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COMPLEXITY, BOUNDED RATIONALITY AND PROBLEM-SOLVING

Hans W. Gottinger
University of Bielefeld

1. Introduction

We claim in this paper that the three notions 'complexity’,
'bounded rationality' and 'problem-solving' are intrinsically
interrelated. '

(i) Complexity appears to be a structural property of any obser-
vable system (social, biological, mechanical), decision-making
mechanism, organization, bureaucracy that imposes constraints
upon the computability, selectivity, control, decision-making
power, hence limits its proper functioning, limits rationality.

(11) Structural constraints such as complexity modify the handling,
manipulation.controllability of the system and its solution
requires heuristics, search, stepsby-step procedures leading
to problem-solving in a task environment.

Let us see how we can establish the links in a meaningful way.
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2. Complexity

We present here some formal definitions toward developing
a more general theory of complexity for problem sclving situations
that may prove useful to understand the concepts to be used through-
out the following section. In this particular context, such a gene-
ral theory of complexity has been introducted earlier by C. Futila
{1975}, more generally see Gottinger {1976}.
(1) If A is a non-empty set of symbols, then let A‘represent the
set of all strings whose members are elements of A, i.e. a® =
{(aqs.e.val) 2 n > 1 and ay eA}. Then we define a sequential
machine as a function f: A®3B where A is the basic intput set, B
is the output set and £ (a1,...,an) = bn is the output at time n
if aj is the input at time j (1<j<n).This is the external descrip-
tion of a sequential machine by specifying a function £ : B,

The internal gdescription involves a c¢ircuit (A,B,Z,x,8) ,where

A and B are defined as above, 2 is the (nonempty) set of internal
states,\: ZxA-r"'ZJ'::Z X A< B are the next state and the output functions
respectively. The step fromthe axternal to the internal description of a

system is referred to as identification. It i a problem to show that given
f we may find a C and & zcz such that C 'realises’ f with £ = C .

Suppose f, the external description, is a representation of

a human decision-maker who in the process of thinking and acting

performs like f. Then Cz represents a computer program that simu-

lates £ and has the same performance as f.

For example, let Cz: .8 be the system given by starting
C = (A,B,2,)2,6) 1in state zeZ, then Cz is defined inductively in
a straight-forward way:

Cz (a1) = G(z,al)

Cz (a1,...,an) = CA (a1,...,an) for n»>2 .
(2031)



(2) Let f£: A

by the congruence =g on & where for t,r,e®®, t = ¢r if and only if
f(a t B) = f(a r B) for all «,8 cRU'{1}. Then, if {f]; denotes
the equivalence class of the equivalence relation =g containing t,
we have f°= {[t S eA*} and Eﬁlf-l}]f = [ﬁﬁ]f (where tr denotes
the product in Ai and .denotes the product in fs). {1} is the

+B a machine. Then fs, the semigroup of £, 1is given

emnpty string.

(3) A semigroup S is combinatorial if and only if each subgroup

of S is of order 1.

(4) A right mapping semigroup or right transformation semigroup

is a pair (X,S}, where X is a nonempty set, and S is a subsemigroup
of FR(X) the semigroup of all mappings of X into X under the multi-
plication (f.g) (x) = g(f(x}). For each xeX, seS, let xs = (x)s.
Then the following conditions are satisfied:

(1} x(sy.8,) = (xs,)s,.
(2) Sq¢8, €S and s, # S, imply XS # XS, for some x eX.

(5) (Wreath Product) Let (xj,sj) be right mapping semigroups for
j=1,...,n. Let X = xn X WaeX x1. Let S be the semigroup of FR(X)
consisting of all functions y: X + X satisfying the following two

conditions:

(i) (triangular action) If pk:X*Xk denotes the kth projection
map, then for each k = 1,...,n there exists fk:xk X, ,..X

x1+xk such that

pkw(tn'...'tk+1’tk'...'t1) = fkf(tk'...'t1)
for all

tiexi, i = 1,...,“.

(11) (kth component action lies in Sk) We require§ f1es1,
and, for all k = 2,...,n and all a= (tk-i""'t1)exk—1

.o xX

1 the function ga FR(xk) given by ga (Yk) =
fk{yk,tk_1....,t1) is an element of S, .



Then (xn,sn)l...\(x1,51) = (X,S) is the wreath product of
(Xn,sn),...,(x1,s1),.and (xn,sn)w...w(x1,s1) ist the abstract
semigroup determined by (X,S).

