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5. Multistage Games

We shall now return to the games in normai form introduced in section 2.2. Let us
first of all recall the definition and the rules of an N -person normal form game. It
is denoted by
= (Lop) R Aw ™) where
( .ﬂ.t(’t ‘/”'\ is a probability space
Ol

are sub —@ - aigebras of
A are arbitrary sets
W, _Q_k"ﬁd A, SR

is player n’s utility function

At stage O a random experiment represented by ("Q"o"\}') is performed. Every
player is informed about the outcome of the experiment according to his sub-
§ —aigebra a‘..'(ln the case of a finite probability space where every algebra Ms
generated by a partition of £ , this means that player n is told the element of his
partition containing the selected{).) Then the players choose their actions simul-
tanecusly.

As the existence thecrems for equilibria are only formulated for games without
random moves we prefer to remove (Q (R ‘/,) and 0(Jrom the explicit description
of the game. '

Let us define the strategy set ﬂ,kof player n as the set of all stochastic kernels

from (_Q_ta,h) oA,

Z‘ah""' [.Fu.‘ 6w l (A ) = Au}
{(We don't bother about a suitable b - algebra on A, because in future applications
A, will be finite.)

If wefl was chosen by using the strategies Ba-- 5,,, the players generate the dis-
tribution @ Vulwr,)on T‘EA‘_. Thus we may define the payoff U, by

(b 8N o= f(kuk AQ Bl ) Acldw)

The game ((fy, O, #), Ol,_,Ah.u ..} is now represented by the game in standard
normal form (without random moves) (Ehlu&
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It is evident that this model is suitable for representing incomplete information
arisng from the ignorance of the true payoff functions. But one can also describe
uncertainty about the other piayer’s information on the game. To demonstrate this
we put the game of the first example of chapter 3 into the above model:

Example: L = {1.2} x {1,2}. The probability distribution /\Ais given by
2nd compoenent

1st component

Player 1 is informed about the first and player 2 about the
second component of the selectedel, i.e.

quis genqrated by {{(1,1),(1,2}.{E,N22}} and O(,l is
generated by {{(1,1),(2,1)},{(1,2.(2,2)}}.The payoff function is

given by
u((1r1)l') = U((1.2),') = A(')
u(2,1),*) = B() . a

In the above exampie the measure space (&,&) and the sub- §-algebras a‘__
have a special shape that is corl’saidered very often in the literature on this subject:
£ is a product space, & = ‘E A Tw (T finite) and the aigebras Ol.k_are gene-
rated by T,, . That means player n only learns the n —th component of the selected
Lo =(t, -..ty). Player n is said to be given the type t,.. This terminology is a bit
misleading because one could suspect that a player’s type oniy influences his own
payoffs which need not be the case. One reason for concentrating on preduct
spaces SL. is the frequently azsumed property that the player's private informations
are independent. If L = \I‘;‘\ T,. this only means that M is the product of its
marginal distributions. Example 1 shows that this assumption is rather not typical,

but it makes the game more tractabie.

If we confine ourselves to finite probability spaces (f., O, /\,.) one can give a

reason for restricting the attention to product spaces. Every algebra &hjs

generated by a partition of £}, which will be denoted by T,_ = {t:,...,t :"' }. Define
N

a mapping.fromQLto T = T T, by asigning to every ts€f) the n-tuple

{t, -t,) & T that satisties Wwé Q t,.- Let /w’ be the image measure of /\q.under this

mapping and Erkthe algebra generated by T\_ onT.
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If an N-tupel of types (tA...t”) determines precisely one w define u'(t,..1;) =
u(es, - ), otherwise (that means if none of the players can distinguish between them)
take the expectation over ail w in the inverse image of (...t ). The games given
by GL‘“'W)' @, .., and u resp. (T,/,:), 5,..‘1,;’and u' are isomorphic in a
natural way.

5.1 The L.P.-Formulation of Finite Zero - Sum Games
with Incomplete Information

The class of games with incomplete information considered here has the following
additional properties:
— There are only two players involved
- The sets of types for both players are finite
- The distributions on the sets of types are independent, i.e. the knowledge of
his own type doesn’t enable a piayer to update his infermation on his oppe-
nent’s type.
— We assume zero - sum property.

Maintaining the notation introduced above we have

N =RxS
R set of types for piayer 1
S set of types for player 2 both finite

@) =@ X =R (3
P& q
p distribution on R

o
M
q distributionon S

I  set of actions for player 1
J  set of actions for player 2 beth finite

: A T _ nT
The s;rategles 8" and &' are now denoted by x = (x:')“':r'r eQ resp.
y = (V,;’Je_\.ses with
x} = Prob (action i | r is announced)

?‘4=x' ﬁfY
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The payoff function u reduces to a set of T x J-matrices A""sl reR,s6S. U is
given by
g Lr1 A
Uy) = LT a® Lyxiyl A G
s ty

According to the min-max -theorem the game G(p,q) = (X,Y,U) has a value
V(p,q). We shall now investigate the properties of this value as a function of p and

q.

(1) V is Lipschitz with respect to p and q.
2) V is concave w.r.t. p and convex w.r.t. q.

