INDEX

CHASSIS.TECH PLUS SECTION

KEYNOTE LECTURES I

Chassis design at Porsche – latest developments and challenges for the future
Dr. Manfred Harrer, M. Höll, U. Reuter, Dr. C. Hoffmann, Dr. Ing. h.c. F. Porsche AG

20 years Hyundai Motor Europe Technical Center – the improvement of Hyundai’s and Kia’s performance to meet customers’ expectations
Dr. Moo Sang Kim, Hyundai Motor Europe Technical Center GmbH

Changing with the times – developing chassis for the future of transportation and customer mobility
Charles J. Klein, Dr. V. Held, Adam Opel AG

KEYNOTE LECTURES II

All-new NSX chassis technologies deliver a New Sports eXperience
Ted Klaus, Honda R&D Americas, Inc.

From sports cars to full size SUV’s – how does JLR engineer chassis systems to meet this wide range of customer requirements
George Sherrey, Guy Sutton, Jaguar Land Rover Limited, UK

Test procedure at auto motor und sport – from A to Z
Jochen Albig, Motor Presse Stuttgart GmbH & Co. KG
KEYNOTE LECTURES III

Bentley Bentayga – chassis development for a luxury SUV 43
Keith Sharp, S. Clarke, M. Peel, A. Unsworth, B. Moritz,
Bentley Motors Limited, UK

Steering system solutions today and in the future 63
Alexander Gaedke, Dr. R. Greul,
Robert Bosch Automotive Steering GmbH

Future sheer driving pleasure – 65
making highly automated driving a reality
Reiner Friedrich, BMW Group
PARALLEL STRAND I

NEW CHASSIS SYSTEMS

The all-new PRIUS – creating ever-better chassis of Toyota New Global Architecture (TNGA)
Katsutoshi Sakata, M. Yamamoto, T. Gennai, Toyota Motor Corporation, Japan

The chassis of the AUDI R8 e-tron
Dr. Karl-Heinz Meitinger, Dr. H. Glaser, AUDI AG

Born electric – challenges and potentials of new chassis concepts using the example of the BMW i8
Reidar Fleck, BMW Group

NEW CHASSIS SYSTEMS AND METHODS

Electromechanical active roll control – developing the future
Markus Stiegler, D. Reif, R. Beck, Schaeffler Technologies AG & Co. KG; Bernhard Schmidt, BMW Group

Resolving conflicts of goals in complex design processes – application to the design of engine mount systems
Dr. Simon Königs, Dr. M. Zimmermann, BMW Group

Optimizing vehicle dynamics by in-house function development
Dr. Florian Fuhr, Dr. M. Harrer, M. Gantikow, J. Weichert, Dr. Ing. h.c. F. Porsche AG

Benteler-Toe-Correcting-Twistbeam (BTCT) – extended usage of twistbeam axles
Dr. Erik Schultz, W. Linnig, BENTELER Automobiltechnik GmbH
PARALLEL STRAND II

SIMULATION

Efficient MBS modeling of commercial vehicle for vertical dynamics and handling simulations
Tobias Winkler, K. Vemireddy, Prof. Dr. L. Eckstein, Institute for Automotive Engineering (ika), RWTH Aachen University

Advanced ride simulation framework for ride comfort optimization
Dr. Friedrich Wolf-Monheim, J. Palandri, Dr. P. Zandbergen, B. Reff, Ford Forschungszentrum Aachen GmbH

Application of stochastic modeling and simulation to vehicle system dynamics
Simon Schmeiler, M. Rowold, Prof. Dr. M. Lienkamp, Institute of Automotive Technology (FTM), TU Munich; Dr. F. Chucholowski, TESIS DYNAware Technische Simulation Dynamischer Systeme GmbH

VEHICLE HANDLING OPTIMIZATION AND CONTROL

Continuous development of steering feel using objective and model-based methods
Dr. Hans-Michael Koegeler, J. Ecker, B. Schick, AVL List GmbH, Austria

New approach for improvement of the vehicle performance by using a simulation-based optimization and evaluation method
Martin Heiderich, Honda R&D Europe (Deutschland) GmbH; T. Friedrich, Honda Research Institute Europe GmbH; M.-T. Nguyen, Institute for Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart

Fail-operational chassis for highly and fully automated trucks
Dr. Bastian Witte, Volkswagen AG; Dr. M. Rothhämel, Scania CA AB; B. Oldemeyer, MAN Truck & Bus AG; Dr. O. Wulf, Dr. R. Otremba, WABCO Development GmbH; M. Lichtenstein, L. Wülbeck, tedrive Steering Systems GmbH

