Universitit Bielefeld/IMW

Working Papers
Institute of Mathematical Economics

2]

.

Arbeiten aus dem
Institut fiir Mathematische Wirtschaftsforschung

Nr. 90
Reinhard Selten

A Noncooperative Model of Cha-
racteristic~-Function Bargaining

March 1980

. m\unmmm

.A..u nuuullt‘,l

H. G. Bergenthal

Institut fiir Mathematische Wirtschafisforschung
. an der
, , Universitit Bielefeld
Adresse/Address:
UniversititsstraBe
4800 Bielefeld 1
Bundesrepublik Deutschland
Federal Republic of Germany



K ._g_‘.:

A NONCOOPERATIVE MODEL OF
CHARACTERISTIC-FUNCTION BARGAINING

Reinhard Selten
University of Bielefeld

Cooperative game theory has produced quite a number of solution .‘
concepts for games in characteristic-function form. Among the
most important theories are the von Neumann-Morgenstern solution
(von Neumann-Morgenstern, 19il), the Shapley-value (Shapley, 1953),
the bargaining set (Aumann-Maschler, 1964}, and the nucleolus
{Schmeidler, 1969), The aim of these and many other solution
concepts has been normative, rather than descriptive, even if
some primarily descriptive theories like equal-share
analysis have been proposed (Selten, 1972).

One of the reasons for the multiplicity of cooperative-
solution concepts can be seen in the fact that a game in
characteristic-function forﬁ is an insufficient description of
real game situations. The way in which proposals can be made
and agreements can be reached is left unspecified. If one wants
to run an experiment in characteristic—functioh games, one has
to fix specific rules which regulété the process of negotiation.

Tt is not surprising that different ways of doing this can lead
to different results.

The necessity to épecify detsiled rules arises especially
in any attempt to run characteristic-function experiments

with highly formalized anonymous interaction and communication.



In the experiments of Kahan and Rapoport, the players interact only
by a limited set of teletyped messages, like proposals and decisions
to accept or reject the proposals of other players (Kahan-Rapoport,
197L4). If one looks closely at thei? experimental setup, it becomes
obvious that the players are really involved in’a noncooperative
extensive game. This suggests that ope should try to analyse
situations of this type with the tools of noncooperative game
theory.

No attempt will be made here to attack the difficult task
to explore the extensive game used by Kahan and Rapoport. Instead
of this, a much simpler set of rules will be investigated.

John C. Harsanyi's noncooperative model for the von Neumann
Morgenstern solution has shown how much can be gained for the
understanding of cooperative game theory by the reinterpretation
of cooperative solution concepts in terms of equilibrium points
of extensive negotiation games (Harsanyi,1974). The analysis
of the noncooperative model introduced here also yields results-
vhich are connected to a cooperative solution concept, nameiy,
the theory of stable demand vectors (Albers,1975 ). The theory
of Albers is similar to that of John Cross {Cross,1967), but
the stability conditions are different. Both solution concepis
gtart from the same basic idea, to lock at demand.vectors
rather than imputetions. Demand vectors have components which
do not necessarily sum up to the value of the grand coalition.

Another piece of work which should be mentioned in this connection



is the unpublished dissertation of Turbay, which presents a
theory very near to that of John Cross, but in a mathematically
much more satisfactory form (Turbay, 1977).

The bargaining rules underlying the noncooperative model
to be introduced in this paper are extremely simple. Formally,
the model is an infinite-recursive game with perfect information
(Everett, 1954).

It is the aim of the analysis to investigate the stationary
equilibrium points of this game. It will be shown that every
stationary equilibrium point is connected to a demand vector
satisfying two of the three conditions imposed by the theory of
Albers. Equilibrium peints connected to fully stable demand
vectors in the sense of Albers can be characterized by additional

intultively reasonable properties.



1. Characteristic—function games.

A charscteristic function is a function v , which assigns a resl

number v(C) to every subset C of N = {1,...,n} ; the set N

is the set of players and the subsete of N are called coalitions;

the empty coalition @ always has value zero:

(1) v(B) =0

A characteristic funetion is zero-normalized if we have

{(2) v(i) =0 for i=1,...,n

It is called supersdditive if the following is true for any two

coalitions € and D with CND =9 :
(3) v{cUD) > v(c) + v(D)

A zero-normalized superadditive characteristic function is called

esgential if we have
{4) v(N) >0

Let v be a zero-normalized, superadditive, essential-characteristic

function. We say that v has the one-stage property if

(5) +(C) >0 implies v(N\ C) =0

The value +v{(C) of a coalition is interpreted as a sum of money
which the players in € can distribute among themselves if they

reach an agreement on a payoff division. Generally, one thinks



of a characteristic function game as being played in such a way

that each player can enter only one coalition. (Other interpretations
are possible (Harsanyi, 1963), but will not be discussed here.) The
one-stage property has the consequence that only one coalition

C with v(C) > 0 can be formed. If (5) does not hold, the
formation of & coalition with positive value may be only the

first stage of the game. The players in N \ C can still go on

to form further such coallitions.