(6) Let (X,S) and (Y,T) be right mapping semigroups. Then we
write (x,S)|(Y,T), read (X,S) divides (¥,T), if aﬁd only if (1)
there exists a subset Y' of Y and a subsemigroup T' of T such
that Y' is invariant under the action of T' (i.e., Y'T'C Y');

and (2) there exists a map 8 :Y' ++X ( -+ means onto) énd an
epimorphism ¢ : T'++SS such that 6(yt) = 8(y)é¢(t) for all y e Y!,
t e T'.

(7) {(Krohn-Rhodes Decomposition) Let (X,S) be a right mapping
semigroup. Then the (group complexity *G{X,S) =-‘ﬂ=G(S) is defined
to be the smallest non-negative integer n such that

S| (¥ ,CIWIX hGIwW. . wi(¥,,C)w(X ,G WY ,C.)

holds with G1,...,Gn being finite groups and Co,....cn finite
combinatorial semigroups (flip-flops), i.e. the minimal number

of alternations of blocks of simple groups and blocks of com-
binatorial semigroups necessary to obtain (X,S). Hence by making
full use of decomposition results on sequential machines one could

redefine complexity in terms of the phase space decomposition.

Therefore, complexity finds its group-theoretic roots in
the fact that the transformation semigroup can be simulated
(realized) by the wreath product of all pairs of component machines
whose semigroups are simple groups and those machines whose semi-
groups are finite combinatorial semigroups (= flip-flop machines).
Intuitively speaking, a combinatorial semigroup corresponds to a.

machine that virtually does no computation but rather switches in-

puts and outputs among various input-output configurations. This

property reminds us of information theory when selecting events
which have information measure zero. These types of machines gene-
rate regular patterns to be expected, they do not yield any sur-
prise. Therefore, their behavior does not produce information.

Since everybody understands it, it cannot be complex. This result



has some immediate impact on possible applications. It suggests
that if we are able to detect subsystems that behave like flip-
flops we could erase these subsystems without changing the struc-
tural complexity associated to other subsystems but, nevertheless,
decreasing the computational complexity in terms of length of

computations.

On the other hand, simple groups conform to machines that
perform simple arithmetic operations (such as addition, multi-
plication,...). Many examples of that sort have been given by
John Rhodes{1974}. A simple group constitutes the basic (irreduc-
ib;e) complexity element which increases the complexity of the
machine by just one unit. Hence punching out groups of that kind
in the decomposition lowers complexity at most by one. Now what
is the significance of the Krohn-Rhodes theory? It shows us to
which extent we can decompose a machine into components that are
primitive, irreducible and that the solution depends on the struc-
ture of components and on the length of computation. Hence complex-
ity does not depend only on how long a chain of components there
are, but also on how complicated each component is. Therefore,
complexity takes account of the total number of computations in a
chain (the computational aspect) but also of the inherent complex-
ity of the subsemigroups {(submachines) hooked together via the
wreath product (the structural aspect). The structural aspect can
heuristically be represented by the amount of 'looping’' in a
computer program that computes S on X. This has been proposed by
C. Futia (1975} for computing sequential decision or search rules.
These are the key features of an algebraic theory of complexity.



3. Bounded Rationality

In the traditional theory of decision-making it is generally
acknowledged that at least two definitions of rationality are con-
ceivable, depending on whether the approach is abstract {normative),
based on non~contradictory reasoning, or pragmatic {descriptive},
based on experience. We hold that these two concepts are not ne-
cessarily mutually exclusive, if we add one important agspect to
the description of rationality, e.g. computability. Rationality

in the normative sense is too restrictive by granting the de-

cision-maker unlimited computational resources which obviously

fail to hold in view of complex (ill-structured) situations. On
the other hand, rationality in the descriptive sense is too elusive
and diffuse to be of any analytical or even predictive value since
it violates unique links to consistency and coherence standards

of normative postulates.

Reasons for using strategies of 'bounded rationality' could

be itemized as follows:

(1) limited computational resources of the decision-maker,

(2) thresholds of complexity beyond which individuals are unable

to discriminate, choose and reveal cognitive limits,

{3) many choice processes represent essentially ill-structured

problems.

