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Zusammenfassung Statische Programmanalyse ist eine Technik, um

bestimmte Eigenschaften eines Programms zu beweisen ohne dieses aus-

zuführen. Implementierungen von statischer Analyse zeigen auf einer

Abstraktion eines Programms, dass kein Zustand erreicht werden kann,

der die betrachtete Eigenschaft verletzt. Die Abstraktion entsteht dabei

durch eine Überapproximation der möglichen Ausführungen des Pro-

gramms. Ist in der Abstraktion kein ungewünschter Zustand erreichbar,

kann die statische Analyse garantieren, dass auch in dem ursprünglichen

Programm die Eigenschaft nicht verletzt ist. Obwohl die Analyse formal

zum Nachweis der Korrektheit eines Programms konzipiert ist, wird sie

in der Praxis vor allem zum Finden von Fehlern eingesetzt. Statische

Analyse erlaubt das Finden von Fehlern, die durch Testen nur schwierig

zu finden sind.

Statische Programmanalyse zur Fehlersuche zu verwenden, hat den Nach-

teil, dass auch falsche Warnungen ausgegeben werden. Eine falsche War-

nung tritt dann auf, wenn ein Fehler in der Abstraktion des Programms,

nicht aber in dem ursprünglichen Programm gefunden wird. Falsche

Warnungen entstehen durch den Präzisionsverlust bei der Abstraktion.

Eine falsche Warnung kann eliminiert werden, indem man den Präzi-

sionsverlust vermindert, z.B. durch die Angabe von Invarianten, oder

durch die Verfeinerung der Abstraktion.

Eine weitere Art von durch statische Analyse gefundenen Fehlern, die

als falsche Warnungen angesehen werden, sind Fehler, die auf nicht re-

alistischen Programmeingaben basieren. Statische Analyse zieht alle

möglichen Eingaben eines Programms in Betracht. Soll die statische

Analyse nur eine Teilmenge der Eingaben betrachten, muss man dies

durch eine Vorbedingung spezifizieren. Das Schreiben dieser Vorbe-

dingungen verlangt Erfahrung und ist ein zeitaufwendiger Prozess, da

diese Vorbedingungen zu Beginn der Entwicklung nicht bekannt sind

und oft verfeinert werden müssen. Beide Arten von falsche Warnungen

schränken die Benutzbarkeit von statischer Analyse in der Praxis stark

ein.

Dies führt zu der zentralen Frage dieser Doktorarbeit: Ist es möglich, ein

statisches Analyseverfahren zu entwickeln, das eine nichtleere Menge von

relevanten Fehlern findet, aber nie falsche Warnungen ausgibt (selbst

wenn der Programmierer keine Annotation hinzufügt). Der zentrale

Beitrag der Doktorarbeit ist die konstruktive Antwort auf diese Heraus-

forderung.

Wir führen den Begriff des Doomed Program Points ein. Doomed Pro-



gram Points weisen auf Programmfragmente hin, deren Ausführung not-

wendigerweise zu einem Programmabsturz führt. Das Auftreten eines

Doomed Program Points wird ein Programmierer in keiner Situation

als unwesentlichen Fehler abtun können. Der erste Beitrag dieser Dok-

torarbeit ist zu zeigen, dass der Begriff des Doomed Program Points

präzise gefasst und formal definiert werden kann. Wie wir anschließend

zeigen, treten Doomed Program Points typischerweise während der En-

twicklung der Programme auf. Die Frage ist nun, ob Doomed Program

Points erkannt werden können, automatisch und ohne falsche Warnun-

gen zu erzeugen.

Wir stellen ein Verfahren zur statischen Programmanalyse vor, welches

Doomed Program Points automatisch und präzise erkennt. Das Ver-

fahren ist zum Einsatz durch einen Programmierer während der En-

twicklung gedacht. Es benötigt keine zusätzlichen Angaben durch den

Programmierer, weder in Form einer Annotation, die Invarianten spezi-

fiziert (“assume”), noch in Form einer Annotation, die bestimmte Kor-

rektheitskriterien explizit spezifiziert (“assert”). Es ist aber in der Lage,

Spezifikationen zu berücksichtigen (d.h., Invarianten auszunutzen bzw.

das Programm auf die zusätzlich angegebene Art von Fehlern zu un-

tersuchen). Das Verfahren berechnet eine Garantie in der Form eines

formalen Beweises für die Anwesenheit von Doomed Program Points auf

einer Abstraktion des gegebenen Programms. Gelingt der Beweis auf

der Abstraktion, existiert der Doomed Program Point auch in dem ur-

sprünglichen Programm. Dies bedeutet, dass man die Mächtigkeit der

Abstraktion nicht, wie sonst in der Statischen Programmanalyse, für

die Garantie der Abwesenheit von Fehlern ausnutzt, sondern deren An-

wesenheit. Annotationen können den durch die Abstraktion entstande-

nen Präzisionsverlust vermindern und dadurch die Anzahl der erkannten

Doomed Program Points vergrößern, aber nie verkleinern. Der durch das

Verfahren erbrachte Beweis eines Doomed Program Points bezieht sich

auf die Gesamtmenge der Eingabewerte des Programms; er bleibt gültig

selbst dann, wenn man sie auf eine nichtleere Menge von Eingabewerten

einschränkt. D.h., der Programmierer kann einen Doomed Program

Point nicht eliminieren (und als unwesentlichen Fehler abtun), indem er

einige Eingabewerte ausschließt.

Die Frage ist, ob das oben beschriebene, fundamentale Verfahren für

die Praxis anwendbar gemacht werden kann. Wir geben auch hier eine

positive Antwort. Wir haben unser Verfahren unter Ausnutzung eines

existierenden Frameworks für statische Analyse implementiert. Wir



beschreiben unsere Implementierung und stellen die Optimierungen vor,

die wir hierfür entwickelt haben. Wir beschreiben eine vorläufige Evalu-

ierung unserer Implementierung auf typischen Fehlern, die während der

Entwicklung eines Programms auftreten. Das von uns vorgestellte Ver-

fahren ist nützlich und so einfach in der Anwendung, dass wir hoffen,

dass Programmierer es täglich in ihrer Arbeit benutzen (und sich so für

die Verwendung von Verifikationswerkzeugen ködern lassen).



Abstract Static program analysis is a technique to prove properties

of a program without executing its code. Tools that implement static

analysis show on an abstraction of a given program that no state in this

program violates a user provided property. The abstraction results from

an over-approximation of the set of possible executions of the program.

If no state that violates the desired property can be reached in the

abstraction, static analysis can guarantee that this state will also not be

reached in the original program. Even though, static analysis methods

are meant to prove the correctness of a program, in practice, they are

mostly used to detect errors. Static analysis offers powerful support to

detect even sophisticated errors that are hard to find using testing.

The drawback of using static analysis for error detection is that they

might emit false warnings. A false warning occurs, when a violation of

a property is detected in the abstraction of the program that does not

occur in the original program. False warnings are caused by the loss

of precision during abstraction. False warnings can be eliminated if the

programmer manually refines the abstraction by providing additional

information (e.g., by providing invariants).

A second kind of errors that is considered a false warnings is errors that

occur for unrealistic input values of a program. Static analysis considers

all possible input values of a program. If the analysis is supposed to

consider only certain input values, the programmer has to specify this by

providing preconditions. Specifying preconditions is a time consuming

process. Usually, the precondition has to be refined several times, as the

scope of a method is not clear in the early stages of development. False

warnings of both kinds are a severe limitation to the usability of static

analysis.

This motivates the central research question of this thesis: Is it possi-

ble to develop a static analysis that detects a non-empty set of relevant

program errors but never reports false warnings (neither false warnings

due to abstraction nor false warnings due to weak preconditions)? The

central contribution of this thesis is a constructive answer to this chal-

lenge.

We introduce the concept of doomed program points. Doomed program

points indicate program fragments that inevitably crash on any possible

execution of the program. A programmer can, under no circumstances,

ignore the presence of a doomed program point. The first contribu-

tion of this thesis is that we show that the concept of doomed program

points can be formalized. We show that doomed program points oc-



cur frequently during the coding phase of a program. This leads to the

question if doomed program points can be detected without producing

false warnings.

We present a static analysis that detects doomed program points auto-

matically and precisely, i.e. without emitting false warning. The analysis

does neither require user provided information in terms of annotations

specifying invariants (“assume”) nor in terms of annotations specifying

correctness (“assert”). However, the analysis can make use of specifica-

tion to detect other kinds of errors. The analysis computes a guarantee

in terms of a formal proof for the absence of doomed program points on

an abstraction of the given program. That is, the power of abstraction

is not used, as usually in static analysis, to guarantee the absence of er-

rors, but to guarantee the presence of errors. Annotations can be used

to reduce the loss of precision that is caused by the abstraction and thus

help to increase the detection rate. The proof computed by the analysis

is valid for any input value of the program and is a valid proof for any

non-empty subset of input values. That is, a doomed program point can

never be eliminated (i.e., ignored) by excluding some non-realistic input

values.

We ask if the above mentioned analysis can be realized efficiently. We

give a positive answer and present an implementation that can detect

doomed program points without producing false warnings and without

the need for user interaction. The implementation works without any

user provided information about the pre-state of a method or the in-

variants of a loop. Yet, it supports specification languages to increase

the detection. The implementation is based on existing and established

frameworks for static analysis. We present several optimizations for this

implementation and show that it is applicable in practice. Doomed pro-

gram point detection is an easy-to-use but powerful analysis that can

help to make the use of specification languages and static verifiers more

common in todays software engineering.
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Chapter 1

Introduction

Detecting bugs in software early is crucial to limit the costs of a software project.

Most software engineers consider testing as the most common way to detect

bugs in software and the best way to increase the confidence in the quality of

the source code. But testing and other dynamic analysis require an executable

program which is not available in the early stages of a project. Nowadays, many

tools analyze source code before it is executable. Static checkers, such as type

checkers, data-flow analysis, and static analysis are able to find bugs in source

code before it can be executed. Many of these tools are well established and

accepted. Even though the precision of these tools is limited according to Rice’s

Theorem, programmers trust in their output. Static checking of source code is a

convenient way to detect bugs that can be applied at any stage of development.

However, static checking has to deal with the tradeoff between detection rate

and precision. A high detection rate always comes at the price of imprecise

results, but lowering the detection rate can never completely avoid imprecision.

One approach to static checking is static program analysis. Static program

analysis are techniques to prove properties of a program without executing its

code. Tools that implement these techniques show on an abstraction of the

given program that no state in this program violates a user provided property.

The abstraction refers to the set of possible executions of the program. If

no state that violates the desired property can be reached in the abstraction,

static analysis can guarantee that this state will also not be reached in the

original program. Even though, static analysis methods are meant to prove the

correctness of a program, in practice, they are mostly used to detect errors.

Static analysis offers powerful support to detect even sophisticated errors that

12
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are hard to find using testing.

The drawback of using static analysis for error detection is that they might

emit false warnings. A false warning occurs when a violation of a property is

detected in the abstraction of the program that does not occur in the original

program. False warnings are caused by the loss of precision during abstrac-

tion. False warnings can be eliminated if the programmer manually refines the

abstraction by providing additional information (e.g., by providing invariants).

A second kind of errors that are considered a false warning are errors that

occur for unrealistic input values of a program. Static analysis considers all

possible input values of a program. If the analysis is supposed to consider

only certain input values, the programmer has to specify this by providing

preconditions. Specifying preconditions is a time consuming process. Usually,

the precondition has to be refined several times, as the scope of a method is not

clear in the early stages of development. False warnings, of either of the two

kinds, are a severe limitation to the usability of static analysis.

We hypothesize that a static analysis that is as easy to use and as convenient

as, e.g. the definite assignment analysis used in modern compilers, while deliv-

ering precise and trustworthy results for a considerable larger class of errors can

open a new application area for formal methods. We claim that such a formal

method must (1) detect critical errors; (2) never produce false alarms; (3) work

without user provided information, such as code annotations; (4) support the

use of specification and analyze user provided information that is used by other

verification tools.

This motivates the central research question of this thesis: Is it possible to

develop a static analysis that detects a non-empty set of relevant program errors

but never reports false warnings (neither due because of imprecision nor because

of too weak preconditions )?

We introduce the concept of doomed program points. Doomed program

points indicate program fragments that inevitably crash on any possible exe-

cution of the program. A programmer can, under no circumstances, ignore the

presence of a doomed program point. We illustrate the idea of doomed program

points in Section 3 and show that they are important in practice. The first

contribution of this thesis is that we show that the concept of doomed program

points can be formalized. We give a formal definition of doomed program points

in Chapter 4. We show that doomed program points occur frequently during

the coding phase of a program. This leads to the question if doomed program

points can be detected without producing false warnings.
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We present a static analysis that detects doomed program points in Chap-

ter 5. The analysis works automatically and precisely, i.e. without emitting

false warning. The analysis does neither require user provided information in

terms of annotations specifying invariants (“assume”) nor in terms of annota-

tions specifying correctness (“assert”). However, the analysis can make use of

specification to detect other kinds of errors. The analysis computes a guarantee

in terms of a formal proof for the presence of doomed program points on an

abstraction of the given program. That is, the power of abstraction is not used,

as usually in static analysis, to guarantee the absence of errors, but to guarantee

the presence of errors.

Annotations can be used to reduce the loss of precision that is caused by

the abstraction and thus help to increase the detection rate. The analysis first

computes an abstraction of the program as shown in Chapter 6. For this ab-

straction and a given fragment in the original program, we compute a formula

whose validity implies that the given fragment is doomed (see Chapter 7). The

proof computed by the analysis is valid for any input value of the program and

is a valid proof for any non-empty subset of input values. That is, a doomed

program point can never be eliminated (i.e., there is no way the programmer

can dismiss the indication of a doomed program point) by excluding some non-

realistic input values.

We ask if the above mentioned analysis can be realized efficiently. We give

a positive answer and present an implementation that can detect doomed pro-

gram points without producing false warnings and without the need for user

interaction. The implementation works without any user provided information

about the pre-state of a method or the invariants of a loop. Yet, it supports

specification languages to increase the detection rate. The implementation is

based on existing and established frameworks. We present several optimizations

for this implementation in Chapter 8 and show that it is applicable in practice.

In Chapter 9 we give experimental results of a prototype implementation that

indicate that this approach is applicable in practice.

In general, there are more efficient ways to detect doomed program points.

E.g., writing a test case can reveal any doomed program point. The contribution

of this thesis is that we are able to detect errors in (fragments of) source code

and that we can guarantee that we do not produce false warnings. We also

emphasize that the proposed formal method is supposed to be applied before a

program is executed and thus, it tackles a different class of bugs then testing.

Given the fact that doomed program points cannot be dismissed by restrict-
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ing its context and the fact that our algorithm can detect doomed program

points fully automatic, we propose to integrate the presented analysis in a soft-

ware development environment.

Contribution This thesis contributes to the current research in static pro-

gram analysis in several ways.