Although a formal proof of this statement will follow from the L.P. —formulation of
the game we shall now give an informal argument which does not only apply to
this class of games. It is based on the intuitively appealing but mathematically
meaningless conjecture that in every zero—sum game the value of information is
positive:

tet p*, pt be inA(R) and LE&[0,1] such that dp* + (1-4) pt = p. Consider
the games G'{d,p™.pt .g) and G"(L,p" pt.q). In G'(d.p*,pt.q) chance chooses r
€ {1,2} with probability (4,1-4) and piayer 2 is informed about the outcome.
Then the game G(p".q) is played. The value v’ of G'¢l,p? ,p'—,q) will be v' =
AV(E*.Q + (1-1) V(p*.q). In G*L,p* ,p*,q) player 2 does not learn the value of r.
The value of v* of G"&,p",pt,q) will be v° = V(p,gq) because player 2 can't to
better than caiculating with the expected distribution p. From the argument above
it follows that

vev resp.
AVE* Q) + (1-4) VPt Q) & Vp.Q) = VLp* +(1-4)" q)
which means concavity of V w.r.t. p.
Convexity w.r.t. q follows by duality.

(3)  V(p.q) is piecewise bilinear on 4 (R) x A(S).

This result can be gbtained from a linear programming formulation of the game, |t
is well known that a pair of optimal strategies and the value of a zero —sum matrix
game are the solution of a suitable linear pregram. An analogue to this program in

the case of incomplete information is given by
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Lemma: V(p,q) Is the vaiue of the linear program

max vy L@ ve
subject to $

A L AHapp xS

.l.ss La1d

A Txi=

r

Proof: V(p.g) = max min 3, p¥qt A" i xTyS
] \f '\Sghi e

= max Lg% min t p¥ AT (i) x ¥
X 3 J re v

~—— e —

replaced by v3¥in the objective function.
The change of variables .L':= pY¥-xY gives the following program:

Lemma: V(p,q) is the value of the linear program
max vk I, ¢t vS
s

subject 10
A" Yy vd

A DAL
TR T v-
A Y LY =p”
A Ldy =»
N J,';: ¥ 0
wnY

This program enables us to give a formal proof of the cav-vex property of V(p,q):

it (v, 4" (resp. (v*,LY) are feasible for (p®,q) (resp. (p?,q) then for all
A€ [0,1]

X L2 = W +(1 —X)v',k.[:'+(1 -\ is feasible
for (p*,q) = (\p™ +(1-X)p®.q) implying

vie* @) » AVE™N al + (1-4) Ve )



The program is aiso used to prove

'Proposiﬁon: V(p,q) is piecewise bilinear on A(R) x 4 (S). That means there
exist finite partitions {A(R)y Y, of 4(R) and [a©)y ], of 4
into convex polyedra such that the resfriction of V to each
product A(R) xA(S) is bilinear.

Observe that in the second program p is on the right side of the constraints so that
the matrix of the linear program is independent of p and g. This feature is
essential for the proof of the proposition. The requirement that the probabilities on
the sets of types are independent appears implicitly in the formulation of the
proposition. A very similar program to determine the value and the equilibirum
strategies of such a game can also be put up for the case of correlated types. For
details of the proof see Ponssard and Sorin {80].

From the above proposition follows that in order to define V on A(R) x A(S) it
suffices to compute a finite number of values V(pk,q J(_), pg andq  defined by the
partitions of A(R) and A (S).

Example: (Il =}9]1=[R{=[s| =2

A4 1t L 0 o
AVt At L AT ( A _A‘)
1 O 0

A ’(4 'L)

it is obvious that V(p0) =0

A

')

A Vg =0

9

because in both cases player 2 will choose his second parameter.
2q - 1 gy /2

V{0, = for
0 q¢ 12
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(For q > 1/2 player 1 chooses the first row, otherwise the second
row)
1 ' p ¢_: 1/3
Vip,1) = for
213(1-p) p> 13

(In this case ptayer 2 chooses first and second column with proba-
bility 1/2)
We have now computed the value V(p,q) on the boundary of the

unit square.
A
o
1 1 A 7]
{
k
]
i
:
]
o;l{ B= ettt m—---==3
v c‘7 o N
>
1 q P
3

Using piecewise bilinearity and the cav-vex property it can easily be checked that
this suffices to give a complete description of V(p,q):



A
q
A T
!
|
Ta-1 | 3¢-p)(2q-4)
l
4 dom e o ..
2
O
’|1 1 P [ ]
3

The foregoing results especially apply to the foilowing class of games:
5.2 Games with Almost Perfect Information

At the beginning of such a game a chance more determines the player's type, i.e.
réA and s&S are chosen independently according to probability distribution p
and q and both players are told their own type.

Then player 1 decides upon a move i€ L 4 Which is revealed to player 2. Knowing
his opponent’s previous move player 2 selects a move jﬂe J, which is told to
player 1 who chooses i.,_eIL and so on. Finally player 1 receives
A"s(i‘ s -iz-i:.-"'ir'i-r) from player 2. (The sets of actionsI“,...I‘_ and J..'---'JT are
again finite).

The term "game with aimost perfect information” can be expiained from the fact
that both players have perfect information on their opponent's moves but imperfect

information on their opponent’s type.