Neither the theory of Albers nor the bargaining model to be
proposed here permits megningful'application to characteristic
functions without the one-stage property. A generalization to
such games seems to be possible in both cases, but no attempt
in this direction will be made here. The investigation will be
restricted to characteristic functions with the one-stage
property. |

The bargaining model will be defined for a zero-normalized
superadditive, essentiml-cheracteristic funetion v with the |
one-stage property. The symbol v will stand for an
arbitrary, fixed-characteristic function of this kind. All

definitions will be relative to v .



2. Stable demand vectors.

A demand vector 4 = (dl""’dn) is a vector with n real

components. We use the following notational conventions:

This means that dc is the collection of the components d; of

d with 1 e C

(1) a(c) = § a,

ieC

(8) F,(da) = {cfc cm, ieC, a(C) = v(C)}

for i = 1,...,n.

Coalitions € with d(¢) = v(C) will be called d-compatible.

Fi(d) can be described as the set of d-compatible coalitions

containing player i .

\

Stable-demand vectors in the sense of Albers are

characterized by three conditions;:
(a) Meximality: d(C) > v(C) for every C < N
(b) Feasibility: Fi(d) #0 for i=1,c..,n

(c) Balancedness: For any two players i,JeN , we have

either Fi(d) =‘FJ(d)

or Fi(d) \ FJ(d) #0 and Fd(d) \ Fi(d) # 0



A demand vector d is called semistable if it satisfied (a) and

(b); and it is called stable if it satisfies (&), (b), and (c).

Interpretation: A demand vector 4 can be interpreted as a vector

of aspiration levels for payoffs in & coalition. The intuitive
idea behind the conditions can be expressed by saying that
nobody should be able to raise hils sspiration level and noboby

should he forced to lower i%.

Condition (a) requires that demands are maximal in the sense that
nobody can raise hig demand without exc;uding himgelf from all
coalitions which can satisfy the demands of all their members.
Condition (b) requires that player i's demand is feasible

in the sense that he can propose at least one coalition C

with 1 € C which can sstisfy the demands of its members. Note
thet coalitions capable of more than that are already excluded
by (a). Condition {b) is based on the idee that a player with
Fi(d) # ¢ would have to lower his demand in order to make it

fegsible.

Condition (c) removes the possibility that Fi(d) is & proper
subset of Fj(d) . If this is the case, player J can propose a
d-compatible coalition which excludes 1 , but player i cannot
propose a d-compatible coalition which excludes J . This
creates a unilateral dependence of i on J . In the case
Fi(d) = FJ(d) , both players dépend on each other in the sense

that neither of .them can propose & d-compatible coalition including



himself and excluding the other. In the second case permitted
by {c), neither of the players depends on the other in this
sense. We may say that the dependencies are required to be
"balanced". This concept of balancedness is of course different
from that which has been introduced in connection with conditions
for the nonemptyness of the core (Shapley, 1967).

Albers has proved & theorem which shows that steble-demand

vectors always exist (Albers, personal communication}.



3, Recursive games.

We shall be interested only in recursive games with perfect
{nformation without chance moves. Moreover, we shall impose
restrictions on the payoff which further narrow the class of games
considered. For the purpose of this paper, it will be convenient
to define & recursive game as a game with the properties
mentioned above, even if the concept as it has been introduced

by Everett is a much more general one {Everett, 1954).

A recursive game G = (X,xO,Z,P,A,h) has the following constituents:

X the set -of positions, an arbitrary set.

X, _the injitial position, an element of X .

Z the .set of endpoints, a subset of X .

P = (Pl,. .,Pn) the player partition, a partition of
of X\ Z into player sets P, .

A the choicerfunction, a function which assigns
s nonempty choice set
Alx) €X t.o every x € X\ 2 .

h the payoff function, which aésigns a payoff

vector h(z) = (hl(z),...,hn(z))

to every 2z € Z . The function h gsatisfies
a restriction of the form

0 < hy(z) <h for i=1,...,n and

every z € Z where h is a constant.

