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Introduction

In physics, many problems can be formulated as Hamiltonian systemswith in-
�nitely many degrees of freedom. These Hamiltonian partial di�erential equations
possess conserved quantities, such as energy, mass, and momentum.

There is a wide range of physical applications. The nonlinear Schr•odinger
equation (NLS) appears in the description of laser propagation, free surface water
waves, and plasma waves (see [22], [56], and [65]), the nonlinear Klein-Gordon
equation (NLKG) arises in relativistic quantum mechanics (see [31], [63]), and
nonlinear dispersive equations of Korteweg-de Vries (KdV) type are used to model
oceanic waves, in particular tsunami waves (see [36], [55]).

This thesis deals with solitary wave solutions to these Hamiltonian partial
di�erential equations and their stability. Our main interest is to analyze and
implement a numerical method for the computation of solutions whose initial
data are close to a solitary wave solution.

Let us �rst describe the setting. We consider an abstract evolution equation

ut = F (u) 2 X; u (t) 2 D F ;

where the operatorF is a Hamiltonian vector �eld de�ned on a dense subspace
DF of a Banach space (X; k � k) and maps intoX . This means, there exists aC2

functional H : X ! R and a continuous symplectic form! : X � X ! R such
that

! (F (u); v) = hdH (u); vi

holds for all u 2 D F and v 2 X . The evolution equation is then called a Hamil-
tonian system (see e.g. [1] and [45]), and the weak formulation in the dual space
X ? takes the form

! (ut ; �) = d H (u):

The evolution in time of this autonomous dynamical system is completely deter-
mined by a scalar valued function, the HamiltonianH : X ! R . Since it does not
depend explicitly on time, the Hamiltonian is a �rst integral of the system, which
means that it remains constant on any solution. In physical applications, such as
classical and quantum mechanics, the numerical value of the Hamiltonian equals
the value of the total energy, which means Hamiltonian systems aresystems with
conserved energy.

As an additional structure, we assume the equation to be equivariant with
respect to the actiona : G ! GL(X ) of a �nite-dimensional, but not necessarily
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compact, Lie groupG. Equivariance means that the Lie groupG acts onX via
a representation that is equivariant in the sense

F (a(
 )u) = a(
 )F (u)

for all 
 2 G and u 2 D F , where a(
 )DF � D F is assumed. However, in case
of the weak formulation it is more convenient to express equivariance by the
invariance of the Hamiltonian, which we write as

H (a(
 )u) = H (u):

From the physical point of view this is a symmetry, and it leads to a general-
ization of Noether's theorem from classical mechanics, which yieldsd = dim( G)
conserved quantities.

In Hamiltonian partial di�erential equations dispersion and non-linearity can
interact to produce solitary wave solutions, which maintain their shape v? while
rotating, oscillating or traveling at a constant speed� ?. In the abstract setting of
equivariant Hamiltonian systems they appear as relative equilibria, i.e.,solutions
of the form

u?(t) = a(et� ? )v?

with � ? 2 A , v? 2 X . Here A is the Lie algebra associated withG, and � 7! e�

denotes the exponential map fromA to G.
Solitary waves that are stable and travel over very large distances are a re-

markable physical phenomenon as one usually assumes waves to either 
atten
out or steepen and collapse. Accordingly, the theory of solitary wave stability
is a broad �eld of mathematical research. In terms of the nonlinearSchr•odinger
equations we refer to [15], [24], and [64]. The stability theory of solitary waves
in an abstract setting can be found in [32], [38], [47], [52], and, in particular, in
[33]. These approaches provide applications to a variety of Hamiltonian partial
di�erential equations.

As stated before, our main objective is the long time behavior of numerical
solutions of Hamiltonian partial di�erential equations with initial data close to
a relative equilibrium. For these equivariant Hamiltonian systems, classical Lya-
punov stability of steady states has to be weakened to orbital stability. A relative
equilibrium u? is called orbitally stable if solutions stay for all times close to the
group orbit a(G)u?, provided their initial data are su�ciently close.

In numerical computations, this is not quite satisfactory. For example, a
traveling wave solutionu?(t) = v?(� � � ?t) leaves the computational domain in
�nite time. This leads to additional di�culties in terms of spatial discre tization
and to undesirable issues with boundary conditions.

As an approach to tackle these problems we apply the so-called freezing
method, introduced in [8] and independently in [50], to Hamiltonian systems.
The freezing method has been successfully applied to parabolic equations and
hyperbolic-parabolic systems with dissipative terms (see [6], [49], and the refer-
ences therein), but its application to Hamitonian systems has not been studied
at all.
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The principal idea of the freezing method is to separate the time evolution of
a solution into an evolution of the pro�le and an evolution in the Lie group by
writing

u(t) = a
�

 (t)

�
v(t):

We assume that
 7! a(
 )v is smooth forv on a dense subset ofX and denote
its derivative at unity by � 7! d[a( 1 )v]� . The problem is then transformed into
an equation of the form

! (vt ; �) = d H (v) � dQ(v)�;

wherev 7! dQ(v)� is the continuous extension of the mappingv 7! ! (d[a( 1 )v]�; �)
to v 2 X . A phase condition (v; � ) = 0 is added in order to compensate for the
additional unknown � . In this way, a partial di�erential equation transforms into
a partial di�erential algebraic equation (PDAE), and relative equilibria become
steady states. Thereby, the freezing method yields additional information about
the dynamics close to a relative equilibrium, in particular it provides a direct
approximation of � ?.

As a typical case, the following pictures contrast a solitary wave solution of
the nonlinear Schr•odinger equation with the corresponding steady state of the
freezing system.

t
x

R
e(

u)

Solution of the original problem

t
x

R
e(

v)

Solution of the freezing system

t
x

Im
(v

)

Solution of the freezing system

0 10 20
0

0.4

0.8

1.2

x

�

Frequency and Velocity

The question arises whether such steady states are stable in the sense of
Lyapunov, i.e., for any" > 0 there exists� > 0 such that we have

sup
0� t< 1

h
kv(t) � v?k + j� (t) � � ?j

i
< ";
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provided that the initial data are consistent and satisfykv(0) � v?k < � . The
stability analysis in Chapter 2 is based on the spectral stability assumptions
that M. Grillakis, J. Shatah, and W. Strauss imposed in [33]. Our main result,
Theorem2.3.7, states that under these assumptions a steady state (v?; � ?) of the
freezing system is Lyapunov stable.

The abstract stability theory is applied to the nonlinear Schr•odinger equation

iu t = � uxx � j uj2u; u0 2 H 1( R ; C );

which is invariant under the action of a two-parameter group of gauge transfor-
mations and translations, and to the nonlinear Klein-Gordon equation

utt = uxx � u + juj2u; u0 2 H 1( R ; R

3) � L2( R ; R

3)

with its four-dimensional Lie group of oscillations in theu-components and trans-
lations.

In Chapter 3 we put our focus on the discretization of the freezing system
and the preservation of stability. Loosely following the approach ofD. Bambusi,
E. Faou, and B. Gr�ebert in [3], we consider approximation parameters �2 P ,
�nite-dimensional subspacesX � � X , and an error function" : P 7! R > 0.

As examples, we take the �nite di�erence and �nite element method for the
nonlinear Schr•odinger equation. We restrict ourselves to two levels of approxima-
tion, namely, truncation to a �nite domain with appropriate boundary conditions
and spatial semi-discretization.

We do not analyze the time-integration of the freezing method and leave it
as work in progress. This is despite the fact that orbital stability results for
fully discrete approximations of the NLS are known. We refer to [3], and to
[14] for results on conserved quantities. The main di�culty is the construction
of a modi�ed energy as in [21]. The underlying theory for ordinary di�erential
equations can be found in [34].

Provided that " (�) is small enough, our analysis in Chapter 3 yields the
existence and stability of steady states for the discretized freezing system

! � (v�
t ; �) = d H � (v� ) � dQ� (v� )� � ;

0 =  � (v� ):

These steady states (v�
? ; � �

? ) are close to steady states of the continuous problem
in the sense that




 v�

? � v?




 + j� �

? � � ?j � C"(�) :

Moreover, they are stable, i.e., for any" > 0 there exists� > 0 such that we have

sup
0� t< 1

�
kv� (t) � v�

?






�
+

�
�� � (t) � � �

?

�
�
�

< ";

provided the initial data are consistent and satisfy



 v� (0) � v�

?






�
< � .

When it comes to the discretized nonlinear Schr•odinger equation, the abstract
theory currently applies only to solitary waves of the formu?(t) = ei� ? tv?, which
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do not travel at all. It is quite challenging to set up a theory that treats truncation
to �nite domains and discretization for traveling solitary waves. That is why a
comprehensive theory does not yet exist.

As a �rst step, we put our emphasis in Chapter4 on the impact of boundary
conditions and spatial discretization on the conservation properties of Hamilto-
nian systems. Here, we stay away from an abstract setting, but instead get insight
via direct computations for the truncated and discretized freezing system for the
NLS.

We �rst consider the continuous problem that is truncated to a �nite inter-
val, where we choose separated boundary conditions. However, itturns out that
periodic boundary conditions lead to better results. In a second step, we ana-
lyze �nite di�erence and spectral methods. Since the translation group does not
act on a discrete grid, the conservation of momentum and energy isnot even
locally satis�ed for �nite di�erences. This issue can be bypassed by making use
of spectral methods.

In Chapter 5 we support our abstract theoretical results by numerical ex-
periments. Due to the superior conservation properties of periodic boundary
conditions and spectral methods, we make use of the Strang splitting (see [53]).
The principal idea is to decompose the vector �eld into two parts that can be
e�ciently evolved. The application of this method to the nonlinear Schr•odinger
equation with periodic boundary conditions has been analyzed in [20].

We consider these numerical computations rather as a benchmarktest for
solving the freezing system by a splitting algorithm, than an e�ort to�nd an
optimized numerical scheme for a speci�c type of partial di�erential equation.
Nevertheless, we still want to exploit the high e�ciency for an equation that can
be split into two analytically solvable parts (e.g. the NLS).

That is why we do not directly solve the PDAE system, but in each step
compute the extra variables� 2 A in a preliminary calculation. But, this does
not come without a drawback. The numerical solution is no longer forced to stay
exactly on the manifold that is given by the phase condition. As a consequence,
we notice a high 
uctuation in the values of� . However, strictly enforcing the
phase condition is not mandatory since it is arti�cial anyway.

We also use the Strang splitting for numerically solving the NLKG, where we
do not solve the second order in time equation, but use the transformation to a
�rst order system that is also used in our stability theory. Finally, weapply the
freezing method to the Korteweg-de Vries equation

ut = � uxxx � 6uux ; u0 2 H 1( R ; R ):

Due to the third derivative, its geometric structure is di�erent from the previous
examples, and that is why it does not �t into our abstract setting, however, it
almost does. Based on [10], we indicate a modi�cation of our abstract approach,
which allows us to treat this equation. Our numerical realization is based on the
Strang splitting for the original problem, as analyzed in [37].

For each of the three equations, we notice a stable behavior of thesteady states
for the freezing system, at least for very small deviations. But, incontrast to
parabolic problems, there is no asymptotic stability. That is why initialdeviations
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and computational errors are rather ampli�ed, than die out over long times. This
issue is una�ected by the freezing method.



Chapter 1

Equivariant Hamiltonian Systems

1.1 Hamiltonian Ordinary Di�erential Equations

Many problems in classical mechanics, for instance the motion of celestial objects,
can be written as Hamiltonian ordinary di�erential equations. In thefollowing,
we give a brief overview of the principle concepts of Hamiltonian mechanics,
where we focus on those aspects that reappear in Hamiltonian partial di�erential
equations. In a second step, the Hamiltonian formalism is illustrated by a very
basic example.

By
�
�; �

�
R

n we denote the Euclidean inner product and byh�; �i the dual pairing
of a Banach spaceX and its dual X ?. In case ofX = R

d, the Riesz isomorphism
is given by

�
R

d : R

d ! R

d;?; q 7!
�
q;�

�
R

d :

If a function f : Df � R

d ! R is di�erentiable at x 2 D f , then its gradient is
de�ned as

r f (x) = � � 1
R

d df (x) 2 R

d:

Moreover, a vectorq 2 R

d is written as

q =

0

B
@

q1
...

qd

1

C
A ;

where each componentqj is a real number.

1.1.1 Hamiltonian Mechanics

In accordance with the historical construction, we introduce Hamiltonian me-
chanics as a reformulation of Lagrangian mechanics. As a starting point, let us
consider generalized coordinatesq 2 R

d, where d is the number of degrees of
freedom, velocitiesv 2 R

d, and the Lagrangian

L(q; v) = T(q; v) � U(q);
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which is de�ned as the di�erence between the kinetic energyT and the potential
energyU. For a trajectory

q: [t0; tE ] ! R

d; t 7! q(t)

the actionS is de�ned by the integral of the Lagrangian ofqand its time derivative
qt between the two instants of timet0 and tE , i.e.,

S(q) =
Z tE

t0

L
�
q(t); qt (t)

�
dt:

According to Hamilton's principle the realization of a physical system isa station-
ary point of this action functional, which means dS(q) = 0. Then, the calculus
of variations leads to the Euler-Lagrange equations

d
dt

h
L v(q; qt )

i
= Lq(q; qt ):

This is a d-dimensional system of second-order di�erential equations, which re-
quires initial data for q(t0) 2 R

d and v(t0) = qt (t0) 2 R

d.
The Legendre transform converts the Euler-Lagrange equations into a 2d-

dimensional system of �rst-order di�erential equations. The �rst step is to re-
place the generalized velocities with conjugate momenta. De�ne thegeneralized
momentum p(t) 2 R

d at time t 2 [0; T] corresponding to the positionq(t) 2 R

d

and the velocity qt (t) 2 R

d by

p(t) = r vL(q(t); qt (t)) :

For simplicity, let us make the hypothesis (see [19]) that there exists a global
implicit function v̂ : R

d � R

d ! R

d such that v 2 R

d, p 2 R

d, and q 2 R

d satisfy
the equation

p = r vL(q; v)

if and only if v = v̂(p; q). Rewriting the Euler-Lagrange equations in terms ofq
and p leads to Hamilton's equations

pt = �r qH (p; q); qt = r pH (p; q); (1.1.1)

where the scalar valued Hamiltonian is given by

H (p; q) =
�
p; v̂(p; q)

�
R

d � L(q;v̂(p; q)); (1.1.2)

together with initial data for q(t0) 2 R

d and p(t0) 2 R

d.
Let us show that Hamilton's equations (1.1.1) can be equivalently written as

an abstract Hamiltonian system

! (ut ; �) = d H (u) 2 X ?; (1.1.3)
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where the phase spaceX is the 2d-dimensional real vector spaceR

2d, and the
symplectic form! : R

2d � R

2d ! R is de�ned by

! (u; v) = ( Ju)T v

with

J =
�

0 I d

� I d 0

�
2 R

2d� 2d:

Proposition 1.1.1. Let I � R be an open interval. Thenp : I ! R

d and
q : I ! R

d solve (1.1.1) if and only if u : I ! R

2d,

u(t) =
�

p(t)
q(t)

�

is a solution of (1.1.3), where the Hamiltonian is de�ned in (1.1.2).

Proof. On the one hand, from (1.1.1) we obtain

! (ut ; v) = ( Jut )T v =
�
qT

t � pT
t

�
�

v1

v2

�
=

�
qt ; v1

�
R

d �
�
pt ; v2

�
R

d

=
�
r pH (u); v1

�
R

d +
�
r qH (u); v2

�
R

d = hdH (u); vi

for v 2 R

2d. On the other hand, from

! (ut ; �) = d H (u) 2 ( R

2d)?

we conclude

ut = J � 1r H (u):

This is rewritten as
�

pt

qt

�
=

�
0 I d

� I d 0

� �
r pH (u)
r qH (u)

�
=

�
r qH (u)

�r pH (u)

�
;

which implies (1.1.1).

Hamilton's equations possess several remarkable properties. Since we have

J T = � J = J � 1;

the matrix J is skew-symmetric and non-degenerate, which means! is a sym-
plectic form. This skew-symmetry has an immediate consequence for solutions of
(1.1.3).

Proposition 1.1.2. Let u be a solution of equation (1.1.3). Then H is a con-
served quantity, i.e.,H (u(t)) = H (u(0)) holds for all t � 0.
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Proof. Di�erentiating with respect to time gives us

d
dt

h
H (u)

i
= hdH (u); ut i = ! (ut ; ut ) = 0 :

Since the derivative vanishes, the Hamiltonian is constant in time.

Remark 1. A few notes on further references are as follows.

� Details on the Legendre transform can be found in [2] and [19].

� A more general situation in whichJ explicitly depends onu with J (u) being
singular is considered in [38] and [44].

1.1.2 Rain Gutter Dynamics

The following elementary example from [44] illustrates the notion of stability
for relative equilibria in Hamiltonian systems. Consider a particle with position
q 2 R

2 sliding along a rain gutter. The rain gutter is horizontally arranged, itis

at in q1-direction and shaped as a parabola inq2-direction.

0

25

0.5

1

20

1.5

15

2

10

2.5

5
1.50 10.50-0.5-1-1.5

q1

q2

Figure 1.1.1: Motion of the particle

By compressing theq1-axis, we get an impression of the steady lateral motion
of the particle. The potential energy

U(q) =
1
2

q2
2

represents this parabolic geometry. The kinetic energyT(q; qt ), which is given by

T(q; v) =
1
2

(� v2
1 + v2

2);

appears non-physical, since inq1-direction the functional does not increase as
velocity squared, but decreases instead. However, no force acts in q1-direction.
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Hence, the particle undergoes a motion with constant velocity, andwe deduce that
+ v2

1 instead of � v2
1 leads to exactly the same dynamics. But, the negative sign

choice more closely mimics the stability problem of solitary waves in Hamiltonian
PDEs.

The LagrangianL : R

4 ! R is given by

L(q; v) = T(q; v) � U(q) = 1
2(� v2

1 + v2
2) � 1

2q2
2;

and its partial derivative with respect to the v-component writes as

hL v(q; v); yi = � v1y1 + v2y2

for y 2 R

2. This leads to the generalized momentum

p = r vL(q; qt ) =
�

� 1 0
0 1

�
qt :

Solving

p =
�

� 1 0
0 1

�
v

for v 2 R

2 gives us the implicit function

v̂(p; q) =
�

� p1

p2

�
:

The dot product of p and v̂(p; q) is given by
�
p; v̂(p; q)

�
R

2 = � p2
1 + p2

2. Hence, the
Lagrangian in terms ofp and q writes as

L(q;v̂(p; q)) = 1
2(� p2

1 + p2
2) � 1

2q2
2:

As a result, the Hamiltonian H : R

4 ! R takes the form

H (q; p) =
�
p; v̂(p; q)

�
R

2 � L(q; qt (p; q)) = 1
2(q2

2 � p2
1 + p2

2):

In conclusion, Hamilton's equations in (1.1.1) are given by

qt = r pH (q; p) =
�

� p1

p2

�
;

pt = �r qH (q; p) =
�

0
� q2

�
:

To simplify the notation, we write

u =

0

B
B
@

p1

p2

q1

q2

1

C
C
A ;
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which leads to

ut = J � 1r H (u) =

0

B
B
@

0
� u4

� u1

u2

1

C
C
A ; (1.1.4)

where we have

J =
�

0 I 2

� I 2 0

�
; I 2 =

�
1 0
0 1

�
:

As we have mentioned before, the momentum inq1-direction is a conserved quan-
tity. From the Newtonian point of view, this is a consequence of no force acting in
this direction. However, the conservation can be directly deducedfrom equation
(1.1.4). Indeed, the derivative of the functional

Q: R

4 ! R ; Q(u) = u1

is given by

hdQ(u); vi = v1

for v 2 R

4. Hence, equation (1.1.4) yields

d
dt

h
Q(u)

i
= hdQ(u); ut i = 0;

i.e., the functional Q is a conserved quantity. Relative equilibria of (1.1.4) that
are associated with this conserved quantity are steady translations in q1-direction,
which can be written as

u?(t) =

0

B
B
@

� � ?

0
� ?t + � ?

0

1

C
C
A =

0

B
B
@

� � ?

0
� ?

0

1

C
C
A +

0

B
B
@

0
0

� ?t
0

1

C
C
A = v? +

0

B
B
@

0
0

� ?t
0

1

C
C
A

for � ?; � ? 2 R : In order to analyze stability, we consider the functional

S(v) = H (v) � Q(v)� ?: (1.1.5)

Since

dS(v?) = d H (v?) � dQ(v?)� ? = 0

and all terms in (1.1.5) are at most quadratic, we �nd

S(v) � S(v?) = 1
2hL?(v � v?); v � v?i ;

where we denoteL? = d 2S(v?). If L? is positive de�nite, this leads to

S(v) � S(v?) � Ckv � v?k2;
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and the Lyapunov stability follows as a direct consequence of the conservation of
this functional. But in the case of the rain gutter, the matrix representation of
L? is given by the Hessian

L? =

0

B
B
@

� 1
1

0
1

1

C
C
A : (1.1.6)

Its negative subspace is

W = fr Q(v?)� : � 2 R g = R �

0

B
B
@

1
0
0
0

1

C
C
A :

This meansW is spanned by the gradient ofQ at v?, i.e., it consists of vectors
orthogonal to the level setf v 2 R

4 : Q(v) = Q(v?)g: Since Q is a conserved
quantity, which means that solutions cannot leave a level set ofQ, the stability
is una�ected by this negative subspace. Moreover, it is worth mentioning that
the negative subspace is a result of the negative sign in the kinetic energy. The
canonical choiceT(q; v) = 1

2(v2
1 + v2

2) leads to W being a positive subspace.
In addition to the negative subspace, there is the non-trivial kernel

Z = ker( L?) = R �

0

B
B
@

0
0
1
0

1

C
C
A ;

which results from the fact that H and Q are invariant under the shift.
Now, the freezing method is applied to realize a splitting into these shift dy-

namics inq1-direction and the evolution inq2-direction. This is done by choosing
a comoving frame, i.e., a di�erent frame for each timet. More speci�cally, we
write

v(t) = u(t) �

0

B
B
@

0
0


 (t)
0

1

C
C
A :

We note that H and Q are both invariant under this transformation, i.e.,

H (v(t)) = H (u(t)) ;

Q(v(t)) = Q(u(t)) :

Moreover, the shift can be expressed in terms of the symplectic matrix J and the
gradiant of Q as

J � 1r Q(u) =

0

B
B
@

0
0
1
0

1

C
C
A :
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By combining these properties and de�ning� = 
 t , the system (1.1.4) is trans-
formed into

vt = ut �

0

B
B
@

0
0

 t

0

1

C
C
A = J � 1

�
r H (v) � r Q(v)�

�
=

0

B
B
@

0
� v4

� v1 � �
v2

1

C
C
A :

The arbitrariness in this representation is removed by introducing aso-called
phase condition for the additional unknown� . In this example, we can simply
require the v3-component to be constant for all times, i.e.,

0 =  (v) = v3 � b�

for someb� 2 R . Physically speaking, the frame is attached to the particle in this
direction. The transformed system

vt = J � 1
�
r H (v) � r Q(v)�

�
;

0 =  (v)

is a di�erential algebraic equation and has steady states of the form

v? =

0

B
B
@

� � ?

0
b�
0

1

C
C
A

for all � ? 2 R : The Lyapunov stability of these steady states is a consequence of
the conservation ofQ and the phase condition, which reduce the dynamics of the
transformed system to theq2-component. In Chapter2, we extend this freezing
ansatz to abstract Hamiltonian systems.

1.2 Abstract Hamiltonian Systems

In the following, we introduce the basic framework that allows us to generalize the
concept of Hamiltonian ODEs to abstract evolution equation with applications
in Hamiltonian PDEs. Such an abstract evolution equation is of the form

ut = F (u) 2 X; u (t) 2 D F ; (1.2.1)

and it is assumed to be equivariant under the action of a �nite-dimensional Lie
group G. For more details on equivariant dynamical systems, we refer to [16],
[23], and [46]. By T
 G we denote the tangent space ofG at 
 , in particular
A = T

1

G is the tangent space ofG at unity.
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1.2.1 Basic Framework

In Section1.1.1we have only considered �nite-dimensional Hamiltonian systems.
The next step is to allow the phase spaceX to be in�nite-dimensional. Let
(X; k � k) be a separable Banach space over the �eld of real numbers. We equip
this vector space with a continuous symplectic form

! : X � X ! R :

That is, the mapping ! is linear in each argument, alternating, and nondegener-
ate. Alternating means that! (u; u) = 0 for all u 2 X , while nondegenerate refers
to the property that ! (u; v) = 0 for all v 2 X implies u = 0. As an immediate
consequence of the alternation, the skew-symmetry

! (u; v) = � ! (v; u)

for all u; v 2 X follows from

0 = ! (u + v; u + v) = ! (u; v) + ! (v; u):

Lemma 1.2.1. The mappingu 7! ! (u; �) is one-to-one.

Proof. Let u 2 X satisfy ! (u; �) = 0 2 X ?, which means that! (u; v) = 0 for all
v 2 X . From the non-degeneracy of! , we �nd u = 0. Hence, the mapping is
one-to-one.

In general, this mapping is not onto. This is a main di�erence compared
to �nite-dimensional Hamiltonian systems with symplectic matrices, which are
invertible.

A di�erentiable operator f : X ! X is called symplectic if it preserves the
symplectic form, i.e.,

!
�
df (y)u; df (y)v

�
= ! (u; v) (1.2.2)

for all y; u; v 2 X . In the �nite-dimensional case (see Section1.1), the equation
(1.2.2) is equivalent to the matrix equation df (y)T J � 1df (y) = J � 1.

This symplectic structure gives rise to the notion of Hamiltonian systems. An
operator F : DF � X ! X is called a Hamiltonian vector �eld if its domain DF

is dense inX , and if there exists a twice continuously di�erentiable functional
H : X ! R such that

! (F (u); v) = hdH (u); vi (1.2.3)

for all u 2 D F and v 2 X . Provided that F is a Hamiltonian vector �eld, we
can use the identity (1.2.3) to formally rewrite the abstract evolution equation
(1.2.1) as a Hamiltonian system

! (ut ; �) = d H (u); (1.2.4)

where the bilinear form! de�nes a linear operatoru 7! ! (u; �) from X to its dual
spaceX ?.

Since we want equation (1.2.4) to possess additional symmetries, we require
the existence of a �nite-dimensional Lie groupG that acts on X .
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Assumption 1.2.2. The Lie group G acts onX via a homomorphism

a: G ! GL(X );

whose imagesa(g) are symplectic.

Remark 2. Assumption 1.2.2 is too restrictive for the rain gutter equation since

a(
 )v = v +

0

B
B
@

0
0


0

1

C
C
A

for 
 2 G = R is an a�ne transformation and not in GL( R

4). However, the
bijective functions from R

4 to itself, together with the operation of composition,
form a group, anda is a group homomorphism since

a(
 1)[a(
 2)v] = v +

0

B
B
@

0
0

 2

0

1

C
C
A +

0

B
B
@

0
0

 1

0

1

C
C
A = a(
 1 + 
 2)v:

Moreover, by settingf (v) = a(
 )v for v 2 R

4, we get df (y)v = v for all y 2 R

4,
which means, thata(
 ) is symplectic for all 
 2 R . Since our main interest are
Hamiltonian PDEs, where translations in space are linear mappings, wedecide
against keeping a�ne transformations in the general framework.

If it exists, the (Gâteaux) di�erential of a(�)v at unity in the direction of � is
denoted by d[a( 1 )v]� and

D � = f v 2 X : The di�erential of a(�)v at unity in the direction of � exists.g

denotes the domain of the operator d[a( 1 )�]� : D � ! X , v 7! d[a( 1 )v]� . In
general, the mappinga(�)v : G ! X , 
 7! a(
 )v is not smooth for all v 2 X , but
we require the operators d[a( 1 )�]� for � 2 A to have a common dense domain in
X .

Assumption 1.2.3. The operator F : DF � X ! X is densely de�ned and its
domain is a subset of the intersection

D1
a =

\

� 2A

D � :

Remark 3. Linearity of the di�erential allows us to pick a basis inA , which leads
to a �nite intersection.

We deal with the lack of smoothness of the group action by making use of the
weak formulation in (1.2.4).
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Assumption 1.2.4. For all � 2 A the mapping

v 7! ! (d[a( 1 )v]�; �)

can be continuously extended to a bounded linear operatorB(�)� : X ! X ?,
which means

hB(v)�; u i = ! (d[a( 1 )v]�; u )

holds for all u 2 X and v 2 D � .

Before we discuss implications of this setting, we are left to impose our require-
ments on the Hamiltonian. A functionf : X ! V with images in a Banach space�
V;




 �






V

�
is calledlocally boundedif for any x 2 X there exists a neighborhood

U such that



 f (ex)






V
� C holds uniformly for ex 2 U.

