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Introduction

In physics, many problems can be formulated as Hamiltonian systemsth in-
nitely many degrees of freedom. These Hamiltonian partial di eretial equations
possess conserved quantities, such as energy, mass, and mamen

There is a wide range of physical applications. The nonlinear Schimger
equation (NLS) appears in the description of laser propagationee surface water
waves, and plasma waves (sed, [56], and [65]), the nonlinear Klein-Gordon
equation (NLKG) arises in relativistic qguantum mechanics (see3f], [63), and
nonlinear dispersive equations of Korteweg-de Vries (KdV) type arused to model
oceanic waves, in particular tsunami waves (se&d, [55]).

This thesis deals with solitary wave solutions to these Hamiltonian pasi
di erential equations and their stability. Our main interest is to analyze and
implement a numerical method for the computation of solutions whesinitial
data are close to a solitary wave solution.

Let us rst describe the setting. We consider an abstract evolutio equation

u=F(u)2 X; u(t)2Dg;

where the operatorF is a Hamiltonian vector eld de ned on a dense subspace
Dr of a Banach spaceX; k k) and maps into X . This means, there exists a&?
functional H : X ! and a continuous symplectic form : X X ! such
that

I'(F(u);v) = hdH (u); vi

holds for allu 2 D and v 2 X. The evolution equation is then called a Hamil-
tonian system (see e.g.1] and [45]), and the weak formulation in the dual space
X ? takes the form

I'(ug; ) =dH(u):

The evolution in time of this autonomous dynamical system is compldyedeter-
mined by a scalar valued function, the HamiltoniarH : X ! . Since it does not
depend explicitly on time, the Hamiltonian is a rst integral of the sysem, which
means that it remains constant on any solution. In physical applicains, such as
classical and quantum mechanics, the numerical value of the Hamilian equals
the value of the total energy, which means Hamiltonian systems asgstems with
conserved energy.

As an additional structure, we assume the equation to be equivaniawith
respect to the actiona: G! GL(X) of a nite-dimensional, but not necessarily
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compact, Lie groupG. Equivariance means that the Lie grougs acts onX via
a representation that is equivariant in the sense

F(a( Ju) = a( )F(u)

forall 2 Gandu 2 D, wherea( )Dg D ¢ is assumed. However, in case
of the weak formulation it is more convenient to express equivaria@diy the
invariance of the Hamiltonian, which we write as

H(a( )u) = H(u):

From the physical point of view this is a symmetry, and it leads to a gemal-
ization of Noether's theorem from classical mechanics, which yields= dim( G)
conserved quantities.

In Hamiltonian partial di erential equations dispersion and non-lineaity can
interact to produce solitary wave solutions, which maintain their shae v, while
rotating, oscillating or traveling at a constant speed ,. In the abstract setting of
equivariant Hamiltonian systems they appear as relative equilibria, i.esplutions
of the form

Uo(t) = a(e' 7)vo

with >, 2 A, v, 2 X. HereA is the Lie algebra associated witls, and 7! e
denotes the exponential map fronA to G.

Solitary waves that are stable and travel over very large distanseare a re-
markable physical phenomenon as one usually assumes waves toeeithtten
out or steepen and collapse. Accordingly, the theory of solitary wa stability
is a broad eld of mathematical research. In terms of the nonlineaschmdinger
equations we refer to 15|, [24], and [64]. The stability theory of solitary waves
in an abstract setting can be found in32, [39], [47], [52], and, in particular, in
[33]. These approaches provide applications to a variety of Hamiltonianapial
di erential equations.

As stated before, our main objective is the long time behavior of nwerical
solutions of Hamiltonian partial di erential equations with initial data close to
a relative equilibrium. For these equivariant Hamiltonian systems, clagal Lya-
punov stability of steady states has to be weakened to orbital dtdity. A relative
equilibrium u- is called orbitally stable if solutions stay for all times close to the
group orbit a(G)u», provided their initial data are su ciently close.

In numerical computations, this is not quite satisfactory. For exaple, a
traveling wave solutionu,(t) = v»( »t) leaves the computational domain in
nite time. This leads to additional di culties in terms of spatial discre tization
and to undesirable issues with boundary conditions.

As an approach to tackle these problems we apply the so-called g
method, introduced in B] and independently in pQ], to Hamiltonian systems.
The freezing method has been successfully applied to parabolic doques and
hyperbolic-parabolic systems with dissipative terms (seé][ [49], and the refer-
ences therein), but its application to Hamitonian systems has not kba studied
at all.
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The principal idea of the freezing method is to separate the time dution of
a solution into an evolution of the pro le and an evolution in the Lie grop by
writing

u(t)=a (t) v(t):

We assume that 7! a( )v is smooth forv on a dense subset ok and denote
its derivative at unity by 7! d[a( )v] . The problem is then transformed into
an equation of the form

F(vg; )=dH(v) dQ(v);

wherev 7! dQ(v) is the continuous extension of the mapping 7! ! (d[a( )v]; )
tov2 X. A phase condition (v; ) =0 is added in order to compensate for the
additional unknown . In this way, a partial di erential equation transforms into
a partial di erential algebraic equation (PDAE), and relative equilibria become
steady states. Thereby, the freezing method yields additional mrimation about
the dynamics close to a relative equilibrium, in particular it provides a dect
approximation of .

As a typical case, the following pictures contrast a solitary wave kmion of
the nonlinear Schredinger equation with the corresponding stegdstate of the
freezing system.

. Re(u) _

15

15
0 .15 OX 0 .15 OX

Solution of the freezing system

12p

08F

04F

0

0 10 X 20

Solution of the freezing system Frequency and Velocity

The question arises whether such steady states are stable in thense of
Lyapunov, i.e., for any" > 0 there exists > 0 such that we have
h [
sup  kv(t) wvok+ ] (t) o <™

0 t<1
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provided that the initial data are consistent and satisfykv(0) v,k < . The
stability analysis in Chapter 2 is based on the spectral stability assumptions
that M. Grillakis, J. Shatah, and W. Strauss imposed in33]. Our main result,
Theorem2.3.7, states that under these assumptions a steady state,( -) of the
freezing system is Lyapunov stable.

The abstract stability theory is applied to the nonlinear Schredinge equation

iUy = Ux J UPu; up2 HY( 5 );

which is invariant under the action of a two-parameter group of gage transfor-
mations and translations, and to the nonlinear Klein-Gordon equatio

Ur = Uy U+ juju; up2 HY( 5 %) L2 ; 9

with its four-dimensional Lie group of oscillations in theu-components and trans-
lations.

In Chapter 3 we put our focus on the discretization of the freezing system
and the preservation of stability. Loosely following the approach d». Bambusi,
E. Faou, and B. Gebert in [3], we consider approximation parameters 2 P,
nite-dimensional subspaces X, and an error function": P 7! ..

As examples, we take the nite di erence and nite element methoddr the
nonlinear Schredinger equation. We restrict ourselves to two lelgeof approxima-
tion, namely, truncation to a nite domain with appropriate boundary conditions
and spatial semi-discretization.

We do not analyze the time-integration of the freezing method anddee it
as work in progress. This is despite the fact that orbital stability reults for
fully discrete approximations of the NLS are known. We refer to3], and to
[14] for results on conserved quantities. The main di culty is the constuction
of a modi ed energy as in 21]. The underlying theory for ordinary di erential
equations can be found in34].

Provided that "() is small enough, our analysis in Chapter3 yields the
existence and stability of steady states for the discretized fraeg system

P(vg;)=dH (v) dQ (v)
0= (v):

These steady states\,; -) are close to steady states of the continuous problem
in the sense that

Vo Vo +] o o CY():

Moreover, they are stable, i.e., for any > 0 there exists > 0 such that we have

sup kv () v, + (1) o, <%
0 t<1
provided the initial data are consistent and satisfy v (0) v, <
When it comes to the discretized nonlinear Schredinger equatiorhé abstract
theory currently applies only to solitary waves of the formu,(t) = € *'v,, which
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do not travel at all. It is quite challenging to set up a theory that treats truncation
to nite domains and discretization for traveling solitary waves. Tha is why a
comprehensive theory does not yet exist.

As a rst step, we put our emphasis in Chapte on the impact of boundary
conditions and spatial discretization on the conservation propees of Hamilto-
nian systems. Here, we stay away from an abstract setting, butstead get insight
via direct computations for the truncated and discretized freezgnsystem for the
NLS.

We rst consider the continuous problem that is truncated to a nite inter-
val, where we choose separated boundary conditions. Howevertuiins out that
periodic boundary conditions lead to better results. In a secondegi, we ana-
lyze nite di erence and spectral methods. Since the translation @up does not
act on a discrete grid, the conservation of momentum and energy net even
locally satis ed for nite di erences. This issue can be bypassed by aking use
of spectral methods.

In Chapter 5 we support our abstract theoretical results by numerical ex-
periments. Due to the superior conservation properties of perimdboundary
conditions and spectral methods, we make use of the Strang spiig (see §3).
The principal idea is to decompose the vector eld into two parts thiacan be
e ciently evolved. The application of this method to the nonlinear Scimdinger
equation with periodic boundary conditions has been analyzed i8(].

We consider these numerical computations rather as a benchmatést for
solving the freezing system by a splitting algorithm, than an e ort to nd an
optimized numerical scheme for a specic type of partial di erentihequation.
Nevertheless, we still want to exploit the high e ciency for an equabn that can
be split into two analytically solvable parts (e.g. the NLS).

That is why we do not directly solve the PDAE system, but in each step
compute the extra variables 2 A in a preliminary calculation. But, this does
not come without a drawback. The numerical solution is no longer foed to stay
exactly on the manifold that is given by the phase condition. As a coaequence,
we notice a high uctuation in the values of . However, strictly enforcing the
phase condition is not mandatory since it is arti cial anyway.

We also use the Strang splitting for numerically solving the NLKG, wherwe
do not solve the second order in time equation, but use the transfoation to a
rst order system that is also used in our stability theory. Finally, weapply the
freezing method to the Korteweg-de Vries equation

U = Uk Buly;, U2 HY( ; )

Due to the third derivative, its geometric structure is di erent from the previous
examples, and that is why it does not t into our abstract setting, fowever, it
almost does. Based oril[)], we indicate a modi cation of our abstract approach,
which allows us to treat this equation. Our numerical realization is ba&sl on the
Strang splitting for the original problem, as analyzed in37).

For each of the three equations, we notice a stable behavior of tfteady states
for the freezing system, at least for very small deviations. But, igontrast to
parabolic problems, there is no asymptotic stability. That is why initialdeviations



12 Introduction

and computational errors are rather ampli ed, than die out over lag times. This
issue is una ected by the freezing method.



Chapter 1

Equivariant Hamiltonian Systems

1.1 Hamiltonian Ordinary Di erential Equations

Many problems in classical mechanics, for instance the motion of clal objects,
can be written as Hamiltonian ordinary di erential equations. In thefollowing,
we give a brief overview of the principle concepts of Hamiltonian meanas,
where we focus on those aspects that reappear in Hamiltonian pattdi erential
equations. In a second step, the Hamiltonian formalism is illustratedyba very
basic example.

By ; , we denote the Euclidean inner product and bia; i the dual pairing
of a Banach spac& and its dual X . In case ofX = 9, the Riesz isomorphism
is given by

o: 419 g7 g
If a function f : Ds di is di erentiable at x 2 D¢, then its gradient is
de ned as

rfx)= ldf(x)2

Moreover, a vectorq2 9 is written as
0 1

i1
9= @ik
Cu
where each componen is a real number.

1.1.1 Hamiltonian Mechanics

In accordance with the historical construction, we introduce Haitonian me-
chanics as a reformulation of Lagrangian mechanics. As a startin@ipt, let us
consider generalized coordinateg 2 ¢, whered is the number of degrees of
freedom, velocitiesv 2 9, and the Lagrangian

L(a;v) = T(q;v)  U(0);
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which is de ned as the di erence between the kinetic energy and the potential
energyU. For a trajectory

q: [tote]l! %t 7 qt)

the action S is de ned by the integral of the Lagrangian ofjand its time derivative
g between the two instants of timetg and tg, i.e.,
Z,
S(a) = L q(t); a(t) dt:

to

According to Hamilton's principle the realization of a physical system ia station-
ary point of this action functional, which means &(q) = 0. Then, the calculus
of variations leads to the Euler-Lagrange equations

gh [

gt bv(@a) = Lo(gia):
This is a d-dimensional system of second-order di erential equations, whiae-
quires initial data for q(to) 2 9 and v(tg) = q(to) 2 9.

The Legendre transform converts the Euler-Lagrange equatierninto a -
dimensional system of rst-order di erential equations. The rd step is to re-
place the generalized velocities with conjugate momenta. De ne tlgeeneralized
momentump(t) 2 ¢ at time t 2 [0; T] corresponding to the positiong(t) 2 ¢
and the velocity g(t) 2 9 by

p(t) = r vL(a(t); q(t)):

For simplicity, let us make the hypothesis (seelp]) that there exists a global
implicit function 4 : 4 91 dsuychthatv2 9 p2 9 andq2 ¢ satisfy
the equation

p=rL(q;V)

if and only if v = 4(p; 9. Rewriting the Euler-Lagrange equations in terms of
and p leads to Hamilton's equations

p=1r H(Ed; a=r H(p;0; (1.1.1)
where the scalar valued Hamiltonian is given by
Hp;d= pi¥p;0 o L(@:¥(p;0); (1.1.2)

together with initial data for q(tp) 2 9 and p(tg) 2 ©.
Let us show that Hamilton's equations {.1.1) can be equivalently written as
an abstract Hamiltonian system

l(u; )=dH(u) 2 X7 (1.1.3)
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where the phase spacX is the 2d-dimensional real vector space 29, and the
symplectic form! : 2d | is de ned by

L(u;v)=(Ju)'v

with
_ 0 4 2d 2d.
J= Iy 0 2 :
Proposition 1.1.1. Let | be an open interval. Thenp : | ! d and
q:l! 4 solve (1.1.1) if and only if u: 1! 2d,
(9
u(t) =
0= q0

is a solution of (1.1.3), where the Hamiltonian is de ned in 1.1.2).
Proof. On the one hand, from (.1.1) we obtain

Vi

Quy'v= o pl = &, Ve

= rpH(U);vi ¢+ 1 gH(U);v2 4= hdH(u);vi

I (ug; V)

forv2 2. On the other hand, from
I (u; )=dH(u) 2 ( 2?

we conclude

ur=J r H(u):
This is rewritten as
po_ 0 lg rpH@U) _ rgHU)
o} la¢ O rgH(U) r pH(u) ~’
which implies (1.1.1). O

Hamilton's equations possess several remarkable properties. 8ime have

the matrix J is skew-symmetric and non-degenerate, which meahsis a sym-
plectic form. This skew-symmetry has an immediate consequence $olutions of

(1.1.3.

Proposition 1.1.2. Let u be a solution of equation1.1.3). Then H is a con-
served quantity, i.e.,H (u(t)) = H(u(0)) holds for allt 0.
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Proof. Di erentiating with respect to time gives us

h [
d )
at H(u) = hdH (u);ui = ! (ug;u) =0:
Since the derivative vanishes, the Hamiltonian is constant in time. O

Remark 1. A few notes on further references are as follows.
Details on the Legendre transform can be found ir2] and [19].

A more general situation in whichJ explicitly depends onu with J (u) being
singular is considered in38] and [44].

1.1.2 Rain Gutter Dynamics

The following elementary example from44] illustrates the notion of stability
for relative equilibria in Hamiltonian systems. Consider a particle with psition
q2 2 sliding along a rain gutter. The rain gutter is horizontally arranged, itis
at in q-direction and shaped as a parabola ig-direction.

2.5
2

1.5
1

0.5 N\
0

25 N

20 N

15

G 10
5

o~ %V \ \ \

-1.5 1 -0.5 0 0.5 ! 1o

Figure 1.1.1: Motion of the particle

By compressing they,-axis, we get an impression of the steady lateral motion
of the particle. The potential energy

— 1 2
represents this parabolic geometry. The kinetic energly(q; qQ), which is given by
1
T@V= 50 vi+ V)

appears non-physical, since imy-direction the functional does not increase as
velocity squared, but decreases instead. However, no forcesant g -direction.
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Hence, the particle undergoes a motion with constant velocity, arle deduce that
+Vv? instead of Vv? leads to exactly the same dynamics. But, the negative sign
choice more closely mimics the stability problem of solitary waves in Hanohian
PDEs.

The LagrangianL : *! is given by

L(a;v) = T(q;y) U(@=3( vi+Vy) 36%;
and its partial derivative with respect to the v-component writes as
hLy(9;V);yi = vayr + vay2
fory 2 2. This leads to the generalized momentum

10
p: r VL(q’Q): O 1 q:

Solving

P= o 1V

forv2 2 gives us the implicit function
cA) = P1
¥(p; 0 =
(p; 9 0,

The dot product of p and ¥{p; ¢) is given by p;%(p;9 , = p?+ p3. Hence, the
Lagrangian in terms ofp and q writes as

L(a;0(p; ) = 3( pi+ p5) 306
As a result, the HamiltonianH : 4! takes the form
H@p= p¥p;ad ., Laa(pad)= 2 pl+pd):
In conclusion, Hamilton's equations in {.1.1) are given by

P1

:rH;:
o} pH(a;P 0o

:rH;:
Pt H(@@;p ®

To simplify the notation, we write

0 1
P1
U = %Fbg :
Ch
87
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which leads to

0 1
0
u=J H(u):% u4§; (1.1.4)
uj
uz
where we have
o 1, . 10
J l, 0 2= 5 3

As we have mentioned before, the momentum i -direction is a conserved quan-
tity. From the Newtonian point of view, this is a consequence of norce acting in
this direction. However, the conservation can be directly deducdtbm equation
(1.1.4. Indeed, the derivative of the functional
Q: “I ; Q(u)=u
is given by
hdQ(u); vi = v;

forv2 4. Hence, equation {.1.4 yields
gh [
g Q) = hQ(u); i =0;

i.e., the functional Q is a conserved quantity. Relative equilibria of 1.1.4) that
are associated with this conserved quantity are steady translatie in ¢;-direction,
which can be written as

1

ks

0 1
for »; -2 :In order to analyze stability, we consider the functional

o
v O O

10 10 0
uﬁ;(t):%?tg ?§:%2§+%2t§:V?+%
0 0

0

o

S(v)= H(v) Q(v) »: (1.1.5)
Since
dS(vz) =dH(vz) dQ(vs) »=0
and all terms in (1.1.5 are at most quadratic, we nd
S(v) S(vo) = sho(v o)V vai;
where we denotd_» = d2S(v»). If L, is positive de nite, this leads to

S(v) S(v») Ckv vk
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and the Lyapunov stability follows as a direct consequence of therservation of
this functional. But in the case of the rain gutter, the matrix representation of
L- is given by the Hessian

0 1
1
_ 1 § .
L,= % 0 : (1.1.6)
1
Its negative subspace is
01
1
0
W=1r Qlv,) : 2 g= %Og:

0

This meansW is spanned by the gradient ofQ at v, i.e., it consists of vectors
orthogonal to the level setfv 2 4 : Q(v) = Q(v-)g: SinceQ is a conserved
quantity, which means that solutions cannot leave a level set &, the stability
is una ected by this negative subspace. Moreover, it is worth meigning that
the negative subspace is a result of the negative sign in the kineticeegy. The
canonical choiceT (q;V) = 3(vZ + v2) leads toW being a positive subspace.

In addition to the negative subspace, there is the non-trivial keed

01
0
Z =ker(L») = %Cl); :
0

which results from the fact thatH and Q are invariant under the shift.

Now, the freezing method is applied to realize a splitting into these shidy-
namics ing-direction and the evolution ing-direction. This is done by choosing
a comoving frame, i.e., a di erent frame for each timé. More speci cally, we

write
0 1
0
v(t) = u(t) % ?t)§:
0

We note that H and Q are both invariant under this transformation, i.e.,

H (v(t)) = H(u(t));
Q(v(t)) = Q(u(t)):

Moreover, the shift can be expressed in terms of the symplectic tna J and the

gradiant of Q as
01
0
1 _ 0§.
J r Q(u) = %1 :
0
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By combining these properties and de ning = , the system (L.1.4 is trans-
formed into
0 1 0 1
0 0
Vi = Uy %O§=Jer(v)r Q(v) =% va ;:
t Vi
0 \'/)

The arbitrariness in this representation is removed by introducing &o-called
phase condition for the additional unknown . In this example, we can simply
require the vs-component to be constant for all times, i.e.,

0= (V)=v3 b

for someb2 . Physically speaking, the frame is attached to the particle in this
direction. The transformed system

vi=Jd YrHM r QV) ;
0= (v)

is a di erential algebraic equation and has steady states of the for
0 1
?
&bk
Vo = b
0

forall ,2 : The Lyapunov stability of these steady states is a consequence of
the conservation ofQ and the phase condition, which reduce the dynamics of the
transformed system to theg-component. In Chapter2, we extend this freezing
ansatz to abstract Hamiltonian systems.

1.2 Abstract Hamiltonian Systems

In the following, we introduce the basic framework that allows us toemeralize the
concept of Hamiltonian ODEs to abstract evolution equation with aplications
in Hamiltonian PDEs. Such an abstract evolution equation is of the fon

u=F(u)2X; u(t)2DgE; (1.2.1)

and it is assumed to be equivariant under the action of a nite-dimemsnal Lie
group G. For more details on equivariant dynamical systems, we refer taq],
[23], and [46. By T G we denote the tangent space o at , in particular
A = T G is the tangent space ofz at unity.
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1.2.1 Basic Framework

In Section1.1.1we have only considered nite-dimensional Hamiltonian systems.
The next step is to allow the phase spacX to be in nite-dimensional. Let
(X; k k) be a separable Banach space over the eld of real numbers. Weugq
this vector space with a continuous symplectic form

X X!

That is, the mapping! is linear in each argument, alternating, and nondegener-
ate. Alternating means that! (u;u) = 0 for all u2 X, while nondegenerate refers
to the property that ! (u;v) =0 for all v2 X impliesu = 0. As an immediate
consequence of the alternation, the skew-symmetry

F(u;v)= 1 (v;u)
for all u;v 2 X follows from
O=!(u+v;u+v)="1(uv)+ ! (v;u):
Lemma 1.2.1. The mappingu 7! ! (u; ) is one-to-one.

Proof. Let u2 X satisfy! (u; ) =0 2 X?, which means that! (u;v) = 0 for all
v 2 X. From the non-degeneracy of , we nd u = 0. Hence, the mapping is
one-to-one. O

In general, this mapping is not onto. This is a main di erence compared
to nite-dimensional Hamiltonian systems with symplectic matrices, Wwich are
invertible.

A dierentiable operator f : X ! X is called symplecticif it preserves the
symplectic form, i.e.,

I df (y)u;df (y)v =1 (u;v) (1.2.2)

for all y;u;v 2 X. In the nite-dimensional case (see Sectiod.l), the equation
(1.2.2 is equivalent to the matrix equation d (y)'J df (y)=J 1.

This symplectic structure gives rise to the notion of Hamiltonian sysims. An
operatorF: D X ! X is called a Hamiltonian vector eld if its domain Dg
is dense inX, and if there exists a twice continuously di erentiable functional
H:X! such that

I'(F(u);v) = hdH (u); vi (1.2.3)

forall u2 D andv 2 X. Provided that F is a Hamiltonian vector eld, we
can use the identity (L.2.3 to formally rewrite the abstract evolution equation
(1.2.1) as a Hamiltonian system

I'(ug; ) =dH(u); (1.2.4)

where the bilinear form! de nes a linear operatoru 7! ! (u; ) from X to its dual
spaceX ”.

Since we want equation 1.2.4) to possess additional symmetries, we require
the existence of a nite-dimensional Lie grougs that acts on X .
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Assumption 1.2.2. The Lie group G acts onX via a homomorphism
a.G! GL(X);
whose image®(g) are symplectic.

Remark 2. Assumption 1.2.2is too restrictive for the rain gutter equation since

01
0
aw=ve B%
0
for 2 G = is an a ne transformation and not in GL( 4). However, the

bijective functions from # to itself, together with the operation of composition,
form a group, anda is a group homomorphism since

0 01 0 01
a( Dla( V] = v+ %Ojﬁ + %Oﬁ = a( 1+ v
0 0

Moreover, by settingf (v) = a( )vforv2 4 wegetd (y)v=vforally2 4
which means, thata( ) is symplectic for all 2 . Since our main interest are
Hamiltonian PDEs, where translations in space are linear mappings, wiecide
against keeping a ne transformations in the general framework.

If it exists, the (Gateaux) di erential of a( )v at unity in the direction of is
denoted by di( )v] and

D = fv2 X: The dierential of a( )v at unity in the direction of existsg

denotes the domain of the operator d{ )] :D ! X, v 7! dfa( )v] . In
general, the mappinga()v: G! X, 7! a( )vis not smooth for allv 2 X, but
we require the operators @( )] for 2 A to have a common dense domain in
X.

Assumption 1.2.3. The operatorF: D X ! X is densely de ned and its
domain is a subset of the intersection

\
Dl= D:
2A

Remark 3. Linearity of the di erential allows us to pick a basis inA, which leads
to a nite intersection.

We deal with the lack of smoothness of the group action by makingeif the
weak formulation in (1.2.4).
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Assumption 1.2.4. For all 2 A the mapping
v7tt(dia( vl; )

can be continuously extended to a bounded linear operat@() : X ! X7,
which means

B(v);ui="(d[a( )v];u)
holds forallu2 X andv2D .

Before we discuss implications of this setting, we are left to imposeraaquire-
ments on the Hamiltonian. A functionf : X ! V with images in a Banach space
V; v Is calledlocally boundedif for any x 2 X there exists a neighborhood

U such that f(e) ,, C holds uniformly fore 2 U.

Assumption 1.2.5. The Hamiltonian H : X ! is twice continuously di er-
entiable with locally bounded derivatives and invariant with respect tdhe group
action, i.e.,

H(a( )v) = H(v)
forallv2 X and 2 G.
Di erentiating the identity H(a( )v) = H(v) with respect to v yields
a( )?’dH (a( )v) = hdH(a( )v);a( )i =dH(v) 2 X*: (1.2.5)

Let us show that due to this formula, an invariant Hamiltonian leads tan equiv-
ariant Hamiltonian system and vice versa, where equivariance is deed as follows.
The evolution equation (L.2.]) is called equivariant if the inclusion

a( )Dr D ¢
holds for all 2 G, and if
F(a( )v)=a( )F(v) (1.2.6)
forallv2Dg and 2 G.

