></td>
<td>142</td>
<td>142</td>
<td></td>
</tr>
</tbody>
</table>

Einbeinstand (LS N=2126)

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Mittelwerte</th>
<th>4-17 J.</th>
<th>10-23 J.</th>
<th>Diff t1-t0</th>
<th>4-5 J.</th>
<th>10-11 J.</th>
<th>Diff t1-t0</th>
<th>6-10 J.</th>
<th>12-16 J.</th>
<th>Diff t1-t0</th>
<th>11-13 J.</th>
<th>17-19 J.</th>
<th>Diff t1-t0</th>
<th>14-17 J.</th>
<th>20-23 J.</th>
<th>Diff t1-t0</th>
</tr>
</thead>
<tbody>
<tr>
<td>männlich</td>
<td>x</td>
<td>12,6</td>
<td>3,2</td>
<td>-9,3</td>
<td>22,8</td>
<td>3,7</td>
<td>-19,1</td>
<td>11,4</td>
<td>3,3</td>
<td>-8,1</td>
<td>5,1</td>
<td>2,2</td>
<td>-2,9</td>
<td>5,5</td>
<td>3,2</td>
<td>-2,3</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>9,7</td>
<td>4,5</td>
<td>-5,3</td>
<td>7,1</td>
<td>4,5</td>
<td>-2,6</td>
<td>7,8</td>
<td>4,7</td>
<td>-3,1</td>
<td>5,6</td>
<td>3,8</td>
<td>-1,8</td>
<td>6,4</td>
<td>4,5</td>
<td>-1,9</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1042</td>
<td>1042</td>
<td></td>
<td>270</td>
<td>270</td>
<td></td>
<td>468</td>
<td>468</td>
<td></td>
<td>168</td>
<td>168</td>
<td></td>
<td>136</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td>x</td>
<td>10,7</td>
<td>2,5</td>
<td>-8,3</td>
<td>20,8</td>
<td>2,6</td>
<td>-18,2</td>
<td>8,9</td>
<td>2,6</td>
<td>-15,6</td>
<td>4,2</td>
<td>2,2</td>
<td>-12,4</td>
<td>3,8</td>
<td>2,1</td>
<td>-10,3</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>9,3</td>
<td>3,7</td>
<td>-5,6</td>
<td>7,3</td>
<td>3,8</td>
<td>-3,9</td>
<td>7,2</td>
<td>3,9</td>
<td>-3,3</td>
<td>5,3</td>
<td>3,3</td>
<td>-2,0</td>
<td>5,0</td>
<td>3,6</td>
<td>-1,4</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1084</td>
<td>1084</td>
<td></td>
<td>293</td>
<td>293</td>
<td></td>
<td>481</td>
<td>481</td>
<td></td>
<td>168</td>
<td>168</td>
<td></td>
<td>142</td>
<td>142</td>
<td></td>
</tr>
</tbody>
</table>
Mittelwerte der 10 Testitems der Längsschnittstichprobe nach Altersgruppe und Geschlecht zur Baseline (t0) und zur Welle 1 (t1)

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Mittelwerte der 10 Testitems der Längsschnittstichprobe</th>
<th>Geschlecht</th>
<th>Mittelwerte der 10 Testitems der Längsschnittstichprobe</th>
</tr>
</thead>
<tbody>
<tr>
<td>männlich</td>
<td>Rumpfbeuge (LS N=2138)</td>
<td>weiblich</td>
<td>MLS Stifte einstecken (LS N=2134)</td>
</tr>
<tr>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td>MLS Linien nachfahren (LS N=1094)</td>
<td></td>
<td>MLS Linien nachfahren (LS N=1094)</td>
</tr>
<tr>
<td></td>
<td>MLS Stifte einstecken (LS N=2134)</td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td>Fingerspitzenabstand vom Nullniveau [cm]</td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freifahrende Zeit pro Fehler in Sekunden</td>
</tr>
<tr>
<td></td>
<td>neutralschrittstichprobe zur Baseline (t0) und zur Welle 1 (t1)</td>
<td>Fingerspitzenabstand vom Nullniveau [cm]</td>
<td>Rumpfbeuge (LS N=2138)</td>
</tr>
</tbody>
</table>
V. Mittelwerte der Längsschnittstichprobe der Testitems nach Geschlecht und Sozialstatus zur Baseline-Studie (t0) und zur Welle 1 (t1)
<table>
<thead>
<tr>
<th>PWC 170 relativ Watt/kg</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t0</td>
<td>t1</td>
<td>t0</td>
<td>t1</td>
<td>t0</td>
</tr>
<tr>
<td>hoch (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>223</td>
<td>223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0,50</td>
<td>0,56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>2,27</td>
<td>2,49</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>mittel (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>83</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0,47</td>
<td>0,55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>2,06</td>
<td>2,02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>niedrig (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>126</td>
<td>126</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0,48</td>
<td>0,59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>2,19</td>
<td>2,14</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>hoch (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>138</td>
<td>138</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0,49</td>
<td>0,53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>1,88</td>
<td>1,96</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>mittel (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>131</td>
<td>131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0,40</td>
<td>0,48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>1,74</td>
<td>1,65</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>niedrig (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>157</td>
<td>157</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0,43</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>1,85</td>
<td>1,76</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Kennwerte des Standweitsprung (Rohwerte der Längsschnittprobanden) zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und Sozialstatus (Gesamt LS N=2128)

<table>
<thead>
<tr>
<th>Standweitsprungleistung in cm</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4-17J.</td>
<td>t0</td>
<td>t1</td>
<td>Diff. t1-t0</td>
<td>t0</td>
</tr>
<tr>
<td>hoch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hoch (t0)</td>
<td>134,7</td>
<td>184,0</td>
<td>49,3</td>
<td>96,0</td>
<td>157,0</td>
</tr>
<tr>
<td>N</td>
<td>39,2</td>
<td>32,0</td>
<td></td>
<td>17,8</td>
<td>17,7</td>
</tr>
<tr>
<td>SD</td>
<td>306</td>
<td>306</td>
<td></td>
<td>79</td>
<td>79</td>
</tr>
<tr>
<td>mittel (t0)</td>
<td>135,5</td>
<td>181,1</td>
<td>45,6</td>
<td>94,9</td>
<td>151,3</td>
</tr>
<tr>
<td>N</td>
<td>40,2</td>
<td>34,2</td>
<td></td>
<td>19,1</td>
<td>21,3</td>
</tr>
<tr>
<td>SD</td>
<td>544</td>
<td>544</td>
<td></td>
<td>147</td>
<td>147</td>
</tr>
<tr>
<td>niedrig (t0)</td>
<td>127,4</td>
<td>174,6</td>
<td>47,2</td>
<td>87,3</td>
<td>146,4</td>
</tr>
<tr>
<td>N</td>
<td>39,6</td>
<td>33,7</td>
<td></td>
<td>20,7</td>
<td>16,3</td>
</tr>
<tr>
<td>SD</td>
<td>195</td>
<td>195</td>
<td></td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hoch (t0)</td>
<td>126,1</td>
<td>156,7</td>
<td>30,6</td>
<td>88,7</td>
<td>146,7</td>
</tr>
<tr>
<td>N</td>
<td>34,7</td>
<td>23,0</td>
<td></td>
<td>20,1</td>
<td>19,6</td>
</tr>
<tr>
<td>SD</td>
<td>323</td>
<td>323</td>
<td></td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>mittel (t0)</td>
<td>120,4</td>
<td>149,5</td>
<td>29,1</td>
<td>87,8</td>
<td>144,6</td>
</tr>
<tr>
<td>N</td>
<td>32,3</td>
<td>21,9</td>
<td></td>
<td>18,9</td>
<td>21,0</td>
</tr>
<tr>
<td>SD</td>
<td>565</td>
<td>565</td>
<td></td>
<td>162</td>
<td>162</td>
</tr>
<tr>
<td>niedrig (t0)</td>
<td>121,1</td>
<td>145,6</td>
<td>24,5</td>
<td>84,8</td>
<td>142,0</td>
</tr>
<tr>
<td>N</td>
<td>32,3</td>
<td>21,5</td>
<td></td>
<td>21,1</td>
<td>19,2</td>
</tr>
<tr>
<td>SD</td>
<td>191,0</td>
<td>191,0</td>
<td></td>
<td>44,0</td>
<td>44,0</td>
</tr>
<tr>
<td>Reaktionszeit in Sekunden</td>
<td>Gesamt</td>
<td>Altersgruppe 1</td>
<td>Altersgruppe 2</td>
<td>Altersgruppe 3</td>
<td>Altersgruppe 4</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>t0</td>
<td>t1</td>
<td>Diff. t1-t0</td>
<td>t0</td>
<td>t1</td>
</tr>
<tr>
<td>männlich hoch (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0,32</td>
<td>0,25</td>
<td>-0,07</td>
<td>0,44</td>
<td>0,27</td>
</tr>
<tr>
<td>N</td>
<td>0,10</td>
<td>0,04</td>
<td>-0,07</td>
<td>0,09</td>
<td>0,03</td>
</tr>
<tr>
<td>SD</td>
<td>311</td>
<td>311</td>
<td></td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>mittel (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0,32</td>
<td>0,25</td>
<td>-0,06</td>
<td>0,42</td>
<td>0,27</td>
</tr>
<tr>
<td>N</td>
<td>0,09</td>
<td>0,03</td>
<td>-0,06</td>
<td>0,07</td>
<td>0,04</td>
</tr>
<tr>
<td>SD</td>
<td>536</td>
<td>536</td>
<td></td>
<td>143</td>
<td>143</td>
</tr>
<tr>
<td>niedrig (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0,32</td>
<td>0,26</td>
<td>-0,06</td>
<td>0,42</td>
<td>0,27</td>
</tr>
<tr>
<td>N</td>
<td>0,10</td>
<td>0,04</td>
<td>-0,06</td>
<td>0,08</td>
<td>0,04</td>
</tr>
<tr>
<td>SD</td>
<td>197</td>
<td>197</td>
<td></td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>weiblich hoch (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0,34</td>
<td>0,25</td>
<td>-0,09</td>
<td>0,46</td>
<td>0,27</td>
</tr>
<tr>
<td>N</td>
<td>0,10</td>
<td>0,04</td>
<td>-0,09</td>
<td>0,08</td>
<td>0,03</td>
</tr>
<tr>
<td>SD</td>
<td>322</td>
<td>322</td>
<td></td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>mittel (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0,34</td>
<td>0,26</td>
<td>-0,08</td>
<td>0,46</td>
<td>0,28</td>
</tr>
<tr>
<td>N</td>
<td>0,11</td>
<td>0,04</td>
<td>-0,08</td>
<td>0,10</td>
<td>0,04</td>
</tr>
<tr>
<td>SD</td>
<td>565</td>
<td>565</td>
<td></td>
<td>159</td>
<td>159</td>
</tr>
<tr>
<td>niedrig (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0,32</td>
<td>0,26</td>
<td>-0,06</td>
<td>0,45</td>
<td>0,29</td>
</tr>
<tr>
<td>N</td>
<td>0,10</td>
<td>0,04</td>
<td>-0,06</td>
<td>0,09</td>
<td>0,05</td>
</tr>
<tr>
<td>SD</td>
<td>195</td>
<td>195</td>
<td></td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>
Kennwerte beim Balancieren rückwärts (Rohwerte der Längsschnittprobanden) zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und Sozialstatus (Gesamt LS N=2151)