Assumption 1.2.5. The Hamiltonian H : X ! R is twice continuously di�er-
entiable with locally bounded derivatives and invariant with respect tothe group
action, i.e.,

H (a(
 )v) = H (v)

for all v 2 X and 
 2 G.

Di�erentiating the identity H (a(
 )v) = H (v) with respect to v yields

a(
 )?dH (a(
 )v) = hdH (a(
 )v); a(
 )�i = d H (v) 2 X ?: (1.2.5)

Let us show that due to this formula, an invariant Hamiltonian leads toan equiv-
ariant Hamiltonian system and vice versa, where equivariance is de�ned as follows.
The evolution equation (1.2.1) is called equivariant if the inclusion

a(
 )DF � D F

holds for all 
 2 G, and if

F (a(
 )v) = a(
 )F (v) (1.2.6)

for all v 2 D F and 
 2 G.

Proposition 1.2.6. Given the Assumptions1.2.2 and 1.2.3, suppose that we
have a(
 )v 2 D F for all v 2 D F and 
 2 G. Then H (a(
 )v) = H (v) for all
v 2 X , 
 2 G if and only if (1.2.6) holds for all v 2 D F , 
 2 G.

Proof. From the symplecticity of the group action and (1.2.5) we deduce

! (a(
 � 1)F (a(
 )v); u) = ! (F (a(
 )v); a(
 )u) = hdH (a(
 )v); a(
 )ui

= hdH (v); ui = ! (F (v); u)

for v 2 D F and 
 2 G, while (1.2.6) follows from Lemma1.2.1. In a similar way,
we obtain from (1.2.6) the identity

a(
 )?dH (a(
 )v) = d H (v)

for v 2 D F and 
 2 G. By continuity the validity of the formula extends to all
v 2 X . This implies that the mappingv 7! H (a(
 )v) � H (v) is constant for �xed

 2 G. Since it vanishes forv = 0 2 X , the constant equals zero.
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Physically speaking, such symmetry properties lead by Noether's theorem to
additional conserved quantities. For� 2 A we de�ne the functionals

Q(�)� : X ! R ; v 7! 1
2hB(v)�; v i ; (1.2.7)

where v 7! B(v)� extends v 7! ! (d[a( 1 )v]�; �) as stated in Assumption1.2.4.
From (1.2.7) we obtain the identity

hdQ(v)�; u i = ! (d[a( 1 )v]�; u ) (1.2.8)

for all � 2 A , v 2 D � , and u 2 X . In the following, we write dQ(�)� instead of
B(�)� .

The invariance ofQ(�)� under the group action is a consequence of the sym-
plecticity of a(
 ). However, in general, the invariance is only true for a suitable
subgroup. This restriction arises from the fact that the Lie groupG is not as-
sumed to be commutative. Having this in mind, we treat the tangent space
A = T

1

G as a Lie algebra together with the commutator

[�; � ] = �� � ��; �; � 2 A

as its Lie bracket. The centralizer of� 2 A is de�ned to be

CA (� ) = f � 2 A : [�; � ] = 0g:

Since CA (� ) is a Lie subalgebra ofA , there exists a unique connected Lie sub-
group, which has CA (� ) as its Lie algebra and is generated byeCA (� ) (see e.g.
[51]). We denote this subgroup byG(eCA (� ) ).

Proposition 1.2.7. Given the Assumptions1.2.2-1.2.4, the identity

Q(a(
 )v)� = Q(v)�

holds for all v 2 X , � 2 A , and 
 2 G(eCA (� ) ).

Proof. By continuity it is su�cient to prove the invariance for v 2 D � , which
is dense inX by Assumption 1.2.3. Since 
 2 G(eCA (� ) ) and et� commute, we
obtain

a(et� )a(
 )v = a(
 )a(et� )v:

Di�erentiating this identity with respect to time at t = 0 yields

d[a( 1 )(a(
 )v)]� = a(
 )d[a( 1 )v]�:

Therefore, we get

Q(a(
 )v)� = 1
2! (d[a( 1 )(a(
 )v)]�; a (
 )v) = 1

2 ! (d[a( 1 )v]�; v ) = Q(v)�

by the symplecticity of the group action.
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The invariance ofH and Q with respect to the group action has the following
consequence.

Corollary 1.2.8. Let the Assumptions1.2.2-1.2.5 be satis�ed. Then we have

hdH (v); d[a( 1 )v]� i = 0 (1.2.9)

for all � 2 A and v 2 D1
a. Moreover, if [�; � ] = 0 for � 2 A , we get

hdQ(v)�; d[a( 1 )v]� i = 0: (1.2.10)

Proof. These two identities are obtained by di�erentiating at
 = 1 the equations
H (a(
 )v) = H (v) and Q(a(
 )v)� = Q(v)� .

Sincea is a symplectic group homomorphism, we also have

!
�
a(g)v; y

�
= !

�
a(
 )a(g)v; a(
 )y

�
= !

�
a(
g )v; a(
 )y

�
(1.2.11)

for all 
; g 2 G and v; y 2 X . The right hand side of (1.2.11) involves the
multiplication of the Lie group elements
 and g. In the proof of Proposition
1:2:7 we circumvented the di�erentiation with respect to a Lie group element by
introducing the real variablet. In the following, it is preferable to directly analyze
the Lie group operations. Denote the left multiplication with
 by L 
 , i.e.,

L 
 : G ! G; g 7! 
g;

and write its derivative at g 2 G in the following way

dL 
 (g) : TgG ! T
g G; � 7! dL 
 (g)�:

The derivative at unity dL 
 ( 1 ) is a linear homeomorphism between the tangent
spacesA and T
 G (see [1] for further details). In the same way a right multipli-
cation R
 and its derivative dR
 are de�ned.

The identity ( 1.2.8) and di�erentiation of ( 1.2.11) at g = 1 give us

hdQ(v)�; y i = !
�
d[a( 1 )v]�; y

�
= !

�
d[a(
 )v]dL 
 ( 1 )�; a (
 )y

�
(1.2.12)

for all � 2 A and v 2 D � , the domain of d[a( 1 )�]� . However, by Assumption
1.2.4, the derivative of Q exists for all v 2 X . That is why the right hand side of
(1.2.12) can be continously extended to the whole space.

Let us further show that the symmetry of dQ(�)� is an immediate conse-
quence of the symplecticity of the group actiona(
 ) and LemmaA.2.1 from the
Appendix.

Proposition 1.2.9. Given the Assumptions1.2.2-1.2.4, the operators

dQ(�)� : X ! X ?

are symmetric, i.e.,

hdQ(v)�; u i = hdQ(u)�; v i (1.2.13)

for all � 2 A and v; u 2 X .
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Proof. By continuity it su�ces to prove the symmetry on the dense subsetD � .
From the symplecticity of the group action and the skew-symmetryof ! we
conclude

! (a(
 )v; u) = ! (v; a(
 � 1)u) = � ! (a(
 � 1)u; v):

By Lemma A.2.1, di�erentiating with respect to 
 at unity implies

hdQ(v)�; u i = ! (d[a( 1 )v]�; u ) = ! (d[a( 1 )u]�; v ) = hdQ(u)�; v i ;

which �nishes the proof.

Due to these conserved quantities, many solutions of Hamiltonian systems
possess speci�c spatio-temporal patterns. Physically speaking,these solutions are
solitary waves, which take the form of relative equilibria in our abstract setting.

De�nition 1.2.10. A solution u: [0; 1 ) ! X of (1.2.4) is called a relative
equilibrium if there exist v? 2 X and � ? 2 A such that

u(t) = a(et� ? )v? (1.2.14)

is satis�ed for all t � 0.

We also use the notation
 ?(t) = et� ? , which meansu(t) = a(
 ?(t))v?:

1.2.2 Hamiltonian Evolution Equations

In Section 1.2.1 we considered a weak formulation of the problem (1.2.1) in the
dual spaceX ?, but with classical derivatives in time. However, solutions of
partial di�erential equations may only be di�erentiable with respect to time in a
generalized sense. This leads to the notion of a generalized solution as in [68].

De�nition 1.2.11. Let I � R be an interval. A continuous functionu: I ! X
is called a generalized solution of (1.2.4) if we have

�
Z

I
! (u(t); y)' t(t)dt =

Z

I
hdH (u(t)) ; yi ' (t)dt (1.2.15)

for all y 2 X and test functions' 2 C1
0 (I � ; R ), where I � is the interior of I .

Remark 4. If we set  = ! (�; y) 2 X ?, we obtain the de�nition of a weak solution
as in [32]. However, we avoid the term weak solution since it may lead to confu-
sion. In PDE applications, such as the nonlinear Schr•odinger equation, a weak
solution u 2 L1 (I ; L2( R ; C )) must obey the integral formulation in the sense
of Duhamel's principle. That is, the continuity with respect to time holds with
images inS?( R ; C ), the class of tempered distributions. Ifu is continuous in the
L2( R ; C ) topology, it is said to be a strong solution. See [58] for further details.

Having in mind transformations in time and space, it is convenient to make
use of the following conclusion.
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Lemma 1.2.12. Let u be a generalized solution of (1.2.4). Then we have

�
Z

I
!

�
u(t); � t (t)

�
dt =

Z

I
hdH (u(t)) ; �( t)i dt (1.2.16)

for all � 2 C1
0(I � ; X ).

Proof. SinceX is separable, we can approximate �2 C1
0(I � ; X ) arbitrarily closely

by a sum
NX

k=1

' kyk , where we haveyk 2 X , ' k 2 C1
0 (I � ; R ), and N 2 N . Then

the assertion follows by linearity of (1.2.15) with respect to ' (t)y.

So far, our notion of generalized solutions is nothing but a de�nition.We are
left to prove that this is a generalization. In particular, we have to show that
a smooth solution of (1.2.1) is a generalized solution in the sense of De�nition
1.2.11, and under suitable regularity conditions, vice versa.

Proposition 1.2.13. A function u 2 C(I ; DF ) \C 1(I � ; X ) is a solution of (1.2.1)
if and only if it is a generalized solution in the sense of De�nition 1.2.11.

Proof. If a smooth function u solves (1.2.1), i.e., we haveut = F (u), then it
follows ! (ut ; �) = ! (F (u); �) = d H (u), which implies by integration by parts

�
Z

I
! (u(t); y)' t(t)dt =

Z

I
! (ut(t); y)' (t)dt =

Z

I
hdH (u(t)) ; yi ' (t)dt

for all y 2 X and ' 2 C1
0 (I � ; R ). Therefore, the function u is a generalized

solution in the sense of De�nition1.2.11. On the other hand, given a generalized
solution u 2 C(I ; DF ) \ C 1(I � ; X ), we �nd by applying integration by parts

Z

I
! (ut(t); y)' (t)dt = �

Z

I
! (u(t); y)' t(t)dt =

Z

I
hdH (u(t)) ; yi ' (t)dt

for all y 2 X , ' 2 C1
0 (I � ; R ). Now we make use of Lemma1.2.1together with a

standard argument from the theory of distributions to concludeut = F (u).

Next, we collect our assumptions on local existence, uniqueness, continuous
dependence, and persistence of regularity.

Assumption 1.2.14. The Banach space (X; k �k) is continuously embedded into
another Banach space (X � 1; k � k� 1), such that for eachu0 2 X the following
properties hold.

(a) There exist maximal existence timesT �
u0

< 0, T+
u0

> 0, and a unique function
u 2 C(I ; X ) \ C 1(I ; X � 1) satisfying (1.2.15) on I = ( T �

u0
; T+

u0
) with the

initial condition u(0) = u0 .

(b) For M > 0, there exist T > 0 and R < 1 such that the solutions with
initial data ku0k � M exist on [0; T] and satisfy




 u(t)




 +




 ut (t)






� 1
� R

for all t 2 [0; T].
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(c) Solutions depend continuously on their initial data in the following sense.
For any solution eu from (a) and any % > 0 satisfying [� %; %] � (T �

eu0
; T+

eu0
),

there exist �; M > 0 such that solutionsu with initial data ku0 � eu0k � �
exist on [� %; %] and can be estimated by




 u(t) � eu(t)




 +




 ut (t) � eut (t)






� 1
� Mk u0 � eu0k � M �:

(d) For u0 2 D F the solutions satisfyu 2 C(T �
u0

; T+
u0

; DF ) \ C 1(T �
u0

; T+
u0

; X ).

Remark 5. We have simpli�ed the notation by omitting the embedding, i.e.,
we formally assumeX � X � 1. Moreover, it is worth mentioning that in some
applications X � 1 is the dual ofX , while it is not in the general case.

Now, we deduce conservation laws, by exploiting these properties.It is a well-
known fact that the solutions of a Hamiltonian system preserve theHamiltonian
H : X ! R , i.e.,

H (u(t)) = H (u(0))

for all initial values u(0) 2 X and t 2 I . In other words, the Hamiltonian is a
�rst integral, i.e.,

(H � u)t = 0:

The formal proof for smooth solutionsu 2 C(I ; DF ) \ C 1(I ; X ) writes

(H � u)t = hdH (u); ut i = ! (ut ; ut ) = 0 ;

where we have used (1.2.4) and the skew-symmetry of!: The conservation prop-
erty for generalized solutions is stated as a lemma.

Lemma 1.2.15. Provided that Assumption1.2.14 holds, let E : X ! R be a
continuous function that is preserved by all smooth solutions u 2 C(I ; DF ) \
C1(I ; X ). Then it follows

E(u(t)) = E(u(0))

for all t 2 I and all generalized solutionsu 2 C(I ; X ).

Proof. For u 2 C(I ; X ) we de�ne

A = f t 2 I : E(u(t)) = E(u(0))g:

The �rst step is to show that A is closed in I . Let tn 2 A be a sequence
such that tn ! t 2 I . From u 2 C(I ; X ) it follows ku(tn) � u(t)k ! 0, which
implies E(u(tn)) ! E(u(t)) by the continuity of E. However, we haveE(u(tn)) =
E(u(0)) due to tn 2 A. This yieldsE(u(t)) = E(u(0)), which meanst 2 A. Hence
A is closed inI .

Next we show that 02 A is an interior point of A. By combining Assumption
1.2.14(c) and Assumption1.2.14(d), there exists� > 0 and a sequence of functions
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un 2 C([� �; � ]; DF ) \ C 1([� �; � ]; X ) satisfying (1.2.15) with kun(t) � u(t)k ! 0
as n ! 1 uniformly for t 2 [0; � ]. Then we haveE(un (0)) ! E(u(0)) and
E(un(0)) = E(un(t)) ! E(u(t)) for t 2 [0; � ]. By the uniqueness of the limit it
follows t 2 A for t 2 [0; � ].

Since an autonomous equation is invariant under time shifting, any point of
A is an interior point. Hence, we concludeA = I .

Likewise, other symmetries give rise to additional conserved quantities, where
the word symmetry refers to some invariance under a Lie group of transforma-
tions. In particular, the functionals Q(�)� are conserved quantities. Indeed, by
combining the identities (1.2.3), (1.2.8), and (1.2.9), we �nd

d
dt

h
Q(u)�

i
= hdQ(u)�; u t i = ! (d[a( 1 )u]�; F (u)) = �h dH (u); d[a( 1 )u]� i = 0;

provided u 2 C(I ; DF ) \ C 1(I ; X ) holds. Then, by Lemma1.2.15we obtain the
conservation of the functionalsQ(�)� for the 
ows of all generalized solutions.

1.3 Partial Di�erential Equations as Hamilto-
nian Systems

Hamiltonian partial di�erential equations appear in many areas of physics. Some
famous examples are the nonlinear Schr•odinger equation

iu t = � uxx � j uj2u; u(0; x) = u0(x) 2 H 1( R ; C )

and the nonlinear Klein-Gordon equation

utt = uxx � u + juj2u; u(0; x) = u0(x) 2 H 1( R ; R

3) � L2( R ; R

3):

In the following, we rewrite these equations as abstract Hamiltoniansystems and
discuss some of their relative equilibria. In terms of spatial variableswe restrict
ourselves to the one-dimensional case. As a consequence the stationary problems,
which lead to relative equilibria, are ordinary di�erential equations. Moreover,
the short and full notation will be used synonymously, i.e.,u = u(t) = u(t; x ).

1.3.1 Nonlinear Schr•odinger Equation (NLS)

The cubic nonlinear Schr•odinger equation is given by

iu t (t; x ) = � uxx (t; x ) + � ju(t; x )j2u(t; x ); u(0; x) = u0(x); (1.3.1)

where � is a real constant. Moreover, we havet 2 R > 0, x 2 R , and u(x; t ) 2 C .
This equation is a nonlinear perturbation of the linear Schr•odinger equation

iu t + uxx = 0;

which is used to describe the evolution of a quantum state in a physical system,
while the NLS has applications to nonlinear optics and waves in dispersive media.
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The choice of the parameter� can be reduced to the two fundamental cases
� = � 1. In quantum mechanics these refer to the attractive and the repulsive
case. The more common terms, however, arise from nonlinear optics, where the
Kerr e�ect describes the change in the refractive index of a material in terms of
the intensity of an applied electric �eld. Depending on the medium, a propagating
laser beam has a self-focusing or self-defocusing e�ect, and as a result the medium
acts as a focusing, respectively defocusing, lens. We refer to [22] and [41] for
further details on this topic.

In case of the NLS, the relative sign of the linear (di�raction) term and the
(Kerr-)nonlinearity matters. If they have the same sign, i.e.,� < 0, we are in
the focusing case, whereas the defocusing case occurs for di�erent signs, which
means� > 0.

The problem (1.3.1) �ts into the abstract framework by using the Sobolev
space

X = H 1( R ; C );

which is a dense subspace ofL2( R ; C ). We equip L2( R ; C ) with the real inner
product

�
u; v

�
0

=
Z

R

�
u1(x)v1(x) + u2(x)v2(x)

�
dx =

Z

R

Re
�
�u(x)v(x)

�
dx: (1.3.2)

That is, in principle, we handleu = u1 + iu 2 by means of its real and imaginary
part. However, we use the more convenient complex notation whenever possible.

The Sobolev spaces are de�ned via Fourier transform. Fors > 0 we have

H s( R ; C ) =
�

v 2 L2( R ; C ) : F � 1qsF v 2 L2( R ; C )
	

(1.3.3)

with qs(� ) = (1 + j� j2)
s
2 , and the corresponding norm is given by

kvks =



 F � 1qsF v






0
:

The norm k � k0 coincides with the usualL2( R ; C )-norm, and X ? = H � 1( R ; C ) is
the dual space ofX . For s = � 1, we have to replacev 2 L2( R ; C ) in (1.3.3) by
v 2 S ?( R ; C ), the space of tempered distributions. More details and alternative
de�nitions can be found in [17].

By multiplying ( 1.3.1) with � i , the cubic nonlinear Schr•odinger equation be-
comes

ut = i(uxx � � juj2u): (1.3.4)

We write F (v) = L(v) + N (v), where L(v) = ivxx and N (v) = � i� jvj2v. Then
(1.3.4) takes the abstract form ut = F (u), and we are left to specify a dense
domain DF � X such that F 2 C(DF ; H 1( R ; C )).

Lemma 1.3.1. The di�erential operator L : H 3( R ; C ) ! H 1( R ; C ); v 7! ivxx is
continous.
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Proof. We set qs(� ) = (1 + j� j2)
s
2 and ps(� ) = j� js. By Plancherel's theorem the

Fourier transform is an isometry with respect to theL2-Norm k � k0. Hence, from
q1(� )p2(� ) � q3(� ) for all � 2 R , we conclude

kL(v)k1 = kvxx k1 = kF � 1q1F vxx k0 = kF � 1q1p2F vk0 � kF � 1q3F vk0 = kvk3;

which implies L 2 C
�
H 3( R ; C ); H 1( R ; C )

�
by the linearity of the operator.

For the nonlinear part we prove the stronger resultN 2 C
�
H 1( R ; C ); H 1( R ; C )

�
,

which is based on the properties of generalized Banach algebras. The following
de�nition is taken from [67].

De�nition 1.3.2. A Banach space
�
X; k � k

�
that at the same time is an asso-

ciative algebra
�
X; �) is called a generalized Banach algebra if

ku � vk � Ckukkvk

holds uniformly for all u; v 2 X . We speak of a Banach algebra ifC = 1.

In fact, the Sobolev spaceH s( R ; C ) for s > 1
2 forms a generalized Banach

algebra under the pointwise product. This result is due to Strichartz (see [54]).

Lemma 1.3.3. The mappingN : H 1( R ; C ) ! H 1( R ; C ); v 7! � i� jvj2v de�nes
a continous operator.

Proof. For v 2 H 1( R ; C ) we concludeN (v) 2 H 1( R ; C ) and kN (v)k1 � Ckvk3
1,

where we use the fact thatkvk1 = k�vk1. For the (real) derivative of N we get

kdN (v)hk1 = k2�vvh + v2�hk1 � Ckvk2
1 khk1

for any h 2 H 1( R ; C ) by the same argument. Now letku � vk1 � � hold. Then

kN (u) � N (v)k1 � C
�
kvk1 + �

� 2
ku � vk1

yields N 2 C
�
H 1( R ; C ); H 1( R ; C )

�
.

The next step is to show thatF (v) = i (vxx � � jvj2v) with DF = H 3( R ; C )
yields a Hamiltonian vector �eld in the sense of (1.2.3).

Proposition 1.3.4. Equation (1.3.4) is a Hamiltonian system with respect to

H : H 1( R ; C ) ! R ; H (u) =
1
2

Z

R

�
jux(x)j2 +

�
2

ju(x)j4
�

dx;

and the symplectic form

! : H 1( R ; C ) � H 1( R ; C ) ! R ; ! (u; v) =
Z

R

Im
�
�u(x)v(x)

�
dx =

�
iu; v

�
0
:

That is, these functions satisfy (1.2.3), where

F : H 3( R ; C ) ! H 1( R ; C ); F (u) = i (uxx � � juj2u)

is the right hand side of the nonlinear Schr•odinger equation.
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Proof. We have to show

! (F (u); v) = hdH (u); vi

for all u 2 H 3( R ; C ) and v 2 H 1( R ; C ). By writing

H (u) = T(u) + U(u);

the Hamiltonian is split into two parts, the kinetic energy

T(u) =
1
2

Z

R

jux(x)j2dx

and the potential energy

U(u) =
�
4

Z

R

ju(x)j4dx:

Analyzing the kinetic part, we obtain

T(u + v) =
1
2

Z

R

�
jux(x)j2 + �ux(x)vx (x) + ux(x)�vx (x) + jvx (x)j2

�
dx

= T(u) +
Z

R

Re
�
�ux(x)vx (x)

�
dx + O(kvk2

1);

which yields the derivative

hdT(u); vi =
Z

R

Re
�
�ux (x)vx (x)

�
dx =

�
ux ; vx

�
0
: (1.3.5)

Now, we study the potential part and note that

jz + � j4 =
�
jzj2 + z�� + �z� + j� j2

� 2
= jzj4 + 2jzj2(�z� + z�� ) + O(j� j2)

for z; � 2 C . This leads to

U(u + v) = U(u) +
�
4

Z

R

2ju(x)j2
�
�u(x)v(x) + u(x)�v(x)

�
dx + O(kvk2

1)

= U(u) + �
Z

R

Re
�
ju(x)j2 �ux(x)vx (x)

�
dx + O(kvk2

1):

Hence, the derivative takes the form

hdU(u); vi = �
Z

R

Re
�
ju(x)j2 �u(x)v(x)

�
dx =

�
� juj2u; v

�
0
: (1.3.6)

By combining (1.3.5) and (1.3.6), we get

hdH (u); vi = hdT(u); vi + hdU(u); vi =
�
ux ; vx

�
0

+
�
� juj2u; v

�
0
;

which implies

hdH (u); vi =
�

� uxx + � juj2u; v
�

0
= ! (i (uxx � � juj2u); v) = ! (F (u); v)

for u 2 H 3( R ; C ) and v 2 H 1( R ; C ) via integration by parts.
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In conclusion, the nonlinear Schr•odinger equation written as a Hamiltonian
system takes the form

! (ut ; y) =
�
iu t ; y

�
0

=
�
ux ; yx

�
0

+
�
� juj2u; y

�
0

= hdH (u); yi

for y 2 X = H 1( R ; C ): According to De�nition 1.2.11a generalized solution to
this equation is a functionu 2 C(I ; X ) that satis�es

�
Z

I

�
iu (t); y

�
0
' t (t)dt =

Z

I

� �
ux(t); yx

�
0

+
�
� ju(t)j2u(t); y

�
0

�
' (t)dt

for all y 2 X and ' 2 C1
0 (I � ; R ):

After the functional setting we consider symmetries of the nonlinear Schr•odinger
equation. For simplicity, we start with a one-parameter group of gauge transfor-
mations. The Lie group isG = S1, the group action a: G ! GL(X ) is given
by

a(
 )v = e� i
 v

for v 2 X and 
 2 G. Consequently, the derivative ofa(�)v at 1 is

d[a( 1 )v]� = � i�v

with � 2 A = R . Moreover, we have dQ(v) : A ! X ? given by

hdQ(v)�; y i = ! (d([a( 1 )v])�; y ) =
�
�v; y

�
0

for y 2 X , and

Q: X � A ! R ; (v; � ) 7!
�
2




 v




 2

0
:

This group action is smooth for allv 2 X = H 1( R ; C). More generally, we
consider the two-parameter group

a: G ! GL(X ); a(
 )v = e� i
 1 v(� � 
 2); 
 = ( 
 1; 
 2) 2 G = S1 � R

of gauge transformations and translations. HereA = R � R is the Lie-Algebra of
G, such that we can write� = � 1e1 + � 2e2 2 A ; where f e1; e2g = f (1; 0); (0; 1)g
is a basis ofA . We decompose the derivative of the group action into

d[a( 1 )v]� = � 1S1v + � 2S2v;

where we have

S1v = d[ a( 1 )v]e1 = � iv;

S2v = d[ a( 1 )v]e2 = � vx :

The focusing cubic nonlinear Schr•odinger equation

iu t = � uxx � j uj2u
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possesses so-called solitary wave solutions. The initial valueu0(x) =
p

2
cosh(x) leads

to the solution

u?(t; x ) =

p
2

cosh(x)
eit : (1.3.7)

With ( 1.3.7) is associated a two-parameter family of solitary wave solution (see
e.g. [18] and [20]). It is also known (see [24]) that the number of parameters can
be reduced by using further symmetries of the NLS. Going the other way around,
we deduce the two-parameter family by exploiting two additional symmetries.
The �rst one is the scale invariance.

Proposition 1.3.5. If u is a classical solution onI = [0; T], then so iseu on the
scaled intervaleI = [0; � 2T], whereeu is given by

eu(t; x ) = �u (� 2t; �x )

for � > 0.

Proof. Let us rewrite the NLS asLv = 0 with

Lv = iv t + vxx + jvj2v: (1.3.8)

This di�erential operator is equivariant in the sense that

�
Leu

�
(t; x ) = i eut (t; x ) + euxx (t; x ) +

�
�eu(t; x )

�
�2

eu(t; x )

= i�u t (� 2t; �x )� 2 + �u xx (� 2t; �x )� 2 +
�
��u (� 2t; �x )

�
�2

�u (� 2t; �x )

= � 3
�
Lu

�
(� 2t; �x ):

This shows that eu is a solution on eI = [0; � 2T] if u is a solution onI = [0; T].

Remark 6. The scale invariance is very helpful in addressing the question of
well-posedness, and the so-called criticality (with respect to scaling) denotes a
signi�cant transition in the behaviour of many partial di�erential eq uations. For
more information on this see [59].

By applying the scaling with � > 0, the solution (1.3.7) is transformed into

u?(t; x ) = �e i� 2 t

p
2

cosh(�x )
: (1.3.9)

The other symmetry is the Galilean invariance.

Proposition 1.3.6. If u is a classical solution andc 2 R , then eu given by

eu(t; x ) = ei
�

c
2 x� c2

4 t
�

u(t; x � ct)

is a solution to the same equation.
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Proof. For the di�erential operator ( 1.3.8) and g(t; x ) = ei
�

c
2 x� c2

4 t
�

we �nd
�
Leu

�
(t; x ) = i eut (t; x ) + euxx (t; x ) +

�
�eu(t; x )

�
�2

eu(t; x )

= ig(t; x )
�

� i c2

4 u + ut � cux
�
(t; x � ct)

+ g(t; x )
�
(i c

2)2u + 2 ic
2 ux + uxx

�
(t; x � ct)

+ g(t; x )
�
�u(t; x � ct)

�
�2

u(t; x � ct)

= g(t; x )
�
Lu

�
(t; x � ct);

which shows thateu is a solution if u is so.