Proposition 1.2.6. Given the Assumptionsl.2.2 and 1.2.3, suppose that we
havea( )v 2 Dg forall v2 D and 2 G. Then H(a( )v) = H(v) for all
v2 X, 2Gifandonlyif (1.2.6) holds forallv2Dg, 2 G.

Proof. From the symplecticity of the group action and {.2.5 we deduce
(@ MF(a( )v);u)="! (F(a( )v);a( )u)= hdH (a( )v);a( )ui
hdH (v); ui = ! (F(v);u)
forv2Dg and 2 G, while (1.2.6 follows from Lemmal.2.1 In a similar way,
we obtain from (1.2.6 the identity
a( )’dH (a( )v) =dH(v)

forv2 Dg and 2 G. By continuity the validity of the formula extends to all
v 2 X. This implies that the mappingv 7! H(a( )v) H(v) is constant for xed
2 G. Since it vanishes fov =0 2 X, the constant equals zero. O
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Physically speaking, such symmetry properties lead by Noether'sdbrem to
additional conserved quantities. For 2 A we de ne the functionals

Q() : X! ; vT7!IB(v);Vvi; (1.2.7)

wherev 7! B(v) extendsv 7! ! (d[a( )v]; ) as stated in Assumptionl1.2.4
From (1.2.7 we obtain the identity

hdQ(v) ;ui =" (d[a( )v];u) (1.2.8)

forall 2A,v2D ,andu2 X. In the following, we write dQ( ) instead of
B() .

The invariance ofQ( ) under the group action is a consequence of the sym-
plecticity of a( ). However, in general, the invariance is only true for a suitable
subgroup. This restriction arises from the fact that the Lie grougs is not as-
sumed to be commutative. Having this in mind, we treat the tangent mace
A = T G as a Lie algebra together with the commutator

[, 1= ;o 2A
as its Lie bracket. The centralizer of 2 A is de ned to be
Ca()=Ff 2A:[; ]1=0g:

Since G\ ( ) is a Lie subalgebra ofA, there exists a unique connected Lie sub-
group, which has G ( ) as its Lie algebra and is generated bgA() (see e.g.
[51]). We denote this subgroup byG(e“A ().

Proposition 1.2.7. Given the Assumptionsl.2.2-1.2.4, the identity
Q(a( )v) = Q(v)
holds for allv2 X, 2A,and 2 G(e°~()).

Proof. By continuity it is su cient to prove the invariance for v 2 D , which
is dense inX by Assumption 1.2.3 Since 2 G(e“~()) and € commute, we
obtain

a(e' Ya( )v = a( )a(e )v:
Di erentiating this identity with respect to time at t = 0 yields
dia( )(a( )v)] = a( )d[a( )v]:
Therefore, we get
Qa( )v) = 3! (da( )a( v);a( )v)= 3 (da( )v];v)= Q(v)

by the symplecticity of the group action. O
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The invariance ofH and Q with respect to the group action has the following
consequence.

Corollary 1.2.8. Let the Assumptionsl1.2.2-1.2.5 be satis ed. Then we have
hdH (v);d[a( )v] i =0 (1.2.9)

forall 2A andv2 Dl. Moreover, if[; ]=0 for 2A, we get

hdQ(v) ; d[a( )v] i =0: (1.2.10)

Proof. These two identities are obtained by di erentiating at = the equations

H(a( )v) = H(v) and Q(a( )v) = Q(v) . O
Sincea is a symplectic group homomorphism, we also have

a(gviy =1 a()a(gv;a( )y =1 a(g)v;a( )y (1.2.11)

forall ;g 2 G andv;y 2 X. The right hand side of (1.2.1) involves the
multiplication of the Lie group elements and g. In the proof of Proposition
1:2:7 we circumvented the di erentiation with respect to a Lie group elema by

introducing the real variablet. In the following, it is preferable to directly analyze
the Lie group operations. Denote the left multiplication with by L , i.e.,

L:G! G, g7l g;
and write its derivative at g 2 G in the following way
dL (9): T,G! T4G; 7! dL (9):

The derivative at unity dL ( ) is a linear homeomorphism between the tangent
spacesA and T G (see [] for further details). In the same way a right multipli-
cation R and its derivative dR are de ned.

The identity (1.2.8 and di erentiation of (1.2.1) at g= give us

hdQ(v) ;y i =1 da( )vl;y =1 dfa( )vldL ();a( )y (1.2.12)

forall 2 A andv 2 D , the domain of dp( )] . However, by Assumption
1.2.4 the derivative of Q exists for allv 2 X . That is why the right hand side of
(1.2.19 can be continously extended to the whole space.

Let us further show that the symmetry of d)() Iis an immediate conse-
quence of the symplecticity of the group actiom( ) and LemmaA.2.1 from the
Appendix.

Proposition 1.2.9. Given the Assumptionsl.2.2-1.2.4, the operators
dQ() : X! X7
are symmetric, i.e.,
hdQ(v) ;ui = hdQ(u) ;v i (1.2.13)
forall 2A andv;u2 X.
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Proof. By continuity it su ces to prove the symmetry on the dense subsetD .
From the symplecticity of the group action and the skew-symmetrof ! we
conclude

L@ )v;u)= ! (v;a( Huy= (@ Hu;v):
By Lemma A.2.1, di erentiating with respect to  at unity implies
hdQ(v) ;ui =t (d[a( )vl;u)="!(da( )u];v)= hdQ(u);vi;
which nishes the proof. !

Due to these conserved quantities, many solutions of Hamiltonian fgms
possess speci ¢ spatio-temporal patterns. Physically speakirtgese solutions are
solitary waves, which take the form of relative equilibria in our abstret setting.

De nition 1.2.10. A solution u: [0;1) ! X of (1.2.9 is called a relative
equilibrium if there existv, 2 X and , 2 A such that

u(t) = a(e' *)vs (1.2.14)
is satised forallt O.

We also use the notation ,(t) = € 2, which meansu(t) = a( »(t))V:

1.2.2 Hamiltonian Evolution Equations

In Section 1.2.1we considered a weak formulation of the problenil 2.1 in the
dual spaceX?, but with classical derivatives in time. However, solutions of
partial di erential equations may only be di erentiable with respectto time in a
generalized sense. This leads to the notion of a generalized solutisnra[68).

De nition 1.2.11. Let | be an interval. A continuous functionu: 1! X
is called a generalized solution ofL(2.4) if we have
Z Z
F(u(t);y) «(t)dt = hdH (u(t));yi" (t)dt (1.2.15)
|

for all y 2 X and test functions' 2 C} (I ; ), wherel is the interior of | .

Remark 4. If we set =1 (;y) 2 X?, we obtain the de nition of a weak solution
as in [32]. However, we avoid the term weak solution since it may lead to confu-
sion. In PDE applications, such as the nonlinear Schredinger equanh, a weak
solution u 2 L* (I1;L?( ; )) must obey the integral formulation in the sense
of Duhamel's principle. That is, the continuity with respect to time holds with
images inS?( ; ), the class of tempered distributions. I is continuous in the
L2( ; ) topology, it is said to be a strong solution. Seesf] for further details.

Having in mind transformations in time and space, it is convenient to nie
use of the following conclusion.
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Lemma 1.2.12. Let u be a generalized solution ofl(2.4). Then we have
Z

ou(t); (1) dt=  hdH (u(t); ( bidt (1.2.16)

forall 2 Ci(l ;X).

Proof. SinceX is separable, we can approximate 2 C3(I ;X)) arbitrarily closely

X
by a sum ' Yk, Where we havey, 2 X, '« 2C3 (1 ; ),andN 2 . Then

k=1
the assertion follows by linearity of £.2.15 with respect to ' (t)y. O

So far, our notion of generalized solutions is nothing but a de nitionWe are
left to prove that this is a generalization. In particular, we have to Isow that
a smooth solution of (.2.]) is a generalized solution in the sense of De nition
1.2.11 and under suitable regularity conditions, vice versa.

Proposition 1.2.13. A function u 2 C(l ;Dg)\C (I ;X) is a solution of (1.2.1)
if and only if it is a generalized solution in the sense of Deition 1.2.11

Proof. If a smooth function u solves (.2.]), i.e., we haveu; = F(u), then it
follows! (u¢; ) = ! (F(u); ) = dH(u), which implies by integration by parts
Z Z Z

| Pu(®);y) «(dt = (u(t);y)" (Ddt = IhdH(U(t));yi' (dt

|
forally 2 X and' 2 C} (I ; ). Therefore, the functionu is a generalized
solution in the sense of De nition1.2.11 On the other hand, given a generalized
solutionu 2 C(l ;Dg)\C (I ;X), we nd by applying integration by parts
z z z
(u(t);y)" (t)dt = Fu(t);y)" «(t)dt = hdH (u(t));yi* (t)dt
| | |
forally2 X, 2C3 (I ; ). Now we make use of Lemma.2.1together with a
standard argument from the theory of distributions to concludes; = F(u). O

Next, we collect our assumptions on local existence, uniquenessntaiuous
dependence, and persistence of regularity.

Assumption 1.2.14. The Banach spaceX; k k) is continuously embedded into
another Banach spaceX 1;k k 1), such that for eachug 2 X the following
properties hold.

(@) There exist maximal existence time§,, < 0, T} > 0, and a unique function
uz2C(;X)\Cll;X ;) satisfying (1.2.15 on | = (Ty,: Ty,) with the
initial condition u(0) = ug .

(b) For M > 0, there existT > 0 andR < 1 such that the solutions with
initial data kugk M exist on [Q T] and satisfy

ut) + u(t) , R

forallt 2 [0; T].
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(c) Solutions depend continuously on their initial data in the following ense.
For any solution 8 from (a) and any % >0 satisfying [ %; %o (TBO;TJO),
there exist ; M > 0 such that solutionsu with initial data kug &gk
exist on [ %; %@&and can be estimated by

ut) B(t) + u(t) B(t) , MKk Uy Bk M

(d) For ug 2 D the solutions satisfyu 2 C(T, ; Tj,;Dg) \ C l(TUO;TJO; X).

Remark 5. We have simpli ed the notation by omitting the embedding, i.e.,
we formally assumeX X 1. Moreover, it is worth mentioning that in some
applications X ; is the dual of X, while it is not in the general case.

Now, we deduce conservation laws, by exploiting these propertidsis a well-
known fact that the solutions of a Hamiltonian system preserve theamiltonian
H: X! , l.e.,

H (u(t)) = H(u(0))

for all initial values u(0) 2 X andt 2 | . In other words, the Hamiltonian is a
rst integral, i.e.,

(H u)=0:
The formal proof for smooth solutionsu 2 C(I ;D) \ C (1 ; X) writes
(H u)e=hdH(u);ui = ! (u; u) =0;

where we have usedl(2.4) and the skew-symmetry of: The conservation prop-
erty for generalized solutions is stated as a lemma.

Lemma 1.2.15. Provided that Assumptionl1.2.14 holds, letE : X ! be a
continuous function that is preserved by all smooth solutis u 2 C(l ;Dg) \
C(1 ;X). Then it follows

E(u(t)) = E(u(0))
forall t 21 and all generalized solutionsi 2 C(I ; X).

Proof. For u 2 C(l ; X) we de ne
A=ft21 :E(u(t) = Eu()g:

The rst step is to show that A is closed inl. Lett, 2 A be a sequence
such thatt, ! t21. Fromu 2 C(l ;X) it follows ku(t,) u(t)k! 0, which
impliesE (u(t,)) ! E(u(t)) by the continuity of E. However, we havee (u(ty,)) =
E(u(0)) duetot, 2 A. ThisyieldsE (u(t)) = E(u(0)), which meanst 2 A. Hence
A is closed inl .

Next we show that 02 A is an interior point of A. By combining Assumption
1.2.14c) and Assumption1.2.14d), there exists > 0 and a sequence of functions
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U 2C([ ; LDe)\CY([ ; 1;X) satisfying (1.2.19 with ku,(t) u(t)k! O
asn! 1 uniformly for t 2 [0; ]. Then we haveE(u,(0)) ! E(u(0)) and
E(un(0)) = E(un(t)) ' E(u(t)) for t 2 [0; ]. By the uniqueness of the limit it
followst 2 A fort 2 [O; ].

Since an autonomous equation is invariant under time shifting, any pu of
A is an interior point. Hence, we concludé = | . O

Likewise, other symmetries give rise to additional conserved quérgs, where
the word symmetry refers to some invariance under a Lie group afahsforma-
tions. In particular, the functionals Q() are conserved quantities. Indeed, by
combining the identities 1.2.3, (1.2.8, and (1.2.9, we nd

h i
% Q(u) = hdQ(u) ;ui = ! (dfa( )u];F (u)= hdH(u);dfa( )u] i =0;

provided u 2 C(l ;Dg) \C (1 ; X) holds. Then, by Lemmal.2.15we obtain the
conservation of the functionalsQ( ) for the ows of all generalized solutions.

1.3 Partial Dierential Equations as Hamilto-
nian Systems

Hamiltonian partial di erential equations appear in many areas of pisics. Some
famous examples are the nonlinear Schredinger equation

iUt = Uec J U u(0;x) = Ug(x) 2 HY( 5 )
and the nonlinear Klein-Gordon equation
Ur = U U+ juj?u; u(0;x) = ug(x) 2 HY( ; 3 L% ; 3):

In the following, we rewrite these equations as abstract Hamiltoniasystems and
discuss some of their relative equilibria. In terms of spatial variablege restrict
ourselves to the one-dimensional case. As a consequence thigostary problems,
which lead to relative equilibria, are ordinary di erential equations. Mreover,
the short and full notation will be used synonymously, i.ey = u(t) = u(t; x).

1.3.1 Nonlinear Schiedinger Equation (NLS)

The cubic nonlinear Schmdinger equation is given by
iu(tX) = U (tX)+  jult;x)j?u(t;x);  u(0;x) = ug(X); (1.3.1)

where is a real constant. Moreover, we have2 .o, x2 , andu(x;t) 2
This equation is a nonlinear perturbation of the linear Schredingerauation

iut * Uxx :0;

which is used to describe the evolution of a quantum state in a physicgystem,
while the NLS has applications to nonlinear optics and waves in dispersimedia.
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The choice of the parameter can be reduced to the two fundamental cases

= 1. In quantum mechanics these refer to the attractive and the palsive
case. The more common terms, however, arise from nonlinear optievhere the
Kerr e ect describes the change in the refractive index of a mateat in terms of
the intensity of an applied electric eld. Depending on the medium, a mpagating
laser beam has a self-focusing or self-defocusing e ect, and assuit the medium
acts as a focusing, respectively defocusing, lens. We refer 2@] [and [41] for
further details on this topic.

In case of the NLS, the relative sign of the linear (di raction) term ad the
(Kerr-)nonlinearity matters. If they have the same sign, i.e., < 0, we are in
the focusing case, whereas the defocusing case occurs for dnersigns, which
means > 0.

The problem (1.3.1) ts into the abstract framework by using the Sobolev
space

X =HY ; );

which is a dense subspace of( ; ). We equipL?( ; ) with the real inner
product

Z Z
UV = Ui (X)vi(X) + ux(X)vo(x) dx = Re u(x)v(x) dx: (1.3.2)
That is, in principle, we handleu = u; + iu, by means of its real and imaginary
part. However, we use the more convenient complex notation wrearer possible.
The Sobolev spaces are de ned via Fourier transform. Fer> 0 we have

HS( ; )= v2L? ; ):F gFv2L? ;) (1.3.3)
with g( )= (1 + j j9)2, and the corresponding norm is given by

kvks= F 'gFv :
The normk kg coincides with the usualL?( ; )-norm,andX?=H 1( ; )is
the dual space ofX. For s= 1, we have to replaces 2 L?( ; )in (1.3.3 by
v2S? ; ), the space of tempered distributions. More details and alternativ
de nitions can be found in [L7].

By multiplying ( 1.3.7) with i, the cubic nonlinear Schredinger equation be-
comes

U = iUy juj?u): (1.3.4)
We write F(v) = L(v) + N(v), where L(v) = ivy and N(v) = i jvj?v. Then
(1.3.9 takes the abstract formu; = F(u), and we are left to specify a dense

domainDg X such thatF 2 C(Dg;HY( ; ).

Lemma 1.3.1. The dierential operator L : H3( ; )! HY( ; );v7!ivy is
continous.
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Proof. We setgs( )= (1+ j j)z andps( ) = j j5. By Plancherel's theorem the
Fourier transform is an isometry with respect to the_,-Norm k ko. Hence, from
a( )p2() () forall 2 , we conclude

KL(V)ki = kviks = KF uF Vi ko = KF *oupoFvko kF  YogF vko = kvks;
which impliesL 2 C H3( ; );HY( ; ) by the linearity of the operator. O

For the nonlinear part we prove the strongerresull 2 C HY( ; ), HY( ; ),
which is based on the properties of generalized Banach algebras.eTbllowing
de nition is taken from [67].

De nition 1.3.2. A Banach space X; k k that at the same time is an asso-
ciative algebra X; ) is called a generalized Banach algebra if

ku vk Ckukkvk

holds uniformly for all u;v 2 X. We speak of a Banach algebra € = 1.

In fact, the Sobolev spaceHs( ; ) for s > % forms a generalized Banach
algebra under the pointwise product. This result is due to Strichazt (see p4)).

Lemma 1.3.3. The mappingN : HY( ; )! HY¥ ; );v7' i jvj’vdenes
a continous operator.

Proof. For v2 H( ; ) we concludeN(v) 2 HY( ; )and kN(v)k; CkvkZ,
where we use the fact thakvk; = kvk;. For the (real) derivative of N we get

kdN (v)hk; = k2vvh+ v?hk;  Ckvk? khk;

foranyh 2 H( ; ) by the same argument. Now leku vk, hold. Then
KN(u) Nk C kvki+ °ku vk;

yieldsN 2C HY( ; ) HY( ; ). O

The next step is to show thatF (v) = i(vx  jVj?V) with D = H3( ; )
yields a Hamiltonian vector eld in the sense of1.2.3.

Proposition 1.3.4. Equation (1.3.4) is a Hamiltonian system with respect to

Z
H:H' ; )! ; H(us= % jux(x)j% + EJU(X)14 dx;
and the symplectic form
Z
LiHYC 5 ) HYC )t 5 Hwv) = Imu)v(x) dx = v

That is, these functions satisfy 1.2.3), where
F:H3( ; )! HY ; ); Fu=i(ux juju)

is the right hand side of the nonlinear Schredinger equatio
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Proof. We have to show
I'(F(u);v) = hdH (u); vi
forallu2 H3( ; )andv2 H!( ; ). By writing
H(u)= T(u)+ U(u);

the Hamiltonian is split into two parts, the kinetic energy
Z

1 . .
TW= 5 ju)idx

and the potential energy
Z

U(u) = i ju(x)j*dx:

Analyzing the kinetic part, we obtain
Z

3 OO+ U0+ UG + (O
Z
T+  Re U (X)vy(x) dx + O(kvk?);

T(u+v)

which yields the derivative
Z

hdT (u); vi = Re ux(X)vx(X) dXx = Uyx;Vx (1.3.5)

Now, we study the potential part and note that

jz+ j*= jzi?+z +z +j 2 =iz +2jz%(z +z )+ O( )
forz; 2 . This leads to
Z
U(u+ v) = U(u) + 2 2ju(x)j? u(x)v(x) + u(x)v(x) dx + O(kvk?)
Z

U(u) + Re ju(x)j2ux(X)vy(x) dx + O(kvk?):

Hence, the derivative takes the form
Z

hdU(u); vi = Re ju(x)j?u(x)v(x) dx = juj’u;v (1.3.6)
By combining (1.3.5 and (1.3.6, we get
hdH (u); vi = hdT(u);vi + hdU(u);vi = UV o+ jujupv g
which implies
hdH (U);vi = U+ juifusv =1 (iU jujPu);v) = 1 (F(u);v)

foru2 H3( ; )andv2 HI( ; ) viaintegration by parts. O
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In conclusion, the nonlinear Schredinger equation written as a Haitonian
system takes the form

L(Usy) = UGY = UaYx ot juj’usy o= hdH (u);yi

fory 2 X = H( ; ): According to De nition 1.2.11a generalized solution to
this equation is a functionu 2 C(I ; X) that satis es
Z Z

D)y o (Ddt = u(@ivx o+ Ju@Pu(t)sy o (Ot

forally2 X and' 2C} (1 ; ):

After the functional setting we consider symmetries of the nonlime Schredinger
equation. For simplicity, we start with a one-parameter group of gage transfor-
mations. The Lie group isG = S!, the group actiona: G! GL(X) is given
by

a( )v=e'v
forv2 X and 2 G. Consequently, the derivative ofa( )v at is
da( )v] = iv
with 2 A = . Moreover, we have @(v): A! X7 given by
hdQ(v) ;y i =t (d(a( )V):y)= vy ,

fory2 X, and

Q: X Al X (v;)7!§v(2):

This group action is smooth for allv 2 X = H!( ;C). More generally, we
consider the two-parameter group

a:G! GL(X); a()v=e'v( ,); =( 1 2)2G=2¢5

of gauge transformations and translations. Hera& = is the Lie-Algebra of
G, such that we can write = .e;+ .8 2 A; wherefe;;e,g= f(1;0);(0;1)g
is a basis ofA. We decompose the derivative of the group action into

dla( )v] = 1Siv+ LSV,
where we have

Sv=d[a( vler = iv;
S,v=da( )vle = vy

The focusing cubic nonlinear Schredinger equation

iU = Uy j Uj2u
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p_
possesses so-called solitary wave solutions. The initial valugx) = m leads
to the solution

p_

. — 2 it .
Uo(t;x) = coshé()el ; (1.3.7)

With (1.3.7) is associated a two-parameter family of solitary wave solution (see
e.g. [Lg and [20]). It is also known (see 24]) that the number of parameters can
be reduced by using further symmetries of the NLS. Going the otheay around,
we deduce the two-parameter family by exploiting two additional symetries.
The rst one is the scale invariance.

Proposition 1.3.5. If u is a classical solution onl =[0;T], then so isa on the
scaled intervalP = [0; 2T], whereeg is given by

e(t;x)= u( ; x)
for > 0.
Proof. Let us rewrite the NLS asLv = 0 with

LV = Vi + Vi + jVj2V: (1.3.8)
This di erential operator is equivariant in the sense that

Le (t;x) = ie(t;x) + By (t;x) + 8(t;x) ZB(t;X)
U2 x) 2+ un(2x) 2+ u(%x) u( %)
S Lu( %t x):

This shows thate is a solution onf = [0; 2T]if u is a solution onl =[0;T].
]

Remark 6. The scale invariance is very helpful in addressing the question of
well-posedness, and the so-called criticality (with respect to scalingenotes a
signi cant transition in the behaviour of many partial di erential equations. For
more information on this seej9|.

By applying the scaling with > 0, the solution (1.3.7) is transformed into

p_
2 2

cosh(x ): (1.3.9)

us(t;x) = e'

The other symmetry is the Galilean invariance.

Proposition 1.3.6. If u is a classical solution ancc2 , then e given by

: &2
L2y x o)

g(t;x)= e

c
2

is a solution to the same equation.
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c2

Proof. For the di erential operator (1.3.8 and g(t;x) = €

£x
2 we nd

Le () = im(tx) + Bu(tx) + B(tx) “a(tx)
= ig(t; x) i%u+ U cu (t;x ct)
+g(tx) (iS)°u+2%u, + Uy (Ex  cf)
+g(t;x) u(t;x  ct) 2u(t;x ct)
g(t;x) Lu (t;x  ct);

which shows thate is a solution ifu is so. O

By exploiting the Galilean invariance, we get the two-parameter familyof
solutions

o 2 pz
ur(tx)= e X Tt > 0c2 1.3.10
A(tX) cosh( (x ct)) ( )
Let us change the notation by setting ; = 2+ % and ,=c Thenwe nd
2t+ Sx St= qt+ ?Z(X 2);
and (1.3.10 becomes
Usr(t;x) = e " thvp(x ot) (1.3.11)
with the pro le
r p_
2 2
V?(X) = 1+ T% e' 22X r 2
cosh 1+ 4 X

1.3.2 Nonlinear Klein-Gordon Equation (NLKG)

Our next example are coupled nonlinear wave equations, namely thestem
U (1 X) = Ug ()  u(t; X) + ju(t; x)j?u(t; x);  u(0;x) = ug(x) (1.3.12)

with x 2 andu(x;t) 2 3, where the Euclidean norm on 2 is denoted byj j.
This is a nonlinear pertubation of the Klein-Gordon equation

Un = UXX mu;

where by rescaling spacetime, the mass is normalized to equal one. In contrast
to the Schredinger equation, it is consistent with the laws of spediaelativity
and has applications in quantum eld theory (see e.g.3[l], [63)).

Due to the wave operator, the nonlinear Klein-Gordon equation (NGK) is a
second order hyperbolic partial di erential equation. However, ypwriting

ui(t;x) Uz (t; X)

HEOT ) T e ) n(x) + Jua(t X))

. (1.3.13)
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it is transformed to a rst order system. The transformed equabn (1.3.13 takes
the abstract form

uy = F(u)
with

V2

Fv) = Vixx Vit jV1j2V1

: (1.3.14)

whereDg = H?2( ; 3) H?Y( ; 3)is by de nition the domain of (1.3.19. Let

us show that the Hamiltonian
Z

H(u)= 3 jugi®+ j(u)y® + jugj®  Zjug® dx (1.3.15)

and the symplectic form
4

L(v;u)=  (vjuz Vjug)dx (1.3.16)

lead to a weak formulation of this problem, where the phase space etHilbert
space
X=H'(; %) L 7
with its dual space given by
XT=H ;%) LA )

Proposition 1.3.7. Equation (1.3.13 is a Hamiltonian system with respect to
(1.3.15, and the symplectic form is given by1(.3.16).