The game described above is denoted by G(p,q). — Let V{(p,q) be its value.
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Theorem: V(p,q) = cav max vex min .
LQ"I.‘ q Jl‘er.‘

. S, . .
cav max vexmin (FBp A (] izie)
e i,‘e'[.r q j‘,é]‘_ Ht Alg iTle

Proof (by Induction):

Denote by V*(p,q) the value of the game obtained by restricting I 4 lo the
unique element i. It is sufficient to show that
V(p) = cav max V'(p.g)
P LeT,

Obviously player 1 can guarantee m%x V"(p q) without relatlng to his type.
Since the value is concave in p he can aiso get cav mtax V¥(p,q). But he is
not able to obtain more than that. According to the min —max theorem the
value V(p,q) exists, thus we may assume that player 1's strategy is known {0
player 2. In this case he is able to compute posterior probabilities on the set
R after observing his opponent's first move. Assume that the signal ieI.,
occurs with a total probability of k; and denote piayer 2's posteriors after
observing i by p; . Then he can prevent player 1 from getting more than

L

¢ L N max vip,a
161 €T,

-

< cav max V"(p,q)

as p; satisfies 2. MNPy =
[ 7]

Once we have found the value of the game with the above formula we can deter-
mine optimal strategies. In contrast to the calculation of the vaiue this can be
carried out by forward computation, i.e. starting with an optimai strategy for player
1 at stage 1 and ending with an optimal strategy for player 2 at stage T without
having to construct optimal strategies for all possible past histories that could occur

but only for the history that develops in the course of the game.
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Theorem: An optimal strategy for player 1 in G(p,.q,) at stage 1 is defined as
follows:
(1) Choose h € R® satisfying

V(p, d,) = hq,, q{\‘mv(p..q)ghq

Then choose for all ie'L a
Mg Conal peealR) | ki€ RS
such that

' - L%.‘., dexa );én AL pi=po
- V0ipege) 2hete q/e\dm Viesads by
- % MW=k
CELl,

(2) Denoting by x{ the probability of playing i given type r, player
1's initial move is given by

r
S
Peo

The first thing player 1 has to do is to select a supporting hyperplane of the
convex function V(p, ,-} at point g, represented by the vector h. h can be inter-
preted as a vector payoff. Using the strategy we are going to construct ht is the
minimal amount player 1 will obtain from piayer 2 if his type is 5. The limitation of
the vector payoff is done without recourse 1o the value of q,. From this it is clear
that the vector h must represent a supporting hyperpiane because otherwise for
some e player 1 could do better then the value permits. From the existence of
the value we know that player 1 must be able to realize at least one vector payocff
h satisfying the supporting property. It requires some additional argument, which
won't be carried out here, that, if the supporting hyperplane is not unique, he may
" choose any of them. Then he has to fix the following parameters:
\; ' total probability with which he is going
to select parameter i
p, i3 posteriori probability on R player 2
can compute after observing parameter i
(knowing p and piayer 1’s strategy)
h- : vector payofi he is going to realize after

L
playing i at stage 1
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The interpretation explains the required properties of AP ¢ e The cohputation
of the transition probabilities x‘{ is obvious. We already pointed out that player 1
does not use the distribution q, on player 2's types to compute his optimal stra-
tegy. His relevant state parameters are the vector payoff he grants player 2 and
the information he reveals himself. Of course player 2 using an analogue equili-
brium strategy never bothers about these revelations, but equilibrium conditions
force him 1o take into consideration the case that player 2 is able to calculate the
correct posteriors (i.e. knows his strategy) and exploits this information.

If (i,j) were selected at stage 1, player 1 has to perform similar considerations at
stage 2 using V & Pea;) instead of V{(Pe.Ge)r V yH (+) being the value of the
game obtained by restricting the payoff function A" (- ) to A"s(i,j,...). The oniy
difference is that he does not have to choose a supporting hyperplane in the first
place, it is already given by h, .
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5.3 Repeated Games with Incompiete Information
5.3.1 Lack of information on One Side

A finitely repeated two —person zero-sum game with lack of information on one
side is based on the following data:
- finite setsTand J
(sets of actions for players 1 and 2)
- a finite set R
{set of types for player 1)
- for every réR an |LIx| J| -matrix A
{payoff matrix)
~ a probability distribution p on R
- anatural number T
{number of stages)

The game runs as follows:
— At stage 0 chance chooses ré&R according to p.
Both players know p but only player 1 is
informed about the outcome of the lottery.
- At each stage t = 1,...,T both players choose
independently parameters i.eeI resp. S
- Then (i, ,j, ) is announced to both players
but: they are not toid the correspanding value
A @iy e) of the selected payoff matrix so
that player 2 can't draw any conclusions
concerning his opponent’s type.
- Both players have perfect recall, i.e. they
can use all information they get in the course
of the above procedure up to stage t for their
decision at stage t + 1.
— Aifter stage T player 1 recieves from player 2
the amount '_-%- i': A" (-‘:t.:jf.}
Dividing the payoffs by T has the advantage that the average payoffs can be
compared for different numbers of stages and that the payoffs are bounded for all

T uniformiy.
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According to thé description above player 1 can make his choice of parameters at
stage t + 1 depend on his type r and the history up 10 stage t(iana)ioligale) We
define H : = Tx J so that the set of histories up to stage t is denoted by H¥, Then
a strategy of player 1 consists of a sequence &=2(8a..- &) of mappings
Gy : Rxt™ " A(T) (resp. stochastic kernels &, | Rx H¥'"aT)

A strategy for player 2 is given by a sequence T=( j;‘,__ a,\ of mappings
Vet H*"‘-ad(,]) (resp. stochastic kernels T | HE o 1)

The sets of strategies are denoted by L., resp. Ty,

It type r was selected using the strategies §=(8,.. 8x)and T=(%i-. ¥r) the
players generate the probability distribution E{s'ﬂ on the set of histories HT
defined by _ .. T .