By exploiting the Galilean invariance, we get the two-parameter familyof
solutions

u?(t; x ) = �e i
�

� 2 t+ c
2 x� c2

4 t
� p

2
cosh(� (x � ct))

; � > 0; c 2 R : (1.3.10)

Let us change the notation by setting� 1 = �
�
� 2 + c2

4

�
and � 2 = c. Then we �nd

� 2t + c
2x � c2

4 t = � � 1t +
� 2

2
(x � � 2t);

and (1.3.10) becomes

u?(t; x ) = e� i� 1 tv?(x � � 2t) (1.3.11)

with the pro�le

v?(x) =

r

�
�

� 1 + � 2
2

4

�
� ei

� 2
2 x

p
2

cosh
� r

�
�

� 1 + � 2
2

4

�
� x

� :

1.3.2 Nonlinear Klein-Gordon Equation (NLKG)

Our next example are coupled nonlinear wave equations, namely the system

utt (t; x ) = uxx (t; x ) � u(t; x ) + ju(t; x )j2u(t; x ); u(0; x) = u0(x) (1.3.12)

with x 2 R and u(x; t ) 2 R

3, where the Euclidean norm onR

3 is denoted byj � j .
This is a nonlinear pertubation of the Klein-Gordon equation

utt = uxx � mu;

where by rescaling spacetime, the massm is normalized to equal one. In contrast
to the Schr•odinger equation, it is consistent with the laws of special relativity
and has applications in quantum �eld theory (see e.g. [31], [63]).

Due to the wave operator, the nonlinear Klein-Gordon equation (NLGK) is a
second order hyperbolic partial di�erential equation. However, by writing

ut (t; x ) =
�

u1(t; x )
u2(t; x )

�
=

�
u2(t; x )

u1;xx (t; x ) � u1(t; x ) + ju1(t; x )j2u1(t; x )

�
; (1.3.13)
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it is transformed to a �rst order system. The transformed equation (1.3.13) takes
the abstract form

ut = F (u)

with

F (v) =
�

v2

v1;xx � v1 + jv1j2v1

�
; (1.3.14)

whereDF = H 2( R ; R

3) � H 1( R ; R

3) is by de�nition the domain of (1.3.14). Let
us show that the Hamiltonian

H (u) =
1
2

Z

R

�
ju2j2 + j(u1)x j2 + ju1j2 � 1

2 ju1j4
�
dx (1.3.15)

and the symplectic form

! (v; u) =
Z

R

(vT
1 u2 � vT

2 u1)dx (1.3.16)

lead to a weak formulation of this problem, where the phase space is the Hilbert
space

X = H 1( R ; R

3) � L2( R ; R

3)

with its dual space given by

X ? = H � 1( R ; R

3) � L2( R ; R

3):

Proposition 1.3.7. Equation (1.3.13) is a Hamiltonian system with respect to
(1.3.15), and the symplectic form is given by (1.3.16).

Proof. We have to show that

! (F (u); v) = hdH (u); vi

for all u 2 D F = H 2( R ; R

3) � H 1( R ; R

3) and v 2 X = H 1( R ; R

3) � L2( R ; R

3).
Plugging (1.3.14) into ( 1.3.16) gives us

! (F (u); v) =
Z

R

�
F1(u)T v2 � F2(u)T v1

�
dx

=
Z

R

�
uT

2 v2 �
�
u1;xx � u1 + ju1j2u1

� T
v1

�
dx

=
Z

R

uT
2 v2 dx +

Z

R

uT
1;xv1;x dx +

Z

R

uT
1 v1 dx �

Z

R

ju1j2uT
1 v1 dx:

We must compare this expression with the derivative of the Hamiltonian. First,
we note that for x; y 2 R

3 with jxj � C it holds

jx + yj4 =
�
jx + yj2

� 2
=

�
jxj2 + 2xT y + jyj2

� 2

= jxj4 + 4jxj2xT y + O(jyj2):
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For �xed u 2 H 2( R ; R

3) � H 1( R ; R

3) this implies

H (u + v) =
1
2

Z

R

�
ju2 + v2j2 + ju1;x + v1;x j2 + ju1 + v1j2 � 1

2 ju1 + v1j4
�
dx

=
1
2

Z

R

�
ju2j2 + ju1;x j2 + ju1j2 � 1

2 ju1j4
�
dx

+
Z

R

�
uT

2 v2 + uT
1;xv1;x + uT

1 v1 � j u1j2uT
1 v1

�
dx + O(kvk2):

Hence, the derivative of the Hamiltonian takes the form

hdH (u); vi =
Z

R

�
uT

2 v2 + uT
1;x v1;x + uT

1 v1 � j u1j2uT
1 v1

�
dx = ! (F (u); v)

for all u 2 H 2( R ; R

3) � H 1( R ; R

3) and v 2 H 1( R ; R

3) � L2( R ; R

3).

The nonlinear Klein-Gordon equation is equivariant under the action of a four-
dimensional Lie group of oscillations inu and translations in x. More precisely,
the Lie group is given by

G = SO(3) � R

and the corresponding group action takes the form

a: G ! GL(X ); 
 7! a(
 )v

with

a(
 )v =
�
Av1(� + � ); Av2(� + � )

�

for 
 = ( A; � ) 2 SO(3) � R and v = ( v1; v2) 2 H 1( R ; R

3) � L2( R ; R

3). Its
derivative at unity along � = ( S; c) 2 so(3) � R is given by

d[a( 1 )v]� =
�
Sv1 + cv1;x ; Sv2 + cv2;x

�
:

Before we consider solitary wave solutions, we recall that the product of a
skew-symmetric 3� 3 matrix with a vector � 2 R

3 can be rewritten as

S� = s � �;

where we provide

S =

0

@
0 � s3 s2

s3 0 � s1

� s2 s1 0

1

A :

We thereby get an isomorphism fromso(3) to R

3, which mapsS as above to

s =

0

@
s1

s2

s3

1

A :
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In particular, if the vector � 2 R

3 is orthogonal tos, it follows

S2� = S(s � � ) = s � (s � � ) = �j sj2�:

The solitary wave solutions of the nonlinear Klein-Gordon equation that corre-
spond to the symmetry with respect to oscillations inu and translations inx are
of the form

u?(t; x ) =
�
etS? v?;1(x + c?t); etS? v?;2(x + c?t)

�
; (1.3.17)

whereS? 2 so(3) is a non-zero skew-symmetric 3� 3 matrix, and we havejc?j < 1.
Plugging the ansatz (1.3.17) into ( 1.3.13) leads to the stationary problem

0 = v2 � S?v1 � c?v1;x ; (1.3.18a)

0 = v1;xx � v1 + jv1j2v1 � S?v2 � c?v2;x : (1.3.18b)

The top equation (1.3.18a) can be solved forv2, and by substituting S?v1 + c?v1;x

for v2, the bottom equation (1.3.18b) is transformed into

0 = (1 � c2
?)v1;xx � v1 + jv1j2v1 � S2

?v1 � 2c?S?v1;x : (1.3.19)

Next, we change variables by writing

v1(x) = e� ? xS? � (x);

where � ? 2 R is a free variable. Since the �rst and second derivative ofv1 are
given by

v1;x (x) = e� ? xS?

h
� x(x) + � ?S?� (x)

i
;

v1;xx (x) = e� ? xS?

h
� xx (x) + 2 � ?S?� x(x) + � 2

?S2
? � (x)

i
;

the stationary equation (1.3.19) is transformed into

0 = (1 � c2
?)� xx + k1(� ?; c?)S?� x � k2(� ?; c?)S2

? � � � + j� j2� (1.3.20)

with coe�cients given by

k1(�; c ) = 2 � (1 � c2) � 2c;

k2(�; c ) = 1 � � 2(1 � c2) + 2 �c:

By choosing� ? =
c?

1 � c2
?
, we getk1(� ?; c?) = 0, k2(� ?; c?) =

1
1 � c2

?
, and thereby

simplify (1.3.20) to

0 = (1 � c2
?)� xx � (1 � c2

?)� 1S2
? � � � + j� j2�: (1.3.21)

The �nal step is to restrict ourselves to solutions of the form

� (x)� = � (x) = e� � ? xS? v1(x);
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where� is a scalar function and� 2 R

3 is a vector of unit length and orthogonal
to s?. Consequently, the system (1.3.21) is reduced to the scalar equation

0 = (1 � c2
?)� xx + (1 � c2

?)� 1js?j2� � � + � 3: (1.3.22)

The solution of (1.3.22) is given by

� ?(x) =
p

2� ?

cosh(� ?x)

with � ? = 1 �
js?j2

1 � c2
?

and � ? =
r

� ?

1 � c2
?
. As in case of the NLS, this is a positive

function with exponential decay asjxj ! 1 .
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Analysis of the Freezing Method

2.1 Derivation of the PDAE Formulation

We now apply the freezing method (see [8], [50]) to equivariant Hamiltonian
evolution equations. The idea of this approach is to decompose the evolution
into a group action and pro�le part. This is done by minimizing the temporal
changes of the spatial pro�le of the solutions. During the numerical process, a
moving coordinate frame is determined, and the partial di�erentialequation is
rewritten as a partial di�erential-algebraic equation with additional variables.

2.1.1 General Principle

In the following, the approach of [8] is transfered to the Hamiltonian setting.
Before we go into technical details and discuss the application of thefreezing
method to generalized solutions, we start with the principal idea. Consider a
smooth solutionu 2 C1(I ; X ) of

! (ut ; �) = d H (u); (2.1.1)

a function 
 2 C1(I ; G) with 
 (0) = 1 , and de�ne another functionv 2 C1(I ; X )
via u(t) = a(
 (t))v(t). Di�erentiation with respect to time gives us

ut = d[ a(
 )v]
 t + a(
 )vt ; (2.1.2)

provided v is in the domain of the operator d[a(
 )�]
 t . Next, we make use of the
symplectic structure and rewrite (2.1.2) in the weak form

!
�
ut ; �

�
= !

�
d[a(
 )v]
 t ; �

�
+ !

�
a(
 )vt ; �

�
2 X ?:

In particular, we have

!
�
ut ; a(
 )y

�
= !

�
d[a(
 )v]
 t ; a(
 )y

�
+ !

�
a(
 )vt ; a(
 )y

�
(2.1.3)

for all y 2 X . Due to (1.2.5) and (2.1.1), the left hand side can be expressed in
terms of the derivative of the Hamiltonian, i.e.,

hdH (v); yi = hdH (a(
 )v); a(
 )yi = hdH (u); a(
 )yi = !
�
ut ; a(
 )y

�
:
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On the right hand side, however, the symplecticity of the group action yields

!
�
a(
 )vt ; a(
 )y

�
= !

�
vt ; y

�
:

Hence, the indentity in (2.1.3) takes the form

hdH (v); yi = !
�
d[a(
 )v]
 t ; a(
 )y

�
+ ! (vt ; y): (2.1.4)

Using the Lie group structure, we shift the derivative ofa(�)v at 
 to its derivative
at unity. As in [ 6] and [60], we choose a function� : I ! A that satis�es


 t = d L 
 ( 1 )�; 
 (0) = 1 :

Since dL 
 ( 1 ) is a linear homeomorphism betweenA and T
 G, the function � is
uniquely de�ned by this equation. Then (1.2.12) becomes

hdQ(v)�; y i = !
�
d[a(
 )v]
 t ; a(
 )y

�
;

and (2.1.4) takes the form

hdH (v); yi = hdQ(v)�; y i + ! (vt ; y)

for all y 2 X . Written as a system forv and 
 , the freezing approach yields

! (vt ; �) = d H (v) � dQ(v)�; v (0) = u0; (2.1.5a)


 t = d L 
 ( 1 )�; 
 (0) = 1 : (2.1.5b)

We de�ne a generalized solution to this problem in a similar way as in (1.2.15).

De�nition 2.1.1. Let I � R be an interval and� : I ! A a continuous mapping.
A continuous function v : I ! X is called a generalized solution of (2.1.5a) if we
have

�
Z

I
! (v(t); y)' t(t)dt =

Z

I



dH (v(t)) � dQ(v(t)) � (t); y

�
' (t)dt

for all y 2 X , ' 2 C1
0 (I � ; R ), where I � is the interior of I .

We are left to prove that the equivalence of the evolution equation (1:2:4) and
the freezing system (2:1:5) remains true for generalized solutions. In order to do
so, we need to rewrite the generalized derivative of!

�
a(
 (t))u(t); �

�
in terms of

dH and dQ. This can be done by applying the chain rule to �(t) = a(
 (t)) ' (t)y
for appropriate test functions' and y.

For y 2 D1
a and ' 2 C1

0 (I � ; R ) we �nd t 7! �( t) = a(
 (t)) ' (t)y 2 C1
0(I � ; X ),

whereD1
a is de�ned in Assumption 1.2.3, and by the chain rule we get

� t (t) = a(
 (t)) ' t (t)y + d[ a(
 (t)) ' (t)y]
 t (t): (2.1.6)

This allows us to prove the equivalence of the evolution equation and the freezing
system.
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Theorem 2.1.2. Given the Assumptions1.2.2-1.2.5, let 
 2 C1( R ; G) satisfy

 (0) = 1 , and let � 2 C( R ; G) be de�ned by (2.1.5b). Furthermore, let u and v be
continuous functions fromI to the Banach spaceX , such thatu(t) = a(
 (t))v(t)
holds for all t 2 I . Then v is a generalized solution of (2.1.5) if and only if u is
a generalized solution of (1.2.4).

Proof. By using (1.2.5), (1.2.16) with � as above, the skew-symmetry of ! ,
(2.1.6), (1.2.12), the symplecticity of the group action and (1.2.13), we obtain
Z

I
hdH (v(t)) ; ' (t)yi dt =

Z

I
ha(
 (t))?dH (u(t)) ; ' (t)yi dt =

Z

I
hdH (u(t)) ; �( t)i dt

= �
Z

I
!

�
u(t); � t (t)

�
dt =

Z

I
!

�
� t (t); u(t)

�
dt

=
Z

I
!

�
a(
 (t))y; u(t)

�
' t (t)dt

+
Z

I
!

�
d[a(
 (t))y]
 t (t); u(t)

�
' (t)dt

= �
Z

I
!

�
u(t); a(
 (t))y

�
' t (t)dt

+
Z

I
hdQ(y)� (t); v(t)i ' (t)dt

= �
Z

I
! (v(t); y)' t(t)dt +

Z

I
hdQ(v(t)) � (t); yi ' (t)dt:

The only-if-part is proven in a similar way, where (1.2.16) is replaced by

�
Z

I
!

�
v(t); � t (t)

�
dt =

Z

I



dH (v(t)) � dQ(v(t)) � (t); �( t)

�
dt (2.1.7)

with �( t) = a(
 (t)� 1)' (t)y. For a weak solutionv of (2.1.5), this identity is
veri�ed in the same way as in Lemma1.2.12, and by applying LemmaA.2.1 to
deal with the derivative of the inverse, we obtain

a(
 (t)� 1)' t (t)y = � t (t) + d[ a(
 (t)� 1)' (t)y]
 t(t): (2.1.8)

Then, by using the symplecticity of the group action, (2.1.8), (2.1.7), the skew-
symmetry of ! , (1.2.12), (1.2.13), and (1.2.5), we �nd

�
Z

I
!

�
u(t); y

�
' t (t)dt = �

Z

I
!

�
v(t); a(
 (t)� 1)' t (t)y

�
dt

= �
Z

I
! (v(t); � t (t))dt

�
Z

I
!

�
v(t); d[a(
 (t)� 1)' (t)y]
 t(t)

�
dt

=
Z

I



dH (v(t)) � dQ(v(t)) � (t); �( t)

�
dt

+
Z

I



dQ(v(t)) � (t); �( t)

�
dt

=
Z

I
hdH (u(t)) ; yi ' (t)dt;
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which �nishes the proof.

In general, we cannot expect the solution of the freezing equation(2.1.5) to be
unique. Therefore, we impose a phase condition, which is de�ned by (v; � ) = 0
with some mapping

 : X � A ! A ?;

where A ? is the dual space ofA . Using this approach, we get a di�erential-
algebraic equation forv(t) 2 X , 
 (t) 2 G, � (t) 2 A , which reads

! (vt ; �) = d H (v) � dQ(v)�; v (0) = u0;

0 =  (v; � );


 t = d L 
 ( 1 )�; 
 (0) = 1 :

(2.1.9)

Suitable choices for the phase condition are based on various minimization prin-
ciples (see [6], [8], [60]).

2.1.2 Fixed Phase Condition

As an example, we consider the �xed phase condition with a set-up asfollows.
We embed the Banach spaceX in a Hilbert spaceX 0 with inner product

�
�; �

�
0

and corresponding normk � k0 and obtain a Gelfand triple

X ,! X 0 = X ?
0 ,! X ?;

where we apply the Riesz representation theorem to identifyX 0 and X ?
0 . More-

over, we denote by

� : X ! X 0; v 7! �v;

the inclusion mapping fromX to X 0. Its adjoint operator

�? : X 0 ! X ?; u 7! �?u;

with respect to
�
�; �

�
0

is given by

h�?u; vi =
�
u; �v

�
0 (2.1.10)

for all u 2 X 0 and v 2 X . In other words, the duality pairing betweenX and X ?

is compatible with the inner product onX 0. However, we prefer to simplify the
notation by omitting �.
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v̂

a(�)v̂

v

a(�)v

Figure 2.1.1: Fixed phase condition

Now, we select a template function, for instance ^v = u0, provided that the
initial value is smooth enough, and require at any time instance the distance




 a(g)v̂ � v




 2

0

to attain its minimum with respect to g 2 G at g = 1 .
This means that among the points forming the group orbit

a(G)v̂ = f a(g)v̂ : g 2 Gg

the template function v̂ is closest tov. As a necessary condition we get

�
d[a( 1 )v̂]�; v̂ � v

�
0

= 0

for all � 2 A . However, the operators d[a( 1 )�]� are skew-symmetric, which yields



�?d[a( 1 )v̂]�; v

�
=

�
d[a( 1 )v̂]�; v

�
0

= 0:

2.2 Preliminaries and Spectral Hypotheses

Our stability proof is based on a modi�cation of the Grillakis-Shatah-Strauss
stability approach. In [32] and [33] the authors have established a general theory
of stability in the following sense.

De�nition 2.2.1. A relative equilibrium u?(t) = a(et� ? )v?, t � 0 is called or-
bitally stable if for any " > 0 there exists� > 0 with the following property.
For any initial value u0 2 X with ku0 � v?k � � equation (1.2.4) has a unique
generalized solutionu: [0; 1 ) ! X , u(0) = u0 that satis�es

sup
0<t< 1

inf
g2 G

ku(t) � a(g)v?k � ": (2.2.1)
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v?

a(�)v?u

u0

Figure 2.2.1: Orbital stability

Let us �rst derive a simple consequence of De�nition2.2.1, namely the preser-
vation of orbital stability by the freezing method. Given the orbital stability
(2.2.1), it follows

sup
0<t< 1

inf
g2 G

kv(t) � a(g)v?k = sup
0<t< 1

inf
g2 G

ka(
 (t))u(t) � a(g)v?k

= sup
0<t< 1

inf
g2 G

ku(t) � a(
 (t)� 1g)v?k � ";

where we assume that the group action is a unitary representationof G on X .
That is, the identity ka(g)vk = kvk holds for all g 2 G and v 2 X .

However, our aim with the freezing method and the �xed phase condition is
to ensure Lyapunov stability of the steady statev?, i.e.,

sup
0<t< 1

kv(t) � v?k � ":

Such a stability result is not that surprising at �rst glance. Indeed,assume

ku(t) � a
�
g(t)

�
v?k � "

for somet > 0. Then the minimality requirement in the �xed phase condition
and u(t) = a

�

 (t)

�
v(t) imply




 v(t) � v̂




 �




 v(t) � a

�

 (t)� 1g(t)

�
v̂



 =




 a(
 (t)� 1)u(t) � a

�

 (t)� 1g(t)

�
v̂



 ;

where we requireX = X 0. If, in addition to that, the template function satis�es

kv̂ � v?k � ";

we conclude



 v(t) � v?




 �




 v(t) � v̂




 +




 v̂ � v?






�



 a

�

 (t)� 1

�
u(t) � a

�

 (t)� 1g(t)

�
v̂



 +




 v̂ � v?






�



 u(t) � a

�
g(t)

�
v̂



 +




 v̂ � v?






�



 u(t) � a

�
g(t)

�
v?




 + 2




 v̂ � v?




 � 3":
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However, the interpretation as stability of the freezing method is questionable.
First of all, the term kv̂ � v?k does not vanish as the initial valueu0 goes tov?.
While it does for the special choice ^v = u0, the template function v̂ occurs in the
algebraic part of the di�erential-algebraic equation and must be considered as a
constant term in a stability proof. Second, this approach is very restrictive in
terms of the phase condition. It is highly unlikely to work in more general cases.
In addition to that, the norms k � k and k � k0 have to be the same. Therefore, a
more extensive analysis of the stability problem is necessary.

v?

u
u0

Figure 2.2.2: Lyapunov stability of a steady state

For the sake of completeness we repeat the assumptions and basicproperties
from [33], which are su�cient for orbital stability of u?, and which we require
in the following. From now on, leta(et� ? )v? be a �xed relative equilibrium. To
shorten the notation, we denote byA 0 the centralizer of� ?, i.e.,

A 0 = CA (� ?) = f � 2 A : [�; � ?] = 0g:

Moreover, let f e1; :::; ed? g with d? = dim( A 0) denote a basis ofA 0, and by c and
C we denote generic positive constants.

A prominent feature of an equivariant Hamiltonian system is the existence of
a family of relative equilibria, which can be parametrized by� 2 A 0. We refer
to Section 1.3 for speci�c examples, while the general assumption is due to [33].
For � close to� ?, we write a(et� )� (� ) for the corresponding relative equilibrium.
This means in particularv? = � (� ?).

Assumption 2.2.2. There exists an open subsetU � A 0 containing � ? and a
continuously di�erentiable mapping � : U ! X such that the properties

(a) dH (� (� )) � dQ(� (� )) � = 0 for all � 2 U,

(b) � (� ) 2 D1
a for all � 2 U

are ful�lled.
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By Assumption 1.2.5and 2.2.2we can di�erentiate

dH (� (� )) � dQ(� (� )) � = 0

at � = � ?. The di�erentiation along � 2 A 0 yields

L?d� (� ?)� = d Q(v?)�; (2.2.2)

where we have

L? : X ! X ?; L? = d 2H (v?) � d2Q(v?)� ?: (2.2.3)

This operator is the right hand side of the linearization of the freezing equation

! (vt ; �) = d H (v) � dQ(v)�

around its equilibrium (v?; � ?). In order to obtain stability, we are left to impose
spectral conditions onL?. In the rain gutter example, the operator in (1.1.6) is
positive on Y = ( W + Z)? , where

Z = f d[a( 1 )v?]� : � 2 R g

is its kernel, and its negative subspace is given by

W = fr Q(v?)� : � 2 R g:

Since the gradientr Q(v?) is perpendicular to the level set ofQ at v?, we can
exploit the conservation ofQ (see Proposition1.2.7) in order to obtain stability.
In case of partial di�erential equations, we cannot check directlythe orthogonality
to level sets. Instead, we follow the approach of [33] and make use of the Lagrange
functions

`(� ) = H (� (� )) � Q(� (� )) �; (2.2.4)

in particular

`? = `(� ?) = H (v?) � Q(v?)� ?: (2.2.5)

By Assumption 2.2.2we can di�erentiate (2.2.4) at � 2 U along � 2 A 0, and due
to dH (� (� )) � dQ(� (� )) � = 0, we get

d`(� )� =


dH (� (� )) � dQ(� (� )) �; d� (� )�

�
� Q(� (� )) � = � Q(� (� )) �: (2.2.6)

Di�erentiating ( 2.2.6) at � = � ? along� 2 A 0, it follows for the second derivative

hd2`(� ?)�; � i = �h dQ(v?)�; d� (� ?)� i ;

and (2.2.2) leads to

hd2`(� ?)�; � i = �h L?d� (� ?)�; d� (� ?)� i (2.2.7)

for any pair �; � 2 A 0. We thereby obtain

hL?d� (� ?)�; d� (� ?)� i < 0

for each eigenvector� 2 A 0 of d2`(� ?) that belongs to a positive eigenvalue.
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Assumption 2.2.3. The Banach spaceX is decomposed as a direct sum

X = W � Y � Z;

where we have dimW = d?,


dQ(v?)�; y

�
= 0 (2.2.8)

for all � 2 A 0 and y 2 Y. Furthermore, the subspace

Z = f d[a( 1 )v?]� : � 2 A 0g (2.2.9)

equals the kernel ofL?, and the operator

d[a( 1 )v?] : A 0 ! X

is one-to-one.

Remark 7. To be precise, Assumption2.2.3can be slightly weakened.

� If X ,! X 0 ,! X ? is a Gelfand triple, the decomposition is given by the
orthogonal projections ontoZ and W.

� We only have to ensure that the kernel is not larger thanZ . The other
inclusion Z � ker(L?) is an immediate consequence of the previous set-up.
Indeed, di�erentiating dH (a(et� )v?) � dQ(a(et� )v?)� ? = 0 at t = 0 yields
L?d[a( 1 )v?]� = d 2H (v?)d[a( 1 )v?]� � d2Q(v?)� ?d[a( 1 )v?]� = 0; which was
to be proven.

Since (1.2.10) states hdQ(v?)�; z i = 0 for all � 2 A 0 and z 2 Z , we are only
left to analyze



dQ(v?)�; w

�
for w 2 W.

Lemma 2.2.4. Given the Assumptions1.2.2-1.2.5 and 2.2.3, there exists an
isomorphism


: A 0 ! W; � 7! 
 �

such that
h
dQ(v?)ei

i d?

i =1
is the dual basis of

h

 ei

i d?

i =1
, i.e.,



dQ(v?)ei ; 
 ej

�
= � i;j :

Proof. We have to show that

f dQ(v?)� : � 2 A 0g

is a d?-dimensional subspace ofX ?. Assume that there is� 2 A 0 such that

0 = dQ(v?)� = ! (d[a( 1 )v?]�; �) 2 X ?:

By Lemma 1.2.1, the mapping u 7! ! (u; �) is one-to-one, which leads to

0 = d[a( 1 )v?]� 2 Z:

However, Assumption2:2:3 implies � = 0. Hence, the matrix
h


dQ(v?)ei ; wj
� i d?

i;j

is invertible, wherew1; :::; wd? is a basis ofW, and 
 is given by its inverse.
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In (1.1.6) the operator L? is a matrix with one zero, one negative, and two
positive eigenvalues. The generalization of positive and negative subspaces to
in�nite dimensional spaces is as follows.

De�nition 2.2.5. Let X be a Banach space andT : X ! X ? a bounded linear
operator. A closed subspaceZ of X is called positive if we have

hT z; zi � ckzk2

for all z 2 Z and somec > 0. It is called negative if we have

hT z; zi � � ckzk2:

Remark 8. Here, positive always means strongly positive, also called coercive.
Otherwise, we speak of a non-negative subspace. We use the sameterminology
for negative and non-positve subspaces.

Subsets are partially ordered by inclusion, so we can speak of maximal positive
and maximal negative subspaces. Thereby, we obtain an analog forthe number of
positive and negative eigenvalues, which is called the positive and negative index
of an operator.

De�nition 2.2.6. Let X be a Banach space andT : X ! X ? a bounded linear
operator. If Z is a maximal positive subspace, thenp(T) = dim( Z ) is called the
positive index ofT. If Z is a maximal negative subspace, thenn(T) = dim( Z ) is
called the negative index ofT. Moreover, the null index ofT is the dimension of
the kernel, i.e.,z(T) = dim(ker( T)).

The positive and negative indices, �nite or in�nite, are well-de�ned since
they do not depend on the choice of the positive (or negative) subspace (see
e.g. [30]). Now, the principal idea is to make use of (2.2.7) to obtain positivity of
the linearized operatorL? for the entire subspaceY, provided that d2`(� ?) has
su�ciently many positive eigenvalues.

Assumption 2.2.7. The inequality

n(L?) � p(d2`(� ?))

holds for the negative index ofL? and the positive index of d2`(� ?).

Here, we remark that the strict inequality cannot occur. However, this is of no
relevance for a stability result. It is also worth mentioning that this assumption
meansn(L?) < 1 , and by Assumption2.2.2we havez(L?) = dim( Z ) < 1 .

