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Classifying three-person games

Shenoy starts his fundamental paper on coalition formation
by the following sentences:
"The theory of n-person cooperative games presented by von Neumann
and Morgenstern is a mathematical theory of coalition behaviour,
A fundamental problem posed in game theory is to determine what
outcomes are likely to occur if a game is played by "rational
players”. Given an n-person cooperative game and assuming rational
behaviour, it is natural to inquire (1) which of the possible
coalitions can be expected to form and (2) what will be the final
payoffs to each of the players."(Shenoy 1977)
In this paper 1 like to examine these questions simultaneously
for all games: in this view & solution concept generates types
of games, that are defined by
(1) a set of coalitions, that is "rational” resp. to the
solution concept
(2) the form of set of payoffs being "rational™ resp. to the
solution concept or the kind of procedure leeding to the
set of "rational™ payoffs.
h set of solution concepts generates types by
(1) the vector of types resp. to the solution concepts
(2) the set-theoretic relation (inclusion, equality, etc.)
between the "rational"” c¢oalitions or payoffs that correspond
to the different solution concepts,.
Explicit classification of games is done for 3J-person side-payment
games - as an example,
Classification of games by solution concepts is giving a better
theoretical understanding of the solution concepts and the
differences betwenn them, and it is for importance for experimental
games as well, By game-types it is possible to compare the
spontaneous acceptance and the acceptance of recommandations
of the different types of "rational" arguments, that correspond
to the solution concepts. We require for an experimental study
on the "fitness"™ of solution concepts to represent all types

generated by the set of solution concepts in gquestion,



Cames and Solution Concepts

1.Games

1.1 Definition

A game is a pair (N,v) with N={1,2,...,n}, a finite subset

of the natural numbers N, called players, and a real-valued
function v:P(N) » R, v(0)=0, The elements of P(N):={5;8cN} are
called coalitions.

Sometimes it will be useful to identify P(N) with 2¥ by S21¢.
1¢ is the characteristic function of S - in general a charac-
teristic function 1., is admitting the values 0 and 1, and is
given by 1la(y)=1 iff y is an element of A. Furthermore it is
ugeful to think of 1z as a N-vector or as a measure oOn N.

A measure (N,m) is a game, that is additive, i.e., for

all coalitions S the value m(S) is equal to T{m, 11e51}.

1.2 A money interpretation

For a money interpretation of the game (N,v), we argue that v(S)

is the amount of money 5 can get by cooperation (without cooperation
of somebody else), Hence, everybody can be sure to gain at less

hig v({i}), and can hope to get a guitable part of v(S) if he is
member of S and S can be established. The difficulties to establish
a coalition (and to decide on a suitable distribution) are born

out of the concurrence of possible coalitions, and the pavyoffs

they can offer for cooperation, The arguments to agree on a certain
cooperation or to reject it are examined by various "solution

concepts”.



1.3 Preferences and utility

Sometimes games (N,v) are applied on a larger class of conflicts,

In this setup a coalition S can cause some results R(S), and the
players are supposed to have & preference relation on V{R(S);ScN}.
Under special circumstances (see Rosenmuller 1981) it is

possible to represent the individual preferences by utility functions,
that assign an individual value to each result, The scale of the
values or the utilities are defined up to a monotone transformation.
In some classes of conflicts it can be reasonable to suppose,

that the individualg can judge the results by a stronger scale.

For example, in the money interpretation of the game an interval
scale is obvious.

The main problem for a preference-interpretation is: how can

the individuals compare their individual scales. In the money
interpretation individuals all operate on the same scale, and

by that there is no difficulty to judge the gains and losses

that are made by an transfer. For a short intruduction how to
handle transfer of utilities in the general case see Aalan/

Rapoport 1984.

1.4 Strategic equivalence

Monatary payoffs are certainly no stronger than intervally
scaled. If there are sidepayments, then there must be within
the game something like money. Therefore, it should not matter
for any theory of coalition forming based on strategic thinking
what magnitudes of cash the payoffs represent. The strategic
thinking about a game should not be affected by positive
affine transformations, i.e. transformations that only alter
the arbitrary unit and the zero-point of the payoffs.

Formally a positive affine transformation (a,m), a>0, m real-
valued measure, transforms a given game V into w=av+m,
Especially for a coalition 5 we have w(S)=av(8)+m(S5),



1.5 Symmetry

Let us define the symmetry group I'=I'(N,v) of a
game. Permutations of N induce motions in coalitions and
motions in games., The symmetry group I' is the subgroup of

permutations n satisfying v=nv.