Elﬁ.‘ﬂ(&" r- LT\ = ;E-,‘ s.c(-"t LA"&&“; L4g ) ' 7,_, (.4(\.-- &g-q,’ :Li )

We can extend ?Z; 1) to a distribution on R X HT by

E:;'g‘ (r; IL4.- /&.1-\ = Pr‘ 'E':F;'S’ (.oe»‘ e LT)

The payoff function of the game is naturaily defined as the expectation of the
average payoff with respect to this distribution, expiicitly '
P
P . 43 v L
L) D Rpalnket) 32 AT

rl"‘-ﬂ ""A'T
Hence we have a noncooperative two-person zero—sum game

Q(P\z(j,_' .m-t,cL:-) . The sets of strategies 2, and Ty are compact and ,L.'r
depends linearly on 5 resp. ¥ . Thus the min-max theorem guarantees the exi-
stence of a value vy (p). For further considerations we may assume that player 2
knows player 1's strategy. In this case any move by player 1 that depends on his
type enables player 2 to compute new posteriors on R. Using the private infor-
mation means revealing it. The following three examples show how different the

consequences of revealing information can be:

Example: [1I]e 13leR1=2 p=(%1%)

(M) 10 1_00
A4=(o o) A’(o1)

Knowing his own type, piayer 1 always has a dominant strategy
in the one shot game, namely choosing the first row if he is of
type 1 and choosing the second row if he has type 2. But if he
acts in this way at the first stage player 2 knows his type and



2

(3)
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he will react by selecting only the second or only the first
coiumn respectively from stage two on. The resulting payoff
converges to zerc as T tends to infinity. On the other hand if
player 1 decides not to use his information at all, player 2 faces
a game with payoff matrix
172 0
( 0 1!2)

and player 1 will get a payoff of 1/4.

00 0 -1
In this case the situation is reversed. Playing a dominant stra-
tegy also means compiete revelation of player 1's private

information, but he has nothing to lose acting this way. His

payoff will be zero, the maximum he can get.

In the preceeding examples an extreme treatment of brivate information is
tavorable: In the first case player 1 conceals it completely, in the second case he
reveals it completely. There are more interesting examples situated somewhat in
between, where player 1 makes his moves dependent on his type, but not in a
deterministic way, so that player 2 can compute new posteriors on R but never
gains absolute certainty about his opponent's true type.

ITi=1t=2, 171=3 , p=(},1)

4 0 2 10 4 -2
A"= Az
4 0 -2 0 4 2
If player 1 plays completely revealing his limiting payoff is zero

since the values of both matrices are zero. if he plays non —re-

vealing, he will get the value of

2 2 0
2 2 0

which is zero as well.
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Let us suppose for a moment that the distribution on player 1's
type is not ({‘%,\ but e.g. [%.1\ or (?,,‘ -&) In the first case
the weighted payoff matrix is |

31 1 13 -1
31 -1 in the second case 1 3 1

Playing without relation to his private information he could
always guarantee himself a payoff of one by choosing the first
resp. the second row. So he must bring about that from player
2's point of view either (%‘?-‘\ or (?’h %) are the correct
posteriors on R and play non -revealing from then on. The way
he can give rise to this effect is quite simple: If he is of type 1,
he uses at the first stage the distribufion (;‘,.‘ %]on his actions.
If he is of type 2 he performs a similar lottery with the proba-
bilities interchanged. After observing i = 1 player 2 calculates

e V. Roblrsqi=e) 3.2
Pl (rsal Lnn)= Pt (L24) —'._l'_.& * ::l::%

and if he observes i = 2
Prob (r=1li=2) = %
Thus player 1 can obtain a limiting payoff of ons.

Definition: A strategy 6=(8... ©¢\ of player 1 is called non - revealing if the
kernels &, ,t = 1..T are independent of r.

Given a game F} (p) with payoff matrices AY, reR, the NR-
game is defined as the (one - shot) matrix game A(p) = 7. P"'A":
7

If player 1 decides to play non-revealing (i.e. t0 use only non -revealing strate-
gies) the maximum payoff he can get is the value u(p) of the NR - game A(p).