• We show that it is possible to formalize a relevant class of errors that can

be detected without ever producing a false alarm.

• We show that it is possible to efficiently compute an abstraction of a pro-

gram that is suitable to detect doomed program points. This abstraction

preserves many of the doomed program points of the original program but

never introduces new doomed program points.

• We show that the proposed static analysis can be implemented and that

it is efficient enough to be applied in practice.



Chapter 2

Related work

Many different implementation of static analysis exist that differ in their com-

plexity, the classes and amount of errors they detect, and their supposed ap-

plication domain. In this chapter we give a brief overview of the field of static

analysis and position our contribution in the field of existing implementations.

Further we give a detailed overview of the related work the shares our moti-

vation of finding and reporting critical bugs instead of assuring the absence of

bugs.

2.1 Static Program Analysis

We next discuss the landscape of existing static analysis tools and position our

approach. Static code analysis tools helping to avoid and detect errors in source

code accompany programmers in their daily work and are crucial to software

reliability. While all these tools have in common that they check properties

of source code without executing it, their aims, abilities, and limitations differ

based on their algorithmic foundation.

The most widely used approach is static type checking and data-flow analysis

provided by modern compilers (e.g., [1, 21, 33] ) . Many compilers reject a

program if the type errors or data-flow anomalies such as the use of uninitialized

variables are found.

String or pattern matching analysis are usually based on the idea of Lint

(e.g. [17]). They perform a context-insensitive analysis to detect potential vul-

nerabilities in code which makes them scale to very large programs. On the other

16
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hand, the analysis is shallow and produces many false alarms while potentially

missing real errors.

Dataflow analysis uses semantic information of the program to detect vulner-

abilities and errors with relatively small amount of false alarms. Two different

approaches can be distinguished in dataflow analysis, both having commercial

implementations on the market. Unsound dataflow analysis tools represented,

e.g., by Coverity Prevent [11] or Klocwork K7 are able to detect errors in large

program with only few false alarms. The good precision and its ability to scale to

large program comes with the drawback that these tools cannot give guarantees

as they miss real errors and report false positives.

Sound dataflow analysis tools like the Polyspace Verifier [45] can give a

guarantee that certain errors do not occur. The price for this is a high false

positive rate or the need for providing additional information on the intended

programs behavior. A detailed survey on static analysis tools and their abilities

and restrictions can be found in [15].

None of the approaches discussed above satisfies our requirement on the high

degree of usability: a tool that requires no user interaction because it produces

no false positives, neither false positives introduced by abstraction nor false

positives introduced by insufficient precision of the specification of user input.

This motivates our work to extend the landscape of static analysis tools by

our new approach. One may say that the new approach focuses on increasing

usability by decreasing the error detection rate to definite errors only. The

guarantee that we do not produce false warnings sets our method apart from

existing approaches.

2.2 Static Bug Detection

We first want to point out that the class of errors our approach finds is subsumed

by many bug detection tool and that most tools will find even more real bugs.

However, the increased error detection rate comes at a price: these tools either

produce a lot of noise or they require heavy user interaction (e.g., [15, 42, 46]).

For instance, a set of unit tests that executes every statement in the program at

least once will detect all errors related to doomed program points but one has

to write or generate the test cases.

The core aspect of our algorithm is that, by proving the presence of errors,

we do never produce false warnings. The importance of precision in static
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checking has also been stated by others. Different approaches exist to avoid

false warnings or to prove the presence of errors. In the following we contrast

the idea of doomed program point detection with other approaches the have a

similar motivation.

Findbugs [2] which is partially pattern matching based shares our motivation

that it is crucial to keep the number of false positives as low as possible. They

achieve good results by focusing on certain errors that can be detected precisely

and by giving categories to the reported warnings indicating the criticality of

the problem. Even though they produce very good results on large programs

they cannot give a guarantee that they find all errors of a certain kind or that

none of the reported errors is a false alarm.

The Wasp [44] tool distinguishes between possible and definite errors. Their

analysis is implemented on top of OSA. The main difference to our work is that

they allow false positives in their definite error detection.

PolySpace verifier [45] that is mentioned already in the previous section has

a color coding of detected bugs. It classifies program statements as red faulty

if they fail on any execution which essentially means that they are doomed

according to our definition. The motivation is similar to ours. Our approach

allows checking program fragments in isolation without knowing anything about

their reachability.

There are other approaches that prove the presence of errors. E.g., must-

analysis [22] can be used to prove the presence of a bug by finding a witness.

At this point we are not aware of static must-analysis and thus comparing our

static approach to a dynamic approach is out of scope.

Hayes et. al. [23] proposes that a control flow path can be proven inadmissi-

ble using the weakest liberal precondition semantics with the postcondition false.

From the algorithmic point of view this is exactly what we do but they restrict

their analysis to single control flow paths in isolation and therefore conclude

that this method is not applicable in practice.

Static verifiers such as Boogie [3, 36] provide a complex infrastructure that

is used by our implementation: An intermediate verification language that ab-

stracts away high level programming language constructs, classes to traverse the

program, and classes to transform a program into a SMT formula as well as an

interface to different decision procedures. Other program verifiers like Why [18]

or ESC [19] provide a similar infrastructure and could serve as the basis for an

implementation as well.

In [10], Cousot et. al. propose an alternative way for computing precon-
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ditions. In particular they define the strongest solution to the precondition

inference problem and further its complement which is the set of states from

which all runs of a program are bad in that they will end in an error. This cor-

responds to the idea of reachability of annotated code in [31]. This is a stronger

condition than what we propose in the way that we only require that all exe-

cutions passing a program fragment lead to an error instead of all executions

starting in that state.

The results produced by our tool could be reproduced using full fledged

automatic verifiers such as Blast [24] by first trying to prove the program,

collecting all unverified assertions, negating them and rerunning the verification.

If the verifier is able to prove such a negated assertion then, the corresponding

statement will fail under any circumstances. However, this would be a rather

convoluted and costly way to find doomed program points. Also, tools such as

Blast are meant to be applied to the whole program, i.e., at a rather late stage

of development when the errors we are targeting have probably already been

fixed.

Another important problem in verification is the problem of vacuous truth,

when verification succeeds even for an erroneous program because of errors in

the specification. In model checking, vacuous truth and ways to detect it has

been discussed in several articles (e.g., [6], [43]). The experiments in [43] show

that up to 20% of the formulas pass vacuously in the first verification run. This

can lead to huge problems if it is not detected early by the verification engineer.

There is only little work on the detection of vacuous truth in static program

verification. In [31], Janota et. al. present a method to detect dead code in

annotated programs. They point out that it is especially used to detect code

that is made unreachable by the specification. Their algorithm is implemented

in Boogie as well. Verification engineers often simulate this idea if they are

suspicious of the proof by adding an assertion that will inevitably fail to the

method. If the proof still succeeds it is certain that there is an error in the

specification. Throughout this work we will show that the work in [31] is a

special case of doomed program points.

Parts of this thesis have already been published as conference paper [26].

The contribution of the paper and many optimizations have been presented in

an invited special issue journal [27].



Chapter 3

Motivating Examples

In the following, we present a collection of examples that demonstrate what

kinds of errors our approach is able to find and, more importantly, what kinds

of potential vulnerabilities it does not report.

Example 1. Our first example is given in Figure 3.1. It demonstrates a trivial,

yet common error that can happen during development. There are several

examples of errors of this kind, even in published code, e.g., an old version of

Eclipse [29] and the BatteryClassUnload method in a reference driver of the

Windows Driver Kit contained such errors.

If our algorithm identifies an error in a program, then it will report not just

the statement that crashed (the symptom of the error), but also the statements

that actually lead to the crash (the cause of the error). This provides additional

hints to the developer that help him to fix the error. If we apply our algorithm

to the example program, then it will report lines 5 and 6 as a guaranteed error.

It reports line 6 because whenever the expression *ptr is evaluated, this will

cause a null pointer dereference. It further reports line 5 because if the else

branch of the conditional is taken, ptr==0 has been evaluated to true, which

guarantees the error in line 6.

Example 2. Our second example is less trivial, yet contains a common error.

The procedure getMin in Figure 3.2 returns the minimal element of an array. For

this purpose, it first sorts the array and then returns the first element. However,

there is a mistake in the loop bound of the for loop in line 3. The loop will

decrease the variable i until it has a negative value. This leads to an out-of-
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1 int a c c e s s ( int ∗ptr )
2 {
3 i f ( ptr )
4 ∗ptr = 0 ;
5 else

6 p r i n t f ( ”%d” ,∗ ptr ) ;
7
8 return 0 ;
9 }

Figure 3.1: Program Access

1 int getMin ( int ∗a , int x ) {
2 int i , j , temp ;
3 for ( i=x−1; i >=0; i−−) {
4 for ( j =1; j<=i ; j++) {
5 i f ( a [ j −1]>a [ j ] ) {
6 temp = a [ j −1] ;
7 a [ j −1] = a [ j ] ;
8 a [ j ] = temp ;
9 }

10 }
11 }
12 return a [ i ] ;
13 }

Figure 3.2: Program GetMin

1 //@ re qu i r e s x>10
2 void vacuous ( int a , int b)
3 {
4 i f (x<10) {
5 return 1/0 ;
6 }
7 }

Figure 3.3: Program Vacuous

1 void entangled ( int a ,
2 int b)
3 {
4 b=1;
5 i f ( a>0) b−−;
6 b=1/b ;
7 i f ( a<=0)
8 a s s e r t b !=1;
9 }

Figure 3.4: Program Entangled

bounds array access in line 12. Our algorithm detects that the out-of-bounds

access is inevitable. It reports lines 3 and 12 as what leads to the error. This

is the only warning emitted by our algorithm. Since there is no precondition

saying that array a is allocated and its size is given by x, any attempt to verify

that the procedure is safe without taking into account its calling context would

generate additional warnings of potential out-of-bounds errors.

Example 3. In our third example we consider the two programs Vacuous

and Entangled that are shown in Figure 3.3, respectively, Figure 3.4. The two

programs have both trivial errors. In the program Vacuous taken from [31],

the precondition in line 1 is a vacuous annotation that excludes all executions

that may reach line 5. Thus, the division by zero error in this line would be
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1 /∗ Sorted t r e e ∗/
2
3 typedef void∗ T;
4 typedef

5 struct entry
6 {
7 Entry l e f t ;
8 Entry r i g h t ;
9 int key ;

10 T data ;
11 } ∗Entry ;

12 void update ( Entry root ,
13 int k , T d) {
14 Entry x = root ;
15 while (x−>key != k ) {
16 i f ( k < x−>key )
17 x = x−> l e f t ;
18 else

19 x = x−>r i g h t ;
20 }
21 x−>data = d ;
22 }

Figure 3.5: Program Update: The procedure update is intended to be called
on an existing key

ignored by most static verifiers. Since there is no execution reaching line 5 such

vacuous annotations can be detected using a reachability analysis (e.g., [31]).

Similar to such an analysis our approach reports on this example that lines 4

and 5 are doomed because there is no normal terminating execution passing

these two lines. In general, if a program point is not reached by any execution

it is also not passed by executions that terminate normally and it is therefore

doomed. However, checking whether a program point is doomed is not the same

as checking whether it is not reachable by any execution. In particular, it is not

the same as checking whether a program point is both not forward reachable

from an initial state and not backward reachable from a potential final state

of the program. This is demonstrated in the program Entangled. In this

program, any execution starting in a state with a > 0 will assign b to 0 in

line 5. These executions therefore lead to a division by zero error in line 6. For

any other execution, namely those starting in a state where a ≤ 0 evaluates

to true, b remains 1 and therefore the assertion in line 8 is violated. This

means, no execution of the program terminates normally and, thus, all program

points in the program are doomed. Yet, every program point in this program is

either forward reachable or backward reachable by some execution fragment. An

algorithm that checks for doomed program points needs to consider at the same

time, both, the prefix and the suffix of any execution that reaches a particular

program point.
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Example 4. Our last example demonstrates how the user of our tool benefits

from the fact that it detects guaranteed errors rather than arbitrary errors. The

program fragment in Figure 3.5 is taken from a library that implements a map

data structure using a sorted binary tree. The procedure update takes three

parameters: a pointer root to the root of the data structure, a key k to an entry

in the data structure, and a data value d. It then traverses the tree to find the

entry for the given key and updates the data value associated with this key. The

procedure works correctly if the calling context guarantees that there is already

an entry for the given key in the data structure, which can be formalized as

follows:

∃y.child∗(root , y) ∧ key(y) = k

where child∗ denotes the reflexive transitive closure of the child relation

child(x, y) ⇔ left(x) = y ∨ right(x) = y .

If this precondition is violated, the execution of the procedure will result in a

null pointer dereference. Note that there is no null pointer check that guards

the dereference of variable x in the while condition at line 16. The fact that

there is an entry for the given key guarantees that x is not null.

It is a real challenge for any error detection tool to prove that line 15 does

not cause a null pointer dereference and, thus, not report this line as a potential

error. For extended static checking or a modular program verifier, the user

needs to specify the precondition saying that there exists an entry in the tree

for the given key. However, this is not sufficient to prove the absence of a null

pointer dereference. The user further needs to specify a data structure invariant

that expresses the fact that the tree is sorted:

∀x. child∗(root , x) ⇒ key(left(x)) ≤ key(x) ∧ key(x) ≤ key(right(x))

This information is required in the loop invariant of the while loop. Even if

all necessary specifications are given, automatically proving that the loop in-

variant implies the absence of null pointer dereferences is still tricky. Extended

static checkers use theorem provers to automate this task. The theorem prover

needs to conclude from the sortedness property and the existence of an entry

for the given key that this entry is located in the subtree that the while loop

traverses into. Modern theorem provers still require proof hints from the user

to accomplish such proofs, in particular if it requires reasoning in expressive
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logical theories containing, e.g., transitive closure operators [30]. All these tasks

are time consuming and require the expertise of a verification engineer.

If, on the other hand, one attempts to use abstraction based program anal-

yses to automatically infer the necessary preconditions then only the use of a

very sophisticated shape analysis would leave any hope for success. However,

such analyses are expensive and do not yet scale well to large programs.

In contrast, our algorithm will not report any errors, simply because there

exist executions that never dereference any null pointers.



Chapter 4

Doomed Program Points

We now formally define the new class of problems that we consider in this thesis.

In order to abstract away from the details of a concrete programming lan-

guage, we only assume that programs are defined over a set of states and that

each program P defines a set of initial states Init(P ) and a set of executions,

which are possibly infinite sequences of states that start in an initial state. A

program further comes with a finite set of program points. Each state in an

execution belongs to a unique program point. We say that an execution passes

through a program point ℓ if one of the execution’s states belongs to ℓ.

We assume that executions are partitioned into two sets: admissible execu-

tions and inadmissible executions. An execution is inadmissible if it has some

undesirable behavior. For concreteness, we say an execution is inadmissible if it

diverges or violates an assertion. Note that if an execution violates an assertion,

it is finite, but is not properly terminating.