<table>
<thead>
<tr>
<th>Balancieren rückwärts</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Schritte (Summe aus 3 Versuchen)</td>
<td>t0</td>
<td>t1</td>
<td>Diff.</td>
<td>t0</td>
<td>t1</td>
</tr>
<tr>
<td>x</td>
<td>25.0</td>
<td>38.6</td>
<td>13.6</td>
<td>26.5</td>
<td>38.9</td>
</tr>
<tr>
<td>N</td>
<td>11.9</td>
<td>8.0</td>
<td>3.9</td>
<td>9.9</td>
<td>7.6</td>
</tr>
<tr>
<td>SD</td>
<td>312</td>
<td>312</td>
<td>24</td>
<td>149</td>
<td>149</td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hoch (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>24.5</td>
<td>37.1</td>
<td>12.6</td>
<td>25.4</td>
<td>36.4</td>
</tr>
<tr>
<td>N</td>
<td>12.1</td>
<td>8.2</td>
<td>4.3</td>
<td>9.8</td>
<td>8.7</td>
</tr>
<tr>
<td>SD</td>
<td>547</td>
<td>547</td>
<td>224</td>
<td>243</td>
<td>243</td>
</tr>
<tr>
<td>mittel (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>22.8</td>
<td>34.3</td>
<td>11.5</td>
<td>24.0</td>
<td>34.2</td>
</tr>
<tr>
<td>N</td>
<td>12.3</td>
<td>9.4</td>
<td>3.0</td>
<td>10.6</td>
<td>9.4</td>
</tr>
<tr>
<td>SD</td>
<td>198</td>
<td>198</td>
<td>55</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>niedrig (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>27.2</td>
<td>40.0</td>
<td>13.4</td>
<td>29.6</td>
<td>40.1</td>
</tr>
<tr>
<td>N</td>
<td>12.7</td>
<td>7.2</td>
<td>5.5</td>
<td>10.4</td>
<td>7.0</td>
</tr>
<tr>
<td>SD</td>
<td>326</td>
<td>326</td>
<td>90</td>
<td>153</td>
<td>153</td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hoch (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>26.9</td>
<td>39.1</td>
<td>12.3</td>
<td>29.2</td>
<td>38.7</td>
</tr>
<tr>
<td>N</td>
<td>12.5</td>
<td>7.7</td>
<td>4.8</td>
<td>10.1</td>
<td>7.8</td>
</tr>
<tr>
<td>SD</td>
<td>569</td>
<td>569</td>
<td>161</td>
<td>252</td>
<td>252</td>
</tr>
<tr>
<td>mittel (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>26.7</td>
<td>36.6</td>
<td>10.0</td>
<td>26.4</td>
<td>36.6</td>
</tr>
<tr>
<td>N</td>
<td>12.0</td>
<td>8.5</td>
<td>3.5</td>
<td>9.1</td>
<td>8.6</td>
</tr>
<tr>
<td>SD</td>
<td>195</td>
<td>195</td>
<td>45</td>
<td>81</td>
<td>81</td>
</tr>
<tr>
<td>Anzahl Sprünge in 15 Sekunden</td>
<td>Gesamt</td>
<td>Altersgruppe 1</td>
<td>Altersgruppe 2</td>
<td>Altersgruppe 3</td>
<td>Altersgruppe 4</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>t0</td>
<td>t1</td>
<td>Diff. t1-t0</td>
<td>t0</td>
<td>t1</td>
</tr>
<tr>
<td>4-17 J.</td>
<td>x</td>
<td>20,9 38,1</td>
<td>17,1</td>
<td>10,4 33,8</td>
<td>23,4</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>10,7 7,7</td>
<td>4,8 5,8</td>
<td>6,2 7,2</td>
<td>146 146</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>305 305</td>
<td>79 79</td>
<td>146 146</td>
<td>38 38</td>
</tr>
<tr>
<td>4-5 J.</td>
<td>x</td>
<td>21,0 37,4</td>
<td>16,3</td>
<td>9,7 32,3</td>
<td>22,6</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>10,7 7,3</td>
<td>3,6 6,7</td>
<td>6,4 6,3</td>
<td>239 239</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>533 533</td>
<td>141 141</td>
<td>82 82</td>
<td>71 71</td>
</tr>
<tr>
<td>6-10 J.</td>
<td>x</td>
<td>20,6 35,6</td>
<td>15,0</td>
<td>9,7 31,2</td>
<td>21,4</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>11,2 7,3</td>
<td>3,9 6,0</td>
<td>6,6 7,1</td>
<td>80 80</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>195 195</td>
<td>55 55</td>
<td>40 40</td>
<td>20 20</td>
</tr>
<tr>
<td>6-11 J.</td>
<td>x</td>
<td>21,6 36,5</td>
<td>14,9</td>
<td>11,0 33,6</td>
<td>22,6</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>10,1 5,8</td>
<td>3,0 5,4</td>
<td>6,2 5,5</td>
<td>150 150</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>321 321</td>
<td>89 89</td>
<td>43 43</td>
<td>32 32</td>
</tr>
<tr>
<td>6-12-16 J.</td>
<td>x</td>
<td>21,4 35,7</td>
<td>14,4</td>
<td>10,3 32,8</td>
<td>22,5</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>10,8 6,2</td>
<td>3,7 5,5</td>
<td>6,7 5,5</td>
<td>250 250</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>563 563</td>
<td>160 160</td>
<td>83 83</td>
<td>70 70</td>
</tr>
<tr>
<td>11-13 J.</td>
<td>x</td>
<td>21,9 33,6</td>
<td>11,7</td>
<td>10,6 29,4</td>
<td>18,8</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>10,3 6,6</td>
<td>3,9 5,8</td>
<td>6,3 6,0</td>
<td>81 81</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>193 193</td>
<td>44 44</td>
<td>81 81</td>
<td>32 32</td>
</tr>
</tbody>
</table>
Kennwerte beim MLS Stifte einstecken (Rohwerte der Längsschnittprobanden) zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und Sozialstatus (Gesamt LS N= 2134)

<table>
<thead>
<tr>
<th>MLS Stifte einstecken Zeit in Sekunden</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4-17 J.</td>
<td>10-23 J.</td>
<td>Diff. t0-t1</td>
<td>4-5 J.</td>
<td>6-11 J.</td>
</tr>
<tr>
<td>hoch (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>58,9</td>
<td>42,7</td>
<td>-16,1</td>
<td>77,1</td>
<td>45,6</td>
</tr>
<tr>
<td>N</td>
<td>15,4</td>
<td>5,0</td>
<td></td>
<td>14,8</td>
<td>5,5</td>
</tr>
<tr>
<td>SD</td>
<td>309</td>
<td>309</td>
<td></td>
<td>81</td>
<td>81</td>
</tr>
<tr>
<td>mittel (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>57,7</td>
<td>42,8</td>
<td>-14,9</td>
<td>75,4</td>
<td>45,6</td>
</tr>
<tr>
<td>N</td>
<td>14,7</td>
<td>4,8</td>
<td></td>
<td>12,1</td>
<td>5,1</td>
</tr>
<tr>
<td>SD</td>
<td>539</td>
<td>539</td>
<td></td>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td>niedrig (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>59,4</td>
<td>43,5</td>
<td>-15,9</td>
<td>77,9</td>
<td>46,9</td>
</tr>
<tr>
<td>N</td>
<td>16,4</td>
<td>6,1</td>
<td></td>
<td>13,7</td>
<td>4,9</td>
</tr>
<tr>
<td>SD</td>
<td>199</td>
<td>199</td>
<td></td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>hoch (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>55,6</td>
<td>41,3</td>
<td>-14,3</td>
<td>72,4</td>
<td>43,9</td>
</tr>
<tr>
<td>N</td>
<td>14,2</td>
<td>5,5</td>
<td></td>
<td>12,2</td>
<td>4,6</td>
</tr>
<tr>
<td>SD</td>
<td>325</td>
<td>325</td>
<td></td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>mittel (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>56,1</td>
<td>41,7</td>
<td>-14,4</td>
<td>73,5</td>
<td>45,2</td>
</tr>
<tr>
<td>N</td>
<td>14,9</td>
<td>5,4</td>
<td></td>
<td>12,3</td>
<td>6,4</td>
</tr>
<tr>
<td>SD</td>
<td>563</td>
<td>563</td>
<td></td>
<td>161</td>
<td>161</td>
</tr>
<tr>
<td>niedrig (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>54,4</td>
<td>41,3</td>
<td>-13,1</td>
<td>73,5</td>
<td>45,3</td>
</tr>
<tr>
<td>N</td>
<td>14,3</td>
<td>5,2</td>
<td></td>
<td>11,9</td>
<td>6,0</td>
</tr>
<tr>
<td>SD</td>
<td>195</td>
<td>195</td>
<td></td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>
Kennwerte bei der Rumpfbeuge (Rohwerte der Längsschnittprobanden) zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und Sozialstatus (negative Werte= oberhalb Fußsohlenniveau, positive Werte unterhalb Fußsohlenniveau) (Gesamt LS N=2138)

