Contents

Preface xiii

1 Introduction 1
 1.1 Microfluidics and Its Superiority in Controllable Fabrication of Functional Materials 1
 1.2 Microfluidic Fabrication of Microspheres and Microcapsules from Microscale Closed Liquid–Liquid Interfaces 3
 1.3 Microfluidic Fabrication of Membranes in Microchannels from Microscale Nonclosed Layered Laminar Interfaces 4
 1.4 Microfluidic Fabrication of Microfiber Materials from Microscale Nonclosed Annular Laminar Interfaces 5
 References 6

2 Shear-Induced Generation of Controllable Multiple Emulsions in Microfluidic Devices 11
 2.1 Introduction 11
 2.2 Microfluidic Strategy for Shear-Induced Generation of Controllable Emulsion Droplets 12
 2.3 Shear-Induced Generation of Controllable Monodisperse Single Emulsions 14
 2.4 Shear-Induced Generation of Controllable Multiple Emulsions 16
 2.4.1 Shear-Induced Generation of Controllable Double Emulsions 16
 2.4.2 Shear-Induced Generation of Controllable Triple Emulsions 19
 2.5 Shear-Induced Generation of Controllable Multicomponent Multiple Emulsions 22
 2.5.1 Shear-Induced Generation of Controllable Quadruple-Component Double Emulsions 22
 2.5.2 Extended Microfluidic Device for Controllable Generation of More Complex Multicomponent Multiple Emulsions 27
 2.6 Summary 31
 References 31
Wetting-Induced Generation of Controllable Multiple Emulsions in Microfluidic Devices 35

3.1 Introduction 35

3.2 Microfluidic Strategy for Wetting-Induced Production of Controllable Emulsions 36

3.2.1 Strategy for Wetting-Induced Production of Controllable Emulsions via Wetting-Induced Spreading 36

3.2.2 Strategy for Wetting-Induced Production of Controllable Emulsions via Wetting-Induced Coalescing 37

3.3 Generation of Controllable Multiple Emulsions via Wetting-Induced Spreading 38

3.3.1 Wetting-Induced Generation of Monodisperse Controllable Double Emulsions 38

3.3.2 Wetting-Induced Generation of Monodisperse Higher Order Multiple Emulsions 41

3.3.3 Wetting-Induced Generation of Monodisperse Multiple Emulsions via Droplet-Triggered Droplet Pairing 44

3.4 Generation of Controllable Multiple Emulsions via Wetting-Induced Droplet Coalescing 47

3.5 Summary 50

References 52

Microfluidic Fabrication of Monodisperse Hydrogel Microparticles 55

4.1 Introduction 55

4.2 Microfluidic Fabrication of Monodisperse PNIPAM Hydrogel Microparticles for Sensing Tannic Acid (TA) 55

4.2.1 Microfluidic Fabrication of Monodisperse PNIPAM Hydrogel Microparticles 56

4.2.2 Volume-Phase Transition Behaviors of PNIPAM Microgels Induced by TA 57

4.3 Microfluidic Fabrication of Monodisperse Core–Shell PNIPAM Hydrogel Microparticles for Sensing Ethyl Gallate (EG) 62

4.3.1 Microfluidic Fabrication of Monodisperse Core–Shell PNIPAM Hydrogel Microparticles 62

4.3.2 Thermo-Responsive Phase Transition Behaviors of PNIPAM Microspheres in EG Solution 65

4.3.3 The Intact-to-Broken Transformation Behaviors of Core–Shell PNIPAM Microcapsules in Aqueous Solution with Varying EG Concentrations 65

4.4 Microfluidic Fabrication of Monodisperse Core–Shell Hydrogel Microparticles for the Adsorption and Separation of Pb^{2+} 67

4.4.1 Microfluidic Fabrication of Monodisperse Core–Shell Microparticles with Magnetic Core and Hydrogel Shell 68
4.4.2 Pb$^{2+}$ Adsorption Behaviors of Magnetic PNB Core–Shell Microspheres 71
4.5 Summary 75
References 76