(Infinite pleys have zero payoffs.)
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Interpretation: At a position x ¢ X \z s the player i with

x € P, must choose one of the positions in A(x) . The game
begins with X and ends as soon s an endpoint z € Z has been
reached. hi(z) is player i's payoff if z 1is reached. The
payoff for an infinite play is zero for all players. The payoff
restriction hi(z) > 0 1is an expression of the idea that we
want to model situations where infinite plays are not desirable
in the sense that no player can gain anything by behaving in a
way which leads to an infinite play.

A recursive game is like a game in_extensive form, but
it may happen that not all elements of X can be reached from

X .
Q

Strategies: It will not be necessary to define strategies for
individuel players. We shall only define globsl hehavior
strategies which specify the behavior of all players in every

conceivable situation.

let G = (X,x,,Z,P,A,h) be a recursive game.

A local strategy bx at g point x ¢ X \'z is s probability

distribution over A{(x) with finite carrier. The probability
assigned by b, to ¥ ¢ A(x) is denoted by bx(y) . The
expression "with finite carrier" means that positive probabilities
bx(y) are assigned to a finite number of chgices y € Alx)

only. For every x € X \ Z , let Bx be the get of all local

strategies.



A global strategy b is & function which assigns a local

strategy bx toevery x ¢ X\ Z . Let B be the set of all

global strategies for G,

Remark: The global strategies defined above are stationary in the
sense that behavior depends only on x and not on the whole past
history. Stetionary equilibrium Points, a8 we shall define

them, do have this property:; and we are not interested in any
other equilibrium points. It can be shown that stationary
equilibrium points are stable with respect to nonstationary

deviations, too, but this shall not be done here.

Expected payoff: For every x € X and every global strategy

b e B , we define player i's expected peyoff Ei(blx) for

b at x . In order to do this, we need some auxiliary
definitions. A sequence x ,...,xm with xk € X for
k=1,...,m is called a position chain from Xy to X,
if we have X4y € A(xk) for k = },...,m-l . 'The

probability of a position chain xl,...,xm if b is played

is the produet of all bxk(xk+l) with k = 1,,..,m-1 .

Let p(x,z,b,m) be the sum of all probabilities of position
chains from x to z with, at most, m positions if b
is played. Player i's expected payoff is defined as follows:

(9) E (b]x) = lig ZEZ ?(x,z,b,m)hi(z)

Tor 1= 1,...,n.



Since the bx have finite carriers, finitely many 2z € Z are
reached with positive probability by chaing of at most m
positions. In view of -ﬂi(z) > 0, the sum whose limit ia formed
in (9) is a nondecreasing function of m . Moreover, this sum

is bounded from above by h . Therefore, the limit in {(9)

always exigts.

Stationary equilibrium peint: For i =1,...m , a choice

y € A(x) at & position x € P, is called optimal at x ,

if we have:

(10) E (bly) = wgﬁfx)Ei(b|W)

A global strategy b 1is a stationary equilibrium point of G

if for every x ¢ X \ Z , the following is true for the local
strategy b assigned to x by b . Every y e A(x) with

b (y) >0 is optimal at x .

Local and global optimality: The definition of a stationary-

equilibrium point given above is based on a locsl optimality
condition. It can be shown that local optimality in the sense
of (10) implies global optimality. For this purpese, we
introduce the following definition: A deviation ¢ of player i
frim b is & gloval strategy which differs from b only at
positions x ¢ Pi s i.e., we have bx =y for all

xe X\ Z with x ¢ P, . We cannot have

(11) Ei(c|x) > E, (b]x)



unless for sufficiently great m .we have

(12) 3§ p(x.z,c,m)hi(z) > Ei(blx)

z€Z
Let m be the first m for which (11) holds. We construct a
new game, Gx , Which begins at x and has the same rules as
G with the exception that every play with more than m
pogition is cut off at its m-th position, x_ , which becomés

m
an endpoint with payoffs Ej(b|x_) for all players J =1,...,n .
m

If (10) holds, the restriction of b to G, is an equilibrium
point of G (It is well known that in games of finite length
with perfect information, local optimality in the sense of (10)
implies global optimality.). Since player i's equilibrium payoff
for the restriction of b to G is Ei(b|x) , it follows by
(10) that (12) cannot hold. We can conclude that the following

thecrem holds:

Theorem 1: If b is a stationary-equilibrium point of G ,

then for 1 =1,...,n we have
(13) E (e]x) iEi(b[x)

for every x ¢ Pi and for every deviation ¢ of player i

from b .