Let us take a moment to discuss the last point,

An ill-structured problem (ISP) fails to satisfy at least
one or likely several of the listed conditions:

DSC (Definite Single Criterion): there is a definite single
criterion for testing any proposed scolution,

RPS (Representation in Problem Space): there is at least
one problem space in which can be represented the initial
problem state, the goal state, and all other states that

may be reached,

TPS (Transformation in Problem Space): attainable state

changes (legal moves) can be represented via transitions

in a problem space,



APPS (Accurate Prediction in Problem Space): if the actual
problems involve acting upon the external world (en-
vironment), then changes of the state by applying
operators can be predicted, controlled and directed
toward the goal state with any desirable degree of
accuracy, conditional on the knowledge of the environ-

mental states,

PAC (Practical Amount of Computation): all basic processes
underlying the step-by-step procedure of problem-solving
search involve only a 'practicable amount of computation’
so that only a practicable amount of search is needed

for terminating the problem solving process.

Starting with characteristic DSC we note that ISPs usually
involve a representation of multiple criteria, requiring complex
trade-off statements which in fact would enhance the number of
computational steps.

In the set-up of a decision problem the trade-offs may pertain
to either of the following different situations:

(a) Two or more values are affected by the decision,
but they are known to the decision-maker.

(b} At least one of the outcomes is subject to uncertainty,
e.g. involves a lottery that has to be traded against
a sure prospect. What is the certainty equivalent?

(c) The power to make a decision is dispersed over a number
of individual actors or organizational units representing
different values, goals.

These trade-off problems have been treated, one way or the
other, in recent contributions to decision theory, see J. Marschak
and R. Radner {1972}, J. Steinbrunner {1974} , R.L. Keeney and
H. Raiffa (1976}. They are exclusively confined to static problems

which are not sufficient to exhaust I5Ps.



conditions RPS and TPS refer to the dynamic nature of the
problem space and require that the problem to be solved is well-
defined and well-structured per se so that the goal structure is
clearly determined a priori.

APPS is the condition that alludes to the possible stochastic
nature of the problem, in which the nature of uncertainty plays a
definite role, and which reflects itself in the random character

of environmental states.

Finally, PAC is the crucial condition here in which the
computational aspect is of major importance. We have to look for
effective heuristic procedures that at least partly compensate for
excessive computational routines going far beyond the information
processing capabilities of human decision-makers. Hence, what is
needed is to make an ISP well-structured by using procedures that
apply PAC to an ISP.

As H. Simon {1973} argues, 'practicable amounts of computation'
are only deZined relatively to Ehe computational power and there
is a contiauum of degrees of definiteness between the well-struc-
tured and ill-structured ends of the problem spectrum.

Example: Limited Rationality in Chess-Playing Programs.

A good paradigm of limited rationality is provided by de-
signing chess-playing programs. There are various reasons for
studying outcomes and strategies in games in connection with the

problem of complexity and problem-solving programs.

(1) First, people are involved in complex games and attempt
to find good strategies., Does there exist a computer
program that matches the best human play? Furthermore,

. _ if it exists, is there anything in the structure of
the program that would be beneficial to be learnt by the
human problem-solver? According to Newell, Shaw and
Simon {1967} : 'We do assert that complexity of behavior

is essential to an intelligent performance - that the



(2)

complexity of a successful chess program will approach

the complexity of the thought processes of a successful

human chess player'.

So far computer programs as applied to a general class

of problems did rather poorly, as compared to humans,

although recently there have
improvements as evidenced by
(David Slate,
In a state-of-the-art survey
{1963} have pointed out that

as 'chess 5.0'

been some fascinating
chess-playing programs such
Northwestern University).
Newell, Shaw and Simon

there are just too many

alternatives for a computer to examine each move, sc an
adequate chess-playing program must contain heuristics
which restrict it to the examination of reasonable moves.
also to win a game you need not select the best moves,
just the satisfactory ones.
(3) Studying game playing sheds a crucial . light on the
concept of learning in games which is not well unter-
stoocd. To teach an intelligent person the rules of chess,
by itself, does not make him an expert player. One must
have experience. If we could define effective game pkay-
ing programs which profit from experience we have at
least some clue how to practice problem-solving in real
life situations that require strategic planning.
(4) How a computer program should acquire chess knowledge
is an interesting and difficult point. One way, of course,
is for certain records to be built into the original
Most
playing programs contain the sequence of moves and
The situation at
mid-game is more difficult, since so many positions

program, To an extent this is done. recent chess-
counter-moves for standard defenses.

might arise .
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How is it possible that good chess-players still outperform
computer programs of chess which are much more powerful in com:-
puting strategies? The answer is that they evidently activate
useful heuristics that more than offset their lack of computational

power.

