4.3 Trace Gas Sampling — 46
4.3.1 General Remarks — 46
4.3.2 Gas Grab Sampling — 47
4.4 Rain, Surface Water and Particulate Matter Sampling — 48
4.4.1 General Remarks — 48
4.4.2 Rain — 49
4.4.3 Surface Water, Deep Water, Groundwater — 50
4.4.4 Particulate Matter Sampling — 52
4.5 Soil and Sediment Sampling — 54
4.5.1 General Remarks — 54
4.5.2 Soil — 55
4.5.3 Sediment — 57
4.6 Diffusion Sampling (Passive Sampling) — 58
4.7 Sampling of Colloidal Matter (Hydrosol, Aerosol) — 62
4.7.1 General Remarks — 62
4.7.2 Hydrosol Sampling — 63
4.7.3 Aerosol Sampling — 67
4.8 Sources for Artifact Formation — 69
4.8.1 General Remarks — 69
4.8.2 Sources of Artifacts — 69
Further Reading — 71
Bibliography — 71

5 Sample Treatment Before Analysis — 76
5.1 General Remarks — 76
5.2 Sample Pretreatment (Stabilization and Storage) — 76
Bibliography — 78

6 Enrichment and Sample Cleanup — 79
6.1 General Remarks — 79
6.2 Liquid Samples (Water, Body Fluids, Beverages) — 79
6.2.1 Liquid—Liquid Extraction — 79
6.2.2 Pre-concentration after LLE (Evaporation, Freeze-Drying) — 81
6.2.3 Solid-phase Extraction — 83
6.2.4 Solid-phase Microextraction — 87
6.2.5 Dispersive liquid—liquid microextraction — 89
6.2.6 Micellar Extraction — 90
6.2.7 Headspace Extraction — 92
6.2.8 Purge and Trap Extraction — 93
6.3 Solid Samples (Particulate Matter, Soil, Sediment, Plant and Animal Material) — 94
6.3.1 Solid—Liquid Extraction — 95
6.3.2 Assisted Solid–Liquid Extraction (Soxhlet, ASE, Microwave Extraction, Ultrasonication, Supercritical Fluid Extraction) — 97
6.3.3 Enzymatic Digestion — 106
6.3.4 Non-extractable Residues — 107
6.3.5 Steam Distillation — 108
6.3.6 Size Fractionation of Dispersed Solid Matter — 110
6.4 Gaseous Samples and Aerosols — 113
6.4.1 General Remarks — 113
6.4.2 Liquid Absorption of Trace Gases — 113
6.4.3 Solid Adsorption of Trace Gases — 114
6.4.4 Filtration — 115
6.4.5 Diffusion Sampling (Denuder Sampling) — 117
6.4.6 Sampling by Condensation — 119
6.4.7 Size-Resolved Particle (Aerosol) Sampling — 120
Further Reading — 123
Bibliography — 125

7 Chromatography — 129
7.1 General Remarks — 129
7.2 Chromatographic Separation — 130
7.2.1 Adsorption Chromatography — 133
7.2.2 Ion-Exchange Chromatography — 135
7.2.3 Size-Exclusion Chromatography — 137
7.3 Basics and Working Principles — 139
7.3.1 Parameters to Achieve Best Resolving Power — 140
7.3.2 General Recommendations — 144
7.4 High-Performance Liquid Chromatography — 145
7.4.1 General Information — 145
7.4.2 Mobile Phase (HPLC) — 145
7.4.3 Stationary-Phase Materials — 151
7.4.4 Columns — 156
7.4.5 HPLC Detectors — 158
7.4.6 Separation Parameters in HPLC — 168
7.4.7 Derivatization Methods (Pre-Column, Post-Column) in HPLC — 170
7.4.8 Hyphenated Techniques (HPLC–MS, HPLC-NMR) — 173
7.5 Gas chromatography — 176
7.5.1 General Remarks — 176
7.5.2 Separation Columns and Stationary Phases (GC) — 177
7.5.3 Mobile Phase — 179
7.5.4 Isothermal versus Temperature-Programmed GC — 181
7.5.5 Injection Techniques for GC — 182
9 Mass Spectrometry — 229
9.1 Introduction — 229
9.2 Basic Equipment — 229
9.3 Ionization in MS — 230
9.3.1 Hard Ionization by Electron Impact — 231
9.3.2 Soft Ionization — 232
9.4 Separation of m/z Species — 239
9.4.1 One-Dimensional Mass Separation — 239
9.4.2 Two-Dimensional Mass Separation — 241
9.4.3 Three-Dimensional Mass Separation by Ion Trap MS — 244
9.5 Molecular Imaging by MS — 247
Further Reading — 247
Bibliography — 248

10 Receptor-based Bioanalysis for Mass Screening — 250
10.1 General Remarks — 250
10.2 Natural Receptors (Enzymes and Antibodies) — 251
10.3 Working Principle of Enzymes (Enzymatic Catalysis, Enzymatic Inhibition) — 252
10.4 Working Principle of Antibodies (IA, Test Format, Microarray, Dip Stick) — 254
10.5 Principles of Effect-Directed Analysis — 262
Further Reading — 264
Bibliography — 265

11 Selected Applications — 269
11.1 Trace Analysis of Polycyclic Aromatic Hydrocarbons (PAHs) — 269
11.1.1 General Remarks (Occurrence, Physical and Chemical Properties) — 269
11.1.2 Sampling Strategies for PAHs (Water, Air, Soil, Body Fluids) — 271
11.1.3 Wet-chemical Analysis (HPLC, Thin-layer Chromatography) — 278
11.1.4 GC Analysis of PAH — 282
11.1.5 Immunological Bioanalysis of PAHs — 284
11.1.6 In situ PAH Analysis by Spectroscopic Techniques (Laser Fluorescence, Photoelectron Emission) — 288
11.2 Polychlorinated Biphenyls, Dibenzo-dioxins and -Furans — 293
11.2.1 General Remarks on Occurrence and Importance — 293
11.2.2 Sampling Strategies for Polyhalogenated Aromatic Hydrocarbons — 297
11.2.3 GC Analysis of PCDDs/PCDFs and PCBs — 299
11.2.4 Bioanalytical Methods for PCDD/PCDF and PCB Screening — 304
11.3 Organophosphorus Compounds — 310
11.3.1 General Remarks on Occurrence and Importance — 310
11.3.2 Sampling Strategies for OPs (Water, Soil, Air, Body Fluid, Food and Nutraceuticals, Living Tissue) — 314
11.3.3 GC Analysis of OPs — 318
11.3.4 Wet-chemical Analysis of OPs (HPLC–MS, TLC, Capillary Electrophoresis) — 319
11.3.5 Bioanalysis of OPs — 324
Further Reading: Polycyclic Aromatic Hydrocarbons — 334
Further Reading: Polychlorinated Biphenyls (PCBs), Dibenzodioxins (PCDDs) and –Furans (PCDFs) — 335
Further Reading: Organophosphates — 335
Bibliography — 335

List of Abbreviations — 347
Index — 351