Definition 1. A program point ℓ is called doomed if all executions that pass

through ℓ are inadmissible.

In particular, a program point is doomed if there is no execution reaching

this program point (i.e., it is part of dead code). If a doomed program point is

reached then the execution is inadmissible (i.e., it is guaranteed to diverge or to

violate an assertion). Thus the existence of a doomed program point is always

a witness of a programming error. Note that the doomed program point itself

does not necessarily contribute to the error, e.g., in a program with only one

execution, if one program point in the execution is doomed then all program

points are doomed. Detecting doomed program points and extracting an error
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message are two separate problems. In this thesis, we are concerned with the

detection of doomed program points.

Characterization of doomed program points. Following the idea of Def-

inition 1 we propose a simple program transformation from a program P to a

program P ∗ that allows us to check whether a given program point is passed by

an admissible execution. We assume that our language has variables and assign-

ments. For each program point ℓ, we add one auxiliary Boolean variable Rℓ that

is assigned true when ℓ is passed. That is, we add the assignment Rℓ := true at

each program point ℓ. We therefore call the variables Rℓ reachability variables.

Note that the variables Rℓ are not explicitly initialized, i.e., they can take any

Boolean value in an initial state. We further assume that the language has

assertions. An assertion has a Boolean expression over program variables. If

this expression evaluates to false in an execution then the execution is inad-

missible. Without loss of generality, we assume that all admissible executions

end in a unique program point. At this program point, we add the assertion

assert
∧

ℓ Rℓ, which ensures that upon termination all reachability variables Rℓ

are set to true.

The transformed program P ∗ preserves the existence of admissible execu-

tions in the original program P because for each admissible execution of P there

is always an execution of P ∗ where all reachability variables Rℓ are initialized

to true.

In program P ∗ we can restrict the set of admissible executions of P to those

passing a program point ℓ by initializing Rℓ to false. If ℓ is not passed, Rℓ is

not set to true and thus the assertion at the end of P is violated. That is, we

can use this transformation to get all admissible executions passing a particular

program point.

Using the above transformation we can now give a precise characterization of

doomed program points using weakest liberal preconditions. The weakest liberal

precondition wlp(P, S) of a program P and a set of states S is defined as usual,

i.e., wlp(P, S) denotes the set of all initial states s, such that all admissible

executions of P that start in s terminate in a state s′ ∈ S. In particular, if

wlp(P, ∅) = Init(P ) then the program P has no admissible executions. For a

program point ℓ in a program P , let [[Rℓ]] denote the set of all states of P ∗ where

Rℓ is true. Then

ℓ is doomed in P iff Init(P ∗) ⊆ [[Rℓ]] ∪ wlp(P ∗, ∅) (4.1)
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Even though condition (4.1) gives a precise characterization of doomed pro-

gram points, this does not give us a complete algorithm for detecting them,

since in general the weakest liberal precondition of a program is not effectively

computable. In the rest of this thesis we describe an algorithm for detecting

doomed program points that uses a sound approximation of condition (4.1).



Chapter 5

Implementation

We build our analysis as a modification of a program verifier. We assume the

standard program verification architecture that translates a source program into

an intermediate program representation and then, from that intermediate pro-

gram, generates verification conditions for an automatic satisfiability-modulo-

theories (SMT) solver [3, 18,19].

The intermediate representation is a mix of mathematical definitions and a

simple imperative program notation. It provides a level of abstraction between

the source-language semantics and the logical formulas, akin to the way com-

pilers use intermediate representations as a stepping stone toward generating

machine code. The translation into the intermediate language makes explicit

the behavior and proof obligations stipulated by the semantics of the source

language.

We apply our technique at the level of this intermediate verification language.

Not only does that let us work with a simpler programming notation, but it

also makes our analysis apply to all source languages that translate into the

intermediate form.

The verification conditions are first-order logical formulas whose validity en-

codes the correctness of the intermediate program. They are generated from

the intermediate program using a weakest precondition computation. The ver-

ification conditions are in turn passed to an SMT solver, which attempts to

verify or refute them. In more detail, the SMT solver negates the given formula

and attempts to satisfy the negation. Failure to do so after an exhaustive ex-

ploration implies that the verification condition is valid, which means that the

intermediate program is correct and thus that the source program lives up to

28
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its proof obligations. On the other hand, if the solver finds a model that seems

to satisfy the negation, the model is translated back into an appropriate error

message.

In our technique, we modify the interaction between the intermediate lan-

guage and the SMT solver, so that the solver will in effect be searching for

doomed program points in the intermediate program, corresponding to doomed

program points in the source language. Let us now go into the details of the

intermediate verification language.

5.1 Input Language

The syntax of our simple language is defined in Figure 5.1. A program consists of

a sequence of blocks. Each block consists of a unique program point, a sequential

statement, and a goto statement that connects the block with a non-empty set

of successor blocks. We often identify a block and its associated program point.

For a given program, we denote by st(ℓ) the sequential statement of the block

associated with a program point ℓ. The atomic statements of our language

are assignments, non-deterministic assignments (havoc) of program variables,

assert statements, and assume statements. We do not specify the concrete

syntax of expressions that are used in these statements.

Program ::= Block+

Block ::= PPId : Stmt ; gotoPPId+

Stmt ::= VarId := Expr | havocVarId+

| assertExpr | assumeExpr

| Stmt ; Stmt

Figure 5.1: Simple Language

Without loss of generality, we assume that each program or program frag-

ment considered in this thesis has one unique start block ℓinit and a unique end

block ℓterm, i.e., each block either has a transition to other blocks or goes to ℓterm

which means that the program has terminated normally.

We assume that each program variable x has an associated type type(x)

and that each type t has an associated domain [[t]] comprising the values that

a program variable of type t can take. We assume that one of these types is
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the type bool, which is interpreted as the set of Booleans. We further assume a

dedicated program variable pc that models the program counter and evaluates to

a program point. A program state s is then a valuation of all program variables,

i.e., a function mapping each program variable x to some value s(x) ∈ [[type(x)]].

The set of initial states Init(P ) of a program P is simply the set of all states s

of P with s(pc) = ℓinit.

Expressions in our language are built from program variables and additional

typed operators that have a fixed interpretation for all programs (e.g., Boolean

connectives and arithmetic operations). The program variable pc, however, may

not appear in the expressions. We require that all expressions are well-typed,

i.e., each expression e has an associated type type(e) that can be inferred from

the types of operators and program variables. We denote by s(e) ∈ type(e) the

unique value denoted by an expression e in a state s. The value s(e) is computed

from the interpretations of operators and program variables in s.

We require that the expressions appearing in assume and assert statements

have type bool. We call expressions of type bool formulas. We say that a state

s satisfies a formula F , denoted by s |= F , if F evaluates to true in s. We say

that F is valid, if F is satisfied by all program states.

Each statement st in our language gives rise to a binary transition relation

[[st ]] on program states that is recursively defined on the structure of statements,

as expected:

(s, s′) ∈ [[x := e]]
def

⇐⇒ s′ = s[x := s(e)]

(s, s′) ∈ [[havoc x]]
def

⇐⇒ s′ = s[x := v] for some v ∈ [[type(x)]]

(s, s′) ∈ [[assume F ]]
def

⇐⇒ s′ = s and s |= F

(s, s′) ∈ [[assert F ]]
def

⇐⇒ s′ = s and s |= F

(s, s′) ∈ [[goto ℓ1, . . . , ℓn]]
def

⇐⇒ s′ = s[pc := ℓi] for some i, 1 ≤ i ≤ n

(s, s′) ∈ [[st1; st2]]
def

⇐⇒ exists s0, (s, s0) ∈ [[st1]] and (s0, s
′) ∈ [[st2]]

A program gives rise to a set of executions. An execution consists of a

sequence of states describing the successive execution of the program blocks

starting from the initial block of the program. Formally, for a sequence of states

π we denote by len(π) the length n ∈ N of π if π is finite, and the limit ordinal

ω if π is infinite. Furthermore, for i with 0 ≤ i < len(π), we denote by π[i]

the i-th state of the sequence π and if π is finite, we denote by final(π) its final

state π[len(π) − 1]. An execution π is then a sequence of states such that (1)
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π[0](pc) = ℓinit, (2) for all i with 0 < i < len(π), (π[i−1], π[i]) ∈ [[st(π[i−1](pc))]],

and (3) if π is finite then either final(π)(pc) = ℓterm or else there is no state s

such that (final(π), s) ∈ [[st(final(π)(pc))]]. An execution π is admissible if it

terminates normally, i.e., if π is finite and final(π)(pc) = ℓterm. Note that a false

assert statement has no continuation, and thus is the end of an execution that

reaches that point. Hence, executions leading to false assert statements do not

terminate normally.

Note that we can model arrays and the program’s heap using function-valued

program variables that map indices or memory addresses to values, following a

memory model in the style of Burstall and Bornat [7,8]. The concrete represen-

tation of the heap depends on the semantics of the translated language. For a

detailed discussion of such memory models for concrete programming languages

see, e.g., [9, 34, 36,38].

We do not discuss features like procedure calls in detail because they are

either eliminated by inlining the called procedure or abstracted by procedure

contracts (see Section 6). A detailed discussion including procedure calls, the

type system and other constructs can be found in [40].

In our implementation we use Boogie as input language. There are various

projects translating from high level source code into Boogie, e.g., VCC [9],

which translates C code to Boogie, or Spec# [5] and B2BPL, which translate

from .NET or Java byte code to Boogie, as well as many other translations

of special purpose research languages. Even though it is not in scope of this

work, it is important to mention that the quality of our results on real world

code strongly depends on the translation from a source language to Boogie.

Our analysis can only discover doomed program points if they are preserved

by the translation. As many complex operations are over approximated by the

translation, much precision is lost in this step. However, building a translation

from a high level language to Boogie that is optimized for finding doomed

program points is a separate problem and not part of this work.

5.2 Overview of the Detection Algorithm

We now give the outline of our doomed program point detection algorithm.

The algorithm is implemented by the procedure Exorcise given in Figure 5.2.

Exorcise takes a program as input and returns a set of doomed program points.

The procedure first transforms the input program P into a program P ′ in loop-
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proc Exorcise(P : program)
var P ′ : program
var ϕ : formula
var D : set of doomed program points

begin

P ′ := Transform(P )
ϕ := wlp(P ′, false)
D := ∅
for each program point ℓ in P do

if Valid((Rℓ = 0) =⇒ ϕ) then

D := D ∪ {ℓ}
fi

od

return D

end

Figure 5.2: Algorithm for detecting doomed program points

free passive form using the subroutine Transform. A program is called loop-free

if it has no cycles in the graph formed by its blocks and goto statements and it is

called passive if all its blocks consist only of assume and assert statements. The

transformation is sound in the sense that if a program point ℓ in P is doomed

in P ′ then it is also doomed in P .

After the transformation, procedure Exorcise computes ϕ, a logical formula

representation of weakest liberal precondition of P ′ and false. Then, Exorcise

iterates over all program points ℓ in P and uses the subroutine Valid, which

checks if (Rℓ = 0) =⇒ ϕ and thus, if the program point ℓ is doomed. We

assume that Valid is a sound test for logical validity. If the check succeeds ℓ is

added to the set of doomed program points. Note that the transformation from

P to P ′ may introduce additional program points, we therefore only check the

program points from the original program P .

Chapter 6 gives details on the implementation of the subroutine Transform.

In Chapter 7 we show how the formula representation of the weakest liberal pre-

condition is computed and how the validity check Valid is realized. In Chapter 8

we discuss further optimizations of the basic algorithm.



Chapter 6

Program Transformation

The function Transform used in Figure 5.2 transforms a given Boogie program P

into a loop-free and passive Boogie program Transform(P ). A program is called

loop-free if it has no looping control flow and it is called passive if all its basic

blocks consist only of assume and assert statements.

The function Transform first eliminates all loops in the input program P .

This transformation is described in Section 6.1. Section 6.3 describes the next

step in the transformation, which augments the program with the reachability

variables. The final step described in Section 6.4 is the transformation into

a passive single assignment form. This transformation introduces fresh vari-

ables such that each variable in the program is written only once. The size of

the resulting program P ′ = Transform(P ) is linear in the size of the original

program P . We will then show that one can construct a formula representing

wlp(P ′, false) whose size is linear in the size of P ′ and hence linear in the size

of the original program P .

The resulting program P ′ is a sound abstraction of the program P with re-

spect to doomed program point detection. That is, if there exists an admissible

execution passing through a program point ℓ in the original program P then

there also exists an admissible execution in the transformed program that passes

through ℓ. However, in general the transformation loses completeness. This is

due to the transformation into loop-free form: we abstract the body of each

loop, which might lead to additional admissible executions that are not possi-

ble in the original program. Furthermore, the elimination of loops may change

the termination behavior of the program, i.e., there might be some inadmissible

executions leading to non-termination that are lost because of the transforma-
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tion. Both the introduction of new admissible executions and the removal of

inadmissible executions may cause that some program points that are doomed

in P may no longer be doomed in P ′. However, the transformation to loop-free

form is the only transformation that affects completeness of our algorithm.

Many steps in the elimination of loops and the transformation into passive

form are by now standard and used in many extended static checkers and pro-

gram verifiers (e.g., [3,19]). We therefore provide only a brief description of the

steps known from previous work and focus on the parts that have been cus-

tomized for doomed program point detection. For a more detailed discussion

see, e.g., [4, 20].

6.1 Eliminating Loops

The most common techniques for dealing with loops in extended static checking

are: (1) abstraction of the loop by using an inductive loop invariant (e.g., [4])

and (2) finite loop unrolling [19]. Inductive loop invariants provide a sound

(and often complete [39]) technique for eliminating loops. However, the loop

invariants have to be either user-provided, which makes the analysis more de-

manding for the user, or computed automatically using static analyses, which

makes the analysis more expensive. On the other hand, finite loop unrolling is

a simple and efficient technique for finding errors in programs, but it is usu-

ally not sound because loop bounds cannot be computed statically. To avoid

these drawbacks, we present a technique that takes a middle-course between

the two approaches above and which we refer to as abstract loop unrolling. In

our approach we unroll the first and last iteration of each loop, but abstract

all other iterations using an inductive invariant. The abstraction ensures that

the approach is sound. Keeping the first and last iteration ensures that the

approach can still detect most doomed program points in the surrounding code

of the abstracted loop, even if the loop invariant used for the abstraction of

the loop was trivial (i.e., true). Thus, our approach can take advantage of loop

invariants that are provided by the user or a preceding static analysis, but does

not rely on them for being useful in practice.

We next explain our loop elimination method in detail and then briefly sketch

how it can be generalized to handle programs with procedures.
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ℓh

B

ℓe ℓh

havoc(B)

ℓe

Figure 6.1: Abstraction of a loop (ℓh, ℓe, B) by adding non-deterministic assign-
ments to the loop targets before and after the loop body. The back edges from
B are replaced by edges to the loop exit.