5 Microfluidic Fabrication of Monodisperse Porous Microparticles 79
5.1 Introduction 79
5.2 Microfluidic Fabrication of Monodisperse Porous Poly(HEMA-MMA) Microparticles 79
5.2.1 Microfluidic Fabrication Strategy 80
5.2.2 Structures of Poly(HEMA-MMA) Porous Microspheres 82
5.3 Microfluidic Fabrication of Porous PNIPAM Microparticles with Tunable Response Behaviors 83
5.3.1 Microfluidic Fabrication Strategy 86
5.3.2 Tunable Response Behaviors of Porous PNIPAM Microparticles 87
5.4 Microfluidic Fabrication of PNIPAM Microparticles with Open-Celled Porous Structure for Fast Response 90
5.4.1 Microfluidic Fabrication Strategy 91
5.4.2 Morphologies and Microstructures of Porous PNIPAM Microparticles 93
5.4.3 Thermo-Responsive Volume Change Behaviors of PNIPAM Porous Microparticles 98
5.5 Summary 103
References 103

6 Microfluidic Fabrication of Uniform Hierarchical Porous Microparticles 105
6.1 Introduction 105
6.2 Microfluidic Strategy for Fabrication of Uniform Hierarchical Porous Microparticles 106
6.3 Controllable Microfluidic Fabrication of Uniform Hierarchical Porous Microparticles 108
6.3.1 Preparation of Hierarchical Porous Microparticles 108
6.3.2 Hierarchical Porous Microparticles with Micrometer-Sized Pores from Deformed W/O/W Emulsions 108
6.3.3 Integration of Nanometer- and Micrometer-Sized Pores for Creating Hierarchical Porous Microparticles 111
6.4 Hierarchical Porous Microparticles for Oil Removal 114
6.4.1 Concept of the Hierarchical Porous Microparticles for Oil Removal 114
6.4.2 Hierarchical Porous Microparticles for Magnetic-Guided Oil Removal 115
6.5 Hierarchical Porous Microparticles for Protein Adsorption 116
6.5.1 Concept of Hierarchical Porous Microparticles for Protein Adsorption 116
6.5.2 Hierarchical Porous Microparticles for Enhanced Protein Adsorption 117
6.6 Summary 118
References 118

7 Microfluidic Fabrication of Monodisperse Hollow Microcapsules 123
 7.1 Introduction 123
 7.2 Microfluidic Fabrication of Monodisperse Ethyl Cellulose Hollow Microcapsules 124
 7.2.1 Microfluidic Fabrication Strategy 124
 7.2.2 Morphologies and Structures of Ethyl Cellulose Hollow Microcapsules 125
 7.3 Microfluidic Fabrication of Monodisperse Calcium Alginate Hollow Microcapsules 131
 7.3.1 Microfluidic Fabrication Strategy 132
 7.3.2 Morphologies and Structures of Calcium Alginate Hollow Microcapsules 133
 7.4 Microfluidic Fabrication of Monodisperse Glucose-Responsive Hollow Microcapsules 136
 7.4.1 Microfluidic Fabrication Strategy 136
 7.4.2 Glucose-Responsive Behaviors of Microcapsules 140
 7.4.3 Glucose-Responsive Drug Release Behaviors of Microcapsules 142
 7.5 Microfluidic Fabrication of Monodisperse Multi-Stimuli-Responsive Hollow Microcapsules 144
 7.5.1 Microfluidic Fabrication Strategy 145
 7.5.2 Stimuli-Responsive Behaviors of Microcapsules 150
 7.5.3 Controlled-Release Characteristics of Multi-Stimuli-Responsive Microcapsules 154
 7.6 Summary 158
 References 158