<table>
<thead>
<tr>
<th>Rumpfbeuge</th>
<th>Fingerspitzenabstand vom Nullniveau [cm]</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t0 4-17 J.</td>
<td>t1 10-23 J.</td>
<td>Diff. t1-t0</td>
<td>t0 4-17 J.</td>
<td>t1 6-11 J.</td>
<td>Diff. t1-t0</td>
</tr>
<tr>
<td>hoch (t0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>-1,30</td>
<td>-2,35</td>
<td>0,13</td>
<td>-1,65</td>
<td>-0,95</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>6,71</td>
<td>8,05</td>
<td>-1,06</td>
<td>4,94</td>
<td>6,54</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>312</td>
<td>312</td>
<td>80</td>
<td>80</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mittel (t0)</td>
<td></td>
<td>-1,88</td>
<td>-2,20</td>
<td>-0,33</td>
<td>5,49</td>
<td>6,97</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>6,83</td>
<td>8,68</td>
<td>-0,03</td>
<td>5,49</td>
<td>6,97</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>542</td>
<td>542</td>
<td>142</td>
<td>142</td>
<td>241</td>
</tr>
<tr>
<td>niedrig (t0)</td>
<td></td>
<td>-1,66</td>
<td>-1,85</td>
<td>-0,20</td>
<td>5,31</td>
<td>7,05</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>6,56</td>
<td>8,68</td>
<td>-0,20</td>
<td>5,31</td>
<td>7,05</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>196</td>
<td>196</td>
<td>55</td>
<td>55</td>
<td>81</td>
</tr>
<tr>
<td>hoch (t0)</td>
<td></td>
<td>2,67</td>
<td>4,16</td>
<td>3,12</td>
<td>3,33</td>
<td>2,04</td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,12</td>
<td>3,33</td>
<td>0,21</td>
<td>2,57</td>
<td>6,81</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>6,41</td>
<td>8,91</td>
<td>1,50</td>
<td>6,43</td>
<td>9,38</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>324</td>
<td>324</td>
<td>91</td>
<td>91</td>
<td>151</td>
</tr>
<tr>
<td>mittel (t0)</td>
<td></td>
<td>1,82</td>
<td>3,24</td>
<td>1,97</td>
<td>2,06</td>
<td>1,50</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>7,21</td>
<td>9,04</td>
<td>1,42</td>
<td>5,60</td>
<td>7,30</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>566</td>
<td>566</td>
<td>160</td>
<td>160</td>
<td>250</td>
</tr>
<tr>
<td>niedrig (t0)</td>
<td></td>
<td>0,97</td>
<td>2,26</td>
<td>1,73</td>
<td>1,67</td>
<td>0,56</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>7,31</td>
<td>8,47</td>
<td>1,29</td>
<td>5,87</td>
<td>7,64</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>194</td>
<td>194</td>
<td>44</td>
<td>44</td>
<td>81</td>
</tr>
</tbody>
</table>
VI. Mittelwerte der Längsschnittstichprobe der Testitems nach Geschlecht und Aktivitätsverhalten (körperliche Aktivität) zur Baseline-Studie (t0) und zur Welle 1 (t1)
Kennwerte des Fahrrad-Ausdauertests PWC 170 relativ (Rohwerte der Längsschnittprobanden) zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und körperlicher Aktivitäts-Entwicklungsgruppen (Gesamt LS N=2113 mit vorliegenden Aktivitätsangaben N=1024)

<table>
<thead>
<tr>
<th>PWC 170 relativ Watt/kg</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4-17 J.</td>
<td>t0</td>
<td>10-23J.</td>
<td>t1</td>
<td>Diff.</td>
</tr>
<tr>
<td>aktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inaktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reduzierte Aktivität</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gesteigerte Aktivität</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inaktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*aktiv=4-7 mal pro Woche 60 min/Tag; inaktiv 0-3 mal pro Woche 60 min/Tag
Standweitsprung

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t0</td>
<td>t1</td>
<td>t0</td>
<td>t1</td>
<td>t0</td>
</tr>
<tr>
<td>4-17 J.</td>
<td>131,47</td>
<td>180,78</td>
<td>93,34</td>
<td>154,96</td>
<td>131,91</td>
</tr>
<tr>
<td>10-23 J.</td>
<td>413</td>
<td>413</td>
<td>126</td>
<td>126</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>40,68</td>
<td>33,22</td>
<td>19,06</td>
<td>18,73</td>
<td>22,25</td>
</tr>
<tr>
<td>inaktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td>x</td>
<td>141,76</td>
<td>179,01</td>
<td>91,04</td>
<td>148,16</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>140</td>
<td>140</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>40,31</td>
<td>33,88</td>
<td>19,03</td>
<td>12,16</td>
</tr>
<tr>
<td>reduzierte Aktivität</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>132,24</td>
<td>176,83</td>
<td>91,41</td>
<td>142,56</td>
<td>129,04</td>
</tr>
<tr>
<td>N</td>
<td>234</td>
<td>234</td>
<td>70</td>
<td>70</td>
<td>99</td>
</tr>
<tr>
<td>SD</td>
<td>40,59</td>
<td>34,37</td>
<td>19,29</td>
<td>19,85</td>
<td>18,83</td>
</tr>
<tr>
<td>gesteigerte Aktivität</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>136,37</td>
<td>186,31</td>
<td>95,97</td>
<td>152,84</td>
<td>129,45</td>
</tr>
<tr>
<td>N</td>
<td>154</td>
<td>154</td>
<td>32</td>
<td>32</td>
<td>69</td>
</tr>
<tr>
<td>SD</td>
<td>36,17</td>
<td>33,48</td>
<td>16,81</td>
<td>16,67</td>
<td>21,04</td>
</tr>
<tr>
<td>weiblich</td>
<td>aktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>113,83</td>
<td>152,25</td>
<td>87,55</td>
<td>145,73</td>
<td>120,67</td>
</tr>
<tr>
<td>N</td>
<td>309</td>
<td>309</td>
<td>119</td>
<td>119</td>
<td>138</td>
</tr>
<tr>
<td>SD</td>
<td>31,54</td>
<td>22,65</td>
<td>19,98</td>
<td>19,56</td>
<td>20,15</td>
</tr>
<tr>
<td>inaktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>129,63</td>
<td>146,85</td>
<td>85,50</td>
<td>141,70</td>
<td>122,99</td>
</tr>
<tr>
<td>N</td>
<td>222</td>
<td>222</td>
<td>38</td>
<td>38</td>
<td>86</td>
</tr>
<tr>
<td>SD</td>
<td>31,59</td>
<td>20,68</td>
<td>16,87</td>
<td>18,94</td>
<td>19,49</td>
</tr>
<tr>
<td>reduzierte Aktivität</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>121,51</td>
<td>150,29</td>
<td>87,20</td>
<td>141,92</td>
<td>124,45</td>
</tr>
<tr>
<td>N</td>
<td>288</td>
<td>288</td>
<td>81</td>
<td>81</td>
<td>143</td>
</tr>
<tr>
<td>SD</td>
<td>32,66</td>
<td>21,63</td>
<td>20,01</td>
<td>18,90</td>
<td>21,03</td>
</tr>
<tr>
<td>gesteigerte Aktivität</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>127,72</td>
<td>151,56</td>
<td>88,09</td>
<td>143,47</td>
<td>116,89</td>
</tr>
<tr>
<td>N</td>
<td>162</td>
<td>162</td>
<td>35</td>
<td>35</td>
<td>62</td>
</tr>
<tr>
<td>SD</td>
<td>35,58</td>
<td>23,26</td>
<td>19,91</td>
<td>21,56</td>
<td>22,16</td>
</tr>
</tbody>
</table>

*aktiv= 4-7 mal pro Woche 60 min/Tag; inaktiv 0-3 mal pro Woche 60 min/Tag
Kennenwerte des Reaktionstests (Rohwerte der Längsschnittprobanden) zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und körperliche Aktivitäts-Entwicklungsgruppen (Gesamt LS N=2130 mit vorliegenden Aktivitätsangaben N=1928)

<table>
<thead>
<tr>
<th>Reaktionstest Reaktionszeit in Sekunden</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t0</td>
<td>t1</td>
<td>t0</td>
<td>t1</td>
<td>t0</td>
</tr>
<tr>
<td>aktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0,33</td>
<td>0,26</td>
<td>-0,07</td>
<td>0,42</td>
<td>0,28</td>
</tr>
<tr>
<td>SD</td>
<td>0,09</td>
<td>0,03</td>
<td></td>
<td>0,07</td>
<td>0,04</td>
</tr>
<tr>
<td>inaktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0,30</td>
<td>0,25</td>
<td>-0,04</td>
<td>0,42</td>
<td>0,28</td>
</tr>
<tr>
<td>SD</td>
<td>0,08</td>
<td>0,03</td>
<td></td>
<td>0,08</td>
<td>0,04</td>
</tr>
<tr>
<td>reduzierte Aktivität</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0,33</td>
<td>0,26</td>
<td>-0,07</td>
<td>0,44</td>
<td>0,28</td>
</tr>
<tr>
<td>N</td>
<td>236</td>
<td>236</td>
<td></td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>SD</td>
<td>0,10</td>
<td>0,05</td>
<td></td>
<td>0,09</td>
<td>0,03</td>
</tr>
<tr>
<td>gesteigerte Aktivität</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0,30</td>
<td>0,25</td>
<td>-0,05</td>
<td>0,42</td>
<td>0,26</td>
</tr>
<tr>
<td>N</td>
<td>154</td>
<td>154</td>
<td></td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>SD</td>
<td>0,08</td>
<td>0,03</td>
<td></td>
<td>0,08</td>
<td>0,03</td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0,36</td>
<td>0,26</td>
<td>-0,09</td>
<td>0,46</td>
<td>0,28</td>
</tr>
<tr>
<td>SD</td>
<td>0,11</td>
<td>0,04</td>
<td></td>
<td>0,09</td>
<td>0,04</td>
</tr>
<tr>
<td>inaktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0,31</td>
<td>0,26</td>
<td>-0,05</td>
<td>0,44</td>
<td>0,28</td>
</tr>
<tr>
<td>N</td>
<td>223</td>
<td>223</td>
<td></td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>SD</td>
<td>0,09</td>
<td>0,04</td>
<td></td>
<td>0,09</td>
<td>0,04</td>
</tr>
<tr>
<td>reduzierte Aktivität</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0,34</td>
<td>0,26</td>
<td>-0,08</td>
<td>0,47</td>
<td>0,29</td>
</tr>
<tr>
<td>N</td>
<td>292</td>
<td>292</td>
<td></td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>SD</td>
<td>0,11</td>
<td>0,04</td>
<td></td>
<td>0,10</td>
<td>0,04</td>
</tr>
<tr>
<td>gesteigerte Aktivität</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0,32</td>
<td>0,26</td>
<td>-0,05</td>
<td>0,45</td>
<td>0,28</td>
</tr>
<tr>
<td>N</td>
<td>163</td>
<td>163</td>
<td></td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>SD</td>
<td>0,10</td>
<td>0,03</td>
<td></td>
<td>0,09</td>
<td>0,03</td>
</tr>
</tbody>
</table>