We claim that activating successful heuristics is intrinsically
connected to the notion of structural complexity in dynamic alge-
braic systems. Chess belongs to the class of two person games with
complete information and no chance moves. It is known that there
exists for each board position (or more generally for each state
of the game) one (or several) optimal moves. A tabulation of the
optimal moves is a tremendous task. Chess has on the average over
10120 board positions, hence the table would have to have the same
number of entries. Such a complete search for the optimal move is
so enormous that it transcends the capabilities of any physical
computer, in other words.'brute force computing' is not likely
to be the solution.

By designing the first chess playing program Shannon {1950}
proposed two principles on which an algorithm for playing chess
could formulated:

(1) Scan all the possibilities (moves) and construct a
search tree with branches of equal length. Hence, all
the variants of the moves to be searched for are gom-
puted to the same depth. At the end of each variation
{(at the end of the branch) the position is evaluated
by means of a numerical evaluation function. By com-
paring the numerical values, one can choose the best
move in any given starting position, simply by the
minimaxing procedure, i.e. averaging strategies by the
evaluation function.

(2) Not all possibilities are scanned, some are excluded
from consideration by a special rule, e.g. by a gspecial

search. Some special search methods have been proposed
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and proved to be successful, see B. Raphael {1976} ,
ch. 3. In this method, with the same computational
resources, the depth of computation can be greater.

In the first case, information of high value will be treated
equally with information of low value, or collecting information
is uniformly assigned equal cost to each node. A substantial part
of the work will be useless,i.e. not leading to a desirable goal
(checkmate). This is a modified breath first search with a numer-
ical evaluation function and minimaxing procedure.

In fact, in option (2) it appears that highly selective
search, the drastic pruning of the tree or in depth search is

likely to be more successful to treat highly complex decision
problems. For this purpose one needs a heuristic, as a rule of
thumb, strategy or trick which drastically limits search for
solutions, they even do not guarantee any solution at all, but
a@ useful heuristic offers solutions which are good enough most
of the time.

The pay~-off in using heuristics is greatly reduced search
and, therefore, involves a 'practicable amount of computation'.

In fact, summarizing the experience of various chess-playing
programs, we observe that some programs have put more emphasis
on computing power along tree search in the direction of option (1)
whereas others have traded off computing speed against sophisti-
cation or selectivity as sources of improvement in complex programs.
Selectivity is a very powerful device and speed a very weak de-
vice for improving the performance of complex programs. By com-
paring two major chess-playing programs, the Los Alamos and the
Bernstein program, we see that they achieve roughly the same
quality of performance by pursuing different routes, the computa-
tional vs. the heuristic approach: the first by using no selecti-
vity and being very fast, the second by using a large amount of
selectivity but not relying on computational speed. So, in a way,
Bernstein's program introduces more sophistication to the chess
program. Most of the major game-playing programs are based upon
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{local) look ahead and minimax technigues. As might be expected
such programs have been most successful in games that have chal-
lenged the memory ability of human players, but not in games that
require experience, thinking, creativity, sophiestication, such

as chess.

Quoting J. McCarthy {1974} : 'I think there is much to be
learned from chess, because master level play will require more
than just improving the present methods of searching trees.
Namely, it will reguire the ability to identify, represent, and
recognize the patterns of position and play that correspond to

cness ideas...’'.

4, Proplem-Solving

L.et us start with & definition of a problem according to
Newell,Shaw and Simon {1963} : 'A problem exists whenever a
problem-solver desires some cutcome or state of affairs that
he does not immediately know how to attain'. To generate all
kinds of task-related information that pertains to ‘problem-
solving' is to involve heuristics that reflect practical knowl-
edge, experience, but also leogical consistency, smartness, sophisti-

cation.

A theory of problem-solving is concerned with discovering
and understanding systems of heuristics. A particular, inter-
esting method is provided by GPS, consisting of means-end analysis
and planning, a subject matter we will briaefly describe in Sec. 5.
and Sec. 6.

Problem-solving has developed into a challenging subdiscipline
of artificial intelligence, but the methods and techniques used
are of sufficient general interest for dealing with decision-
making situations of politicians, bureaucrats or managers. It is
likely that these decisicon-makers could improve their decisions

if they make use of a formal theory of problem-solving. The state-



13

space approach is a very appropriate problem-solving represen-
tation, since it has a natural association to dynamic algebraic

systems and complexity.