8 Microfluidic Fabrication of Monodisperse Core–Shell Microcapsules 161
 8.1 Introduction 161
 8.2 Microfluidic Strategy for Fabrication of Monodisperse Core–Shell Microcapsules 162
 8.3 Smart Core–Shell Microcapsules for Thermo-Triggered Burst Release 162
 8.3.1 Fabrication of Core–Shell Microcapsules for Thermo-Triggered Burst Release of Oil-Soluble Substances 162
 8.3.2 Fabrication of Core–Shell Microcapsules for Thermo-Triggered Burst Release of Nanoparticles 166
 8.3.3 Fabrication of Core–Shell Microcapsules for Direction-Specific Thermo-Responsive Burst Release 168
8.4 Smart Core–Shell Microcapsules for Alcohol-Responsive Burst Release 171
8.5 Smart Core–Shell Microcapsules for K⁺-Responsive Burst Release 174
8.6 Smart Core–Shell Microcapsules for pH-Responsive Burst Release 176
8.6.1 Concept of the Core–Shell Microcapsules for pH-Responsive Burst Release 176
8.6.2 Fabrication of the Core–Shell Chitosan Microcapsules 177
8.6.3 Core–Shell Chitosan Microcapsules for pH-Responsive Burst Release 179
8.7 Summary 182
References 183

9 Microfluidic Fabrication of Monodisperse Hole–Shell Microparticles 187
9.1 Introduction 187
9.2 Microfluidic Strategy for Fabrication of Monodisperse Hole–Shell Microparticles 188
9.3 Hole–Shell Microparticles for Thermo-Driven Crawling Movement 188
9.3.1 Concept of the Hole–Shell Microparticles for Thermo-Driven Crawling Movement 188
9.3.2 Fabrication of Hole–Shell Microparticles for Thermo-Driven Crawling Movement 190
9.3.3 Effect of Inner Cavity on the Thermo-Responsive Volume-Phase Transition Behaviors of Hole–Shell Microparticles 191
9.3.4 Hole–Shell Microparticles for Thermo-Driven Crawling Movement 193
9.4 Hole–Shell Microparticles for Pb²⁺ Sensing and Actuating 195
9.4.1 Fabrication of Hole–Shell Microparticles for Pb²⁺ Sensing and Actuating 195
9.4.2 Magnetic-Guided Targeting Behavior of Poly(NIPAM-co-B18C6Am) Hole–Shell Microparticles 195
9.4.3 Effects of Pb²⁺ on the Thermo-Responsive Volume Change Behaviors of Poly(NIPAM-co-B18C6Am) Hole–Shell Microparticles 196
9.4.4 Effects of Hollow Cavity on the Time-Dependent Volume Change Behaviors of Poly(NIPAM-co-B18C6Am) Hole–Shell Microparticles 199
9.4.5 Micromanipulation of Poly(NIPAM-co-B18C6Am) Hole–Shell Microparticles for Preventing Pb²⁺ Leakage from Microcapillary 200
9.5 Hole–Shell Microparticles for Controlled Capture and Confined Microreaction 201
9.5.1 Microfluidic Fabrication of Hole–Shell Microparticles 201
9.5.2 Precise Control over the Hole–Shell Structure of the Microparticles 203
9.5.3 Precise Control over the Functionality of Hollow Core Surface 205
9.5.4 Hole-Shell Microparticles for Controlled Capture and Confined Microreaction 206