Subgame perfectness: An equilibrium point is subgame perfect

if it induces an equilibrium point on every subgame

(Selten, 1965, 1975). We do not want to go into the details
of the definition of subgame perfectness as this is not
necessary here, Nevertheless, it is worth pointing out

that stationarity of an equilibrium point in the sense of
the definition given above implies subgame perfectness

as the optimality condition (10) refers to the local payoff

at x .



k. The noncooperative model of characteristic-function bargaining.

The basic ideas of the bargaining model can best be explained
by an informal account of the rules. A precise definition
of the recursive game will be given in section 5. The verbal
description of the rules is illustrated by the flow chart of

Figure 1.

RULES

1. Initiator: A player may find himself in the position of
an initiator, who can make a proposal if he wants to. At the
beginning of the game, an arbitrarily selected player becomes
the initiator (rectangle 1}. We think of him as randomly
chosen even if the random choice will not be a formal part

of the model. The initiator must decide whether he wants to
meke a proposal (rhomboid 2). If he does not want to do

this, he must shift the initiative to another player; this

other player then becomes the new initiator (rectangle 3).

2. Proposals: An initiator who does not want to shift
initiative must propose a coalition C with +(C) > 0,
where he is a member, and a payoff division of .v(C) among
the members of C . The other members of C are called
receivers of the proposal. The initiator also must select one
of the recelvers; this receiver becomes the responder

(rectangle 4).



START

Random player ] 1 ]

becomes initiator.

16 -

Initiator shifts | 3
initiative to new initiator,

J

Does initiator.
want to make
proposal?

_éfs\ NO

/

ims

Initiator proposes coalition € and division of +{(C)} b
and selects responder among receivers.

L.

Rejector becomes | 6

NO

Does responder 5

new initiator.

Proposal becomes |9

——\\\\ accept?

[ms

- / Did all 7\,

final agreement.

END

\\\ receivers accept? //)

NO

Responder selects 1 8
new responder among .
receivers who have not
yet accepted.

Figure 1: Flow chart of bargaining process.



3. Responder: The responder can either accept or reject the
proposal (rhomboid 5). If he rejects, he becomes the new
initiator (rectangle 6). The old proposal is erased, and he
cen make a new one (rhomboid 2). If the responder accepts, it
is necessary to ask whether now all receivers have accepted the
proposals (rhomboid 7). If this is the case, the game ends.
Otherwise, the responder must select a new responder among the

receivers who have not yet accepted.

L, End: The game ends after a proposal has been accepted by

all receivers. The proposal then becomés the final agregment,
and the members of the proposed coalition receive the proposed
payoffs. All the other players get zero payoffs. In the

case of an infinite play, all players get zero payoffs.

Comment: The rules describe a game with perfect informatiocn.
This means that at every stage of the game each player knows
everything which has happened up to now. Our analysis would

not change under less stringent information conditions. Aﬁ
initiator does not have to know anything, and a responder does
not have %0 know more than the proposal and the set of receivers
who have not yet accepted. Of course, every player knows the

rules of the game.

If one wants to model & process of characteristic-function

bargaining, where the players act in sequence rather than



simultaneocusly, one can hardly imagine a significantly simpler

scheme,

In a laboratory procedure, the initiator cowld write the
proposal on a card which would then be given to the chosen
responder, etec. Obviously, experiments of this type can easily

be arranged.



5. The bargaining game.

The rules explained in section U4 lead to a recursive game

G = (X,xo,Z,P,A,h) » which will be called the bargaining game.

The bargaining game can be described by a list of types of

positions, which indicates the player who has to make a decision,

the choice set and, in the case of endpoints, the payoffs attached

C...

to them. This list is given below:
Position player, choice set, payoffs
Y5 initiator position in Pi . The choice set
A(yi) contains two kinds of positions:
1} (3.{i},ap) with i, e C
and a{c) =v(c) >0, 4 >0

2) Y, with j e N\ {i} .

(j,S,dc) responder position in Pj with J e C

and S CcC\ {j}
(The set S is the set of those members of C

which have proposed or accepted dG o)

The choice set A((j,{i},dc)) contains two kinds of

positions:



2} (k,5 U {J},dc) for SU{J} C ¢

or {(C,d,) for sU {3} =c.

C
{C,a_) endpoint with payoffs
C enapoint
d, for 1ieC
1

0 for 1 # C

The initial position X, is one of the y;

Example: The interpretation of the bargaining game G is clear
from the verbal description of the rules. Nevertheless, it may
be helpful to illustrate the formalism with the help of a

numerical example of a play, shown in Figure 2.