*aktiv= 4-7 mal pro Woche 60 min/Tag; inaktiv 0-3 mal pro Woche 60 min /Tag
Kennenwerte des Balancierens rückwärts (Rohwerte der Längsschnittprobanden) zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und körperliche Aktivitäts-Entwicklungsgruppen (Gesamt LS N=2151 mit vorliegenden Aktivitätsangaben N=1945)

<table>
<thead>
<tr>
<th>Balancieren rückwärts Anzahl Schritte (Summe aus 3 Versuchen)</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t0</td>
<td>t1</td>
<td>Diff.</td>
<td>t0</td>
<td>t1</td>
</tr>
<tr>
<td>aktiv* t0 & t1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>417</td>
<td>371</td>
<td>124</td>
<td>124</td>
</tr>
<tr>
<td>SD</td>
<td>12,45</td>
<td>8,06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aktiv* t0 & t1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>235</td>
<td>235</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>SD</td>
<td>11,82</td>
<td>9,02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aktiv* t0 & t1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reduzierte Aktivität</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>180</td>
<td>180</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>SD</td>
<td>11,64</td>
<td>8,44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aktiv* t0 & t1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gesteigerte Aktivität</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>164</td>
<td>164</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>SD</td>
<td>12,14</td>
<td>7,60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*aktiv= 4-7 mal pro Woche 60 min/Tag; inaktiv 0-3 mal pro Woche 60 min/Tag
<table>
<thead>
<tr>
<th>Sprünge in 15 Sekunden</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t0</td>
<td>t1</td>
<td>Diff.</td>
<td>t0</td>
<td>t1</td>
</tr>
<tr>
<td></td>
<td>1-17 J.</td>
<td>6-11 J.</td>
<td></td>
<td>1-17 J.</td>
<td>6-11 J.</td>
</tr>
<tr>
<td>aktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inaktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reduzierte Aktivität</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gesteigerte Aktivität</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inaktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reduzierte Aktivität</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gesteigerte Aktivität</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*aktiv= 4-7 mal pro Woche 60 min/Tag; inaktiv= 0-3 mal pro Woche 60 min/Tag
Anhang VI

<table>
<thead>
<tr>
<th>MLS Stifte einstecken Zeit in Sekunden</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>t0 4-17 J. 10-23 J.</td>
<td>t1 4-5 J. 6-11 J.</td>
<td>Diff. t1-t0</td>
<td>t0 6-10 J. 12-16 J.</td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aktiv* t0 & t1</td>
<td>x</td>
<td>59,14 42,79</td>
<td>76,00 45,35</td>
<td>16,35</td>
<td>55,49 42,34</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>412 412</td>
<td>124 124</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>15,28 6,63</td>
<td>13,40 4,56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inaktiv* t0 & t1</td>
<td>x</td>
<td>54,69 42,93</td>
<td>75,75 46,42</td>
<td>11,76 29,33</td>
<td>55,33 43,71</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>143 143</td>
<td>25 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>13,65 5,96</td>
<td>12,00 4,61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reduzierte Aktivität</td>
<td>x</td>
<td>59,90 43,55</td>
<td>77,20 46,32</td>
<td>16,35 30,88</td>
<td>56,80 43,82</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>234 234</td>
<td>72 72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>16,08 5,50</td>
<td>14,21 6,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gesteigerte Aktivität</td>
<td>x</td>
<td>55,68 42,25</td>
<td>76,12 46,47</td>
<td>13,43 29,64</td>
<td>54,98 42,85</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>156 156</td>
<td>32 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>14,68 5,52</td>
<td>12,92 6,38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aktiv* t0 & t1</td>
<td>x</td>
<td>59,07 42,26</td>
<td>73,36 45,26</td>
<td>18,82 28,10</td>
<td>53,24 41,17</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>308 308</td>
<td>118 118</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>15,22 5,82</td>
<td>12,17 6,59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inaktiv* t0 & t1</td>
<td>x</td>
<td>51,10 41,20</td>
<td>70,21 45,24</td>
<td>-9,91 24,96</td>
<td>52,56 42,57</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>221 221</td>
<td>39 39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>12,31 6,16</td>
<td>10,37 5,29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reduzierte Aktivität</td>
<td>x</td>
<td>56,17 41,73</td>
<td>73,95 45,16</td>
<td>14,44 28,79</td>
<td>52,20 41,43</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>294 294</td>
<td>82 82</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>15,05 5,21</td>
<td>13,73 6,24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gesteigerte Aktivität</td>
<td>x</td>
<td>54,12 40,50</td>
<td>72,93 42,80</td>
<td>13,62 30,13</td>
<td>55,26 41,86</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>163 163</td>
<td>36 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>14,53 4,44</td>
<td>11,99 3,43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*aktiv= 4-7 mal pro Woche 60 min/Tag; inaktiv 0-3 mal pro Woche 60 min/Tag

Kennwerte des MLS Stifte einstecken (Rohwerte der Längsschnittprobanden) zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und körperliche Aktivitäts-Entwicklungsgruppen (Gesamt LS N=2134 mit vorliegenden Aktivitätsangaben N=1931)
Kennwerte der Rumpfbeuge (Rohwerte der Längsschnittprobanden) zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und körperliche Aktivitäts-Entwicklungsgruppen (Gesamt LS N=2138 mit vorliegenden Aktivitätsangaben N=1935)