Let us now have a closer look at the strategy spaces:

Co= 4@ a(m™%e . x4 ¥

Myt
A(I\&kA(_I‘Hu(kuleu-..qu )

alt)t« ZT‘L

Anaiogously for player 2:

M o= ATV x a(Dx. . * 4(3)

]

\

HT—“

= 47y x M

¥ o B
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A strategy in the T—stage game can be viewed as a pair consisting of a strategy
for stage 1 and a strategy for a (T - 1) - stage game dependent on what happened

at stage 1.
min max  Lh(&5
qeT, GeT ™
= min min max  max -Lt (5, 4)
T (B %) B (e by)
S min min  max ‘L?r (5.%)
9. 6'.‘ - Tyl (Bs-- 65}

> max min J, (6,3}
S ¥ T
From the min—-max theorem it follows that both inequalities can be repiaced Dy

, r .
equalities. For the following calculation we abbreviate I by'i and introduce

- . (691
Ealid = I e" b.lv; i)
(total probability of parameter i at stage 1)
. i EA( v ‘:’\
e[rlc. \ = ? (Ci

(conditional prabability of type r given parameter i)

min  max .L‘:(E.':r)

| p
ax n max Lo(er
", ms:‘ u.r..".". T (6. 6) )

I
3
=

max min max
q.“ 6-4 (T{-o Tf’(s.‘--s.'[‘

[}
3
3

B, Bt 7, AT

t=4

min max min

1. L & A Q\(Fl -6y)

ZL Plet Al )t
R ILETRITEN é,‘ A7 (1))

5.' (el

rr;,in max ;‘-r(g,gc% a-,,(.—ga)vr,.(m'(c,jn

" A

Z,'zu_‘) . min max t?(\rlkx)
p (7. - q'[\ ‘.61.--3-\’3 v

)1 Eu. At k) {LA (L.J)

Lo &

= mér: e %(gp" az.; Faley ) BWGYAT ) v I:, 5.6 -
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| y
oy e el g“’(r ¢

B 2l taled) & AU

Laaes bun
= m&: m;:( :"-LZ}_ p'r ‘E:. 6'4(1‘..:',) '3'4(.31
( A ('L "\*’L?!.-‘!T‘ (6.5 Z P(rlb)

g&?u,__mm) L,Au.e )

The second min max term already resembles very much the value of a
(T - 1)- stage game with probability distribution p(- i}, only the strategies (8 --- By)
and (5, .. 3.} still belong to the T-stage game. But the first stage history only
influences the future payoffs via p(ii), thus for every pair h’ = (i',j’) inserted in the
corresponding component of {83 .. &%) and (3,... % the value of

L, P(.U'IL) A .e

min max
(G-;-“k-r\ {6'1,-- ET\ v ;.;X..-t

remains the same. So we can omit the first stage history and continue by

= min max %(Ep Z‘S'Cv‘b\ﬂ'.,()
5, v

Y Uud
L4 .
(K@t iy 7 P

T 7. L &) Z.A(Le ))

2,4 . 2\41"4 [:‘.‘s‘-"‘ s‘ b s-T-
We have just proved the foilowing

Theorem: U’T[P) = :t? \Na-.l:k, \N\-BG:)( ( 277 P‘" czj‘ 6'“(1‘;!:] a:;(j)

(ATG) + (T-4) oy, (CpC10)))

The above proof is a formulation of Armbruster [83] for the case of lack of infor-
mation on one side. But it should be pointed out that the result also holds for fack
of information on both sides and the dependent case (cf. sections 5.3.2 and 5.3.3).
The proof remains virtuaily unchanged.
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The theorem implies that the value of nr(p) can be computed recursively, but in
order to do this for one special p we have 10 know the vaiue vy_, («) for every
distribution on R.

The formuia also shows what is known as the recursive structure of the game
(¢ (p). Imagine a game where at first {1, (p) is played. Then player 1 tefls his stra-
tegy to a referee who announces the posterior probability p(. i) to player 2. After-
wards P‘r—-\ (p(+li)) is played. The totai payoff is %(payoff in I"',‘ (p) + (T-1) payoff
in f:‘r. + (P(1))). The above theorem indicates that for a proper formalization of this
game its value coincides with vo(p). By induction the result can be extended to

games where the posteriors are announced after each stage.

Intuitively it couid be suspected that the payoff player 1 can guarantee himself
decreases with the number of stages because the amount of information player 2
collects can only increase with the number of stages. The recursive formula can
be used to‘ prove this.

Proposition : For all pe 4 (R) the sequence v (p) is decreasing.
Consequently Vg () has a limit function.

Theorem: Iimv, = cav u
Llim e (p) = cav u(p)

To prove this it suffices to show that (r\ v,r(p) » cav u(p) and 1I_|_,r1 ve (P) € cav u(p).
The first inequality is easy to verify. Player 1 can always play non —revealing, thus
Ve P) > u(p)- By paragraph 5.1 we know that v.(.) is concave, therefore v.r(p) >

cav u(p).
2 (P)

The proof of the second inequality is much more involved. We will have to esti-
mate the payoff at a certain stage t conditionally to the history up to that stage. Let
player 1 use an arbitrary strategy & which is known to piayer 2. Let us fix any
history h_ '"ht-\ and denote player 2's posterior probability on R conditionally to
h, ...h‘__‘ by Pe- 8’;(5_“%) is the payoff at stage t conditionally to the history
h D . Provided the players use the strategies 6, and 7T, at stage t.