I' partitions the player set N into equivalence classes 1
called types:

we write i~j iff player i is in the orbit of j, i.e. 1€T3].
Let T := {jeN,i~j} and N=N/T={(T;ieN},

We say players i and j are symmetric in a game (N,v) iff
v(Su{i})=v(8u{ij}) whenever S and {i,3j} are disjoint.

Symmetric players are of the same type, but there are games with
two players of the same type, that are not symmetric. For example:
N={1,2,3,4}, v(8)=1 iff S={1,3} or S={2,4} or S contains three or
four elements, else v(S)=0, The symmetry group is the group of
cyclic permutations., Hence, there is only one type, but 1 and 2
are not symmetric, If for all types all players of that type are
symmetric, then the game is said to have the symmetry property.

1.6 Some special classes of games

The game (N,v) is called superadditive iff v(S8)+v(T)<v(SuT)
for all disjoint coalitions,

The game (N,v) has constant-sum iff v(S)+v(N\S)=v(N)

for all coalitions S.

The game (N,v) is called convex iff v(S)+v(T)<{v(SuT)+v(5nT)

for all coalitions 5 and T.

By weakening the symmetry-comparison of two players we get the
desirability relation: i>j (i is more desirable than j)

iff v(Su{i})»v(Su{i}) whenever S and {i,j} are disjoint,

This relation is transitive (Maschler/Peleg 13966, section 9).



If it is complete, then the relation induces an order on the
set of types, and two players are of the same type iff they
are symmetric i.e. if the relation is complete then the game

has the symmetry property.
We say, the game (N,v) is an ordered game if its

desirability relation is complete.

The game (N,v) is called simple iff the set of values of v is
equal to {0,1}. (For a survey on simple games and for posgsible

interpretations see Shapley 1962.,)



2.The space of n-person games

2.1 The space of n-person games and the generating polytopes

Let N be fixed. The set of all games (N,v), i.e. of all n-person
games can be structured as real vector-space of dimension 2" -1,
taking the values v(S), 5 non-empty, as coordinates,

The following basis of the vector-space 1s of gspecial interest:
The game vy is called unanimity game on 3,

iff ve (T)=1 for all S satisfying ScT and

=0 otherwise. The set {vs:ScN} forms a basis,

In the next step we focus on the v —(n+l1)-dimensional subspace defined
by v({1})=,..=v({n})=0. The games of this subspace are called
O-normalized.

For any game v the vector (v({1}),...,v({{n})) is called
threat-point, and the corresponding measure ig called
threat-measure: both are denoted by Xx.

We define v’:=v-x to be the D-normalized version of the

game V.

Since v’ is obtained by a positive affine transformation, namely
(1,x), both games v and v’ are strategically equivalent.

By this argument we can focus our attention on the subspace above,

A game is called O-nonnegative if its O-normalized version v’

is nonnegative. Let v*:=max{v,x}. The game

v* can be seen as representing the same demands of the

players as v, in so far as an inferior coalition, lifted up by
v* . can be replaced without any loss by "going alone”.

By this argument we can reduce our attention to the O-nonnegative
O-normalized games, that represent all games by vav’'*,

for all solution concepts that admit "concurrence of coalition

structures”,



The set of all 0O-noennegative O-normalized games is a 2" -(n+1)-
~dimensional cone with vertex (0,...,0). It can be generated by

a convex polytope. To this end we cut the cone by an adegquate
hyperplane of the subspace of O-normalized games. As an example
take the hyperplane 2{v(S5):5 coalition}=1. A convex polytope
attained by this procedure is called generating polytope.

Every O-nonnegative 0O-normalized game is strategically equivalent
to (80,...,0) or a game contained in the generating polytope,

By this argument we can reduce our attention to the generating
polytope. The generating polytope is 2" -(n+2)-dimensiocnal

(for n=3 we get 3 dimensions, for n=4 we get 10 dimensions),

2.2 Reducing the generating polytope

Permuting the players we get at most n! versions of a game,
These games only differ in the names of the players, So we

can argue, that they represent the same game. We would prefer
to reduce the generating polytope in such a way, that there
would be exactly one game representing the permutation-versions.
But in general there ig8 no procedure to do this in such a way
that the reduced generating polytope is a convex polytope too.
If a game is lacking in the symmetry property, then players

of one type cannot be permuted freely.

In order to fix names of the players, we use the relation
induced by the guotas and >.