Abstract Loop Unrolling

We now think of our program P as a control flow graph with nodes given by

the blocks in P and directed edges corresponding to the goto statement in each

block. We refer to the strongly connected components of the control flow graph

as loops. We call maximal strongly connected components outermost loops and

non-maximal ones nested loops. We assume that our programs are structured,

i.e., that each loop L in the control flow graph has a unique entry point ℓh,

which is also the unique exit point of L1. We call ℓh the loop header and

B
def

= L \ {ℓh} the loop body of the loop L. Edges from nodes inside B back to

the loop header are called back edges. We assume without loss of generality that

each loop header is a block that consists of just one goto statement that either

goes to the first block of the loop body or to a unique block ℓe outside the loop.

We call ℓe the loop exit. The variables that are modified by a statement in the

blocks of the loop body are called loop targets and denoted by trg(B). In the

rest of this section we identify each loop L with the tuple (ℓh, ℓe, B).

We can now over-approximate a loop (ℓh, ℓe, B) as shown in Figure 6.1. We

denote by havoc(B) the program fragment that is obtained from the loop body

B by replacing the statement st(ℓ) of every block ℓ in B with an incoming

edge from ℓh with the statement havoc trg(B); st(ℓ), and likewise replacing

every statement st(ℓ) of every block ℓ in B with an outgoing edge to ℓh by

the statement st(ℓ); havoc trg(B). We can think of this transformation as

eliminating loops using trivial loop invariants. In fact, if the user or some

preceding analysis provides loop invariants, they can be incorporated into the

transformation to increase precision (see [4]). All we need to do is assume the

invariant after the havoc statements for the loop targets.

If we use the loop abstraction technique above without providing a precise

1If the program is not structured, one can first apply node splitting to obtain a control
flow graph of the assumed form, see e.g., [32].
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ℓh

B

ℓe ℓh

BF

ℓFh

havoc(B)

ℓLh

BL

ℓe

Figure 6.2: Abstract unrolling of a loop (ℓh, ℓe, B) by introducing copies of the
loop body to model the first and the last iteration of the loop

loop invariant, we lose in general too much information for proving that a pro-

gram point in the loop (or succeeding the loop) is doomed. In particular, we

lose any information about the termination behavior of the loop. We therefore

combine loop abstraction with finite loop unrolling. We refer to this technique

as abstract loop unrolling. In our experience it is sufficient to take a look at

the first and the last iteration of a loop to detect most doomed program points.

Therefore, we model these iterations explicitly and use havoc statements for

loop targets to model all intermediate iterations. As before, user provided in-

variants can still be incorporated into this transformation to increase precision.

However, in our benchmarks discussed in Section 9 we applied abstract loop un-

rolling without providing loop invariants and we were still able to detect many

interesting errors. Also, compared to simple loop abstraction, abstract unrolling

increases the detection rate of doomed program points. In particular, it enables

detection of certain cases of non-termination.

The idea of abstract loop unrolling is illustrated in Figure 6.2. Given a

loop (ℓh, ℓe, B), we first compute the sound loop abstraction described above to

model an arbitrary number of intermediate loop iterations. Then we introduce

two additional copies of the loop head and loop body: ℓFh and BF , respectively,

ℓLh and BL. The blocks ℓFh and BF model the first iteration of the loop, while

ℓLh and BL model the last iteration. We assume that for every program point

ℓ, the program points ℓL and ℓF are fresh program points that do not already

appear in the program. The blocks in BF are then obtained from B by replacing

every program point ℓ of a block in B by ℓF and changing all goto statements

accordingly. The blocks BL and the block of ℓLh are obtained from B, respec-

tively, ℓh in a corresponding manner. Finally, incoming and outgoing edges to

the loop heads ℓh, ℓ
F
h , ℓ

L
h in the three copies of the loop body are changed as

illustrated in Figure 6.2. Note that we apply unrolling only to outermost loops

in the control flow graph. Nested loops are eliminated without unrolling using
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void a l t B i t ( int i )
{

int a [ 1 0 ] ;

while ( i <=10)
{

i f ( i%2==0) {
a [ i ] = 1 ;

} else {
a [ i ] = 0 ;

}
i ++;

}
}

ℓinit : goto ℓ1;
ℓ1 : goto ℓ2, ℓ6;
ℓ2 : assume i ≤ 10;

goto ℓ3, ℓ4;
ℓ3 : assume i%2 = 0;

assert 0 ≤ i < 10;
a[i] := 1;
goto ℓ5;

ℓ4 : assume i%2 6= 0;
assert 0 ≤ i < 10;
a[i] := 0;
goto ℓ5;

ℓ5 : i := i + 1;
goto ℓ1;

ℓ6 : assume ¬(i ≤ 10);
goto ℓterm;

Figure 6.3: Program AltBit with a doomed program point

the simpler technique shown in Figure 6.1. This ensures that the size of the

resulting program is linear in the size of the input program.

We demonstrate abstract loop unrolling on the program AltBit given in

Figure 6.3. The figure shows the program in C syntax and a corresponding

Boogie program. The Boogie program contains assertions that guarantee all

array accesses to be inside the array boundaries. The program that is obtained

from our abstract loop unrolling is given in Figure 6.4. In the program AltBit

there is an error in the last iteration of the loop. In this iteration, the value of

i will be 10 and, thus, the array access a[i] is outside the bounds of array a.

During the last iteration of the loop, in block ℓL2 , we assume i ≤ 10; next we

assert i < 10 in ℓL3 and ℓL4 ; we increment i by one in ℓL5 ; and we assume i > 10 in

ℓ6. This is a contradiction and thus, there is no terminating execution passing

the last iteration. We can conclude that the loop will access the array with an

index out of bounds when leaving the loop, i.e., program point ℓ5 is doomed.

Note that unrolling the first and last iteration of the loop does not help

to find more doomed program points inside a loop body but helps to discover

more doomed program points outside the loop by providing more information

about the loop’s behavior to the analysis of the surrounding program points.

For instance, the doomed program point ℓ5 in the program shown in Figure 6.3

could not be detected using loop abstraction without unrolling.
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ℓF2 : assume i ≤ 10;
goto ℓF3 , ℓ

F
4 ;

ℓF3 : assume i%2 = 0;
assert 0 ≤ i < 10;
a[i] := 1;
goto ℓF5 ;

ℓF4 : assume i%2 6= 0;
assert 0 ≤ i < 10;
a[i] := 0;
goto ℓF5 ;

ℓF5 : i := i + 1;
goto ℓ2;

ℓinit : goto ℓ1;
ℓ1 : goto ℓF2 , ℓ6;

ℓ2 : havoc a, i;
assume i ≤ 10;
goto ℓ3, ℓ4;

ℓ3 : assume i%2 = 0;
assert 0 ≤ i < 10;
a[i] := 1;
goto ℓ5;

ℓ4 : assume i%2 6= 0;
assert 0 ≤ i < 10;
a[i] := 0;
goto ℓ5;

ℓ5 : i := i + 1;
havoc a, i;
goto ℓL2 ;

ℓ6 : assume ¬(i ≤ 10);
goto ℓterm;

ℓL2 : assume i ≤ 10;
goto ℓL3 , ℓ

L
4 ;

ℓL3 : assume i%2 = 0;
assert 0 ≤ i < 10;
a[i] := 1;
goto ℓL5 ;

ℓL4 : assume i%2 6= 0;
assert 0 ≤ i < 10;
a[i] := 0;
goto ℓL5 ;

ℓL5 : i := i + 1;
goto ℓ6;

Figure 6.4: Abstract loop unrolling applied to program AltBit

By adding copies of the loop body for the last iteration, we potentially

introduce dead code into the program that might introduce additional doomed

program points that are not present in the original program. This can be seen

in the program shown in Figure 6.4: the assume statements at program points

ℓ6 and ℓL2 enforce that in any execution going through the blocks modeling

the final iteration of the loop we have i = 10. Hence, there is no admissible

execution going through program point ℓL4 , since i is even. Thus ℓL4 is doomed in

the transformed program. However, recall that in our algorithm we only check

whether the program points that are already present in the original program are

doomed, not those that have been added in the transformation. We will now

show that the transformation is indeed sound.

Let AbsUnroll(P ) be the program that results from applying abstract loop

unrolling to a program P . The transformation preserves the existence of ad-

missible executions and is thus sound for the detection of doomed program

points. In particular, if an admissible execution π iterates only once through

an outermost loop L = (ℓh, ℓe, B) in the original program P then we can obtain

an admissible execution π′ for AbsUnroll(P ) by simple duplication of the single
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iteration of L in π. The havoc statements in havoc(B) ensure that the dupli-

cated iterations connect to a proper execution of AbsUnroll(P ). For the explicit

construction of the execution π′ see the proof of the following proposition.

Proposition 1. Let P be a program and ℓ a program point in P . If ℓ is doomed

in AbsUnroll(P ) then ℓ is doomed in P .

Proof. We prove the contraposition: let π be an admissible execution of P pass-

ing through ℓ in P . We have to show that there exists an admissible execution

π′ of P ′ = AbsUnroll(P ) that passes through ℓ.

In the following, for a sequence of states π and i, j ∈ N, we denote by π[i, j]

the sequence π[i] . . . π[j] if i ≤ j and ǫ otherwise. Furthermore, we define πF to

be the sequence obtained from π by mapping for all i ∈ N, the state si = π[i] to

the state πF [i] = si[pc := (si(pc))
F ]. We define πL correspondingly. Finally, we

say that an execution π iterates k > 0 times through a loop (ℓh, ℓe, B) of P if

there exist i0, . . . , ik ∈ N such that 0 ≤ i0 < · · · < ik < len(π) and the following

conditions hold: (1) for all j with 0 ≤ j < k, π[ij ](pc) = ℓh and for all i with

ij < i < ij+1, π[i](pc) 6= ℓh, (2) π[ik](pc) = ℓh, π[ik + 1](pc) = ℓe and for all i

with i0 < i < ik, π[i](pc) 6= ℓe, and (3) for all i < i0, if π[i](pc) = ℓh then there

exists j with i < j < i0 and π[j](pc) = ℓe.

We can now construct π′ from π by removing or duplicating iterations of

loops in π such that π′ iterates through all outermost loops exactly three times

and through all nested loops exactly one time, while preserving reachability of

program point ℓ. Formally, we construct π′ from π recursively as follows: define

π0 = π. Then given πn for some n ≥ 0, if there is no outermost loop of P

through which πn iterates k 6= 3 times and no nested loop through which πn

iterates more than 1 time, define π′ = πn. Otherwise, choose the first loop

L = (ℓh, ℓe, B) of P through which πn iterates k times, where L is either an

outermost loop and k 6= 3 or L is a nested loop and k > 1. Let i0, . . . , ik be the

corresponding indices of the iterations in πn. Further, let j be the index of the

first of these iteration that goes through program point ℓ, if such an iteration

exists, and k − 1 otherwise, i.e.

j
def

= min({k − 1} ∪ {j | 0 ≤ j < k ∧ ∃i. ij ≤ i < ij+1 ∧ πn[i](pc) = ℓ}).

Now, if L is an outermost loop we obtain πn+1 from πn by keeping only the first
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iteration, the j-th iteration, and the last iteration of L:

πn+1
def

= πn[0, i0](πn[i0+1, i1])Fπn[ij+1, ij+1−1](πn[ik−1, ik−1])Lπn[ik+1, len(πn)]

Note that if k < 3 then io = ij or ij = ik−1 (or both), i.e., πn+1 is obtained

from πn by introducing additional loop iterations via duplication.

If on the other hand L is a nested loop then πn+1 is obtained from πn by

keeping only the j-th iteration of L:

πn+1
def

= πn[0, i0]πn[ij + 1, ij+1 − 1]πn[ik + 1, len(πn)]

Clearly, π′ is well-defined, since π is finite.

The non-deterministic assignments of the loop targets in every abstracted

loop body in P ′ ensure that every sequence of states that is an execution of the

corresponding original loop body in P is also an execution of the abstracted

loop body in P ′. Using this fact we can prove that π′ is an execution of P ′.

Finally, by construction we have for all n ≥ 0 that final(πn)(pc) = ℓterm and

πn[i](pc) = ℓ for some i, 0 ≤ i ≤ len(πn). Hence, π′ is admissible and passes

through ℓ.

6.2 Eliminating Procedure Calls

While our simple programming language from Section 5 does not support pro-

cedures, we do support them in our implementation. In the folowing, we briefly

sketch how we handle procedures.

In the Boogie language [3,36] a program with procedures consists of a set of

procedure declarations. A procedure declaration specifies the formal parameters

of the procedure and the procedure body. The procedure body consists of a

set of blocks as in Section 5 where the statements constituting the blocks are

extended by procedure calls and return statements. Figure 6.5 shows an example

of a program with procedures.

The analysis of a program with procedures proceeds as follows. For each

procedure declaration we first eliminate all procedure calls in the blocks of the

procedure body. This effectively leaves us with a simple program for every pro-

cedure declaration. We then analyze each of these simple programs in isolation

using the algorithm given in Figure 5.2.
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procedure pow (x : int, m : int)
returns y {
ℓ0 : goto ℓ2, ℓ3;
ℓ1 : assume m > 0;

call y := pow (x,m− 1);
y := y · x;
goto ℓ3;

ℓ2 : assume m ≤ 0;
y := 1;
goto ℓ3;

ℓ3 : return;
}

procedure main () {
ℓ0 : call z := pow (2, 3);

return;
}

Figure 6.5: Program with procedures

Abstract Inlining. Similar to abstract loop unrolling, we employ a combi-

nation of inlining and contract-based abstraction to eliminate procedure calls

from the blocks of each procedure declaration.

We inline procedure calls in a straightforward manner. We replace the call

statement by a copy of the procedure body and a set of statements that assign

the parameters of the call statement to the formal parameters of the procedure.

Procedure calls in the inlined procedure or recursive calls are abstracted using

trivial procedure contracts (i.e., with pre and postcondition true).

For contract-based abstraction, the global variables modified by the called

procedure and the variables receiving the return values are assigned non-de-

terministic values by havoc statements. As for abstract loop unrolling, the

precision of the abstraction can be improved if either the user or a preceding

analysis provides actual contracts for the abstracted procedure.

Using abstract inlining, we can, e.g., detect if a procedure is called with

illegal arguments that lead to abnormal program termination, i.e., no admissible

execution is passing the procedure call. Figure 6.6 shows the result of applying

abstract inlining to the procedures in Figure 6.5.