<table>
<thead>
<tr>
<th>Rumpfbeuge</th>
<th>Fingerspritzenabstand vom Nullniveau (cm)</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4-17 J. 10-23J.</td>
<td>Diff. t1-t0</td>
<td>4-5 J. 6-11 J.</td>
<td>Diff. t1-t0</td>
<td>6-10 J. 12-16J.</td>
<td>Diff. t1-t0</td>
</tr>
<tr>
<td>aktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inaktiv* t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reduzierte Aktivität</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*aktiv= 4-7 mal pro Woche 60 min/Tag; inaktiv 0-3 mal pro Woche 60 min/Tag
VII. Mittelwerte der Längsschnittstichprobe der Testitems nach Geschlecht und Aktivitätsverhalten (Vereinsaktivität) zur Baseline-Studie (t0) und zur Welle 1 (t1)
<table>
<thead>
<tr>
<th>PWC 170 relativ Watt/kg</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t0 4-17 J.</td>
<td>t1 10-23.J.</td>
<td>Diff. t1-t0</td>
<td>t0 4-5 J.</td>
<td>t1 6-11 J.</td>
</tr>
<tr>
<td>kein Verein t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>2,13</td>
<td>1,99</td>
<td>-0,14</td>
<td>1,96</td>
<td>1,99</td>
</tr>
<tr>
<td>N</td>
<td>91</td>
<td>91</td>
<td></td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>SD</td>
<td>0,52</td>
<td>0,57</td>
<td></td>
<td>0,51</td>
<td>0,53</td>
</tr>
<tr>
<td>Aussteiger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>2,16</td>
<td>2,17</td>
<td>0,02</td>
<td>2,07</td>
<td>2,15</td>
</tr>
<tr>
<td>N</td>
<td>101</td>
<td>101</td>
<td></td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>SD</td>
<td>0,50</td>
<td>0,50</td>
<td></td>
<td>0,47</td>
<td>0,51</td>
</tr>
<tr>
<td>Einsteiger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>2,05</td>
<td>2,16</td>
<td>0,11</td>
<td>1,99</td>
<td>2,18</td>
</tr>
<tr>
<td>N</td>
<td>54</td>
<td>54</td>
<td></td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>SD</td>
<td>0,64</td>
<td>0,57</td>
<td></td>
<td>0,69</td>
<td>0,59</td>
</tr>
<tr>
<td>Verein t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>2,27</td>
<td>2,40</td>
<td>0,13</td>
<td>2,20</td>
<td>2,41</td>
</tr>
<tr>
<td>N</td>
<td>313</td>
<td>313</td>
<td></td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>SD</td>
<td>0,47</td>
<td>0,63</td>
<td></td>
<td>0,47</td>
<td>0,59</td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kein Verein t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>1,80</td>
<td>1,67</td>
<td>-0,13</td>
<td>1,81</td>
<td>1,68</td>
</tr>
<tr>
<td>N</td>
<td>158</td>
<td>158</td>
<td></td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>SD</td>
<td>0,40</td>
<td>0,49</td>
<td></td>
<td>0,38</td>
<td>0,44</td>
</tr>
<tr>
<td>Aussteiger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>1,87</td>
<td>1,77</td>
<td>-0,10</td>
<td>1,78</td>
<td>1,73</td>
</tr>
<tr>
<td>N</td>
<td>104</td>
<td>104</td>
<td></td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>SD</td>
<td>0,46</td>
<td>0,46</td>
<td></td>
<td>0,49</td>
<td>0,48</td>
</tr>
<tr>
<td>Einsteiger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>1,67</td>
<td>1,71</td>
<td>0,05</td>
<td>1,63</td>
<td>1,72</td>
</tr>
<tr>
<td>N</td>
<td>73</td>
<td>73</td>
<td></td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>SD</td>
<td>0,48</td>
<td>0,45</td>
<td></td>
<td>0,49</td>
<td>0,41</td>
</tr>
<tr>
<td>Verein t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>1,91</td>
<td>1,88</td>
<td>-0,03</td>
<td>1,89</td>
<td>1,95</td>
</tr>
<tr>
<td>N</td>
<td>220</td>
<td>220</td>
<td></td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>SD</td>
<td>0,43</td>
<td>0,48</td>
<td></td>
<td>0,45</td>
<td>0,49</td>
</tr>
<tr>
<td>Alter</td>
<td>Geschlecht</td>
<td>Standweitsprungleistung in cm</td>
<td>t0</td>
<td>t1</td>
<td>t0</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>4-17 J.</td>
<td>männlich</td>
<td>kein Verein</td>
<td>140,20</td>
<td>181,46</td>
<td>85,39</td>
</tr>
<tr>
<td>178</td>
<td>178</td>
<td>SD</td>
<td>47,63</td>
<td>36,00</td>
<td>19,78</td>
</tr>
<tr>
<td>4-5 J.</td>
<td>männlich</td>
<td>Aussteiger</td>
<td>144,70</td>
<td>182,86</td>
<td>87,80</td>
</tr>
<tr>
<td>154</td>
<td>154</td>
<td>SD</td>
<td>40,81</td>
<td>36,14</td>
<td>17,71</td>
</tr>
<tr>
<td>4-17 J.</td>
<td>weiblich</td>
<td>kein Verein</td>
<td>112,00</td>
<td>166,73</td>
<td>92,13</td>
</tr>
<tr>
<td>173</td>
<td>173</td>
<td>SD</td>
<td>34,65</td>
<td>29,27</td>
<td>17,86</td>
</tr>
<tr>
<td>4-5 J.</td>
<td>weiblich</td>
<td>Aussteiger</td>
<td>134,38</td>
<td>184,83</td>
<td>99,88</td>
</tr>
<tr>
<td>510</td>
<td>510</td>
<td>SD</td>
<td>35,34</td>
<td>32,24</td>
<td>18,47</td>
</tr>
<tr>
<td>4-17 J.</td>
<td>weiblich</td>
<td>Einsteiger</td>
<td>122,67</td>
<td>144,42</td>
<td>85,41</td>
</tr>
<tr>
<td>283</td>
<td>283</td>
<td>SD</td>
<td>32,70</td>
<td>22,05</td>
<td>18,51</td>
</tr>
<tr>
<td>4-5 J.</td>
<td>weiblich</td>
<td>Verein</td>
<td>132,21</td>
<td>149,68</td>
<td>84,03</td>
</tr>
<tr>
<td>171</td>
<td>171</td>
<td>SD</td>
<td>35,53</td>
<td>22,19</td>
<td>18,19</td>
</tr>
<tr>
<td>4-17 J.</td>
<td>weiblich</td>
<td>Einsteiger</td>
<td>112,29</td>
<td>149,07</td>
<td>85,64</td>
</tr>
<tr>
<td>167</td>
<td>167</td>
<td>SD</td>
<td>30,49</td>
<td>20,92</td>
<td>20,91</td>
</tr>
<tr>
<td>4-5 J.</td>
<td>weiblich</td>
<td>Verein</td>
<td>121,82</td>
<td>156,70</td>
<td>80,30</td>
</tr>
<tr>
<td>433</td>
<td>433</td>
<td>SD</td>
<td>32,23</td>
<td>22,29</td>
<td>19,52</td>
</tr>
</tbody>
</table>
Kennwerte des Reaktionstests (Rohwerte der Längsschnittprobanden) zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und Vereinsaktivitäts-Entwicklungsgruppen (Gesamt LS N=2130 mit vorliegenden Vereinsaktivitäts-Angaben N=2070)

<table>
<thead>
<tr>
<th>Reaktionstest</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktionszeit in Sekunden</td>
<td>t0 4-17 J.</td>
<td>t1 10-23 J.</td>
<td>Diff. t1-t0</td>
<td>t0 4-5 J.</td>
<td>t1 6-11 J.</td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kein Verein</td>
<td>x</td>
<td>0,31 0,25</td>
<td>-0,06</td>
<td>0,44 0,28</td>
<td>-0,16</td>
</tr>
<tr>
<td>t0 t1</td>
<td>N</td>
<td>181 181</td>
<td></td>
<td>40 40</td>
<td></td>
</tr>
<tr>
<td>Aussteiger</td>
<td>x</td>
<td>0,30 0,25</td>
<td>-0,05</td>
<td>0,45 0,28</td>
<td>-0,17</td>
</tr>
<tr>
<td>t0 t1</td>
<td>N</td>
<td>155 155</td>
<td></td>
<td>25 25</td>
<td></td>
</tr>
<tr>
<td>Einsteiger</td>
<td>x</td>
<td>0,37 0,27</td>
<td>-0,10</td>
<td>0,43 0,27</td>
<td>-0,15</td>
</tr>
<tr>
<td>t0 t1</td>
<td>N</td>
<td>171 171</td>
<td></td>
<td>92 92</td>
<td></td>
</tr>
<tr>
<td>Verein</td>
<td>x</td>
<td>0,31 0,25</td>
<td>-0,06</td>
<td>0,42 0,26</td>
<td>-0,15</td>
</tr>
<tr>
<td>t0 t1</td>
<td>N</td>
<td>507 507</td>
<td></td>
<td>111 111</td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kein Verein</td>
<td>x</td>
<td>0,32 0,26</td>
<td>-0,07</td>
<td>0,45 0,28</td>
<td>-0,17</td>
</tr>
<tr>
<td>t0 t1</td>
<td>N</td>
<td>288 288</td>
<td></td>
<td>63 63</td>
<td></td>
</tr>
<tr>
<td>Aussteiger</td>
<td>x</td>
<td>0,32 0,26</td>
<td>-0,06</td>
<td>0,49 0,28</td>
<td>-0,20</td>
</tr>
<tr>
<td>t0 t1</td>
<td>N</td>
<td>176 176</td>
<td></td>
<td>34 34</td>
<td></td>
</tr>
<tr>
<td>Einsteiger</td>
<td>x</td>
<td>0,36 0,26</td>
<td>-0,10</td>
<td>0,47 0,28</td>
<td>-0,18</td>
</tr>
<tr>
<td>t0 t1</td>
<td>N</td>
<td>164 164</td>
<td></td>
<td>58 58</td>
<td></td>
</tr>
<tr>
<td>Verein</td>
<td>x</td>
<td>0,34 0,26</td>
<td>-0,08</td>
<td>0,45 0,28</td>
<td>-0,17</td>
</tr>
<tr>
<td>t0 t1</td>
<td>N</td>
<td>428 428</td>
<td></td>
<td>129 129</td>
<td></td>
</tr>
</tbody>
</table>
Kennwerte beim Balancieren rückwärts (Rohwerte der Längsschnittprobanden zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und Vereinsaktivität-Entwicklungsgruppen (Gesamt LS N=2151 mit vorliegenden Vereinsaktivitäts-Angaben N=2091)

<table>
<thead>
<tr>
<th></th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t0</td>
<td>t1</td>
<td>Diff. t1-t0</td>
<td>t0</td>
<td>t1</td>
</tr>
<tr>
<td>kein Verein t0 & t1</td>
<td>x</td>
<td>24,03</td>
<td>35,14</td>
<td>11,11</td>
<td>12,00</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>180</td>
<td>180</td>
<td>12,10</td>
<td>7,98</td>
</tr>
<tr>
<td>Aussteiger</td>
<td>x</td>
<td>26,65</td>
<td>36,69</td>
<td>10,04</td>
<td>10,12</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>158</td>
<td>158</td>
<td>12,42</td>
<td>4,79</td>
</tr>
<tr>
<td>Einsteiger</td>
<td>x</td>
<td>18,27</td>
<td>36,33</td>
<td>18,06</td>
<td>11,74</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>173</td>
<td>173</td>
<td>11,49</td>
<td>8,20</td>
</tr>
<tr>
<td>Verein t0 & t1</td>
<td>x</td>
<td>25,71</td>
<td>37,91</td>
<td>12,20</td>
<td>14,23</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>516</td>
<td>516</td>
<td>11,48</td>
<td>7,99</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>26,42</td>
<td>37,25</td>
<td>10,83</td>
<td>12,65</td>
</tr>
<tr>
<td>weiblich</td>
<td>x</td>
<td>28,93</td>
<td>39,02</td>
<td>10,14</td>
<td>12,85</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>176</td>
<td>176</td>
<td>11,58</td>
<td>6,63</td>
</tr>
<tr>
<td>Aussteiger</td>
<td>x</td>
<td>24,78</td>
<td>38,65</td>
<td>13,87</td>
<td>14,59</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>165</td>
<td>165</td>
<td>12,22</td>
<td>8,73</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>27,35</td>
<td>40,20</td>
<td>12,85</td>
<td>15,74</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>437</td>
<td>437</td>
<td>12,40</td>
<td>9,02</td>
</tr>
<tr>
<td>Seitlestes Hin- und Herspringen Sprünge in 15 Sekunden</td>
<td>Gesamt</td>
<td>Altersgruppe 1</td>
<td>Altersgruppe 2</td>
<td>Altersgruppe 3</td>
<td>Altersgruppe 4</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>4-17 J.</td>
<td>10-23 J.</td>
<td>t1-t0</td>
<td>t0</td>
<td>t1</td>
</tr>
<tr>
<td>kein Verein t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aussteiger</td>
<td>x</td>
<td>22,11</td>
<td>35,26</td>
<td>13,15</td>
<td>9,43</td>
</tr>
<tr>
<td>N</td>
<td>176</td>
<td>176</td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>SD</td>
<td>11,17</td>
<td>7,37</td>
<td></td>
<td></td>
<td>3,59</td>
</tr>
<tr>
<td>Aussteiger</td>
<td>x</td>
<td>24,26</td>
<td>36,84</td>
<td>12,58</td>
<td>9,13</td>
</tr>
<tr>
<td>N</td>
<td>156</td>
<td>156</td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>SD</td>
<td>10,91</td>
<td>7,99</td>
<td></td>
<td></td>
<td>3,47</td>
</tr>
<tr>
<td>Aussteiger</td>
<td>x</td>
<td>14,68</td>
<td>34,66</td>
<td>19,98</td>
<td>9,44</td>
</tr>
<tr>
<td>N</td>
<td>168</td>
<td>168</td>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>SD</td>
<td>8,20</td>
<td>6,87</td>
<td></td>
<td></td>
<td>3,54</td>
</tr>
<tr>
<td>Aussteiger</td>
<td>x</td>
<td>21,66</td>
<td>39,07</td>
<td>17,41</td>
<td>10,76</td>
</tr>
<tr>
<td>N</td>
<td>502</td>
<td>502</td>
<td></td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>SD</td>
<td>10,56</td>
<td>6,97</td>
<td></td>
<td></td>
<td>4,53</td>
</tr>
<tr>
<td>Einsteiger</td>
<td>x</td>
<td>21,99</td>
<td>33,96</td>
<td>11,97</td>
<td>9,90</td>
</tr>
<tr>
<td>N</td>
<td>284</td>
<td>284</td>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>SD</td>
<td>10,58</td>
<td>6,25</td>
<td></td>
<td></td>
<td>3,46</td>
</tr>
<tr>
<td>Einsteiger</td>
<td>x</td>
<td>24,70</td>
<td>35,85</td>
<td>11,15</td>
<td>10,18</td>
</tr>
<tr>
<td>N</td>
<td>173</td>
<td>173</td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>SD</td>
<td>11,07</td>
<td>6,78</td>
<td></td>
<td></td>
<td>3,71</td>
</tr>
<tr>
<td>weiblich</td>
<td>x</td>
<td>18,61</td>
<td>35,29</td>
<td>16,68</td>
<td>10,32</td>
</tr>
<tr>
<td>N</td>
<td>165</td>
<td>165</td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>SD</td>
<td>9,62</td>
<td>5,64</td>
<td></td>
<td></td>
<td>3,85</td>
</tr>
<tr>
<td>Einsteiger</td>
<td>x</td>
<td>21,08</td>
<td>36,72</td>
<td>15,64</td>
<td>11,12</td>
</tr>
<tr>
<td>N</td>
<td>431</td>
<td>431</td>
<td></td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>SD</td>
<td>10,07</td>
<td>6,01</td>
<td></td>
<td></td>
<td>3,32</td>
</tr>
</tbody>
</table>
Kennwerte beim MLS Stifte einstecken (Rohwerte der Längsschnittprobanden) zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und Vereinsaktivität-Entwicklungsgruppen (Gesamt LS N=2134 mit vorliegenden Vereinsaktivitäts-Angaben N=2076)