Electrification of the torque-vectoring system to improve vehicle driving dynamics
Solmaz Rahimi Fetra, S. Teufel, Dr. Ing. h. c. F. Porsche AG; Prof. Dr. D. Schramm, Mechatronics, University of Duisburg-Essen
CHASSIS.TECH SECTION

CHASSIS ARCHITECTURES

A concept for optimal design of automotive chassis architectures
Paul Tobe Ubben, Dr. J. Haug, Daimler AG; Prof. Dr. D. Bestle, Engineering Mechanics and Vehicle Dynamics, BTU Cottbus-Senftenberg

Electronic chassis platform – highly integrated ECU for chassis control functions
Dr. Jürgen Schuller, M. Buhlmann, A. Juling, Dr. R. Schwarz, S. Schmid, AUDI AG

Partitioning of cross-domain functions
Markus Schweiker, Dr. T. Huck, Robert Bosch GmbH

SIMULATORS

Integration of the real measurement data into the DVRS
Alexander Hafner, A. Sonka, Dr. R. Henze, Prof. Dr. F. Küçükay, Institute of Automotive Engineering (IAE), TU Braunschweig

Designing steering feel dynamics using a real-time steering simulator
Kazuhiro Inaba, M. Kousou, T. Niihara, Showa Corporation, Japan

‘auto.mobile-driving simulator’ – suspensions design of a wheel-based driving simulator
Thomas Tüschen, F. Kocksch, Dr. D. Beitelschmidt, Prof. Dr. G. Prokop, Institute for Automotive Engineering Dresden (IAD), TU Dresden
COMPONENTS OF THE CHASSIS

The new multi-chamber air spring by Porsche – future innovation in chassis mechatronics and integration
Markus Gantikow, E. Boyraz, N. Kallert, R. Legierski,
Dr. Ing. h.c. F. Porsche AG

Automated computational synthesis of suspension mechanisms – new design paradigm
Suh In Kim, S. W. Kang, S. M. Han, Prof. Y. Y. Kim Ph.D,
Seoul National University, South Korea; Y.-S. Yi Ph.D, J. Park Ph.D,
Hyundai Motor Company, South Korea

How to improve a 120-year-old machinery element?
Dr. Manfred Kraus, Schaeffler Technologies AG & Co. KG
STEERING.TECH SECTION

HIGHLY AUTOMATED DRIVING

Potential of wheel-individual brake interventions as a backup for steering system failures during automated driving
Andreas Gauger, A. Kern, J. Feinauer, S. Kanngießer, Dr. R. Greul, Robert Bosch GmbH

Detection of the driver’s hand on and off the steering wheel for ADAS and autonomous driving
Maxime Moreillon, T. Tamura, JTEKT Corporation, Japan; Dr. R. Fuchs, EU Representative Office of JTEKT R&D Centre, France

Steering wheel, the central interface between driver and vehicle in case of autonomous driving
Roland Grimm, A. Meyer-Damcke, TAKATA AG

FUNCTIONAL SAFETY

Method for providing assist in an electric power steering system without a torque sensor
Anthony Champagne, Tejas Varunjikar, T. Kaufmann, Nexteer Automotive, USA

Safety-relevant in-house software development at Ford Steering
Dr. Thorsten Hestermeyer, W. Bongarth, Ford-Werke GmbH

Simulation support for EPS functional safety validation
Dr. Ádám Varga, I. Szepessy, G. Bohner, Dr. I. Benyó, ThyssenKrupp Presta Hungary Kft.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEERING FEEL AND STEER-BY-WIRE</td>
<td></td>
</tr>
<tr>
<td>Steering feel in heavy trucks – a driver-oriented approach</td>
<td>575</td>
</tr>
<tr>
<td>to evaluate different configurations of steering support</td>
<td></td>
</tr>
<tr>
<td>Alisa Boller, K. Striegel, F. Preuß, E. Wohlfarth, Daimler AG</td>
<td></td>
</tr>
<tr>
<td>Steering feel design based on the driver's perceived value</td>
<td>595</td>
</tr>
<tr>
<td>of steering reaction force</td>
<td></td>
</tr>
<tr>
<td>Kimiaki Ono, I. Kushiro, Toyota Motor Corporation, Japan;</td>
<td></td>
</tr>
<tr>
<td>D. Yamada, Toyota Central Research</td>
<td></td>
</tr>
<tr>
<td>and Development Laboratory, Inc., Japan;</td>
<td></td>
</tr>
<tr>
<td>T. Tomita, JTEKT Corporation, Japan</td>
<td></td>
</tr>
<tr>
<td>Design of an energy-efficient front axle for a wheel-individual</td>
<td>617</td>
</tr>
<tr>
<td>steer-by-wire system illustrated by the SpeedE research vehicle</td>
<td></td>
</tr>
<tr>
<td>Benjamin Schwarz, Prof. Dr. L. Eckstein,</td>
<td></td>
</tr>
<tr>
<td>Institute for Automotive Engineering (ika), RWTH Aachen University</td>
<td></td>
</tr>
</tbody>
</table>
BRAKE.TECH SECTION