The soundness argument for abstract inlining is similar to the soundness

argument for abstract loop unrolling. Given an admissible execution π of the

original program P that executes a procedure inlined in the transformed pro-

gram, then π is also an execution of the transformed program provided the

inlined procedure has no further procedure calls that are executed by π. If the

inlined procedure has itself calls to other procedures then we can obtain an ad-
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procedure pow (x : int, m : int)
returns y {
ℓ0 : goto ℓ2, ℓ3;
ℓ1 : assume m > 0;

xr := x;
mr := m− 1;
goto ℓR0 ;

ℓR0 : goto ℓR2 , ℓ
R
3 ;

ℓR1 : assume mr > 0;
havoc yr;
yr := yr · xr;
goto ℓR3 ;

ℓR2 : assume mr ≤ 0;
yr := 1;
goto ℓR3 ;

ℓR3 : goto ℓC1 ;

ℓC1 : y := yr;
y := y ∗ x;
goto ℓ3;

ℓ2 : assume m ≤ 0;
y := 1;
goto ℓ3;

ℓ3 : return;
}

procedure main () {
ℓ0 : xr := 2;

mr := 3;
goto ℓR0 ;

ℓR0 : goto ℓR2 , ℓ
R
3 ;

ℓR1 : assume mr > 0;
havoc yr;
yr := yr · xr;
goto ℓR3 ;

ℓR2 : assume mr ≤ 0;
yr := 1;
goto ℓR3 ;

ℓR3 : goto ℓC0 ;

ℓC0 : z := yr;
return;

}

Figure 6.6: Abstract inlining applied to the program in Figure 6.5

missible execution from π simply by cutting out the parts of π that correspond

to the execution of these nested calls. The havoc statements in the inlined

procedures ensure that the resulting sequence of states is indeed an admissible

execution of the transformed program. As for abstract loop unrolling, the ab-

stract inlining transformation is in general not complete for detecting doomed

program points. Some inadmissible executions, such as executions that execute

a nonterminating procedure, are not preserved by the transformation.

We point out that (abstract) inlining can only be used to check if the call

statement is doomed. It is not used to detect if the called method contains a

doomed program point (this is not possible, because we cannot know all calling

contexts of a method). Hence, when inlining we can only report a doomed

program point if any path through the inlined method is doomed for the given
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input values.

In practice we can control the trade-off between efficiency and precision of

the analysis by using heuristics that decide when to inline a procedure and when

to abstract it. For instance, depending on the size of a called procedure one

may decide to recursively inline calls in the body of the called procedure or

not inline the called procedure at all and immediately abstract the call. In our

experiments we experienced that calls to non-trivial methods are unlikely to be

proven doomed because, e.g. they have some admissible executions (due to their

complexity) or due to e.g., imprecise heap over-approximation or a loop in the

called function it is not possible to prove that all executions of the method body

are inadmissible in the considered calling context. In any case, using contract-

based abstraction always looses precision. However, if the called function itself

cannot be analyzed precisely (e.g., because it is recursive or contains a loop)

inlining is imprecise as well.

6.3 Introducing Reachability Variables

We next explain in detail how a program P is translated to a program P ∗ with

reachability variables.

We add a set of auxiliary variables and assignments to our program P that

allow us to restrict the set of admissible executions of P to those that are passing

a certain program point ℓ. The actual transformation is straightforward. For

each block ℓ in the program, we introduce a new Boolean reachability variable

Rℓ. We can think of Rℓ as a static uninitialized variable. Now, we replace the

statement of st(ℓ) of the block by the statement Rℓ := true; st(ℓ) that sets the

reachability variable to true whenever the block ℓ is executed. Finally we add

the following assert statement at the end of the last block of the program:

assert(
∧

ℓ∈P

Rℓ)

Clearly the transformation from P to P ∗ preserves all admissible executions.

Proposition 2. For all programs P and program points ℓ in P , ℓ is doomed in

P if and only if ℓ is doomed in P ∗.

Proof. Let X be the set of all program variables of program P . Now let π be

an admissible execution of P passing through ℓ. Then map the states of π to
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ℓF2 : RℓF
2

:= true;

assume i ≤ 10;
goto ℓF3 , ℓ

F
4 ;

ℓF3 : RℓF
3

:= true;

assume i%2 = 0;
assert 0 ≤ i < 10;
a[i] := 1;
goto ℓF5 ;

ℓF4 : RℓF
4

:= true;

assume i%2 6= 0;
assert 0 ≤ i < 10;
a[i] := 0;
goto ℓF5 ;

ℓF5 : RℓF
5

:= true;

i := i + 1;
goto ℓ2;

ℓinit : Rℓinit := true;
goto ℓ1;

ℓ1 : goto ℓF2 , ℓ6;

ℓ2 : Rℓ2 := true;
havoc a, i;
assume i ≤ 10;
goto ℓ3, ℓ4;

ℓ3 : Rℓ3 := true;
assume i%2 = 0;
assert 0 ≤ i < 10;
a[i] := 1;
goto ℓ5;

ℓ4 : Rℓ4 := true;
assume i%2 6= 0;
assert 0 ≤ i < 10;
a[i] := 0;
goto ℓ5;

ℓ5 : Rℓ5 := true;
i := i + 1;
havoc a, i;
goto ℓL2 ;

ℓ6 : Rℓ6 := true;
assume ¬(i ≤ 10);
assert(

∧

ℓ∈P Rℓ)
goto ℓterm;

ℓL2 : RℓL
2

:= true;

assume i ≤ 10;
goto ℓL3 , ℓ

L
4 ;

ℓL3 : RℓL
3

:= true;

assume i%2 = 0;
assert 0 ≤ i < 10;
a[i] := 1;
goto ℓL5 ;

ℓL4 : RℓL
4

:= true;

assume i%2 6= 0;
assert 0 ≤ i < 10;
a[i] := 0;
goto ℓL5 ;

ℓL5 : RℓL
5

:= true;

i := i + 1;
goto ℓ6;

Figure 6.7: Loop-free program AltBit with reachability variables

a sequence of states π′ of P ∗ as follows: for all i with 0 ≤ i < len(π), define

π′[i](x) = π[i](x) for all x ∈ X and π′[i](Rℓ) = true for all ℓ ∈ P . Then π′ is an

admissible execution of P ∗, since P ∗ behaves as P and only assigns value true

to variables in R. Thus, the additional assertion
∧

ℓ∈P Rℓ in P ∗ is not violated

by π′. Furthermore, π′ passes through ℓ, since π does. For proving the other

direction, let π′ be an admissible execution of P ∗ passing through ℓ. Then we

immediately obtain an admissible execution π of P that passes through ℓ by

projecting all states in π′ onto the variables X.

Figure 6.7 shows the loop-free program from our running example augmented

with reachability variables. For each block, one boolean reachability variable

is introduced and assigned to true at the beginning of this block. The block
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labeled with ℓ6 further is extended by an assertion that all reachability variables

are true. This allows us to make all executions diverge that do not pass a certain

program point ℓi, simply by initializing the corresponding reachability variable

Rℓi to false.

6.4 Program Passification

After introducing the reachability variables, we transform the program into

passive form. This is done by applying a single assignment transformation [12]

where auxiliary variables are introduced to ensure that each program variable

is assigned at most once per execution path [20]. The general idea is to replace

each read of a variable by the auxiliary variable that represents its value at that

point in the program, and to introduce a new auxiliary variable for every write.

For example, an assignment x := x+1 may be transformed into xk+1 := xk +1,

where k is some sequence number (see [4, 20, 35] for details). Second, since no

assignment of an auxiliary variable is preceded by a use of that variable, we can

replace each assignment xk := e by an assume statement assume(xk = e).

Let Passify(P ) be the result of applying the single assignment transformation

to a program P . The following proposition states soundness of the transforma-

tion. Its proof follows a similar argument then stated in [20, Theorem 1].

Proposition 3. For all loop-free programs P and program point ℓ in P , ℓ is

doomed in P if and only if ℓ is doomed in Passify(P ).

The function Transform is now defined as the composition of the transforma-

tions described in the previous sections: Transform(P )
def

= Passify(AbsUnroll(P )∗).

Soundness of Transform follows from Propositions 1, 2, and 3.

Proposition 4. For any program P and program point ℓ in P , if ℓ is doomed

in Transform(P ) then ℓ is doomed in P .

The passification is the final step of our transformation. Starting with the

initial program in Figure 6.3 we first generated a corresponding loop free pro-

gram in Figure 6.4 and added reachability variables in Figure 6.7. In this pro-

gram, there is no looping control-flow left and thus, by adding auxiliary vari-

ables, we can transform the program in a way that each variable is only assigned

once on each control path. I.e., we can create a program without state changes

where assignments can be replaced by assumptions.
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ℓF2 : assumeRℓF
2

= true;

assume i0 ≤ 10;
goto ℓF3 , ℓ

F
4 ;

ℓF3 : assumeRℓF
3

= true;

assumeRℓF
4

= Rinit
ℓF
4

;

assume i0%2 = 0;
assert 0 ≤ i0 < 10;
assume a0[i0] = 1;
goto ℓF5 ;

ℓF4 : assumeRℓF
4

= true;

assumeRℓF
3

= Rinit
ℓF
3

;

assume i0%2 6= 0;
assert 0 ≤ i0 < 10;
assume a0[i0] = 0;
goto ℓF5 ;

ℓF5 : assumeRℓF
5

= true;

assume i1 = i0 + 1;
goto ℓ2;

ℓ0 : Rℓ0 = true;
goto ℓ1;

ℓ1 : goto ℓF2 , ℓtmp;

ℓ2 : assumeRℓ2 = true;
assume i2 ≤ 10;
goto ℓ3, ℓ4;

ℓ3 : assumeRℓ3 = true;
assumeRℓ4 = Rinit

ℓ4
;

assume i2%2 = 0;
assert 0 ≤ i2 < 10;
assume a1[i2] = 1;
goto ℓ5;

ℓ4 : assumeRℓ4 = true;
assumeRℓ3 = Rinit

ℓ3
;

assume i2%2 6= 0;
assert 0 ≤ i2 < 10;
assume a1[i2] = 0;
goto ℓ5;

ℓ5 : assumeRℓ5 = true;
assume i3 = i2 + 1;
goto ℓL2 ;

ℓ6 : assumeRℓ6 = true;
assume ¬(i5 ≤ 10);
assert(

∧

ℓ∈P Rℓ)
goto ℓterm;

ℓL2 : RℓL
2

= true;

assume i4 ≤ 10;
goto ℓL3 , ℓ

L
4 ;

ℓL3 : RℓL
3

= true;

assumeRℓL
4

= Rinit
ℓL
4

;

assume i4%2 = 0;
assert 0 ≤ i4 < 10;
a3[i4] := 1;
goto ℓL5 ;

ℓL4 : RℓL
4

= true;

assumeRℓL
3

= Rinit
ℓL
3

;

assume i4%2 6= 0;
assert 0 ≤ i4 < 10;
a3[i4] := 0;
goto ℓL5 ;

ℓL5 : RℓL
5

= true;

i5 := i4 + 1;
goto ℓ6;

ℓtmp : assumeRℓ2 = Rinit
ℓ2

∧RℓF
2

= Rinit
ℓF
2

∧RℓL
2

= Rinit
ℓL
2

;

assumeRℓ3 = Rinit
ℓ3

∧RℓF
3

= Rinit
ℓF
3

∧RℓL
3

= Rinit
ℓL
3

;

assumeRℓ4 = Rinit
ℓ4

∧RℓF
4

= Rinit
ℓF
4

∧RℓL
4

= Rinit
ℓL
4

;

assumeRℓ5 = Rinit
ℓ5

∧RℓF
5

= Rinit
ℓF
5

∧RℓL
5

= Rinit
ℓL
5

;

assume i5 = i0;
assume a4 = a0;
goto ℓ6;

Figure 6.8: The program AltBit after transformation into passive form
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Figure 6.8 shows the passive version of our initial program AltBit. Notice

that a new program point ℓtmp has been added. This program point is needed

to express that the variables modified by the loop-body remain unchanged if the

loop is not entered. This, in particular, affects the reachability variables of the

loop body. It explicitly states that, e.g. the reachability variable Rℓ5 associated

with the program point ℓ5 keeps its initial value Rinit
ℓ5

(which intentionally is not

specified) instead of being set to true. If we would initialize Rinit
ℓ5

to false, any

execution that does not pass the program point ℓ5 - and therefore assigns Rℓ5 to

true - will violate the assertion at ℓ6. The combination of reachability variables

and single assignment is a simple and efficient way the make all executions

inadmissible that do not pass a certain program point.



Chapter 7

Detecting Doomed Program

Points

In the previous chapter we described how to transform a program P into a

loop-free passive program Transform(P ) with reachability variables. We now

explain how to detect doomed program points in the transformed program and,

by soundness of the transformation, in the original program P .

7.1 Computing Weakest Liberal Preconditions

Recall condition (4.1) from Chapter 4, which characterizes doomed program

points in terms of weakest liberal preconditions. We use this observation to

reduce the problem of detecting doomed program points in the transformed

program to the problem of checking validity of logical formulas that express

weakest liberal preconditions.

Let P be a program in loop-free passive form and let F be a formula over

the program variables in P . Using Dijkstra’s predicate transformer semantics

of programs [14], we can compute a formula wlp(P, F ) that denotes the weakest

liberal precondition of program P and formula F . First, for each block ℓ : S in

48
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P we recursively define the formula wlp(S, F ), as follows:

wlp(goto ℓ1, . . . , ℓn, F ) = wlp(st(ℓ1), F ) ∧ · · · ∧ wlp(st(ℓn), F )

wlp(assumeE,F ) = E =⇒ F

wlp(assertE,F ) = E =⇒ F

wlp(S1;S2, F ) = wlp(S1,wlp(S2, F ))

Note that wlp(S, F ) is well-defined since the program P is in loop-free passive

form. The weakest liberal precondition wlp(P, F ) of program P and formula F

is then simply given by the formula wlp(st(ℓinit), F ) where ℓinit is the program

point of the start block of program P .

Given the semantics of statements defined in Chapter 5, we can easily prove

that wlp(P, F ) has the intended meaning.

Lemma 1. Let P be a program in loop-free passive form, F a formula over

program variables of P , and s an initial state of P . Then s |= wlp(P, F ) iff for

all admissible executions π of P starting in s, final(π) |= F .

With Lemma 1 we can now prove that weakest liberal preconditions can be

used to detect doomed program points in transformed programs.

Proposition 1. Let P be a program and ℓ a program point in P . Then ℓ is

doomed in Transform(P ) iff the formula Rℓ ∨ wlp(Transform(P ), false) is valid.

Proof. For a program point ℓ in P , let R′
ℓ be the variable used in the pas-

sification step of Transform to represent the value of the reachability variable

Rℓ after the update Rℓ := true in block ℓ, i.e., each block ℓ in Transform(P )

contains the statement assume(Rℓ) and the assert statement at the end of

Transform(P ) is of the form assert(
∧

ℓ∈P R′
ℓ). Furthermore, on all paths in

the CFG of Transform(P ) that do not pass through block ℓ there is some block

containing the assume statement assume(R′
ℓ ≡ Rℓ).