The quotas are defined by: g(S)=v(§), S containes n-1 elements,
g is measure. Now, we can reduce the generating polytope by
permutations. The games of the reduced generating polytope

can be given by the following coordinates:
(v{12),...,v({3,...,n}) ,q,v(N)),

g(N)+Z{v(S); S containg not n-1 elements}=1, g1 3?qz3...%0n.

The verticeg of the reduced generating polytope are ls,

§ contains not n-1 elements, and (0,...,0,1,...,1,0,...,0.0)/r
with r being the number of quotas equal 1 (r=1,,..,n).

The reduced generating polytope is convex,

If the symmetry group of a game is not the trivial one

(equal to {identityl), then the game is on the boundary of

the reduced generating polytope. Hence, only some games on

the boundary are to identify.



J.Kinds of rationality

3.1 Solution concepts based on excesses

We look at a fixed game (N,v).

A measure (on N) is called payoff-vector.

A coalition structure B is a partition of N.

An individually rational payoff configuration, in
short: i.r.p.c., is a pair (x,B), with B being

a coalition structure and a measure x%, that satisfies:
1. %(B)=v(B) for all BeB and

2, % 3v({i}) for all players i,

Given a payoff-vector (or an i.r.,p.c.) the excess
e(x,5) of a coalition S is defined by e(x,8)=(v-x3)(58),

The core for coalition structure B, or

short: B-core, is the set of all payoff~veqtors .4

that satisfy:

1. (x,B) is an i.r.p.c. and

2. the excess e(x,5) is nonpositive for all coalitions 5.
The {N}-core wag introduced by &r//7es 1959,

if x is element of the B-core, then no coalition

can be better-off by itself.

We turn next to the bargaining set, This solution concept
is defined in terms of "objections” and “counterobiections”.
An objection of player i against player j at x
is a pair (y,S), y a payoff-vector, 5 a coalition, such
that: |
1. i is element of S, and j is not,
2. i is strictly better-off in y than in x,

i.e. ¥i2X:,
3. no member of of S5 is worse-off in y than in x,

i.e, yx 3%« for all keS, and
4. S can guarantee y to its members, i.e. vi(S)xn(S).



A counterobjection (z,T), Z payoff-vector, T coalition, (of
player j) to guch an objection (y,5) is defined to satisfy:
1. 3 is element of T, and i is not,
2. zx3¥y for all keT\S
3. 2 is not worse than y for the players turned from 5,
i.e. Zx3yx for all keTmS,
4. T can guarantee z to its members, i.e. v(T)z(T),
For an i.r.p.c. to be "stable", every coalition of the coalition
structure must be able to defend their payoffs against possible
objections by counter-objections.
The bargaining set for coalition structure B is
defined as the set of all i.r.p.cC. (x,B). that are
stable in the sense, that every objection at % can be countered
by a counterobjection,
Remark. The bargaining set and the core make no use of inter-

personal comparisons of utility.

Remember the notion of the excesses, An excess e(x,8) represents
the collective gain or loss for 5 if the members of S withdraw
from x to form the coalition S. In that sense the excess ig a
measure for the strengt of relative satisfaction or dissatisfaction
regpectively to a proposed payoff-vector x.

The following two solution concepts, namely the kernel and the
nucleolus, are comparing payoff-vectors by their excesses, to
find the "best” of them, i.e., that payoff-vectors that admit

the highest degree of satisfaction of all single players (for

the kernel) or of all coalitions (for the nucleolus). For another
interpretation that does not use interpersonal comparisons of

utility see Maschler/Peleg/Shapley 1979, p.330.

The comparison of the excesses by players uses the following
definition: s(i,j,.x):=max{e(x,5); 1€S5 and jeN\S}.

The kernel for coalition structure B is defined

to be the set of all payoff-vectors X with (x,B) being

an i.r.p.c., that “equalize the maximal excesses if it is
possible”, formally!

s(i,j,x)=s8(j,i,x) or %, =v({i}) or x,=v({jl)

for all coalitions B of coalition structure B and

for all pairs {i,3j} of players contained in B,
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For the comparison of the excesses by coalitions let L(x) he a
2" -vector, the elements of which are the excesses e(x,5),
ScN, arranged in nonincreasing order {(i.e, (L(x)), ${(L(x)).
whenever r>s),
The nucleolus for coalition structure B is the set
of all payoff-vectors x that satisfy:
(x,B} ig an i.r.p.c.
2. L{x) is lexicographically minimal on the set of payoff-vectors
y with (y,B) i.r.p.c,.
If the set of payoff-vectors y satisfying (y.B) i.r.p.c.
iz nonempty, the nucleolus consists of a single element
( Schmeidler 1963, Kohlbers 1971),