<table>
<thead>
<tr>
<th>MLS Stifte einstecken Zeit in Sekunden</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t0 & t1</td>
</tr>
<tr>
<td></td>
<td>4-17 J.</td>
<td>10-23 J.</td>
<td>4-17 J.</td>
<td>10-23 J.</td>
<td>4-17 J.</td>
</tr>
<tr>
<td>kein Verein t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aussteiger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 54,78</td>
<td>42,70</td>
<td>-13,44</td>
<td>75,45</td>
<td>46,26</td>
<td>-45,10</td>
</tr>
<tr>
<td>N 179</td>
<td>179</td>
<td></td>
<td>39,39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD 15,02</td>
<td>5,00</td>
<td></td>
<td>11,55</td>
<td>4,70</td>
<td></td>
</tr>
<tr>
<td>Einsteiger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 66,59</td>
<td>44,25</td>
<td>-22,34</td>
<td>76,50</td>
<td>45,58</td>
<td>-30,91</td>
</tr>
<tr>
<td>N 175</td>
<td>175</td>
<td></td>
<td>95,95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD 15,97</td>
<td>4,85</td>
<td></td>
<td>13,72</td>
<td>5,02</td>
<td></td>
</tr>
<tr>
<td>Verein t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 57,08</td>
<td>42,69</td>
<td>-14,39</td>
<td>74,82</td>
<td>45,46</td>
<td>-29,36</td>
</tr>
<tr>
<td>N 509</td>
<td>509</td>
<td></td>
<td>111,11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD 13,64</td>
<td>4,87</td>
<td></td>
<td>12,37</td>
<td>5,42</td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aussteiger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 51,23</td>
<td>40,85</td>
<td>-10,38</td>
<td>72,77</td>
<td>45,30</td>
<td>-24,77</td>
</tr>
<tr>
<td>N 177</td>
<td>177</td>
<td></td>
<td>34,34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD 13,33</td>
<td>4,68</td>
<td></td>
<td>9,13</td>
<td>4,04</td>
<td></td>
</tr>
<tr>
<td>Einsteiger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 59,37</td>
<td>42,55</td>
<td>-16,82</td>
<td>73,56</td>
<td>45,42</td>
<td>-28,14</td>
</tr>
<tr>
<td>N 166</td>
<td>166</td>
<td></td>
<td>60,60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD 15,40</td>
<td>6,59</td>
<td></td>
<td>13,09</td>
<td>8,10</td>
<td></td>
</tr>
<tr>
<td>Verein t0 & t1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 56,62</td>
<td>41,49</td>
<td>-15,12</td>
<td>72,36</td>
<td>44,15</td>
<td>-20,41</td>
</tr>
<tr>
<td>N 430</td>
<td>430</td>
<td></td>
<td>133,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD 14,29</td>
<td>5,39</td>
<td></td>
<td>11,86</td>
<td>5,35</td>
<td></td>
</tr>
<tr>
<td>Rumpfbeuge</td>
<td>Fingerspritzenabstand vom Nullniveau (cm)</td>
<td>Gesamt</td>
<td>Altersgruppe 1</td>
<td>Altersgruppe 2</td>
<td>Altersgruppe 3</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>t0 10-23J.</td>
<td>t1 10-23J.</td>
<td>Diff. t1-t0</td>
<td>t0 6-11J.</td>
<td>t1 6-11J.</td>
</tr>
</tbody>
</table>

Anhang VI

Kennwerte der Rumpfbeuge (Rohwerte der Längsschnittprobanden) zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und Vereinsaktivität-Entwicklungsgruppen (Gesamt LS N=2138 mit vorliegenden Vereinsaktivitäts-Angaben N=2078)
VIII. Mittelwerte der Längsschnittstichprobe der Testitems nach Geschlecht und Body-Mass-Index zur Baseline-Studie (t0) und zur Welle 1 (t1)
Kennwerte des Fahrrad-Ausdauertests PWC 170 relativ (Rohwerte der Längsschnittprobanden) zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und BMI-Entwicklungsgruppen (Gesamt LS N=2151 mit vorliegenden BMI-Werten N=1138)

<table>
<thead>
<tr>
<th>PWC 170 relativ Watt/kg</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t0</td>
<td>t1</td>
<td>t1-t0</td>
<td>t0</td>
<td>t1</td>
</tr>
<tr>
<td>4-17 J.</td>
<td>10-23 J.</td>
<td>4-5 J.</td>
<td>6-11 J.</td>
<td>6-10 J.</td>
<td>11-13 J.</td>
</tr>
<tr>
<td>männlich</td>
<td>Persistent Normalgewichtige</td>
<td>x</td>
<td>2,26</td>
<td>2,36</td>
<td>0,09</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>451</td>
<td>451</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,49</td>
<td>0,56</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Zunehmer</td>
<td>x</td>
<td>2,15</td>
<td>1,88</td>
<td>-0,27</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>67</td>
<td>67</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,45</td>
<td>0,52</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Abnehmer</td>
<td>x</td>
<td>1,92</td>
<td>2,49</td>
<td>0,57</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>16</td>
<td>16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,46</td>
<td>0,80</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Persistent Übergewichtige</td>
<td>x</td>
<td>1,83</td>
<td>1,76</td>
<td>-0,07</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>40</td>
<td>40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,47</td>
<td>0,68</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>weiblich</td>
<td>Persistent Normalgewichtige</td>
<td>x</td>
<td>1,86</td>
<td>1,83</td>
<td>-0,02</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>452</td>
<td>452</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,44</td>
<td>0,47</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Zunehmer</td>
<td>x</td>
<td>1,93</td>
<td>1,60</td>
<td>-0,33</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>47</td>
<td>47</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,43</td>
<td>0,45</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Abnehmer</td>
<td>x</td>
<td>1,57</td>
<td>1,64</td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>20</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,25</td>
<td>0,41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Persistent Übergewichtige</td>
<td>x</td>
<td>1,61</td>
<td>1,40</td>
<td>-0,21</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>45</td>
<td>45</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Kennwerte des Standweitsprungs (Rohwerte der Längsschnittprobanden zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und BMI-
Entwicklungsgruppen (Gesamt LS N=2128 mit vorliegenden BMI- Werten N=2121)

<table>
<thead>
<tr>
<th>Standweitsprungleistung in cm</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t0</td>
<td>t1</td>
<td>Diff.</td>
<td>t0</td>
<td>t1</td>
</tr>
<tr>
<td>4-5 J., 10-23 J.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent Normalgewichte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>134,13</td>
<td>184,07</td>
<td>49,94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>39,50</td>
<td>32,19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zunehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>136,78</td>
<td>168,95</td>
<td>32,17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>42,90</td>
<td>37,08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>137,54</td>
<td>182,17</td>
<td>44,63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>32,23</td>
<td>29,58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent Übergewichte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>122,75</td>
<td>158,96</td>
<td>36,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>39,67</td>
<td>33,43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent Normalgewichte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>123,90</td>
<td>154,56</td>
<td>30,66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>33,24</td>
<td>21,49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zunehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>117,69</td>
<td>139,23</td>
<td>21,54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>35,13</td>
<td>19,43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>106,72</td>
<td>135,36</td>
<td>28,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>24,51</td>
<td>12,66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent Übergewichte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>115,56</td>
<td>126,50</td>
<td>10,94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>30,29</td>
<td>19,31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Kennwerte des Reaktionstest (Rohwerte der Längsschnittprobanden) zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und BMI-Entwicklungsgruppen (Gesamt LS N=2130 mit vorliegenden BMI –Werten N=2123)