For proving the right-to-left direction, assume that ℓ is not doomed in

Transform(P ). Then there exists an admissible execution π of Transform(P ) pass-

ing through ℓ. Define the sequence of states π′ as follows: for all i, 1 ≤ i ≤ len(π),

and program variables x of Transform(P ), if x 6= Rℓ then π′[i](x) = π[i](x),

and π′[i](Rℓ) = false. Since π passes through ℓ, the variable Rℓ does not

appear in any of the blocks st(π[i](pc)), for all 1 ≤ i ≤ len(π). Thus, π′

is still an admissible execution of Transform(P ). By definition of π′ we have
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π′[0] 6|= Rℓ. Furthermore, since final(π′) 6|= false, it follows from Lemma 1 that

π′[0] 6|= wlp(Transform(P ), false).

For proving the left-to-right direction, assume that s is a state of Transform(P )

with s 6|= Rℓ and s 6|= wlp(Transform(P ), false). Define s0 such that s0 agrees

with s on the values of all program variables, except that s0(pc) = ℓinit. Thus,

s0 is an initial state of Transform(P ), and we still have s0 6|= Rℓ and s0 6|=

wlp(Transform(P ), false). Then from Lemma 1 follows that there is an admissi-

ble execution π of Transform(P ) starting in s0. If π was not passing through ℓ

then there would be some i with 1 ≤ i ≤ len(π) such that the block π[i](pc) con-

tained the assume statement assume(R′
ℓ ≡ Rℓ). Since s0 6|= Rℓ and π starts in

s0 we would thus have for all i, 1 ≤ i ≤ len(π), π[i] 6|= R′
ℓ. In particular, final(π)

would violate the assert statement assert(
∧

ℓ∈P R′
ℓ) and, hence, π would not

be admissible. It follows that π must pass through ℓ, i.e., ℓ is not doomed in

Transform(P ).

From Propositions 1 and 4 now follows the soundness of algorithm Exorcise.

Theorem 1. The algorithm Exorcise is sound, i.e., for all programs P and pro-

gram points ℓ of P , if ℓ ∈ Exorcise(P ) then ℓ is doomed in P .

7.2 Block Variables and Incremental Checking

The definition of the formula wlp(P, F ) that we chose in the previous section is

a rather naive one. While this naive definition simplifies reasoning about the

correctness of our algorithm, it is impractical due to redundancies in the formula

representation.

Note that each block ℓ in program P may have multiple predecessor blocks

(i.e., blocks with a goto statement to block ℓ), due to join points in the control-

flow graph. The weakest precondition of each such predecessor block contains

the formula wlp(st(ℓ), F ) as a subformula, which leads to duplication of sub-

formulas in the final formula wlp(P, F ). In fact, the number of duplications

of a subformula wlp(st(ℓ), F ) in the formula wlp(P, F ) is equal to the number

of control-flow paths in program P that visit block ℓ. The number of such

paths can be exponential in the number of blocks in the program, leading to

an exponential explosion of the size of the formulas that is given to the SMT

solver.

We can avoid duplication of the subformulas generated for each block by

using the idea of block variables [35]. For this purpose we introduce an auxiliary
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Boolean variable Bℓ for each program point ℓ that replaces all occurrences of

subformulas wlp(st(ℓ), false). This means, instead of the formula wlp(P, false),

we build the formula

FBdef :
∧

ℓ∈P

(

Bℓ ≡ wlp(st ′(ℓ), Bℓ1 ∧ · · · ∧Bℓn

)

∧ ¬BTerm

Here ℓ1, . . . , ℓn are the program points occurring in the final goto statement of

block ℓ. The statement st ′(ℓ) refers to the statement of block ℓ where the final

goto statement is replaced by the statement assume true.

The SMT solver now checks for each program point ℓ in P , whether the

verification condition Fℓ : (Rℓ ∨ FBdef ) =⇒ Bℓinit is valid or equivalently,

whether ¬Rℓ ∧ FBdef ∧ Bℓinit is unsatisfiable. Note that we have to check the

validity of Fℓ for each program point ℓ separately. However, we can reuse

the formula FBdef that occurs in each such check. Most SMT solvers support

incremental queries, which means that they can reuse the learned clauses from

this formula between the separate checks.

7.3 Example

For our running example from the previous chapter we can generate a weakest

liberal precondition representation straight forward from the passive version of

the program AltBit given in Figure 6.8. As the program only contains assume

and assert statements, we can apply the predicate transformer semantics from

Section 7.1 to obtain the formula representation of each basic block and then

use the optimization from Section 7.2 to obtain the formula given in Figure 7.1

that can be sent to the theorem prover. Notice that in this formula, which

is unsatisfiable if ℓ is doomed, the only reference to ℓ is the last conjunct.

Therefore, the rest of the formula can be precomputed and stored in the theorem

prover (e.g., it can be pushed on the axioms stack in Z3).

In this example program, the last iteration of the while-loop, where i reaches

10, always violates the bounds of the array a. In the formula from Figure 7.1 we

can see the contradiction between ℓL3 , ℓL4 , ℓL5 , and ℓ6 which can be simplified to

(0 ≤ i4 < 10)∧ (i5 = i+ 4 + 1)∧ (¬(i5 ≤ 10)). The weakest liberal precondition

representations of the basic blocks in the loop body trivially evaluate to true.
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Bℓ0 ≡ ¬(Rℓinit ∧ ¬Bℓ1)
∧ Bℓ1 ≡ ℓF2 ∧Bℓtmp

∧ BℓF
2

≡ ¬(RℓF
2

∧ (i0 ≤ 10) ∧ ¬(BℓF
3

∧BℓF
4

))

∧ BℓF
3

≡ ¬(RℓF
3

∧ (i0%2 = 0) ∧ (0 ≤ i0 < 10) ∧ (a0[i0] = 1) ∧ ¬BℓF
5

)

∧ BℓF
4

≡ ¬(RℓF
4

∧ (i0%2 6= 0) ∧ (0 ≤ i0 < 10) ∧ (a0[i0] = 0) ∧ ¬BℓF
5

)

∧ BℓF
5

≡ ¬(RℓF
5

∧ (i1 = i0 + 1) ∧ ¬Bℓ2)

∧ Bℓ2 ≡ ¬(Rℓ2 ∧ (i2 ≤ 10) ∧ ¬(Bℓ3 ∧Bℓ4))
∧ Bℓ3 ≡ ¬(Rℓ3 ∧ (i2%2 = 0) ∧ (0 ≤ i2 < 10) ∧ (a1[i2] = 1) ∧ ¬Bℓ5)
∧ Bℓ4 ≡ ¬(Rℓ4 ∧ (i2%2 6= 0) ∧ (0 ≤ i2 < 10) ∧ (a1[i2] = 0) ∧ ¬Bℓ5)
∧ Bℓ5 ≡ ¬(Rℓ5 ∧ (i3 = i2 + 1) ∧ ¬BℓL

2

)

∧ BℓL
2

≡ ¬(RℓL
2

∧ (i4 ≤ 10) ∧ ¬(BℓL
3

∧BℓL
4

))

∧ BℓL
3

≡ ¬(RℓL
3

∧ (i4%2 = 0) ∧ (0 ≤ i4 < 10) ∧ (a3[i4] = 1) ∧ ¬BℓL
5

))

∧ BℓL
4

≡ ¬(RℓL
4

∧ (i4%2 6= 0) ∧ (0 ≤ i4 < 10) ∧ (a3[i4] = 0) ∧ ¬BℓL
5

)

∧ BℓL
5

≡ ¬(RℓL
5

∧ (i5 = i4 + 1) ∧ ¬Bℓ6)

∧ Bℓtmp
≡ ¬(

∧

2≤i≤5(RℓF
i

= Rinit
ℓF
i

∧Rℓi = Rinit
ℓi

∧RℓL
i

= Rinit
ℓL
i

)

∧(i5 = i0) ∧ (a4 = a0) ∧ ¬Bℓ6)

∧ Bℓ6 ≡ ¬(Rℓ6 ∧ (¬(i5 ≤ 10)) ∧
∧

ℓ∈P Rℓ ∧ ¬false)

∧ (¬Bℓ0)
∧ (¬Rℓ)

Figure 7.1: The formula sent to the theorem prover to check if the program
point ℓ is doomed in the program AltBit. If the theorem prover proves the
formula to be unsatisfiable, we report that ℓ is doomed.
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That is, our formula can be reduced to the simple formula:

(

Rℓ0 ∧
∧

2≤i≤5(RℓF
i

= Rinit
ℓF
i

∧Rℓi = Rinit
ℓi

∧RℓL
i

= Rinit
ℓL
i

) ∧ (i5 = i0)

∧(a4 = a0) ∧ (Rℓ6 ∧ (¬(i5 ≤ 10)) ∧
∧

ℓ∈P Rℓ ∧ ¬false)
)

∧ (¬Rinit
ℓ )

which is unsatisfiable if Rℓ is chosen to be the reachability variable of the pro-

gram point ℓ2,ℓ3,ℓ4, or ℓ5 and therefore these program points are proven to be

doomed by our algorithm.

Error Message. The quality of feedback is the most crucial aspect of any

static analysis tool. It has to provide information that can help to increase

the quality of the program and the productivity of the programmer. Doomed

program point analysis takes an extreme position because it only detects a small

class of errors but for those it can prove their existence. However, returning a

set of program points that cannot be passed by normal terminating executions

is not yet a valuable information. The program point might be doomed because

preceding commands fail on any execution and thus the program point itself

does not indicate which statement actually fails. A program point might also

be doomed because it is not passed by any execution (i.e., it is dead code).

Maybe a program point is doomed because it is an intentional program abortion

(e.g. assert false). All these cases are doomed program points according to our

definition, however, for a user it is important to get additional information on

why a program point is doomed. E.g., in our running example the contradiction

between (0 ≤ i4 < 10) ∧ (i5 = i + 4 + 1) ∧ (¬(i5 ≤ 10)) would be a valuable

information. Unfortunately, we cannot use the unsatisfiable core of the formula

to isolate the contradicting clauses, because, in particular, if we consider the

structure of our formula ¬FBdef
∧ ¬Rℓ, the negated reachability variable Rℓ

of the block that we analyze is of course the smallest unsatisfiable core of the

formula. In fact the we are looking for the unsatisfiable core of the trace formula

of each trace passing through the doomed program point (according to the

definition of doomed program points we can be sure that an unsatisfiable core

exists because each trace formula is infeasible). We are only interested in the

contradicting statements on paths that contain the program point ℓ. We make

use of the fact that each passive statement also is a literal in the formula sent

to the theorem prover and thus in some trace formula. We can identify the

statements that are part of the unsatisfiable cores of the trace formulas by

randomly removing statements from the passive program that correspond to
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a statement in the original program (i.e., all statements that do not relate to

reachability variables) and checking if the program is still doomed. If removing

a statement adds admissible executions to the program, we know, that this

statement is part of the unsatisfiable core of some trace formula and that it is

on a path that contains ℓ (otherwise there cannot be an admissible execution of

this path because the assertion related that all reachability variables are one at

the end of the path would be violated).

This approach allows us to identify those statements that contradict on the

paths that contain the program point ℓ. These statements are a more compact

representation of the problem and can help to further interpret the problem.

E.g., if all returned statements are assume statements, it is certain that the

doomed program point refers to unreachable code after the last assume.

Such an approach of identifying statements that are reported to the user is

very primitive but suitable for our purpose as, if a doomed program point is

detected, the computation time to generate an error message is not that relevant.

For a real implementation of doomed program point detection, it is impor-

tant to further distinguish doomed program points (e.g., dead code, intentional

abortion, etc.). In this thesis, however, we only focus on the efficient detection

of doomed program points and leave any post processing of the result for the

future work.



Chapter 8

Optimizations

We have presented an algorithm that detects whether a given program point

is doomed by calling a theorem prover. In practice we are not just interested

in checking whether one particular program point is doomed, but we want to

compute all (detectable) doomed program points in a program. To compute the

set of all doomed program points our algorithm Exorcise simply iterates over all

program points and checks for each one whether it is doomed or not. We can do

better and exploit dependencies between different program points in the control

flow graph of the program that allow us to reduce the total number of theorem

prover calls.

The algorithm Exorcise+ shown in Figure 8.1 exploits such dependencies.

Like the original procedure from Figure 5.2, Exorcise+ iterates over the set of

program points in P , which are stored in a work set N . While N is non-empty

it chooses a program point ℓ ∈ N and checks whether it is doomed. If ℓ is

doomed then it computes a set of program points Doomed(P ′, ℓ,N), which are

the program points in N that are doomed in P ′ under the assumption that

ℓ is doomed. This set is then removed from the work set and added to the

set of doomed program points. Similarly, if ℓ is not doomed then the algorithm

computes the set Absolved(P ′, ℓ,N) of program points in N that are not doomed

in P ′ under the assumption that ℓ is not doomed, and removes them from the

work set in one go. In the following we describe how the subroutines Doomed

and Absolved are implemented.

55
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proc Exorcise+(P : program)
var P ′ : program
var ϕ : formula
var D : set of doomed program points
var N : set of program points
var A : set of program points

begin

P ′ := Transform(P )
ϕ := wlp(P ′, false)
D := ∅
N := program points in P

while N 6= ∅ do

choose ℓ from N
if Valid(Rℓ ∨ ϕ) then

A := Doomed(P ′, ℓ,N)
D := D ∪A

else

A := Absolved(P ′, ℓ,N)
fi

N := N \A
od

return D

end

Figure 8.1: Optimized version of algorithm Exorcise given in Figure 5.2
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8.1 Control Dependency Graph

Let ℓ and ℓ′ be program points in a program P such that the set of admissible

executions passing ℓ′ is a super set of those passing ℓ. Then if ℓ′ is doomed in

P , so is ℓ and vice versa, if ℓ is not doomed then neither is ℓ′. Our optimization

is based on the simple insight that the control flow graph of a program gives us

some information about the relations between the sets of admissible executions

passing through different program points.

In the following we fix a program P . We say that a path in the control-

flow graph of P is complete, if it starts in the initial block ℓinit and ends in the

final block ℓterm. Note that a path in the control flow graph of P is not to be

confused with an execution of P . A path in the control flow graph ignores the

semantics of statements in the blocks of the program. Now let ℓ and ℓ′ be two

program points in P . We say ℓ′ is control-dependent on ℓ, written ℓ � ℓ′, if

every complete path in the control flow graph that passes through ℓ′ also passes

through ℓ.

Lemma 1. For any program P and program points ℓ and ℓ′ in P , if ℓ � ℓ′ then

every admissible execution passing through ℓ′ also passes through ℓ.

The relation � is a reflexive and transitive relation on program points and,

hence, the relation ≃
def

=� ∩ �−1 is an equivalence relation. For a program point

ℓ, we denote by

T(ℓ)
def

= {ℓ′ ∈ P | ℓ′ � ℓ}

the set of all program points in P on which ℓ is control dependent and we denote

by [ℓ] the equivalence class of ℓ under the relation ≃. We lift the relation �

from program points to the quotient under the equivalence relation ≃, i.e., we

have [ℓ] � [ℓ′] if and only if T(ℓ) ⊆ T(ℓ′).