It is assumed that X is player 1's initiator position Yy -

He makes the proposal {70,10) , which means that he proposes

1,3
¢ = {1,3} with payoffs 70 for himself and 10 for player 3.
Player 3 rejects the proposal by choosing y3 and then proposes
40 for player 1 and 30 for pleyer 2 and 30 for himself. He

selects player 1 as responder. Player 1 accepts and selects plaver 2
as responder. Now every member has proposed or accepted the
proposal. An endpoints results and the proposal becomes the

final agreement.
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Characteristic function

N = {1,2,3}
v(i) = v(2) = v(3) =0
v(l,2) = 90, v(1,3) =80, v(2,3) = 70

v(1,2,3) = 100

Play

1. ¥y

2. (3,{1},(70,10)1’3)

3. Y3

b, (1,{3},(40,30,30), , )

"y

5' (2,{1,3},(]*0,30,30)1 2 3)

- b ]

6- ({13233},(,40!30’30)1,2 3)

Figure 2: Exsmple of a play of the bargaining game

for a numerically given characteristic function v .



6. Stationary equilibrium points of the bargaining game,

We first introduce some further notation which is needed in
order to express results and proofs in a convenient way. G will

always be the bargaining game.

For any global strategy b and every x e X, let 2(b|x) be
the set of all endpoints which are reached with positive

probability after x , if b is played.

Further define

(1k) q; = Ei(b|yi) with 1 =1,...,n

We call q. player i's quota for b , and we shall refer to the
5 quota

vector g = (ql""’qn) as the demand vector for b . Our

notational conventions (6), (7), and (8) will also be applied to

q .

The number of members of a coalition C is denoted by |cf .

Lemma 1: Let b be a stationary equilibrium point of G and

let ¢ be the demand vector of b, Then

(15) q{C) > v(C)

holds for every C CN .



Froof: Suppose ¢{C) < v(C) and assume J ¢ C.

Define

Player j can make the following Proposal:

As we shall see, it is optimal for all receivers of the proposal
to accept it., It is clear that a responder must accept it if

all others have alreédy accepted it. Rejection would only

yield his quota. It follows by induction on the number of
receivers who have not yet accepted that all receivers must accept
regardiess of the order in which they become responders. Thisg
shows that player ) can get more than q‘j at yj s Which
contradicts the assumption that b is a staticnary equilibrium

point.

wemma 2: Let b be a stationary equilibrium peoint of G and

let ¢ Ybe the demsnd vector of b . Then



Proof: At vy s player i can shift initiative to player j and

thereby receive Ei(blyj) .

Lemma 3: Let b© be a stationary-equilibrium point of G and
let q be the demand vector of b . For every z ¢ Z(b|yj) .
we have z = (C,qc) for some C and hj(z) = q‘j 3

moreover, for qj >0, we have J e C .

Ezggg; Let s be a position sequence from yJ to

(c,d ) « Z(blyj) » Which is realized with positive probability
by b once yj has been reached. Consider a player i e C .
There must be a position x e Pi on s such that after x
there 1s no initiator position Yy, o8 s either we have

X = yi or player 1 is one of the receivers who has to accept

4, before (C,d.) is reached.

C c

The expected payoff Ei(blx) at this position x must be at
least qi » 8ince player i can attain yi by rejection if

X + ¥: « Let O be the probability with which none of the

receivers who have not yet accepted d, will reject 4

c C

i b is played and x has been reached. With probability
1 = , one of these receivers will reject dc . 1In view
of lemma 2, player i gets at most qa; if this happens. We can

conclude that the following inequality holds:



(19) q; g_Ei(be) <oad, + (1 - alg,

where di is player i's component in d’C . Because o is
positive, this yields ql < di .  Because the argument can
be applied to every i ¢ C and to every (C’dG) € Z(b]yj) ,
it fpllows by lemma 1 that we have dC = qn for every endpoint

(Cyd,.) ¢ Z(blyj) .

)
Suppose qj = 0 . Then, player j's payoff is zero at every
endpoint in Z(b[yJ) . Suppose. ay >0 . Then for every

(C,qc) € Z(b[yj) , player } must be a member of C because,
otherwise Ei{blyj) would have to be smaller than g

J

Pure stationary-equilibrium points: A local strategy bx

is called pure if it assigns probability 1 to one choice

v € A{x) and zero to all others. A global strategy b

ig ecalled pure if it assigns a pure local strategy bx to
every x € X \ Z . A pure global strategy can be describea
by the function f , which assigns to every x e X \ L

that v = £(x) e A{x) which is chosen with probability 1 by
the local strategy bx of b . In agreement with common
game-theoretical conventions, we shall identify a pure global
stragety b with the function £ which corresponds to it in
this way. A stationary equilibrium point is called pure if it

is a pure global sirategy.