9.6 Summary 207

References 207

10 Microfluidic Fabrication of Controllable Multicompartmental Microparticles 211

10.1 Introduction 211

10.2 Microfluidic Strategy for the Fabrication of Controllable Multicompartimental Microparticles 212

10.3 Multi-core/Shell Microparticles for Co-encapsulation and Synergistic Release 212

10.3.1 Microfluidic Fabrication of Multi-core/Shell Microparticles 212

10.3.2 Multi-core/Shell Microparticles for Controllable Co-encapsulation 213

10.3.3 Multi-core/Shell Microparticles for Synergistic Release 216

10.4 Trojan-Horse-Like Microparticles for Co-delivery and Programmed Release 217

10.4.1 Fabrication of Trojan-Horse-Like Microparticles from Triple Emulsions 217

10.5 Summary 218

References 219

11 Microfluidic Fabrication of Functional Microfibers with Controllable Internals 223

11.1 Introduction 223

11.2 Microfluidic Strategy for Fabrication of Functional Microfibers with Controllable Internals 224

11.3 Core-Sheath Microfibers with Tubular Internals for Encapsulation of Phase Change Materials 224

11.3.1 Fabrication of Core-Sheath Microfibers with Tubular Internals 224

11.3.2 Morphological Characterization of the Core-Sheath Microfibers 227

11.3.3 Thermal Property of the Core-Sheath Microfibers 227

11.3.4 Core-Sheath Microfibers for Temperature Regulation 230

11.4 Peapod-Like Microfibers with Multicompartimental Internals for Synergistic Encapsulation 235

11.4.1 Fabrication of Peapod-Like Microfibers with Multicompartimental Internals 236

11.4.2 Effects of Flow Rates on the Structures of Peapod-Like Jet Templates and Chitosan Microfibers 236

11.4.3 Peapod-Like Chitosan Microfibers with Multicompartement Internals for Synergistic Encapsulation 240

11.5 Spider-Silk-Like Microfibers with Spindle-Knot Internals for 3D Assembly and Water Collection 241

11.5.1 Fabrication of Spider-Silk-Like Microfibers with Spindle-Knot Internals 241
11.5.2 Morphological Characterization of the Jet Templates and Spider-Silk-Like Microfibers 242
11.5.3 Magnetic-Guided Patterning and Assembling of the Ca-Alginate Microfibers 244
11.5.4 Water Collection of Dehydrated Ca-Alginate Microfibers with Magnetic Spindle-Knot Internals 246
11.6 Summary 248
References 248

12 Microfluidic Fabrication of Membrane-in-a-Chip with Self-Regulated Permeability 253
12.1 Introduction 253
12.2 Microfluidic Strategy for Fabrication of Membrane-in-a-Chip 254
12.3 Temperature- and Ethanol-Responsive Smart Membrane in Microchip for Detection 255
12.3.1 Fabrication of Nanogel-Containing Smart Membrane in Microchip 255
12.3.2 Temperature-Responsive Self-Regulation of the Membrane Permeability 257
12.3.3 Ethanol-Responsive Self-Regulation of the Membrane Permeability 260
12.3.4 Reversible and Repeated Thermo/Ethanol-Responsive Self-Regulation of the Membrane Permeability 263
12.4 Summary 264
References 264

13 Microfluidic Fabrication of Microvalve-in-a-Chip 267
13.1 Introduction 267
13.2 Microfluidic Strategy for Fabrication of Microvalve-in-a-Chip 268
13.2.1 Fabrication of Thermo-Responsive Hydrogel Microvalve within Microchip for Thermostatic Control 268
13.2.2 Fabrication of Pb²⁺-Responsive Hydrogel Microvalve within Microchip for Pb²⁺ Detection 270
13.3 Smart Microvalve-in-a-Chip with Thermostatic Control for Cell Culture 272
13.3.1 Setup of Microvalve-Integrated Micro-heat-Exchanging System 273
13.3.2 Thermo-Responsive Switch Performance of Hydrogel Microvalve 274
13.3.3 Sealing Performance of Hydrogel Microvalve 276
13.3.4 Temperature Self-Regulation of Hydrogel Microvalve for Thermostatic Control 277
13.3.5 Temperature Self-Regulation with Hydrogel Microvalve for Cell Culture 279
13.4 Smart Microvalve-in-a-Chip with Ultrasensitivity for Real-Time Detection 281
13.4.1 Concept of the Microchip Incorporated with Pb²⁺-Responsive Microgel for Real-Time Online Detection of Trace Pb²⁺ 281
13.4.2 Sensitivity of the Pb²⁺ Detection Platform 283
13.4.3 Selectivity and Repeatability of the Pb\(^{2+}\) Detection Platform 284
13.4.4 Setup of Pb\(^{2+}\) Detection System for Real-Time Online Detection of Pb\(^{2+}\) in Tap Water for Pollution Warning 287
13.4.5 Setup of Pb\(^{2+}\) Detection System for Real-Time Online Detection of Pb\(^{2+}\) in Wastewater from a Model Industrial Factory for Pollution Warning and Terminating 289
13.5 Summary 289
References 289

14 Summary and Perspective 295
14.1 Summary 295
14.2 Perspective 295
References 297

Index 299