A direct sum comes with natural projectors, the coordinate mappingsPW , PY ,
PZ , and their complementary counterparts. As an exmaple, forv = w + y + z
with w 2 W, y 2 Y, and z 2 Z we get PY � Z v = y + z. Now, we consider the
spectral properties of the operator

L?jY � Z : Y � Z ! (Y � Z )?: (2.2.10)
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Lemma 2.2.8. Provided that the Assumptions1.2.2-1.2.5, 2.2.2, 2.2.3, and 2.2.7
hold, the subspaceZ lies in the kernel of the operatorL?jY � Z , which means in
particular

z(L?) � z(L?jY � Z ): (2.2.11)

Moreover, the only negative subspace ofL?jY � Z is trivial, i.e.,

n(L?jY � Z ) = 0 : (2.2.12)

Proof. The inclusion Z = ker( L?) � ker(L?jY � Z ) is an immediate consequence of
the de�nition of L?jY � Z as a restriction ofL?, and (2.2.11) follows. Moreover, a
maximal non-positive subspace ofL?jY � Z is a subset ofY � Z , and it forms a non-
positive subspace ofL? of �nite dimension n(L?jY � Z ) + z(L?jY � Z ). Furthermore,
from (2.2.7) and (2.2.2) we get

hd2`(� ?)�; � i = �h L?d� (� ?)�; d� (� ?)� i = �h dQ(v?)�; d� (� ?)� i

for � 2 A 0. But, by construction of the direct sumW � Y � Z , we have

hdQ(v?)�; d� (� ?)� i = 0;

provided d� (� ?)� 2 Y � Z . Consequently, there exists a negative subspace of
L? of dimensionp(d2`(� ?)) that is included in W, and sinceY � Z and W are
complements, there exists a non-positive subspace ofL? of dimensionn(L?jY � Z )+
z(L?jY � Z ) + p(d2`(� ?)), which implies

n(L?jY � Z ) + z(L?jY � Z ) + p(d2`(� ?)) � n(L?) + z(L?): (2.2.13)

From (2.2.11), (2.2.13), and Assumption 2.2.7we conclude

0 � n(L?jY � Z ) � n(L?) � p(d2`(� ?)) + z(L?) � z(L?jY � Z ) � 0:

Hence, the negative index ofL?jY � Z must be zero.

From Lemma2.2.8we can see that the existence of su�ciently many positive
eigenvalues of d2`(� ?) leads to n(L?jY � Z ) being zero, and hence, the negative
subspace ofL?jY � Z being trivial.

Lemma 2.2.9. Provided that the Assumptions1.2.2-1.2.5, 2.2.2, 2.2.3, and 2.2.7
hold, we obtain the estimate

hL?y; yi � ckyk2

for all y 2 Y.

Proof. From Lemma 2.2.8 we get n(L?jY � Z ) = 0. Furthermore, we see that the
kernel ofL?jY � Z equalsZ , since the dimensions are the same andZ � ker(L?jY � Z )
is due to Lemma2.2.8. Hence, we have

hL?y; yi = hL?jY � Z y; yi � ckyk2

for all y 2 Y.
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The positivity in Lemma 2.2.9is fundamental for orbital stability. To be more
precise, the Grillakis-Shatah-Strauss stability approach is based on having

a(g)u � v?

in the (orthogonal) complement ofZ for someg 2 G. It is our aim with the
freezing method to provide an adaptive algorithm such that

v � v? = a(
 � 1)u � v?

is in the complement of a suitable approximation ofZ .

Theorem 2.2.10. Let Ẑ ? = span(ẑ?
1; :::; ẑ?

d?
) be a subspace ofX ? such that

h

ẑ?

i ; d[a( 1 )v?]ej
� i d?

i;j =1
(2.2.14)

is non-singular.Under the Assumptions1.2.2-1.2.5, 2.2.2, 2.2.3, and 2.2.7, there
exists a constant̂c > 0 such that we get

hL?ŷ; ŷi � ĉkŷk2

for all ŷ that lie in the subspace

Ŷ =
�

ŷ 2 X :


dQ(v?)ej ; ŷ

�
= ĥz?

j ; ŷi = 0 for j = 1; :::; d?

	
: (2.2.15)

Proof. We write ŷ 2 Ŷ asŷ = w+ y+ z with w 2 W, y 2 Y, and z 2 Z . However,
combining (1.2.10) and (2.2.8) implies

0 = hdQ(v?)�; ŷ
�

= hdQ(v?)�; w i

for all � 2 A 0, and Lemma2.2.4leads tow = 0. Moreover, from the invertibility
of the matrix (2.2.14) and



ẑ?; y + z

�
=



ẑ?; ŷ

�
= 0;

we get the estimate

� kzk �
�
� 
 ẑ?; zi

�
� =

�
�ĥz?; yi

�
� � k yk

for some� > 0, which is independent ofz 2 Z and y 2 Y, and for some functional
ẑ? 2 Ẑ ? of unit length. Due to the triangle inequality, this implies

ky + zk � k yk + kzk � (1 + C)kyk;

which leads to

kyk2 �
1

(1 + C)2
ky + zk2:

Hence, we obtain from Lemma2.2.9 the inequality

hL?(y + z); (y + z)i = hL?y; yi � ckyk2 �
c

(1 + C)2
ky + zk2;

which was to be proven.
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Having in mind the �xed phase conditions, we impose requirements forthe
phase condition in the abstract setting. Up to this point, we have not made
use of the space (X � 1; k � k� 1) from Assumption 1.2.14. The freezing approach
in general, in particular Theorem2.1.2, is valid for any generalized solutions in
the sense of De�nition2.1.1. However, when it comes to phase conditions of the
form  (v) = 0, we require solutionsu 2 C(I ; X ) \ C 1(I ; X � 1). Furthermore, we
simplify the notation by writing

G0 = G(eA 0 ) (2.2.16)

for the Lie subgroup ofG that is generated byA 0.

Assumption 2.2.11. The mapping  : X ! A ?
0 is twice continuously di�eren-

tiable with locally bounded derivatives and satis�es the properties

(a)  (v?) = 0,

(b) the matrix
h


d (v?)ei ; d[a( 1 )v?]ej

� i d?

i;j =1
is invertible,

(c) the mappingF: G0� X � 1 ! A ?
0, (g; u) 7! F(g; u) that continuously expands

(g; u) 7!  (a(g)u) is continuously di�erentiable.

The above allows us to considerv? as a local minimum ofH subject to con-
straints for Q and  . More precisely, the method of Lagrange multipliers leads
to the modi�ed stationary problem

0 = dH (v) � dQ(v)� � d (v)�;

0 = Q(v) � Q(v?);

0 =  (v)

(2.2.17)

which possesses the solution
�
v?; � ?; 0

�
. Next, we show that � ? = 0 is not a

coincidence, but an immediate consequence of the invariance ofH and Q with
respect to the group action.

Lemma 2.2.12. Given the Assumptions1.2.2-1.2.5 and 2.2.11, let (v?; � ?; � ?)
be a solution of (2.2.17) with v? 2 D1

a. Then it follows � ? = 0, which means

0 = dH (v?) � dQ(v?)� ?:

Proof. From (1.2.9), (1.2.10), and

0 = hdH (v?) � dQ(v?)� ? � d (v?)� ?; d[a( 1 )v?]� i

for all � 2 A 0, we conclude

0 = hd (v?)� ?; d[a( 1 )v?]� i ;

and � ? = 0 follows from Assumption 2.2.11.
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The modi�ed stationary problem is set in the product spaceX = X �A 0 �A 0,
which is a Banach space with respect to the norm




 (v; �; � )






X
=




 v






X
+

�
��

�
�
A 0

+
�
��

�
�
A 0

;

and we denote the dual space byX?. Then, the equation (2.2.17) is of the form

S (v; �; � ) = 0 ; (2.2.18)

where the function

S : X ! X?; S (v; �; � ) =
�

S 1(v; �; � ); S 2(v; �; � ); S 3(v; �; � )
�

is given by

S 1(v; �; � ) = d H (v) � dQ(v)� � d (v)�;

S 2(v; �; � ) = Q(v) � Q(v?);

S 3(v; �; � ) =  (v):

The linearization of (2.2.18) around the steady state (v?; � ?; 0) is denoted by

L = d S (v?; � ?; 0) : X ! X?: (2.2.19)

Proposition 2.2.13. Under the Assumptions1.2.2-1.2.5, 2.2.2, 2.2.3, 2.2.7, and
2.2.11, the linear operator L given by (2.2.19) is one-to-one.

Proof. We have to show that the kernel ofL is trivial. Let

L(v; �; � ) = 0

for v = w + y + z 2 W � Y � Z , � 2 A 0, and � 2 A 0. This means that for all
(ev; e�; e� ) 2 X we have

0 = hL(v; �; � ); (ev; e�; e� )i = hL?v;evi + hdQ(v?)�; evi + hd (v?)�; evi

+ hdQ(v?)e�; v i + hd (v?)e�; v i :
(2.2.20)

Next, we decomposeev = ew + ey + ez and rewrite (2.2.20) for speci�c choices of
(ev; e�; e� ) 2 X. First of all, we chooseew = ey = 0 and e� = e� = 0. Since ez is in the
kernel of L? by Assumption 2.2.3, and since it is a zero ofdQ(v?)� by (1.2.10),
we conclude

0 =


L(v; �; � ); (ez;0; 0)

�
= hL?v; ezi + hdQ(v?)�; ezi + hd (v?)�; ezi = hd (v?)�; ezi

for all ez 2 Z , which means� = 0 due to Assumption 2.2.11.
Moreover, by choosingev = 0 and e� = 0, we �nd

0 =


L(v; �; 0); (0; e�; 0)

�
= hdQ(v?)e�; v i = hdQ(v?)e�; w i

as a consequence of Assumption2.2.3 and (1.2.10). Hence, we obtainw = 0,
which meansv = y + z 2 Y � Z .
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The next choice isev = y and e� = e� = 0. In the same way as before, we make
use ofL?z = 0 and (2.2.8) to obtain

0 =


L(y + z; �; 0); (y; 0; 0)

�
= hL?(z + y); yi + hdQ(v?)�; y i = hL?y; yi :

It follows y = 0 from Lemma 2.2.9, which meansv = z 2 Z .
But z = 0 is obtained from choosingev = 0 and e� = 0, which leads to

0 =


L(z; �; 0); (0; 0; e� )

�
= hd (v?)e�; z i

for all e� 2 A 0, and part (b) of Assumption 2.2.11.
Finally, we pick ev = ew and e� = e� = 0. This results in

0 =


L(0; �; 0); ( ew; 0; 0)

�
= hdQ(v?)�; ewi

for all ew 2 W, and Assumption2.2.3 leads to� = 0.

2.3 Stability of the PDAE Formulation

In the following we use the implicit function theorem to express the phase condi-
tion in terms of an implicit function ĝ, such that v = a(ĝ(u))u.

Lemma 2.3.1. Provided the Assumptions1.2.2, 1.2.3, and 2.2.11 hold, there
exist open neighborhoodsU? � G0 � X � 1 of ( 1 ; v?) and U? � X � 1 of v? and a
smooth function

ĝ: U? ! G0;

such that F(g; u) = 0 and (g; u) 2 U? if and only if g = ĝ(u) and u 2 U?.
Moreover, we have

dĝ(u) = �
�
Fg(ĝ(u); u)

� � 1
Fu(ĝ(u); u): (2.3.1)

Proof. The idea of this proof is to apply LemmaA.3.1. Due to Assumption
2.2.11(c), we haveF( 1 ; v?) =  (v?) = 0 ; and the mapping

F: G0 � X � 1 ! A ?
0; (g; u) 7! F(g; u) (2.3.2)

is continuously di�erentiable with the partial derivative at ( 1 ; v?) given by

Fg( 1 ; v?) : A 0 ! A ?
0; hFg( 1 ; v?)�; � i = hd (v?)�; d[a( 1 )v?]� i

for any �; � 2 A 0. With respect to the basis
�

ej

	 d?

i =1
this derivative is represented

by the Jacobian submatrix

h

d (v?)ei ; d[a( 1 )v?]ej

� i d?

i;j =1
;

which is invertible by Assumption2.2.11(b).
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Remark 9. For u 2 X \ U? it follows  (u) = F( 1 ; u) = 0 if and only if ĝ(u) = 1 .

Next, we combine this with Theorem2.1.2to ensure that the freezing system
has a local solution. By a solution we mean functionsv 2 C(I ; X ) \ C 1(I ; X � 1)
and � 2 C(I ; A 0), whereI is an open interval containingt0 = 0, that form a gen-
eralized solution of the transformed evolution equation in the senseof De�nition
2.1.1and satisfy the phase condition (v(t)) = 0 for all t 2 I .

Theorem 2.3.2. Under the Assumptions1.2.2-1.2.14, 2.2.3, and 2.2.11, for any
initial value u0 2 X \ U? such that  (u0) = 0 the freezing system

! (vt ; �) = d H (v) � dQ(v)�; v (0) = u0;

0 =  (v)
(2.3.3)

has a unique local solutionv 2 C(I ; X ) \ C 1(I ; X � 1), � 2 C(I ; A 0) in the sense
of De�nition 2.1.1. Furthermore, the conservation laws

H (v(t)) = H (u0);

Q(v(t)) � = Q(u0)�; � 2 A 0;

hold for all t 2 I , and we have the following blow-up alternative. If(T � ; T + ) is
the maximal interval of existence such thatv(t) remains in X \ U? and we have
T + < 1 , then

min
�

distk�k � 1

�
v(t); @U?

�
;

1
kv(t)k

�
! 0

as t ! T + .

Proof. Let T +
0 > 0 be small enough. By Assumption1.2.14there exists a unique

solution u: [0; T +
0 ] ! X of the problem

! (ut ; �) = d H (u); u(0) = u0 2 X \ U?; (2.3.4)

which is continuously di�erentiable on (0; T +
0 ) with respect to




 �






� 1
and has im-

ages inU?. Hence, the mapping
 : [0; T +
0 ] ! G0, t 7!

�
ĝ(u(t))

� � 1
is continuously

di�erentiable as a composition of continuously di�erentiable mappings, where ĝ
is the implicit function from Lemma 2.3.1. By writing

u(t) = a(
 (t))v(t); 
 t = d L 
 ( 1 )�; 
 (0) = 1

and applying Theorem 2.1.2, we get a local solutionv : [0; T +
0 ] ! X \ U?,

� : [0; T +
0 ] ! A 0 of the freezing system (2.3.3).

Now assumez: [0; T +
0 ] ! X \ U?, � : [0; T +

0 ] ! A 0 is another solution of
(2.3.3). De�ne � : [0; T +

0 ] ! G0 via � t = d L � ( 1 )� , � (0) = 1 . From Theorem
2.1.2we conclude thatt 7! a(� (t))z(t) solves (2.3.4), and due to the uniqueness
in Assumption 1.2.14, it follows

a(� (t))z(t) = u(t) = a(
 (t))v(t):
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The uniqueness of the implicit function in Lemma2.3.1 gives us� (t) = 
 (t);
which implies z(t) = v(t):

The conservation laws are proven in a similar way as in Lemma1.2.15. The
set A = f t 2 I : H (v(t)) = H (u0)g is closed sincev 7! H (v) and t 7! v(t) are
continuous. Due to the invariance ofH under the group action by Assumption
1.2.5and H (u(t)) = H (u0) by Lemma 1.2.15, it is also open. Hence, we conclude
A = I . In case of the conservation ofQ, where the invariance under the group
action is due to Proposition1.2.7, we proceed in the same way.

In order to prove the blow-up alternative, we �rst show thatT +
0 can be chosen

in such a way that it only depends on� 0; M0 > 0 satisfying distk�k � 1

�
u0; @U?

�
� � 0

and ku0k � M0. For u0 2 X \ U? let u 2 C(T �
u0

; T+
u0

; X ) be the unique solution
of (2.3.4) in the sense of Assumption1.2.14(a). Since we want to apply Lemma
2.3.1, we shrink the time interval to make sure that the solution stays inside of
U?. From Assumption 1.2.14(b) we get T0 and R0 depending only onM0 such
that it holds




 ut (t)






� 1
� R0 for t 2 [0; T0], which implies




 u(t) � u0






� 1
�

Z t

0




 ut (s)






� 1
ds � tR0:

By choosing

T (� 0; M0) = min
� � 0

R0
; T0

�
;

we getu(t) 2 X \ U? for all t 2 [0; T (� 0; M0)], and we conclude that the freezing
system has a solutionv : [0; T (� 0; M0)] ! X , � : [0; T (� 0; M0)] ! A 0, where
T (� 0; M0) only depends on� 0 and M0.

Now, let (T � ; T + ) be the maximal interval of existence of the PDAE (2.3.3)
such that v(t) remains in X \ U?. Assume that T + < 1 holds and that there
exists a sequencet j ! T + as j ! 1 such that distk�k � 1

�
v(t j ); @U?

�
� � and

kv(t j )k � M for some constants� > 0 and M 2 R .

u0

u

v

@U?

Figure 2.3.1: Extension of solution
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Using the same construction as above, i.e., solving (2.3.4) with respect to the
initial data u(0) = v(tk) 2 X \ U? and transforming to the freezing coordinates,
we extend the solution (v; � ) to a larger time interval [0; tk + T (�; M )], where
T (�; M ) only depends on� and M . However, for large enoughk we obtain
tk + T (�; M ) > T + , which is a contradiction to (T � ; T + ) being the maximal
interval of existence.

Denote by B� (v?) the (open) Ball in X of radius � > 0 centered atv? 2 X .
From U? � X � 1 open andX ,! X � 1, it follows B� (v?) � X \ U? for � > 0 small
enough.

Corollary 2.3.3. Let the Assumptions1.2.2-1.2.14, 2.2.3, and 2.2.11be satis�ed.
For any " > 0 there exists� > 0 such thatu0 2 B � (v?) satisfying (u0) = 0 implies

j� (0; u0) � � ?j < ";

wheret 7!
�
v(t; u0); � (t; u0)

�
denotes the solution of (2.3.3).

Proof. Let t 7! u(t; u0) solve (2.3.4) and let T �
0 ; T +

0 be small enough such that
we haveu(t; u0) 2 X \ U? for all t 2 (T �

0 ; T +
0 ). As in the proof of Theorem2.3.2,

this yields a functiong(t; u0) = ĝ
�
u(t; u0)

�
, whereĝ is given by Lemma2.3.1, and

from (2.3.1) we get by the chain rule

gt = �
�
Fg(g; u)

� � 1
Fu(g; u)ut : (2.3.5)

We de�ne 
 (t; u0) =
�
ĝ(u(t; u0))

� � 1
=

�
g(t; u0)

� � 1
and obtain � (t; u0) by solving


 t = dL 
 ( 1 )� . Since the group operations of multiplication and inversion are
smooth maps, for" > 0 there exist � > 0 such that the inequality

j� (0; u0) � � ?j = j� (0; u0) � � (0; v?)j < "

holds, provided that we have

jgt (0; u0) � gt (0; v?)j < �: (2.3.6)

We are left to show that for� > 0 there exist� > 0 such that u0 2 B � (v?) implies
(2.3.6). From  (v?) = 0, we get g(0; v?) = ĝ(v?) = 1 . This implies

gt (0; v?) = �
�
Fg( 1 ; v?)

� � 1
Fu( 1 ; v?)ut (0; v?);

where the matrix
h


Fg( 1 ; v?)ei ; ej

� i d?

i;j =1
=

h

d (v?)ei ; d[a( 1 )v?]ej

� i d?

i;j =1

is non-singular by Assumption2.2.11. Assumption 1.2.14(c) gives us the estimate



 ut (0; u0) � ut (0; v?)






� 1
� Mk u0 � v?k � M �;

and the mappingF: G0 � X � 1 ! A ?
0 is continuously di�erentiable by Assumption

2.2.11. Furthermore, we haveku(0; u0) � v?k = ku0 � v?k � � , and the identity
g(0; u0) = ĝ(u0) = 1 follows from  (u0) = 0. Hence, we apply Banach's Lemma
to obtain (2.3.6), provided that � > 0 was chosen small enough.
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In the following, the perturbed version ofY from (2.2.15) in Theorem 2.2.10
is chosen as

Ŷ =
�

ŷ 2 X :


dQ(v?)ej ; ŷ

�
= hd (v?)ej ; ŷi = 0 for j = 1; :::; d?

	
; (2.3.7)

i.e., z?
j = d  (v?)ej . In general, the desired propertyv(t) � v? 2 Ŷ fails to be true

for the solutions of (2.3.3). However, this di�culty is circumvented by adding
corrective terms inW and Z , i.e.,

ŷ(t) = v(t) � v? � 
 �̂ (v(t)) � d[a( 1 )v?]�̂ (v(t))

with 
 as in Lemma 2.2.4. Choosing ^� and �̂ as follows allows us to apply
Theorem2.2.10to ŷ(t) 2 Ŷ .

Lemma 2.3.4. Provided the Assumptions1.2.2-1.2.5, 2.2.3, and 2.2.11 hold,
there exist uniquely de�ned smooth functions

�̂ : X ! A 0;

�̂ : X ! A 0;

such thatG(�; �; v ) = 0 if and only if � = �̂ (v), � = �̂ (v), where

G =
�
G1

G2

�

is given by

G1(�; �; v ) =
h


dQ(v?)ei ; v � v? � 
 � � d[a( 1 )v?]�
� i d?

i =1
;

G2(�; �; v ) =
h


d (v?)ei ; v � v? � 
 � � d[a( 1 )v?]�
� i d?

i =1
:

Moreover, we obtain

j�̂ (v)j + j�̂ (v)j � Ckv � v?k2 (2.3.8)

for all v 2 X \ U? that satisfy Q(v)ej = Q(v?)ej and  (v)ej = 0 for j = 1; :::; d?.

Proof. SinceG is linear in � and � , the Jacobian submatrix
�
G1

� G1
�

G2
� G2

�

�
(2.3.9)

is constant, and we have to show that it is invertible. First of all, the matrix G1
�

is non-singular by Lemma2.2.4. Second, the other diagonal entryG2
� is invertible

by Assumption 2.2.11(b). Third, due to ( 1.2.10), the o�-diagonal block G1
� is the

zero matrix. Hence, the matrix (2.3.9) is invertible.
We are left to verify the estimate for ^� (v) and �̂ (v). Denote � = �̂ (v)

j �̂ (v)j 2 A 0

and � = �̂ (v)
j �̂ (v)j

2 A 0. Due to Q(v)� = Q(v?)� , Taylor expansion ofQ(v)� at v?

leads to

0 = Q(v)� � Q(v?)� =


dQ(v?)�; v � v?

�
+ O(kv � v?k2);
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and because of Assumption2.2.11(a), we have

0 =  (v)� �  (v?)� =


d (v?)�; v � v?

�
+ O(kv � v?k2):

Then by using the identities


dQ(v?)�; v � v? � 
 �̂ (v) � d[a( 1 )v?]�̂ (v)

�
= 0;



d (v?)�; v � v? � 
 �̂ (v) � d[a( 1 )v?]�̂ (v)

�
= 0

from the �rst part, we get


dQ(v?)�; 
 �̂ (v) + d[ a( 1 )v?]�̂ (v)i = O(kv � v?k2);



d (v?)�; 
 �̂ (v) + d[ a( 1 )v?]�̂ (v)

�
= O(kv � v?k2):

Combining (1.2.10) and Assumption 2.2.11(b), this leads to (2.3.8).

The proof of stability is now based on estimating the distancekv � v?k in
terms of H (v) � H (v?). This is obtained by Taylor expansion ofH (v) � Q(v)� ?

at v?, where we make use of Theorem2.2.10and the estimate (2.3.8) for �̂ (v)
and �̂ (v).

Lemma 2.3.5. Let v 2 X \ U? satisfy Q(v)ej = Q(v?)ej and  (v) = 0 for
j = 1; :::; d?. Provided the Assumptions1.2.2-1.2.5, 2.2.2, 2.2.3, 2.2.7, and 2.2.11
hold, we have

H (v) � H (v?) � ckv � v?k2:

Proof. As before, we writeH (v?) � Q(v?)� ? = `? and d2H (v?) � d2Q(v?)� ? = L?.
Together with dH (v?) � dQ(v?)� ? = 0 we obtain by Taylor expansion atv? the
identity

H (v) � Q(v)� ? = `? + 1
2



L?(v � v?); v � v?

�
+ o(kv � v?k2);

which can be rewritten as

H (v) � Q(u)� ? = `? + 1
2hL?ŷ; ŷi + R(v); (2.3.10)

whereŷ = v � v? � 
 �̂ (v) � d[a( 1 )v?]�̂ (v) 2 Ŷ with �̂ , �̂ from Lemma2.3.4, and
the higher order terms are of the form

R(v) = O
� �

j�̂ (v)j + j�̂ (v)j
�
kŷk +

�
j�̂ (v)j + j�̂ (v)j

� 2
�

+ o(kv � v?k2):

Next, we subtract H (v?) � Q(v?)� ? = `? from (2.3.10), make use of

Q(v)� ? = Q(v?)� ?; (2.3.11)

and obtain

H (v) � H (v?) = 1
2hL?ŷ; ŷi + R(v): (2.3.12)
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The positivity of L? on Ŷ , which we get from Theorem2.2.10and Assumption
2.2.11(b), gives us

1
2hL?ŷ; ŷi � ckŷk2 � ckv � v?k2 � C

� �
j �̂ (v)j + j�̂ (v)j

�
kŷk +

�
j�̂ (v)j + j�̂ (v)j

� 2
�

;

and by plugging this into (2.3.12), we �nd

H (v) � H (v?) � ckv � v?k2 � C
� �

j �̂ (v)j + j�̂ (v)j
�
kŷk +

�
j�̂ (v)j + j�̂ (v)j

� 2
�

:

Sinceŷ = v � v? + O(j�̂ (v)j + j�̂ (v)j), we can make use of LemmaA.4.1 and get

H (v) � H (v?) � ckv � v?k2 � C
�
j�̂ (v)j2 + j�̂ (v)j2

�
: (2.3.13)

Due to (2.3.11) and  (v) = 0, the estimate (2.3.8) holds for �̂ (v) and �̂ (v). Hence,
the inequality in (2.3.13) takes the form

H (v) � H (v?) � ckv � v?k2;

which is our claim.

In the case ofQ(v(0))� = Q(v?)� , the stability of v? is a direct consequence
of Lemma 2.3.5 and the preservation of the Hamiltonian. For the general case,
we need an additional Lemma.

Lemma 2.3.6. Provided the Assumptions1.2.2-1.2.5, 2.2.3, and 2.2.11 hold,
there exists" > 0 such that for all v 2 B " (v?) there are ŵ(v) 2 W and ẑ(v) 2 Z
such that we have

Q
�
v + ŵ(v) + ẑ(v)

�
� = Q(v?)�; (2.3.14a)

 
�
v + ŵ(v) + ẑ(v)

�
� =  (v?)� (2.3.14b)

for all � 2 A 0 and the estimate

kŵ(v)k + kẑ(v)k � C
� �

�Q(v) � Q(v?)
�
�
A ?

0
+

�
� (v) �  (v?)

�
�
A ?

0

�
: (2.3.15)

Proof. Consider the mapping

Q =
�
Q1

Q2

�
: X � W � Z ! R

2d?

given by

Q1 : X � W � Z ! R

d? ; (v; w; z) 7!
h
Q(v + w + z)ei � Q(v?)ei

i d?

i =1
;

Q2 : X � W � Z ! R

d? ; (v; w; z) 7!
h
 (v + w + z)ei �  (v?)ei

i d?

i =1
:

The Jacobian submatrix ofQ with respect to w and z evaluated at (v?; 0; 0) takes
the form

Q(w;z) =
�
Q1

w Q1
z

Q2
w Q2

z

�
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with

Q1
w =

h

dQ(v?)ei ; 
 ej

� i d?

i;j =1
;

Q1
z =

h

dQ(v?)ei ; d[a( 1 )v?]ej

� i d?

i;j =1
;

Q2
w =

h

d (v?)ei ; 
 ej

� i d?

i;j =1
;

Q2
z =

h

d (v?)ei ; d[a( 1 )v?]ej

� i d?

i;j =1
:

We have already seen in Lemma2.3.4 that it is invertible. Hence, we apply the
implicit function theorem to obtain

�
ŵ(v); ẑ(v)

�
2 W � Z . We are left to show

(2.3.15). The mean value theorem gives us

Q(v?; 0; 0) � Q(v;0; 0) = Q(v; ŵ(v); ẑ(v)) � Q(v;0; 0)

=
Z 1

0
Q(w;z)

�
v; tŵ(v); tẑ(v)

�
dt �

�
ŵ(v); ẑ(v)

�
;

which implies

kŵ(v)k + kẑ(v)k � C
�
�Q(v?; 0; 0) � Q(v;0; 0)

�
�

sinceQ(w;z) has a uniformly bounded inverse in a neighborhood ofv?.

The preliminary work allows us now to prove the main theorem of this chapter.

Theorem 2.3.7. Under the Assumptions1.2.2-1.2.5, 1.2.14, 2.2.2, 2.2.3, 2.2.7,
and 2.2.11, the steady state(v?; � ?) 2 X � A 0 is stable in the Lyapunov sense.
That is, for any " > 0 there exists� > 0 such that the solution(v; � ) of the
freezing system (2.3.3) exists for all times, and

kv(t) � v?k + j� (t) � � ?j < "

holds for all t 2 [0; 1 ), provided the initial data satisfykv(0) � v?k < � .

Proof. Assume �rst that the v-component is not stable and choose" > 0 small
enough such that Lemma2.3.1 and Lemma2.3.6 can be applied. In particular
kv � v?k < " must guaranteev 2 U? � X � 1. Then there exists a sequence of
intervals I n and solutionsvn 2 C(I n ; X ) \ C 1(I n ; X � 1) of (2.3.3), n 2 N , such
that we havekvn (0) � v?k ! 0 asn ! 1 , but sup

t2I n

kvn (t) � v?k � " for all n 2 N .