3.2 Solution concepts based on surplus by single players

The following solution concepts focus the value added by a single
player entering a coalition, Let us define for ScN, ieN\S

the marginal value m(i,S) of player i at S by

m(i,8):=v(Su{il})-v(8),

The following solution concepts differ in treating the marginal
value, The Shapley-value {(Shapl/eyp 1953) is distributing

v(N) according to the expectation of the marginal wvalue, Hence,

the marginal values are seen as measuring the worth of a player,
Egqual share of surplus is distributing positive marginal values
among the members of the newly formed coalition Su{il}:

here the marginal value is seen as gained by means of the extension
of the coalition,

Both concepts can be understood as based on the following procedure:
Given an ordering on the players (represented by numbers E1 up to En),
an attempt is made to extend every coalition reached {E1,E2,...,Er}
to {E1,.... E(r+1)}. For the Shapley-value coalition N={El,,..,LEn}

is reached, whereas for the equal share of surplus the process can

stop before.



Let us fix an order of entry E. Then the vector g(E) defined by
(g(E)): :=v({El, ..., Ei})-v({E1l,... E(i-1)} assigng the

gains of entry to the entering player until N is reached.

The gaing of entry are marginal values: (g(E)),=m(i, {E1,..., E(i-1)}),
The Shapley-value ¢(v) is defined by

®(v)=2{g(E): E is an order on N}/nl,

1t can be shown that the Shapley-value is the only function on
the space of games that satisfies the following axioms:
1. ¢(v)I(N)= v(N),

i.e. the Shapley-value distributes v(N) among the players
2, R(®(v))=0(nv),

i.e. the Shapley-value does not depend on names
3. d(v+w)=0(vI+d(w),

i.e. adding games allows to add the values
4, If m(i,8)=0 for all S, ieN\S, then (&(v)); =0,

i.e. the dummies are assigned a worth of zero,.
Remark. Also the Shapley-value can be extended to coalition
structures (see Aumann/Dréze 1974)., But this extengion
exhibits some strangeness (see Shenoy 1977).
The additivity in axiom 3. is a very efficient tool, since the

unanimity games form a basis.

Let ug fix an order of entry E. Let us imagine player El1 up to E(i-1)
are already together in a room. Now, when player Ei is called to
present a possible gain, some players had already formed a coalition,
say B(E,i~1), and some players with a number less than 1 - let us
denote this set by C(E,i-1) - are already waiting, If player Ei

can offer v({Ei,...,Ei}) greater than the sum of all claims
presented - that is v(B(E,i-1))+x(C(E,i-1)u{Ei}) -

than the new coalition {E1,...,Ei}=B(E,i) is formed and C(E,i) is
empty, else B(E,i)=B(E,i-1) and C(E,i)={Ei}uC(E,i-1).

Formally: The surpluas of the i-th player according to E is

defined by

1. s(E,i)=v({El,...,Ei})-v(B(E,i-1))-x(C(E,i-1J)u{Ei}},

2, if s(E,i)>0: B(E,i)={E1,...,Ei} and C(E,i) empty,

3. if 8(E,i}¢0: B(E,i)=B(E,i-1) and C(E,i)=C(E,i-1)u{Ei}.



The surplus will be distributed equally. Hence we define the
equal share of surplus for order of entry E to be the

i.r.p.c. (e(E),B(E)) satisfying

1. B={{B(E,n)}u{{i};ieN\B{(E,n)},

2. (e(EY);=v({i})+={s(E,j)/3;: j3i and s(E,j)>0}.

Remark. The equal share of surplus is well defined, i.e. is an
i.r.p.c., since only gaing, that result from transitions from
B(E,i) to B(E,i+1), are distributed.

3.3 Other solution concepts

The following solution concepts are not taken into consideration
in this paper. Nevertheless they are worth mentioning in order
to show, that there are other reasonable concepts to examine

bargaining behaviour.

The definition of stable sets (or von Neumann-Morgenstern solutions)
uses the notion of "domination™., Let % and y be payoff-vectors,
Then ¥ dominates y with respect to coalition 5 iff
1, v(8):r(S8) and
2. %y >yy for all ie§.
Next, z dominates y ~ we write x dom y - iff there exists
a coalition § such that % dominates y with respect to S,
A stable set for coalition structure B is a subset 1
of the i.r.p.c. with coalition structure B such that
1. there do not exist x,ye¢Z with z dom y and
2. for every i.r.p.c. (y,B), v4Z there exists
an x&¢Z such that x dom vy,
The first property is called internal stability or internal
congistency, and the second one ig called external stability
or external domination.
For a survey on stable sets see Lwcas 1970.