BRAKE DEVELOPMENT METHODS

Topology optimization of a brake caliper and upright of a race car 655
Prof. Dr. Giampiero Mastinu, F. Ballo Ph.D, Prof. M. Gobbi Ph.D,
Department of Mechanical Engineering, Politecnico di Milano, Italy;
R. Arienti, C. Cantoni, R. Passoni, Brembo S.p.A., Italy

Braking circuit simulation on a hardware-in-the-loop test bench – 669
a first step to complete virtual testing
Karl Michael Hahn, S. Lago Places, Adam Opel AG; Dr. M. Alirand,
Siemens Industry Software S.A.S., France

Braking comfort checks on the inertia dynamometer 693
Helmut Schlitz, Daimler AG

FUTURE BRAKE SYSTEMS AND TECHNOLOGIES

MK C1® – Continental’s brake system for future vehicle concepts 717
Roman Büchler, J. Zimmermann, Continental Teves AG & Co. oHG

Porsche stopping distance performance, 725
an interdisciplinary goal
Lukas Kroh, Dr. Ing. h.c. F. Porsche AG

Redundancy concepts for brake and CV steering 757
in highly automated commercial vehicles
Dr. Falk Hecker, Knorr-Bremse Systeme für Nutzfahrzeuge GmbH
NEW REQUIREMENTS AND SOLUTIONS IN BRAKE DEVELOPMENT

New challenges for brake systems in prototype vehicles targeting highly automated driving
Kevin Meuer, P. Jöllenbeck, Dr. V. van Lier, Continental Engineering Services GmbH

Maximization of electric brake torque through hybrid adaptive model control
Franz Dahlke, P. Bortolussi, Dr. Ing. h. c. F. Porsche AG; Prof. Dr. D. Schramm, Mechatronics, University of Duisburg-Essen

New brake system products – with VDA interface ready for the future
Dr. Stefan Strengert, T. Spöri, W. Lu, Dr. M. Schwab, N. Hägele, Robert Bosch GmbH
TIRE.WHEEL.TECH SECTION

TIRE TECHNOLOGY AND TRENDS

Trends and challenges from OEMs to tire development and current implementation strategies 819
Alessandra Ferraris, B. Heilmann,
Continental Reifen Deutschland GmbH

The next game-changing innovation in tire technology 833
Pierfrancesco Triboulet, Marco del Duca,
Bridgestone Technical Center Europe S.p.A., Italy

Increasing the accuracy of tire performance in vehicle dynamics simulations using tire models parameterized with real road test data 843
Christian H. Carrillo Vásquez, Prof. Dr. L. Eckstein,
Institute for Automotive Engineering (ika), RWTH Aachen University

SIMULATION

Methodology for the analysis of tire performance when passing through ruts 867
Jan Kubenz, P. Sarkisov, Prof. Dr. G. Prokop,
Institute for Automotive Engineering Dresden (IAD), TU Dresden;
Dr. R. Mundl, Institute for Mechanics and Mechatronics,
TU Vienna, Austria

Simulation of a tire blow-out in a full vehicle scenario 869
Francesco Calabrese, Dr. M. Bäcker, A. Gallrein,
Fraunhofer Institute for Industrial Mathematics (ITWM);
Dr. G. Leister, Daimler AG

Improved prediction of tire cornering force and moment by using nonlinear viscoelasticity and transient thermal analysis through explicit FEM 899
Jung Chan Cho, J. Y. Huh, Hankook Tire R&D Center, South Korea
FUTURE TECHNOLOGY

Development of ologic™ technology for enhanced adoptability 903
Isao Kuwayama Ph.D, H. Matsumoto, T. Saguchi,
Bridgestone Corporation, Japan

New paint layer concepts protecting bright machined 925
light alloy rim surfaces against corrosion
Anne Gailberger, Daimler AG

Road condition classification using information fusion 939
Waldemar Jarisa, B. Schönemann, T. Meister, Dr. R. Henze,
Prof. Dr. F. Küçükay, Institute of Automotive Engineering (IAE),
TU Braunschweig; B. Hartmann, Continental AG