By continuity of the solutions we can de�netn to be the �rst time such that
kvn (tn ) � v?k = "

2. In particular, this means [0; tn ] � I n . SinceH and Q are
continuous and conserved quantities (see Theorem2.3.2), we have

H (vn(tn )) = H (vn(0)) ! H (v?);

Q(vn (tn ))ej = Q(vn (0))ej ! Q(v?)ej
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asn ! 1 for all j = 1; :::; d?. From Lemma2.3.6we obtain wn 2 W and zn 2 Z
such that the identities

Q(vn (tn ) + wn + zn )ej = Q(v?)ej ;

 (vn (tn ) + wn + zn )ej =  (v?)ej = 0

hold for j = 1; :::; d? and such that

kwnk + kznk � C
� �

�Q(vn (tn )) � Q(v?)
�
�
A ?

0
+

�
� (vn (tn ))

�
�
A ?

0

�

is satis�ed. Due to Q(vn (tn ))ej ! Q(v?)ej and  (vn (tn ))ej = 0 for j = 1; :::; d?,
it follows kwnk + kznk ! 0 asn ! 1 . Furthermore, Lemma2.3.5gives us

H (vn(tn ) + wn + zn ) � H (v?) � c



 vn (tn ) + wn + zn � v?k2;

whereH (vn (tn )+ wn + zn ) ! H (v?) is due to continuity of H and kwn + znk ! 0.
This implies

kvn (tn ) � v?k ! 0;

which contradicts the assumption.
Now, we consider the� -component. Givent � 0, let s 7!

�
z(s); � (s)

�
solve

! (zs; �) = d H (z) � dQ(z)�; z (0) = v(t);

0 =  (z):

From the uniqueness in Theorem2.3.2, we conclude� (0) = � (t). According to
Corollary 2.3.3, for any " > 0 there exists� 2 (0; "

2) such that we obtain

j� (t) � � ?j = j� (0) � � ?j <
"
2

;

provided that we havez(0) 2 B � (v?). By the �rst part, we know that there exists
� > 0 such that initial data satisfying kv(0) � v?k < � lead to

kv(t) � v?k < �

for all t 2 [0; 1 ), which implies z(0) 2 B � (v?).

2.4 Application to the NLS

The next proposition shows that the cubic nonlinear Schr•odinger equation

iu t = � uxx + � juj2u

together with its two-parameter group

a: G ! GL(X ); [a(
 )v](x) = e� i
 1 v(x � 
 2); 
 = ( 
 1; 
 2) 2 G = S1 � R
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�ts into the abstract setting. In Proposition 1.3.4we have already seen that the
Hamiltonian is given by

H (v) =
1
2

Z

R

�
jvx j2 +

�
2

jvj4
�

dx:

Moreover, the corresponding spaces are given by

X = H 1( R ; C ); X � 1 = X ? = H � 1( R ; C ):

Proposition 2.4.1. For the NLS the Assumptions1.2.2-1.2.5 and 1.2.14 are
ful�lled.

Proof. We start with Assumption 1.2.2. The mappinga : G ! GL(X ) is a group
homomorphism since

a(
g )v = e� i (
 1 + g1)v(� � 
 2 � g2) = e� i
 1 e� ig1v(� � g2 � 
 2)

= e� i
 1 [a(g)v](� � 
 2) = a(
 )a(g)v

for all 
; g 2 G. We are left to prove the symplecticity of the group action. For
z = e� i
 1 we have �zz = 1. This implies (zu; zv)0 = (�zzu; v)0 = ( u; v)0, where
the inner product is given by (1.3.2). Due to the translation invariance of the
integral, this leads to

! (a(
 )v; a(
 )u) =
�
ia(
 )v; a(
 )u

�
0

=
�
ie� i
 1 v(� � 
 2); e� i
 1 u(� � 
 2)

�
0

=
�
iv (� � 
 2); u(� � 
 2)

�
0

=
�
iv; u

�
0

= ! (v; u)

for all v; u 2 X .
In order to verify Assumption 1.2.3, it su�ces to show that the intersection

De1 \ D e2

is contained inDF and a dense subset ofX , where we denote byDe1 the domain
of d[a( 1 )v]e1 = � iv and by De2 the domain of d[a( 1 )v]e2 = � vx . This is obtained
by setting De1 = H 1( R ; C ), De2 = H 2( R ; C ), and DF = H 3( R ; C ).

Sincevx 2 L2( R ; C ) holds for all v 2 H 1( R ; C ), the mapping

! (d[a( 1 )v]�; u ) = ! (� iv� 1 � vx � 2; u) =
�
v� 1 � ivx � 2; u

�
0

extends tov 2 H 1( R ; C ). Hence, Assumption1.2.4 is ful�lled, where we remark
that

hB(v)�; u i =
�
v� 1 � ivx � 2; u

�
0

implies

Q(v)� = 1
2hB(v)�; v i = 1

2 � 1kvk2
0 � 1

2 � 2
�
ivx ; v

�
0
;

which can be rewritten as

Q(v)� =
1
2

Z

R

Re
�
� 1jvj2 + i� 2�vxv

�
dx:
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For Assumption 1.2.5 we have to prove thatH 2 C2(X ; R ) holds with locally
bounded derivatives and thatH is invariant with respect to the group action.
Combining (1.3.5) and (1.3.6), we have

hdH (u); vi =
Z

R

Re
�
�ux (x)vx (x)

�
dx + �

Z

R

Re
�
ju(x)j2 �u(x)v(x)

�
dx

for all u; v 2 H 1( R ; C ). Due to the Cauchy-Schwarz inequality, this is locally
bounded by

jhdH (u); vij � C(kuk1 + � kuk3
1) � kvk1

sinceH 1( R ; C ) is a generalized Banach algebra andkuk1 = k�uk1. For the second
derivative we note that

jz + � j2(�z + �� ) = ( jzj2 + �z� + z�� + j� j2)(�z + �� )

= jzj2 �z + �z2� + 2 jzj2 �� + 2�zj� j2 + z�� 2 + j� j2 ��

for all z; � 2 C . This implies

hdH (u + h); vi = hdH (u); vi +
Z

R

Re
� �hx (x)vx (x)

�
dx

+ 2�
Z

R

Re
�
ju(x)j2�h(x)v(x)

�
dx + �

Z

R

Re
�
�u(x)2h(x)v(x)

�
dx

+ O
�
u(x); v(x); h(x)

�

with
�
�O

�
u; v; h

� �
� � C

�
khk1 + 3kuk1

�
khk1kvk1:

Hence, the second derivative is given by

hd2H (u)v; hi =
�
hx ; vx

�
0

+ 2�
�
juj2h; v

�
0

+ �
�
u2; hv

�
0
;

which is locally bounded as follows

jhd2H (u)v; hij � C(1 + 3� kuk2
1) � kvk1khk1:

The invariance of the Hamiltonian under the group action is due to

H (a(
 )u) =
1
2

Z

R

�
ja(
 )ux(x)j2 +

�
2

ja(
 )u(x)j4
�

dx

=
1
2

Z

R

� �
�e� i
 1 ux(x � 
 2)

�
�2

+
�
2

�
�e� i
 1 u(x � 
 2)

�
�4

�
dx

=
1
2

Z

R

�
jux(x � 
 2)j

2 +
�
2

ju(x � 
 2)j
4

�
dx

=
1
2

Z

R

�
jux(z)j2 +

�
2

ju(z)j4
�

dz = H (u);

where we havez = x � 
 2.
For local existence, uniqueness, continuous dependence, and regularity in As-

sumption 1.2.14we refer to [15], [27], and [39]. Since a strongH 1( R ; C )-solution
satis�es the NLS in H � 1( R ; C )-sense for allt 2 I , we obtain kutk� 1 estimates in
terms of kuk, and the same is true for continuous dependence.
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Next, we discuss the spectral hypotheses that are imposed on the linear op-
erator

L? : X ! X ?; L? = d 2H (v?) � d2Q(v?)� ?:

This is an integral part of the Grillakis-Shatah-Strauss stability approach. Their
seminal article [33] comes with a series of examples, including the nonlinear
Schr•odinger equation. That is why we do not cover all details.

Proposition 2.4.2. The linerization of the NLS at a relative equilibrium (1.3.10)
satis�es the Assumptions2.2.2, 2.2.3, and 2.2.7.

Proof. Starting with Assumption 2.2.2, we note that the family of relative equi-
libria is given by (1.3.11).

The decomposition in Assumption2.2.3 is veri�ed by making use of the
Gelfand triple

H 1( R ; C ) ,! L2( R ; C ) ,! H � 1( R ; C );

where the natural embedding

� : H 1( R ; C ) ! L2( R ; C ); v 7! v

is a consequence of the subset relationH 1( R ; C ) � L2( R ; C ), and where the
operator

�? : L2( R ; C ) ! H � 1( R ; C ); v 7!
�
v; �

�
0

is obtained by using the Riesz representation onL2( R ; C ): While the composition
�?� of these mappings is not onto, the preimages

[�?� ]� 1dQ(v?)� = � 1v? � � 2iv?;x 2 H 1( R ; C )

of the functionals

dQ(v?)� =
�
� 1v? � � 2iv?;x ; �)0

exist for all � 2 A 0 due to the smoothness of the pro�lev?. Now we de�ne

W =
�

[�?� ]� 1dQ(v?)� : � 2 A 0
	

and

Y = ( W � Z )? ;

whereZ is the kernel ofL?. This gives us a decomposition

X = W � Y � Z;

which satis�es

dim(W) = 2 = d?
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and


dQ(v?)ei ; y

�
=

�
[�?� ]� 1dQ(v?)ei ; y

�
0

= 0

by construction.
For the remaining (spectral) hypotheses in Assumption2.2.3and Assumption

2.2.7we refer to [33] since the proof is based on the Sturmian theory of oscillations,
which we do not want to repeat.

For the NLS the �xed phase condition

 : X ! (A 0)?

is given by

 (v)� =
�
i� 1v̂; v

�
0

+
�
� 2v̂x ; v

�
0

for v 2 X and � 2 A 0.

Proposition 2.4.3. The �xed phase condition satis�es the parts (b) and (c) of
Assumption2.2.11for any template functionv̂ 2 H 3( R ; C ), provided thatkv̂� v?k
is small enough.

Proof. The mapping  : X ! (A 0)? is a bounded linear operator, which implies
continuous di�erentiability, for any template function v̂ 2 H 1( R ; C ).

For any template function v̂ 2 H 1( R ; C ) the preimages

[�?� ]� 1d (v?)� = � 1i v̂ + � 2v̂x 2 L2( R ; C )

exist. By choosing the template function in such a way thatkv̂ � v?k is small
enough, the matrix

�
h�

[�?� ]� 1d (v?)ei ; d[a( 1 )v?]ej

�
0

i d?

i;j =1
=

� �
i v̂; iv?

�
0

�
i v̂; v?;x

�
0�

v̂x ; iv?
�

0

�
v̂x ; v?;x

�
0

�

is invertible by Banach's Lemma as a small perturbation of

h�
d[a( 1 )v?]ei ; d[a( 1 )v?]ej

�
0

i d?

i;j =1
=

� �
iv?; iv?

�
0

�
iv?; v?;x

�
0�

v?;x ; iv?
�

0

�
v?;x ; v?;x

�
0

�
;

which is non-singular by Assumption2.2.3.
For u 2 H 1( R ; C ) the mapping (g; u) 7!  (a(g)u) is continuously di�eren-

tiable. The derivative can be continuously expanded tou 2 H � 1( R ; C) if we
have v̂ 2 H 3( R ; C ): Indeed, for v̂ 2 H 3( R ; C ) it holds [�?� ]� 1d (u)� 2 H 2( R ; C )
for any � 2 A , and the di�erentials of the group action can be continuously
extended to mappings fromH � 1( R ; C) to H � 2( R ; C).

Remark 10. If Assumption 2.2.11(a) fails, the stability is with respect to some
other element of the orbita(G0)v?, which satis�es the phase condition. We only
imposed this assumption to avoid technical di�culties.
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2.5 Application to the NLKG

Next, we verify the hypothesis in case of the nonlinear Klein-Gordonequation

ut =
�

u2

u1;xx � u1 + ju1j2u1

�
:

The corresponding spaces are given by

X = H 1( R ; R

3) � L2( R ; R

3); X ? = H � 1( R ; R

3) � L2( R ; R

3);

X 0 = L2( R ; R

3) � L2( R ; R

3); X � 1 = L2( R ; R

3) � H � 1( R ; R

3);

and the Hamiltonian takes the form

H (v) =
1
2

Z

R

�
jv2j2 + jv1;x j2 + jv1j2 � 1

2 jv1j4
�
dx:

Moreover, the equivariance is with respect to the group action

a: G ! GL(X ); a(
 )v =
�
Av1(� + � ); Av2(� + � )

�
(2.5.1)

for 
 = ( A; � ) 2 G = SO(3) � R , and the additional conserved quantities are

Q(v)� =
Z

R

(Sv1)T v2dx + c
Z

R

vT
1;x v2dx; � = ( S; c) 2 A ;

whereA = so(3) � R is the Lie algebra.

Proposition 2.5.1. The NLKG satis�es the Assumptions1.2.2-1.2.5and 1.2.14.

Proof. We start with Assumption 1.2.2 and show that (2.5.1) is a group homo-
morphism. By writing group elements
; g 2 G as 
 = ( A; � ), g = ( B; � ), we
obtain

a(
g )v =
�
ABv 1(� + � + � ); ABv2(� + � + � )

�
= a(
 )a(g)v:

Next, we prove for any
 = ( A; � ) 2 SO(3) � R the symplecticity of the images
a(
 )v = Av(� + � ) with respect to the symplectic form

! (v; u) =
Z

R

(vT
1 u2 � vT

2 u1)dx:

Any orthogonal matrix A 2 SO(3) satis�esAT A = id
R

3� 3 , and by the translation
of the integral it follows

!
�
a(
 )v; a(
 )u

�
=

Z

R

�
(Av1(� + � ))T Au2(� + � ) � (Av2(� + � ))T Au1(� + � )

�
dx

=
Z

R

�
vT

1 AT Au2 � vT
2 AT Au1

�
=

Z

R

�
vT

1 u2 � vT
2 u1

�
= ! (v; u)

for all v; u 2 X .
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In order to verify Assumption 1.2.3, we have to specify the domainDF of

F (v) =
�

v2

v1;xx � v1 + jv1j2v1

�

and the common domainD1
a of

d[a( 1 )v]� = Sv + cvx ; � = ( S; c) 2 so(3) � R :

A suitable choice isDF = D1
a = H 2( R ; R

3) � H 1( R ; R

3), which is dense inX .
The composition of the symplectic form and the di�erential of the group action

! (d[a( 1 )v]�; u ) =
Z

R

�
(Sv1)T u2 + cvT

1;x u2 � (Sv2)T u1 � cvT
2;x u1

�
dx

extends to a bounded linear operator

B(�)� : X ! X ?; v 7! B(v)�:

Indeed, for v = ( v1; v2) 2 H 1( R ; R

3) � L2( R ; R

3) it holds v1;x 2 L2( R ; R

3) and
v2;x 2 H � 1( R ; R

3). Hence, we obtain

B(v)� 2 H � 1( R ; R

3) � L2( R ; R

3):

Due to the linearity of the integral, we get a bounded linear operator, and As-
sumption 1.2.4 is ful�lled. Moreover, from the skew-symmetry ofS and the dif-
ferential operatorv 7! vx it follows that the conserved quantitiesQ : X �A ! R

in (1.2.7) take the form

Q(v)� =
1
2

! (d[a( 1 )v]�; v ) =
Z

R

(Sv1)T v2dx + c
Z

R

vT
1;x v2dx:

According to Proposition 1.2.7 it holds

Q(a(e� )v)� = Q(v)�

for those �; � 2 A that commute, but not in general. Let us show that for
this speci�c example the invariance with respect to the group actionis indeed
subject to some restriction. Direct computation with
 = ( A; c) 2 SO(3) � R

and � = ( S; c) 2 so(3) � R yields

Q(a(
 )v)� =
Z

R

�
SAv1(x + c)

� T
Av2(x + c)dx

+ c
Z

R

�
Av1;x (x + c)

� T
Av2(x + c)dx

=
Z

R

�
SAv1(x)

� T
Av2(x)dx + c

Z

R

�
v1;x (x)

� T
v2(x)dx;

i.e., we can only ensure the invariance ifSA = AS, which is true for any 
 =
(A; c) 2 G(� ), the Lie group generated byCA (� ).
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Next, we consider Assumption1.2.5, i.e., the smoothness and invariance of
the Hamiltonian. The �rst derivative

hdH (u); vi =
Z

R

�
uT

2 v2 + uT
1;xv1;x + uT

1 v1 � j u1j2uT
1 v1

�
dx

is locally bounded by

jhdH (u); vij � C(kuk + kuk3) � kvk:

This is obtained by applying the Cauchy-Schwarz inequality and using fact that
H 1( R ; R

3) is a generalized Banach algebra. The second derivative takes the form

hd2H (u)v; hi =
Z

R

�
hT

2 v2 + hT
1;x v1;x + hT

1 v1 � N(u1; v1; h1)
�
dx;

where the nonlinear term is given by

N(u; v; h) = hT uuT v + uT huT v + uT uhT v:

Consequently, a local estimate for the second derivative is given by

jhd2H (u)v; hij � C(1 + kuk2) � kvk � khk:

The invariance of Hamiltonian under the group action, i.e.,H (a(
 )u) = H (u)
for all 
 2 SO(3) � R , follows from the shift invariance of theL2-norm and the
property

jSvj2 = vT ST Sv = jvj2; S 2 SO(3):

Moreover, we refer to [28] and [29] for the hypotheses on local existence, unique-
ness, continuous dependence, and regularity in Assumption1.2.14. Since a strong
solution satis�es the NLKG in X � 1-sense for allt 2 I , we obtainkutk� 1 estimates
in terms of kuk, and the same is true for continuous dependence.

Next, we discuss the spectral hypotheses that are imposed on the linear op-
erator

L? : X ! X ?; L? = d 2H (v?) � d2Q(v?)� ?:

Proposition 2.5.2. The linerization of the NLKG at a relative equilibrium (1.3.17)
satis�es the Assumptions2.2.2, 2.2.3, and 2.2.7.

Proof. Similar to the NLS, a Gelfand triple is given by

H 1( R ; R

3) � L2( R ; R

3) ,! L2( R ; R

3) � L2( R ; R

3) ,! H � 1( R ; R

3) � L2( R ; R

3);

together with the embeddings

� : H 1( R ; R

3) � L2( R ; R

3) ! L2( R ; R

3) � L2( R ; R

3); v 7! v;

�? : L2( R ; R

3) � L2( R ; R

3) ! H � 1( R ; R

3) � L2( R ; R

3); v 7!
�
v; �

�
0
;
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where the inner product is given by

�
v; y

�
0

=
Z

R

�
vT

1 y1 + vT
2 y2

�
dx:

The preimages of the composition

[�?� ]� 1dQ(v?)� =
� �

Sv?;2

� T
+ c

�
v?;2

� T

x
;
�
Sv?;1

� T
+ c

�
v?;1

� T

x

�
; � 2 A 0

of the functionals

hdQ(v?)�; y i =
Z

R

� �
Sv?;1

� T
y2 + c

�
v?;1

� T

x
y2 �

�
Sv?;2

� T
y1 � c

�
v?;2

� T

x
y1

�
dx

exist as functions inH 1( R ; R

3) � L2( R ; R

3) due to the smoothness ofv?. In
the same way as for the NLS, we de�neW =

�
[�?� ]� 1dQ(v?)� : � 2 A 0

	
and

Y = ( W � Z )? , whereZ is the kernel ofL?, to decomposeX = W � Y � Z .
For the other parts of the Assumptions2.2.2, 2.2.3, and 2.2.7, we refer to [33]

since we do not want to repeat the Sturmian theory of oscillations.

Let us discuss the �xed phase condition for the NLKG. By choosing� 1; � 2 2 R

and by writing

� = ( � 1S?; � 2);

we identify the Lie subalgebraA 0 = f � 2 A : [�; � ?] = 0g with R

2. Then

 : X ! A ?
0

is given by

 (v)� =
�
� 1S?v̂; v

�
0

+
�
� 2v̂x ; v

�
0
; v 2 X; � 2 A 0:

We have to emphasize that this approach is only applicable if the Lie subalgebra
A 0 is explicitly known. That is why our numerical scheme deviates from this
analytical approach. According to our experience, the freezing method is robust
enough to handle commutator errors of small magnitude. Hence, innumerical
computations, we let� (t) be any element of the entire Lie algebraA , rather than
restricting it to A 0.

Proposition 2.5.3. The �xed phase condition satis�es the parts (b) and (c)
of Assumption 2.2.11 for any template function v̂ = ( v̂1; 0), v̂1 2 H 2( R ; R

3),
provided thatkv̂1 � v?;1kH 1 ( R ; R

3) is small enough.

Proof. We have to prove the invertibility of
h�

[�?� ]� 1d (v?)ei ; d[a( 1 )v?]ej

�
0

i d?

i;j =1
;

where

[�?� ]� 1d (v?)� = � 1S?v̂ + � 2v̂x 2 H 1( R ; R

3) � L2( R ; R

3):
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Let us apply Banach's Lemma using the fact thatkv̂1 � v?;1kH 1( R ; R

3) is small.
Here, it su�ces to show that S?v?;1 and

�
v?;1

�
x

span a two-dimensional subspace
of H 1( R ; R

3). This can be veri�ed by assuming the contrary. From

vx = rS?v

for somer 2 R and v = v?;1, it follows

jv(x)j =
�
�erS ? xv(0)

�
� = jv(0)j

for all x 2 R , which implies v = 0 2 H 1( R ; R

3). The rest of the proof is done in
the same way as for the NLS.



Chapter 3

Preservation of Solitary Waves
and Their Stability

In this chapter, we consider the spatial semi-discretization of thefreezing system.
Our primary goal is to impose reasonable assumptions that ensure the existence
and stability of steady states (v�

? ; � �
? ) for the discrete freezing system that are

close to the steady states (v?; � ?) of the continuous problem.

3.1 Motivating Examples

Let us start with two numerical methods for the spatial semi-discretization of the
freezing problem for the nonlinear Schr•odinger equation

iv t (t; x ) = � vxx (t; x ) � j v(t; x )j2v(t; x ) � � (t)v(t; x );

0 =  (v(t; x ))
(3.1.1)

set in the space of even functions

X = f v 2 H 1( R ; C ) : v(x) = v(� x)g:

As in [3], the reason for choosing this space is the preservation of the symmetry
relation under the 
ow of the nonlinear Schr•odinger equation. Consequently, the
translational equivariance is broken, which simpli�es the stability analysis.

In terms of notation, we label the approximation parameters as � =(� x; K ),
where � x is the stepsize of a symmetric and equidistant grid

G� = f x j = j � x : jj j � K g:

Moreover, we emphasize thatc and C denote generic positive constants that do
not depend on �.

3.1.1 Finite Di�erence Method

In a �nite di�erence method for ( 3.1.1) the derivatives are approximated by dif-
ference quotients. In the simplest case, the spatial discretization of the second
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derivative is the central di�erence quotient

(@2v� ) j =
v�

j +1 � 2v�
j + v�

j � 1

� x2
; j 2 Z :

By adding Dirichlet boundary conditionsv�
� K = 0 = v�

K , we obtain an ordinary
di�erential-algebraic system of the form

i(v�
t ) j = � (@2v� ) j � j v�

j j2v�
j � � � v�

j ; jj j < K;

0 = v�
� K = v�

K ;

0 =  � (v� ):

(3.1.2)

The �xed phase condition with respect to some discrete template function v̂� is
given by

 � (v� ) =
�
i v̂� ; v�

� �

0
:

Here, the inner product
�
�; �

� �

0
is the discrete analog of theL2-inner product,

which takes the form

�
v� ; y�

� �

0
= � x

X

j j j� K

Re(�v�
j y�

j ):

Following [4], we set the problem in the space

X � = f v� 2 X � x : v� (x) = 0 for jxj � K � xg; (3.1.3)

where

X � x = f v� x 2 X : v� x j(x j ;x j +1 ) is an a�ne function for all j 2 Z g (3.1.4)

is the �nite element subspace ofX that consists of piecewise linear functions.
Here, the identi�cation of a vector

�
v�

j

�
j 2 Z

and v� 2 X � is given by

v� (x) =
X

j j j<K

f
� x

� x
� j

�
v�

j ;

where the functionf : R ! R is de�ned as

f(x) =

8
><

>:

0; jxj > 1;

1 � x; � 1 � x � 0;

1 + x; 0 � x � 1:
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x j � 1 x j x j +1

v�

Figure 3.1.1: Piecewise linear function

By using the forward di�erence quotient

(@+ v� ) j =
v�

j +1 � v�
j

� x
;

we equip the spaceX � with a discretized version of theH 1 inner product, namely
�
v� ; y�

� �
=

�
(@+ v)� ; (@+ y)�

� �

0
+

�
v� ; y�

� �

0
;

and its corresponding norm, which is denoted byk � k� . We further note that the
backward di�erence quotient leads to exactly the same formulas.

3.1.2 Finite Element Method

The �nite element method is based on the weak formulation of (3.1.1), i.e.,
�
iv t ; y

�
0

= ( � vx ; yx )0 + ( �j vj2v � �v; y )0;

0 =
�
i v̂; v

�
0
;

which is set in the Hilbert space

X = f v 2 H 1( R ; C ) : v(x) = v(� x) for all x 2 R g:

In order to discretize the second derivative, we introduce a linear mapping

A � : X � ! X � ;? ;

which is implicitly de�ned by


A � v� ; y�

�
=

�
v�

x ; y�
x

�
0 (3.1.5)

for v� ; y� 2 X � . While the �nite element spaceX � is the same as for the �nite
di�erence method, the main di�erence of the Galerkin �nite element approach
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is the discretization of the nonlinear part. The standard idea is the orthogonal
projection

P � : X ! X �

onto X � . For any v 2 X the error v � P � v of the projection is orthogonal to the
subspaceX � , which means

0 =
�
v � P � v; y�

�
0 (3.1.6)

for all y� 2 X � . Then the corresponding ordinary di�erential-algebraic system
takes the form

iv �
t = A � v� � P �

�
jv� j2v�

�
� � � v� ;

0 =
�
i v̂� ; v�

� �

0
;

(3.1.7)

where the inner product
�
�; �

� �

0
is the restriction of the L2-inner product to the

subspaceX � . Moreover, for the stability analysis, we equip the spaceX � with
the restriction of the H 1-inner product and the corresponding normk � k� .

3.2 Abstract Setting

In order to embed the above examples into an abstract setting, weloosely follow
the approach presented in [3]. That is, the discrete problem is considered to be
a small perturbation of the continuous problem. Throughout the entire Chapter
3, we take the Assumptions1.2.2-1.2.5, 1.2.14, 2.2.2, 2.2.3, 2.2.7, and 2.2.11from
the previous chapters as given, without further reference.

Let P be a set of approximation parameters. For any �2 P we denote by
X � a �nite-dimensional subspace ofX , which we equip with a norm




 �






�
and a

symplectic form

! � : X � � X � ! R :

In analogy to the continuous case, the discrete problem is written as

! � (u�
t ; �) = d H � (u� ); (3.2.1)

where

H � : X � ! R (3.2.2)

is called the discrete Hamiltonian. In order to get additional conserved quantities

Q� : X � ! A ?; (3.2.3)

the �nite-dimensional Lie group G is assumed to act on the subspacesX � via
symplectomorphisms.
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Assumption 3.2.1. For any � 2 P the Lie Group G acts on X � via a homo-
morphism

a� : G ! GL(X � ); 
 7! a(
 )
�
�
X � ;

whose images are symplectic with respect to! � . In particular a(
 )v� 2 X � holds
for all 
 2 G and v� 2 X � . Moreover, we have d[a( 1 )v� ]� 2 X � for all v� 2 X �

and � 2 A .

The mapping (3.2.3) is the discrete analog of (1.2.7), i.e., we may also write
Q� (�)� for � 2 A . Furthermore, the discrete freezing system takes the form

! � (v�
t ; �) = d H � (v� ) � dQ� (v� )� � ;

0 =  � (v� ):
(3.2.4)

Further key aspects of the setting are the approximation estimates that we collect
in the following. Given k � 0, a smooth functionalE : X � ! R , and an open
subsetV � � X � , we de�ne its




 �






Ck (V � )
-norm to be




 E






Ck (V � )
= sup

j 2f 0;:::;k g
sup

v� 2 V �
sup

y �
0 ;:::;y �

j 2 X � nf 0g

�
�dj E(v� )[y�

1 ; :::; y�
j ]

�
�

Q j
� =1




 y�

�






�

:

As in Chapter 2, we �x a steady state (v?; � ?) 2 X � A , which is stable by
Theorem 2.3.7. We denote byA 0 the centralizer of� ? 2 A and by f e1; :::; ed? g a
basis ofA 0.