Remember the definition of the {N}-core. The least-core
for the game v is the core of that game w, w(S)=v(8) for
all S¥N, w(N)=v(N)+t, that has the minimal t with

respect to non-empty cores.



For the equity core the members of a coalition S are supposed
to expect the equity distribution y(S)=(v(S),...,v(8))/number
of members of §. Hence, they will reject any payoff-vector X
such that (y(8)), >x; for all ie5.

The equity core is defined to be the set of all

payoff-vectors x satisfying

1. x(N)=v(N) and

2. there exist no coalition § with (y(8)),>x, for all ieS,

The equity core is a weaker solution concept than the {N}-core

in a sense that it always contains the {N}-core, if the {Nj}-core

exists,

For a discussion of this concept see Se/fern 1972 and 1976,
Okada/Funaks 1982,

The goal to take the equity distribution into consideration
has the equity core in common with concepts like the egqual
division kernel (Crott/A/bers 1981 and 1982) and the

equal excess model (AXomorifa 1979).
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4.The rational coalition structure

For solution concepts, that are defined for coalition structures,
it ig natural, to ask for the transitions between coalition
structures, that are induced by the indiyidual interests,

First let us compare i.r.p.c. (x,B) and i.r.p.c. (y,C):
(x,B)>(y,C) iff there exist a coalition BeB with x>y,

for all its members 1i€B.

We argue that (y,C) iz dominated by (x,B) hecause all

members of B are better-off in x, and in a consequence coalition
B withdraws from (y,C).

Let a solution concept L assign to each coalition structure B

a set of "rational" payoff-vectors, then

B>C iff there exists a coalition BeB, such that for every yel(Q)

exists an xeL(B) satisfying x,>y; for all members iesS,

We arque that C is dominated by B becauge of the coalition

BeB, that will counter any proposal of C by withdrawal,

A discussion of both relations is found in Shenoy 1977, 1979,

A coalition structure B is called rational

w.r.t. solution concept L iff "it is not dominated™, i.e, there
exists no coalition structure C satisfying C>B.

The set of rational coalition structures are in some sense the

"core of the game reduced by the solution concept and played on

coalition structures”,

A coalition structure is called maximal iff the sum of the

values of its coalitions is maximal resp. to all coalition structures.
For the core, the rational coalition gtructures are the maximal ones,
and all cores for a rational coalition structure coincide

( Shenoy 1977, 46-7),

For the bargaining set family no general existence theorem for

rational coalitions is known at this time.



5.Main theorems on solution concepts

5.1 Solution concepts and operations on games

By easy calculations one can show that:
- core, the bargaining set family and the Shapley-value covary
with positive affine transformations ("stategic equivalence™),
and permutations on N ("symmetry™)
- core and the bargaining set family give the same solution
for a O-normalized game and its O-nonnegative hull, if there
exists an i.r.p.c. for the considered coalition structure (else
it is empty.
Kernel, nucleolus and Shapley-value preserve the desirability
relation and assign zero-weight to dummies (cf. Maschler/FPeleg 1866),

5.2 Balanced games and the core

Let us imagine the players can decide on the intensity bs

by that coalition 8 is operated, If the intensity to run a coalition
is measured by a number between zero and one, the players are

"fully employed™ if Z{bsls :ScN}=1y.

Let us call an 2" ~vector b a balanced system for N iff

Z{bg 1s ;ScN}=1x.

For a game (N,v) let b(v):=sup{Z{bsv(8):S5cN}; b is a balanced system for
The number b(v) is the maximal gain in (N,v) players can get by
gplitting their engagement.

The game (N,v) is called balanced iff b(v)¢v(N),

The main theorem on the core (Fondareva 1963, Shapley 1967

ig: {N}-core is not empty iff the game is balanced,

This theorem is proven by the duality theorem of linear programing.
The primal programm is: find min{x(N)Y*®(S)3v(5)}, the dual:

find max{Z{cs1s :SeN}: c>0 and 2{cs1s:ScNi=1u1.

So ¢ is a balanced system. For a detailed proof see Rosenmuller 1981,



5.3 Bargaining set, kernel and nucleolus

By definitions the core is a subset of the bargaining set.

For O-nonnegative games the bargaining set is not empty (Peleg
1963 and 1967).

The kernel is a subset of the bargaining set and it is not empty
i£f there exists an i.r.p.c. of the concidered coalition structure
( Pavis/Maschler 1965, sec.5),

The nucleolus is a unique point within the kernel and as a function

it is continuous and piecewise affine (Schmeidl/er 1969).