Theorem 2: The demand vector g of a stationary equilibrium
peint b of G 1is always semistable, If g is & semistable
demand vector, then a pure stationary-equilibrium point ¢

of G can be found such that g is the demand vector of £ .

Proof: Let bt be & stationary-equilibrium point. It follows
by lerma 1 that the demand vector. ¢ of b satisfies (za)
For q, =0 , the set Fi(q) contains {i} . For 9 >0,

condition (b) follows by lemma 3. Conseguently, gq is

semistable.

Now suppose that 4 1s an arbitrary semistable demand vector.
We construct a pure stationary-equilibrium point with g

as its demand vector: (For an illustration, see section 9.)

(20) f(yi) = (J,{i},qc.) with € e Fi(q)
1

,

(C,dc) for C =8 VU {i}
and di j_qi

(21) £((i,8,4

C)) =4 (3,5 W {i},a,) for s VU {i} $ c

and dk z_qk for ke C\ 8

¥ else



An initiator makes a proposal A where he gets his quota.
i

A receiver accepts if all receivera who have not yet accepted,

including himself, get at leanst their quotas. Therefore, a9
i

is accepted by a8ll receivers and qi is player i's payoff

expectation at yi -

Ployer i at y. cannot improve his payoff by a deviation. A
i

proposal d, with di > 9y vould heve to give dj < qj to

C

at least one player } € C . This player would reject the

proposal. Obviously, it is optimal to accept a proposal

which yields ai least 9 - It is also optimal to reject a
3 i . < Q. <

proposal with dl q, or dk Y for some other player

k € C\ 8, who would later reject the propsal anyhow.

Consequently, £ is a pure staticnary-equilibrium point of

G.



T. Additional Properties.

Semistability is a very weak condition on demand vectors. We
can conclude from theorem 2 that the bargaining geme permits
g wide range of possible stationary-equilibrium points. This
raises the question whether all of these equilibria are
equally plausible as rational prescriptions for playing the
geme, As we shall see, one receives a much narrower class of
staticnary-equilibrium points if three reasonable properties
are imposed as additional requirements. This class contains
stationary-equilibrium points whose demand vectors are stable.
some further definitions and notational conventions are needed
before we describe the three properties in detail. In these
definiticns b will always stand for a fixed staticnary-
equilibrium point of the bargaining game G . Moreover,

q = (ql,...,qn) will always be the demand vector of b and
bx will denote the local strategy assigned to x by b .

Effectiveness: A responder position (j,S,d is called

o)

effective for b , if b prescribes acceptance for (J,S,dc)

and for all responder positions (i,R,dC) which mignht follow

(J,S,dc) if no receiver rejects. This means that for

X = (i,R,dC) with either

(22) R=8 and i =]



or
(23) R258U {3} anda ieC\R
we have

(2k) b ((x,R k’{i};dc)) =1

for some kx e C\ (R UV {i}) or

(25) b {(c,a)) =1 for RUI{i} = ¢

if (§,8,d,) 1is effective, the endpoint (Cya,) will be
reached with certainty if v is played. Noreover, (C,dc)

will be reached in the shortest possible way.

The initiator positions y; are not counted as effective, but

endpoints are defined as effective.

Unpunished provocations: A position x = (j,{i},dc) is

called a provocation of 1 against J 1if we have:
> <
(26) di a4 and dj q

We say thet a provocation is unpunished if in addition to this

e have

(27) E, (b]x) = q



and
(28) 1eC forall z=(Chq,) e« Z{bfx)

In view of lemms 3, equation (27) implies (28) for q > 0 .
For g, =0 , however, (28) is an additional condition.

The definition is motivated by the following ideas:

Q4 is the maximum player i can get at yi . A choice of

x at y, will be punished if (27) does not hold as

then Ei(b|x) will be smaller than q, . In the case

9 = 0 , however, player i cannot be punished in this way.
Condition (28) amounts to the assumption that a player prefers
to be inside the final coalition rather than outside if payoffs
are the same in both cases. This kind of lexicographical

preference justifies the idea to look at exclusion from the

final coalition as a form of punishment.

Additional properties: We shall lock at the consequences of the

following three additicnal properties, which can be imposed on

a staticonary-equilibrium point b of the bargaining game G .

(S) Shortness property: If for x € X \ Z the choice set

A(x) contains at least one position y which is optimal at x



and effective, then every w with bx(w) >0 is effective.

(M) Mixedness property: For x = 1,...,n , the following is

true: if x € A(yi) is optimal and effective, then

(P) Provocation property: For any two players i and j, the

following is true: If player i has an unpunished provocation
against player j, then player ] has an unpunished provocation

against i.