We can compute the sets T(ℓ) and thus the equivalence classes efficiently by

computing the dominator and post dominator trees of the control flow graph [37,

41]. For two program points ℓ and ℓ′, ℓ′ is a dominator of ℓ if every path in

the control flow graph from the initial block to ℓ passes through ℓ′ and dually

ℓ′ is a post-dominator of ℓ if every path from ℓ to the final block passes through

ℓ′. We denote by Dom(ℓ) the set of all dominators of a program point ℓ and by

Dompost(ℓ) its post-dominators. Then we have

T(ℓ) = Dom(ℓ) ∪ Dompost(ℓ) .
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1 int i = 0 ;
2 i f ( k != 0) {
3 i = 3 ;
4 } else {
5 i = 5 ;
6 }
7 i ++;
8 return ;

a : i := 0;
goto b;

b : goto c, d
c : assume k 6= 0;

i := 3;
goto e;

d : assume k = 0;
i := 5;
goto e;

e : i = i + 1;
goto f ;

f :

Figure 8.2: Program PathProg

Figure 8.3 shows the equivalence classes under the relation ≃ and the dominator

and post-dominator tree for the program PathProg given in Figure 8.2. In

program PathProg we have T(a) = T(b) = T(e) = T(f) = {a, b, e, f}, T(c) =

{a, b, c, e, f}, and T(d) = {a, b, d, e, f}.

Once the sets T(ℓ) have been computed, we compute the directed acyclic

graph that corresponds to the Hasse diagram of the relation � on the quotient,

i.e., the nodes in this graph are the equivalence classes and the edges are given

by the transitive reduction of the relation �. We call this graph the control

dependency graph. Figure 8.4 shows the control dependency graph of program

PathProg.

8.2 Avoiding Redundant Theorem Prover Calls

We can now use the control dependency graph of a program to avoid redundant

theorem prover calls in the algorithm Exorcise+. If two program points ℓ and ℓ′

are in the same equivalence class then it follows from Lemma 1 that ℓ is doomed

if and only if ℓ′ is doomed. More generally, if [ℓ] is transitively reachable from

[ℓ′] in the control dependency graph then ℓ′ is doomed if ℓ is doomed. This

leads us to the following definitions of the functions Doomed and Absolved:

Absolved(P, ℓ,N)
def

={ℓ′ ∈ P | [ℓ] � [ℓ′]} ∩N

Doomed(P, ℓ,N)
def

={ℓ′ ∈ P | [ℓ′] � [ℓ]} ∩N

We also use the control dependency graph to determine the order in which
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a

b

c d

e

f

(a)

a

b

c d

e

f

(b)

a

b

c d

e

f

(c)

Figure 8.3: The control flow graph (a) dominator tree (b) and post-dominator
tree (c) for program PathProg. The colors of the nodes in the control flow
graph indicate the equivalence classes under relation ≃.

a, b, e, f

c d

Figure 8.4: Control dependency graph of program PathProg
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int a , b , c , x ;

void diamonds ( ){
i f ( a != 0) { x++; }
else { x−−; }
i f (b != 0) { x++; }
else { x−−; }
i f ( c != 0) { x++; }
else { x−−; }

}

ℓinit : goto ℓ1, ℓ2;
ℓ1 : assume a 6= 0;

x := x + 1;
goto ℓ3;

ℓ2 : assume a = 0;
x := x− 1;
goto ℓ3;

ℓ3 : goto ℓ4, ℓ5;
ℓ4 : assume b 6= 0;

x := x + 1;
goto ℓ6;

ℓ5 : assume b = 0;
x := x− 1;
goto ℓ6;

ℓ6 : goto ℓ7, ℓ8;
ℓ7 : assume c 6= 0;

x := x + 1;
goto ℓterm;

ℓ8 : assume c = 0;
x := x− 1;
goto ℓterm;

Figure 8.5: Program Diamonds

ℓinit, ℓ3,

ℓ6, ℓterm

ℓ4 ℓ5ℓ2ℓ1 ℓ7 ℓ8

Figure 8.6: Control dependency graph of program Diamonds

the program points are checked in algorithm Exorcise+. To guarantee that a

given program does not contain any doomed program points, it is sufficient to

show that none of the leaf nodes in the control dependency graph is doomed.

Since we expect the number of doomed program points to be small, we explore

the control flow graph by starting with the equivalence classes at the leafs.

We illustrate the effect of our optimizations on the program shown in Fig-

ure 8.5. When we use the vanilla algorithm Exorcise to analyze the program

Diamonds then we will have 10 calls to the theorem prover, one for each pro-

gram point. The control dependency graph of program Diamonds is shown

in Figure 8.6. It consists of seven nodes: one is given by the equivalence class

{ℓinit, ℓ3, ℓ6, ℓterm} and each of the other equivalence classes contains one of the

remaining program points. The equivalence classes containing only one pro-

gram point are the leaves of the control dependency graph. Applying algorithm

Exorcise+ to program Diamonds will therefore only require six theorem prover

calls to prove that none of the program points is doomed.



61

Further Optimization. We can further improve the function Absolved by

using the output produced by the theorem prover. When the theorem prover

fails to prove that a program point ℓ is doomed, it emits a countermodel for the

input formula. The countermodel encodes an admissible execution of the pro-

gram that passes through ℓ. From the countermodel we can extract all program

points CE(ℓ) that are visited by this admissible execution. The countermodel

witnesses that all program points in CE(ℓ) are not doomed. Hence, we can re-

move them from the work set. For our example program Diamonds this further

reduces the number of required theorem prover calls to at most four: if we, e.g.,

check the leaf node ℓ4 of the control dependency graph in Figure 8.6, the prover

will produce a countermodel corresponding to a normal terminating execution of

the program that may pass, e.g., through the program points ℓinit, ℓ1, ℓ3, ℓ4, ℓ6, ℓ7

and ℓterm. In this case, we thus know that the leaf nodes ℓ1 and ℓ7 cannot be

doomed either. Every other possible countermodel that the prover may produce

will also eliminate at least two other leaf nodes in addition to ℓ4.



Chapter 9

Evaluation

We implemented our algorithm Exorcise+ including the optimizations presented

in this thesis as part of the Boogie program verifier [3]. The implementation

is publicly available for download1. We added a switch to Boogie which al-

lows us to use it for doomed program point detection instead of verification.

Figure 9.1 gives an overview of the architecture of Boogie. The Boogie pro-

gram verifier takes a program in a specific language called Boogie [13] as input.

This language is similar to our simple language presented in Chapter 5. Boogie

provides some high level commands like specification statements for describing

preconditions, postconditions, and invariants, as well as some high level con-

structs such as loops. However, these constructs can easily be translated to the

simpler commands used throughout this thesis. Programs in that language are

usually created using other tools such as Spec# that translates C# programs

with special annotations into the Boogie language while adding some assertions

for memory safety and other potential run-time errors. Further these tools pro-

vide axioms about the type system, data structures, and object orientation.

Similar translators exist for Java and C programs as well as for some research

programming languages. Boogie then transforms the input program into a loop-

free program, applies a single assignment transformation and finally generates

a verification condition using weakest precondition semantics [35]. The validity

of this verification condition implies that all executions of the original program

terminate normally.

In order to use Boogie for doomed program point detection, we have to

1http://boogie.codeplex.com
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Figure 9.1: Overview of the Boogie program verifier.

modify it in a way that it proves that all executions passing a program point

terminate abnormally, instead. This can be achieved by applying minor modi-

fications to the verification condition generation and the verification procedure.

First, we modify the loop elimination and program transformation used in Boo-

gie. For a given program the loop elimination in Boogie removes the back

edge of each loop and adds an assume(false) statement to the end of the loop

body [35]. For the purpose of verification, this is a sound abstraction but obvi-

ously this abstraction cannot be used for doomed program point detection. We

replace this loop elimination by the abstract loop unrolling presented in Sec-

tion 6.1. For (recursive) method calls we use the reuse the transformation that

is implemented in Boogie. We replace the function call by a non-deterministic

assignment to the variables modified by the method and add an (in our case triv-

ial) assertion of the postcondition. This is a very coarse approximation. Later

on, we argue why it is a good tradeoff between precision and speed for doomed

program point detection. We then augment the loop-free program with reach-

ability variables (see Section 6.3). The reachability variables allow us to make

all executions inadmissible that do not pass a certain program point simply by

assuming that the reachability variable of this program point is initially zero.

Thus, for this transformed program we only have to prove that all it’s executions
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terminate abnormally (in contrast to verification, where we prove that all exe-

cutions terminate normally). We next apply a single assignment transformation

to the loop-free program. This transformation is the same for verification and

for doomed program point detection (see Section 6.4 or [35]). For the resulting

passive program we use predicate transformer semantics to compute a forumla

representing the weakest liberal precondition. We can reuse the weakest precon-

dition computation implemented in Boogie by simply changing all assert state-

ments into assume and changing the postcondition from true to false. Boogie

already implements the optimized formula generation described in Section 7.1.

For program verification, Boogie generates one verification condition using the

weakest precondition, sends it to the theorem prover and returns the result to

the user (either a message that verification succeeded or a counterexample). For

doomed program point analysis we replace the weakest precondition transfor-

mation by a weakest-liberal precondition transformation (which can be done by

treating assertions as assumptions). We push the verification condition on the

theorem prover stack and check if initializing one of the introduced reachability

variables to zero reveals a doomed program point. We pick the reachability

variables based on the optimizations presented in Chapter 8. For each of them,

we send a query to the theorem prover, if assigning the variable to zero implies

the verification condition.

Finally, we return a list of doomed program points. This list only indicates

which statements cannot be reached on normal terminating executions. It does

not identify errors or distinguish between the violation of an assertion or a

reachability problem. We can, e.g. use the approach sketched in Section 7.3

to identify statements in the source program that can be blamed for the error

and be used to generate an error message. For our benchmark in the following

Section, we only compute doomed program points without generating error

messages.

In the following we present an evaluation of our implementation. We conduct

two experiments. First, we compare the detection rate of our algorithm to other

error detection tools. Then we evaluate the performance of our implementation

and the effect of our optimizations.
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void diamond ( int a , int b ,
int c , int y ) {

x = y ;
i f ( a != 0) { x++; }
else { x−−; }
i f (b != 0) { x++; }
else { x−−; }
i f ( c != 0) { x++; }
else { x−−; }
a s s e r t x==y+3;

}

Figure 9.2: DiamondsErr

9.1 Detection Rate

We compare our implementation of Exorcise+ to Findbugs [28] and Boogie [36]

with the /smoke option. When the /smoke option is enabled, Boogie uses

static reachability analysis [31] to identify parts of a seemingly correct Boogie

program that are unreachable. In particular, smoke testing can detect code

fragments that are vacuously correct due to errors in the specification. We apply

all tools to the example programs given throughout this thesis and to programs

from the Findbugs null pointer micro benchmark [28]. For Findbugs we use

Java versions of the programs. For Exorcise+ and Boogie we use handwritten

Boogie programs for the examples from this thesis and a Boogie program

generated by Spec# for the Findbugs micro benchmark. While the programs

are all small (only a few lines of code), they cover a variety of common errors

in programs and sources for potential false positives.

The result of our comparison is shown in Table 9.1. For all benchmark

programs our analysis can correctly determines whether the program has an

error, i.e., all errors in the examples actually cause some program point to

be doomed. Findbugs produces false negatives on three programs with errors.

Boogie detects all errors but also produces 5 false positives.

In particular, this benchmark shows that in the case that both Boogie and

Exorcise+ do not detect errors, Exorcise+ is always faster.

The C# version of the Findbugs benchmarks and the benchmarks from this

thesis are provided in two separate input files to Boogie (both when used with

our algorithm and when used with smoke testing). Boogie is restarted for each
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Exorcise
+ Findbugs [28] Boogie [3]

Program error? t (ms) result result t (ms) result

fp1 no 168 true neg true neg 756 true neg

tp1 yes 76 true pos false neg 35 true pos

fp2 no 71 true neg true neg 159 true neg

tp2 yes 68 true pos false neg 26 true pos

fp3 no 81 true neg true neg 185 true neg

tp3 yes 90 true pos true pos 57 true pos

tp4 yes 75 true pos true pos 38 true pos

fp4 no 71 true neg true neg 129 true neg

tp5 yes 62 true pos true pos 25 true pos

tp6 yes 63 true pos true pos 20 true pos

Vacuous yes 108 true pos true pos 267 true pos

Entangled yes 15 true pos true pos 3 true pos

Access yes 12 true pos true pos 1 true pos

GetMin yes 38 true pos false neg 27 true pos
3 false pos

Update no 24 true neg true neg 11 2 false pos

DiamondsErr yes 15 true pos true pos 3 true pos

Diamonds no 16 true neg true neg 32 true neg

Total Time 1.1 s 3s 1.87 s

Table 9.1: Comparison of our algorithm with Findbugs and Boogie with smoke
testing enabled. The columns list the analyzed program, whether it contains an
error, and the running time and result for each tool. The result can either be
“true positive” if an error is found, “true negative” if no error is reported on
correct programs, “false positive” if a non-existing error is reported, or “false
negative” if an existing error is overlooked. Programs fpi and tpi come from
the Findbugs null pointer micro benchmark and the remaining programs from
this thesis.
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Program LOC #blocks #checked blocks total time (s)
All Incr None All Incr None

Tree 7366 551 84 551 551 17.46 113.20 209.86

RB Tree 6981 435 137 453 453 111.63 279.00 298.25

RwLock 7485 181 30 181 181 507.65 579.20 705.65

NestedLock Pattern 8391 252 54 252 252 63.90 554.46 524.58

Table 9.2: Performance benchmarks on four C programs. The columns show
the name of each program, the total number of lines of code of the Boogie
program, total number of basic blocks, the number of blocks that were checked
during the analysis and the total running time of the analysis. We differentiate
between three different runs of the analysis on each program: one without any
optimizations (None), one with incremental theorem prover calls (Incr), and one
with incremental checking and the optimizations discussed in Chapter 8 (All).

input file. The initialization time of Boogie accounts for a small increase in

the running times for the programs fp1 and Vacuous, which happen to be the

first programs in the input files. The running times are given for the sake of

completeness only. The programs we consider here are too small to make a

meaningful comparison between the tools. Experiments with larger examples

indicate that Findbugs tends to have better running time than both Exorcise+

and Boogie with smoke testing. However, our approach still scales reasonably

well, as we shall see in the next experiment.

9.2 Performance Benchmarks

We next evaluate the performance of our implementation. We apply our al-

gorithm to four C program fragments taken from an operating system kernel.

The program fragments are translated to Boogie using VCC [16]. The pro-

grams implement two different tree data structures, a reader-writer lock [25],

and a nested lock pattern implementation. The programs are partially anno-

tated with specifications.