Assume the existence of a finite or countable set 72 of
states, and a set j’ of operators consisting of semigroups S
acting upon 2. The problem-solver is seen as moving through
space defined by the states, in an attempt to reach one of a
desired set of goal states. A problem is solved when a sequence

of semigroup operators S = S1,S Sn could be found for some

2;---,
decomposition of the state-space such that a nested relationship

holas for some initial state Zg to generate the ¢goal state

zZ_ = 5 (S
n

n cee5,(S,(25)).0)) .

n_1l(

One could establish a one-to-one correspondence between the
problem of finding S and the problem of finding a path through

a graph. Let 2 be defining the nodes of a graph, with arcs
between nodes 1 and Jj if and only if there is an operation
SE\T connecting Z; with zj. The graphic representation of state-
space problem solving has three advantages. It is intuitively
easy to grasp, it leads to a natural extension in which we asso-
ciate a cost with the application of each operation Si‘ Finally,
in many cases the next step to be explored can be made a function

of a comparison between a goal state and a final state.

How does a theory of problem—solving relate to decision
theory?

The ingredients of the conventional decision problem under

uncertainty consist of

(1) a set of actions available to the decision-maker and

subject to control by himself,

(i1) a set of mutually exclusive states of nature, one and

only one of them can occur,

(1ii) a set of consequences that obtain if the decision-

maker chooses particular actions and a certain state

aof nature turns out to be true.
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if the decision-maker is rational and satisfies certain
consistency criteria on the choice of actions, he will attempt
at maximizing expected utility or expected pay-off. In this
problem it appears that uncertainty about which event obtains
is his most severe restriction in following an optimal course
of actions., On the other hand, apparently, the decision-maker
need not cope with computational constraints, either there are
no physical or péychological limits on his ability to handle
an immense amount of data, facilitating his choice problem, or
elae costs of computation are virtually known, so that the de-
cision-maker need only determine his net pay-off making allowance

of the computational costs.

A problem-scolving situation, requiring decision-making in
contrast reveals special features that could be circumscribed
by degree of difficulty, limited decision-making capabilitiles
or resources, intrinsic complexity in finding acceptable or
satisfying strategies (solutions]. These characteristics require

adequate methods such as complexity-bounded search, heuristics etc..

Consider the description of a genuine problem in this frame-
work. In the °'missionaries and cannibals®' problem, three missio-
naries and three cannibals wish to cross a river from the left
bank to the right. They have available a boat which can take only
two people on a trip. All can row. The problem is to get all
six safely to the right bank subject to the constraint that at
no time may the number of missionaries on either side of the
river be exceeded by the number of cannibals on that side. To
translate the puzzle into a formal problem, let a state be defined
by the number of missjionaries and cannibals on the left bank and
the position of the boat. The starting position is (3,3,L) and
the goal (terminal) state (3,3,R). The permissible moves of the
boat define the operators. The problem is solved in a number
of steps, whereby the minimal number, if it exists, constitutes
the optimal solution. Problem-solving is certainly linked to
'survivability', given a chess position, change it into a position
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in which the oponent's king is checkmated. En route to this

position, avoid any position in whieh your own king is check-

mated or in which a stalemate occurs. The board positions de~

fine the states, and the piece moves the operator,.

In this example the terminal state need not be fixed, but in

the process problem-solving may be .subsequently redefined and

modified subject only to the restricition that at no point 'survi-

vability'

is endangered (endogeneous value generation).

Methods of decision analysis, as proposed by H Raiffa {1968},

for instance,are restricted in several ways:

(1)

(2)

(3)

{4)

(3

they are basically off-line procedure, i.e. limit

choices to the 'givens' onee stated,

they limit complexity to the determination of uncer-

tainty via probability,

they address only to 'well-structured' decision

problems, where the whole set of alternatives 1is laid
out before the decision-maker and where he knows how

to achieve a particular course ¢f action,

they apply only to situations where the goal structure

has been fixed in advance or no change of goals is anti-

cipated in the process of taking a course of actions,

they pertain to the computational part of decision-
making using expected utitility as the unique performance
index, but making no use whatsoever of the strength of
heuristicp, sophistication, creativity, innovation etc.,

that is the unique feature of complex decision processes.

There have heen recent criticisms on the major defects of

contemporous decision analysis. They can be loosely summarized

as follows:
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(a) Complexity is an outcome of physical constraints on

information processing and therefore a matter of design.

{b) Complexity is a matter of economic constraints imposed

by costs of making decisions.