Interpretation: The shortness property requires that a

responder does not reject & proposal which gives him his
optimum and will be accepted by all other receivers who have not
yet accepted it. This kind of behavior may be interpreted as

a secondary preference for shortness of the remainder of the
play, where length is not measured by the number of positicns,
but rather in terms of the number of proposals yet to be made
before the final agreement is reached. The preference for
shortness is a secondary criterion which does not enter the
picture wherever payoffs are different. It only helps to

decide between choices with equal payoffs.

The shortness property also applies to an initiator; he is required

t0 make an effective choice if he has one.



The mixedness property says that an initiator must choose

every one of his effective choices with positive probability.
This may be interpreted by saying that he is indifferent between
different effective choices and, therefore, can be expected

to randomize among them.

The provocation property can be looked upon as a noncooperative
version of the stability condition (c) imposed by Albers.
Suppose that (P) does not hold; player i has an unpunished
provocation against player j, but player j has n¢ unpunished
provocation against player i. Then, player i faces no risk iIf
he tries to get more by using his unpunished provocation.

If player j sticks to b , he will reject it; but as we can
see by (28), eventually a proposal will be made which

includes player i in the coalition and gives him his quota.
This means that player i has the power to delay the end of the
game as long as he wants, whereas player J does not have this

power.



8. Conseguences of the additional properties.

In order to prove a theorem which connects the three properties with
the stabllity of the demand wvectors, we need seversl lemmata. In
these lemmata, b will always be a stationary equilibrium point of

the bargaining game G with the demand vector q .

Lemma 4: If b has property (S) , then every x of the form
(J,S,qc) is effective. Moreover, every x of the form (j,{i},qc)

is optimal at ¥y and effective,

Proof: The second part of the lemma is an immediate consequence of
the first one. The first one can be proved by induction on
|C \ S| =k . For k =1, property {8} requires the choice of

{C,a.) since this endpoint is the only effective and optimal choice.

C
If the assertion holds up to k-l , it follows that it holds for k )
too, since acceptance is a responders only effective and optimal

choice,

Lemma 5: Let b have properties (S) and (M) . For any two
players 1 and J , the following is true: player i has an

unpunished provocation against j if and only if Fj(q) c Fi(q)

Proof: We first look at the case qJ =0 . 1In this case, player i

has no unpunished provocation against player j since he has no such

provocation at all. On the other hand, Fj(q) c Fi(q) does not



hold, since {j} is in FJ(Q) but not in Fi(Q) . Consequently,
the assertion holds for qj = 0 . In the following, we shall assume

>0 .
B

We first show the necessity of Fj(q) E-Fi(q) . Suppose

Fj(g) \ Fi(g) + 0 . We shall show thet every provocation of player i
ageinst player J will be punished. Player J will reject the
provocation. There are effective and optimal cheices at y3 where
coalitions are proposed which do not contain player i. In view of

(M) , these choices are selected with positive probability. It

follows by lemma 3 that player i's payoff will be lower than q -

Suppose Fj(q) - Fi(q) . In view of qj >0 , player i can find a
provocation against player j. Player j will reject this provocation,
but in view of lemma U4, he must make an effective and optimal choice
at yj . This choice will involve the proposal of a coalition which
contains player i and of a payoff division of the form qc . In view
of lemma 3, only such choices can he effective. This shows‘that

player i's provocation is unpunished.

Lemma O: Under the conditions (8), (M) and (P) , the demand

vector g of b is stable.

Proof: It follows by lemma 5 and by (P} +that the stability
condition (c) must be satisfied for q , if b has the properties

(s), (M) and (P) .



Theorem 3: The demand vector q of a stationary equilibrium point

b of G with the properties (8), (M) and (P) is stable.

For every stable demand vector @ , there is a stationary equilibrium
peint b with (8), (M) and (P) such that q is the demand

vector of b .

Proof: The first part of the theorem is nothing else than the
assertion of lemma 6. Let q be a stable demand vector. Consider

a global strategy with the following properties (i) and {ii)

(i) For i =1,...,n , the local strategies byi of b assign
positive probabilities to all x ¢ A(yi) cf the form

X = (J,{i},qc} and zero probabilities to all other choices.

(ii) At a responder position x = (i,S,dG) » strategy b of b
always assigns probability 1 +to the choice f((i,S,dC)) defined in

{e1).

We shall show that & global stragey b with (i)} and {ii) is a

stationary equilibrium point with (8), (M} and (P) .

The equilibrium properties of b can be seen immediately; a choice
according to b always leads to the payoff a4 if b 1is played.
Since all endpoints are of the form (C,qc) » an improvement beyond

qi is impossible.