Proof. We have to show that
I'(F(u);v) = hdH (u); vi

forallu2Dg =H?( ; % HY ; ®andv2 X =HY ; 3 L2 ; 3.
Plugging (1.3.19 into (1.3.19 gives us

Z
L (F(u);v) = Fi(u)"ve  Fa(u)Tvy dx
Z
= UJVo Uiy U+ jUgj’us Tv, dx
Z Z Z Z

ujvodx +  UpVix dX+  ugvydx jugj?u] vy dx:

We must compare this expression with the derivative of the Hamiltonra First,
we note that forx;y 2 2 with jxj C it holds

X+yit= jx+yi? = jxi+2xTy+ jyj? °
= jxj* + 4jxj>Ty + O(jyj?):
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For xed u2 H?( ; 3 HY( ; 3) this implies

z
Hu+v)= 35 ju+ Vo + jUix + Vixj?2 + jur+ vij®  Ljug + vij? dx
z
= 5wt jund®+jua® ju® dx
z
+ u-2|—V2 + uI;le;X + UIVl J uljzuIVl dx + O(kaz):

Hence, the derivative of the Hamiltonian takes the form
Z

hdH (u); vi = UJVo + Ul Vi + UTVy | UgjPuivy dx =1 (F(u);v)
forallu2 H?( ; 3 HY ; ®andv2H( ; 3 L2 ; 3. O

The nonlinear Klein-Gordon equation is equivariant under the actionfa four-
dimensional Lie group of oscillations iru and translations in x. More precisely,
the Lie group is given by

G = SO(3)
and the corresponding group action takes the form
a: G! GL(X); 7 a( v
with
a( Jv= Ava( + )Av( + )

for = (A; ) 2 SO(3) andv = (vi;vo) 2 HY( ; 3 L% ; 3. Its
derivative at unity along =(S; 0 2 so(3) is given by

da( )v] = Swvi+ cvix; S+ Cvox

Before we consider solitary wave solutions, we recall that the proct of a
skew-symmetric 3 3 matrix with a vector 2 2 can be rewritten as

S =s
where we provide
0 1
0 S3 S
S= @ S3 0 S]_A .
S 5 0

We thereby get an isomorphism fronso(3) to 3, which mapsS as above to
0 1

S1
s= @s,A :
S3
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In particular, if the vector 2 2 is orthogonal tos, it follows
S2 =S(s )=s (s )= s?:

The solitary wave solutions of the nonlinear Klein-Gordon equation #t corre-
spond to the symmetry with respect to oscillations iru and translations inx are
of the form

Uo(t;X) = €87Voa(X + Got); €57 Vop(X + Cot) ; (1.3.17)

whereS, 2 so(3) is a non-zero skew-symmetric 33 matrix, and we havejc,j < 1.
Plugging the ansatz (.3.17 into (1.3.13 leads to the stationary problem

0=V, Svi CViy; (1.3.18a)
0= Vi Vit jVijoVi SoVp  CoVay: (1.3.18b)

The top equation (1.3.183 can be solved fow,, and by substituting S;v; + c;vi.«
for v,, the bottom equation (1.3.18h is transformed into

0=(1 CGIVixx Vi+jvijvi Sivi  26Sviy: (1.3.19)
Next, we change variables by writing
vi(X) = e 7% (x);

where >, 2 is a free variable. Since the rst and second derivative of; are
given by
h i
Vix(X) = e ST LX)+ 2 (X)
h i
Vi (X) = € ST (X)+2 2S5 x(X)+ ’2)8’% (x) ;

the stationary equation (1.3.19 is transformed into
0=(1 &) x+ki( %0)S x ko 2)S3 +j? (1.3.20)
with coe cients given by

ki(;c)=2 (1 &) 2
ko(;c)=1 21 &A)+2c:

?

1
simplify (1.3.20 to

0=(1 &) (1 &) 's? + % (1.3.21)

, we getki( 2,¢6) =0, ko 2;0) = ﬁ

By choosing - = , and thereby

The nal step is to restrict ourselves to solutions of the form

() = ()=e ")
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where is a scalar function and 2 3 is a vector of unit length and orthogonal
to s,. Consequently, the system.3.2) is reduced to the scalar equation

0=(1 &) x+@l1 ) Ysyj? + 3 (1.3.22)
The solution of (1.3.29 is given by
- 27
T cosh(ox)
o r
with »,=1 152 and - = 7 __ Asin case of the NLS, this is a positive
2 1 3

function with exponential decay agx;j ! 1



Chapter 2

Analysis of the Freezing Method

2.1 Derivation of the PDAE Formulation

We now apply the freezing method (see8], [50)) to equivariant Hamiltonian

evolution equations. The idea of this approach is to decompose theokition

into a group action and pro le part. This is done by minimizing the tempoal

changes of the spatial pro le of the solutions. During the numeri¢grocess, a
moving coordinate frame is determined, and the partial di erentialequation is
rewritten as a partial di erential-algebraic equation with additional variables.

2.1.1 General Principle

In the following, the approach of §] is transfered to the Hamiltonian setting.
Before we go into technical details and discuss the application of tlieeezing
method to generalized solutions, we start with the principal idea. CGwider a
smooth solutionu 2 C(I ; X) of

I'(ug; ) =dH(u); (2.1.1)

a function 2 CY(I ;G) with (0)= , and de ne another functionv 2 C(I ; X)
via u(t) = a( (t))v(t). Dierentiation with respect to time gives us

us =dfal )v] ¢+ a( )v; (2.1.2)

provided v is in the domain of the operator df( ) ] . Next, we make use of the
symplectic structure and rewrite €.1.2 in the weak form

Lug; =1 da( )] +! a( )v; 2X7
In particular, we have
Puga( )y =1 da( vl ca( )y +! a( )vial )y (2.1.3)

forally 2 X. Due to (1.2.5 and (2.1.]), the left hand side can be expressed in
terms of the derivative of the Hamiltonian, i.e.,

hdH (v);yi = hdH (a( )v);a( )yi = hdH (u);a( )yi = ! usa( )y :
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On the right hand side, however, the symplecticity of the group awin yields

a( )va( )y =1 vy
Hence, the indentity in (2.1.3 takes the form

hdH (v);yi =1 dla( )v] ;a( )y +!(v;y): (2.1.4)
Using the Lie group structure, we shift the derivative o&( )v at to its derivative
at unity. As in [6] and [60], we choose a function : I ! A that satis es

¢=dL () (0=

Since d. () is a linear homeomorphism betweeA and T G, the function is
uniquely de ned by this equation. Then (.2.19 becomes

hdQ(v) ;y i =1 dfa( )v] v;a( )y ;
and (2.1.9 takes the form
hdH (v);yi = hdQ(v) ;y i + ! (vi;y)
for all y 2 X . Written as a system forv and , the freezing approach yields
'(vg; )=dH(v) dQ(v); Vv (0)= ug; (2.1.5a)
¢=dL (); 0)= : (2.1.5b)

We de ne a generalized solution to this problem in a similar way as in.(2.15.

De nition 2.1.1.  Let| be anintervaland :I!A acontinuous mapping.
A continuous functionv: I'! X is called a generalized solution o2(1.59 if we
have

z z

Pv(D);y) «(Ddt = dH(v(t)) dQ(v(t)) (t);y " (t)dt

forally2 X," 2 C} (I ; ), wherel is the interior of I .

We are left to prove that the equivalence of the evolution equatiori(2:4) and
the freezing system Z:1:5) remains true for generalized solutions. In order to do
so, we need to rewrite the generalized derivative bf a( (t))u(t); in terms of
dH and dQ. This can be done by applying the chain rule to ¢) = a( (t))' (t)y
for appropriate test functions' andy.

Fory2Dland' 2C3(l ; Ywe nd t7! (t)= a( (1) (t)y2Ci(I ;X),
where D! is de ned in Assumption 1.2.3 and by the chain rule we get

() = a( (1) «(y +d[a( (1)) (O] «(1): (2.1.6)

This allows us to prove the equivalence of the evolution equation anbé freezing
system.
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Theorem 2.1.2. Given the Assumptionsl.2.2-1.2.5, let 2 C!( ;G) satisfy

(0O)= ,andlet 2C( ;G) be de ned by £.1.59. Furthermore, let u andv be
continuous functions froml to the Banach spaceX, such thatu(t) = a( (t))v(t)
holds for allt 21 . Then v is a generalized solution ofZ.1.5) if and only if u is
a generalized solution of1.2.4).

Proof. By using (1.2.5, (1.2.1§ with as above, the skew-symmetry of !,
(22.1.6, (1.2.19, the symp%ecticity of the group action andzq..z.la, we obtain

hdH (v(t));" (t)yidt = ha( (t))7dH (u(t));" (t)yidt= hdH (u(t)); ( t)idt

I 'z 7 I
= Pou(t); «(t) dt= 1 ((t);u(t) dt

z ! !

Foa( (B)y;u(t) ' (t)dt

4

+ | Podfa( (1)y] «(t);u(t) ' (t)dt

z

| u(t);a( (N)y " (t)dt

Z

+ hdQ(y) (1);v(t)i* (t)dt

z ! Z

= L(v(D);y)" «(t)dt + IhOlQ(V(t)) (;yi" (Ddt:

The onlygf-part IS proven in aZsimiIar way, where {.2.19 is replaced by

Pov(t); «(t) dt= dH(v(t)) dQ(v(t) (1); (t) dt (2.1.7)

| |
with ((t) = a( (t) 1)' (t)y. For a weak solutionv of (2.1.5, this identity is
veri ed in the same way as in Lemmal.2.12 and by applying LemmaA.2.1 to
deal with the derivative of the inverse, we obtain

a( () B «(t)y= O)+dla( (1) ) (Oy] «(1): (2.1.8)
Then, by using the symplecticity of the group action, 2.1.8, (2.1.7), the skew-
symmetryzof! , (1.2.12, (1.2.13, agd (1.2.5, we nd

Lou(t);y " (t)dt = Lov(t);al (1) D) (ty dt
| ZI

v ()t
] ZQ v(t);dla( (1) 1) (Dy] «(t) dt
| dZH (v(t)) dQ(v(t) (t); (t) dt
Z+ - Q) (O (1) dt
IhdH(U(t));yi' (Ddt;
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which nishes the proof. O

In general, we cannot expect the solution of the freezing equati¢2.1.9 to be
unique. Therefore, we impose a phase condition, which is de ned byv; )=0
with some mapping

X AlA 7

where A? is the dual space ofA. Using this approach, we get a di erential-
algebraic equation forv(t) 2 X, (t) 2 G, (t) 2 A, which reads

F(vg; )=dH(V)  dQ(v) ; v (0) = ug;
0= (v; ); (2.1.9)
¢=dL (); (0) =

Suitable choices for the phase condition are based on various minintiaa prin-
ciples (seef, [8], [60]).

2.1.2 Fixed Phase Condition

As an example, we consider the xed phase condition with a set-up &sllows.
We embed the Banach spac¥ in a Hilbert space Xy with inner product ;
and corresponding nornk ko and obtain a Gelfand triple

0

X! Xo=Xg) X7

where we apply the Riesz representation theorem to identif%, and X ;. More-
over, we denote by

XD Xor v7T!l v
the inclusion mapping fromX to X,. Its adjoint operator
71 X! X7ouT Cu
with respectto ;  is given by
h?u;vi= u; v

. (2.1.10)

forallu2 Xy andv 2 X. In other words, the duality pairing betweenX and X ?
is compatible with the inner product onX,. However, we prefer to simplify the
notation by omitting
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Figure 2.1.1: Fixed phase condition

Now, we select a template function, for instance & ug, provided that the
initial value is smooth enough, and require at any time instance the dance

a(g)v v (2)

to attain its minimum with respectto g2 G at g=
This means that among the points forming the group orbit

a(G)r=fa(g)v:g2 Gg
the template function ¥ is closest tov. As a necessary condition we get
dla( )@]; ¢ v, =0
forall 2 A. However, the operators df( )] are skew-symmetric, which yields

dla( )9];v = dla( )o];v ,=0:

2.2 Preliminaries and Spectral Hypotheses

Our stability proof is based on a modication of the Grillakis-Shatah-8auss
stability approach. In [32] and [33 the authors have established a general theory
of stability in the following sense.

De nition 2.2.1. A relative equilibrium u,(t) = a(e' ?)v., t 0 is called or-
bitally stable if for any " > 0 there exists > 0 with the following property.
For any initial value ug 2 X with kupy -k equation (1.2.9 has a unique
generalized solutioru: [0;1 ) ! X, u(0) = ug that satis es

sup inf ku(t) —a(g)v-k ™ (2.2.1)

O<t< 1 92
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a( )v»

X

Figure 2.2.1: Orbital stability

Let us rst derive a simple consequence of De nitior2.2.1 namely the preser-
vation of orbital stability by the freezing method. Given the orbital stability
(2.2.1), it follows

sup inf kv(t) a(g)vok = sup inf ka( (t))u(t) a(g)v-k
G O<t< 1 92G

O<t< 1 92

= sup infku(t) a( (t) ‘gv.k "

o<t< 1 92G

where we assume that the group action is a unitary representatiaf G on X .
That is, the identity ka(g)vk = kvk holds forallg2 Gandv 2 X.

However, our aim with the freezing method and the xed phase coitthn is
to ensure Lyapunov stability of the steady statev,, i.e.,

sup kv(t) wvok

O<t< 1
Such a stability result is not that surprising at rst glance. Indeed,assume
ku(t) a g(t) vk

for somet > 0. Then the minimality requirement in the xed phase condition
andu(t) = a (t) v(t) imply

vy 0 vt a (1) 'gt) ¢ = a( (1) Hut) a (1) gt) ¢ ;
where we requireX = X,o. If, in addition to that, the template function satis es
k¢ vk "
we conclude
v(t) v, vit) ¢ + ¢ v,
a (1) u) a (1) gy ¢ + ¢ v
ut) ag(t) ¢ + ¢ v
ut) agt) vo» +2 ¢ v, 3"
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However, the interpretation as stability of the freezing method is westionable.
First of all, the term k¢ v,k does not vanish as the initial valuauy goes tovs.
While it does for the special choice = ug, the template function ¥ occurs in the
algebraic part of the di erential-algebraic equation and must be caidered as a
constant term in a stability proof. Second, this approach is very srictive in
terms of the phase condition. It is highly unlikely to work in more genait cases.
In addition to that, the norms k k and k kg have to be the same. Therefore, a
more extensive analysis of the stability problem is necessary.

Figure 2.2.2: Lyapunov stability of a steady state

For the sake of completeness we repeat the assumptions and basaperties
from [33], which are su cient for orbital stability of u,, and which we require
in the following. From now on, leta(e' *)v» be a xed relative equilibrium. To
shorten the notation, we denote byA, the centralizer of -, i.e.,

A():CA( '_)):f 2A[, ?]:Og:

Moreover, letfey;:::; 4,9 with d, = dim( Ay) denote a basis oAy, and by ¢ and
C we denote generic positive constants.

A prominent feature of an equivariant Hamiltonian system is the exisince of
a family of relative equilibria, which can be parametrized by 2 A,. We refer
to Section 1.3 for speci c examples, while the general assumption is due t83.
For close to », we write a(e' ) ( ) for the corresponding relative equilibrium.
This means in particularv, = ( »).

Assumption 2.2.2. There exists an open subset/ A , containing - and a
continuously di erentiable mapping : U ! X such that the properties

@ dH( () dQ( () =Oforal 2uU,
(b) ()2DLiforall 2U

are ful lled.
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By Assumption 1.2.5and 2.2.2we can di erentiate

dH( (1)) dQ( () =0
at = ,. The dierentiation along 2 A, yields
Lod ( 2) =dQ(v2); (2.2.2)
where we have
Lo: X1 X% Lo=d?H(v,) d?Q(v») - (2.2.3)
This operator is the right hand side of the linearization of the freezghnequation
P(vi; )=dH(v) dQ(v)

around its equilibrium (v,; »). In order to obtain stability, we are left to impose
spectral conditions onL,. In the rain gutter example, the operator in (.1.6 is
positive onY = (W + Z)?, where

Z=fda( )vs] : 2 g
is its kernel, and its negative subspace is given by
W=1fr Qlv,) : 2 @

Since the gradientr Q(v») is perpendicular to the level set oQ at v,, we can
exploit the conservation ofQ (see Propositionl.2.7) in order to obtain stability.
In case of partial di erential equations, we cannot check directlyhe orthogonality
to level sets. Instead, we follow the approach d3J and make use of the Lagrange
functions

()=HC(C) QC(); (2.2.4)
in particular
2= ()= H(va) Q(vo) - (2.2.5)

By Assumption 2.2.2we can di erentiate (2.2.49 at 2 U along 2 Ay, and due
todH( (1)) dQ( ()) =0, we get

d() = dH( () dC():;d () QC() = QC(): (226

Di erentiating ( 2.2.6§at = ,along 2 A, it follows for the second derivative
hd®( 5); i= hdQ(vs); d ( ») i

and (2.2.2 leads to
' (5); i= hlod (2);d (5)i (2.2.7)

for any pair ; 2 Ao. We thereby obtain
hl.d (-);d (- i<0

for each eigenvector 2 A of d®*( ») that belongs to a positive eigenvalue.
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Assumption 2.2.3. The Banach spaceX is decomposed as a direct sum
X=W Y Z

where we have dinW = d,,

dQ(vz);y =0 (2.2.8)
forall 2Agandy 2 Y. Furthermore, the subspace
Z=fdla( )vo] : 2A0 (2.2.9)

equals the kernel ot ,, and the operator
da( )vo]: Ap! X
IS one-to-one.
Remark 7. To be precise, Assumptior2.2.3can be slightly weakened.

If X ! Xo! X7?is a Gelfand triple, the decomposition is given by the
orthogonal projections ontoZ and W.

We only have to ensure that the kernel is not larger tharz. The other
inclusionZ  ker(L-) is an immediate consequence of the previous set-up.
Indeed, di erentiating dH (a(e¢' )v») dQ(a(e¢' )v») » =0 at t = 0 yields
Lod[a( )v.] = d2H(vs)d[a( )v»] d?Q(v») -d[a( )v.] = 0; which was
to be proven.
Since (1.2.10 stateshdQ(v,) ;zi =0forall 2Ag,andz 2 Z, we are only
left to analyze dQ(v»,);w forw2 W.

Lemma 2.2.4. Given the Assumptionsl.2.2-1.2.5 and 2.2.3, there exists an
iIsomorphism

A W, 7!
h i h iy,

d-

such that dQ(v»)e '.1 is the dual basis of ¢ '.1’ i.e.,
1= i=

dQ(v-)e; & = i
Proof. We have to show that
fdQ(v2) 1 2Aqg
is a d»>-dimensional subspace of ?. Assume that there is 2 A o such that
0=dQ(v2) =!(d[a( )v]; )2 X"
By Lemma 1.2.1 the mappingu 7! ! (u; ) is one-to-one, which leads to
O=d[a( )vo] 2 Z:

However, Assumption2:2:3 implies = 0. Hence, the matrix
h i g,
dQ(v-)e; w;

is invertible, wherews; :::;; Wy, is a basis oW, and is given by its inverse. [
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In (1.1.6 the operator L, is a matrix with one zero, one negative, and two
positive eigenvalues. The generalization of positive and negative sphces to
in nite dimensional spaces is as follows.

De nition 2.2.5. Let X be a Banach space an@: X ! X? a bounded linear
operator. A closed subspacg of X is called positive if we have

hrz:zi  ckzk?
for all z2 Z and somec > 0. It is called negative if we have
hT z; Zi ckzk?:

Remark 8. Here, positive always means strongly positive, also called coercive.
Otherwise, we speak of a non-negative subspace. We use the stammainology
for negative and non-positve subspaces.

Subsets are partially ordered by inclusion, so we can speak of maximpasitive
and maximal negative subspaces. Thereby, we obtain an analog tlee number of
positive and negative eigenvalues, which is called the positive and negaindex
of an operator.

De nition 2.2.6. Let X be a Banach space an@i: X ! X7 a bounded linear
operator. If Z is a maximal positive subspace, thep(T) = dim( Z) is called the
positive index of T. If Z is a maximal negative subspace, then(T) = dim( Z) is
called the negative index off . Moreover, the null index ofT is the dimension of
the kernel, i.e.,z(T) = dim(ker( T)).

The positive and negative indices, nite or in nite, are well-de ned sirce
they do not depend on the choice of the positive (or negative) suyjzce (see
e.g. BQ]). Now, the principal idea is to make use of4.2.7) to obtain positivity of
the linearized operatorL» for the entire subspaceY, provided that d**( ) has
su ciently many positive eigenvalues.

Assumption 2.2.7. The inequality

n(L.) p(d*( »))
holds for the negative index ot., and the positive index of & ( »).

Here, we remark that the strict inequality cannot occur. Howevetthis is of no
relevance for a stability result. It is also worth mentioning that this @sumption
meansn(L,) < 1 , and by Assumption2.2.2we havez(L,) =dim(Z) < 1 .

A direct sum comes with natural projectors, the coordinate mappgs Py, Py,
Pz, and their complementary counterparts. As an exmaple, for = w+ y + z
with w2 W,y 2 Y,andz 2 Z we getPy zv=y+ z. Now, we consider the
spectral properties of the operator

Lojy z:Y Z1 (Y 2Z)% (2.2.10)
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Lemma 2.2.8. Provided that the Assumptiond..2.2-1.2.5, 2.2.2, 2.2.3 and 2.2.7
hold, the subspac& lies in the kernel of the operatol,jy 7, which means in
particular

Z(Lo) Loy z): (2.2.11)
Moreover, the only negative subspace b#jy 7 is trivial, i.e.,
n(L?jY Z) =0: (2212)

Proof. The inclusionZ = ker(L,) ker(L-jy z)is an immediate consequence of
the de nition of L,jy  as a restriction ofL,, and (2.2.1) follows. Moreover, a
maximal non-positive subspace df,jy z isasubsetofY Z, and itforms a non-
positive subspace ok, of nite dimension n(L,jy z)+ z(L»jy z). Furthermore,
from (2.2.7 and (2.2.2 we get

hd*( 5); i= hlxd (2);d (2)i=hdQ(v,);d ()i
for 2 A,. But, by construction of the direct sumW Y Z, we have
hdQ(v>) ;d ( 2) i =0;

provided d ( ) 2 Y Z. Consequently, there exists a negative subspace of
L of dimensionp(d?*( »)) that is included in W, and sinceY Z and W are
complements, there exists a non-positive subspace.afof dimensionn(L,jy z)+
Z(Lojy z)+ p(d? ( »)), which implies

N(Lojy z)+ ZLojy z)+ p(d*( 7)) n(Ls)+ ZLo): (2.2.13)
From (2.2.1)), (2.2.13, and Assumption 2.2.7we conclude

0 n(Lajy z) n(Lo) pE*( =)+ ZL2) ZLojy z) O
Hence, the negative index ok ,jy z must be zero. O

From Lemma2.2.8we can see that the existence of su ciently many positive
eigenvalues of & ( ») leads to n(L.jy ) being zero, and hence, the negative
subspace ot ,jy z being trivial.

Lemma 2.2.9. Provided that the Assumptiond..2.2-1.2.5, 2.2.2, 2.2.3 and 2.2.7
hold, we obtain the estimate

hLoy;yi  ckyk?
forally2Y.

Proof. From Lemma2.2.8we getn(L,jy z) = 0. Furthermore, we see that the
kernel ofL,jy z equalsZ, since the dimensions are the same add ker(L,jy z)
is due to LemmaZ2.2.8 Hence, we have

hoy:yi = Hojy 2y:yi  ckyk?
forally2Y. O
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The positivity in Lemma 2.2.9is fundamental for orbital stability. To be more
precise, the Grillakis-Shatah-Strauss stability approach is based daving

a(gu o

in the (orthogonal) complement ofZ for someg 2 G. It is our aim with the
freezing method to provide an adaptive algorithm such that

v v.=a( Hu v
is in the complement of a suitable approximation oZ .

Theorem 2.2.10. Let 27 = span(2?; ::1;23,) be a subspace of ? such that

h g,
27;d[a( )vole (2.2.14)
i =1
is non-singular.Under the Assumptiond.2.2-1.2.5, 2.2.2, 2.2.3 and 2.2.7, there
exists a constantt > 0 such that we get

oy 9i  ekgk?
for all ¢ that lie in the subspace
Y= ¢2X: dQ(v)g;y =" 9i =0forj =1;::0, : (2.2.15)

Proof. We write § 2 ¥ asy*= w+y+zwith w2 W,y 2 Y,andz 2 Z. However,
combining (1.2.10 and (2.2.8 implies

0=hdQ(v>) ; ¥ = hdQ(v7) ;Wi

forall 2 A, and LemmaZ2.2.4leads tow = 0. Moreover, from the invertibility
of the matrix (2.2.19 and

2%y+z = 29 =0;
we get the estimate
kzk 2:zi = yi Kk yk

for some > 0, which is independent ok 2 Z andy 2 Y, and for some functional
2?2 27 of unit length. Due to the triangle inequality, this implies

ky + zk k yk+ kzk (1 + C)kyk;

which leads to

1
2 2.
kyk 7(1+ C)zky+ zk?:
Hence, we obtain from Lemma&.2.9the inequality
oy + 2i(y+ i = Hoyiyi doié gl + 2K

which was to be proven. O
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Having in mind the xed phase conditions, we impose requirements fdine
phase condition in the abstract setting. Up to this point, we have rtomade
use of the spaceX 1;k k ;) from Assumption 1.2.14 The freezing approach
in general, in particular Theorem?2.1.2 is valid for any generalized solutions in
the sense of De nition2.1.1 However, when it comes to phase conditions of the
form (v) = 0, we require solutionsu 2 C(I ; X)\C (I ;X 4). Furthermore, we
simplify the notation by writing

Go = G(e'?) (2.2.16)
for the Lie subgroup ofG that is generated byA,.

Assumption 2.2.11. The mapping : X ! A s twice continuously di eren-
tiable with locally bounded derivatives and satis es the properties

(@ (v2) =0,
h i g,
(b) the matrix d (v-)e;d[a( )vo]g . is invertible,
=

(c) the mappingF: Gy X 1!'A §,(g;u) 7! F(g;u) that continuously expands
(g;u) 7! (a(g)u) is continuously di erentiable.

The above allows us to considev, as a local minimum ofH subject to con-
straints for Q and . More precisely, the method of Lagrange multipliers leads
to the modi ed stationary problem

O=dH(v) dQ(v) d (v);

0=0Q(v) Q(v2); (2.2.17)
0= (v)

which possesses the solutionv,; ;0 . Next, we show that , = 0 is not a
coincidence, but an immediate consequence of the invariancetbfand Q with
respect to the group action.

Lemma 2.2.12. Given the Assumptionsl.2.2-1.2.5 and 2.2.11, let (v»; »; »)
be a solution of .2.17) with v, 2 D1. Then it follows - =0, which means

0=dH(v)) dQ(v2) »:
Proof. From (1.2.9, (1.2.1, and
0="hdH(v;) dQ(vz) » d (v5) »dlal )vo] i
forall 2 A, we conclude
0="hd (v2) »;d[a( vo] i;

and -, =0 follows from Assumption2.2.11 O
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The modi ed stationary problem is set in the product spacX = X A ¢ A o,
which is a Banach space with respect to the norm

(Vii ) x= Vit a7t A

and we denote the dual space bX’. Then, the equation @.2.17 is of the form
S(vi; )=0; (2.2.18)
where the function
S:X X% S(vi; )= Sa(vii )iSavii )iSa(vii )
is given by

Si(v;; )=dH(v) dQ(v) d (v);
Sa(vi; )= Q(v) Q(v2);
Ss(v;; )= (v):

The linearization of (2.2.18 around the steady state {»; -»;0) is denoted by
L=dS(vs; »0):X! X (2.2.19)

Proposition 2.2.13. Under the Assumptionsl.2.2-1.2.5, 2.2.2, 2.2.3, 2.2.7, and
2.2.11 the linear operatorL given by @.2.19 is one-to-one.