Let us fix some point x within the least-core. Then for every
pair of players {i,j} we get a closed line segment of points
within the least-core that are constructed by transfers between

i and j: we call the line segment R({i,3j}). The kernel has the
following bisection property: x is element of the kernel iff

for each pair {i,j} either x bisects R({i,j}) or y=v({i})

or ¥;=v({3j}) (Maschler/Peleg/Shapley 1979).,

For the nucleolus Maschler/Peleg/Shapley 1379 extend the
procedure leading to least-core. The extended (lexicographic)
procedure is shown to lead to the nucleolus. The authors write;
"Finally, the intuitive interpretations of the two solution
concepte are clarified: the kernel as kind of multi-bilateral
bargaining eguilibrium without interpersonal utility comparisons,
in which each pair of players bisects an interval which is either
the battleground over which they can push each other aided by
their best allieg (if they are strong) or the no-man’s-land

that lies between them (if they are weak): the nucleclus as the
result of an arbitrator’'s desire to minimize the dissatisfaction

of the most disgsatisfied coalition.”

By a paper of Megiddo 1974 we know, that the bargaining
set family lacks of monotonicity on games, i.e. if the game 1is
changed only by increasing the value for N, then the solutions

do not guarantee not to decrease the payoff to some player.



5.4 Convex games and the Shapley-value

Recall the definition of a convex game and the definition of the
gain g(E) according to a given order of entry. The following

theorem holds for convex games (Shapley 19723
g(E) is vertex of the {N}-core, and all vertices of the {N}-core

are of such kind. In this sense the Shapley-value is the gravity

center of the {N}-core.



Three-Person Games

1.Coordinates (cf.fig.1)

- The guotas are defined by: q(8)=v(S), 5 containes n-1 elements,
g is measure. Three-pergon games are ordered games, and the
desirability relation coincides with the relation induced by
the quotas. Thus, we can reduce the generating polytope by
permutations. The games of the reduced generating polytope can
be given by the following coordinates: (q,v(N)), g(N)+v(N)=1,
01 34z 3g; . The vertices of the reduced generating polytope are
(0,0,0,1), (1,1,1,0)/3, (1,0,0,0), (1,1,-1,0), Let ij:={1.3}.

- The reduced generating tetraeder contains four games eguivalent
to a simple game: (0,0,0,1), (1,1,1,2)/5, (1,0,0,1)/2, (1,1,-1,2)/3.

- A game has the symmetry group of all permutations iff it is
element of the closed line segment with vertices (0,0,0,1) and
(1,1,1,0)/3, The only other symmetry groups of three-person
games are keeping fixed (1) the "big™ player, (2) the "small”
player, (3) all players. Games of case (1)} are exactly the
games within the convex hull of (1,0,0,0) and the above line
segment minus this line segment. Games of case (2) are exactly
the games within the convex hull of (1,1,-1,0) and the above
line segment minug this line segment.

- There is only one constant sum gawe within the generating
tetraeder: (1,1,1,2)/5.

- All three-person games are ordered. The desirability relation
is the same as that one induced by the quotas.

- Measures are represented by the game (8,0,0,0), This game is
the vertex of the generating cone,

- A game v is superadditive iff v(N)>q(12); q(12)=v(N) is a
hyperplane separating the reduced generating tetraeder into the
closed tetraeder of superadditive games and the half-open
polytop of the non-superadditive games, The vertices of the
superadditive games are: (0,0,0,1), (1,1,1,2)/5, (1,0,0,1)/2,
(1,1,-1,2)/3.

- A game is convex iff v(N)»v(12)+v(13)=q(N)+q(1); by the
geparating hyperplane we get the closed tetraeder of convex games.
The vertices are: (0,0,0,1), (1,1,1,4)/7, (1,0,0,2)/3, (1,1,-1,2)/3.
The convex games are a subset of the superadditive games.

Both tetraeders have two vertices in common,
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2.The core {(cf.fig.2)

- 1 coalition structure is called maximal iff the sum
of the values of its coalitions is maximal (resp, to all coalition
structures). If a coalition structure is not maximal then its
core is empty. The cores of magimal coalition structures coincide.

- Usually the notion “"core” means "core for the ceoalition structure
of the grand coalition”, i.e. {N}. Then we get a non-empty core
iff the game is balanced. The game 1is balanced iff v(N)3g(l12)
and v(N)2g{(N). By considering the separating hyperplanes
we get the closed polytope of balanced games as the convex hull
of the five games (0,0,0,1). (1.1,1,3)/6, (1,0,0,1)/2, (1.1.0,2)/4
and (1,1,-1,2)/3. A convex game isg balanced and a balanced game
is superadditive.