{a) and (b) could be considered of being of independent signi-
ficance. The first point has been emphasized here from the view
of systems complexity, the second point, not less important, has
been more related to costs of economic decision-making. As Th.S.
Ferguson {1974} remarks, 'one of the drawbacks of decision theory
in general and of the Bayesian approach in particular, is the
difficulty of putting the cost of the computation into the model.
There are no doubt examples in which quick and easy rules are
preferable to optimal rules for a Bayesian simply because it
costs less to perform the computations. An example of a physical
constraint of a problem-solving mechanism, as in chess~playing

programs, is given by the well-known travelling salesman problem.

A salesman wants to visit all cities C1,C2,...,Cn, pass
through each city exactly once (starting from and returning to
his home base city C) while minimizing his total mileage. The
set of objects in the travelling salesman problem is the set of
all acyclic permutations of the cities, i.e. the set of feasible
tours. The number of these turn our to be bounded by (n-1)!/2
which is an extremely large number for moderate n. By Stirling's
formula n! = (%)n, hence n! increases very rapidly. For instance,
for n = 10 the number is about 180,000 and for n = 11 it is nearly
2 million. Several exact mathematical solutions of this problem
have been proposed, but they amount to sensible complete enumer-
ation of the alternatives, that is, enumeration of the more likely
cities. Such methods seem to work up to about n = 20 and then break
down because of excessive demand upon computer time. For some

promising heuristic solutions see G.L. Thompson {1967}.
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5. A Case in Heuristics: General Problem Solving (GPS)

In the framework of subjective probability assessment
Tversky and Kahnemann {1974} found 'that people rely on a Iimited
number of heuristic principles which reduce the complex task of
assessing probabilities and predicting values to simpler judgmental
operations. In general, these'heuristics are quite useful, but

sometimes they lead to severe and systematic errors'.

Now GPS is one of the major problem-solving programs that
may also be useful as a normative program for human problem-

scolving.

From a purely computer science view, GPS5 1s a logical genera-
lization of computer programs that have been written to solve
problems in specific areas such as propositional calculus, integral
calculus and plane geometry. In the view of psychology, GPS is
considered as a model of information-processing characteristics
of the mind, based on the idea that human heuristics could be

made explicit in computer programs.

Another root of GPS lies in the work on the logic theorist
(LT) program that was designed for solving mntentil calculus problems
in Whitehead and Russel's Principia Mathematica. It discovered

proofs that are beyond the grasp of most college students, and
the technique reveals sophistication rather than brute force

search.

Two basic principles are intertwined in GPS: means-end

analysis and planning (or recursive problem solving).

Means-end analysis (MEA) is a general purpose heuristic

for making sure that an operator is only applied to the problem

if there is some purpose to the application. In more economic

type problem situations means-end analysis can be extended to an
appropriate cost-benefit analysis where instead of 'difference
operators' other suitable types of operators can be used. However,
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the general structure of MEA remains unchanged. Let us first

address to this set-up. It involves

(a) A set of 'objects' that are relevant for the problem
prop.iem

definition, 01"“'0n'

(b) A set of attributes X,,...,X, attached to the objects,
k > n, describing their problem-relevant location,
characteristics, specifics, sometimes represented by
proxies, defining the problem situation at each state

of the problem-solving process.

(c) A set of operators acting on the set of attributes in

terms of

additivity operators: A1""’Ak

difference operators: D1,...,Dk operators
QyreeerQp

multiplicative operators: M1"'°'Mk

such that they satisfy algebraic operations of finite

simple groups.

(d) A terminal goal structure containing the desirable
attributes }(1"’,...,}(];k such that the operations applied
. * .
to X1,...,Xk generate the desirable set {x1 ,...,Ak }
after a finite number of steps.

The goal structure may be either imposed externally as

part of the task environment or successively generated

endogeneously in the problem-solving process.

(e) A problem solution exists after a finlte number of steps.

For purposes of illustration, let us identify the various
elements involved with chess-playing. In chess, a set of objects
embraces all pieces on the board, pawns, bishops, rooks, king
and queen etc., interacting with each other (a). Attributes of
these objects apply to their location on the board, of course,
in relation to the location of all other objects, whether they are
attacked, defended, or attacking, in retreat and relatively safe.

Hence, attributes of the same piece change frequently with each

nmove (b)}
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Operators correspond generally to the rules of the game,
move, specifically they are identified with the allowable moves
of each piece, a bishop, a rook etc. These moves satisfy a certain
algebraic structure, which is obvious since chess is a discrete

game {cg).