First of all we estimate the difference in payoffs that arises if player 1 uses a
non —revealing strategy that results from &, by weighting the types according to
py Instead of &, itself. Define

E,_.‘(.‘)" i:.(- P‘; 6.1-.("\'3
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Then we find
[¥elbe 3 - Yol B T € C ‘_2-' Boe) | Pl V- pt |
with W
C= 2w | AT(e ()

| ¥
especially vl

Vlbute) € ¥ (E %)+ € T Beled Ll tid- el

Since Gt is nonrevealing, the maximum payoff player 2 can obtain at stage t is

ulp {-)' Consequently
% (6,2.)¢ wilpe) + C Z—b‘ Et(':'\ | pL, t8) -9t
Taking the expectation over all histories h, ...h - gives
E(%(h2))s covulpl+ ¢ T E Pesn- Pe |

since E(u(pt))i E(clgv ulp b» < cgv u(E(pt)) = cgv u(p) by Jensen’s
inequality.

Summing up over all stagest = 1...T and dividing by T we arrive at

.L:(F;ﬂ‘ cov wipl + € ’% ?\F E(:Zr'-t‘P:H-?:l)

Finally, using the martingale property of Py Jensen’s inequality and Cauchy -
Schwarz inequality one can show that

12 E(E e etl) € A LIeT

Thus the proof of the theorem is compieted by the following resuit:

. a4
Theorem:  v_(p) < cav u(p) + O ( i )
There are exampies showing that O[,%.‘) is the best bound. (See Zamir [71]).

Generally a strategy of player 1 that is optimal in a game of length T is no longer
optimal in a game with a different number of stages. He often faces the problem
that striving for a high payoff at the beginning of the game means giving away a
iot of his private information what mostly results in a lower payoff at the following
stages. If the number of stages is small such a behaviour may be favourable, if T
becomes large it wiil be disadvantageous. As player 1’s optimai strategy is different
for different lengths of the game player 2's best response will also change. It is a
natural question whether there is a pair of strategies that are "nearly” best re-
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sponses 1o each other for any T large enough. One is induced to consider in-

finitely repeated games.

The description of ﬂr (p) exactly applies to the infinitely repeated game f‘.,(p)

except for the fact that the strategies 6.2 of player 1 resp. 2 consist of infinite

sequences (5.‘,&‘,_‘;..) resp. (T, T, -~ ) - We are still interested in an average

payoff, but for arbitratry strategies B 7 it may of course happen that the limiting

payoffTI_ihrr.l. .L'r(&.ﬂ does not exist. We avoid the definition of a payoff for every

pair of strategies and specify only equilibrium payofis:

Definition:

Lemma:

Proof;

Player 1 can guarantee f(p} in L (p) if for all peA(R), ali £ > 0
there exist a strategy 5& of player 1 and a natural number TL
such that for all t > Tg and all strategies T of player 2
1
L L8, d)x4(p)-C
is satisfied.
Pq_ (p) has a value v [p) if both players can guarantee v.,(p).

Explicitly:
v A

(4\ .L: 18z, T) 30, (p)-¢ | {5'\ Lo L) g U (o1t )

The following lemma is crucial for all theory of incomplete information:

If player 1 can guarantee f(p), he can also guarantee cav f(p).

From the Caratheodory theorem it follows that for all p&a(R) there
exist A\ -&[0,1], pea (R) such that

T A= 1, LAp,=pandoavilp) =L Mfpy) .
Let &, be a strategy which guarantees flp,) up to € in r',, (py) reR.
Define a strategy &, as follows: ‘,
If réR is chosen, play B with probabiiity A',;' E—g. for all r. Player 1
uses a lottery dependent on his type and plays nonrevealing from then
on.
The total probability of playing &y is

Lot Bt (6 1n) - T (A T )= T hpl =),
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and the probability on R conditionally to 8 is

oy, PS5
P A Tpv v
Prob(r | 65 } = = Py
Ag
Since 6"s guarantees f(ps) up to £ there is a natural number TL such
that
ﬁTATc

LI(&5) > Sl:é AL lpd-e) = cavdlpl-e o

Theorem: For all pe4 (R) player 1 has a strategy Fb such that for all t and all 1

L5 (6T) % cov wip)

Proof: Since player 1 can guarantee u(p) at every stage by playing an optimal
strategy among his nonrevealing strategies, he can also guarantee cav
u(p). Actually the result is stronger than in the above lemma, because
player 1 cannot only guarantee u(p,) up to £ but achieve a payoff
grater than u(p,).

Our next aim is to find a strategy that enables player 2 to reduce player 1's payoff
to at most cav u(p). From the first the existence of such a strategy is not clear. We
can’t apply the min - max theorem directly, in the foreground because the payoff is
not defined for every pair of strategies. But even if the payoif function is extended
to all pairs of strategies (e.g. by means of a Banach limit) it is no longer conti-
nuous. In fact minmax enters the scene in the shape of Blackweil’s theorem (cf.
2.2).

Theorem: Player 2 can guarantes cav u(p) in Pv(p), i.e. v (p) = cav u(p).

Proof: Let H be a supporting hyperplane to cav u at point p defined by
hé& I!?ﬁ (As in section 5.2 h can be interpreted as a vector payoff, i.e.
the first component of h gives the payoff that would arise if r = 1 were
chosen etc.}

h satisfies
cavu(p) = h-pand A " u@¢ha.

eAlR)
It suffices to show that the set

c={LelR*: A L7 L")

rek
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is approachable in the sense of Blackwell. According to Blackwell's

theaorem the following condition is sufficient: _
For all § 4 C there exists a probability y on J such that if y& C is a

closest point to £, the hyperplane perpendicular to the line S-VL

through v_ separates & from

Co {sgfr y; Aleg)deT)

Let £ and w_be as above, p'¢ A (R) paraliel to §-y_i.e.
H = { gel&.’* I p'g = p’-\q_] is a hyperplane through "L perpendicular
to S-\L .