Proof. We have to show that the kernel oL is trivial. Let
L(v;; )=0
forv=w+y+z2W Y Z, 2A, and 2 A, This means that for all
(e;e €) 2 X we have
O=h(v;; ) (ee ©)i="h,ve + hdQ(v,); e + hd (v;); e

(2.2.20)
+ hdQ(v.)evi+ hd (v)8vi:

Next, we decomposaz = w + ¢+ B and rewrite (2.2.2Q for specic choices of
(e;e €) 2 X. First of all, we choosee = ¢=0 and e = € = 0. Sinceeis in the

kernel of L, by Assumption 2.2.3 and since it is a zero olQ(v,) by (1.2.10,

we conclude

0= L(v;; );(&0,0) =hov;ei + dQ(v,); Bi + hd (v5); 8l = hd (v,) ; Bi

for all 22 Z, which means =0 due to Assumption2.2.11
Moreover, by choosingg = 0 and € =0, we nd

0= L(v;; 0);(0;e 0) = hdQ(v-)evi = hdQ(v,)ew i

as a consequence of Assumptiadh2.3and (1.2.19. Hence, we obtainw = 0,
which meansv=y+2z2Y Z.
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The next choice ise = y and e = € = 0. In the same way as before, we make
use ofL,z =0 and (2.2.8 to obtain

0= L(y+z;0)(y;0,0) =ho(z+y)yi + hdQ(vo) ;yi = hosy;yi:

It follows y = 0 from Lemma 2.2.9 which meansv=2z2 Z.
But z = 0 is obtained from choosinge = 0 and e = 0, which leads to

0= L(z;; 0)(0;0;€) =hd (vr)€zi

for all € 2 A, and part (b) of Assumption 2.2.11
Finally, we pick @ = w and e = € = 0. This results in

0= L(O;; 0);(w;0,0) = hdQ(v-); wi

for all w 2 W, and Assumption2.2.3leads to =0. O

2.3 Stability of the PDAE Formulation

In the following we use the implicit function theorem to express the @se condi-
tion in terms of an implicit function §, such thatv = a(g(u))u.

Lemma 2.3.1. Provided the Assumptionsl.2.2, 1.2.3, and 2.2.11 hold, there
exist open neighborhoodsl, Gy, X ;of ( ;v;) andU, X ; ofv, and a
smooth function

0: U, ! Go;

such thatF(g;u) = 0 and (g;u) 2 U, if and only if g = g(u) and u 2 U..
Moreover, we have

do(u) = Fg(O(u);u) Fu(B(u); u): (2.3.1)

Proof. The idea of this proof is to apply LemmaA.3.1. Due to Assumption
2.2.1%c), we haveF( ;v,) = (v») =0; and the mapping

F:Go X 1!'A 2 (g;u) 7! F(g;u) (2.3.2)
is continuously di erentiable with the partial derivative at ( ;Vv») given by

Fo( sVv2): Ag!l A & hEg( sv); 1 =hd (vr); dfa( )vo] i

forany ; 2 A,. With respect to the basis g .d:1 this derivative is represented
by the Jacobian submatrix
h g
d (vo)e;dfal )vo]g ’ L

which is invertible by Assumption2.2.11b). !
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Remark 9. Foru 2 X \ U, it follows (u)= F( ;u) =0 if and only if B(u) =

Next, we combine this with Theorem2.1.2to ensure that the freezing system
has a local solution. By a solution we mean functions2 C(1 ; X)\C (I ;X ;)
and 2 C(l ;Ap), wherel is an open interval containingty = 0, that form a gen-
eralized solution of the transformed evolution equation in the sensé De nition
2.1.1and satisfy the phase condition (v(t)) =0 forall t21 .

Theorem 2.3.2. Under the Assumptionsl.2.2-1.2.14, 2.2.3, and 2.2.11, for any
initial value up 2 X \ U, such that (ug) =0 the freezing system

F(vg; )=dH(v) dQ(v); v (0)= ug;

0= () (2.3.3)

has a unique local solutiorv 2 C(I ; X)\C (I ;X 1), 2 C(l;Ap) in the sense
of De nition 2.1.1 Furthermore, the conservation laws

H (v(t)) = H (uo);
Q(v(t)) = Q(uo) ; 2 Ao
hold for allt 2 1 , and we have the following blow-up alternative. (T ;T7) is

the maximal interval of existence such that(t) remains in X \ U, and we have
T* <1, then

min  dist, , V(1) QY ; kv(t)k

ast!'T *.

Proof. Let T,” > 0 be small enough. By Assumptiori.2.14there exists a unique
solutionu: [0; T, ]! X of the problem

F(u; )=dH(u); u(©)=up2 X\ Uy; (2.3.4)

which is continuously di erentiable on (Q T, ) with respect to , and has im-
ages inU,. Hence, the mapping :[0; T, ]! Go, t 7! 0O(u(t)) is continuously
di erentiable as a composition of continuously di erentiable mappingswhere @'
is the implicit function from Lemma 2.3.1 By writing

ut) = a( M)v(t); «=dL (); (0=

and applying Theorem2.1.2 we get a local solutionv: [0;T,"] ! X \ U,
1 [0; Ty 1! A o of the freezing systemZ.3.3.

Now assumez: [0;T,"]! X\ U,, :[0;T, ]! A o is another solution of
(23.3. Dene :[0;T, ]! Govia {=dL (), (0)= . From Theorem
2.1.2we conclude thatt 7! a( (t))z(t) solves @.3.4, and due to the uniqueness
in Assumption 1.2.14 it follows

a( (1)z(t) = u(t) = a( (O))v(1):
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The uniqueness of the implicit function in Lemma2.3.1 gives us (t) = (t);
which implies z(t) = v(t):

The conservation laws are proven in a similar way as in Lemnia2.15 The
setA = ft 21 :H(v(t)) = H(up)g is closed sincesr 7! H(v) andt 7! v(t) are
continuous. Due to the invariance oH under the group action by Assumption
1.2.5and H (u(t)) = H(ug) by Lemma1.2.15 it is also open. Hence, we conclude
A = 1. In case of the conservation of), where the invariance under the group
action is due to Proposition1.2.7, we proceed in the same way.

In order to prove the blow-up alternative, we rst show thatT," can be chosen
in such a way that it only depends on; M > 0 satisfying diskx , Ug; @Y 0
and kugk  Myg. For ug 2 X \ U, let u 2 C(T,; T;,; X) be the unique solution
of (2.3.4 in the sense of Assumptioril.2.14a). Since we want to apply Lemma
2.3.1 we shrink the time interval to make sure that the solution stays inde of
U,. From Assumption 1.2.14b) we get To and Ry depending only onMq such
that it holds  u(t) Ro for t 2 [0; To], which implies

Zt
uit) uo ui(s) ,ds tRy:
0

1

By choosing

T(0;Mo)=min —>;Tp ;
Ro
we getu(t) 2 X \ U, forallt 2 [0; T ( o; Mo)], and we conclude that the freezing
system has a solutionv: [0;T( o;Mg)] ! X, :[0;T(o;Mg)] ! A o, where
T( o;Mo) only depends on ¢ and M.

Now, let (T ;T*) be the maximal interval of existence of the PDAE 2.3.3
such that v(t) remains in X \ U,. Assume thatT* < 1 holds and that there
exists a sequencg; ! T * asj !'1 such that dist , v(tj); @Y and
kv(tj))k M for some constants > 0 andM 2

Figure 2.3.1: Extension of solution
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Using the same construction as above, i.e., solving.8.4 with respect to the
initial data u(0) = v(tx) 2 X \ U, and transforming to the freezing coordinates,
we extend the solution ¢; ) to a larger time interval [O;t, + T ( ;M )], where
T(;M) only depends on and M. However, for large enougtk we obtain
t« + T(;M) > T7", which is a contradiction to (T ;T") being the maximal
interval of existence. O

Denote by B (v,) the (open) Ball in X of radius > 0 centered atv, 2 X.
From U, X ;openandX, X g4,itfollowsB (v.,) X\ U,for > 0 small
enough.

Corollary 2.3.3. Letthe Assumptionsl.2.2-1.2.14 2.2.3 and 2.2.11be satis ed.
Forany " > Othere exists > 0such thatug 2 B (v») satisfying (up) = 0 implies

] Qug) A<
wheret 7! v(t;up); (t;ug) denotes the solution ofZ.3.3).

Proof. Let t 7! u(t; up) solve 2.3.9 and let T, ; T,” be small enough such that
we haveu(t;ug) 2 X \ U, forallt 2 (T, ;T, ). As in the proof of Theorem2.3.2
this yields a functiong(t; ug) = u(t; up) , whered'is given by Lemma2.3.1, and
from (2.3.1) we get by the chain rule

g= Fo(gV) 'Fu(giuuc (2.3.5)

We de ne (t;up) = @(u(t;uo)) L= o(t; ug) ' and obtain (t; ug) by solving
t = dL () . Since the group operations of multiplication and inversion are
smooth maps, for' > 0 there exist > 0 such that the inequality

j O;up) 2i=] (O;ug)  (O;v)j <"
holds, provided that we have

ja(0;uo)  &(0;v2)j < : (2.3.6)

We are left to show that for > O there exist > 0 such thatug 2 B (v,) implies
(2.3.6. From (v,) =0, we get g(0;v») = (v») = . This implies

q(O;v2) = Fo( iva)  Ful( 5 vo)un(0;vs);

where the matrix
h id? h |
Fo( svo)eig = d (v)e:dla( )vle

d-

= ] =

is non-singular by Assumption2.2.11 Assumption1.2.14c) gives us the estimate

ut(0;uo)  ut(0;v?) MK Uy Vk M ]

1

and the mappingF: G, X ;! A jis continuously di erentiable by Assumption
2.2.11 Furthermore, we haveku(O;up) Vvo-k = kupg v-k , and the identity
g(0;ug) = M(ug) = follows from (ug) = 0. Hence, we apply Banach's Lemma
to obtain (2.3.9, provided that > 0 was chosen small enough. O
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In the following, the perturbed version ofY from (2.2.15 in Theorem 2.2.10
is chosen as

Y= 92X: dQ(w)e;9 =hd (w)e;9i=0forj=1;:5d ; (2.3.7)

i.e.,z’=d (v»)g. In general, the desired property(t) v» 2 Y fails to be true
for the solutions of .3.3. However, this di culty is circumvented by adding
corrective terms inW and Z, i.e.,

P =v(t) Vo A (v(r)  dla( )ve] V(D)

with as in Lemma 2.2.4 Choosing ~and " as follows allows us to apply
Theorem2.2.10to §(t) 2 ¥.

Lemma 2.3.4. Provided the Assumptionsl.2.2-1.2.5 2.2.3 and 2.2.11 hold,
there exist uniquely de ned smooth functions

N XTA o
“MXTA o
such thatG(; ;v )=0 ifand only if =7(v), = "(v), where
Gl
G= G2
is given by
h i g,
G'(; ;v )= dQ(w)e;v v, dla( )vo]
h i g
G%(; ;v )= d (w)e;v dia( vs]
Moreover, we obtain
i"V)j+j (V)] Ckv vk (2.3.8)

for all v2 X \ U, that satisfy Q(v)g = Q(v»)g and (v)g =0 forj =1;::;db.
Proof. SinceG is linearin and , the Jacobian submatrix

Gl Gl
G2 @2 (2.3.9)
is constant, and we have to show that it is invertible. First of all, the mtrix G*
is non-singular by Lemma2.2.4 Second, the other diagonal entrg? is invertible
by Assumption 2.2.14b). Third, due to (1.2.10Q, the o -diagonal block G* is the
zero matrix. Hence, the matrix @.3.9 is invertible.

We are left to verify the estimate for v) and "(v). Denote = (% 2 A
and = Jig;l 2 Ao. Due to Q(v) = Q(v») , Taylor expansion ofQ(v) at v,
leads to

0=0Q(vV) Q(v») = dQ(v?);v Vo +O(kv vk?);
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and because of Assumptio2.2.1Xa), we have
0= (v) (v2) = d (W);v Vo +O(kv vok?):
Then by using the identities

dQ(v>) ;v v» A (v) dla( )vo]"(v) =0;
d (v);v vo A (v) da( v]"(v) =0

from the rst part, we get

dQ(vs) ; A (v) +d[a( V2] (V)i = O(kv  VoK?);
d (v)); ~ (V) +d[a( )v]"(v) = O(kv VoK)
Combining (1.2.1Q and Assumption 2.2.1Xb), this leads to (2.3.8. O

The proof of stability is now based on estimating the distanckv vk in
terms of H(v) H(v»). This is obtained by Taylor expansion ofH (v) Q(v) -»
at v,, where we make use of Theorer®.2.10and the estimate @.3.8 for ~(v)
and "(v).

Lemma 2.35. Letv 2 X \ U, satisfy Q(v)g = Q(v.)g and (v) = 0 for
j =1;:::;dh. Provided the Assumptiond.2.2-1.2.5, 2.2.2, 2.2.3 2.2.7,and 2.2.11
hold, we have

H(v) H(w) ckv vk?

Proof. As before, we writeH (v») Q(v») » = "5 and dPH(v») d?Q(v») » = Lo.
Together with dH (v,) dQ(v») » = 0 we obtain by Taylor expansion atv, the
identity

H(V) Q(V) 2= "2+ 3 Lo(v Vo);v v, + o(kv  VvoK?);
which can be rewritten as
H(V) Q(u) »= "5+ 3ho9:9i + R(V); (2.3.10)

wherey'=v v, A (v) d[a( )vs]"(v) 2 ¥ with 2, " from Lemma2.3.4 and
the higher order terms are of the form

R(V)= O jAW)+ " (V)i kgk+ jAW)j+ i (V)] + okv  vok?):
Next, we subtractH (v») Q(v») -» = "» from (2.3.10, make use of

Q(v) 2= Q(v2) » (2.3.11)

and obtain

H(v) H(v,)= ih,9;9i + R(v): (2.3.12)
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The positivity of L, on ¥, which we get from Theorem2.2.10and Assumption
2.2.1XDb), gives us

W99 ckgk® kv vk C AW+ (W) kgk+ AW+ W)
and by plugging this into (2.3.12, we nd
H(v) H(v) ckv vk C jAW)j+j (W kgk+ jAwi+j W) *

Sincey’= v v, + O(~(V)j + j"(v)j), we can make use of LemmaA.4.1 and get
H(v) H(w) ckv k2 C jrW)j2+j ()i : (2.3.13)

Dueto (2.3.1) and (v) = 0, the estimate (2.3.8 holds for ~(v) and “(v). Hence,
the inequality in (2.3.13 takes the form

H(v) H(vs) ckv VvoKk?
which is our claim. O

In the case ofQ(v(0)) = Q(v») , the stability of v, is a direct consequence
of Lemma2.3.5and the preservation of the Hamiltonian. For the general case,
we need an additional Lemma.

Lemma 2.3.6. Provided the Assumptionsl.2.2-1.2.5, 2.2.3, and 2.2.11 hold,
there exists" > 0 such that for allv 2 B-(v,) there areW(v) 2 W and 2(v) 2 Z
such that we have

Qv+ wVv)+72(\V) = Q(v,); (2.3.14a)
v+ WVv)+72(Vv) = (V) (2.3.14b)

forall 2 A, and the estimate
kWw(V)k+ k2(vVk C Q(v) Q(v») Az + (V) (v2) A7 (2.3.15)

Proof. Consider the mapping

given by

Q:X W Z! % (v;w;2)7! Qv+ w+2e Q(we
h [
Q?: X W ZzZ! d (viw;2) 7 (V+ wH 2)g (v2)e
1=
The Jacobian submatrix ofQ with respect tow and z evaluated at (v»; 0; 0) takes
the form

1 1
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with

h i o
Qu= dQw)e; g

h T
Q; = dQ(v-)e;d[a( )v-lg G

h i =
QL= d (we; §

=1
h [

d-»

Q7= d (we;dla( )v-lg

We have already seen in Lemma.3.4that it is invertible. Hence, we apply the
implicit function theorem to obtain wW(v);2(v) 2 W Z. We are left to show
(2.3.15. The mean value theorem gives us

Q(v2;0;0) Q(v;0;0)=g(V:W(V);2(V)) Q(v;0;0)
1

= Quiz) VitW(V);t2(v) dt  W(v); 2(v) ;
0

which implies
k@W(V)k + k2(v)k  C Q(v»;0;0) Q(v;0;0)
sinceQ:;) has a uniformly bounded inverse in a neighborhood of. O
The preliminary work allows us now to prove the main theorem of this epter.

Theorem 2.3.7. Under the Assumptionsl.2.2-1.2.5, 1.2.14 2.2.2, 2.2.3 2.2.7,
and 2.2.11, the steady state(v,; ,) 2 X A g is stable in the Lyapunov sense.
That is, for any " > 0 there exists > 0 such that the solution(v; ) of the
freezing system 2.3.3) exists for all times, and

kv(t) wvok+j (t) o <"
holds for allt 2 [0; 1 ), provided the initial data satisfykv(0) v,k <

Proof. Assume rst that the v-component is not stable and choosé> 0 small
enough such that Lemma2.3.1and Lemma2.3.6 can be applied. In particular
kv v,k <" must guaranteev 2 U, X ;. Then there exists a sequence of
intervals |,, and solutionsv,, 2 C(l1 ,;X)\C*(I,;X 1) of (2.3.3, n 2 , such

that we havekv,(0) v,k! Oasn!l1l | butsupkv,(t) v,k "foralln2
t2l n

By continuity of the solutions we can de net, to be the rst time such that

kvh(th) ok = 5 In particular, this means [Qt,] | ,. SinceH and Q are

continuous and conserved quantities (see Theore2ni3.2, we have

H(Va(tn)) = H(va(0)) ! H(w);
Q(Va(tn))g = Q(va(0))g ! Q(v-)g
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asn!1l forallj =1;::;d,. From Lemma2.3.6we obtainw, 2 W andz, 2 Z
such that the identities

Q(Vn(th) + Wy + Z5)g = Q(Vv7)g;
(Vn(th) + W, + Zn)Q = (V?)q =0

hold forj =1;:::;d> and such that
kwok + kzok  C Q(Wn(tn))  Q(v2) oo+ (Valtn) 4,

is satis ed. Due to Q(v,(tn))g ! Q(v-)g and (va(tn))g =0 for j =1;::;0,,
it follows kw,k + kz,k! Oasn!1l . Furthermore, LemmaZ2.3.5gives us

HWn(th) + Wo+ 20)  H(V2)  C Vo(tn) + Wo+ 2y VoK

whereH (v, (t,)+ w, + z,) ! H(Vv,) is due to continuity of H and kw, + z,k ! 0.
This implies

kvo(tn) wvok! O

which contradicts the assumption.
Now, we consider the -component. Givent 0, lets7! z(s); (s) solve

I(zs; )=dH(2) dQ(z); z(0)= v(t);
0= (2):

From the uniqueness in Theoren?2.3.2 we conclude (0) = (t). According to
Corollary 2.3.3 for any " > 0 there exists 2 (0; %) such that we obtain

J@®) =)0 4< 5

provided that we havez(0) 2 B (v»). By the rst part, we know that there exists
> 0 such that initial data satisfying kv(0) v,k < lead to

kv(t) wok<

for all t 2 [0;1 ), which impliesz(0) 2 B (v»). O

2.4 Application to the NLS

The next proposition shows that the cubic nonlinear Schredingergaiation
Up = Uy + jUjZU
together with its two-parameter group

a:G! GL(X); [a( W](X)=e'*v(x ,); =( 1 22G=¢8"
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ts into the abstract setting. In Proposition 1.3.4we have already seen that the

Hamiltonian is given by
Z

= — + — :
HV) =5 Jw™+ Sivim dx
Moreover, the corresponding spaces are given by
X=HY(; ), X1=X?=H ;)

Proposition 2.4.1. For the NLS the Assumptionsl.2.2-1.2.5 and 1.2.14 are
ful lled.

Proof. We start with Assumption 1.2.2 The mappinga: G! GL(X) is a group
homomorphism since

a(g)v=e '(179y( > G)=e'lev( @ 2)
=e'a@Vvl( 2= a( )a(g)v

forall ;g 2 G. We are left to prove the symplecticity of the group action. For
z=e'* we havezz = 1. This implies (zu;zv)e = (zzu;V)o = (U;V)o, Where
the inner product is given by (.3.2. Due to the translation invariance of the
integral, this leads to

F(a( )v;a( )u)

ia( Jv;a( Ju = ie "tv( e ltu( ),

iv( 2);u( 2) o= v;u ,="!(v;u)

forall v;u2 X.
In order to verify Assumption 1.2.3 it su ces to show that the intersection

Del\D e

is contained inDg and a dense subset of , where we denote byD,, the domain
of dla( )vle; = iv and by D, the domain of dp( )vle, = vx. This is obtained
by setting De, = HY( ; ), De, = H2( ; ),and Dg = H3( ; ).

Sincev, 2 L?( ; ) holds forallv2 H( ; ), the mapping

Pad vl;u)="1(Iv 1 Vv 23u)= Vv 1 vy 22U

extends tov 2 HY( ; ). Hence, Assumptionl.2.4is ful lled, where we remark
that

BV);ui= v 1 vy 2;U

implies
Q(v) = 3B(v);vi=3 1kvkj 3 2 ivgv

which can be rewritten as

Q(v) =

Z
Re 41jvji®+ i vV dx:

NI =
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For Assumption 1.2.5we have to prove thatH 2 C?(X; ) holds with locally
bounded derivatives and thatH is invariant with respect to the group action.

Combining (1.3.5 and (1.3.6, we have
z Z

hdH (u); vi = Re uy(X)vy(x) dx + Re ju(x)j2u(x)v(x) dx
for all u;v 2 HY( ; ). Due to the Cauchy-Schwarz inequality, this is locally
bounded by
jpdH (u);vij  C(kuky + kuk3) kvk;

sinceH!( ; )is a generalized Banach algebra ardik; = kuk;. For the second
derivative we note that

jz+ jHz+ )=(jz*+z +z +]P)z+ )
= jzi’z+ 2* +2jz)* +27j P+ z 2+ }?
forall z; 2 . This implies
hdH (u + h);vi = hdH (u);vi + Re hy(X)vy(x) dx
Z Z
+2 Re ju(x)j*h(x)v(x) dx + Re u(x)?h(x)v(x) dx
+ O u(x); v(x); h(x)
with
O u;v;h C khk; + 3kuk; khkikvk;:
Hence, the second derivative is given by
hd®H (u)v;hi = h;ve (+2 juithv j+  u%hy
which is locally bounded as follows
jhd?H (u)v; hij  C(1+3 kuk?) kvkikhki:

The invariance of the I—Zlamiltonian under the group action is due to

1 ) . . .
H(a( )u) = > ja( Yux(x)j* + Ela( Ju(x)j* dx
Z
-1 el (x o) +=eltux ) * dx
ZZ 2
1 ) . . .
= 5 Jux(x 2)]2+ EJU(X 2)]4 dx
Z
1 ) ) . )
=5 Iw@i+ Sju@i* dz=H(u);

where we havez = x 2.

For local existence, unigueness, continuous dependence, argltarity in As-
sumption 1.2.14we refer to [L5], [27], and [39]. Since a strongH!( ; )-solution
satis es the NLS inH ( ; )-sense for alt 2 | , we obtainku:k ; estimates in
terms of kuk, and the same is true for continuous dependence. O
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Next, we discuss the spectral hypotheses that are imposed oretlinear op-
erator

Lot X1 X% Lo=d2H(vs)  d?Q(vs) -

This is an integral part of the Grillakis-Shatah-Strauss stability appoach. Their
seminal article B3] comes with a series of examples, including the nonlinear
Schredinger equation. That is why we do not cover all details.

Proposition 2.4.2. The linerization of the NLS at a relative equilibrium £.3.10
satis es the Assumptions2.2.2, 2.2.3, and 2.2.7.

Proof. Starting with Assumption 2.2.2 we note that the family of relative equi-
libria is given by (1.3.11).

The decomposition in Assumption2.2.3 is veried by making use of the
Gelfand triple

HY 5 )0 L3 ) H (s )
where the natural embedding
“HY ; )! L3 ; ); v7lv

is a consequence of the subset relatidal( ; ) L2( ; ), and where the
operator
LA )P H M) vy

is obtained by using the Riesz representation do?( ; ): While the composition
? of these mappings is not onto, the preimages

[7] 1dQ(v2) = Vo aivex 2H'Y( ;)
of the functionals
dQ(v2) = 1Vv7 2lVax; o
exist for all 2 A, due to the smoothness of the pro lev,. Now we de ne
W= [7]%Q(v) : 2A,
and
Y=(W Z)7;
where Z is the kernel ofL,. This gives us a decomposition
X=W Y Z
which satis es

dim(W)=2= d»
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and

dQ(vo)e;y = [7] 'dQ(v.)e;y =0

by construction.

For the remaining (spectral) hypotheses in Assumptio.2.3and Assumption
2.2.7we refer to B3 since the proof is based on the Sturmian theory of oscillations,
which we do not want to repeat. O

For the NLS the xed phase condition
X U (Ag)?
is given by

(V) = iV o+ 20V

forv2 X and 2 A,.

Proposition 2.4.3. The xed phase condition satis es the parts (b) and (c) of
Assumption2.2.11for any template function® 2 H3( ; ), provided thatk¢ v-k
is small enough.