- If the grand coalition structure is not maximal, then {12,63}
is maximal. The core for {12,3} is empty iff v{(12)<v(13)+v(23),
or in terms of quotas: iff qs>0. The coalition structure
{12.3} is maximal iff the game is not superadditive or v(12}=v(N).
The core for {12,3} is not empty for exactly the gameg in the
closed convex polytope generated by the following six games:
(1,0,0,0), (1,0,0,13/72, (1,1,0,0)/2, (1.,1,0,2)/4, (1,1,-1,0)
and (1,1,-1,2)/3.

- The non-empty core for {N} and for {12,3) coincide on the closed
triangle with vertices (1,0,0,1)/2, (1,1,0,2)/4, (1.1,-1.2)/3.
The non-empty core for {12,3} and for {13.2) coincide on the
closed line segment between (1,0,0,0) and (1,0,0;1)/2. The core
for {23,1} is empty.
The non-empty cores of {N}, {12,3) and {13,2) coincide in exactly
one point: the game representing the simple game (1,0,0,1),
The core of this game contains only one element, that gives
zero to the smaller players, inspite of the fact that the
strong player needs the cooperation of the small ones,

- Rational coalition structures are all maximal coalition
structures with non-empty cores.

- We can distinguish the games by the dimension of the core
(or -finer- by the number of vertices of the core). The core
is one-dimensional iff it is the {12, 63}-core and the game is
not element of the closed guadrangle with vertices (1,0,0,0),
(1,0,0,1)/2, ¢1,1,0,0)/2, (1.1,0.2)/4. The core is a single

point iff the game is element of the above guadrangle.



- We got ten types of games:

0. (0,0,0,0) single point for all coalition structures
1 "above"” two-dimensional core for {N}

Z "left” one-dimensional core for {12, 3}

3 "right™” empty core

4 “left wing"” one-dimensional core for {N} and {12.3}
5. "right wing” gingle point for {N}

6 "yvertical wing" single point for (12,3}

7 "horizontal line"” single point for {N} and {12.3}

] "yertical line” single point for {12, 3} and 13,21

9, (1,0,0.1>)/2 single point for {N}, {12 3}, {13.2}

Remark: The coalition of the two "smaller"” players 1is never

effective.

3.The Kernel (cf,.fig.2.3)

- The kernel for three-person games 18 & unique point for any
coalition structure. It coincides with the nucleclus. For the
coalition structure {N} we get: If the core is empty, the
kernel coincides with the bargaining get: if the core is not
empty, the bargaining set coincides with the core.

For the other coalition structures bargaining set and kernel
and -if not empty: the core- coincide,
( Pavis/Maschler 1965)

_ The kernel for {N} is central in the least core
( MaschlersPeleg/Shapley 1372)

- The kernel is a continuous pilecewise affine function on the
three-person-games, The regions of linearity can be identified
with a set of coalitions, relevant for the maximal excesses.
The regions corresponds to a special kind of dynamics for the
bargaining procedure proposed by the kernel. The regiong are
defined by inequalities of excesses up to an equality. By that
reason, the regions are closed convex polytopes, They can
intersect on their boundaries.

- For the coalition structure {1,2,3} there is only one i.r.p.c.

and the kermel is trivial.



- For the pair structures (13,2} and (23,1} there are two regions
of linearity, depending on whether the guota of the smallest
player is nonnegative or not. The regions intersect at the
zero quota. If there is no negative quota, the pair-cecalition
distributes the quotas: if there is a negative quota, the
third player can demand more, namely v(3)=0,
- The pair structure {12,3} distributes the quotas to player
1 and 2 - in any game,
- For the grand coalition there are six regions of linearity.
We follow the notation and the result of Dlavis/Maschler
1965
A. There is no relevant pair coalition, This is the case for
3v(12)¢v(N), The value of the grand coalition
ig divided equally.

B. There is one relevant pair coalition, namely 12, This isg
the case for max{g(N),qg(N)+3gsz }<v(N)¢3v(lz).
By dividing v(N)-v(12) into two equal parts the pair coalition
separates out the smallest player. There are three regions
of this kind depending on the set of relevant one-person-
coalitions;
B, . Both 1 and 2 cannot demand more than zero from
the remaining part of v(N), not yet distributed among the players.
B, . Player 1 can demand more than zero, but not player 2.
B; . Both can demand more than zero.
In any case there will be an equal division of that part
of v(N) that remains when all demands are satisfied,

C. All pair coalitions are relevant, This ig the case for
all guotas are nonnegative and g(N)-3gs ¢v(N)<g(N)+3qs .
The kernel assigns the quota to any player plus an equal
part of v(N)-g(N): that part can be negative.