Let y be an optimal strategy for player 2 in the one —shot game

Ap) =T,p A", Forall xea () we find
L g

¢

[74Y

<

T, P x ATy

v

u(p’)

(2 Co{ L. v; AG,)) : ie})
JE] .
(by optimality of y)
{supporting property of h resp.H)
it p'" > athen y "= H")

(§>neC, S4C)

The approaching strategy for player 2 according to Blackwell runs as follows:

— At stage 1 or if the average vector payoff up to stage t 8{_’ is located in C play

anything

-If 8£¢ C determine the separating hyperplane between 8“__ and C given by

p' and play optimally in A{p").

5.3.2 Lack of Information on Both Sides

A finitely repeated two - person zero-sum game with incomplete information on

both sides is based on the following data (very similar to the one sided case):

~ finite sets Tand J (sets of actions for player 1 and 2)

- finite sets R and S (sets of types for player 1 and 2)
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- for every (r,5) RxS an [T!x LJ| - matrix A (payoff matrix)
- probability distributions p and q on R resp. S

— a natural number T
The game runs as foliows:

- At stage 0 chance chooses r &R according to p and s€S according to q (in-
dependently!). Both players know both probabilities but player 1 is oniy
informed about the outcome of the first lottery and player 2 about the outcome

of the secand one.
- The further description is exactly as in the one sided case except for player 2's

strategies. He can, of course, let his decisions depend on s.

As in the one —sided case a recursive formula for the value of the finitely repeated

game is valid:

Theorem: U {pq) = % B IA?'\.-. ('}% p'o’ 2, 6.0 N T s 1)
4 - )
(A™ gV (-A) oy plie) w1 )))

with obvious notation.

It is also convenient to define the nan -revealing game A(p,q) as the one -shot
matrix game P p" qs A™ and denote its value by u(p,q).
ns

Theorem: ‘r_!;n;' v (P,q) exists for all pEA(R). QEAS) and is the only
simultaneous solution of the functional equations

wpa) = vex max {u(p.), v(p.a)}
vipa) = cav min {up.a). vip.9)}

The proof is beyond the scope of this survey.
See Mertens and Zamir {71].

We now turn to the infinitely repeated game P" (p.g). Again we shall not attempt to
define payoffs for every pair of strategies. Instead we are going to define min max

and max min for the infinitely repeated game.
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Deﬁ;xition: f(p.q} is the minmax of I}.(p,q) if

-AA VV A Li'qté‘;(ﬂ > ,&(p,e}\-ﬂ

¥ £9% & T 57

“A NV VAA L) fenee

€ Ty 4 B g

If such an f(p,q) exists it is the lowest payoft player 2 can
guarantee in {"'o,(p,q). The max min is defined analogously and
we say that [} (p,q) has a vaiue if the min max equals the max
min.

Theorem: The min max of F.(p,q) equals vgx c%v u(p,q).
The max min of \l(p.q) equals cav vee1x u{p,q).
P

Outline of a proof: For duality reasons it is sufficient to prove the assertion for the

min max.

If player 2 decides to play non ~revealing, [:_ (p.q) reduces to a game with lack of
information on one side defined by the payoff matrices iq‘ A™ and the distri-
bution p on R. The one sided theory says that in this gam; player 2 can guarantee
the payoff cgv u(p,q). Using his information he can of course hold player 1 down to
at most vgx cgv u(p,q), which gives the second inequaility of the above definition.

The proof of the fact that player 2 cannot guarantee more can be summerized as
follows: Knowing T player 1 can compute posteriors Q4 on S after each stage. He
will play non-revealing during a large number of stages T untii the expected
variation of the posteriors after stage T becomes negligible. After player 1 has
oxhausted the maximal amount of information we can assume player 2 to play
non —revealing. Player 1 can thus obtain u(p,gq), consequently he can also get
cav u(p,q.l.). His expected payoff will be

E{cav u(p, vex cav u(p,
(P Pae) > % %8 (P9
(due to Jensen’s inequality).

It follows that the infinitely repeated game only has a value if cgv v%x u(p,q) = vgx

cav u(p,q)
B (P.Q)
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This is generally not the case:

Example: “(ooo 0) ,‘,_(1 -11 -1)
A= 0 00 O

-11 1 -1
A!.'l_ -t1 =11 Au_’ 6 0 0O
00 00O T\ -1 =11

u(p,q) is the value of

p-q g-p P-q g-p
¢-p P-q9 P-¢ q-p

wherep = p*,p’ = p*,q =q',q = qt,

N
[~}
1
a'-p q'- ¢
-a'!
P-4 eyl
1
* (
P f -
g-p | A

W {pa)



- 26 —

A
o\
A
(Tp-4) o! (2pl-a) af
% V%Y C:,'V “(P-ﬁ\
(Zp-q {1e!- rqu
T A~ P
2
Q
A
_q'
¥
T [lpg! Uply!
-p-9q° A _Pl_q(
3 % Cov ver W
Y juea N U plg e Vo Pa)
- P"'( - Pl"
8
*
-9
T T Y )
% 3 t g P