Proof. The mapping : X ! (A)” is a bounded linear operator, which implies
continuous di erentiability, for any template function 4 2 H( ; ).
For any template functionw2 H!( ; ) the preimages

[7]1 % (v2) = 10+ 0 2L% ; )

exist. By choosing the template function in such a way thak¢ v,k is small
enough, the matrix
")t e s o = e 10
28 ?q 0 i =1 - 0lx;iV? 0 Olx;V?;x 0

is invertible by Banach's Lemma as a small perturbation of
h i g

dla( )v-le;d[a( )v-lg , i'jl = Voiive VeV

V’?;x; iV’? 0 V’?;x; V’?;x 0

which is non-singular by Assumption2.2.3

For u 2 H( ; ) the mapping (g;u) 7! (a(g)u) is continuously di eren-
tiable. The derivative can be continuously expanded ta 2 H ( ;C) if we
havev2 H3( ; ):Indeed, for*2 H3( ; )itholds[?] d (u) 2 H?( ; )
for any 2 A, and the dierentials of the group action can be continuously
extended to mappings fromH ( ;C)to H 2( ;C). O

Remark 10. If Assumption 2.2.1Xa) fails, the stability is with respect to some
other element of the orbita(Gg)v-, which satis es the phase condition. We only
imposed this assumption to avoid technical di culties.
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2.5 Application to the NLKG

Next, we verify the hypothesis in case of the nonlinear Klein-Gordagguation

u
Uy = —
Upxx Uz + JUgJ7Us
The corresponding spaces are given by
X:Hl( ; 3) L2( ; 3)’ X?=H l( ; 3) LZ( ; 3)’
Xo= L% ; % L% % X 1=L2 ; % H*M; 3

and the Hamiltonian takes the form
Z

HV)= 5 jVai® + jvig® + jvaj® gt dx:

Moreover, the equivariance is with respect to the group action

a:G! GL(X); a( )v= Avy( + );Avy( + ) (2.5.1)
for =(A; )2 G=S0(3) , and the additional conserved quantities are
z Z
Q) = (Sw)'vadx+c v, vodX; =(S;02A;

where A = so(3) is the Lie algebra.
Proposition 2.5.1. The NLKG satis es the Assumptionsl.2.2-1.2.5and 1.2.14

Proof. We start with Assumption 1.2.2and show that 2.5.]) is a group homo-
morphism. By writing group elements ;g 2 Gas = (A; ),g=(B; ), we
obtain

a(g)v= ABvy( + + );ABvy(+ + ) =a()a(gwv:

Next, we prove for any = (A; )2 SO(3) the symplecticity of the images
a( )v= Av( + ) with respect to the symplectic form
z

L(v;u)=  (vjuz vy up)dx:

Any orthogonal matrix A 2 SO(3) satis esATA =id s s, and by the translation
of the integral it follows
4

(Avi( + NTAu( + ) (Avp( + )TAug( + ) dx
Z Z
viATAu, v,ATAu; = viuy voup = ! (v;u)

I'a( )v;a( )u

forall v;u2 X.
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In order to verify Assumption 1.2.3 we have to specify the domaiDg of

V2

F(v) = Vixx Vit jV1j2V1

and the common domairD} of
dia( )v] =Sv+cy; =(S;92s0a(3)

A suitable choice isDg = D1 = H?( ; 3) H?( ; 3), whichis dense inX.
The composition of the symplectic form and the di erential of the goup action
Z

(d[a( )v];u)= (Sv))Tuz + cvi,Up  (Sw)Tur  cviug dX

extends to a bounded linear operator
B() : X! X% v7IB(V):

Indeed, forv = (vi;vo) 2 HY( ; 3) L2 ; 3)itholds vix 2 L?( ; 3)and
Vox 2 H 1( ; 3). Hence, we obtain

B(v) 2H () L% ;Y

Due to the linearity of the integral, we get a bounded linear operatprand As-
sumption 1.2.4is ful lled. Moreover, from the skew-symmetry ofS and the dif-
ferential operatorv 7! v it follows that the conserved quantitiesQ : X A'!
in (1.2.7) take the form

z z

Q(v) = %! (@da( )vl;v)= (Sw)Tvedx+ c Vi Vedx:

According to Proposition1.2.7it holds

Qa(e )v) = Q(v)

for those ; 2 A that commute, but not in general. Let us show that for
this speci c example the invariance with respect to the group actioms indeed
subject to some restriction. Direct computation with = (A;c) 2 SO(3)

and =(S;0 2 so(3) yields

z
Qal )v) =  SAvi(x+ 0 'Avy(x + c)dx
z
+C AV, (X + C) TAv2(x + c)dx
z z

SAvi(X) Tsz(x)dx +C Vi (X) Tv2(x)dx;

l.e., we can only ensure the invariance A = AS, which is true for any =
(A;c) 2 G( ), the Lie group generated byCa ( ).



2.5. Application to the NLKG 69

Next, we consider Assumptionl.2.5 i.e., the smoothness and invariance of

the Hamiltonian. The rst derivative
Z

hdH (u); vi = UJVo + UL Vix + UTVy | Ugj?uivy dx

is locally bounded by
jpdH (u);vij  C(kuk + kuk®) kvk:

This is obtained by applying the Cauchy-Schwarz inequality and usingdt that
H( ; 3)is ageneralized Banach algebra. The second derivative takes tben
Z

hd?H (u)v; hi = hivo + hi vix + hivi  N(ug;vi;hy) dx;

where the nonlinear term is given by
N(u;v:h)= hTuu"v+ u"hu"v+ uTuh™v:
Consequently, a local estimate for the second derivative is given by
jnd®H (u)v; hij  C(1+ kuk®) kvk khk:

The invariance of Hamiltonian under the group action, i.e.H (a( )u) = H(u)
forall 2 SO(3) , follows from the shift invariance of theL2-norm and the

property
jSvi= v'STSv=jvj% S 2 SO(3)

Moreover, we refer to 28] and [29 for the hypotheses on local existence, unique-
ness, continuous dependence, and regularity in Assumpti@r2.14 Since a strong
solution satis es the NLKG in X ;-sense for alt 2 | , we obtainku;k ; estimates
in terms of kuk, and the same is true for continuous dependence. O

Next, we discuss the spectral hypotheses that are imposed oretlinear op-
erator

Lo X1 X% Lo=d2H(vs) d?Q(vs) o

Proposition 2.5.2.  The linerization of the NLKG at a relative equilibrium (1.3.17)
satis es the Assumptions2.2.2, 2.2.3, and 2.2.7.

Proof. Similar to the NLS, a Gelfand triple is given by
HIC %) L% )0 L0 %) L2 ) H (5 ) LA )
together with the embeddings

CHYC ;%) LA ) LA ;%) LA ;3 vTlvg

LA % LA U H M %) LA Yy ovT v
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where the inner product is given by
Z

Y - T T .
Vi¥ o= Viyi+ Vp Y dX:

The preimages of the composition

[?] 1dQ(V?) = Sv T+e Vo2 I; SV Tre Vo I : 2 A,
of the functionals
Z
dQ(v») sy i = SVoq Tyz + C Vo IYZ SVoo Tyl C Voo Iyl dx

exist as functions inH( ; 3 L2?( ; 2) due to the smoothness of;,. In
the same way as for the NLS, we den&Vv = [?] 'dQ(v.) : 2 Ay, and
Y =(W Z)?, whereZ is the kernel ofL,, to decomposeX =W Y Z.
For the other parts of the Assumptions2.2.2 2.2.3 and 2.2.7, we refer to B3]
since we do not want to repeat the Sturmian theory of oscillations. O

Let us discuss the xed phase condition for the NLKG. By choosing;; » 2
and by writing

=( 1Ss 2);
we identify the Lie subalgebraAo=f 2A:[; -]=0gwith 2. Then
XA ]
is given by

(v) = 13?0;V0+ ALY, v2 X, 2Aq:

o
We have to emphasize that this approach is only applicable if the Lie salgebra
Ay is explicitly known. That is why our numerical scheme deviates from th
analytical approach. According to our experience, the freezingatihod is robust
enough to handle commutator errors of small magnitude. Hence, mumerical
computations, we let (t) be any element of the entire Lie algebré , rather than
restricting it to Ao.

Proposition 2.5.3. The xed phase condition satis es the parts (b) and (c)
of Assumption 2.2.11 for any template function® = (A;0), &, 2 H2( ; 3),
provided thatk®; Vvo.1ky1( . s is small enough.

Proof. We have to prove the invertibility of
h . i g,
[7]%d (w)e;da( )vole o1

where

[7] % (Vo) = S0+ 0 2HY ; 3 L% ; 3):
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Let us apply Banach's Lemma using the fact thak®;  vs1Ky1( . 3y is small.
Here, it su ces to show that S;v,; and v, . span a two-dimensional subspace
of HY( ; 3). This can be veri ed by assuming the contrary. From

Vy = ISopv
for somer 2 andv = v,,, it follows
jv(x)j = €°7v(0) = jv(0)]

for all x 2, which impliesv=0 2 HY( ; 3). The rest of the proof is done in
the same way as for the NLS.
[



Chapter 3

Preservation of Solitary Waves
and Their Stability

In this chapter, we consider the spatial semi-discretization of thieeezing system.
Our primary goal is to impose reasonable assumptions that ensutgetexistence
and stability of steady states {,; ,) for the discrete freezing system that are
close to the steady statesw,; -) of the continuous problem.

3.1 Motivating Examples

Let us start with two numerical methods for the spatial semi-dis@tization of the
freezing problem for the nonlinear Schredinger equation
iVi(tX) = V(6 X) ] V(EX)j2v(t; x) (t)v(t; x);

0= (W(tx) -

set in the space of even functions

X =fv2HY( ; ):v(x)= v( X)g:

As in [3], the reason for choosing this space is the preservation of the syatry
relation under the ow of the nonlinear Schredinger equation. Cosequently, the
translational equivariance is broken, which simpli es the stability anbysis.

In terms of notation, we label the approximation parameters as = x;K),
where X is the stepsize of a symmetric and equidistant grid

G =fx;=] x:jjj Kg

Moreover, we emphasize that and C denote generic positive constants that do
not depend on .

3.1.1 Finite Di erence Method

In a nite di erence method for (3.1.1) the derivatives are approximated by dif-
ference quotients. In the simplest case, the spatial discretizatiof the second
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derivative is the central di erence quotient

2vj +V g
X2

(@v ) = g2

By adding Dirichlet boundary conditionsv = 0 = v, , we obtain an ordinary
di erential-algebraic system of the form

i(v)j= (@v) ] i jZVj Vio il <K
0=V « = V; (3.1.2)
0= (v):

The xed phase condition with respect to some discrete template ffigtion ¢ is
given by

(v)= i¢;v

0

Here, the inner product ;
which takes the form

o Is the discrete analog of thel2-inner product,

X
Viy o= X Re(v, y; ):
jjj K
Following [4], we set the problem in the space
X =fv 2X *:v(x)=0for jxj K xg; (3.1.3)
where

X *=1fv *2X:V Yy x.)isanane functionforall j 2 g (3.1.4)

is the nite element subspace ofX that consists of piecewise linear functions.

Here, the identi cation of a vector v, 2 andv 2 X is given by
X X
v(x)=m f—X bV
jji<K
where the functionf: ! is de ned as
8 - -
20; xj> 1L

fx)=_1 x; 1 x O
>
"1+x; 0 x 1L
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Xj 1 Xj Xj+1
Figure 3.1.1: Piecewise linear function

By using the forward di erence quotient

(@v ) =

X

we equip the spac& with a discretized version of theH ! inner product, namely
viy = (@V) (@y) o+ vy

and its corresponding norm, which is denoted by k . We further note that the
backward di erence quotient leads to exactly the same formulas.

3.1.2 Finite Element Method

The nite element method is based on the weak formulation of3(1.1), i.e.,

vy o= ( VYo (] ViZv o vy )o;
0= v ;

which is set in the Hilbert space
X =fv2HY ; ):v(x)=v( x)forall x2 g:
In order to discretize the second derivative, we introduce a linearapping
AcX 1oX
which is implicitly de ned by
AVIY = VeiYx g (3.1.5)

forv ;y 2 X . While the nite element spaceX is the same as for the nite
di erence method, the main di erence of the Galerkin nite element @proach
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is the discretization of the nonlinear part. The standard idea is therthogonal
projection

P : X! X

onto X . Foranyv 2 X the errorv P v of the projection is orthogonal to the
subspacexX , which means

0=v Pvy , (3.1.6)

forally 2 X . Then the corresponding ordinary di erential-algebraic system
takes the form

v, =Av P jvj¥v Vo

3.1.7
0= i¥ ;v ( )

0’

where the inner product ;  is the restriction of the L2-inner product to the
subspaceX . Moreover, for the stability analysis, we equip the spac¥ with
the restriction of the H*-inner product and the corresponding nornk k .

3.2 Abstract Setting

In order to embed the above examples into an abstract setting, i@osely follow
the approach presented inJ]. That is, the discrete problem is considered to be
a small perturbation of the continuous problem. Throughout the rtire Chapter
3, we take the Assumptionsl.2.21.2.5 1.2.14 2.2.2 2.2.3 2.2.7, and 2.2.11from
the previous chapters as given, without further reference.

Let P be a set of approximation parameters. For any 2 P we denote by
X a nite-dimensional subspace oK, which we equip with a norm and a
symplectic form

X X
In analogy to the continuous case, the discrete problem is writtersa
P (u;)=dH (u); (3.2.1)
where
H :X | (3.2.2)
is called the discrete Hamiltonian. In order to get additional conseed quantities
QX A * (3.2.3)

the nite-dimensional Lie group G is assumed to act on the subspace§ via
symplectomorphisms.
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Assumption 3.2.1. For any 2 P the Lie Group G acts onX via a homo-
morphism

a:G! GL(X ); nal ),

whose images are symplectic with respect to . In particular a( )v. 2 X holds
forall 2 Gandv 2 X . Moreover, we have df( )v] 2 X forallv 2 X
and 2A.

The mapping 3.2.3 is the discrete analog of 1.2.7), i.e., we may also write
Q () for 2A. Furthermore, the discrete freezing system takes the form

P'(M;)=dH (v) dQ (v) ;

3.2.4
0= (v): ( )
Further key aspects of the setting are the approximation estimas that we collect
in the following. Givenk 0, a smooth functionalE: X ! , and an open
subsetV X , we de ne its ckv )-norm to be

dEW )y ny ]
Y ’
oY

= cv ) jzfg:e;kgvSZlJVp yo;::I;yJ‘SlZJE nf Og
As in Chapter 2, we X a steady state (»; ») 2 X A , which is stable by
Theorem 2.3.7. We denote byA, the centralizer of , 2 A and byfe;;::;;e.,0a
basis ofA,.
Moreover, we introduce an error functiori: P ! >o. Ifthere exists" nax > 0
such that an estimate holds uniformly for all 2 P with "() "max, then we
say that it holds for " () small enough.

Assumption 3.2.2. For any "¢ > 0 there exists o 2 P such that we have
"( o) "o. In addition to that, the following properties hold for": P ! >0
and all 2 P with "() small enough.

(a) The discrete Hamiltonian (3.2.2 and the discrete quantitiesQ ( )g for
j =1;:::;dh, which are determined by 8.2.3, are invariant under the group
action.

(b) There exists# 2 X that satis es
# v. C'();
where (»; -) 2 X A o is the steady state of the continuous problem.

(c) There exists a constantR > 0 such that the discrete Hamiltonian 8.2.2
and the discrete quantitiesQ ()g, ] = 1;::; dp, which are determined by
(3.2.3, satisfy

H H eEey €05

Q)8 Q)8 w@w, C'O

on Bi(# ), where C depends only orR.
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(d) The discrete and the continuous norm are equivalent in the semshat

cvVv \Y; Cyv

holds uniformly forv 2 X .

Without loss of generality, we may assume that() is small compared to R.
Next, we impose a similar condition as in Assumptior3.2.2c) on the discrete
version of our phase condition.

Assumption 3.2.3. Forany 2 P the mapping
X 1A ]
is twice continuously di erentiable and satis es
( )Q ( )Q CZ(BR (# )) C"()
forj =1;:: 0.

The local well-posedness of an ordinary di erential equation with saoth
right hand side follows from the Picard-Lindel®f theorem. Howeverin general,
estimates depend on the discretization parameters . That is why &introduce
an additional spacexX ;.

Assumption 3.2.4. Forany 2 P with "() small enough there exists a space
X 5 « _ such that Assumption 1.2.14holds for the discretized version of
1

the original problem (3.2.1), where the constants for embedding and continuous
dependence are independent of . Moreover, the mapping

F:Go X ;!A ]
that extends (g;v ) 7! (a(g)v ) is continuously di erentiable.

An additional approximation property is needed for our proof of @gtence of
the discrete steady states. It can be considered as a weakersi@n of Assumption
3.2.4b) in such a way that it covers allv 2 X. The stronger version forv, 2 X
remains una ected by this.

Assumption 3.2.5. For any v 2 X and any sequence , in P that satis es
"( n)! Othere exists a sequence" 2 X " suchthatkv » vk! Oasn!l

3.3 Positivity Estimates

We recall that by Lemma2.2.9 the linearization around the relative equilibrium
of the continuous problem

L, = d 2H (V'_)) sz(V'_)) ?
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is positive on a subspac& X, which is of codimensiord, + d,. To be more
precise, by Assumption2.2.3the Banach spaceX is decomposed into the direct
sumX =W Y Z, whereW is given by LemmaZ2.2.4 and where, due to
(2.2.9, the kernel of L, is given by

Z = fdla( )vo] : 2A0:
Now, we consider a discrete approximatiolv X of this positive subspace.

Lemma 3.3.1. LetW *=span w,”; 5w, andZ 7 =span(z, ;11 z,”) be
subspaces oK *?, the dual space oK , such that the estimates

dQ(v)e w7y, C"() (3.3.1)
and

d (v)g 77 ,. C"0 (3.3.2)

are satis ed. Provided the Assumptions3.2.1 and 3.2.2 hold and”() is small
enough, we obtairc > 0 independent of such that

hoy ;y i cky kK
holds for all

y2Y = y2Xx :w’hy =h7yi=0forj=1;:d
Proof. Let us writey 2Y asy =w+y+zwithw2W,y2Y,andz2 Z.
From LemmaZ2.2.4we obtain 2 Ay with kdQ(v») kx» =1 such that

kwk = hdQ(v-) ;w i = hdQ(v7) ;y + z+ wi = hdQ(v,) ;y i 333
= w ;?;y + dQ(Vo) W ;’?;y ( 9. )

for any w i 2 W ‘%, wherehdQ(v») ;y + zi = 0 is due to (1.2.1Q and (2.2.9.
But, by de nition of Y it holds

w i’y =0: (3.3.4)
p Y
By combining (3.3.1), (3.3.3, (3.3.49, and w * = jw, " it follows
j=1
)Q? . . =D )Q? . .
kwk C j;j dQ(v2)g w7y c"() j jiky k:
j=1 j=1

Due to kdQ(v,) kx-» =1, we conlcude

kwk C"() ky k: (3.3.5)
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In addition to that, there exists 2 A with kd (v») kx> =1 such that we have

kzk  hd (vo);zi = hd (v»);y Wi

P > (3.3.6)
hd (v») z'yi o+ ety i+ ky+ wk

foranyz ? 2 Z ?, where > 0 is obtained in the same way as in the proof of
Theorem 2.2.10 However, by de nition of Y it holds
ke ?:y i =0: (3.3.7)
In the same way as above, the combination 08(3.2, (3.3.6, and (3.3.7) yields
kzk C kyk+ "() ky k :
Due to the triangle inequality, the estimates forkkwk and kzk imply
ky k=kw+ y+ zk k wk+ kyk+ kzk Ckyk+ C"() ky k;
which leads to
kyk? cky k¥ C"() ky k?

by LemmaA.4.1. Hence, we obtain, again by Lemma.4.1 and the positivity of
L, onY (see Lemma2.2.9, the estimate

Loy 5y = Lo(w+y);w+y  ckyk? Cp, 2kykkwk + kwk?
cky k¥ C"() ky k%

where the last inequality is due to 8.3.5, and where the uniform bound by
CL, > 0O is obtained from Assumption3.2.2c). 0

When we handle pertubations ot ,, the extended notation
L(v; )=d?H(v) d*Q(v)

is more suitable, where the relation to the short notation is given byhe identity
L, = L(v»; -). Now, we linearize the right hand side of the discrete problem
(3.2.4 and obtain

L (v; )=d?H (v) d°Q(v)
forv 2 X and 2A,.

Theorem 3.3.2. Under the assumptions of Lemma&.3.1 there existSrpax > 0
such that we have

2

L(v; )y:y cy

forally 2Y and"() small enough. The constant does not depend on and
holds uniformly forv 2 X , 2 A satisfyingj S+ vV OO# I max -
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Proof. From Assumption 3.2.2c) we get
L(v; )y;y L(v; )y;y c'() y ° (3.3.8)

foranyv;y 2 X and 2 Ag such that]j o+t Vv # I max -
Since both the HamiltonianH and the additional conserved quantitiesQ( )
of the continuous problem are smooth in a neighborhood @6 with bounded
derivatives, we further have

L(v; )y:y Loy ;Y CCO+ fma) Y (3.3.9)
provided that | J+ kv #K Imax holds. Then, the estimate
oy ;yi cy

fory 2 Y , which follows from Assumption3.2.4d) and Lemma3.3.1 implies

o(v: )yiyi ¢ CCO+ fmw) Y

Consequently, forrmax 0 small enough, the positivity remains true with a
di erent constant. O

Let us apply Lemma3.3.1and Theorem3.3.2t0

w7 =dQ (# )s;
z7=d #)g

and conclude thatL (# ; ») is positive on a subspace of codimensiah + d- in
X, which takes the form

Y = y 2X : Wj;?;y :hzj;?;yi=0fori=1;:::;d?: (3.3.10)

Indeed, the Assumptions3.2.4b)-(d) give us

dQ(v-)g  dQ (#)g . » C"() (3.3.11)

forj =1;::;d>, and we make use of the Assumptiord.2.2b), 3.2.4d), and 3.2.3
to obtain

d (v)g d (#)g 4., C'(): (33.12)

3.4 Existence of Discrete Steady States

As we have discussed in SectioR.2, the modi ed stationary problem (2.2.17%
possesses a locally unique solution,; ;0 , where v,; ,) is a steady state of
the freezing system.
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In this section, we are primarily interested in nding a solution to the ds-
cretized version of the modi ed stationary problem, which takes t form

O=dH (v ) dQ (v) d (v) ;
0=0Q (v) Q(v);
0= (v):
This problem is set in the spaceX = X A o A ¢ with its norm denoted by

(V’ : )X =V X + A0+ Ao:

In the same way as for the continuous case, it can be written as

S(v; ; )=0; (3.4.2)
where the functionS : X ! X i takes the form
S (vi 5 )= Su(vi 5 )iSalvi 5 )Sslv; )
with
Si(v; 5 )=dH (v) dQ (v) d (v) ;
So(vi 5 )=Q (V) Qv
Saslv; 3 )= (v):
The linerization of (3.4.) at (# ; »;002 X A o A ois denoted by
L =dS (#; »0:X | X7 (3.4.2)
and can be written as a bordered operator
1
L (#: 2) Lo Lis
L =@ L, 0 O0A
Ls, 0 0
with
Lio(# )5y = Laa(#)y = dQ (#)y
and
Lis(# )y = Laga(# )iy = d (#)y

forall 2Agandy 2 X . For"() small enough, the positivity of L on the
2d,-codimensional subspace3(3.1Q is uniform. In addition to that, we obtain
uniform bounds forkL kyx » x from Assumption 3.2.2 and Assumption 3.2.3
Hence, LemmaA.5.1 grants us a decompositior. = A + B into a positive
operator A and a rank-4d,-operator B , which are uniformly bounded for"()
small enough. In the same way, we apply Lemm&.5.1 to decompose

L=dS(vs; »0):X! X%

which is obtained via linearization of the continuous problem, into thewsn of a
positive operatorA and a rank-4,-operatorB, i.e.,L = A+ B:
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Lemma 3.4.1. Provided the Assumptions3.2.1-3.2.3 hold and "() is small
enough, the inequality

A A L.+ B B - C'0 X
is satised forall 2 X .
Proof. From (3.3.9, (3.3.1), (3.3.19, and Assumption 3.2.2we get
L L . C"() " -
The same inequality forB B follows due to A.5.1), and the estimate for
A Ais a consequence of the triangle inequality. O

This estimate is a key step in showing that the linear operator in3(4.2 has
a uniformly bounded inverse with respect to .

Lemma 3.4.2. Provided the Assumptions3.2.1-3.2.3 hold and "() is small
enough, for the inverse o we have the estimate

1
X X ?

L C:

Proof. Assume on the contrary that , 2 Pand ™ 2 X », m2 , form

sequences such thdt( ,)! 0 and " o w = > 0, but

L ™ o= (A"+B ™) ™ 1 0 (3.4.3)

X m;? X m;?

?

SinceB is a compact operator, there exists a converging subsequeBce " ! 7,
n2N . Moreover, from Lemma3.4.1we get

B " B ", .. C'(n! O
which implies
B~ » 7 .10
and, as a consequence 08.4.3,

Ar o+ T L0 (3.4.4)

In order to get the limit of n, let us show that
A= 7
has a unique solution inX. Indeed, the bilinear form
a: X Xl v (1 2) 7TPhA 4 i

is bounded and coercive. Hence, the statement follows from thexX:Klilgram
theorem (see4d]). The solution can be writtenas =(v;; )2 X A o A o
By Assumption 3.2.5 there exists a sequence " =(v,; ; ) such that

ern IO (3.4.5)
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which implies
n ') .
Ae " + w oo b O (3.4.6)
Furthermore, the triangle inequality, Lemma3.4.1, and (3.4.4) yield
n ’) n n n n n 7 -

A + X ni? A A xn:?+ A + X ni? ! O’

which, due to 3.4.6, gives us
Ae" A .1 0

Consequently, we get

e, ,, CA " Ae" ,! O
from
n ny- n n n n 2
A( en); e c e" L,
Hence, combining Lemma3.4.1with the inequality
(A+B) » (A+B)e" ,, C " e" |
yields
(A+B ") ~ (A+B)e"  ,! O
This implies
(A+B)e" 1 0

due to (3.4.3, and we obtain A+ B) =0 from (3.4.5. Since = 0 follows
from Proposition 2.2.13 we conclude

n I 0

X n

which contradicts the assumption. O

Next, we show that 3.4.1) has a locally unique solutionv,; ,; , and, after
that, deduce , =0.

Lemma 3.4.3. Provided the Assumptions3.2.1-3.2.3 hold and"() is small
enough, the modi ed stationary problem

O=dH (v) dQ (v) d (v) ;

0=0Q (v) Q(w);
0= (v)

possesses a locally unique soluti¢a,; ,; ,) that satis es

Kv, Vok+ ] 5 A+ ] o 2 C"():
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Proof. The main idea is to apply LemmaA.6.1 with the operators

and
L+F=S :X ! X7
We are left to verify the requirements. First of all, from Lemma3.4.2we get

1
(L)lx X;?

C:

Second, provided that > 0 is small enough, the mean value theorem implies

F(l) F(Z)x:?zs(l) L 1 S(Z) L 2 x 2
sup dS ( ) L -

X ? X 1 2 X
2B

G
E 1 2 X

for 1; ,2 B . Here, we denote byB the ball around # ; -;0) 2 X ? with
radius , and dS is equicontinuous in & ; -;0) because of Assumptior8.2.2
and Assumption 3.2.3 Third, for "() small enough, we obtain the estimate

C

(L+F)(#: 20), = S (#: 20, C0O 5

by combining Assumption3.2.2and Assumption3.2.3 Finally, we make use of
kv, Wk kv, #Kk+k# vk Cv, # +C"();
which is due to Assumption3.2.2 O

In order to show , =0, we adjust LemmaZ2.2.12to the discretized problem.
This is possible due to the invariance properties from Assumptiodi2.4a).