Moreover, we introduce an error function" : P ! R > 0. If there exists"max > 0
such that an estimate holds uniformly for all � 2 P with "(�) � "max , then we
say that it holds for " (�) small enough.

Assumption 3.2.2. For any "0 > 0 there exists �0 2 P such that we have
"(� 0) � "0. In addition to that, the following properties hold for " : P ! R > 0

and all � 2 P with "(�) small enough.

(a) The discrete Hamiltonian (3.2.2) and the discrete quantitiesQ� (�)ej for
j = 1; :::; d?, which are determined by (3.2.3), are invariant under the group
action.

(b) There exists#� 2 X � that satis�es



 #� � v?




 � C"(�) ;

where (v?; � ?) 2 X � A 0 is the steady state of the continuous problem.

(c) There exists a constantR > 0 such that the discrete Hamiltonian (3.2.2)
and the discrete quantitiesQ� (�)ej , j = 1; :::; d?, which are determined by
(3.2.3), satisfy




 H � H �






C2(B�
R (# � ))

� C"(�) ;



 Q(�)ej � Q� (�)ej






C2(B�
R (# � ))

� C"(�)

on B�
R (#� ), where C depends only onR.
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(d) The discrete and the continuous norm are equivalent in the sense that

c



 v�




 �




 v�






�
� C




 v�






holds uniformly for v� 2 X � .

Without loss of generality, we may assume that"(�) is small compared to R.
Next, we impose a similar condition as in Assumption3.2.2(c) on the discrete
version of our phase condition.

Assumption 3.2.3. For any � 2 P the mapping

 � : X � ! A ?
0

is twice continuously di�erentiable and satis�es



  (�)ej �  � (�)ej






C2 (B�
R (# � ))

� C"(�)

for j = 1; :::; d?.

The local well-posedness of an ordinary di�erential equation with smooth
right hand side follows from the Picard-Lindel•of theorem. However, in general,
estimates depend on the discretization parameters �. That is why we introduce
an additional spaceX �

� 1.

Assumption 3.2.4. For any � 2 P with "(�) small enough there exists a space�
X �

� 1;



 �






X �
� 1

�
such that Assumption 1.2.14holds for the discretized version of

the original problem (3.2.1), where the constants for embedding and continuous
dependence are independent of �. Moreover, the mapping

F� : G0 � X �
� 1 ! A ?

0

that extends (g; v� ) 7!  � (a(g)v� ) is continuously di�erentiable.

An additional approximation property is needed for our proof of existence of
the discrete steady states. It can be considered as a weaker version of Assumption
3.2.2(b) in such a way that it covers all v 2 X . The stronger version forv? 2 X
remains una�ected by this.

Assumption 3.2.5. For any v 2 X and any sequence �n in P that satis�es
"(� n) ! 0 there exists a sequencev� n 2 X � n such that kv� n � vk ! 0 asn ! 1 .

3.3 Positivity Estimates

We recall that by Lemma2.2.9, the linearization around the relative equilibrium
of the continuous problem

L? = d 2H (v?) � d2Q(v?)� ?
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is positive on a subspaceY � X , which is of codimensiond? + d?. To be more
precise, by Assumption2.2.3 the Banach spaceX is decomposed into the direct
sum X = W � Y � Z , where W is given by Lemma2.2.4 and where, due to
(2.2.9), the kernel of L? is given by

Z = f d[a( 1 )v?]� : � 2 A 0g:

Now, we consider a discrete approximationY � � X � of this positive subspace.

Lemma 3.3.1. Let W � ;? = span
�
w� ;?

1 ; :::; w� ;?
d?

�
and Z � ;? = span(z� ;?

1 ; :::; z� ;?
d?

) be
subspaces ofX � ;?, the dual space ofX � , such that the estimates




 dQ(v?)ej � w� ;?

j






X � ;? � C"(�) (3.3.1)

and



 d (v?)ej � z� ;?

j






X � ;? � C"(�) (3.3.2)

are satis�ed. Provided the Assumptions3.2.1 and 3.2.2 hold and "(�) is small
enough, we obtainc > 0 independent of� such that

hL?y� ; y� i � cky� k2

holds for all

y� 2 Y � =
�

y� 2 X � :


w� ;?

j ; y�
�

= hz� ;?
j ; y� i = 0 for j = 1; :::; d?

	
:

Proof. Let us write y� 2 Y � as y� = w + y + z with w 2 W, y 2 Y, and z 2 Z .
From Lemma 2.2.4we obtain � 2 A 0 with kdQ(v?)� kX ? = 1 such that

kwk = hdQ(v?)�; w i = hdQ(v?)�; y + z + wi = hdQ(v?)�; y � i

=


w� ;?; y�

�
+



dQ(v?)� � w� ;?; y�

� (3.3.3)

for any w� ;? 2 W � ;?, where hdQ(v?)�; y + zi = 0 is due to (1.2.10) and (2.2.8).
But, by de�nition of Y � it holds



w� ;?; y�

�
= 0: (3.3.4)

By combining (3.3.1), (3.3.3), (3.3.4), and w� ;? =
d?X

j =1

� j w
� ;?
j it follows

kwk � C
d?X

j =1

j� j j
�
� 
 dQ(v?)ej � w� ;?

j ; y�
� �
� � C"(�)

d?X

j =1

j� j j ky� k:

Due to kdQ(v?)� kX ? = 1, we conlcude

kwk � C"(�) ky� k: (3.3.5)
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In addition to that, there exists � 2 A 0 with kd (v?)� kX ? = 1 such that we have

� kzk �
�
�hd (v?)�; z i

�
� =

�
�hd (v?)�; y � � w � yi

�
�

�
�
�hd (v?)� � z� ;?; y� i

�
� +

�
�hz� ;?; y� i

�
� + ky + wk

(3.3.6)

for any z� ;? 2 Z � ;?, where � > 0 is obtained in the same way as in the proof of
Theorem 2.2.10. However, by de�nition of Y � it holds

hz� ;?; y� i = 0: (3.3.7)

In the same way as above, the combination of (3.3.2), (3.3.6), and (3.3.7) yields

kzk � C
�
kyk + "(�) ky� k

�
:

Due to the triangle inequality, the estimates forkwk and kzk imply

ky� k = kw + y + zk � k wk + kyk + kzk � Ckyk + C"(�) ky� k;

which leads to

kyk2 � cky� k2 � C"(�) ky� k2

by Lemma A.4.1. Hence, we obtain, again by LemmaA.4.1 and the positivity of
L? on Y (see Lemma2.2.9), the estimate



L?y� ; y�

�
=



L?(w + y); w + y

�
� ckyk2 � CL ?

�
2kykkwk + kwk2

�

� cky� k2 � C"(�) ky� k2;

where the last inequality is due to (3.3.5), and where the uniform bound by
CL ? > 0 is obtained from Assumption3.2.2(c).

When we handle pertubations ofL?, the extended notation

L(v; � ) = d 2H (v) � d2Q(v)�

is more suitable, where the relation to the short notation is given by the identity
L? = L(v?; � ?). Now, we linearize the right hand side of the discrete problem
(3.2.4) and obtain

L � (v� ; � � ) = d 2H � (v� ) � d2Q� (v� )� �

for v� 2 X � and � � 2 A 0.

Theorem 3.3.2. Under the assumptions of Lemma3.3.1 there existsrmax > 0
such that we have



L � (v� ; � � )y� ; y�

�
� c




 y�




 2

�

for all y� 2 Y � and "(�) small enough. The constantc does not depend on� and
holds uniformly for v� 2 X � , � � 2 A 0 satisfying j� � � � ?j +




 v� � #�






�
� rmax .
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Proof. From Assumption 3.2.2(c) we get

�
� 
 L(v� ; � � )y� ; y�

�
�



L � (v� ; � � )y� ; y�

� �
� � C"(�)




 y�




 2

�
(3.3.8)

for any v� ; y� 2 X � and � 2 A 0 such that j� � � � ?j +



 v� � #�






�
� rmax .

Since both the Hamiltonian H and the additional conserved quantitiesQ(�)�
of the continuous problem are smooth in a neighborhood ofv? with bounded
derivatives, we further have

�
�
 L(v� ; � � )y� ; y�

�
�



L?y� ; y�

� �
� � C("(�) + rmax )




 y�




 2

�
; (3.3.9)

provided that j� � � � ?j + kv� � #� k� � rmax holds. Then, the estimate

hL?y� ; y� i � c



 y�




 2

�

for y� 2 Y � , which follows from Assumption3.2.2(d) and Lemma 3.3.1, implies

hL � (v� ; � � )y� ; y� i �
�
c � C("(�) + rmax)

� 


 y�




 2

�
:

Consequently, forrmax � 0 small enough, the positivity remains true with a
di�erent constant.

Let us apply Lemma3.3.1and Theorem3.3.2to

w� ;?
j = d Q� (#� )ej ;

z� ;?
j = d  � (#� )ej

and conclude thatL � (#� ; � ?) is positive on a subspace of codimensiond? + d? in
X � , which takes the form

Y � =
�

y� 2 X � :


w� ;?

j ; y�
�

= hz� ;?
j ; y� i = 0 for i = 1; :::; d?

	
: (3.3.10)

Indeed, the Assumptions3.2.2(b)-(d) give us




 dQ(v?)ej � dQ� (#� )ej






X � ;? � C"(�) (3.3.11)

for j = 1; :::; d?, and we make use of the Assumptions3.2.2(b), 3.2.2(d), and 3.2.3
to obtain




 d (v?)ej � d � (#� )ej






X � ;? � C"(�) : (3.3.12)

3.4 Existence of Discrete Steady States

As we have discussed in Section2.2, the modi�ed stationary problem (2.2.17)
possesses a locally unique solution

�
v?; � ?; 0

�
, where

�
v?; � ?) is a steady state of

the freezing system.
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In this section, we are primarily interested in �nding a solution to the dis-
cretized version of the modi�ed stationary problem, which takes the form

0 = dH � (v� ) � dQ� (v� )� � � d (v� )� � ;

0 = Q� (v� ) � Q(v?);

0 =  � (v� ):

This problem is set in the spaceX � = X � � A 0 � A 0 with its norm denoted by



 (v� ; � � ; � � )






X� =



 v�






X � +
�
�� �

�
�
A 0

+
�
�� �

�
�
A 0

:

In the same way as for the continuous case, it can be written as

S � (v� ; � � ; � � ) = 0 ; (3.4.1)

where the functionS � : X � ! X � ;? takes the form

S � (v� ; � � ; � � ) =
�

S �
1 (v� ; � � ; � � ); S �

2 (v� ; � � ; � � ); S �
3 (v� ; � � ; � � )

�

with

S �
1 (v� ; � � ; � � ) = d H � (v� ) � dQ� (v� )� � � d � (v� )� � ;

S �
2 (v� ; � � ; � � ) = Q� (v� ) � Q(v?);

S �
3 (v� ; � � ; � � ) =  � (v� ):

The linerization of (3.4.1) at (#� ; � ?; 0) 2 X � � A 0 � A 0 is denoted by

L � = d S � (#� ; � ?; 0) : X � ! X � ;? (3.4.2)

and can be written as a bordered operator

L � =

0

@
L � (#� ; � ?) L �

1;2 L �
1;3

L �
2;1 0 0

L �
3;1 0 0

1

A

with


L �

1;2(#� )�; y �
�

=


L �

2;1(#
� )�; y �

�
=



dQ� (#� )�; y �

�

and


L �

1;3(#� )�; y �
�

=


L �

3;1(#
� )�; y �

�
=



d � (#� )�; y �

�

for all � 2 A 0 and y� 2 X � . For "(�) small enough, the positivity of L � on the
2d?-codimensional subspace (3.3.10) is uniform. In addition to that, we obtain
uniform bounds for kL � kX� ;?  X� from Assumption 3.2.2 and Assumption 3.2.3.
Hence, LemmaA.5.1 grants us a decompositionL � = A� + B � into a positive
operator A� and a rank-4d?-operator B � , which are uniformly bounded for"(�)
small enough. In the same way, we apply LemmaA.5.1 to decompose

L = d S (v?; � ?; 0) : X ! X?;

which is obtained via linearization of the continuous problem, into the sum of a
positive operatorA and a rank-4d?-operator B , i.e., L = A + B :
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Lemma 3.4.1. Provided the Assumptions3.2.1-3.2.3 hold and "(�) is small
enough, the inequality




 A� � � � A� �






X� ;? +



 B � � � � B � �






X� ;? � C"(�)



 � �






X�

is satis�ed for all � � 2 X � .

Proof. From (3.3.9), (3.3.11), (3.3.12), and Assumption 3.2.2we get



 L � � � � L � �






X� ;? � C"(�)



 � �






X� :

The same inequality forB � � B follows due to (A.5.1), and the estimate for
A� � A is a consequence of the triangle inequality.

This estimate is a key step in showing that the linear operator in (3.4.2) has
a uniformly bounded inverse with respect to �.

Lemma 3.4.2. Provided the Assumptions3.2.1-3.2.3 hold and "(�) is small
enough, for the inverse ofL � we have the estimate




 �

L �
� � 1



X�  X� ;? � C:

Proof. Assume on the contrary that �m 2 P and � � m 2 X � m , m 2 N , form
sequences such that" (� m ) ! 0 and




 � � m






X� m = � > 0, but



 L � m � � m






X� m ;? =



 (A� m + B � m )� � m






X� m ;? ! 0: (3.4.3)

SinceB is a compact operator, there exists a converging subsequenceB � � n ! � ?,
n 2 N � N . Moreover, from Lemma3.4.1we get




 B � n � � n � B � � n






X� n ;? � C"(� n) ! 0;

which implies



 B � n � � n � � ?






X� n ;? ! 0

and, as a consequence of (3.4.3),



 A� n � � n + � ?






X� n ;? ! 0: (3.4.4)

In order to get the limit of � � n , let us show that

A� = � � ?

has a unique solution inX. Indeed, the bilinear form

a: X � X ! R ; (� 1; � 2) 7! hA� 1; � 2i

is bounded and coercive. Hence, the statement follows from the Lax-Milgram
theorem (see [48]). The solution can be written as� = ( v; �; � ) 2 X � A 0 � A 0.
By Assumption 3.2.5, there exists a sequencee� � n = ( v�

n ; �; � ) such that



 e� � n � �






X
! 0; (3.4.5)
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which implies



 Ae� � n + � ?






X� n ;? ! 0: (3.4.6)

Furthermore, the triangle inequality, Lemma3.4.1, and (3.4.4) yield



 A� � n + � ?






X� n ;? �



 A� � n � A� n � � n






X� n ;? +



 A� n � � n + � ?






X� n ;? ! 0;

which, due to (3.4.6), gives us



 Ae� � n � A� � n






X� n ;? ! 0:

Consequently, we get



 � � n � e� � n






X� n � C



 A� � n � Ae� � n






X� n ;? ! 0

from


A(� � n � e� � n ); � � n � e� � n

�
� c




 � � n � e� � n




 2

X� n :

Hence, combining Lemma3.4.1with the inequality



 (A + B )� � n � (A + B )e� � n






X� ;? � C



 � � n � e� � n






X� n

yields



 (A� n + B � n )� � n � (A + B )e� � n






X� ;? ! 0:

This implies



 (A + B )e� � n






X� ;? ! 0

due to (3.4.3), and we obtain (A + B )� = 0 from ( 3.4.5). Since � = 0 follows
from Proposition 2.2.13, we conclude




 � � n






X� n ! 0;

which contradicts the assumption.

Next, we show that (3.4.1) has a locally unique solution
�
v�

? ; � �
? ; � �

?

�
and, after

that, deduce � �
? = 0.

Lemma 3.4.3. Provided the Assumptions3.2.1-3.2.3 hold and "(�) is small
enough, the modi�ed stationary problem

0 = dH � (v� ) � dQ� (v� )� � � d � (v� )� � ;

0 = Q� (v� ) � Q(v?);

0 =  � (v� )

possesses a locally unique solution(v�
? ; � �

? ; � �
? ) that satis�es

kv�
? � v?k + j� �

? � � ?j + j� �
? � � ?j � C"(�) :
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Proof. The main idea is to apply LemmaA.6.1 with the operators

L = L � : X � ! X � ;?

and

L + F = S � : X � ! X � ;?:

We are left to verify the requirements. First of all, from Lemma3.4.2we get

1


 (L � )� 1






X�  X� ;?

� c1:

Second, provided that� > 0 is small enough, the mean value theorem implies




 F (� �

1 ) � F (� �
2 )






X� ;? =



 S � (� �

1 ) � L � � �
1 � S � (� �

2 ) � L � � �
2






X� ;?

� sup
� � 2 B �

�




 dS � (� � ) � L �






X� ;?  X�




 � �

1 � � �
2






X�

�
c1

2




 � �

1 � � �
2






X�

for � 1; � 2 2 B �
� . Here, we denote byB �

� the ball around (#� ; � ?; 0) 2 X � ;? with
radius � , and dS � is equicontinuous in (#� ; � ?; 0) because of Assumption3.2.2
and Assumption3.2.3. Third, for " (�) small enough, we obtain the estimate




 (L + F )(#� ; � ?; 0)






X� =



 S � (#� ; � ?; 0)






X� � C"(�) � �
c1

2

by combining Assumption3.2.2and Assumption3.2.3. Finally, we make use of

kv�
? � v?k � k v�

? � #� k + k#� � v?k � C



 v�

? � #�





�
+ C"(�) ;

which is due to Assumption3.2.2.

In order to show� �
? = 0, we adjust Lemma2.2.12to the discretized problem.

This is possible due to the invariance properties from Assumption3.2.2(a).

Theorem 3.4.4. Under the Assumptions3.2.1-3.2.3 and for "(�) small enough,
the stationary problem

0 = dH � (v� ) � dQ� (v� )� � ;

0 = Q� (v� ) � Q(v?);

0 =  � (v� )

possesses a locally unique solution(v�
? ; � �

? ) that satis�es

kv�
? � v?k + j� �

? � � ?j � C"(�) :
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Proof. By taking (v�
? ; � �

? ; � �
? ) from Lemma 3.4.3, we only have to show� �

? = 0.
Due to Assumption3.2.2(a) the discrete Hamiltonian is invariant under the group
action. Di�erentiating at 
 = 1 the identity

H �
�
a(
 )v�

?

�
= H � (v�

? )

gives us

hdH � (v�
? ); d[a( 1 )v�

? ]� i = 0 (3.4.7)

for all � 2 A 0. In the same way, we get

hdQ� (v�
? )� �

? ; d[a( 1 )v�
? ]� i = 0: (3.4.8)

Since the solution (v�
? ; � �

? ; � �
? ) of the modi�ed stationary problem satis�es

0 =


dH � (v�

? ) � dQ� (v�
? )� �

? � d � (v�
? )� �

? ; d[a( 1 )v�
? ]�

�

for all � 2 A 0, the identities (3.4.7) and (3.4.8) give us

hd � (v�
? )� ?; d[a( 1 )v�

? ]� i = 0:

Finally, the Assumptions 2.2.11, 3.2.2, 3.2.3, and Lemma 3.4.3 taken together
imply � ? = 0.

Remark 11. In [3] the authors follow a slightly di�erent strategy to prove the
existence of a discrete relative equilibrium. Their proof is very elegant and much
shorter than ours since it is adapted to the speci�c case of the one-dimensional
Lie group of gauge transformations� 7! ei� and the resulting explicit formulas.
Even though this is the main application, we want to keep the abstract setting
as general as possible.

3.5 Stability of Discrete Steady States

The question arises, whether the steady state (v�
? ; � �

? ) of the discretized freezing
system is stable in the sense of Lyapunov. In our proof of stability,we proceed
in a similar way as for the continuous problem in Section2.3. This is why, we
indicate the main steps, but we do not go through all technical details. The �rst
step is to ensure the existence of solutions of the discrete freezing system with
initial data close to the steady state, where, in analogy to Lemma2.3.1, the phase
condition is solved by an implicit function.

Lemma 3.5.1. Provided "(�) is small enough and the Assumptions3.2.1-3.2.4
hold, there exist open neighborhoodsU�

? � G0 � X �
� 1 of ( 1 ; v�

? ) and U�
? � X �

� 1 of
v�

? and a smooth function

g� : U�
? ! G;

such thatF� (g; u� ) = 0 and (g; u� ) 2 U�
? if and only if g = g� (u� ) and u� 2 U�

? .
These neighborhoods have� -independent size in the sense that there exists� > 0
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such thatdistG( 1 ; g) � � and



 v� � v�

?






�
� � imply (g; v� ) 2 U�

? and v� 2 U�
? .

Moreover, we have

dg� (u� ) = �
�
F�

g (g� (u� ); u� )
� � 1

Fu � (g� (u� ); u� ): (3.5.1)

Proof. As in Lemma2.3.1, we apply LemmaA.3.1. Due to the Assumptions3.2.2
and 3.2.3, the mapping F� from Assumption 3.2.2 is continuously di�erentiable
and there exists a �-independent local bound for its derivative. For the same
reason and Theorem3.4.4, the Jacobian submatrix

h

d � (v�

? )ei ; d[a( 1 )v�
? ]ej

� i d

i;j =1

is a small perturbation of the matrix in Assumption2.2.11(b). Hence, its inverse
is uniformly bounded by Banach's Lemma. Moreover, the Lie subgroup G0 and
the Lie subalgebraA 0 do not depend on �, and that is why the coordinate
representation is �-independent. Following the proof of LemmaA.3.1 in [61], we
conlude that U�

? and U�
? have �-independent size.

Theorem 2.1.2 together with the implicit function g� allows us to show that
the freezing system is locally well-posed for initial data close to the relative equi-
librium, where the distance is measured in the




 �






X �
� 1

-norm, which is weaker

than the



 �






�
-norm.

Lemma 3.5.2. Provided the Assumptions3.2.1-3.2.4 hold, for any initial value
u�

0 2 X � \ U�
? such that � (u�

0 ) = 0 the freezing system

! � (v�
t ; �) = d H � (v� ) � dQ� (v� )� � ; v� (0) = u�

0 ;

0 =  � (v� )
(3.5.2)

has a unique local solutionv� 2 C(I � ; X � ) \ C 1(I � ; U�
? ), � � 2 C(I � ; A 0) on an

open interval I � . Furthermore, the conservation laws

H � (v� (t)) = H � (u�
0 );

Q� (v� (t)) � = Q� (u�
0 )�; � 2 A 0;

hold for all t 2 I � , and we have the following blow-up alternative. If(T � ;� ; T � ;+ )
is the maximal interval of existence such thatv� (t) remains in X � \ U�

? and
T � ;+ < 1 , then

min
�

distk�kX �
� 1

�
v� (t); @U�?

�
;

1


 v� (t)






�

�
! 0

as t ! T � ;+ .

Proof. By Assumption 3.2.2(a), the quantities H � and Q� (�)� are invariant under
the group action. Hence, Theorem2.1.2 can be applied to the discrete problem
and yields a local solutionv� : I � ! X � , � � : I � ! A of the freezing system
(3.5.2). Since no uniformity in � is required, we proceed in the same way as in
the proof of Theorem2.3.2.
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In the same way as for the continuous problem, the distancej� � (0) � � �
? j

depends continuously onku�
0 � v�

? k.

Lemma 3.5.3. Let the Assumptions3.2.1-3.2.4 be satis�ed and"(�) be small
enough. For any� > 0 there exists� > 0, which does not depend on� , such that
u�

0 2 B �
� (v�

? ) satisfying  � (u�
0 ) = 0 implies

�
�� � (0; u�

0 ) � � �
?

�
� < �;

where the solution of (3.5.2) is denoted byt 7!
�
v� (t; u�

0 ); � � (t; u�
0 )

�
.

Proof. The group operations do not depend on �, the continuous dependence on
the initial data is independent of � (see Assumption3.2.4), and the estimates on
(3.5.1) are uniform, as discussed in the proof of Lemma3.5.1. This is why, we
proceed as in the proof of Corollary2.3.3.

The proof of stability is now based on the linearized operator

L �
? = L � (v�

? ; � ?): (3.5.3)

Due to Lemma3.3.1, it is positive on the subspace

Ŷ � =
�

ŷ� 2 X � :


dQ� (v�

? )�; ŷ�
�

= hd � (v�
? )�; ŷ� i = 0 for all � 2 A 0

	
: (3.5.4)

Indeed, combining Theorem3.4.4and the Assumptions3.2.2(b)-(d) yields



 dQ(v?)� � dQ� (v�

? )�





X � ;? � C"(�) j� j;

and together with Assumption3.2.3we obtain



 d (v?)� � d � (v�

? )�





X � ;? � C"(�) j� j:

Next, in accordance with the setting for the continuous problem, we choose

 � such that

�
dQ� (v�

? )e1; :::; dQ� (v�
? )ed?

	
is the dual basis of

�

 � e1; :::; 
 � ed?

	
.

What follows is an analog of Lemma2.3.4.

Lemma 3.5.4. Provided "(�) is small enough and the Assumptions3.2.1-3.2.3
hold, there exist uniquely de�ned smooth functions

� � : X � ! A 0;

� � : X � ! A 0;

such thatG� (�; �; v � ) = 0 if and only if � = � � (v� ), � = � � (v� ), where

G� =
�
G� ;1

G� ;2

�

is given by

G� ;1(�; �; v � ) =
h


dQ� (v�
? )ei ; v� � v�

? � 
 � � � d[a( 1 )v�
? ]�

� i d?

i =1
;

G� ;2(�; �; v � ) =
h


d � (v�
? )ei ; v� � v�

? � 
 � � � d[a( 1 )v�
? ]�

� i d?

i =1
:
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Moreover, we have the estimate



 � � (v� )






�
+




 � � (v� )






�
� C




 v� � v�

?




 2

�
(3.5.5)

for all v� 2 X � \ U�
? that satisfy Q� (v� )ej = Q� (v�

? )ej and  � (v� )ej = 0 for
j = 1; :::; d?.

Proof. By Assumption 3.2.2, Assumption 3.2.3, and Theorem3.4.4the Jacobian
submatrix with respect to � and � is invertible by Banach's Lemma as a small
perturbation of (2.3.9). The estimate (3.5.5) is �-independent due to the �-
independent approximations of the continuous functionals (see Assumptions3.2.2
and 3.2.3).

Now, we make use of the positivity ofL �
? on Ŷ � , where the former is given by

(3.5.3) and the latter by (3.5.4), to estimate



 v� � v�

?






�
in terms of the di�erence

of the discrete Hamiltonian ofv� and v�
? .

Lemma 3.5.5. Let v� 2 X � \ U�
? satisfy Q� (v� )ej = Q� (v�

? )ej and  � (v� )ej = 0
for j = 1; :::; d?. Provided the Assumptions3.2.1-3.2.4 hold, we obtain

H � (v� ) � H � (v�
? ) � c




 v� � v�

?




 2

�

for " (�) small enough.

Proof. We proceed in the same way as in the proof of Lemma2.3.5, where we
have to make sure that the constantc > 0 does not depend on �. From the
Assumptions3.2.2(c) and 3.2.3, we conclude that the estimates for the remainders
of the Taylor expansions ofH � (v� )� Q� (v� )� �

? aroundv�
? are uniform with respect

to �. Due to Lemma 3.3.1and Theorem3.3.2, the same holds for the positivity
of the linearized operatorL �

? = d 2H � (v�
? ) � d2Q� (v�

? )� �
? and uniform estimates

for � � and � � from Lemma 3.5.4are given by (3.5.5).

In general, the initial data do no satisfyQ� (u�
0 )ej = Q� (v�

? )ej for j = 1; :::; d?.
But, the error can be estimated in terms of the distance betweenu�

0 and v�
? .

Lemma 3.5.6. Provided "(�) is small enough and the Assumptions3.2.1-3.2.3
hold, there exists� > 0 such that for all v� 2 B �

� (v�
? ) there arew� (v� ) 2 W � and

z� (v� ) 2 Z � that satisfy

Q�
�
v� + w� (v� ) + z� (v� )

�
� = Q� (v�

? )�;

 �
�
v� + w� (v� ) + z� (v� )

�
� =  � (v�

? )�

for all � 2 A 0 and can be estimated by



 w� (v� )k� + kz� (v� )






�
� C

� �
�Q� (v� ) � Q� (v�

? )
�
�
A ?

0
+

�
� � (v� ) �  � (v�

? )
�
�
A ?

0

�
:

Proof. As in the proof of Lemma3.5.6, we make use of the implicit function
theorem. Due to the Assumptions3.2.2and 3.2.3, the size of the neighborhoods
� > 0 does not depend on �, which is shown in the same way as in Lemma3.5.1.
In the second step, we obtain the uniform estimate due to the Assumption 3.2.2
and 3.2.3.
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Theorem 3.5.7. Under the Assumptions3.2.1-3.2.4, the discrete relative equi-
librium (v�

? ; � �
? ) is stable in the following sense. For any� > 0 there exists� > 0

such that for all t 2 [0; 1 ) the solution (v� ; � � ) exists and satis�es



 v� (t) � v�

?