It fellows by lemma 4 that (8) and (M) are satisfied by con-

struction. {Pp} follows by lemma 5.



0. A simple example.

Congider the following zero-normalized 3-person characteristic

function game:

v(1,3} = v(1,2,3) = 100

(29) v(1,2)

ho

(30) v{2,3)

The demand vector (50,50,50) is semistable with respect to v .
It is interesting to look at a pure stationary equilibrium peint £
with (50,50,50) as its demand vector. An equilibrium point of
this kind can be constructed with the help of (20) and {21}. In our
case, there are two such equilibrium points; one with Cl = {1,2}

and one with ¢ = {1,3} . Ve pick the first one:

(31) ¢, = {1,2}
(32) C, = {1,2}
(33) C, = {1,3}

We assume that vy is the initial position X, - Why is it
impossible for player 1 to get more than 50? Instead of offering 50
to player 2, he could try to get 55 by offering L5 to player 3.

What happens according to f , if he does this? Player 3 will reject
the proposal in order to maske a new one which gives 50 to player 1
and 50 to himself. According to f , pleyer 3 firmly believes that

player 1 will accept this proposal.



Whenever player 1 makes a proposal in which he asks for more than 50,
the same will happen to him; the proposal will be rejected and an
even division of 100 will be proposed to him. This will g0 on

no matter how long he diviates from £ in this way.

The position

(34) x = (2,{1},d{1,2})

with i, = 55 and d2 = 45 is an unpunished provocation of player 1
against player 2. Player 2 does not have an unpunished provocation
against player 1, Obviously, this is connected with the strange

nature of the equilibrium point £ .

Suppose we change f in such a way that player 1 offers even
divisions of 100 to both players 2 and 3 with equal probabilities.
If this is done, the equilibrium properties are lost. Player 3
cannot afford any more to relect an offer of L5 since after a
reJection he will leave only a chance of 1/2 to get 50. 'This

shows why property (M) is important.

There is only one stable demand vector for v , namely (80,20,20) .
A stationary equilibrium point with the properties (i) and (ii)
in the proof of theorem 3 requires that each player i makes offers
to both other players with positive probability at his initiator
position ¥i - None of the players can risk to ask for more than

his quota.



10. The first move advantage.

All stationary equilibrium points b of the bargaining game G
share an important feature which is worth pointing out. Let player
be that player whose initiater position yj is the initial position
Xq of G . We say that this player j has the first move. Obviously,
player J's expected payoff in the geme is q, = Ej(b|yj) . Each of
the other players 1 gets at most his quota qi . Whereas, the
player with the first move is sure to be in the final coalition,
this may not necessarily be true for another player.

In the case where b satisfies (8), (M) and (P) , a little
more can be said on the advantage of having the first move. Suppose

that g, and q, are positive and that Fj(q) contains at least cne

J

coalition which does not belong to Fi(q) . This means that

player j does not depend on player i in the sense that | can make

a proposal which excludes 1. If (M) is satisfied, such proposals

will be made with positive probability. This has the consequence

that player i's expected payoff Ei(blyj) will be smaller than a; -

In this sense, it is advantageous for player j to have the first move.
If we have Fi(q) = Fj(q) , it does not matter for the players

i and J which of them has the first move as long as in both cases

a stationary equilibrium point is played whose demand vector is q .

If (8), (M) and (P) hold and if the exceptional case

Fi(q) = F,(g) does not arise, there is a definite advantage in

J
having the first move, if we compare different situations where

stationary eguilibrium points with the same demand vector g are

played.



One may object mgainst the lack of symmetry inherent in the first
move advantage. It is very probable that agsymmetrics of this kind
cannot be avoided in perfect information game models of negotiatiomn.
Therefore, one might be tempted to reject such models in favor of
conceptualizations of the bargaining process which involve
simultaneous choices. It is certainly important to look st such
models, too, but it would be premature to discard the perfect

information approach altogether.

It is quite plausible that at least in some real situations something
like a first-move adventage may be a fact of life. Suppose that there
is some profitable opportunity for coalition formastion which for some
time escapes the attention of the players involved. Assume that one
of the players is the first one to recognize the fact that a game

can be played. Obvicusly, he will be the first to approach other
players in order to form a coalition, and it is not unreasonabie to

guppose that this will be advantageous for him.

It would be going too far to follow Schelling's attack on symmetric
game models of social phenomena (Schelling, 1960) even if there is
some truth in his arguments. Both symmetric and asymmetric models
have their place in the deseription of confliet situations of

substantive interest.
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