Theorem 3.4.4. Under the Assumptions3.2.1-3.2.3 and for "() small enough,
the stationary problem

O=dH (v) dQ (v) ;

0=Q (v) Q(vo);
0= (v)

possesses a locally unique solutiga,; ,) that satis es

kv, vk+j , 2 C"():
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Proof. By taking (v,; ,; ) from Lemma 3.4.3 we only have to show , = 0.
Due to Assumption3.2.4a) the discrete Hamiltonian is invariant under the group
action. Dierentiating at = the identity

H a( )v, =H (v,)

gives us

hdH (v,);d[a( )v,] i =0 (3.4.7)
forall 2 Ag. In the same way, we get

hdQ (v,) ,;da( )v,] i =0: (3.4.8)
Since the solution ¢,; ,; ) of the modi ed stationary problem satis es

0= dH (v,) dQ (v,) » d (v,) ,;d[a( )v,]

forall 2 Ay, the identities (3.4.7) and (3.4.8 give us

hd  (v,) »;dla( )v,] i =0:

Finally, the Assumptions 2.2.11 3.2.2 3.2.3 and Lemma 3.4.3 taken together
imply -, =0. O

Remark 11 In [3] the authors follow a slightly dierent strategy to prove the
existence of a discrete relative equilibrium. Their proof is very elegaand much
shorter than ours since it is adapted to the speci c case of the owénensional
Lie group of gauge transformations 7! € and the resulting explicit formulas.
Even though this is the main application, we want to keep the abstracsetting
as general as possible.

3.5 Stability of Discrete Steady States

The question arises, whether the steady states{; ,) of the discretized freezing
system is stable in the sense of Lyapunov. In our proof of stabilityye proceed
in a similar way as for the continuous problem in Sectio2.3. This is why, we
indicate the main steps, but we do not go through all technical deila. The rst
step is to ensure the existence of solutions of the discrete fregzsystem with
initial data close to the steady state, where, in analogy to Lemm& 3.1, the phase
condition is solved by an implicit function.

Lemma 3.5.1. Provided"() is small enough and the Assumptiorn3.2.1-3.2.4
hold, there exist open neighborhood$, G, X ,of( ;v,) andU, X ; of
v, and a smooth function

g:U,! G;

such thatF (g;u)=0 and(g;u)2 U, ifandonlyifg=g (u ) andu 2 U,.
These neighborhoods haveindependent size in the sense that there exists 0
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such thatdistg( ;Q) and v v, imply (g;v) 2 U, andv 2 U,.
Moreover, we have
dg (u)=  Fy(g (U)u) 'Fy (g (u)iu): (3.5.1)

Proof. As in LemmaZ2.3.1 we apply LemmaA.3.1. Due to the Assumptions3.2.2
and 3.2.3 the mapping F from Assumption 3.2.2is continuously di erentiable
and there exists a -independent local bound for its derivative. Fothe same
reason and Theoren8.4.4 the Jacobian submatrix
h g
d (v,)e;da( )v,lg

is a small perturbation of the matrix in Assumption2.2.11b). Hence, its inverse
is uniformly bounded by Banach's Lemma. Moreover, the Lie subgrpusG, and
the Lie subalgebraA, do not depend on , and that is why the coordinate
representation is -independent. Following the proof of LemmaA.3.1 in [61], we
conlude that U, and U, have -independent size. O

Theorem 2.1.2together with the implicit function g allows us to show that
the freezing system is locally well-posed for initial data close to thelagive equi-

librium, where the distance is measured in the « _-horm, which is weaker
1

than the -norm.

Lemma 3.5.2. Provided the Assumptions3.2.1-3.2.4 hold, for any initial value
Up 2 X \ U, such that (uy)=0 the freezing system

D (v;)=dH (v) dQ (v) : Vv (0)= up;

0= W) (3.5.2)

has a unique local solutiorv 2 C(I ;X )\C!(l ;U,), 2 C(I ;ApQ) on an
open intervall . Furthermore, the conservation laws

H (v ()= H (up);
Q (v (1) =Q (u): 2Aq;

hold for allt 21 , and we have the following blow-up alternative. (T * ;T )
Is the maximal interval of existence such that (t) remains in X \ U, and
T * <1, then

1

min  distcy, ) v (1), @Y ;W 0]

ast!'T *.

Proof. By Assumption 3.2.4a), the quantitesH andQ () are invariant under
the group action. Hence, Theoren2.1.2 can be applied to the discrete problem
and yields a local solutionv : I I X , I I A of the freezing system
(3.5.2. Since no uniformity in is required, we proceed in the same way as in
the proof of Theorem?2.3.2 O
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In the same way as for the continuous problem, the distange (0) N
depends continuously orku, VK.

Lemma 3.5.3. Let the Assumptions3.2.1-3.2.4 be satis ed and”() be small
enough. For any > O there exists > 0, which does not depend on, such that
U, 2 B (v,) satisfying (uy) =0 implies

(0;uy) 2 <
where the solution of 8.5.2) is denoted byt 7! v (t;up); (t;up) -

Proof. The group operations do not depend on , the continuous dependee on
the initial data is independent of (see Assumption3.2.4), and the estimates on
(3.5.) are uniform, as discussed in the proof of Lemm&5.1 This is why, we
proceed as in the proof of Corollar®.3.3 O

The proof of stability is now based on the linearized operator
L, =1L (v,; »): (3.5.3)
Due to Lemma3.3.], it is positive on the subspace
¥ = 92X :dQ (v,); 9 =h (v,);¢i=0foral 2A,: (3.54)
Indeed, combining TheorenB.4.4and the Assumptions3.2.2b)-(d) yields
dQ(v)  dQ (v;) , . C"()] i
and together with Assumption3.2.3we obtain
d(vo) d (v) . COIJl

Next, in accordance with the setting for the continuous problem, & choose
such that dQ (v,)ey; :;;dQ (v,)eqy, is the dual basis of  e;:;; e, .
What follows is an analog of Lemm&.3.4

Lemma 3.5.4. Provided"() is small enough and the Assumption3.2.1-3.2.3
hold, there exist uniquely de ned smooth functions

X TA o
X TA o
such thatG (; ;v )=0ifandonlyif = (v), = (v), where
G 1
G = G 2
is given by
h ) id?
G ;v )= dQ (v)e;v v, da( v.] 1;
|

h i g

d-»

G ?2(; Y ): d (V?)ei;v Vs, d[a( )V?]



88 Chapter 3. Preservation of Solitary Waves and Their Stability

Moreover, we have the estimate

v) + (V) Cv v, ° (3.5.5)
forallv 2 X \ U, that satisfyQ (v )g = Q (v,)g and (v )g =0 for
j =150,

Proof. By Assumption 3.2.2 Assumption 3.2.3 and Theorem3.4.4the Jacobian
submatrix with respect to and is invertible by Banach's Lemma as a small
perturbation of (2.3.9. The estimate 3.5.5 is -independent due to the -
independent approximations of the continuous functionals (see gisnptions3.2.2
and 3.2.3. O

Now, we make use of the positivity of., on ¥ , where the former is given by
(3.5.3 and the latter by (3.5.4, to estimate v v, interms of the di erence
of the discrete Hamiltonian ofv andv,.

Lemma 3.5.5. Letv 2 X \ U, satisfyQ (v )g = Q (v,)g and (v )g =0
for j =1;:::;dy. Provided the Assumptions3.2.1-3.2.4 hold, we obtain

H(v) H() cv v?2

for "() small enough.

Proof. We proceed in the same way as in the proof of Lemnfa3.5 where we
have to make sure that the constanic > 0 does not depend on . From the
Assumptions3.2.4c) and 3.2.3 we conclude that the estimates for the remainders
of the Taylor expansionsoH (v ) Q (v ) , aroundv, are uniform with respect
to . Due to Lemma 3.3.1and Theorem3.3.2 the same holds for the positivity
of the linearized operatorL, = d?H (v,) d?Q (v,) , and uniform estimates
for and from Lemma3.5.4are given by 3.5.5. O

In general, the initial data do no satisfyQ (uy)g = Q (v,)g forj =1;:::;0h.
But, the error can be estimated in terms of the distance betwean, and v, .

Lemma 3.5.6. Provided"() is small enough and the Assumption3.2.1-3.2.3
hold, there exists > 0 such that for allv 2B (v,) there arew (v )2 W and
z (v)2Z that satisfy

Q v +w(v)+z(v)
v +w (v)+z(v)

Q (v,);
(V>)

forall 2 A and can be estimated by

w (v )k +kz (v) C Q(v) Qva),+t (V) (V2) a7

Proof. As in the proof of Lemma3.5.6 we make use of the implicit function
theorem. Due to the Assumptions3.2.2and 3.2.3 the size of the neighborhoods
> 0 does not depend on , which is shown in the same way as in Lemrisb. 1
In the second step, we obtain the uniform estimate due to the Assytion 3.2.2

and 3.2.3 O
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Theorem 3.5.7. Under the Assumptions3.2.1-3.2.4, the discrete relative equi-
librium (v,; ) is stable in the following sense. For any> O there exists > 0
such that for allt 2 [0;1 ) the solution(v ; ) exists and satis es

v v, + (1 5,
provided" () is small enough and the initial satisfy v (0) v,

Proof. As in the proof of Theorem2.3.7, we assume rst that thev -component
IS not stable, i.e., there exists a sequence of intervdlg and solutionsv,", such

that we have v,"(0) Vv," L butsup v,"(t) V," for all n 2
n t21 n ' n

Let t, be the rst time such that v,"(t,) v," =3 Since the discrete

quantities H and Q are equicontinuous with respect to by Assumption3.2.2
and conserved quantities by Lemm&.5.2 we conclude
H"v"(ta) H"(vw)=H"v"0) H"(v) ! 0
Q" Vv,"(th) & Q(v,")g=Q" v,"(0) g Q" (v,")g! O

asn!1l forj =1;::;d,. By Lemma 3.5.6there exist sequences/,” 2 W "
and z," 2 Z », such that the two identities

Q "(va" (tn) + Wy + 7,7)g = Q "(V,")§;
"o (tn) + Wy +Z0)g = (Vo) =0

hold forj =1;:::;d, and such that

n

Wy 4z CoQUI () QU T ()

is satised. From Q "(v,"(t,))g Q "(v,"(tn))g ! Oand r(v,"(t,))g =0
forj =1;:5d, itfollows w," + z» I Oasn!l . Furthermore, the
inequality in Lemma 3.5.5takes the form

H n(Vnn(tn)-l_ w," + Znn) H n(V?n) C Vnn(tn)+ W," + Z," Vo" zn:
By combining w," + z," 0o andH ~(v,"(t,)+w,"+2z") H "(v,")! O,

which is due to equicontinuity ofH , it follows

Vnn(tn) V?n o

n

which contradicts the assumption. Finally, by using Lemma.5.3 the stability
of the -component is proven in the same way as for the continuous case. O

3.6 Veri cation of the Hypotheses

Let us show that the nite di erence method and the nite elements method
from Section3.1 t into the abstract setting. In both cases, the approximation
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parameters = ( x;K) determine grid spacing and grid size, and we have
2P = . . Moreover, the discrete spaceX are given by 3.1.3, and
the group actions

a:G! GL(X ), T7ra(), (3.6.1)
take the form
a( )v =e'v:

The Lie group G = S? is abelian, and its Lie algebra is given b =
At rst, we put our focus on the nite di erence method from Section 3.1.],
where we recall that the forward di erence quotient is written as

Vigg Vi
(@v ) = I—- ” =

Proposition 3.6.1. Provided that the phase condition of the continuous problem

(2.3.3 is of the form 0 = i%;v ; where the template function® 2 H( ;)

decays exponentially agxj ! 1 , the nite di erence method with the error

function

()= x+ %e Ko (3.6.2)

for some > 0, which depends only on the decay rates ®fand v,, satis es the
Assumptions3.2.1-3.2.4. Furthermore, the mass functional is given by

X

QW) == x Vi (3.6.3)
j2

and the Hamiltonian takes the form

X j@v iz ivit
2 4

H(v)= x (3.6.4)

j2

Proof. Let us start with Assumption 3.2.1 From the de nition of X in (3.1.3,
we conclude thatvy 2 X impliese'v 2 X forany 2 G. Hence, the
mappinga in (3.6.]) exists. Moreover, it is a group homomorphism sinca ( )
is the restriction ofa( ) from X to the smaller spaceX . The discrete symplectic
form on X is given by
X
' (viy)= X Im(v; y; ):

j2
For any given 2 G we write = € , and since we have =1, it follows

X
' (v;y)= X Im( v; y;)= X Im(v; ;) =" (v3y);

i2 i2
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which means the images of are symplectic with respect to! . In addition to
that, we get

da( )v] = iv 2X

forany 2A.
Next, we consider Assumption3.2.2 Given any "y > 0, we choos&K( 2
such that the inequality

2 8
Ko Tln w3
0 0

holds. By plugging this into 3.6.2, we get"( o) "o for

Furthermore, di erentiating ( 3.6.3 and (3.6.4 gives us

X

dQ (v ) vy =? X Re(v, y;)
j2

and

X 1
dH (v );y = X 7Re( Vi 2V V)Y, Rejvjjzvj Y|
j2

These terms coincide with 8.1.2, and the invariance under the group action
follows directly frome e ' =1 forall 2 G. The estimate in part (b) has been
proven in [3], where# 2 X is determined by

#o=va(x); 2

In addition to that, part (c) has been proven in {], and (d) is due to B].
Next, we verify Assumption3.2.3 As the discrete template function we pick

0 =%(x); ]2
Since

Viy o= X Relvy) (3.6.5)
i2

is a (real) inner product, the mapping : X !A ? which is given by

(y) = i9%y o 2A;



92 Chapter 3. Preservation of Solitary Waves and Their Stability

is linear. Let us consider the di erence betweenv ;y and v ;y  forany
v ;y 2 X . Since theL2-inner product for piecewise linear functions yields

X 21
Viy ,= X . Re (tv; +(1 )y )(ty; +(1  t)yj,) dt
j2
Z X Z
= x Relyy) 2%dt+ x Re(v.y) 21 ttdt
j2 0 i2 0
2 X 1 X
j2 j2

we obtain the inequality

1 X
vy Viy o = 3 X Re (Via V)Y,
j2
1
§ X @V 0 y ;0
c'() v vy

For e; = 1 this implies

(ylee (Y)e sy o sy o+ 0@ 0y
c'() y

where we applied the Cauchy-Schwarz inequality and the estimate

¢ Py C05
which is obtained in the same way as in Assumptio8.2.24b).

Assumption 3.2.4 holds for X ; = X ?. The linear part of the discretized
NLS is represented by a bounded, symmetric operatéxr : X ! X _;?. For any
t 2 the evolution of this linear part leads to an isometryv 7! €# v , and
due to Assumption 3.2.2d), estimates for the nonlinear part are uniform with
respect to . Hence, uniform estimates for the continuous depeéence follow from
Duhamel's formula and Gronwall's inequality. Moreover, the mappind : G
X A ?that extends

(a( )v)= iv;ev |
is smooth with respect to and linear inv .

We are left to consider Assumption3.2.5 i.e., we pick a sequence " and

show that for any > O there existsN 2  such thatn >N implies

VYOV oy < (3.6.6)

Duetov 2 HY( ; ), for > 0andany > O there existsM = M(; )> 1
such that the inequalities

Ve swmy T Vi ) S @ (3.6.7)
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and
sup jv(x)j: M+1<x<M 1 < (3.6.8)
hold. We choose = 5 andw2 H?( M;M ; ) satisfying the estimate
YOV o ) S @ (3.6.9)

Furthermore, we pickm 2 (0;1) and a sequence " such that ( x), <m and
( X)nKn>M imply

v " v Hl( M:M ; )< E (3610)
and
n n 3.
Vi owy T Y ) S e (3.6.11)
s M -
>
Xj 1 Xj Xj+1

Figure 3.6.1: Cut-o for v

While the former is due to nite element interpolation on bounded intevals,
the latter is obtained from (3.6.§ and by choosingv "(x;) = 0 if Xj4+1 M or
M  X; 1. Indeed, this gives us

n n m _
v L2(1;M;)+ v LZ(M;l;)<2m+212 4

and

V" L2(1 ;M;)+ V" L2(|\/|;1;)<2 (2+1)E:§:
From (3.6.2 and "( ,) ! O,weget( x),! OandK,( x), !'1 . Hence,
there existsN 2  such thatn > N gives us ( X), <m and ( X),K, > M.
By combining (3.6.7), (3.6.9, and (3.6.1Q), we obtain (3.6.6 for n > N , which
nishes the proof. O



94 Chapter 3. Preservation of Solitary Waves and Their Stability

Next, we turn our focus to the discretization via nite elements andverify the
same assumptions.

Proposition 3.6.2. Provided that the phase condition of the continuous problem
(2.3.3 is of the form 0 = i%;v ;; where the template function¢ 2 H( ;)
decays exponentially agxj ! 1 , the Assumptions3.2.1-3.2.4 are ful lled for
the nite element method with the error function 8.6.2). The constant > 0

in (3.6.2) depends only on the decay rates &f and v,. Moreover, the discrete
Hamiltonian H = H . and the discrete masQ) = Q, are given by the
restriction of H and Q.

Proof. The Lie group G, the group action 3.6.1), and the spaceX are the
same as for the nite di erence method. Furthermore, we can salethe same
# 2 X . Hence, the Assumptions3.2.1, 3.2.4b), and 3.2.5were already veri ed
in Proposition 3.6.1 Di erentiating

Z

Hw)= 3w (2 Lvj* dx

gives us

hdH(v )iy i = vy, o iViviy

= Av;y , P (Gviv)y
where the last step is due t03.1.5 and (3.1.6. Moreover, di erentiating
Q(v )= ‘ 3iv j2dx
yields
hdQ(v) yi= vy

Hence, the discretization 8.1.7) is obtained by restrictingH and Q to X . Fur-
thermore, as restrictions ofH and Q, the discrete HamiltonianH = H , and
the discrete mas®QQ = Q, are invariant under the group action. The inequali-
ties in (c) follow fromH =H , andQ = Q, ,andfrom v = kv kfor all
v 2 X we get (d). Moreover, the template function in Assumptior8.2.3can be
chosen as in Propositior8.6.1 Finally, Assumption 3.2.4is satis ed by choosing
the spaceX ; = X *. The proof is done in the same way as in Proposition
3.6.1 O



Chapter 4

Truncation and Discretization for
the NLS

4.1 Analysis of Boundary Conditions

In Section1.3.1we have seen that due to the scaling property and the Galilean in-
variance, the solitary wave solutions of the nonlinear Schredingeiquation appear
as a two-parameter family of the form

Us(t;x) = e " ttvp(x 5t):

However, applied to this specic problem, the stability result in Chapér 3 is
subject to the restriction , = 0 with symmetric perturbations &(x) = e( Xx).
As pointed out in [3], the general case is far more complicated since the action of
the group of translations is much harder to handle. This is no di eranfor the
freezing method.

In the following, we study the impact of discrete approximations onhe con-
servation of energy, mass and momentum, which is a key aspect loé tstability
theory in Hamiltonian systems. However, as an intermediate step.evstart with
the restriction of the freezing system to a nite interval.

While we take as a model problem the nonlinear Schredinger equatiogim-
ilar computations can be made for other problems, such as the norar Klein-
Gordon equation.

In contrary to Chapter 3 we omit in our notation the impact of perturbation
parameters . Since there is no risk of confusion, we writg instead ofv for
functions on the nite interval [X ;x.]. Moreover, we note that the suppressed
notation v = v(t) = v(t; X) is used once more.

4.1.1 Separated Boundary Conditions

With the freezing ansatzu(t) = a( (t))v(t) the cubic nonlinear Schredinger equa-
tion on a nite interval with separated boundary conditions is trangormed into
iVe(tX) = Ve (BX) J V(EX)JPV(EX)  1(OV(EX) + T o)k (t X);

Ve (X )= g (v(t;x )); (4.1.1)
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where we hava 21 andx 2 (x ;x.). On the real line, the skew-symmetry
Re(vy)dx = Re(vyy)dx

of the di erential operator

%:Hl( )L L3 ) VT v

simpli es the weak formulation. In contrary, adjoint di erential op erators on -
nite intervals contain additional terms, which depend on the bounds conditions.
To be more precise, we take a function

V2C I;H? (x ;%4); VCL L2 (x xy);

that satis es equation (4.1.7) in L2 (x ;x;); -sense and/2 H! (x ;x.);

Thenzthe complex conjugationi = i and integration by parts lead to
X+ X+ X+
Re(v;y)dx = Re(vy, y)dx + Re(jvj?vy)dx
g g Z X+ ) Z X+
+ 3 Re(vy)dx + » Re(ivyy)dx
o Zax oz,
= Re(WY) X+ Re(vy Yy )dx + Re(vj2vy)dx
Z X+ " Z X+ "

+ 3 Re(vy)dx + » Re(ivyy)dx

X

=Re g (v(x.)y() Reg (v(ix )y(x )

Re(vy yy)dx + Re(jvjvy)dx
“Z . “Z .
+ Re(vy)dx + » Re(ivyy)dx;

X X
which is the weak formulation of 4.1.1).

Proposition 4.1.1. The weak formulation is a generalization of4.1.1) in the
following sense. A functionv 2 C | ;H? (X ;X4); \C11;L?% (X ;X:);
is a solution of @.1.1) if and only if it ful lls the weak formulation.

Proof. The only-if-part has already been proven. In order to show the pgart, we
only considery 2 H} (x ;x+); . Hence, we gey(x ) =0 and conclude

Re g (v(;x ))y(x ) =0:

Consequently, the weak formulation takes the form
z z

Re(v;y)dx = Re(v,yy)dx + Re(jvj?vy)dx
X X Z X Z
X+ X+
+ 1 Re(vy)dx + » Re(ivyy)dx:

X X
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Integration by parts leads to

X4 Z X4 Z X+
Re(v;y)dx = Re(vy, y)dx + Re(jvj?vy)dx
X X X
Z X+ Z X+
+ Re(vy)dx + > Re(ivky)dx;

which is rewrittenzas

X+

0= Re (ivi Vi j ViV 1V i 2wy dx
X
Z X+
= Re y(ivi + Vi + JVJ2V+ 1V 0 ov) dx:
X
SinceH} (x ;x.); isdenseinL? (x ;x.); ,we obtain
Vi = Ve | VAV Vv H T oV (4.1.2)

inL2 (x ;x:); -sense.
We are left to verify the boundary conditions. For the right bounday, we
de ne a function

y (X ;Xe)! ;O XT7IX X (4.1.3)
Since @.1.2 holds inL? (x ;x;); -sense and/(x )=0, we have
Z,. Z,. Z,,
Re(iviy)dx = Re(vy( ; X+ )Y(X+)) Re(vycyy)dx + Re(vj2vy)dx
) Z X+ § Z X+ "
+ 3 Re(vy)dx + » Re(ivyy)dx:
X X

However, the weak formulation gives us
Z Z Z

X+ X+ X+

Re(wviy)dx = Re g. (V(;X+))y(X+) Re(vxyy)dx + Re(vj2vy)dx
X Z XZ X

+ 3 Re(vy)dx + Re(ivyy)dx:

X X

Subtraction of these formulas yields
Re(v(;x+)) =Re g (v(;X+))
since we have/(x+) = X+ X 2 .. Furthermore, replacing @.1.3 by
yi(X ;Xe)! o XT7Hi(x x )
gives us the identity
IM(vie(;x+)) =1Im e (V(5%4)) -

Hence, the right boundary condition is veri ed. The left boundary ondition can
be handled in the same way. O
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Now, we are ready to discuss the impact of the boundary on the tinewolution
of mass, momentum and energy. Since all these functionals are tomrous on
H! (x ;x4); ,itsucestoconsider adense subset of initial data with solutions
iNC1;H? (x ;x); \CL ;L2 (X ;%X4); , and due to Proposition4.1.1
the cubic nonlinear Schredinger equation iL? (x ;x.); -sense is equivalent
to its weak formulation.