- 27 -

53.3 The Dependent Case

Hera the probability on the product space of types R x S is optional, the marginais
p and q on R resp. S need not be independent. The main difference between the
dependent and the independent case arises from the fact that the posteriors after
each stage cannot be decomposed into p s function of p, ¥ b, and g function of
q,%.h, . If we don't confine ourseives to product spaces of types but consider an
arbitrary random experiment with two information algebras a modified concept of
concavity resp. convexity becomes necessary. Proofs are more invoived, but the

main ideas and results are the same,

53.4 information Matrices
The general modse! is given by the following data:

- finite sets Tand J (again sets of actions)

- a finite set K (states of nature)

—two partitions KX = {Kf...Ki} and KX = {Kf...Kf} (representing the
player's private information)

- payoff matrices A ke K

-~ two families of | T| x| l-matrices H;'_ and H;._' , k€K (information matrices)

—a probability distribution p on K

The game runs as follows:

- At stage 0 chance chooses k&K according to p. Then a is announced to
piayer 1 and b to player 2 with k& K}'A KE

-~ At each stage t both players choose independently parameters i be T resp.
j be J.

-Then H;(i‘,j ) is announced to player 1 and H;(i o) [0 player 2.

From this point on the description of repeated games with lack of information on
both sides applies, except for the fact that there is no longer a common history HT
= Ix J)T but gach player has his private history consisting of a sequence of
elements of his information matrices and the sequence of his own previous

maoves.
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Note that the information matrices may reveal information on both the opponent’s
move and chance’s move. The information matrices may even reveal more infor-
mation about the state of nature than both players together have. That is the
reason why in this case we would indeed loose generality considering only pro-
duct spaces of types R x S. Transforming an arbitrary random experiment with
information partitions into one of product type we can no longer repiace states of
nature, which none of the player can distinguish, by their expectation. The case
studied before is obtained if H:'E(i,j] = H:(i,}) = (i.j). it is called the standard infor-
mation case. The main change in comparison with the standard information case
is related to the non-—revealing strategies. In the model without information ma-

trices using information means revealing it. This is no longer true.

Example: |T{= IJ1=2. We have lack of information on one side, [R| =2
with probability (p,1-p).

e T

Let player 1 use his private information in the following way: If he is
of type 1 he chocses parameter 1 with probability x (and paramter 2
with probability 1-x). If he is of type 2 he uses the distribution
(y,1 -y). Player 2 can compute the following posterior:

Problr=1le) = Prola (=4 e )
Probh (raa, o) + Taoblr =2a)
- px

px + (A-pV(A-y)
Player 1 does not give away any private information, if
Prob(r = 1{a) = p Iis satisfied. This is the case if x = 1~y. That
means except for the case x = y = 1/2 player 1 has to make use of
his information in order to0 conceal it.

So we have to call a player’s strategy non —revealing if his opponent is not able to
compute other posteriors on his type than the initial probabilities. Of course it can
happen that there are no non-—revealing strategies at all, e.g. if the information

matrices for different types have no elements in common,

There are no general results for this modei. Only special cases have been covered

so far.
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Lack of information on one side

Here we have a generalization of theorems concerning the .limiting value of
the finitely repeated game and the value of the infinitely repeated game of
section 5.3.1. Let us denote by u(p) the game where (the informed) piayer 1
is restricted to non-—revealing strategies (with u(p) = - eo if there are no
non -revealing strategies. But note that if p is an extreme point of A(R)

every strategy is non -revealing)

Theoram: jim v and v exist and
Lim v (e) 0P

@

_rﬂ’n;‘ v (P) = v, (p) = cav u(p).

Games with symmetric information
These games correspond to the following case:
- KT= k¥ =K (there is lack of information on both sides and no private

information)

- H} = Hg for all k& K
— HY%Gj)  H<'(',j) wheneveri & i"orj 4 |-

(Both piayers know the opponent’s previous moves)

Theorem: Under the above hypothesis TLI‘IT.I' Ve (p) and v_(p} both exist and are

equal.

The theorem is proved by transforming such a game into a repeated game with

absorbing payoffs where it is known that, provided each player knows his oppo-

nent’s past actions, v and lim v exist and are equali.

Example: (k] ={I1 =141 =2 A%, A" not specified, (p*.p%)

(78] (58

This game is equivalent to the following repeated game:

_ (pt ved AT+ plued A pt A% (42) 4 PPAY1,2)
A=

oA (2a) ¢ A (1) F ANl PRATCY)

The asterisk indicates that if once (top, left) was played, the payoff
is (p?valA® +ptvalAl) for all following stages regardiess of the
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player’s actions.

Looking at the information matrices H", H" we find that unless
(top, left) is played the player’'s only learn their opponents moves
and they can expect the payoff listed in A. But if (top, leit) occurs
both players know the true payoff matrix and from then on they

can both guarantee its vaiue.

Games where the information matrices are independent of k

The theorems concerning the limiting value of the finitely repeated game and
the min max resp. max min of the infiniteiy repeated game of section 5.3.2
{lack of information on both sides) can be extended here but the proofs are

much more difficult.
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