<table>
<thead>
<tr>
<th>Reaktionstest</th>
<th>Reaktionszeit in Sekunden</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>t0</td>
<td>t1</td>
<td>Diff. t1-t0</td>
<td>t0</td>
<td>t1</td>
</tr>
<tr>
<td>männlich</td>
<td>Persistent Normalgewichtige</td>
<td>x 0,32</td>
<td>0,25</td>
<td>-0,07</td>
<td>0,31</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>837</td>
<td>837</td>
<td></td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,09</td>
<td>0,04</td>
<td></td>
<td>0,06</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>Zunehmer</td>
<td>x 0,31</td>
<td>0,25</td>
<td>-0,06</td>
<td>0,31</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>114</td>
<td>114</td>
<td></td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,09</td>
<td>0,03</td>
<td></td>
<td>0,06</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>Abnehmer</td>
<td>x 0,30</td>
<td>0,24</td>
<td>-0,06</td>
<td>0,35</td>
<td>0,22</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>24</td>
<td>24</td>
<td></td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,10</td>
<td>0,03</td>
<td></td>
<td>0,12</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>Persistent Übergewichtige</td>
<td>x 0,31</td>
<td>0,25</td>
<td>-0,06</td>
<td>0,31</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>69</td>
<td>69</td>
<td></td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,09</td>
<td>0,04</td>
<td></td>
<td>0,06</td>
<td>0,03</td>
</tr>
<tr>
<td>weiblich</td>
<td>Persistent Normalgewichtige</td>
<td>x 0,34</td>
<td>0,26</td>
<td>-0,08</td>
<td>0,32</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>884</td>
<td>884</td>
<td></td>
<td>401</td>
<td>401</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,10</td>
<td>0,04</td>
<td></td>
<td>0,07</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>Zunehmer</td>
<td>x 0,35</td>
<td>0,27</td>
<td>-0,09</td>
<td>0,34</td>
<td>0,26</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>84</td>
<td>84</td>
<td></td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,12</td>
<td>0,03</td>
<td></td>
<td>0,06</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>Abnehmer</td>
<td>x 0,33</td>
<td>0,26</td>
<td>-0,07</td>
<td>0,30</td>
<td>0,26</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>39</td>
<td>39</td>
<td></td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,10</td>
<td>0,03</td>
<td></td>
<td>0,04</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>Persistent Übergewichtige</td>
<td>x 0,31</td>
<td>0,26</td>
<td>-0,05</td>
<td>0,32</td>
<td>0,26</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>72</td>
<td>72</td>
<td></td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,11</td>
<td>0,05</td>
<td></td>
<td>0,06</td>
<td>0,05</td>
</tr>
<tr>
<td>Balancieren rückwärts</td>
<td>Gesamt</td>
<td>Altersgruppe 1</td>
<td>Altersgruppe 2</td>
<td>Altersgruppe 3</td>
<td>Altersgruppe 4</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Anzahl Schritte</td>
<td>t0</td>
<td>t1</td>
<td>Diff. t1-t0</td>
<td>t0</td>
<td>t1</td>
<td>Diff. t1-t0</td>
</tr>
<tr>
<td>4-17 J.</td>
<td>4-5 J.</td>
<td>6-10 J.</td>
<td>6-11 J.</td>
<td>6-12 J.</td>
<td>11-13 J.</td>
<td>11-17 J.</td>
</tr>
<tr>
<td>x Persistent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalgewichtige</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 24,77</td>
<td>13,25</td>
<td>23,80</td>
<td>8,92</td>
<td>20,38</td>
<td>17,49</td>
<td>116</td>
</tr>
<tr>
<td>N 846</td>
<td>846</td>
<td>729</td>
<td>10,82</td>
<td>129</td>
<td>30,33</td>
<td>23,56</td>
</tr>
<tr>
<td>SD 12,12</td>
<td>7,91</td>
<td>7,07</td>
<td>7,44</td>
<td>3,2</td>
<td>3,3</td>
<td>8,8</td>
</tr>
<tr>
<td>x Zunehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 23,80</td>
<td>32,72</td>
<td>84,02</td>
<td>13,25</td>
<td>20,38</td>
<td>17,49</td>
<td>116</td>
</tr>
<tr>
<td>N 116</td>
<td>116</td>
<td>116</td>
<td>17,50</td>
<td>10,82</td>
<td>10,82</td>
<td>23,56</td>
</tr>
<tr>
<td>SD 12,37</td>
<td>9,81</td>
<td>9,81</td>
<td>9,81</td>
<td>3,2</td>
<td>3,2</td>
<td>8,8</td>
</tr>
<tr>
<td>x Abnehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 20,38</td>
<td>37,87</td>
<td>17,49</td>
<td>14,97</td>
<td>20,38</td>
<td>17,49</td>
<td>116</td>
</tr>
<tr>
<td>N 24</td>
<td>24</td>
<td>24</td>
<td>10,82</td>
<td>10,82</td>
<td>23,56</td>
<td>23,56</td>
</tr>
<tr>
<td>SD 7,71</td>
<td>7,34</td>
<td>7,34</td>
<td>7,34</td>
<td>3,2</td>
<td>3,2</td>
<td>8,8</td>
</tr>
<tr>
<td>x Persistent Übergewichtige</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 21,03</td>
<td>31,00</td>
<td>9,97</td>
<td>8,67</td>
<td>20,38</td>
<td>17,49</td>
<td>116</td>
</tr>
<tr>
<td>N 70</td>
<td>70</td>
<td>70</td>
<td>28,33</td>
<td>10,82</td>
<td>10,82</td>
<td>23,56</td>
</tr>
<tr>
<td>SD 11,51</td>
<td>9,44</td>
<td>9,44</td>
<td>9,44</td>
<td>3,2</td>
<td>3,2</td>
<td>8,8</td>
</tr>
<tr>
<td>x Abnehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 27,64</td>
<td>39,85</td>
<td>12,21</td>
<td>14,97</td>
<td>20,38</td>
<td>17,49</td>
<td>116</td>
</tr>
<tr>
<td>N 895</td>
<td>895</td>
<td>895</td>
<td>38,90</td>
<td>10,82</td>
<td>10,82</td>
<td>23,56</td>
</tr>
<tr>
<td>SD 12,44</td>
<td>7,31</td>
<td>7,31</td>
<td>7,31</td>
<td>3,2</td>
<td>3,2</td>
<td>8,8</td>
</tr>
<tr>
<td>x Zunehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 24,40</td>
<td>36,11</td>
<td>11,71</td>
<td>13,04</td>
<td>20,38</td>
<td>17,49</td>
<td>116</td>
</tr>
<tr>
<td>N 84</td>
<td>84</td>
<td>84</td>
<td>34,25</td>
<td>10,82</td>
<td>10,82</td>
<td>23,56</td>
</tr>
<tr>
<td>SD 11,97</td>
<td>7,79</td>
<td>7,79</td>
<td>7,79</td>
<td>3,2</td>
<td>3,2</td>
<td>8,8</td>
</tr>
<tr>
<td>x Abnehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 22,69</td>
<td>37,26</td>
<td>14,57</td>
<td>10,11</td>
<td>20,38</td>
<td>17,49</td>
<td>116</td>
</tr>
<tr>
<td>N 39</td>
<td>39</td>
<td>39</td>
<td>33,33</td>
<td>10,82</td>
<td>10,82</td>
<td>23,56</td>
</tr>
<tr>
<td>SD 11,87</td>
<td>8,04</td>
<td>8,04</td>
<td>8,04</td>
<td>3,2</td>
<td>3,2</td>
<td>8,8</td>
</tr>
<tr>
<td>x Persistent Übergewichtige</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 23,56</td>
<td>31,70</td>
<td>8,14</td>
<td>10,25</td>
<td>20,38</td>
<td>17,49</td>
<td>116</td>
</tr>
<tr>
<td>N 71</td>
<td>71</td>
<td>71</td>
<td>30,50</td>
<td>10,82</td>
<td>10,82</td>
<td>23,56</td>
</tr>
<tr>
<td>SD 11,75</td>
<td>8,81</td>
<td>8,81</td>
<td>10,42</td>
<td>10,82</td>
<td>10,82</td>
<td>23,56</td>
</tr>
</tbody>
</table>
Kennwerte beim Seitlichen Hin- und Herspringen (Rohwerte der Längsschnittprobanden zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und BMI-Entwicklungsgruppen (Gesamt LS N=2113 mit vorliegenden BMI –Werten N=2108)

<table>
<thead>
<tr>
<th></th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t0</td>
<td>t1</td>
<td>Diff. t1-t0</td>
<td>t0</td>
<td>t1</td>
</tr>
<tr>
<td>Seitliches Hin- und Herspringen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl Sprünge in 15 Sekunden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent Normalgewichte</td>
<td>x</td>
<td>20,81</td>
<td>37,70</td>
<td>16,89</td>
<td>10,01</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>826</td>
<td>826</td>
<td>10,69</td>
<td>7,29</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>10,69</td>
<td>10,69</td>
<td>21,34</td>
<td>35,31</td>
</tr>
<tr>
<td>Zunehmer</td>
<td>11,37</td>
<td>7,53</td>
<td>32</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>24,94</td>
<td>37,83</td>
<td>12,89</td>
<td>6-10 J.</td>
<td>6-11 J.</td>
</tr>
<tr>
<td>Abnehmer</td>
<td>10,90</td>
<td>7,45</td>
<td>9,52</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>19,84</td>
<td>34,45</td>
<td>14,61</td>
<td>6-10 J.</td>
<td>6-11 J.</td>
</tr>
<tr>
<td>Persistent Übergewichte</td>
<td>67</td>
<td>67</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>10,79</td>
<td>8,77</td>
<td>2,62</td>
<td>6,68</td>
<td>7,21</td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent Normalgewichte</td>
<td>x</td>
<td>21,58</td>
<td>36,07</td>
<td>14,49</td>
<td>10,76</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>883</td>
<td>883</td>
<td>10,45</td>
<td>6,06</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>21,37</td>
<td>33,88</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>Zunehmer</td>
<td>11,07</td>
<td>6,78</td>
<td>9,56</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>19,49</td>
<td>34,81</td>
<td>15,32</td>
<td>6-10 J.</td>
<td>6-11 J.</td>
</tr>
<tr>
<td>Abnehmer</td>
<td>39</td>
<td>39</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>9,38</td>
<td>5,04</td>
<td>4,01</td>
<td>9,46</td>
<td>5,02</td>
</tr>
<tr>
<td>Persistent Übergewichte</td>
<td>22,20</td>
<td>32,18</td>
<td>9,98</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>10,77</td>
<td>7,21</td>
<td>3,87</td>
<td>5,47</td>
<td>5,25</td>
</tr>
</tbody>
</table>
Kennwerte der Testaufgabe Stifte einstecken (Rohwerte der Längsschnittprobanden) zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und BMI-Entwicklungsgruppen (Gesamt LS N=2134 mit vorliegenden BMI-Werten N=2127)