On a nite interval ( x ;X+) the mass is given by the formula

Z X+
Qu(v) = Zivi‘dx:
X
Hence, its derivative takes the form
Z X+
hdQq(v);yi = Re(vy)dx:

X

For the total derivative with respect to time this means
gh i Z .
a Qu(v) = hdQy(v);wi = Re(vv)dx
Z,, " (4.1.4)

Re V(ivy + ijVj2v+ i v+ ov) dx;

X

provided thatv2 C | ;H? (X ;X4); \CL ;L2 (X ;X4 solves ¢.1.1).
The linearity of the integral allows us to analyze each term in4(1.4 separately.
First of all, we note that the second and third term can be rewritteras

Z,. Z,,
Re vijvj?v dx = Re ijvj* dx
X X
and
Z,, Z,.
Re vi 1v)dx = Re i ijvj®)dx:
X X

However, these expressions vanish singg* and 4jvj? are real-valued. Second,
the same argument and integration by parts give us

Z Z

X+ X+

X+
Re(Vivy )dx = Re(vivy) Re(vy ivy)dx
X X X
Z X+

= Re(vivy) - Re(ijvyj?)dx (4.1.5)
X
= Re(iwv) .
X

for the rst term. The remaining term is slighly more di cult to handle. We
state as a Lemma the general formula for the inner product of, and juj? u.
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Lemma 4.1.2. Foru2 H! (x ;x:); and 2 we have

Z
X+ X+
2 — il 2
) Re(uyjujc u)dx = > +21u1 )
Proof. By writing u= a+ ib, we get
g [ g +li
d—Xjsz 2= ax a+ I =( +1)(a’+ I¥) (2aa +2bk)

=( +1)(a*+ ) Re2(a ib)(a+ib) =( +1)juj’> Re(2uu)
= (2 +2)Re(uyjuj? u):

This implies
Z X+ Z X+
Re uy(x)ju(x)j® u(x) dx = d ju(x + ")j% 2 dx
X « d_r=02 +2
d Z x.
- H ny:2 +2
T @ e, 2w U X
— d e 1 . i2 42
ST .. 2 +2]U(X)] dx
_ 1. 2 42 (T
which was to be proven. [l
Applying Lemma 4.1.2with = 0 gives us
Z X+ Z X+ X
Re(v »v)dx = 5 Re(v,v) dx = ?zjvj2 ; (4.1.6)
X X X

Summing up @.1.5 and (4.1.9, the identity in ( 4.1.4 becomes

h [ “ “
g Q) =Re(viv) ~+ Ezjvj2 : (4.1.7)
X X

The mass is conserved if this derivative vanishes. In case of sepsgtaboundary
conditions this means

Re v(;X+) ivg(;X4) + ?Zv( X+) =0;
which is true if and only if v( ;x;+) =0 or
Vy(5X4) = i?2+ r+ v(;X+)
holds for somer. 2 . Here, we have to remark that a boundary condition

V(3Xe) = 0 23 V( i Xe)

is slightly more general than our initial approach. The left boundarys handled
in the same way.
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There is still some freedom in the choice of the parameter 2 , whence
we turn our focus to the conservation of the next functional. Thenomentum is

de ned as
Z Z

. X+
|

- (WwVv vy )dx =
4
yA

X+

Im(vvy)dx

NI =

Q2(v)

X

Re(ivyVv)dx:

Z

X+ X+

1
Re(ivv) = =
X § 2 X

NI =

Since the derivative of this functional is given by
Z Z

1 X+ 1 X+

> Re(iyxVv dx + > Re(ivyy)dx
* 1Zx * 12 x

> Re(iyvy)dx + > Re(ivyy)dx
'z 7,

Re(ivyy)dx + % Re(ivyy)dx

= %Redvy) . + Re(ivyy)dx;

X

hdQz(v); yi

1R X+
> e(iyv) §

X+

= ZRefvy) "+
2 X

NN =

the total derivative with respect to time takes the form
dh | 1 o L
gr Q) = hQe(v);wi = SRe(vw) —+ ) Re(ivkvi)dx: (4.1.8)
The computation of the right hand side requires the evaluation o at the bound-
ary x . Even if this time derivative at these points exists in a suitable sensae
do not know its values.
In an attempt to bypass this problem, the question arises whethexe can

modify Q, by adding a boundary functionalQ3 such that the boundary terms in
(4.1.8 cancel out, i.e.,

QYY) i = JRe(vy) -

Let us check the Schwarz integrability condition for such a functiaal. By setting
v(x )= a +ib andy(x )=c +id , we get

%Reiv(x )y(x ) = %Rei(a ib )c +id ) = %(bc ad)
=2b oA g

which leads to

0 1
c
1 e 1 %dg_
ERe(lvy)x—E b a b a A
d.
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But, from
0 1
b
rQb(a'b'&'n):}%a §
2T 2@h A
a.
we conclude that the second derivative is represented by the Hessmatrix
0 1
0O 1 0 O
1B1 0 O g ,
2 0 0 !
0O 0 10

which fails to be symmetric. This contradicts the integrability assumgon.

4.1.2 Periodic Boundary Conditions

This issue can be avoided by choosing periodic instead of separatenlitdary
conditions. In terms of the nonlinear Schredinger equation thedeoundary con-
ditions are a very popular choice. For the local well-posedness wéereto [13],
while the existence and stability of ground states has been proven [ibl] and
[12]. The weak formulation of

Vit X) = V(X)) J V(EX)JPV(EX)  a(OV(EX) + T o) (t x);
0=v(t;x+) wv(tx ); (4.1.9)
0=we(t;x+) W(t;x )

fort 21 andx 2 (x ;X.) is given by
z z z

Re(v;y)dx = Re(v,yy)dx + Re(jvj?vy)dx
X “Z,. “Z,. (4.1.10)
+ 1 Re(vy)dx + » Re(ivyy)dx:
Here the corresponding space of test functions Hq}er (X ;X+); , and we con-
sider generalized solutions 2 C | ;H[}er (X ;X4); . Due to the periodicity,
the boundary term in (4.1.8 vanishes, and we get
gh i L
m Qa(v) = Re(ivyvi)dx: (4.1.11)

X

Again, there is no loss of generality in choosing a dense subset of initiata
that leads to su ciently smooth solutions since the conservation pperty for
generalized solutions follows by continuity of the momentum functia.

Proposition 4.1.3. Forv2C | ;H? (X ;X:); VCL ;L2 (X (X4 ) the
strong formulation (4.1.9) and the weak formulation 4.1.10 are equivalent.
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Proof. If v2C I ;H? (X ;X); \CL1;L? (x ;%:); solves @.1.9, then
integration by parts yields
Z Z

z
X+ X4 X+ X+
Re(iviy)dx = Re(vy) ) Re(vycyy)dx + Re(vj2vy)dx
X z, z, (4.1.12)
+ Re(vy)dx + Re(ivyy)dx;

X X

and the boundary term vanishes for any 2 ngr (X ;X+); . Moreover, we
havev 2 C | ;nger (X ;X4); due to the boundary conditions.

Now, letv2 C I ;H? (X ;X:); \CL ;L2 (x ;x:); solve @.1.10.
For any test functiony 2 H} (x ;xi); \ Héer (X ;X+); we rewrite the
weak formulation 4.1.1Q as

Z,,
0= Re (ivi Vi j VIV v i 2wy dx
X
Z X+
= Re y(ivi + Vi + jVj2V+ v 0 ov) dx:
X
SinceHJ (x ;x+);  \ ngr (X ;X4); is a dense subset df? (x ;X:);

the di erential equation in (4.1.9 holds, and we are left to check the boundary
conditions. The rst boundary condition, i.e., v(t;x+) = v(t;x ), is ful lled by
any v(t; ) 2 H[:)Ler (X ;X4+); . Inorder to verify the second boundary condition,

we subtract (4.1.10 from (4.1.12 and obtain
X+

0 = Re(wy)

X

forally2 HY, (x ;x:+); . Then it follows v, (t;X+) = W (t;x ). O

per

Due to this equivalence, we can consided(lL.1) in L?-sense for smooth
enough initial data. Replacingiv; by the right hand side of the di erential equa-
tion in (4.1.9 yields

gh i 2 Zy,

g QM = Re(ivyVv;)dx = Re Ve( Vix | VIV v+ o)
X X

As before, we analyze each term separately. First of all, we have

Z X+ Z X+
Re(ivy 2V )dx = Re i ,jwj% dx=0
X X
since ,jvyj? is real-valued. Second, we apply Lemm&l.2with =1and =0,
which gives us
Z X+ X4

. 1 .
Re(vyjvj?v)dx = ZrJV]“ (4.1.13)
X

X



4.1. Analysis of Boundary Conditions 103

and
Z X+ 1 X4
1 Rew)dx = —jvi* (4.1.14)
« 2 X
respectively. Finally, Lemma4.1.2applied tov, and =0 yields
Z X+ Z X+ 1 X4
Re(vy Vi )dx = Reyy Vx)dx = éjvsz : (4.1.15)
X X X

For periodic boundary conditions all these terms vanish, so that eamomentum
Q: is a conserved quantity.
Let us address the question whether it is possible to nd other bouiatry

conditions with the same property. First, we recall that the term I%(vy) in

Z X+ X
Q)i = Refuyldx  SRe(vy)
X

X

must vanish for all times. Hence, we require

vt x4 )j? vt x )j? =

which means that @.1.13 and (4.1.19 equal zero. Since4.1.15 is left, we get
gh [
a Qz2(v) = hdQz(v);wi =

1 %
M

and the resulting requirement is
(6 x4)j? ] w(tx )j#=0

This leads to periodic boundary conditions, except for some freedon the choice
of the complex argument.
We are left to consider the conservation of the Hamiltonian

Z,.
H(v) = 3iwi? 3vit dx
X
with its derivative given by
Z,,
hdH (v);yi = Re WYy | Vj2vy dx
X

X+ Z X+

= Re(vxy) Re (Vi + jVj?v)y dx:
X

X

For the total derivative with respect to time it follows

gh i Zy.
5 H(v) = hdH(v);wi = Re (Vi + jVj2V)Vv; dx:
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Again, we replacev; by i(vi + jVj?v+ V) + .V, and split the sum into three
terms. The rst integral

z z

X+ X+
. . o . .o 2 X+
Re i Vi + JVj2V Vi + jVj?v dx = Re i Vi + jVj?v
X X

equals zero sincevyy + jvj?v ? is real-valued. Moreover, integration by parts and
the above argument applied tgv,j2 and jvj* yield

Z X
+ X4
Rei Vi +jVj2v v dx = 1Re(ivv) : (4.1.16)
X X
In order to rewrite the last term, we apply Lemma4.1.2to v4 with =0 and to
v with =1, which results in
Z,.
LD _ 2. 2 X+ 2. '4X+.
Re Ve + ViV v dX = —jvyj —jvj* (4.1.17)
2 X 4 X

X

After summing up (4.1.16 and (4.1.17, we end up with the following proposition
for the time dependency of mass, momentum, and energy.

Proposition 4.1.4. For the massQ;, the momentumQ,, and the energyH we
get the identities

d h I 2. ) X+ X+

ath(V)_ = ?JVJ y Re(ivxv) L

d ! _ 1 X+ 1 -4 X+ 1. .2 X+ 1 ) X+_

at r?Z(V)' = SRelvw) VT Vit ST
5 H(v) =Re(wyW) ) 1Re(ivyV) ) ?Zjvsz ) Z21V14 L

The following table collects the conservation properties of homogasus Dirich-
let, Neumann and periodic boundary conditions.

Mass Momentum Energy
Dirichlet X
Neumann
Periodic X X X

4.2 Spatial Discretization

Next, we study the system that arises by spatial discretization ahe freezing
equation, where we put emphasis on the case of periodic boundapnditions.
As in Section4.1we omit in our notation the impact of perturbation parameters

and write v instead ofv for functions in discrete spaces. Our rst approach is
a nite di erence discretization on a bounded spatial grid.
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4.2.1 Finite Di erence Method

The very basic idea of the nite di erence method is to approximate drivatives
in di erential equations with corresponding di erence formulas. Tle central dif-
ference quotient@ is de ned by

U'+ U
(@u); = L5—— 12 XJ =

and the second order central di erence quotien@ is given by

_ U 2ty g
(@u); = 2 :

Replacing the rst and the second derivative in the freezing equatioleads to
iug = @u jujfu qu+i L@

which rewrites as
Ui = i@u+ ijuju+i u+ L,@u:

We impose this equation pointwise on a spatial gris; with j 2 . The eas-
iest way to obtain periodic boundary conditions is to identifyx; and Xy+j, in
particular Xg = Xy and Xy = Xy+1 .

As before, we are interested in the time evolution of mass, momentuand
energy. The discrete version of mass is given by

x X 2
Qi(v) = > JVilos
j=1

and di erentiation leads to

hdQ:(v);yi = x  Re(y;):

i=1

Hence, the derivative with respect to time takes the form

gh [

5 Q1(v) = hQq(v); vii = Qq(V): i@V + ijvj>v+ i v+ L@vi

X
X  Rev(i@v +ijvjjv, +i v + @v)) :
j=1

The two sums
XV X
x  ReWijvjj?vj)= x  Re(jvj?
j=1 j=1
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and
x Re(i1v)= x Re( 1jvj?)
j=1 j=1

vanish sincejv;j* and ,jv;j? are real-valued. By the same argument as before,
an index shift and the skew-symmetry

Re(vy) = Re(yv);

we get
X Vi 2V, + Vi
X Re(li@v)= x Re iy 1 12 ) 1
= j=1 X
1 X X
- Tx Re(vjVj.1) + Re(v;V; 1) (4.2.1)
=1 -

ix Re(ivnvn+1) Re(ivovy) :

Moreover, the above index shift and the symmetry
Re(;+1Vj) = Re(V;Vj+1)

lead to

X Re(; .@vj)= x Re zvj%

=1 j=1

X X 4.2.2
Re(Vj Vj+1) ?2 Re(V; 1) ( )

i=1 i=1

N

32 Re(vwvn+1) Re(vovy) :

Due to the periodic boundary conditions, both 4.2.7) and (4.2.2 equal zero.
Hence, the discrete mass is a conserved quantity. We continue witie discrete
momentum, which is given by

>(\I .Vj+]_ Vj 1

x X . X
Qe(v)= —- Re i(@v)y, = — Reid=—

j=1 j=1

A

1 .
=2 Rei(vi+1 Vi 1)V :
j=1

The j -th partial derivative takes the form
hdQo(v);yji = sReiyjv; 1 IReiyjVisa + 2Rei(viar Vv 1),
= IRe V1Y ZRe iV 1y + IRei(Vis1 V) 1)y

= IRe (Vs v 1Y
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and summing up leads to

N R
hdQ(v);yi = > Rei(vi+1 Vi 1)y -
j=1
Hence, we conclude that the total derivative with respect to timeakes the form
gh [
m Qx(v) = hdQu(V); Vi = MdQu(V): i@V + ijvj>v+ i v+ L@vi

X
> Rei(Viar v )@V +ijvijPy +i v+ @V)
j=1

Again we consider the terms one after another, and rst observbat

X . X . Viv1 V1
= Rei(Vis1 V1) 2@v; == Rei(Vju V1) e
i=1 j=1

.a .2
— Re 1jVj+1 Vv 4
X =1

is zero becaus@vj+1  V; 1j? is real-valued. While the above expression vanishes
for any boundary conditions, the terms

X _ ‘ . X X 1
=  Rei(via v )i 1y Re;+1V;) Re;+1V;)
j=1 j=1 j=0

51 Re(nVns+1) Re(ovy)

X _ _ X
Rei(Vis Vv 1)i@y) =
=1 j=1
1 X
= Re (Vs Vv )(Vjaa + Vv 1)

2 X2
j=1

Vit vtV g

Re (Vj+1 Vj 1) X2

1 o .
= Via? v 4f?
j=1

= o et WG ] v v

are zero for periodic boundary conditions. There is one term leftamely
X X

. .. .2 _ . 2 .
= Rei(vix1 v Dijvjvy = - Re(via Vv 1)Ivijy :
j=1 j=1
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It is worth noting that this expression can be regarded as the Poms bracket
(see e.g. 46]) of the momentum and the nonlinear part of the Hamiltonian. In
contrary to any of the other terms it cannot be reduced to its baodary terms.
Hence, it does not vanish for periodic or any other boundary condns. In
fact, the group of translations, which is the symmetry that corrspond to the
momentum, does not act on the solutions of the nonlinear Schredjer equation
on a discrete grid.
For the sake of completeness, we brie y consider the discrete Higtanian

X Ma o vi? vt
2 X2 2
j=1

H(v) =

The derivative takes the form

X
hdH (v);yi = X Re
j=1

Visn 2ty g

. .2 .
2 VIV Y

which leads to

h [

d
dt H (v)

hdH (v); vii = hdH (v); i@V + ijvj’v+ i v+ L@V

—; Re(ivavn+1) Re(ivovi)

22 jvnei? § v dd? ) Vel + jvoj?

2 X
2>(\| . -2
—  Re(vja Vv, 1)jvjj7y -

j=1

Let us summarize the time dependency of the discrete versions odiss, momen-
tum and energy.

Proposition 4.2.1. For the discrete masdQ,, the discrete momentumQ,, and
the discrete energyH we obtain the identities

q h [

gt Qu(v) =0;

gh_ 1 X

m Qa(v) = Ej:l Re (Vis1 Vi 1)ivij?y ;
gh 1 W o,
P H(v) = > Re (Viva v 1)Ivijy ;

i=1

wheret 7! (vq;::;;vy) forms a solution of the discretization of 4.1.9) via nite
di erences with periodic boundary conditions/, = vy and vy+1 = Vi.
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4.2.2 Spectral Galerkin Method

The conservation of the momentum and energy can be ensured lsmg a spectral
collocation method instead. In the following, we brie y describe this @proach.
For further details we refer to R6 and the references therein.
A function v 2 ngr (X ;X+); ) can be written as a Fourier series
X i
v(t;x) = v; (t)e
i2

with Fourier coe cients v; and trigonometric functionse’* . Next, we truncate
this spectral representation, namely we approximate

X ;
v(t; x) v (t)e™ (4.2.3)

j2Z ¢
Here, the indexj runs over the nite set
Zy =f K, K 19

Di erential operators and derivatives take a very simple form with espect to this
representation. In particular, we have
X i
@v = ijv ;e ;
12£
— P2 ijx .
@v = ( jove™;
j2Z ¢
which can be rewritten componentwise as

(@v); = ijvy;
(@v); =( j?v:

However, this does not come without a drawback. The spectralpeesentation of
the nonlinear part, which is a pointwise product in spatial coordinatg is given
(see R5]) by the discrete convolution
X i
K(v) = Vj,Vj,V;, €
j13253542Z
Jit]2=]3t]a
Consequently, its coe cients are
X
K. (V) = Vi, VsV,
j2131j42Z
Jit]2=]3+]4
In the same way as before, we check one by one the time evolutionhef truncated
versions of mass, momentum and energy. The spectral reprdaéinn of the
truncated mass functional is

X . .2
i

NI =

Qu(v) =

j2Zk
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Here, we have to remark that we leave out the proper scaling facto

1 .
Kx: x °
In contrary to X, which plays the same role in Sectiod.2.], it remains un-

changed during computations and can be omitted. Di erentiation othe trun-
cated mass functional leads to

X
hdQq(v); yi = Re(vy)):
i2Z«
Hence, the total derivative with respect to time takes the form
gh [
5 Q1(v) = hdQ(v);i@v + iK(V)+ i v+ L@vi
X

Re vi( ij2v +iK(V)+ i v +i 2jvj) :

i2Z ¢

Forany ; 2 we have Rei jv;j> = 0; which implies that all but one term
equals zero. The remaining sum is given by

X X
Re(v;,Kj, (v)) = Re(v),Vj,Vi;Vi.);
j12Z j1i2:31j42Z ¢
Jit)2=]3t]a
which can be seen to vanish by mapping {;j2;js;ja) 7' (j3;ja;)1;j2) Since it
holds

Re(v),Vi,Vi;Vi,) =  Re(vj,V,Vvi,V,):

A little more involved is the analysis of the time evolution of the truncaéd mo-
mentum

1 X
Qa(v) = > J1Vvj)
i2Z ¢
with its derivative given by
X
hdQz(v); yi = Re(vjy;):
12Z«

For the total derivative with respect to time we get
gh [
5 Qa(v) = HQy(V);i@v+ iIK(V)+ i v+ ,@vi
X
Rejvi( ij2v +iK (V) + i v +i ojvj) :
i2Z ¢
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In the same way as above, all but one term are of the form Rejjv;j> with
i 2 . Furthermore, for the remaining term we obtain the expression

X X
Re(1v;, 1K, (V) = Re(] 1, Vj,VjsVi,)
j12Z g 1i2;8142Z k
Jit])2=])3*]4
1 . .
=5 Rei(j1  J2)Vi1Vi,VisVi,

1325 3j42Z
Jit]2=]3t]4
1 . . _
5 Rei(j1+ j2)ViVi, Vi, Vi,
j1i2:3142Z k
Jit]2=]3%]4
which equals zero. Indeed, by mappind {;j2;js;j4) 7! (j2;j1;]3:]4), we get
X - - -
Re I(J 1 JZ)Vj1Vj2V13Vj4 =0
j132:3542Z
Jit]2=]3t]a
fromji+ j,=j2+ j1andv;,vj, = v,Vv,. Moreover, from the identity
Re I(Jl + jz)Vj3Vj4Vj1Vj2 =Re I(JS + j4)Vj3Vj4Vj1Vj2
= Rei(js+ ja)Vi,Vi, VsV,

which holds due toj; + j, = j3 + j4, Wwe conclude
X
Rei(j1+] 2)\43\44\41\42 =0

132531 42Z

Jit]2=]3+]4
by mapping (1;j2;)3:)4) 7' (j3;ja;]1;)2). The last functional we consider is the
truncated energy
X ., 1 X

e g Vi3 Vi, Vi Vi
j2Zk jvii2iisiia2Z ¢
Jit)2=]3*]a

H(v) =

NI =

Di erentiation of this expression leads to
X
hdH (v);yi = Re (i>v; K /(M) ;
j2Z ¢
where Kj'-’(v) is the complex conjugate oK; (v). As a consequence, we obtain
h [
d

dat H(v)

hdH (v);i@v + iK(V)+ i v+ »@vi
X

Re (j%vi K [(W)( i 2y +iKj(v)+ i v + i 5jvj) ;
i2Z ¢
which vanishes. Indeed, the term
X X
Re (j%v; K [(v) ij 2v; + iKj(v) = Reijj?v; K j(v)j?
i2Z ¢ j2Zk
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is zero becausg ?v; K j(v)j?is real-valued, and the other terms already appeared
in the previous computations. The following table sums up the consation prop-
erties of the nite di erence method (FDM) and the spectral Galekin method
(SGM).

Mass Momentum Energy
FDM X
SGM X X X

4.3 Split-step Fourier Method
A numerical scheme is derived by splitting the freezing equation
Vi = Vi | V]V VoV
into a linear part
Vi = Vi WV T oV (4.3.1)

with its ow denoted by | and the remaining nonlinear part

iug = j uju
with its ow given by

L vo=exp(itjvjd)v:
The linear problem @.3.]) is equivalent to
iFuk(;t)=(2 1 2)[Ful(;t)

in Fourier variables. This decoupled system of ordinary equations rcdoe com-
puted exactly. We get

[Ful(;t)=e (" = 2)Fu](; 0)

for 2 andt 0. Given a step size t> 0 we now apply the Strang splitting
scheme (see2[]], [35], [53], [62]), which is written as

t t
L

t t,

L+N

Z N
Z Nl

More precisely, the algorithm to compute a new time step reads
1. Nonlinear part with step size-!,
2. Fourier Transform,
3. Linear part with step size t,
4

. Inverse Fourier Transform,
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5. Nonlinear part with step size'.

In an attempt to preserve the time e ciency of the Strang splitting, we do not
solve the PDAE, but derive an explicit formula to compute ; and , in each
step. First of all, we di erentiate at least formally the xed phase cadition with
respect tot and insertv, = F(v) d[a( )v] and obtain

dia( )0] F(v) dfa( )¢]da( )v] =0; (4.3.2)
where the adjoint of dp( )v] with respect to the inner product ;  is given by
dla( )WI*: X A % hdla( WV]y; i= dfa( ]y

If the stabilizer Gy, = fg2 G| a(g)¥ = &g of ¢ is trivial and v is su ciently close
to ¥, then dfa( )9]°d[a( )v] 2 L(A;A?) is non-singular and é.3.2 de nes a set
of d linear independent equations, wherd is the dimension ofA. In fact, this is
a special form of Assumptior?2.2.11

By solving (4.3.2 with respect to , we obtain

Awv) = da( )eT’d[a( V] “dfa( )eT’F(v):
Hence, the freezing equation in the eliminated form is given by
vi = F(v) da( V] dfa( )9]’d[a( )v] ‘dla( )9TF (v):

By choosing a smooth enough template function, the operator in (4.3.2 can be
continuously expanded to a phase condition

(X O ATA 7

forv2 X and 2A.
In our speci c example resolving the xed phase condition with respe to
leads to

) = L L | 1 7V 1V VAN
- OX; iV 0 OX; VX 0 0X; iVXX + jVJ2V 0 ’

which continuously expands to

VAN LA VA Yooy o i();jvjzv0

N =
W) 1\ 2R AV A i Ve o BaiViPV

0

foro2 H2( ; ).
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Numerical Computations

In Section 4.3 we have introduced a numerical scheme to solve the freezing sys-
tem for the nonlinear Schmdinger equation. The main idea is to applhe Strang
splitting in order to decompose the problem into two parts that are @alytically
(or at least more e ciently) solvable. In the following, we present nmerical
results, whereas the stability analysis for the fully discretized prédm goes be-
yond the scope of this thesis. For analytical results on the geomet numerical
integration of the NLS we refer to 0], the so-called backward error analysis for
ordinary di erential equations can be found in B4].

In addition to the NLS, we make use of the freezing method to tacklie
nonlinear Klein-Gordon equation and the Korteweg-de Vries equatio In order
to guarantee comparability, we stick to the Strang splitting and chose the same
parameters. To be more precise, the time step size

t=10 3
and the number of Fourier nodes
2K =256

always remain the same. After inverse Fourier transform, this rakds in an
equidistant grid on x ;X.], where the upper and lower bound are given by

X+ = X = o011 2856,
and the step size of this spatial grid is
1
= —— 22
K 0:11 0:223

In case of the NLS, we have an explicit formula for the solution of theonlinear
part in the Strang Splitting. For the NLKG and the KdV, we make use @ the

implicit midpoint scheme
v+ (v
V)= v+ tf f“() :

which is computed via xed point iteration.
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5.1 Nonlinear Schiedinger Equation

We consider the solitary wave solution of the NLS that is given by thegrzameters

_ 1:0225 .
T 03
where we recall that the rst component refers to the gauge trasformation,

whereas the second describes the velocity of the translation. Heeparameters
solve the equation

which implies that the scaling factor in (.3.1) equals one. Hence, the prole

takes the form
p_

2 j 0:3%.
cosh) '
Before we apply the freezing method, it appears expedient to haadook at the
solution of the original problem, where we choose the above pro Is aur initial
data.

Vo(X) =

Re(u)

Figure 5.1.1: Solution of the original problem

The solitary wave can be understood as a consequence of the eapgnce
of the NLS with respect to the two-parameter group of gauge tresformations
and translations. As expected, we observe an oscillation and trdaison in our
numerical approximation of the solution

Us(t;X) = elvo(x  0:3t):

Accordingly, the imaginary part is the same as the real part, excefor a constant
phase shift. In the following, this is subject to change, as we applyé freezing
method.
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As intended, the solution of the freezing system does neither osdilanor
translate. Hence, the prole is, up to discretization and computabn errors, a
proper steady state.

15

0 .15 OX

Figure 5.1.2: Solution of the freezing system

We notice that the imaginary part is of a di erent scale since the initialdata
are set up in such a way that the extreme values of the imaginary gaare much
smaller than the maximum of the real part. However, the imaginary gt plays
an irgportant role by allowing the wave to travel. If we replace the initiadata
by W then no translation occurs. This is due to the fact that symmetrywith
respect to the y-axis is preserved by the ow of the NLS, and thisymmetry is
broken by the imaginary part being an odd function. Consequentlye ection of
the initial data at the y-axis leads to a solitary wave that travels with the same
velocity, but in the opposite direction.

Let us also have a look at the values of; and , that were obtained by our

numerical computation.