A definite goal structure is clearly imposed on chess pre-
scribing a configuration of attributes such that the opponent's
king is checkmated. However, a goal structure may be endogeneously
formed, by missing subgoals such as king safety, material balance,
center control etc. and therefore adapts to the terminal goal to
'avoid being checkmated' (d).

{e) Finally, a problem solution exists by reaching 'check-
mate' od 'remis'! Consider, for illustration, a much more simpli-
fied problem, the so-called Monkey Problem:

A monkey is in a cage. Suspended over the center of his cage,
out of reach, is a bunch of bananas. There is a box in the corner.
What should the monkey do to get the bananas?

Here the objects are three: the monkey, the box and the bunch
of bananas. The situation can be described by stating: the altitude
of the monkey, the location of the monkey in the cage, the location
of the box, and the location and altitude of the bananas.

The operators are the things that the monkey can do: walk,
climb, reach for bananas, and push the box. The goal structure
is simply related to 'reaching the bananas'. In this example, MIA
uses the difference between attributes of objects to guide the
problem-solving process. The steps for an analysis of the abstract
problem transfer attribute X into attribute X' such that X' is

closer to X'' could proceed as follows:

(1) The first step is to find that a difference D exists
between the attributes X and X'' (if no differences are

found you consider the subproblem solved and move ahead).
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This is represented in the flow chart:

Compare X to educe D by Transform
X'' to find hanging X p=jX' into X''|~—=PSuccess
difference D o X''

No Difference Not Possible Not Possible

Success Fail Fail

{2) Once differences have been evatuated, difference
reduction is achieved by subsequent application of an
operator sequence. Starting with given D and X a
list of operators is to be determined which, if appli-
cable to X, will alter the characteristic D on X. Let
Qi be the first such operator. A check is made whether
the form of X 1is compatible with the application of
Qi. If feasibility is guaranteed the subgoal of apply-
ing the operator Qi to X is established, If this succeeds
the transformation X' = Qi(X) is made, and the result
constitutes an intermediate success in the problem-

solving program.

ist operators Is Qi Apply Qi
: 0, relad Nidfeasivle] o x X' =09 &)
1 F e o g k -q r
tive to 21 n X?
No Operators No Not
Fail Possible

In many casee# steps (1) and (2) will do, but in some cases

the situation is more complicated.
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(3) Then, one more step must be explained, how do we solve
the subproblem of applying Q to X? This involves a test
whether the assignment of attributes to a particular
object is unique. Think of a car. Are there attributes
or characteristics uniguely assigned to a car or do they
also apply to other transportation modes? Suppose the
set Y gives an exhaustive and unique representation of
the object 'car', then X is matched to Y to determine
if there are any differences in form. If there are not,
i.e. if X and Y are identical, then Qi is applied
directly to form X' = Qi(x). Suppose, however, that
difference D' between Y and X is found. Then proceed
according to (1), i.e. establish a subgoal of trans-
forming X 1into a special case Y' of Y. The solution
to this subproblem may require further difference re-
duction and operator application. If Y' is finally
established, Qi is applied to construct X'.

Match X

to ¥, 2 D Reduce D' y! Apply Q X'=Q(Y")
applicable ) on X sl to Y

to ¥

No difference Fail l Fail

X' = Q(X) Subproblem

These steps require that GPS be a recursive program, i.e.
that it be capable of calling itself as a subroutine. This leads
to a discussion of recursive problem-solving and change of context
in solving subproblems.



22

6. Planning

Thus far MEA, as being a part of GPS, is only an evaluation
device confined to making balances {(trade-offs) in local situations,
such as relating benefits to costs at each step of the problem-—
solving process, or at each move in a chess game. Now it is clear,
that a successful problem-solver, as evidenced in chess-playing,
evidently pays more attention to global guide—~lines of progress

and thenfits local improvement into this global framework.

For example, in planning an itinary one first decides what
cities one wishes to visit. Then in a ‘boxes-within-boxes' pro-
cedure, air-line, taxi and limousine schedules are then fitted
into the global plan. Ruman problem-solvers rely very much on
intuition, organization of mind and fixing a planning horizon
to achieve problem-solving on a global scale. It appears that
global planning and local look-ahead rules are intertwined by
subtle, complicated trade-off evaluations in the sense ‘does the
local step contribute to the global plan?', or by feed-backs
from locally feasible steps toward global goals that might modify
the global framework.