�
+

�
�� � (t) � � �

?

�
� � �;

provided"(�) is small enough and the initial satisfy



 v� (0) � v�

?






�
� � .

Proof. As in the proof of Theorem2.3.7, we assume �rst that the v� -component
is not stable, i.e., there exists a sequence of intervalsI n and solutionsv� n

n , such
that we have




 v� n

n (0) � v� n
?






� n
� 1

n , but sup
t2I n




 v� n

n (t) � v� n
?






� n
� � for all n 2 N .

Let tn be the �rst time such that



 v� n

n (tn ) � v� n
?






� n
= �

2. Since the discrete
quantities H � and Q� are equicontinuous with respect to � by Assumption3.2.2
and conserved quantities by Lemma3.5.2, we conclude

H � n
�
v� n

n (tn )
�

� H � n (v� n
? ) = H � n

�
v� n

n (0)
�

� H � n (v� n
? ) ! 0;

Q� n
�
v� n

n (tn )
�
ej � Q� n (v� n

? )ej = Q� n
�
v� n

n (0)
�
ej � Q� n (v� n

? )ej ! 0

as n ! 1 for j = 1; :::; d?. By Lemma 3.5.6 there exist sequencesw� n
n 2 W � n

and z� n
n 2 Z � n , such that the two identities

Q� n (v� n
n (tn ) + w� n

n + z� n
n )ej = Q� n (v� n

? )ej ;

 � n (v� n
n (tn ) + w� n

n + z� n
n )ej =  � n (v� n

? )ej = 0

hold for j = 1; :::; d? and such that




 w� n

n






� n
+




 z� n

n






� n
� C

� �
�Q� n (v� n

n (tn )) � Q� n (v� n
? )

�
�
A ?

0
+

�
� � n (v� n

n (tn ))
�
�
A ?

0

�

is satis�ed. From Q� n (v� n
n (tn ))ej � Q� n (v� n

? (tn ))ej ! 0 and  � n (v� n
n (tn ))ej = 0

for j = 1; :::; d?, it follows



 w� n

n






� n
+




 z� n

n






� n
! 0 asn ! 1 . Furthermore, the

inequality in Lemma 3.5.5takes the form

H � n (v� n
n (tn ) + w� n

n + z� n
n ) � H � n (v� n

? ) � c



 v� n

n (tn ) + w� n
n + z� n

n � v� n
?




 2

� n
:

By combining



 w� n

n + z� n
n






� n
! 0 andH � n (v� n

n (tn )+ w� n
n + z� n

n ) � H � n (v� n
? ) ! 0,

which is due to equicontinuity ofH � , it follows



 v� n

n (tn ) � v� n
?






� n
! 0;

which contradicts the assumption. Finally, by using Lemma3.5.3, the stability
of the � -component is proven in the same way as for the continuous case.

3.6 Veri�cation of the Hypotheses

Let us show that the �nite di�erence method and the �nite elements method
from Section3.1 �t into the abstract setting. In both cases, the approximation
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parameters � = (� x; K ) determine grid spacing and grid size, and we have
� 2 P = R > 0 � N . Moreover, the discrete spacesX � are given by (3.1.3), and
the group actions

a� : G ! GL(X � ); 
 7! a(
 )
�
�
X � (3.6.1)

take the form

a(
 )v� = e� i
 v� :

The Lie group G = S1 is abelian, and its Lie algebra is given byA = R .
At �rst, we put our focus on the �nite di�erence method from Section 3.1.1,

where we recall that the forward di�erence quotient is written as

(@+ v� ) j =
v�

j +1 � v�
j

� x
:

Proposition 3.6.1. Provided that the phase condition of the continuous problem
(2.3.3) is of the form 0 =

�
i v̂; v

�
0
; where the template function̂v 2 H 1( R ; C )

decays exponentially asjxj ! 1 , the �nite di�erence method with the error
function

"(�) = � x +
1

� x2
e� �K � x (3.6.2)

for some� > 0, which depends only on the decay rates ofv̂ and v?, satis�es the
Assumptions3.2.1-3.2.4. Furthermore, the mass functional is given by

Q� (v� )� � =
� �

2
� x

X

j 2 Z

jv�
j j2; (3.6.3)

and the Hamiltonian takes the form

H � (v� ) = � x
X

j 2 Z

�
j(@+ v� ) j j2

2
�

jv�
j j4

4

�
: (3.6.4)

Proof. Let us start with Assumption 3.2.1. From the de�nition of X � in (3.1.3),
we conclude thatv� 2 X � implies e� i
 v� 2 X � for any 
 2 G. Hence, the
mapping a� in (3.6.1) exists. Moreover, it is a group homomorphism sincea� (
 )
is the restriction ofa(
 ) from X to the smaller spaceX � . The discrete symplectic
form on X � is given by

! � (v� ; y� ) = � x
X

j 2 Z

Im(�v�
j y�

j ):

For any given 
 2 G we write � = ei
 , and since we have��� = 1, it follows

! � (�v � ; �y � ) = � x
X

j 2 Z

Im( �� �v�
j �y �

j ) = � x
X

j 2 Z

Im(�v�
j y�

j ) = ! � (v� ; y� );
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which means the images ofa� are symplectic with respect to! � . In addition to
that, we get

d[a( 1 )v� ]� = � i�v � 2 X �

for any � 2 A .
Next, we consider Assumption3.2.2. Given any "0 > 0, we chooseK 0 2 N

such that the inequality

K 0 �
2

� " 0
ln

�
8
"3

0

�

holds. By plugging this into (3.6.2), we get "(� 0) � "0 for

� 0 =
� "0

2
; K 0

�
:

Furthermore, di�erentiating ( 3.6.3) and (3.6.4) gives us



dQ� (v� )� � ; y�

�
=

� �

2
� x

X

j 2 Z

Re(�v�
j y�

j )

and



dH � (v� ); y�

�
= � x

X

j 2 Z

�
1

� x2
Re

�
(� �v�

j +1 + 2�v�
j � �v�

j � 1)y
�
j

�
� Re

�
jv�

j j2�v�
j y�

j

�
�

:

These terms coincide with (3.1.2), and the invariance under the group action
follows directly from ei
 e� i
 = 1 for all 
 2 G. The estimate in part (b) has been
proven in [3], where#� 2 X � is determined by

#�
j = v?(x j ); j 2 Z :

In addition to that, part (c) has been proven in [4], and (d) is due to [3].
Next, we verify Assumption3.2.3. As the discrete template function we pick

v̂�
j = v̂(x j ); j 2 Z :

Since

�
v� ; y�

� �

0
= � x

X

j 2 Z

Re(�v�
j y�

j ) (3.6.5)

is a (real) inner product, the mapping � : X � ! A ?, which is given by

 � (y� )� =
�
i� v̂� ; y�

� �

0
; � 2 A ;
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is linear. Let us consider the di�erence between
�
v� ; y�

� �

0
and

�
v� ; y�

�
0

for any
v� ; y� 2 X � . Since theL2-inner product for piecewise linear functions yields

�
v� ; y�

�
0

= � x
X

j 2 Z

Z 1

0
Re

�
(t �v�

j + (1 � t)�v�
j +1 )( ty �

j + (1 � t)y�
j +1 )

�
dt

= � x
X

j 2 Z

Re(�v�
j y�

j )
Z 1

0
2t2dt + � x

X

j 2 Z

Re(�v�
j +1 y�

j )
Z 1

0
2(1 � t)t dt

=
2
3

� x
X

j 2 Z

Re(�v�
j y�

j ) +
1
3

� x
X

j 2 Z

Re(�v�
j +1 y�

j );

we obtain the inequality
�
�
�
�
v� ; y�

� �

0
�

�
v� ; y�

�
0

�
�
� =

1
3

� x

�
�
�
�
X

j 2 Z

Re
�
(�v�

j +1 � �v�
j )y�

j

�
�
�
�
�

�
1
3

� x



 @+ v�






� ;0




 y�






� ;0

� C"(�)



 v�






�




 y�






�
:

For e1 = 1 this implies
�
� � (y� )e1 �  (y� )e1

�
� �

�
�
�
�
i v̂� ; y�

� �

0
�

�
i v̂� ; y�

�
0

�
�
� +

�
�
�
�
i (v̂� � v̂); y�

�
0

�
�
�

� C"(�)



 y�






�
;

where we applied the Cauchy-Schwarz inequality and the estimate



 v̂� � v̂






L 2( R ; C )
� C"(�) ;

which is obtained in the same way as in Assumption3.2.2(b).
Assumption 3.2.4 holds for X �

� 1 = X � ;?. The linear part of the discretized
NLS is represented by a bounded, symmetric operatorA � : X � ! X � ;?. For any
t 2 R the evolution of this linear part leads to an isometryv� 7! eitA �

v� , and
due to Assumption 3.2.2(d), estimates for the nonlinear part are uniform with
respect to �. Hence, uniform estimates for the continuous dependence follow from
Duhamel's formula and Gronwall's inequality. Moreover, the mappingF� : G �
X � ! A ? that extends

 � (a(
 )v� ) =
�
i v̂� ; ei
 v�

� �

0

is smooth with respect to
 and linear in v� .
We are left to consider Assumption3.2.5, i.e., we pick a sequencev� n and

show that for any � > 0 there existsN 2 N such that n > N implies



 v� n � v






H 1( R ; C )
< �: (3.6.6)

Due to v 2 H 1( R ; C ), for � > 0 and any � > 0 there existsM = M (�; � ) > 1
such that the inequalities




 v






H 1(�1 ;� M ; C )
+




 v






H 1 (M; 1 ; C )
< �

12 (3.6.7)
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and

sup
�

jv(x)j : � M + 1 < x < M � 1
	

< � (3.6.8)

hold. We choose� = �
12 and ~v 2 H 2(� M; M ; C ) satisfying the estimate




 ~v � v






H 1 (� M;M ; C )
< �

12: (3.6.9)

Furthermore, we pick m 2 (0; 1) and a sequencev� n such that (� x)n < m and
(� x)nK n > M imply




 v� n � ~v






H 1 (� M;M ; C )
< �

12 (3.6.10)

and



 v� n






H 1 (�1 ;� M ; C ) +



 v� n






H 1 (M; 1 ; C ) < 3
4 �: (3.6.11)

x j � 1

M

x j x j +1

v�

Figure 3.6.1: Cut-o� for v�

While the former is due to �nite element interpolation on bounded intervals,
the latter is obtained from (3.6.8) and by choosingv� n (x j ) = 0 if x j +1 � � M or
M � x j � 1. Indeed, this gives us




 v� n






L 2(�1 ;� M ; C )
+




 v� n






L 2(M; 1 ; C )
< 2

�
m + m

2

� �
12 � �

4

and



 v� n

x






L 2(�1 ;� M ; C )
+




 v� n

x






L 2(M; 1 ; C )
< 2 � (2 + 1) �

12 = �
2:

From (3.6.2) and "(� n) ! 0, we get (� x)n ! 0 and K n (� x)n ! 1 . Hence,
there existsN 2 N such that n > N gives us (� x)n < m and (� x)nK n > M .
By combining (3.6.7), (3.6.9), and (3.6.10)), we obtain (3.6.6) for n > N , which
�nishes the proof.
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Next, we turn our focus to the discretization via �nite elements andverify the
same assumptions.

Proposition 3.6.2. Provided that the phase condition of the continuous problem
(2.3.3) is of the form 0 =

�
i v̂; v

�
0
; where the template function̂v 2 H 1( R ; C )

decays exponentially asjxj ! 1 , the Assumptions3.2.1-3.2.4 are ful�lled for
the �nite element method with the error function (3.6.2). The constant � > 0
in ( 3.6.2) depends only on the decay rates of̂v and v?. Moreover, the discrete
Hamiltonian H � = H

�
�
X � and the discrete massQ� = Q

�
�
X � are given by the

restriction of H and Q.

Proof. The Lie group G, the group action (3.6.1), and the spaceX � are the
same as for the �nite di�erence method. Furthermore, we can select the same
#� 2 X � . Hence, the Assumptions3.2.1, 3.2.2(b), and 3.2.5were already veri�ed
in Proposition 3.6.1. Di�erentiating

H (v� ) =
Z

R

�
1
2 jv�

x (x)j2 � 1
4 jv� j4

�
dx

gives us

hdH (v� ); y� i =
�
v�

x ; y�
x

�
0

�
�
jv� j2v� ; y�

�
0

=
�
A � v� ; y�

�
0

�
�
P � (jv� j2v� ); y�

�
0
;

where the last step is due to (3.1.5) and (3.1.6). Moreover, di�erentiating

Q(v� ) =
Z

R

1
2 jv� j2dx

yields

hdQ(v� )� � ; y� i = � �
�
v� ; y�

�
0
:

Hence, the discretization (3.1.7) is obtained by restricting H and Q to X � . Fur-
thermore, as restrictions ofH and Q, the discrete HamiltonianH � = H

�
�
X � and

the discrete massQ� = Q
�
�
X � are invariant under the group action. The inequali-

ties in (c) follow from H � = H
�
�
X � and Q� = Q

�
�
X � , and from




 v�






�
= kv� k for all

v� 2 X � we get (d). Moreover, the template function in Assumption3.2.3can be
chosen as in Proposition3.6.1. Finally, Assumption 3.2.4is satis�ed by choosing
the spaceX �

� 1 = X � ;?. The proof is done in the same way as in Proposition
3.6.1.



Chapter 4

Truncation and Discretization for
the NLS

4.1 Analysis of Boundary Conditions

In Section1.3.1we have seen that due to the scaling property and the Galilean in-
variance, the solitary wave solutions of the nonlinear Schr•odingerequation appear
as a two-parameter family of the form

u?(t; x ) = e� i� 1 tv?(x � � 2t):

However, applied to this speci�c problem, the stability result in Chapter 3 is
subject to the restriction � 2 = 0 with symmetric perturbations ev(x) = ev(� x).
As pointed out in [3], the general case is far more complicated since the action of
the group of translations is much harder to handle. This is no di�erent for the
freezing method.

In the following, we study the impact of discrete approximations on the con-
servation of energy, mass and momentum, which is a key aspect of the stability
theory in Hamiltonian systems. However, as an intermediate step, we start with
the restriction of the freezing system to a �nite interval.

While we take as a model problem the nonlinear Schr•odinger equation, sim-
ilar computations can be made for other problems, such as the nonlinear Klein-
Gordon equation.

In contrary to Chapter 3 we omit in our notation the impact of perturbation
parameters �. Since there is no risk of confusion, we writev instead of v� for
functions on the �nite interval [ x � ; x+ ]. Moreover, we note that the suppressed
notation v = v(t) = v(t; x ) is used once more.

4.1.1 Separated Boundary Conditions

With the freezing ansatzu(t) = a(
 (t))v(t) the cubic nonlinear Schr•odinger equa-
tion on a �nite interval with separated boundary conditions is transformed into

iv t (t; x ) = � vxx (t; x ) � j v(t; x )j2v(t; x ) � � 1(t)v(t; x ) + i� 2(t)vx (t; x );

vx (t; x � ) = g� (v(t; x � )) ;
(4.1.1)
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where we havet 2 I and x 2 (x � ; x+ ). On the real line, the skew-symmetry
Z

R

Re(�vxy)dx = �
Z

R

Re(�vyx )dx

of the di�erential operator

d
dx

: H 1( R ; C ) ! L2( R ; C ); v 7! vx

simpli�es the weak formulation. In contrary, adjoint di�erential op erators on �-
nite intervals contain additional terms, which depend on the boundary conditions.
To be more precise, we take a function

v 2 C
�
I ; H 2

�
(x � ; x+ ); C

��
\ C 1

�
I ; L2

�
(x � ; x+ ); C

��

that satis�es equation (4.1.1) in L2
�
(x � ; x+ ); C

�
-sense andy 2 H 1

�
(x � ; x+ ); C

�
.

Then the complex conjugation�i = � i and integration by parts lead to
Z x+

x �

Re(i �vty)dx =
Z x+

x �

Re(�vxx y)dx +
Z x+

x �

Re(jvj2�vy)dx

+ � 1

Z x+

x �

Re(�vy)dx + � 2

Z x+

x �

Re(i �vxy)dx

= Re(�vxy)
�
�
�
x+

x �

�
Z x+

x �

Re(�vxyx)dx +
Z x+

x �

Re(jvj2�vy)dx

+ � 1

Z x+

x �

Re(�vy)dx + � 2

Z x+

x �

Re(i �vxy)dx

= Re
�
�g+ (v(�; x+ ))y(x+ )

�
� Re

�
�g� (v(�; x� ))y(x � )

�

�
Z x+

x �

Re(�vxyx )dx +
Z x+

x �

Re(jvj2�vy)dx

+ � 1

Z x+

x �

Re(�vy)dx + � 2

Z x+

x �

Re(i �vxy)dx;

which is the weak formulation of (4.1.1).

Proposition 4.1.1. The weak formulation is a generalization of (4.1.1) in the
following sense. A functionv 2 C

�
I ; H 2

�
(x � ; x+ ); C

��
\ C 1

�
I ; L2

�
(x � ; x+ ); C

��

is a solution of (4.1.1) if and only if it ful�lls the weak formulation.

Proof. The only-if-part has already been proven. In order to show the if-part, we
only considery 2 H 1

0

�
(x � ; x+ ); C

�
. Hence, we gety(x � ) = 0 and conclude

Re
�
�g� (v(�; x� ))y(x � )

�
= 0:

Consequently, the weak formulation takes the form
Z x+

x �

Re(i �vty)dx = �
Z x+

x �

Re(�vxyx)dx +
Z x+

x �

Re(jvj2�vy)dx

+ � 1

Z x+

x �

Re(�vy)dx + � 2

Z x+

x �

Re(i �vxy)dx:
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Integration by parts leads to
Z x+

x �

Re(i �vty)dx =
Z x+

x �

Re(�vxx y)dx +
Z x+

x �

Re(jvj2�vy)dx

+ � 1

Z x+

x �

Re(�vy)dx + � 2

Z x+

x �

Re(i �vxy)dx;

which is rewritten as

0 =
Z x+

x �

Re
�
(i �vt � �vxx � j vj2�v � � 1�v � i� 2�vx )y

�
dx

= �
Z x+

x �

Re
�
�y(iv t + vxx + jvj2v + � 1v � i� 2vx )

�
dx:

SinceH 1
0

�
(x � ; x+ ); C

�
is dense inL2

�
(x � ; x+ ); C

�
, we obtain

iv t = � vxx � j vj2v � � 1v + i� 2vx (4.1.2)

in L2
�
(x � ; x+ ); C

�
-sense.

We are left to verify the boundary conditions. For the right boundary, we
de�ne a function

y : (x � ; x+ ) ! R ; x 7! x � x � : (4.1.3)

Since (4.1.2) holds in L2
�
(x � ; x+ ); C

�
-sense andy(x � ) = 0, we have

Z x+

x �

Re(i �vty)dx = Re(�vx (�; x+ )y(x+ )) �
Z x+

x �

Re(�vxyx )dx +
Z x+

x �

Re(jvj2�vy)dx

+ � 1

Z x+

x �

Re(�vy)dx + � 2

Z x+

x �

Re(i �vx y)dx:

However, the weak formulation gives us
Z x+

x �

Re(i �vty)dx = Re
�
�g+ (v(�; x+ ))y(x+ )

�
�

Z x+

x �

Re(�vxyx)dx +
Z x+

x �

Re(jvj2�vy)dx

+ � 1

Z x+

x �

Re(�vy)dx + � 2

Z x+

x �

Re(i �vxy)dx:

Subtraction of these formulas yields

Re(�vx (�; x+ )) = Re
�
�g+ (v(�; x+ ))

�

since we havey(x+ ) = x+ � x � 2 R > 0. Furthermore, replacing (4.1.3) by

y : (x � ; x+ ) ! R ; x 7! i (x � x � );

gives us the identity

Im(�vx (�; x+ )) = Im
�
�g+ (v(�; x+ ))

�
:

Hence, the right boundary condition is veri�ed. The left boundary condition can
be handled in the same way.
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Now, we are ready to discuss the impact of the boundary on the timeevolution
of mass, momentum and energy. Since all these functionals are continuous on
H 1

�
(x � ; x+ ); C

�
, it su�ces to consider a dense subset of initial data with solutions

in C
�
I ; H 2

�
(x � ; x+ ); C

��
\ C 1

�
I ; L2

�
(x � ; x+ ); C

��
, and due to Proposition4.1.1

the cubic nonlinear Schr•odinger equation inL2
�
(x � ; x+ ); C

�
-sense is equivalent

to its weak formulation.
On a �nite interval ( x � ; x+ ) the mass is given by the formula

Q1(v) =
Z x+

x �

1
2 jvj2dx:

Hence, its derivative takes the form

hdQ1(v); yi =
Z x+

x �

Re(�vy)dx:

For the total derivative with respect to time this means

d
dt

h
Q1(v)

i
= hdQ1(v); vt i =

Z x+

x �

Re(�vvt )dx

=
Z x+

x �

Re
�
�v(ivxx + i jvj2v + i� 1v + � 2vx )

�
dx;

(4.1.4)

provided that v 2 C
�
I ; H 2

�
(x � ; x+ ); C

��
\ C 1

�
I ; L2

�
(x � ; x+ ); C

��
solves (4.1.1).

The linearity of the integral allows us to analyze each term in (4.1.4) separately.
First of all, we note that the second and third term can be rewrittenas

Z x+

x �

Re
�
�v i jvj2v

�
dx =

Z x+

x �

Re
�
i jvj4

�
dx

and
Z x+

x �

Re
�
�v i� 1v)dx =

Z x+

x �

Re
�
i� 1jvj2)dx:

However, these expressions vanish sincejvj4 and � 1jvj2 are real-valued. Second,
the same argument and integration by parts give us

Z x+

x �

Re(�v ivxx )dx = Re(�vivx )
�
�
�
x+

x �

�
Z x+

x �

Re(�vx ivx )dx

= Re(�vivx )
�
�
�
x+

x �

�
Z x+

x �

Re(i jvx j2)dx

= � Re(i �vxv)
�
�
�
x+

x �

(4.1.5)

for the �rst term. The remaining term is slighly more di�cult to handle. We
state as a Lemma the general formula for the inner product ofux and juj2� u.
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Lemma 4.1.2. For u 2 H 1
�
(x � ; x+ ); C

�
and � 2 N we have

Z x+

x �

Re(�ux juj2� u)dx =
1

2� + 2
juj2� +2

�
�
�
x+

x �

:

Proof. By writing u = a + ib, we get

d
dx

h
juj2� +2

i
=

d
dx

h�
a2 + b2

� � +1
i

= ( � + 1)( a2 + b2)� (2aax + 2bbx )

= ( � + 1)( a2 + b2)� Re
�
2(ax � ibx )(a + ib)

�
= ( � + 1) juj2� Re(2�uxu)

= (2 � + 2)Re(�ux juj2� u):

This implies
Z x+

x �

Re
�
�ux (x)ju(x)j2� u(x)

�
dx =

Z x+

x �

d
d"

�
�
�
" =0

1
2� + 2

ju(x + ")j2� +2 dx

=
d
d"

�
�
�
" =0

Z x+

x �

1
2� + 2

ju(x + ")j2� +2 dx

=
d
d"

�
�
�
" =0

Z x+ + "

x � + "

1
2� + 2

ju(x)j2� +2 dx

=
1

2� + 2
ju(x)j2� +2

�
�
�
x+

x �

;

which was to be proven.

Applying Lemma 4.1.2with � = 0 gives us
Z x+

x �

Re(�v� 2vx )dx = � 2

Z x+

x �

Re(�vxv)
�
dx =

� 2

2
jvj2

�
�
�
x+

x �

: (4.1.6)

Summing up (4.1.5) and (4.1.6), the identity in ( 4.1.4) becomes

d
dt

h
Q1(v)

i
= Re(�vivx )

�
�
�
x+

x �

+
� 2

2
jvj2

�
�
�
x+

x �

: (4.1.7)

The mass is conserved if this derivative vanishes. In case of seperated boundary
conditions this means

Re
�

�v(�; x+ )
�
ivx (�; x+ ) +

� 2

2
v(�; x+ )

� �
= 0;

which is true if and only if v(�; x+ ) = 0 or

vx (�; x+ ) =
�

i
� 2

2
+ r+

�
v(�; x+ )

holds for somer+ 2 R . Here, we have to remark that a boundary condition

vx (�; x+ ) = g+
�
� 2; v(�; x+ )

�

is slightly more general than our initial approach. The left boundaryis handled
in the same way.
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There is still some freedom in the choice of the parameterr+ 2 R , whence
we turn our focus to the conservation of the next functional. Themomentum is
de�ned as

Q2(v) =
i
4

Z x+

x �

(�vxv � �vvx )dx =
1
2

Z x+

x �

Im(�vvx )dx

= �
1
2

Z x+

x �

Re(i �vvx ) =
1
2

Z x+

x �

Re(i �vxv)dx:

Since the derivative of this functional is given by

hdQ2(v); yi =
1
2

Z x+

x �

Re(i �yxv
�
dx +

1
2

Z x+

x �

Re(i �vxy)dx

=
1
2

Re(i �yv)
�
�
�
x+

x �

�
1
2

Z x+

x �

Re(i �yvx )dx +
1
2

Z x+

x �

Re(i �vxy)dx

= �
1
2

Re(i �vy)
�
�
�
x+

x �

+
1
2

Z x+

x �

Re(i �vx y)dx +
1
2

Z x+

x �

Re(i �vxy)dx

= �
1
2

Re(i �vy)
�
�
�
x+

x �

+
Z x+

x �

Re(i �vxy)dx;

the total derivative with respect to time takes the form

d
dt

h
Q2(v)

i
= hdQ2(v); vt i = �

1
2

Re(i �vvt )
�
�
�
x+

x �

+
Z x+

x �

Re(i �vxvt )dx: (4.1.8)

The computation of the right hand side requires the evaluation ofvt at the bound-
ary x � . Even if this time derivative at these points exists in a suitable sense,we
do not know its values.

In an attempt to bypass this problem, the question arises whetherwe can
modify Q2 by adding a boundary functionalQb

2 such that the boundary terms in
(4.1.8) cancel out, i.e.,

hdQb
2(v); yi =

1
2

Re(i �vy)
�
�
�
x+

x �

:

Let us check the Schwarz integrability condition for such a functional. By setting
v(x � ) = a� + ib� and y(x � ) = c� + id � , we get

1
2

Re
�
i �v(x � )y(x � )

�
=

1
2

Re
�
i (a� � ib� )(c� + id � )

�
=

1
2

(b� c� � a� d� )

=
1
2

�
b� � a�

�
�

c�

d�

�
;

which leads to

1
2

Re(i �vy)
�
�
�
x+

x �

=
1
2

�
� b� a� b+ � a+

�

0

B
B
@

c�

d�

c+

d+

1

C
C
A :
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But, from

r Qb
2(a� ; b� ; a+ ; b+ ) =

1
2

0

B
B
@

� b�

a�

b+

� a+

1

C
C
A ;

we conclude that the second derivative is represented by the Hessian matrix

1
2

0

B
B
@

0 � 1 0 0
1 0 0 0
0 0 0 1
0 0 � 1 0

1

C
C
A ;

which fails to be symmetric. This contradicts the integrability assumption.

4.1.2 Periodic Boundary Conditions

This issue can be avoided by choosing periodic instead of separated boundary
conditions. In terms of the nonlinear Schr•odinger equation theseboundary con-
ditions are a very popular choice. For the local well-posedness we refer to [13],
while the existence and stability of ground states has been proven in[11] and
[12]. The weak formulation of

iv t (t; x ) = � vxx (t; x ) � j v(t; x )j2v(t; x ) � � 1(t)v(t; x ) + i� 2(t)vx (t; x );

0 = v(t; x + ) � v(t; x � );

0 = vx (t; x + ) � vx (t; x � )

(4.1.9)

for t 2 I and x 2 (x � ; x+ ) is given by
Z x+

x �

Re(i �vty)dx = �
Z x+

x �

Re(�vxyx)dx +
Z x+

x �

Re(jvj2�vy)dx

+ � 1

Z x+

x �

Re(�vy)dx + � 2

Z x+

x �

Re(i �vxy)dx:
(4.1.10)

Here the corresponding space of test functions isH 1
per

�
(x � ; x+ ); C

�
, and we con-

sider generalized solutionsv 2 C
�
I ; H 1

per

�
(x � ; x+ ); C

��
. Due to the periodicity,

the boundary term in (4.1.8) vanishes, and we get

d
dt

h
Q2(v)

i
=

Z x+

x �

Re(i �vx vt )dx: (4.1.11)

Again, there is no loss of generality in choosing a dense subset of initial data
that leads to su�ciently smooth solutions since the conservation property for
generalized solutions follows by continuity of the momentum functional.