05r

15 1 1 1 1 1
0 200 400 600 800 1000

t
Figure 5.1.3: Frequency and Velocity

The blue line corresponds to oscillation, whereas the red line descebihe
velocity of translation. We have to emphasize that, as described ire&ion 4.3
we do not solve the PDAE system, but in each step computein a preliminary
calculation before we treat the linear part. While this is highly e cient, the
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numerical solution does not necessarily stay on the manifold given bye phase
condition, and any deviation e ects the subsequent steps. Nevbeless, the values

of ; and , appear quite constant.
However, this is no longer true as soon as we consider perturbedialidata.
The perturbation is generated by callingrng(‘default’) and randgl,Z*K) in

MATLAB. Then we multiply this vector by the perturbation factor 1—000 and add

the result to the real part of the pro le v»; which has already served as the initial
data for the unperturbed problem.

1.5 T T T T T

Re(v)

-30 -20 -10 0 10 20 30
X

Figure 5.1.4: Perturbed initial data @o=5)

On the considerably large time intervall = [0;1000] the pro le remains in
place, and in the same way, the oscillation is reduced to a negligible level.

15

0 ~.15 -0
Figure 5.1.5: Solution of the perturbed problem%-= 5)

But, in contrary to dissipative systems, perturbations do not die ot. This
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is due to the fact, that the linerization at the relative equilibrium has apurely
imaginary spectrum. The asymptotic stability, which one can nd in paabolic
problems, does not occur in the Hamiltonian systems that we conside

-0.8
-0.9

-1

-1.1
-1.2 |

-1.3

-1.4

-1.5

0 200 400 600 800 1000
t

Figure 5.1.6: Frequency %= 5)

This has even more serious consequences for the frequencgnd the velocity
». Since the initial deviations never extinct, both components of uctuate
continuously.

0 200 400 600 800 1000
t

Figure 5.1.7: Velocity ¢6=5)

However, we must acknowledge that the high intensity of uctuatia is caused
by the numerical scheme. Giving up the operator splitting, solving & PDAE
system by the implicit midpoint scheme, and thereby complying the pls@ condi-
tion for all times, is highly recommended for much larger perturbatios and leads
to less uctuation.
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While we do not present any results for di erent values of ,, we want to
remark that the oscillation tends to stabilize the pro le, whereas tb translation
behaves to the contrary in numerical computations. We also have tmention that
the choice of a perturbation with positive real numbers is completelgrbitrary.

Next, we numerically analyze the stability of the relative equilibrium. Wiat
we mean by stability is that deviations for all (or at least over long) tines remain
small if the initial perturbation is small enough. This, of course, coesponds
to our stability result in Section 2.3, even though the abstract theory does not
include the impact of spatial discretization and time stepping. In orer to sustain
the theoretical by numerical results, we compare the deviationdat occur for
those initial perturbations that correspond to the parameters

%2 f 4;2;1;0.5;0:250:

With respect to the discretelL 2-norm

S H
KvK wk:p 2= X Vi3
12Z«
whereZy = f K;:;; K 19 , we compute the di erence of the perturbed

problem and the steady state of the unperturbed problem.

We should emphasize that we do not numerically solve the unperturthesta-
tionary problem, but assume that the projection of the steady site of the con-
tinuous problems is close enough to the discrete steady state. Témresponding
abstract result in Section3.4 can be applied to the NLS, but only in the case of
the one-parameter group of gauge transformations.

107t
%= 4
10 2 %= 2
S
o %=1
(L -3
10 %= 05
%= 0:25
10-4 N P al . 1
10! 10?2 10°

Figure 5.1.8:L2-error

For the presentation of the results, a double logarithmic scale plot issed. We
can see that for any parametefo? f 4; 2; 1; 0:5; 0:25g the L2-error on the entire
time interval 1 =[0;1000] remains close to the initial deviation.
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In addition to that, we consider the same errors in the discrete nor of the
homogeneous Sobolev spakg', which is given by
S

X . 2
KUK yp 1= X F ik PiF sk U);
i2Z ¢
with p;( ) = i . Here, the operationsF ;, and F [, are carried out by the
fast Fourier transform in MATLAB.
0.
10 %= 4
%= 2
_ 107t
(@]
= %=1
@
T 102k %=0:5
%= 0:25
10-3 . . . PP 1 P |
101 102 103

t
Figure 5.1.9:H!-error

As for the L?-error, we observe a stable behavior of the pro le with respect to
the H.'-norm. Here, we should point out that the scale on thg-axis is di erent.

The question arises, whether the prole remains stable for othelypes of
perturbation. Instead of adding a global perturbation, we now laaly modify the
initial data.

1.5 T T T T T

05 1 1 1 1 1
-30 -20 -10 0 10 20 30

Figure 5.1.10: Local perturbation { = 4)



5.1. Nonlinear Schredinger Equation 121

We choose the peak to be roughly at 10:933 and create a perturbation based
on the sequence 1, 4, 9, 16, 9, 4, 1, which we again multiply by a pelation

factor ——. In particular, only an area of 4 x around the peak is e ected by
the initial perturbation.

0
-15 -10 -5 0 5 10 15
X

Figure 5.1.11: Time-space plot (= 4)

In contrary to the red pro le, which remains centered atx = 0, the freezing
method hardly e ects the additional peak. On the short time scalé¢ = [0; 5] the
top view gives us an impression of the rapid propagation of the pertation and
the interference of the wave fronts.

0 .10 O
-15 \ «

Figure 5.1.12: Solution of the locally perturbed problem (= 4)

On the larger time scale [p1000] the localization ceases to exist really soon.
The red arrow points at the initial peak.
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100-
SZq
10t F .
=2
S
o ‘=1
’ql‘)lo2
N =05
103k ' =0:25
10-4 . . PR | . . PR | . . PR |
10° 10! 10?2 10°

Figure 5.1.13:L2-error - local perturbation

In the same way as before, the errors in tHe?-norm and H.t-seminorm remain
fairly close to the corresponding initial deviation. We should emphasizhat the
scale is di erent from the error plots for the global perturbation,and that there
is no intuitive relation of %and ".

101
SZq
10°%F .
=2
S
o .
=S =1
G107 E
e "=05
2L A .
10 =0:25
10-3 . . PR | . . PR | . . PR |
10° 10! 10?2 10°

Figure 5.1.14:H'-error - local perturbation

Before we turn our focus to our next numerical example, the nonkar Klein-
Gordon equation, we rst consider the NLS with another phase cdaiition, to be
more precise, the orthogonality phase condition fron®]. The basic setting is the
same, in particular, the Gelfand triple

X, Xo=XZ) X?

. . 2 .. . .
remains unchanged. However, we require;; , to be minimal at any time in-
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stance. As a necessary condition this yields
dla( )vl;ve ,=0; 2A;
and inserting the right hand side of the di erential equation leads to
dia( )vl;F (v) dfa( )v] ,=0; 2A:
By solving this equation with respect to , we obtain the implicit function

Aw) = da( vIPd[a( V] dfa )PF (v):
Here we recall that the adjoint of d@( )v] with respectto ;  is given by
dia WvI*: X 'A% hdfa( VIy; i= dfa( Wy

fory2 X and 2 A. By choosing a basis in the Lie algebra, the orthogonal-
ity phase condition is transformed into a system ofl equations, whered is the
dimension ofA.

Figure 5.1.15: Orthogonality phase condition%= 5)

5.2 Nonlinear Klein-Gordon Equation

The NLKG, just like the NLS, possesses oscillating and traveling waselutions,
where the number of parameters depends on the dimension of tlystem. In case
of complex-valued solutions the rotation group is only one-dimensiain Now that
we consider solutions to the NLKG with images in 3, the rotation group is three-
dimensional, which together with the translation gives us four freegpameters.

We select at will
0O 1

0:7
:4§ ]
A
5

_ S _ RO
5= = %
: C

0:
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By imposing the equationS, ='s, , which we require forall 2 3, the rst
three componentss, determine the rotation matrix

1
0 01 04
S, = @01 0 0:7A :
04 07 0

The last component, which we denote by, = 0:5, describes the velocity of the
solitary wave. Compared to the previous example the deduction ofhé corre-
sponding pro le is much more involved. Since the NLKG is a second ordevolu-

tion equation, we consider the transformation to a system of rsbrder equations,
which takes the form

uz

o 52.1
Upxx Uz + jusjuy ( )

Ui =

In terms of the new variables ¥; S; 0, this system is rewritten as

Vo, SV CViy
Vixk Vit jVij2vi SV CVoy

Vi

As we have discussed in Sectidh3.2 the stationary problem can be reduced to
the scalar equation

e
0=(1 & o+ + 3
( ) 1 ¢
the solution of which is given by
(X) = L
T cosh(HX)
jsii? r
with the two constants , =1 1 and , = 1 a By writing
2X) = o(x)e 77,
. (0}
with - = 1@ the pro le takes the form
Vo= Cr ’?;x‘l.' S »

The vector , must be of unit length and orthogonal tos,, which is why we choose
0 1
0
2= — @ 1 A .
4

r—\T'—‘
\l

The solution to the original problem 6.2.1) takes the form

Us(t; X) = €52vo(X + Cot);
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and its behavior is not much di erent from those of the NLS. Each aoponent of
the solution is time-independent except for an oscillation and trandian, which
is caused by the equivariance of the NLKG.

Hence, we consider directly the solution to the freezing system wiglerturbed
initial data. As before, we obtain a global perturbation by callingng('default’) o%

and rand(1,2*K) in MATLAB, scale this vector by the perturbation factor 1—0(2)
and add it to the rst component of the exact pro le.

15

15

Figure 5.2.3: Fifth and sixth component of the solution%e= 2)

On the time interval [0; 1000] the solitary wave neither travels nor oscillates.
But, as expected, the perturbations do not die out.
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0 200 400 600 800 1000
t

Figure 5.2.4: Frequencies¥%-= 2)

The frequenciess and the velocity ¢ uctuate continuously, the latter with
a huge margin even for the small perturbation that correspondot%= 2. As
before, this is ampli ed by the numerical scheme.

1.2 L] L] L] L]

0.8

© 0.6}

0.4

0.2

0 200 400 600 800 1000
t

Figure 5.2.5: Velocity ¢o= 2)

In order to analyze the stability of the relative equilibrium, we compu¢ the
di erence of the perturbed and the unperturbed problem with rgsect to the dis-
creteL?-norm. As in the previous example, we compare the deviations thatcur
for initial perturbations that correspond to the parameters¥e2 f 4; 2; 1; 0:5; 0:25g.
We observe a stable behavior for the small valué& f 2; 1; 0:5; 0:25g, whereas for
%= 4 the linear systems to compute (t,) become ill-posed after a few time-steps.
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10°F ———— ———

10.4 M PRy | M PR Ry |
10° 10! 10
t

2

Figure 5.2.6:L2-error

Let us remark that there is a compromise to settle this issue. Sinc&whoose
N

template functions of the formw*= ; the xed phase condition does not

0
depend on the nonlinearityjv1j?v;. Hence, it is an option to combine the Strang
splitting with the PDAE formulation for the linear part of the problem and
thereby reduce the uctuation of the frequencies and of the vetity.

5.3 Korteweg-de Vries Equation

Our last numerical example is a mathematical model for surface veatwaves in
a canal (see42]). The Korteweg-de Vries equation (KdV)

Ue(t; X) = Uk (B X)  BU(t; X)uy(t; X);  u(0; x) = ug(x) (5.3.1)
can be written as an abstract evolution equation
u = F(u)
by setting
F(U) = Uow  BUU = (U + 33U

This function splits into two parts, the linear part L(u) = u.y and the Burgers'
nonlinearity N (u) = 6uuy. Hence, the KdV is a nonlinear perturbation of the
Airy equation

ut (t; X) = uxxx (t; X):

We refer to P] and [4Q] for the well-possedness of the inital value problem for
the KdV. The main di erence compared to the previous examples is ¢horder of
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the highest derivative. In order to deal with the additional derivaive, a suitable
symplectic form (see46)]) is given by
4

!(u;v)=}

5 d fux)v(x) d v(x)u(x) dx = d *uv (5.3.2)

Here, the operator d! takes the form

whereF is the Fourier transform and ( ) = : As pointed out in [57], a suitable
domain for this operator is the homogeneous Sobolev spaﬂ:e%( ; ), which is
de ned as

HS( ; )= v2S? ; ):F gFv2L? ;)
with gs( ) = j j Then d ! is a bounded linear operator
dbH 25 ) ()
and we obtain a continuous symplectic form
LiHE( ) HE( )

However, this homogeneous Sobolev space is not well-suited for gtehility anal-
ysis of solitary waves. Without the convenience of having it t into ou abstract
setting, we are forced to deal dierently with the additional derivdive in the
linear part. Instead of the equation

F(ug;y) = hdH (u);yi
fory2 HY( ; ), we rewrite the problem as
(U;¥)o = h dH (u); yyi (5.3.3)

fory 2 H?( ; ). Consequently, we modify the abstract de nition (.2.19 for
generalized solutions of the KdV.

De nition 5.3.1. Let | be an interval. A functionu 2 C(1 ;HY( ; ) is
called a generalized solution of the KdV if we have
Z Z
u(t);y o' «(ydt = hdH (u(t)); y«i" (t)dt (5.3.4)
|

|
forally2 H?( ; )and' 2C3 (I ; ).

In the above sense, the KdV is a Hamiltonian partial di erential equaon,
where the Hamiltonian onH( ; ) is given by
Z

H(u) = Tu(x)?  u(x)® dx: (5.3.5)
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Proposition 5.3.2. The Hamiltonian (5.3.5) is associated with §.3.1) in the
sense that

F(u);v , = hdH (u); i
forallu2 H3( ; )andv2 H?( ; ).

Proof. We start with the right hand side, the derivative of the Hamiltonian. The
linear term already appeared in the previous examples. For the nordiar term
we get

Z Z Z

ux)+ v(x) Jdx = u(x)3dx+  3u(x)2v(x)dx
Z
+ 3u(x) + v(x) v(x)%dx
Z Z
u(x)®dx +  3u(x)?v(x)dx + O kvk?

sinceH( ; )is a generalized Banach-algebra. This implies
Z
H(u+ v)= H(u)+ U (X)Vx(X)  3u(x)?v(x) dx + O kvk? ;

whence we get
Z
hdH (u); vi = UV (X)  Bu()?V(X) dX = UV, 3u%V

Furthermore, integration by parts yields

Z
F(u)iv = Ue (X) +3U(x)?  v(x)dX
Z
= Uxx (X) + 3 U(X)2 Vi (X)dx
= UV ot 3%V
= hdH (u); i
forallu2 H3( ; )andv2 H?( ; ). O
The Korteweg-de Vries equation is equivariant under the action of ane-
parameter translation group. This Lie group is simplyG = and the group
actiona: G! GL HY( ; ) is given by
a( )v=v( )
for 2 G= . The derivative ofa( )v at the identity element is

dla( )v] = vy
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where we have 2 A = . Moreover, the expression

B(v) =!(d(a( )vD); )
extends to a bounded linear operatoB() :HY( ; )! H ( ; ) with

B(v) = v;

As in the abstract setting, we rewrite this as @(v): A! X7 satisfying
hdQ(v) ;yi= wviy |

fory2 HY( ; ).
This leads to the conserved quantity

Q(v) =1 kvk3:

2

Due to the symmetry under translation, the KdV possesses solitarwave
solutions. As an example, the initial value

UO(X) = #
2cosk %
yields the solution
Uo(t; x) = m: (5.3.6)
2

A one-parameter family of solitary wave solutions (see e.dq) is associated with
(5.3.6. As in the case of the nonlinear Schredinger equation, we dedutieese
solutions by exploiting the scale invariance. 1t is a solution onl =[0;T], then
soisu onl =[0; °T], whereu is given by

u(tx)= 2u( 3 x)

for > 0. Due to this scaling, the solution $.3.9 is transformed into

2

Uo(t; X) = : 3.7
/(%) 2cosf 5(x  2t) (6:3.7)

By setting = 2, we change the notation, such that%.3.7) becomes
Ur(t;X) = Vo(x  t) (5.3.8)

with

Vo(X) = ————p——
2cosi —x

The orbital stability of solitary waves for equations of Korteweg-d Vries type
has been proven inJ0. We suppose that a modi ed version of this approach
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might be used to analyze the stability of our PDAE formulation for theKdV.
This, however, is work in progress.

In the following, we restrict ourselves to numerical tests of thedéezing method
for the KdV. An analytical approach to operator splitting for partial di erential
equations with Burgers' nonlinearity, such as the KdV, can be fouhin [37] and
the references therein. In case of our freezing problem, we havinear part

Vi = VitV
which in Fourier variables is solved by
[Ful(;t)= & 2 Fu](; 0);
and a remaining nonlinear part
V= Bvwy = 3V
with its ow denoted by . Then the Strang splitting reads
t it t 3t
L+N L L

where | is the linear ow. In our computations, we make use of the exact
solution for the linear part and apply the implicit midpoint scheme to appoximate
in Fourier variables the solution of nonlinear part, i.e., we consider thequation

vi= 3 FF v °

As in the previous examples, we call the codesy('default’) andrand(1,2*K)
in MATLAB Bo generate a global perturbation, which we scale by the prturba-

tion factor 100 and add to the unperturbed initial data.

2.5 T T T T T

05F .

-30 -20 -10 0 10 20 30

Figure 5.3.1: Perturbed initial data @o= 2)
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In contrary to the NLS and the NLKG there is no rotational symmety in-
volved, i.e., the solutions of the original problem travel, but do not aillate.
Thus, the freezing method only deals with the translation symmetry

X

Figure 5.3.2: Solution of the perturbed problem%= 2)

The results are not much di erent from the two previous examplestor small
perturbations the pro le stays in place, i.e., the freezing method wks as ex-
pected. But, same as before, the velocity is subject to a uctuation with high
intensity. As a result, for large perturbation we obtain ill-posed linelasystems
for (t,) after some time steps.

5.5

2.5

0 250 500 750 1000
t

Figure 5.3.3: Velocity ¢6= 2)

There is another very interesting aspect to the KdV. In{] the freezing method
for parabolic problems was extended to handle multifronts and multigses that
travel at di erent speeds. While this is still an open problem for Hamilbnian
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systems, the collision of solitary waves and the decomposition of mtgbliton
solutions have already attracted interest among mathematiciansnd theoretical
physists (see e.g.5]). Colliding solitary waves recover their shapes, where the
only result of the collision is a phase shift, a discovery that goes batk [66].
The faster solitary wave shifts slightly forward, and the slower ones squeezed
backwards. Let us numerically show the phase shift in the collision eten
two solitary wave solutions of the KdV equation. As our initial data weadd up
Vo( +15) with =2 and v,( +5) with =1.

X

Figure 5.3.4: Phase shift in the original problem

In general, the freezing method must be modi ed to handle this sitd@n in
a satisfactory manner. However, we can make use of our basic aggeh as long
as the two solitary waves di er su ciently in size. In our specic exanple we

choose =4 and add a small solitary wave centered ak = 8 with = 1.
25 T T T T T
2t .
15 .
>
1t .
0.5 .
O 1 1 1 1 1
-30 -20 -10 0 10 20 30

Figure 5.3.5: Initial data
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Due to the periodicity of the spatial domain, the solitary waves collideeveral
times, but regain their shapes after each collision. The interactionudng the
collision is very similar to the original problem, and we are rather intested in
long time e ects. For the sake of presentability, we have shrunk thtime domain
to [0; 100] and selected the top view.

X

Figure 5.3.6: Fixed phase condition (time-space plot)

The small solitary wave travels with non-zero velocity, whereas thed pro le,
which corresponds to the large solitary wave, stays centeredxat 0 and no phase
shift occurs.

It is quite interesting to see that at the beginning of the interactiorthe value
of does not increase monotonically, but instead an adjustment ocsutwice.
After that, the large values of impede the phase shift to the right side.

55F .

Y Y Y W

35 ' ' '
0 25 50 75 100

t

Figure 5.3.7: Fixed phase condition (velocity)
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For comparison, we repeat this numerical experiment, but repladbe xed
phase condition by the orthogonality phase condition, which we alrdg applied
to the NLS in Section5.1

X

Figure 5.3.8: Orthogonality phase condition (time-space plot)

As we have seen in case of the NLS, the orthogonality phase conditis not
well-suited for Hamiltonian systems. We notice that the freezing dsenot work
as expected since the red pro le moves to the right hand side. Bugven more,
after each collision it is subject to an additional phase shift.

4.5 T T T T
4.4 F .
43 F .
42 F .
41 .

T U

3.9 1 1 - -
0 20 40 60 80 100

Figure 5.3.9: Orthogonality phase condition (velocity)

From the values of we can conclude two things. First, the values of during
times when no interaction occurs are much lower than, = 4. This results in
the large solitary wave to travel to the right hand side. Second, thshape of the
graph of during the collision is quite di erent from the xed phase condition
and the maximum is much lower. This is why the additional phase shift cars.



Conclusions and Perspectives

In this thesis, we have considered the application of the freezing thed to equiv-
ariant Hamiltonian systems such as the nonlinear Schredinger eduan. By
adding a phase condition, the original problem was transformed inta partial
di erential algebraic equation, for which relative equilibria of the orignal prob-
lem appeared as stationary states.

In the well-known Grillakis-Shatah-Strauss setting, the freezingpgroach for
the continuous problem turns out quite satisfactory. As shown in Rapter 2, the
stationary states become stable in the sense of Lyapunov.

When it comes to the impact of spatial semi-discretization, there igik a big
discrepancy between analytical and numerical results. Accordingour numerical
results, the freezing method is far more robust than expected.

The geometric numerical integration, in rst place, the challenge t@onstruct
a modi ed energy and obtain backward error analysis results, renms an open
problem. The analysis of symplectic time discretization methods fohé freezing
system goes beyond the scope of this thesis and provides muchmdor future
work.
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Auxiliaries

A.1 Exponential Map

Given a Lie groupG with Lie algebra A, the exponential map fromA to G is
dened by e = (1), where : ! G is the unique one-parameter subgroup of
G generated by 2 A.

Proposition A.1.1. Let G be a Lie group and lefA be its Lie algebra.

(a) Forany 2 A, the mappingt 7! € ,t2 yields a one-parameter subgroup
of G generated by .

(b) The exponential map is a smooth map frorA to G and restricts to a dif-
feomorphism from some neighborhood 6f2 A to a neighborhood of 2 G.

Proof. See 43 for the proof. O

A.2 Lie Group Inverse

Lemma A.2.1. Let G be a Lie group and lef: G! G be the inverse mapping,
i.e. f( )= 1. Then the derivativedf( ): T G! T :G is given by

di(t )= dbL :( )dR ()= dR ()L :( ):
In particular, we nd at unity df( ): A'A ,v7! v,

Proof. We consider the equation = 1 and apply the chain rule (seel]) to
deduce

0=dL ( Hdf( )+dR :( ):

A similar application of the chain rule, namely dierentiating g = ! g with
respect tog, shows that

=dL :(g)dL (9)

forall 2 T4G, and in particular thatdL :( )dL ( ') is the identity mapping
on T :G. The second identity is proven in the same way by di erentiating
= 1 instead. O
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A.3 Implicit Functions on Banach Manifolds

Lemma A.3.1. Let G, U, Y be Banach manifolds of clas€ with 1 k 1
U G U open, and(go; Ug) 2 U. Provided thatF 2 CK(U;Y) andF (go; ug) = 0,
the following statements are equivalent.

(@) F(;up) is aC-di eomorphism of an open neighborhood af, onto an open
neighborhood of 0.

(b) Fg(go; Ug) is an isomorphism fromTy, G to TpY.

(c) There are open neighborhood¥ U of (go;up) and V. U of ug and a
function § 2 CK(V;G) such that F(g;u) = 0 and (g;u) 2 V if and only if
g=%(u)andu 2 V and

do(u) = Fe((u);u) Fu(0(u);u):

Proof. We refer to Theorem 8.41 ing1]. O

A.4  Young's Inequality

Lemma A.4.1. For "> OandE 2 it holds the inequality

EZ
Proof. Young's inequality gives us
E?2 . E °?
"x2 2EXy + —y®= Py p=y o:
This implies
iny, 2 E2 2
12 Exy > Y (A4.1)
which, by direct computation, leads to the assertion of the lemma. !

A.5 Finite Rank Perturbations

Lemma A.5.1. Let X;k k be a Banach space with dual spacX ?; - and
L: X ! X7 a bounded linear operator. Moreover, leV = spanfvy;:::;v4g be a
nite-dimensional subspace and/j; :::; v; form a dual basis, i.e.v/; wi = j for
jjk =1;z;dandhv’;yi =0 forally 2 Y, whereX =V Y. If Hy;yi  ckyk®
holds for ally 2 Y, then we can nd > 0, which only depends ot > 0 and

L .- ., with the following property. The perturbed operator

xd
Bu=Lu+ hv; uiv/ (A.5.1)
j=1
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satis es
Heu;ui  ekuk?
forallu2 X.

Proof. We decomposar = v+ yinto v2 V andy 2 Y. The positivity of L on

the subspaceY and L ,, , C for someC > 0 lead to

hLu;ui = hLy;yi + hLy;vi + hLv;yi + hLv; Vi
ckyk? C(2kykkvk + kvk?)  mkyk® M kvk?;

where the last step is due to Lemm&.4.1. The proof is nished by applying the
squared triangle inequality

kuk?  (kyk+ kvk)?  2kyk?+ 2 kvk?®
to the positivity estimate
heu;ui = hLu;ui + kvk®> mkyk®+(  M)kvk?;

C2
where we have to choose>M = C + > O

A.6 Lipschitz Inverse

Lemma A.6.1. Let X, « and Y;  be Banach spaces witkp 2 X and
denote byL: X ! Y a linear homeomorphism. If there exist positive constants
;C1;C6 > 0and a mappingF : B (xg) X ! Y such that

() F(x) F(X2) y G X1 X2,
1
(i) o<c1 ——F—
L ! X Y
(i)  Lxo+ F(xo0) (¢ @),
then the equation

(L+F)x)=0

has a unique solutiorx, 2 B (Xo), and the stability estimate

X1 X2

x o o LRI (LrF))

holds for allx;; %, 2 B (Xo).



140 Appendix A. Auxiliaries

Proof. By de ning T(x)= L !F(x), we rewrite the equationLx + F(x) =0 as
an equivalent xed point problem T(x) = x. From the inequality

Co
T(x1) T(x2) L * x v F(x1)) F(x2) ) X1 Xz o

for x1;%, 2 B (Xo) and

T(X1) Xoy  T(X1) T(Xo) y + T(Xo) Xo y
Co
o Xo  + Lt F(xo)+ Lxo
1
Co 1
— + — (C = ’
c & (¢t )

we conclude thatT is a contraction on the closed baB (xg). Hence, the existence
of a unique solution follows from the contraction mapping principle. Meover,
the stability estimate is a consequence of

X1 X2 (I Txe (1 THxz  + Txg Txa
Co
le v (L+F)xg (L+F)X2Y+C_1Xl X2 o

for x1;%2 2 B (Xo). m
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