<table>
<thead>
<tr>
<th>MLS Stifte einstecken Zeit in Sekunden</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t0</td>
<td>t1</td>
<td>Diff. t1-t0</td>
<td>t0</td>
<td>t1</td>
</tr>
<tr>
<td>4-17 J.</td>
<td>15,8</td>
<td>15,9</td>
<td>0,11</td>
<td>13,21</td>
<td>12,16</td>
</tr>
<tr>
<td>10-23 J.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalgewichtige</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>58,53</td>
<td>42,23</td>
<td>-16,30</td>
<td>55,93</td>
<td>42,72</td>
</tr>
<tr>
<td>N</td>
<td>840</td>
<td>840</td>
<td>0</td>
<td>383</td>
<td>383</td>
</tr>
<tr>
<td>SD</td>
<td>15,24</td>
<td>5,06</td>
<td>-10,18</td>
<td>9,18</td>
<td>4,40</td>
</tr>
<tr>
<td>Zunehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>58,42</td>
<td>43,62</td>
<td>-14,80</td>
<td>58,14</td>
<td>44,65</td>
</tr>
<tr>
<td>N</td>
<td>115</td>
<td>115</td>
<td>0</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>SD</td>
<td>15,35</td>
<td>4,88</td>
<td>-10,47</td>
<td>8,41</td>
<td>4,43</td>
</tr>
<tr>
<td>Abnehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>54,46</td>
<td>41,82</td>
<td>-12,64</td>
<td>59,10</td>
<td>42,52</td>
</tr>
<tr>
<td>N</td>
<td>24</td>
<td>24</td>
<td>0</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>SD</td>
<td>14,74</td>
<td>3,72</td>
<td>-11,02</td>
<td>9,26</td>
<td>3,33</td>
</tr>
<tr>
<td>Persistente Übergewichtige</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>57,67</td>
<td>44,31</td>
<td>-13,36</td>
<td>54,13</td>
<td>43,28</td>
</tr>
<tr>
<td>N</td>
<td>68</td>
<td>68</td>
<td>0</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>SD</td>
<td>15,68</td>
<td>6,65</td>
<td>-9,03</td>
<td>7,15</td>
<td>3,60</td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalgewichtige</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>55,71</td>
<td>41,49</td>
<td>-14,22</td>
<td>53,03</td>
<td>41,49</td>
</tr>
<tr>
<td>N</td>
<td>886</td>
<td>886</td>
<td>0</td>
<td>402</td>
<td>402</td>
</tr>
<tr>
<td>SD</td>
<td>14,27</td>
<td>5,34</td>
<td>-8,93</td>
<td>8,26</td>
<td>4,82</td>
</tr>
<tr>
<td>Zunehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>57,43</td>
<td>41,91</td>
<td>-15,52</td>
<td>57,08</td>
<td>46,30</td>
</tr>
<tr>
<td>N</td>
<td>83</td>
<td>83</td>
<td>0</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>SD</td>
<td>17,26</td>
<td>6,00</td>
<td>-11,26</td>
<td>9,79</td>
<td>5,38</td>
</tr>
<tr>
<td>Abnehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>55,57</td>
<td>40,73</td>
<td>-14,84</td>
<td>51,92</td>
<td>40,50</td>
</tr>
<tr>
<td>N</td>
<td>38</td>
<td>38</td>
<td>0</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>SD</td>
<td>12,81</td>
<td>4,10</td>
<td>-8,71</td>
<td>5,67</td>
<td>3,62</td>
</tr>
<tr>
<td>Persistente Übergewichtige</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>52,87</td>
<td>41,51</td>
<td>-11,37</td>
<td>53,30</td>
<td>43,00</td>
</tr>
<tr>
<td>N</td>
<td>73</td>
<td>73</td>
<td>0</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>SD</td>
<td>15,84</td>
<td>6,16</td>
<td>-9,68</td>
<td>8,79</td>
<td>5,58</td>
</tr>
</tbody>
</table>
Kennwerte der Rumpfbeuge (Rohwerte der Längsschnittprobanden) zur Baseline-Studie (t0) und zur Welle 1 (t1) nach Altersgruppe, Geschlecht und BMI-Entwicklungsgruppen (Gesamt LS N=2138 mit vorliegenden BMI-Werten N=2133)

<table>
<thead>
<tr>
<th>Rumpfbeuge (Fingerspritzenabstand vom Nullniveau (cm))</th>
<th>Gesamt</th>
<th>Altersgruppe 1</th>
<th>Altersgruppe 2</th>
<th>Altersgruppe 3</th>
<th>Altersgruppe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t0</td>
<td>t1</td>
<td>Diff. t1-t0</td>
<td>t0</td>
<td>t1</td>
</tr>
<tr>
<td></td>
<td>4-17 J</td>
<td>10-23 J</td>
<td></td>
<td>4-5 J</td>
<td>6-11 J</td>
</tr>
<tr>
<td>Persistent Normalgewichtige männlich</td>
<td>x</td>
<td>-1,79 -2,43</td>
<td>-0,64</td>
<td>-0,35 -2,64</td>
<td>-1,78 -3,46</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>842 842</td>
<td></td>
<td>228 228</td>
<td>383 383</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>6,59 8,34</td>
<td></td>
<td>5,17 6,87</td>
<td>6,03 8,15</td>
</tr>
<tr>
<td>Zunehmer</td>
<td>x</td>
<td>-0,57 -1,83</td>
<td>-1,26</td>
<td>1,28 -1,43</td>
<td>-0,40 -2,24</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>116 116</td>
<td></td>
<td>32 32</td>
<td>47 47</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>7,40 9,35</td>
<td></td>
<td>5,59 6,45</td>
<td>6,90 9,57</td>
</tr>
<tr>
<td>Abnehmer</td>
<td>x</td>
<td>0,54 2,14</td>
<td>1,60</td>
<td>4,33 8,33</td>
<td>0,13 -2,81</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>24 24</td>
<td></td>
<td>3 3</td>
<td>8 8</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>5,71 7,77</td>
<td></td>
<td>4,04 1,26</td>
<td>5,06 6,11</td>
</tr>
<tr>
<td>Persistent Übergewichtige männlich</td>
<td>x</td>
<td>-2,73 -1,50</td>
<td>1,23</td>
<td>-0,57 -1,90</td>
<td>-3,59 -1,04</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>68 68</td>
<td></td>
<td>14 14</td>
<td>32 32</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>7,51 8,97</td>
<td></td>
<td>6,62 6,81</td>
<td>7,28 8,57</td>
</tr>
<tr>
<td>Persistent Übergewichtige weiblich</td>
<td>x</td>
<td>1,97 3,35</td>
<td>1,38</td>
<td>2,30 2,41</td>
<td>1,84 3,91</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>891 891</td>
<td></td>
<td>250 250</td>
<td>402 402</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>6,84 8,90</td>
<td></td>
<td>5,25 7,52</td>
<td>6,47 9,14</td>
</tr>
<tr>
<td>Zunehmer</td>
<td>x</td>
<td>1,65 3,47</td>
<td>1,81</td>
<td>1,21 0,42</td>
<td>1,03 3,07</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>83 83</td>
<td></td>
<td>24 24</td>
<td>32 32</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>6,74 8,36</td>
<td></td>
<td>5,19 8,78</td>
<td>6,41 8,58</td>
</tr>
<tr>
<td>Abnehmer</td>
<td>x</td>
<td>1,94 5,11</td>
<td>3,17</td>
<td>3,11 4,91</td>
<td>1,74 6,17</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>39 39</td>
<td></td>
<td>9 9</td>
<td>23 23</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>7,29 8,78</td>
<td></td>
<td>4,08 3,91</td>
<td>7,50 9,13</td>
</tr>
<tr>
<td>Persistent Übergewichtige weiblich</td>
<td>x</td>
<td>1,06 1,89</td>
<td>0,83</td>
<td>2,27 3,64</td>
<td>1,33 3,65</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>70 70</td>
<td></td>
<td>11 11</td>
<td>24 24</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>9,44 9,96</td>
<td></td>
<td>9,54 5,81</td>
<td>6,51 9,11</td>
</tr>
</tbody>
</table>
IX. Erklärung

Hiermit versichere ich, dass die vorgelegte Dissertation mit dem Thema

„Entwicklung und Einflussfaktoren der Entwicklung der motorischen Leistungsfähigkeit im Kindes- und Jugendalter

-Befunde der MoMo-Längsschnittstudie“

von mir selbst und ohne jede unerlaubte Hilfe und Hilfsmitteln angefertigt wurde, dass sie noch keiner anderen Stelle zur Prüfung vorgelegen hat und dass sie weder ganz noch im Auszug veröffentlicht worden ist.

Die Stellen der Arbeit einschließlich Tabellen, Abbildungen usw., die anderen Werken dem Wortlaut oder dem Sinn entnommen sind, habe ich in jedem Fall als Entlehnung kenntlich gemacht und die Herkunft nachgewiesen.

Karlsruhe den 10.10.2015
Claudia Albrecht