D. In all remaining games the smallest player cannot demand
for more than zero. There are twc regions:
Dy ; Player 2 can demand zero or more,
D, ¢ Only player 3 can demand for more than zero,
If a game is of type D, then it is not superadditive,



- The following list contains the vertices of the regions

according to the kernel for {N}:

game kernel vertex of redqion
(0,0,0.,1) (1,1,1)/73 A

(1,1,-1,061)/7 (2,2,20/7 A Ba

(1,0,0,3)74 (1,1,1)/3 A By B.
(1,1,1,6)/9 (2,2.2)/9 A B;s B By C
(1,1,-1,2)/3 (1,1,0)/73 Bs B: B,
(1,1,0,23/74 (1,1.,0)/4 B: C Da
(1.0.0,1)/2 (1,0,0)/2 B, Bx C Dy Dg
(1,1,-1,1)/2 (1,1,8)/4 By D,
(1,1,1,0)/73 (0,0,0) C Dy D2
(1.0,0,0) (0,0,0) D,
(1,1,-1.0) (0,0.0) D, D:

The rational coalition structures for the kernel are that
coalition structures rational for the bargaining get given

in Shenoy 1977, theorems 3,28-30,
iff the {N}-core is not empty. All pair-gtructures are rational

{N} is rational

iff gquotas are nonnegative and {N}-core is empty or a single
point, {12,3} is rational iff one guota is negative and {N}-core
is empty or not of full dimension. We got gix types and can

list them by using the core-types:

0. (0,0,0,0) as core-type D, any coalitien structure
1. "above” as core-type 1, {N} i=s rational

2. "left” as core-type 2, {12, 3}

d "right"™ or “vertical wing” or “yvertical line"

as core-types 3..6.,8. ! all pair structures

"left wing" as core-type 4. {N} and {12,3}
5. "right wing" or "horizontal line" or (1,0,0,1)/2
{N} and all pair

f Y
.

ags core-types 5.,7..9.
structures



4.The Shapley-Value (cf.fig.4.,5)

_ If a function i¢ linear on the games of the reduced generating
polytope, preserves symmetry and assigns an individually rational
payoff vector to each game, then it is the equal distribution
of v(N). This fact can be seen at the four vertices of the
reduced generating polytope: (0,0,0) is assigned to three of
them, and (1,1,1)/3 to the fourth one. Therefore the Shapley-
value is not individually ratiomal for all games. The region
of individual rationality and that one without individuail
rationality are separated by the triangle of (1.1.1,0)/3,
(2,0.0,1)/73, (1,1,-1,2)/3 generated by the eguation: the
value of the smallest player is zero. The first game has a
value with three zeros, the second one with two zeros, and
the last one exhibits one zero.

- Shapley-value and kermel for {N} coincide:

0. For the game (0,0,0,0).

1. On the closed line segment (1.1,1.6)/9 to (0,0,0,1) (within
kernel-region A.)J.

2. On kernel-region B, the payment for the player separated out
demands the equality v(N)=2q(N). This equality yields type
B, . Together with the evaluation of the other
payments we get the triangle with the vertices
(1,1,1,6)/9, (1,0,0,2)/3, (1,1,-1,2)/3 (the corresponding
values are (2,2,2)/9, (2,1,1)/6, (1,1.00/73).

3. On kernel-region C. we get g(N)=3q(1) and equal guotas.
Hence, the region of coincidence is the closed line segment
(1.1.1,6)/9 to (1,1,1,0)/3.

4. On kernel-region D. coincidence is reached on the closed
line-segment between (2,0.0,1)/3 and (1,1,1,0)/3.

Coincidence in regions 0.,1.,3., is due to symmetry.

- The relation between Shapley-value and core can be
described as follows: the Shapley-value is element of the
(N}-core for three of the five vertices of the polytope of
the balanced games ({N}-core is not empty),
namely (0,0,0,1), (1,1,1,3)/6. (1,1,-1,1)/2, For the other
two vertices the Shapley-value is not 12-rational. By the
corresponding inequality we get the other two vertices of

the region "Shapley-value is element of the {N}-core":

(4,0,0,5)/9 and (2.2.0,5)/9.
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