For example, in chess-playing and likewise strategic systems,
from a global perspective it may pay-off to lose some valuable
pieces, e.qg,, a Yook or a bishop to achieve global success (check-
mate), but from a local perspective it appears to ke the wrong thing
to do. All this could cast some doubt on the question: Can some
provision for global planning be introduced into computer-aided
problem-solving? In principle, yes, as Newell and Simon {1972}
have proposed. The general approach is that of successive approxi-
mation. If this proves successful, we could go back to the human
problem-sclver and provide him with analytical guide-lines or
skills that he might apply instead of purely intuitive, ad-hoc
methods to achieve global success. These skills may be taught or
communicated to other persons sc¢ that problem-solving bhecomes
a professional activity. We will see how this approach fits neatly

into MEA, in fact, completes the previous analysis so that a



measure of strucutral complexity can be applied to enlarged
problem spaces. Starting with the observation that complex problems
require more time for its solution, the fixing of the time horizon
is of essential importance for problem-solving. The larger the time
horizon, however, the more difficult it becomes to set up a tight
problem-solving framework. In other words, with the length of the
time horizon one must become increasingly flexible. The global
conceptual framework containing the global objectives must take
care of encompassing as many options as there are available. This
amounts to first solving the global program in a simplified planning
space and then to adjust the solution to the more detailed, more
definite problem space as one approaches closer to the situation
'what to do next'. This is the essential of recursive problem-
solving. Newell's and Simon's method consists of simplifying a
problem by considering only 'important' differences between states,
then solving the problem in the simplified problem as a way of
setting subgoals. A difficult GPS problem is (hopefully) made
simpler by solving a simpler but related GPS problem.

7. Conclusions

Structural complexity is a measure of an algebraic structure
(‘module'} that pertains to a class of heuristics and cuts drasti-

cally on the computational dimension of the problem-solving process.

We have argued that in large-scale decision problems there
is necessarily a complexity-trade-off between structural and
computational complexity.

The complexity theory of the algebraic theory -

of machines points to the fact that any non-purely-routine

type operating system carries 'modules' of a simple problem-solving
power as well as computational steps that can be identified with
routine-type operations. This seems to explain the major strengths
and weaknesses of human and computer problem-solving capabilities.

The human decision-maker is comparatively strong in activating
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heuristic principles pertaining to structural complexity, but
being restricted to depth-tree search, whereas the computer is
comparatively strong in searching for many different types of
solution in a breadth-type search, emphasizing computational
routines by computational power and speed. The construction of
useful heuristics built into computer programs, aimed at | solving
major tasks of a problem-solving variety, becomes a tremendous
challenge to artificlial intelligence, amounting to substituting
computational complexity by structural complexity.

Useful heuristics with high structural complexity must

include:

(i) long-run 'look ahead' rules, fixing the planning

horizon,

(ii) reasoning by analogy, e.g. evaluating subtle patterns

of change,

(iii) depth-tree search, e.g. exploiting more relevant in-

formation affecting the goal or payoff -structure in

the search process,

(iv) experience entering problem recognition,

{v) endogeneous value generation, striking a delicate balance

between local and strategic behavior.

A successful heuristic, revealing high structural complexity.,
should adapt these components repeatedly to the changing problem

structure.

The tradeoff balance between structural and computational
complexity can hardly be determined in advance, but in the history
of chess-playing programs there are indicates that such balance
exists. By comparing two differently designed chess-playing programs,
the Los Alamos Program {1956]} and the Bernstein Program {1958},
Newll, Shaw and Simon {1963} definitely make a statement on the
complexity tradeoffs in terms of overall global performance of

the two programs:
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'To a rough approximation, then, we have two programs that

achieve the same quality of performance with the same total effort

by two different routes: the Los Alamos program by using no selecti-
vity and being very fast, and the Bernstein program by using a

large amount of selectivity and taking much more effort per posi-
tion examined in order to make the selection. ... For instance,
suppose both the Los Alamos and the Bernstein programs were to
explore three moves deep instead of two as they now do. Then the

Los Alamos program would take about 1000 times (302) as long as

now to make a move, whereas Sernstein's program would take about

50 times as long (72), the latter gaining a factor of 20 in the total

computing effort required per move'.

From this we may conclude that as the depth of the moves
increases it becomes correspondingly more difficult, at some point
even practically impossible, to trade off computing speed and
power, as represented by computational complexity, for sophisticated

heuristic search procedures given by structural complexity.
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