Table 9.2 shows the results of our experiments. We can see that our proto-

type implementation already scales quite well to larger programs. We analyzed

each program without optimizations, only with incremental checking enabled,

and with all optimizations enabled. Our optimizations could significantly im-

prove the running time of the analysis. Only for the reader-writer lock imple-

mentation (RwLock) the effect of our optimization was hardly visible. A more
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detailed analysis of this example revealed that 90% of the computations time

is spent by proving the correctness of two loop invariants that are annotated in

the program. Thus our optimizations only affected the remaining 10%.

Incremental checking turned out to be slower on the NestedLock Pattern ex-

ample than the naive approach. We found out that in certain cases the theorem

prover gets slowed down by useless instantiations of axioms that are introduced

in the translation to the Boogie program in order to formalize the sementics

of C. In principle, we could circumvent this problem by restarting the prover if

we detect that incremental checking slows down.

Our implementation detected a doomed program point in an early version of

the tree implementations which was caused by a wrong data structure invariant.

We also detected a few doomed program points caused by intensional program

abortions (i.e., assert false statements) in all four programs. We believe that

the latter should not actually be reported to the user. However, this is only a

problem of presentation. As we expected, it is unlikely to detect actual doomed

program points in legacy code as this would indicate that some parts of the code

have never been executed.

9.3 Discussion

In general, we think that our implementation for doomed program point detec-

tion is useful already. However, in the current workflow of the Boogie program

verifier, there is only little application for it. Boogie is used to prove correctness.

If the verification engineer wants to be sure that proof of the program is not

valid because of vacuous specifications she can use the Smoke test, that is build

into Boogie [31] which results in a higher error detection rate but some false

positives.

Doomed program point detection is meant to be run during compile time and

support the error detection methods of the compiler. Our experiments indicate

that it scales good on the method level. As our analysis does not claim to be

complete, we believe that there is still a lot of room for improvements related

to performance. In the very first place a simpler memory and type model

could safe a lot of time. Programs translated from high-level programming

languages such as C or C# to our intermediate language carry a prelude of

several thousand lines with them that describe the type system and the memory

model. This prelude is designed for proving correctness which requires a much
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higher precision than error detection. We plan to rerun our experiments with a

slightly simpler prelude.

The abstract loop unrolling generates three copies of the loop body. One

simulating the first, the last, and an arbitrary number of iterations. In our

experiments the doomed program points found in loops were always caused by

statements in the last iteration. The size of the formula can be reduced signifi-

cantly by just using a non-deterministic assignment and the last iteration of the

loop body. Again, this is a decision between precision and performance, and we

will perform some empirical analysis to identify the most suitable abstraction

for doomed program point detection. We could further improve the performance

or detection rate by either using a simplified loop unrolling or a more sophisti-

cated loop elimination (e.g., by computing invariants to further strengthen the

abstraction). However, this is a matter of optimization and exceeds the scope of

this work. Closely related to this, we found that the inlining of function calls is

of little help for doomed program point detection. Our only experiments where

we detected doomed program points using inlining were small functions that

perform numeric computations without loops or nested function calls. For our

future work, we plan to replace the inlining be some kind of summary compu-

tation.

Overall, our experiments show that doomed program point detection is only

useful for small program fragments as doomed program points tend to be a local

problem. This supports our initial motivation that this analysis should be used

during development as an extension to existing compiler checks. For legacy

code it is very unlikely to find a statement that cannot be passed by a normal

terminating execution as this would indicate that this statement has never been

tested. We argue that, if we can prove that a statement in a program fragment

has no normal terminating executions, we can prove it for any larger fragment

as well. Increasing the size of the fragment increases the size of the verification

condition but also helps to reduce the set of possible executions passing the

statement and thus makes it easier to prove that it is doomed. However, in a

real program, increasing the size of the fragment will at some point not help to

reduce the executions passing a statement (e.g., because the program fragment

already contains abstraction, such as non-deterministic assignments, such that a

further extension of the scope will not reduce the number of possible executions

of that fragment). Finding the right size of the scope means finding the sweet

spot between performance and precision. From the experiments we can see that

the method scales up to large methods but does not find sophisticated errors
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(as those are usually not doomed program points).

The experiments indicate that our implementation is fast and precise for

small program fragments so that we conclude that the presented implementation

is a useful tool for error detection during compile time.



Chapter 10

Conclusion and future work

This thesis is motivated by the idea that in practice program verification is

rather considered as a way to detect bugs than to prove correctness. Achiev-

ing correctness with respect to (eventually informally) given requirements is a

very hard problem but the verification procedure itself and the automated tools

supporting this process can help to identify previously unspotted errors. Using

verification techniques to prove the presence of errors instead of their absence

promises powerful tools that can be applied by a broad audience. Precise static

detection of errors as performed by todays compilers is maybe one of the most

powerful and widely used approaches towards better software quality. There-

fore, we believe that sound static error detection using software verification is a

new and promising research direction.

The main contribution of this work is the new idea of doomed program

points. We argued that doomed program points constitute an interesting class

of program errors that should be detected at compile time. We showed that such

a detection algorithm can be realized efficiently in practice an that the algorithm

can easily be integrated in existing extended static checkers and program ver-

ifiers, assuming they provide the infrastructure for generating verification con-

ditions and automatic theorem provers to check them. We believe that our idea

can now be adopted and extended by many others. We see a huge potential in

this work. It provides a formal method that is applicable by every programmer

without prior knowledge of how to formally specify the correctness of a pro-

gram. Yet, given that our technique can be integrated into full-fledged program

verifiers such as Spec#, the programmer can directly benefit from additional

specifications that she puts into the program, as such annotations gradually

71



72

ℓ0

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

ℓ7

ℓ8

ℓ9

Figure 10.1: CFG for Diamond

extend the range of errors that our algorithm can detect - without producing

noise. Our technique can therefore provide a smooth learning curve towards

the use of full program verification and allow static verifiers to be integrated in

current IDEs.

Our experiments show, that our approach is not only useful to detect error

in code in a very convenient way, it can also be used to detect errors in user pro-

vided specifications and thus is very useful to any verification engineer working

with a static verifier.

Maybe the best reason to use our approach is that there is no argument

against it: our method is fully automatic and it remains invisible to the user as

long as no doomed program point is found. If a warning is emitted, then this is

a definite indication that the program is incorrect.

Future work We see much room for further improvements of our method. For

instance, we want to optimize our detection algorithm by developing specialized

techniques for finding correct executions, so that error verification conditions are

quickly recognized as invalid. Doomed program points are sparse; i.e., almost all

generated error verification conditions are not valid in practice (this is in contrast

with the usual verification conditions, for correctness). Every programmer’s

experience confirms the intuition that it is easier to find a correct execution (for

a program fragment that has no guaranteed error) than to find an incorrect one

(for a program fragment that may lead to an error). This gives an interesting

potential for further optimization.

Doomed program point detection and testing. One of the most promising

aspects of doomed program point analysis is that, if we cannot prove that a

program point is doomed, the theorem prover provides us with a counterex-

ample that includes initial values of the program variables that can lead to an

admissible execution. Unfortunately, since the algorithm is not complete, the
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values might not correspond to a possible execution in the original program.

However, we believe that there are several ways to exploit this feature.

Doomed program point detection can be combined with testing to analyze

program fragments that are not reached by a certain number of test cases. For

these fragments doomed program point analysis can check if there are admissible

executions passing this program fragment (and possible be extended in a way

that it returns a test case for one of these executions by parsing the model

produced by the theorem prover) or give an error message that shows, why there

are no admissible executions passing the fragment. If an admissible execution

passing this fragment exists, our implementation will fail to prove it doomed and

thus, the theorem prover will provide a model with a valuation of the program

variables the can reach this fragment. In particular in combination with random

testing this approach looks promising as the counterexample provided by the

prover can help to seed the random test case generation and thus lead to a higher

or faster test coverage of the examined program. In some way, this approach is

dual to the idea of may-must analysis where static may analysis is used to prove

properties of the program and dynamic must analysis is used to refine the static

analysis while our approach uses dynamic analysis to detect bugs and applies

static doomed program point detection on fragments to provide seed values for

the test case generation.

Another application is to check for several doomed program points at the

same time. That is, instead of asking if there is no admissible execution passing

through a program point ℓ we ask, e.g. if all executions passing through several

program points ℓ1 to ℓn are inadmissible. This is only a very small change in

our implementation but allows us to check much more. We illustrate this using

the control flow graph of the Diamond program given in Figure 10.1. E.g. the

program point ℓ5 is doomed if all 4 possible executions passing the point are

inadmissible. If we want to focus on one particular execution we can e.g. check

if the program points conjunction of ℓ1, ℓ5 and ℓ7 is doomed. Or we could check

ℓ1 and ℓ5 to see if the two executions that are passing through both of them

are inadmissible. Using this approach we can easily focus our analysis on a

certain set of executions by checking several program points at the same time.

This approach allows finding more sophisticated errors in a program. However,

a heuristic has to be found to select interesting program points. Otherwise,

the analysis may report executions that are intended to be inadmissible (e.g.

conditionals which are mutual excluding each other) and checking each control

flow path in isolation would be too costly (see [23]). Further, this approach can
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be used to generate test cases that reach certain points in the program which

can be used to direct the test case generation in a particular way.

Error message construction. In this thesis, we have presented a brute force

implementation that extract the contradiction statements in our formula and

reports the corresponding statements in the program back to the user. This

can be further investigated. Essentially an error message for a doomed program

point can be seen as an explanation (or compact representation) of the prove

of a safety property (i.e., the property that some location is never reached).

This is an invariant problem and we plan to use existing techniques to infer

invariants to investigate if they are suitable as a basis for error messages for

doomed program points. In contrast to verification where the goal is to find the

strongest invariant, we are interested in finding the weakest invariant for which

the property still holds.

Extended error detection. Static verifiers like Boogie compute the weak pre-

condition of a program which describes all pre-states, such that the execution

of the program ends in a normal terminating state when started in such a pre-

state. The complement of this is a condition on the initial states such that all

executions cannot terminate normally. Using this condition as a precondition

for the program guarantees that the program has no normal terminating exe-

cutions and thus is doomed. We can now prove this program doomed and a

technique to identify the contradicting statements (e.g., the brute force imple-

mentation from Section 7.3). If we can identify a statement contradicting with

the artificially added precondition, we know that this statement in someway

contributes to the abnormal termination of the program. However, to make

use of this feature there has to be a clear notion of error messages for doomed

program points, which then can serve as a basis for general error detection.

In the algorithm presented throughout this thesis, we require that, for all

valuations of the input variables, the execution of the program either terminates

abnormally or does not pass the considered program point. Instead, we could

distinguish between angelic and demonic variables, where angelic variables, just

as in the presented approach, try to pick a valuation that allows normal termi-

nation and demonic variables try to pick an initial value the leads to abnormal

termination. Of course this sacrifices soundness but allows to focus on certain

variables and thus can be used, e.g. for robustness analysis of methods.

We conclude that doomed program points are a valuable extension to the

current state of research in static error detection. The presented algorithm can

support even an unexperienced programmer as it does not require knowledge
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about formal methods, yet it allow a verification engineer to detect contra-

dictions in complex invariants. Further, observing the tendency that formal

methods are more and more used for error detection rather than for proving

correctness we believe that doomed program point detection is a valuable con-

tribution to the community and can play an important role in the evolving

research on combinations of static and dynamic analysis.
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[31] Mikoláš Janota, Radu Grigore, and Michal Moskal. Reachability analysis

for annotated code. In SAVCBS ’07: Proceedings of the 2007 conference

on Specification and verification of component-based systems, pages 23–30,

New York, NY, USA, 2007. ACM.

[32] Johan Janssen and Henk Corporaal. Making graphs reducible with con-

trolled node splitting. ACM Transactions on Programming Languages and

Systems, TOPLAS, 19(6):1031–1052, 1997.

[33] Gary A. Kildall. A unified approach to global program optimization. In Pro-

ceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on Princi-

ples of programming languages, POPL ’73, pages 194–206, New York, NY,

USA, 1973. ACM.

[34] Viktor Kuncak. Modular Data Structure Verification. PhD thesis, EECS

Department, Massachusetts Institute of Technology, February 2007.

[35] K. Rustan M. Leino. Efficient weakest preconditions. Information Process-

ing Letters, IPL, 93(6):281–288, 2005.

[36] K. Rustan M. Leino. This is Boogie 2. Manuscript KRML 178, June 2008.

Available at http://research.microsoft.com/~leino/papers.html.

[37] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding

dominators in a flowgraph. ACM Trans. Program. Lang. Syst., 1(1):121–

141, 1979.

http://research.microsoft.com/~leino/papers.html


80

[38] David C. Luckham and Norihisa Suzuki. Verification of array, record, and

pointer operations in Pascal. ACM Transactions on Programming Lan-

guages and Systems, TOPLAS, 1(2):226–244, 1979.

[39] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems:

safety. Springer-Verlag, 1995.

[40] Greg Nelson. A generalization of Dijkstra’s calculus. ACM Transactions

on Programming Languages and Systems, TOPLAS, 11(4):517–561, 1989.

[41] Reese T. Prosser. Applications of Boolean matrices to the analysis of flow

diagrams. In IRE-AIEE-ACM’59 (Eastern), pages 133–138. ACM Press,

1959.

[42] Nick Rutar, Christian B. Almazan, and Jeffrey S. Foster. A comparison

of bug finding tools for Java. In International Symposium on Software

Reliability Engineering, ISSRE, pages 245–256, 2004.

[43] Marko Samer and Helmut Veith. On the notion of vacuous truth. In

LPAR’07: Proceedings of the 14th international conference on Logic for

programming, artificial intelligence and reasoning, pages 2–14, Berlin, Hei-

delberg, 2007. Springer-Verlag.

[44] Vladimir I. Shelekhov and Sergey V. Kuksenko. On the practical static

checker of semantic run-time errors. In Asia Pacific Software Engineering

Conference, APSEC, page 434, 1999.

[45] Polyspace Technologies. PolySpace for C. Documentation, 2004.

[46] Misha Zitser, Richard Lippmann, and Tim Leek. Testing static analysis

tools using exploitable buffer overflows from open source code. ACM SIG-

SOFT Software Engineering Notes, 29(6):97–106, 2004.


	Introduction
	Related work
	Static Program Analysis
	Static Bug Detection

	Motivating Examples
	Doomed Program Points
	Implementation
	Input Language
	Overview of the Detection Algorithm

	Program Transformation
	Eliminating Loops
	Eliminating Procedure Calls
	Introducing Reachability Variables
	Program Passification

	Detecting Doomed Program Points
	Computing Weakest Liberal Preconditions
	Block Variables and Incremental Checking
	Example

	Optimizations
	Control Dependency Graph
	Avoiding Redundant Theorem Prover Calls

	Evaluation
	Detection Rate
	Performance Benchmarks
	Discussion

	Conclusion and future work

