Contents

Introduction — IX

Part I: Dissipative geometry and general relativity theory

1 Pseudo-Riemannian geometry and general relativity — 3
 1.1 Curvature of spacetime and Einstein field equations — 4
 1.1.1 Geodesics — 5
 1.1.2 Riemannian curvature tensor — 6
 1.1.3 Energy momentum tensor — 6
 1.1.4 Einstein field equations — 7
 1.2 The universe as a dynamical system — 8
 1.2.1 The Friedman–Robertson–Walker (FRW) metric and Friedman
 equations — 8
 1.2.2 State equation and Friedman differential equation — 10

2 Dynamics of universe models — 11
 2.1 The Friedman models — 11
 2.1.1 The static models — 12
 2.1.2 Empty models — 12
 2.1.3 Non-empty models with $\Lambda = 0$ — 15
 2.1.4 Non-empty models with $\Lambda \neq 0$ — 17
 2.2 Milne’s model — 17

3 Anisotropic and homogeneous universe models — 19
 3.1 Bianchi type I models — 19
 3.1.1 General solution — 21
 3.1.2 Sample solution: radiation dominated Bianchi type I model — 23

4 Metric waves in a nonstationary universe and dissipative oscillator — 29
 4.1 Linear metric waves in flat spacetime — 29
 4.2 Metric waves in an expanding universe — 32
 4.2.1 Hyperbolic geometry of the damped oscillator and double
 universe — 32

5 Bosonic and fermionic models of a Friedman–Robertson–Walker
 universe — 35
 5.1 Bosonic Friedman–Robertson–Walker cosmology — 35
 5.2 Fermionic Friedman–Robertson–Walker cosmology — 41
6 Time dependent constants in an oscillatory universe — 47
6.1 Model and field equations — 47
6.2 Solutions of the field equations — 51
6.2.1 Dirac's proposition: $G(t) \sim H$ — 52
6.2.2 $G(t) \sim 1/H$ — 58

Part II: Variational principle for time dependent oscillations and dissipations

7 Lagrangian and Hamilton descriptions — 67
7.1 Generalized coordinates and velocities — 67
7.2 The principle of least action — 67
7.3 Hamilton's equations — 69
7.3.1 The Poisson brackets — 70

8 Damped oscillator: classical and quantum theory — 73
8.1 Damped oscillator — 73
8.2 Dissipation in generalized analytical mechanics — 73
8.2.1 One degree of freedom — 74
8.2.2 Two degrees of freedom — 75
8.3 Bateman Dual Description — 75
8.4 Caldirola–Kanai approach to the damped oscillator — 77
8.5 Quantization of the Caldirola–Kanai damped oscillator with constant frequency and constant damping — 78

9 Sturm–Liouville problem as a damped oscillator with time dependent damping and frequency — 85
9.1 Sturm–Liouville problem in double oscillator representation and self-adjoint form — 85
9.1.1 Particular cases for the nonself-adjoint equation — 87
9.1.2 Variational principle for self-adjoint operator — 89
9.1.3 Particular cases of the self-adjoint equation — 91
9.2 Oscillator equation with three regular singular points — 92
9.2.1 Hypergeometric oscillator — 95
9.2.2 Confluent hypergeometric oscillator — 97
9.2.3 Bessel oscillator — 99
9.2.4 Legendre oscillator — 100
9.2.5 Shifted Legendre oscillator — 101
9.2.6 Associated Legendre oscillator — 102
9.2.7 Hermite oscillator — 103