Proposition 4.1.3. For v 2 C
�
I ; H 2

�
(x � ; x+ ); C

��
\ C 1

�
I ; L2

�
(x � ; x+ ); C

��
the

strong formulation (4.1.9) and the weak formulation (4.1.10) are equivalent.
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Proof. If v 2 C
�
I ; H 2

�
(x � ; x+ ); C

��
\ C 1

�
I ; L2

�
(x � ; x+ ); C

��
solves (4.1.9), then

integration by parts yields
Z x+

x �

Re(i �vty)dx = Re(�vxy)
�
�
�
x+

x �

�
Z x+

x �

Re(�vxyx )dx +
Z x+

x �

Re(jvj2�vy)dx

+ � 1

Z x+

x �

Re(�vy)dx + � 2

Z x+

x �

Re(i �vxy)dx;
(4.1.12)

and the boundary term vanishes for anyy 2 H 1
per

�
(x � ; x+ ); C

�
. Moreover, we

have v 2 C
�
I ; H 1

per

�
(x � ; x+ ); C

��
due to the boundary conditions.

Now, let v 2 C
�
I ; H 2

�
(x � ; x+ ); C

��
\ C 1

�
I ; L2

�
(x � ; x+ ); C

��
solve (4.1.10).

For any test function y 2 H 1
0

�
(x � ; x+ ); C

�
\ H 1

per

�
(x � ; x+ ); C

�
we rewrite the

weak formulation (4.1.10) as

0 =
Z x+

x �

Re
�
(i �vt � �vxx � j vj2�v � � 1�v � i� 2�vx )y

�
dx

= �
Z x+

x �

Re
�
�y(iv t + vxx + jvj2v + � 1v � i� 2vx )

�
dx:

SinceH 1
0

�
(x � ; x+ ); C

�
\ H 1

per

�
(x � ; x+ ); C

�
is a dense subset ofL2

�
(x � ; x+ ); C

�
,

the di�erential equation in ( 4.1.9) holds, and we are left to check the boundary
conditions. The �rst boundary condition, i.e., v(t; x + ) = v(t; x � ), is ful�lled by
any v(t; �) 2 H 1

per

�
(x � ; x+ ); C

�
. In order to verify the second boundary condition,

we subtract (4.1.10) from (4.1.12) and obtain

0 = Re(�vxy)
�
�
�
x+

x �

for all y 2 H 1
per

�
(x � ; x+ ); C

�
. Then it follows vx (t; x + ) = vx (t; x � ).

Due to this equivalence, we can consider (4.1.11) in L2-sense for smooth
enough initial data. Replacingiv t by the right hand side of the di�erential equa-
tion in ( 4.1.9) yields

d
dt

h
Q2(v)

i
=

Z x+

x �

Re(i �vxvt )dx =
Z x+

x �

Re
�
�vx (� vxx � j vj2v � � 1v + i� 2vx )

�
:

As before, we analyze each term separately. First of all, we have
Z x+

x �

Re(i �vx � 2vx )dx =
Z x+

x �

Re
�
i� 2jvx j2

�
dx = 0

since� 2jvx j2 is real-valued. Second, we apply Lemma4.1.2with � = 1 and � = 0,
which gives us

�
Z x+

x �

Re(�vx jvj2v)dx = �
1
4

jvj4
�
�
�
x+

x �
(4.1.13)
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and

� � 1

Z x+

x �

Re(�vxv)dx = �
� 1

2
jvj2

�
�
�
x+

x �

; (4.1.14)

respectively. Finally, Lemma4.1.2applied to vx and � = 0 yields

�
Z x+

x �

Re(�vx vxx )dx = �
Z x+

x �

Re(�vxx vx )dx = �
1
2

jvx j2
�
�
�
x+

x �

: (4.1.15)

For periodic boundary conditions all these terms vanish, so that the momentum
Q2 is a conserved quantity.

Let us address the question whether it is possible to �nd other boundary

conditions with the same property. First, we recall that the term Re(i �vy)
�
�
�
x+

x �

in

hdQ2(v); yi =
Z x+

x �

Re(i �vxy)dx �
1
2

Re(i �vy)
�
�
�
x+

x �

must vanish for all times. Hence, we require

jv(t; x + )j2 � j v(t; x � )j2 = 0;

which means that (4.1.13) and (4.1.14) equal zero. Since (4.1.15) is left, we get

d
dt

h
Q2(v)

i
= hdQ2(v); vt i = �

1
2

jvx j2
�
�
�
x+

x �

;

and the resulting requirement is

jvx (t; x + )j2 � j vx (t; x � )j2 = 0:

This leads to periodic boundary conditions, except for some freedom in the choice
of the complex argument.

We are left to consider the conservation of the Hamiltonian

H (v) =
Z x+

x �

�
1
2 jvx j2 � 1

4 jvj4
�

dx

with its derivative given by

hdH (v); yi =
Z x+

x �

Re
�
�vxyx � j vj2�vy

�
dx

= Re(�vxy)
�
�
�
x+

x �

�
Z x+

x �

Re
�
(�vxx + jvj2�v)y

�
dx:

For the total derivative with respect to time it follows

d
dt

h
H (v)

i
= hdH (v); vt i = �

Z x+

x �

Re
�
(�vxx + jvj2�v)vt

�
dx:
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Again, we replacevt by i (vxx + jvj2v + � 1v) + � 2vx and split the sum into three
terms. The �rst integral

�
Z x+

x �

Re
�
i
�
�vxx + jvj2�v

��
vxx + jvj2v

��
dx = �

Z x+

x �

Re
�

i
�
�vxx + jvj2v

�
�2

� �
�
�
x+

x �

equals zero since
�
�vxx + jvj2�v

�
�2

is real-valued. Moreover, integration by parts and
the above argument applied tojvx j2 and jvj4 yield

�
Z x+

x �

Re
�
i
�
�vxx + jvj2�v

�
� 1v

�
dx = � � 1Re(i �vxv)

�
�
�
x+

x �

: (4.1.16)

In order to rewrite the last term, we apply Lemma4.1.2to vx with � = 0 and to
v with � = 1, which results in

�
Z x+

x �

Re
��

�vxx + jvj2�v
�
� 2vx

�
dx = �

� 2

2
jvx j2

�
�
�
x+

x �

�
� 2

4
jvj4

�
�
�
x+

x �

: (4.1.17)

After summing up (4.1.16) and (4.1.17), we end up with the following proposition
for the time dependency of mass, momentum, and energy.

Proposition 4.1.4. For the massQ1, the momentumQ2, and the energyH we
get the identities

d
dt

h
Q1(v)

i
=

� 2

2
jvj2

�
�
�
x+

x �

� Re(i �vxv)
�
�
�
x+

x �

;

d
dt

h
Q2(v)

i
= �

1
2

Re(i �vvt )
�
�
�
x+

x �

�
1
4

jvj4
�
�
�
x+

x �

�
� 1

2
jvj2

�
�
�
x+

x �

�
1
2

jvx j2
�
�
�
x+

x �

;

d
dt

h
H (v)

i
= Re(�vxvt )

�
�
�
x+

x �

� � 1Re(i �vx v)
�
�
�
x+

x �

�
� 2

2
jvx j2

�
�
�
x+

x �

�
� 2

4
jvj4

�
�
�
x+

x �

:

The following table collects the conservation properties of homogeneous Dirich-
let, Neumann and periodic boundary conditions.

Mass Momentum Energy
Dirichlet X
Neumann
Periodic X X X

4.2 Spatial Discretization

Next, we study the system that arises by spatial discretization ofthe freezing
equation, where we put emphasis on the case of periodic boundary conditions.
As in Section4.1 we omit in our notation the impact of perturbation parameters
� and write v instead ofv� for functions in discrete spaces. Our �rst approach is
a �nite di�erence discretization on a bounded spatial grid.
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4.2.1 Finite Di�erence Method

The very basic idea of the �nite di�erence method is to approximate derivatives
in di�erential equations with corresponding di�erence formulas. The central dif-
ference quotient@1 is de�ned by

(@1u) j =
uj +1 � uj � 1

2� x
;

and the second order central di�erence quotient@2 is given by

(@2u) j =
uj +1 � 2uj + uj � 1

� x2
:

Replacing the �rst and the second derivative in the freezing equation leads to

iu t = � @2u � j uj2u � � 1u + i� 2@1u;

which rewrites as

ut = i@2u + i juj2u + i� 1u + � 2@1u:

We impose this equation pointwise on a spatial gridx j with j 2 Z . The eas-
iest way to obtain periodic boundary conditions is to identifyx j and xN + j , in
particular x0 = xN and x1 = xN +1 .

As before, we are interested in the time evolution of mass, momentum and
energy. The discrete version of mass is given by

Q1(v) =
� x
2

NX

j =1

jvj j2;

and di�erentiation leads to

hdQ1(v); yi = � x
NX

j =1

Re(�vj yj ):

Hence, the derivative with respect to time takes the form

d
dt

h
Q1(v)

i
= hdQ1(v); vt i = hdQ1(v); i@2v + i jvj2v + i� 1v + � 2@1vi

= � x
NX

j =1

Re
�
�vj (i@2vj + i jvj j2vj + i� 1vj + � 2@1vj )

�
:

The two sums

� x
NX

j =1

Re(�vj i jvj j2vj ) = � x
NX

j =1

Re(i jvj j4)
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and

� x
NX

j =1

Re(�vj i� 1vj ) = � x
NX

j =1

Re(i� 1jvj j2)

vanish sincejvj j4 and � 1jvj j2 are real-valued. By the same argument as before,
an index shift and the skew-symmetry

Re(i �vy) = � Re(i �yv);

we get

� x
NX

j =1

Re(�vj i@2vj ) = � x
NX

j =1

Re
�

i �vj
vj +1 � 2vj + vj � 1

� x2

�

=
1

� x

� NX

j =1

Re(i �vj vj +1 ) +
NX

j =1

Re(i �vj vj � 1)
�

=
1

� x

�
Re(i �vN vN +1 ) � Re(i �v0v1)

�
:

(4.2.1)

Moreover, the above index shift and the symmetry

Re(�vj +1 vj ) = Re(�vj vj +1 )

lead to

� x
NX

j =1

Re(�vj � 2@1vj ) = � x
NX

j =1

Re
�

� 2�vj
vj +1 � vj � 1

2� x

�

=
� 2

2

NX

j =1

Re(�vj vj +1 ) �
� 2

2

NX

j =1

Re(�vj vj � 1)

=
� 2

2

�
Re(�vN vN +1 ) � Re(�v0v1)

�
:

(4.2.2)

Due to the periodic boundary conditions, both (4.2.1) and (4.2.2) equal zero.
Hence, the discrete mass is a conserved quantity. We continue withthe discrete
momentum, which is given by

Q2(v) =
� x
2

NX

j =1

Re
�
i (@1�v) j vj

�
=

� x
2

NX

j =1

Re
�

i
�vj +1 � �vj � 1

2� x
vj

�

=
1
4

NX

j =1

Re
�
i (�vj +1 � �vj � 1)vj

�
:

The j -th partial derivative takes the form

hdQ2(v); yj i = 1
4Re

�
i �yj vj � 1

�
� 1

4Re
�
i �yj vj +1

�
+ 1

4Re
�
i (�vj +1 � �vj � 1)yj

�

= 1
4Re

�
i �vj +1 yj

�
� 1

4Re
�
i �vj � 1yj

�
+ 1

4Re
�
i (�vj +1 � �vj � 1)yj

�

= 1
2Re

�
i (�vj +1 � �vj � 1)yj

�
;
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and summing up leads to

hdQ2(v); yi =
1
2

NX

j =1

Re
�
i (�vj +1 � �vj � 1)yj

�
:

Hence, we conclude that the total derivative with respect to time takes the form

d
dt

h
Q2(v)

i
= hdQ2(v); vt i = hdQ2(v); i@2v + i jvj2v + i� 1v + � 2@1vi

=
1
2

NX

j =1

Re
�

i (�vj +1 � �vj � 1)( i@2vj + i jvj j2vj + i� 1vj + � 2@1vj )
�

:

Again we consider the terms one after another, and �rst observethat

1
2

NX

j =1

Re
�
i (�vj +1 � �vj � 1)� 2@1vj

�
=

1
2

NX

j =1

Re
�

i (�vj +1 � �vj � 1)� 2
vj +1 � vj � 1

2� x

�

=
� 2

4� x

NX

j =1

Re
�
i jvj +1 � vj � 1j2

�

is zero becausejvj +1 � vj � 1j2 is real-valued. While the above expression vanishes
for any boundary conditions, the terms

1
2

NX

j =1

Re
�
i (�vj +1 � �vj � 1)i� 1vj

�
= �

� 1

2

� NX

j =1

Re(�vj +1 vj ) �
N � 1X

j =0

Re(�vj +1 vj )
�

= �
� 1

2

�
Re(�vN vN +1 ) � Re(�v0v1)

�

and

1
2

NX

j =1

Re
�
i (�vj +1 � �vj � 1)i@2vj ) = �

1
2

NX

j =1

Re
�

(�vj +1 � �vj � 1)
vj +1 � 2vj + vj � 1

� x2

�

= �
1

2� x2

NX

j =1

Re
�
(�vj +1 � �vj � 1)(vj +1 + vj � 1)

�

= �
1

2� x2

NX

j =1

�
jvj +1 j2 � j vj � 1j2

�

= �
1

2� x2

�
jvN +1 j2 + jvN j2 � j v1j2 + jv0j2

�

are zero for periodic boundary conditions. There is one term left, namely

1
2

NX

j =1

Re
�
i (�vj +1 � �vj � 1)i jvj j2vj

�
= �

1
2

NX

j =1

Re
�
(�vj +1 � �vj � 1)jvj j2vj

�
:
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It is worth noting that this expression can be regarded as the Poisson bracket
(see e.g. [46]) of the momentum and the nonlinear part of the Hamiltonian. In
contrary to any of the other terms it cannot be reduced to its boundary terms.
Hence, it does not vanish for periodic or any other boundary conditions. In
fact, the group of translations, which is the symmetry that correspond to the
momentum, does not act on the solutions of the nonlinear Schr•odinger equation
on a discrete grid.

For the sake of completeness, we brie
y consider the discrete Hamiltonian

H (v) =
� x
2

NX

j =1

�
jvj +1 � vj j2

� x2
+

jvj j4

2

�
:

The derivative takes the form

hdH (v); yi = � x
NX

j =1

Re
�

�
�vj +1 � 2�vj + �vj � 1

� x2
+ jvj j2�vj

�
yj ;

which leads to

d
dt

h
H (v)

i
= hdH (v); vt i = hdH (v); i@2v + i jvj2v + i� 1v + � 2@1vi

=
� 1

� x

�
Re(i �vN vN +1 ) � Re(i �v0v1)

�

�
� 2

2� x2

�
jvN +1 j2 � j vN � 1j2 � j v2j2 + jv0j2

�

�
� 2

2

NX

j =1

Re
�
(�vj +1 � �vj � 1)jvj j2vj

�
:

Let us summarize the time dependency of the discrete versions of mass, momen-
tum and energy.

Proposition 4.2.1. For the discrete massQ1, the discrete momentumQ2, and
the discrete energyH we obtain the identities

d
dt

h
Q1(v)

i
= 0;

d
dt

h
Q2(v)

i
= �

1
2

NX

j =1

Re
�
(�vj +1 � �vj � 1)jvj j2vj

�
;

d
dt

h
H (v)

i
= �

� 2

2

NX

j =1

Re
�
(�vj +1 � �vj � 1)jvj j2vj

�
;

where t 7! (v1; :::; vN ) forms a solution of the discretization of (4.1.9) via �nite
di�erences with periodic boundary conditionsv0 = vN and vN +1 = v1.
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4.2.2 Spectral Galerkin Method

The conservation of the momentum and energy can be ensured by using a spectral
collocation method instead. In the following, we brie
y describe this approach.
For further details we refer to [26] and the references therein.

A function v 2 H 1
per

�
(x � ; x+ ); C ) can be written as a Fourier series

v(t; x ) =
X

j 2 Z

vj (t)eijx

with Fourier coe�cients vj and trigonometric functions eijx . Next, we truncate
this spectral representation, namely we approximate

v(t; x ) �
X

j 2Z K

vj (t)eijx : (4.2.3)

Here, the indexj runs over the �nite set

ZK = f� K; :::; K � 1g � Z :

Di�erential operators and derivatives take a very simple form with respect to this
representation. In particular, we have

@1v =
X

j 2Z K

ijv j eijx ;

@2v =
X

j 2Z K

(� j 2)vj eijx ;

which can be rewritten componentwise as

(@1v) j = ijv j ;

(@2v) j = ( � j 2)vj :

However, this does not come without a drawback. The spectral representation of
the nonlinear part, which is a pointwise product in spatial coordinates, is given
(see [25]) by the discrete convolution

K(v) =
X

j 1 ;j 2;j 3 ;j 42Z K
j 1+ j 2= j 3+ j 4

�vj 2vj 3 vj 4e
ij 1x :

Consequently, its coe�cients are

K j 1 (v) =
X

j 2 ;j 3 ;j 42Z K
j 1+ j 2= j 3+ j 4

�vj 2vj 3 vj 4 :

In the same way as before, we check one by one the time evolution ofthe truncated
versions of mass, momentum and energy. The spectral representation of the
truncated mass functional is

Q1(v) =
1
2

X

j 2Z K

jvj j2:
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Here, we have to remark that we leave out the proper scaling factor

1
K

�
x+ � x �

:

In contrary to � x, which plays the same role in Section4.2.1, it remains un-
changed during computations and can be omitted. Di�erentiation ofthe trun-
cated mass functional leads to

hdQ1(v); yi =
X

j 2Z K

Re(�vj yj ):

Hence, the total derivative with respect to time takes the form

d
dt

h
Q1(v)

i
= hdQ1(v); i@2v + iK(v) + i� 1v + � 2@1vi

=
X

j 2Z K

Re
�
�vj (� ij 2vj + iK j (v) + i� 1vj + i� 2jv j )

�
:

For any � j 2 R we have Re
�
i� j jvj j2

�
= 0; which implies that all but one term

equals zero. The remaining sum is given by

X

j 12Z K

Re(i �vj 1K j 1 (v)) =
X

j 1 ;j 2 ;j 3 ;j 42Z K
j 1+ j 2= j 3+ j 4

Re(i �vj 1 �vj 2vj 3vj 4 );

which can be seen to vanish by mapping (j 1; j 2; j 3; j 4) 7! (j 3; j 4; j 1; j 2) since it
holds

Re(i �vj 1 �vj 2vj 3 vj 4 ) = � Re(i �vj 3 �vj 4vj 1 vj 2 ):

A little more involved is the analysis of the time evolution of the truncated mo-
mentum

Q2(v) =
1
2

X

j 2Z K

j jvj j2

with its derivative given by

hdQ2(v); yi =
X

j 2Z K

Re(j �vj yj ):

For the total derivative with respect to time we get

d
dt

h
Q2(v)

i
= hdQ2(v); i@2v + iK(v) + i� 1v + � 2@1vi

=
X

j 2Z K

Re
�
j �vj (� ij 2vj + iK j (v) + i� 1vj + i� 2jv j )

�
:
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In the same way as above, all but one term are of the form Re
�
i� j jvj j2

�
with

� j 2 R . Furthermore, for the remaining term we obtain the expression
X

j 12Z K

Re(j 1�vj 1 iK j 1 (v)) =
X

j 1 ;j 2;j 3 ;j 42Z K
j 1+ j 2= j 3+ j 4

Re(ij 1�vj 1 �vj 2vj 3vj 4 )

=
1
2

X

j 1 ;j 2 ;j 3;j 42Z K
j 1+ j 2= j 3+ j 4

Re
�
i (j 1 � j 2)�vj 1 �vj 2vj 3 vj 4

�

�
1
2

X

j 1 ;j 2;j 3 ;j 42Z K
j 1+ j 2= j 3+ j 4

Re
�
i (j 1 + j 2)�vj 3 �vj 4vj 1 vj 2

�
;

which equals zero. Indeed, by mapping (j 1; j 2; j 3; j 4) 7! (j 2; j 1; j 3; j 4), we get
X

j 1 ;j 2 ;j 3 ;j 42Z K
j 1+ j 2= j 3+ j 4

Re
�
i (j 1 � j 2)�vj 1 �vj 2 vj 3vj 4

�
= 0

from j 1 + j 2 = j 2 + j 1 and �vj 1 �vj 2 = �vj 2 �vj 1 . Moreover, from the identity

Re
�
i (j 1 + j 2)�vj 3 �vj 4vj 1vj 2

�
= Re

�
i (j 3 + j 4)�vj 3 �vj 4vj 1 vj 2

�

= � Re
�
i (j 3 + j 4)�vj 1 �vj 2 vj 3vj 4

�
;

which holds due toj 1 + j 2 = j 3 + j 4, we conclude
X

j 1 ;j 2 ;j 3;j 42Z K
j 1+ j 2= j 3+ j 4

Re
�
i (j 1 + j 2)�vj 3 �vj 4 vj 1vj 2

�
= 0

by mapping (j 1; j 2; j 3; j 4) 7! (j 3; j 4; j 1; j 2). The last functional we consider is the
truncated energy

H (v) =
1
2

X

j 2Z K

j 2jvj j2 �
1
4

X

j 1 ;j 2 ;j 3;j 42Z K
j 1+ j 2= j 3+ j 4

�vj 1 �vj 2vj 3 vj 4 :

Di�erentiation of this expression leads to

hdH (v); yi =
X

j 2Z K

Re
�
(j 2�vj � K ?

j (v))yj

�
;

whereK?
j (v) is the complex conjugate ofK j (v). As a consequence, we obtain

d
dt

h
H (v)

i
= hdH (v); i@2v + iK(v) + i� 1v + � 2@1vi

=
X

j 2Z K

Re
�
(j 2�vj � K ?

j (v))( � ij 2vj + iK j (v) + i� 1vj + i� 2jv j )
�
;

which vanishes. Indeed, the term
X

j 2Z K

Re
�
(j 2�vj � K ?

j (v)
��

� ij 2vj + iK j (v)
�

= �
X

j 2Z K

Re
�
i jj 2�vj � K j (v)j2

�
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is zero becausejj 2vj �K j (v)j2 is real-valued, and the other terms already appeared
in the previous computations. The following table sums up the conservation prop-
erties of the �nite di�erence method (FDM) and the spectral Galerkin method
(SGM).

Mass Momentum Energy
FDM X
SGM X X X

4.3 Split-step Fourier Method

A numerical scheme is derived by splitting the freezing equation

iv t = � vxx � j vj2v � � 1v + i� 2vx

into a linear part

iv t = � vxx � � 1v + i� 2vx (4.3.1)

with its 
ow denoted by � t
L and the remaining nonlinear part

iu t = �j uj2u

with its 
ow given by

� t
N

�
v
�

= exp( it jvj2)v:

The linear problem (4.3.1) is equivalent to

i [F u]t (�; t ) = ( � 2 � � 1 � � 2� )[F u](�; t )

in Fourier variables. This decoupled system of ordinary equations can be com-
puted exactly. We get

[F u](�; t ) = e� i (� 2 � � 1 � � 2 � )t [F u](�; 0)

for � 2 Z and t � 0. Given a step size �t > 0 we now apply the Strang splitting
scheme (see [20], [35], [53], [62]), which is written as

� � t
L + N � �

1
2 � t
N � � � t

L � �
1
2 � t
N :

More precisely, the algorithm to compute a new time step reads

1. Nonlinear part with step size� t
2 ,

2. Fourier Transform,

3. Linear part with step size � t,

4. Inverse Fourier Transform,



4.3. Split-step Fourier Method 113

5. Nonlinear part with step size� t
2 .

In an attempt to preserve the time e�ciency of the Strang splitting, we do not
solve the PDAE, but derive an explicit formula to compute� 1 and � 2 in each
step. First of all, we di�erentiate at least formally the �xed phase condition with
respect tot and insert vt = F (v) � d[a( 1 )v]� and obtain

d[a( 1 )v̂]� F (v) � d[a( 1 )v̂]� d[a( 1 )v]� = 0; (4.3.2)

where the adjoint of d[a( 1 )v] with respect to the inner product
�
�; �

�
0

is given by

d[a( 1 )v]? : X ! A ?; hd[a( 1 )v]?y; � i =
�
d[a( 1 )v]�; y

�
0
:

If the stabilizer Gv̂ = f g 2 G j a(g)v̂ = v̂g of v̂ is trivial and v is su�ciently close
to v̂, then d[a( 1 )v̂]?d[a( 1 )v] 2 L(A ; A ?) is non-singular and (4.3.2) de�nes a set
of d linear independent equations, whered is the dimension ofA . In fact, this is
a special form of Assumption2.2.11.

By solving (4.3.2) with respect to � , we obtain

�̂ (v) =
�
d[a( 1 )v̂]?d[a( 1 )v]

� � 1
d[a( 1 )v̂]?F (v):

Hence, the freezing equation in the eliminated form is given by

vt = F (v) � d[a( 1 )v]
�
d[a( 1 )v̂]?d[a( 1 )v]

� � 1
d[a( 1 )v̂]?F (v):

By choosing a smooth enough template function ^v, the operator in (4.3.2) can be
continuously expanded to a phase condition

 �x : X � A ! A ?

for v 2 X and � 2 A .
In our speci�c example resolving the �xed phase condition with respect to �

leads to

�̂ (v) = �
� �

� i v̂; � iv
�

0

�
� i v̂; � vx

�
0�

� v̂x ; � iv
�

0

�
� v̂x ; � vx

�
0

� � 1 � �
i v̂; ivxx + jvj2v

�
0�

v̂x ; ivxx + jvj2v
�

0

�
;

which continuously expands to

�̂ (v) =
� �

v̂; v
�

0

�
i v̂; vx

�
0�

v̂x ; iv
�

0

�
v̂x ; vx

�
0

� � 1 � �
v̂x ; vx

�
0

�
�
i v̂; jvj2v

�
0�

v̂xx ; ivx
�

0
�

�
v̂x ; jvj2v

�
0

�

for v̂ 2 H 2( R ; C ).



Chapter 5

Numerical Computations

In Section 4.3 we have introduced a numerical scheme to solve the freezing sys-
tem for the nonlinear Schr•odinger equation. The main idea is to applythe Strang
splitting in order to decompose the problem into two parts that are analytically
(or at least more e�ciently) solvable. In the following, we present numerical
results, whereas the stability analysis for the fully discretized problem goes be-
yond the scope of this thesis. For analytical results on the geometric numerical
integration of the NLS we refer to [20], the so-called backward error analysis for
ordinary di�erential equations can be found in [34].

In addition to the NLS, we make use of the freezing method to tacklethe
nonlinear Klein-Gordon equation and the Korteweg-de Vries equation. In order
to guarantee comparability, we stick to the Strang splitting and choose the same
parameters. To be more precise, the time step size

� t = 10� 3

and the number of Fourier nodes

2K = 256

always remain the same. After inverse Fourier transform, this results in an
equidistant grid on [x � ; x+ ], where the upper and lower bound are given by

x+ = � x � =
�

0:11
� 28:56;

and the step size of this spatial grid is

� x =
1
K

�
0:11

� 0:223:

In case of the NLS, we have an explicit formula for the solution of thenonlinear
part in the Strang Splitting. For the NLKG and the KdV, we make use of the
implicit midpoint scheme

� � t
f (v) = v + � t f

�
v + � � t

f (v)

2

�
;

which is computed via �xed point iteration.
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5.1 Nonlinear Schr•odinger Equation

We consider the solitary wave solution of the NLS that is given by the parameters

� ? =
�

� 1:0225
0:3

�
;

where we recall that the �rst component refers to the gauge transformation,
whereas the second describes the velocity of the translation. These parameters
solve the equation

r

�
�

� 1 + � 2
2

4

�
= 1;

which implies that the scaling factor in (1.3.11) equals one. Hence, the pro�le
takes the form

v?(x) =

p
2

cosh(x)
ei 0:3 x

2 :

Before we apply the freezing method, it appears expedient to havea look at the
solution of the original problem, where we choose the above pro�le as our initial
data.

t

x

R
e(

u)

Figure 5.1.1: Solution of the original problem

The solitary wave can be understood as a consequence of the equivariance
of the NLS with respect to the two-parameter group of gauge transformations
and translations. As expected, we observe an oscillation and translation in our
numerical approximation of the solution

u?(t; x ) = eit v?(x � 0:3t):

Accordingly, the imaginary part is the same as the real part, except for a constant
phase shift. In the following, this is subject to change, as we apply the freezing
method.
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As intended, the solution of the freezing system does neither oscillate nor
translate. Hence, the pro�le is, up to discretization and computation errors, a
proper steady state.

t
x

R
e(

v)

t
x

Im
(v

)

Figure 5.1.2: Solution of the freezing system

We notice that the imaginary part is of a di�erent scale since the initialdata
are set up in such a way that the extreme values of the imaginary part are much
smaller than the maximum of the real part. However, the imaginary part plays
an important role by allowing the wave to travel. If we replace the initial data
by

p
2

cosh(x) , then no translation occurs. This is due to the fact that symmetrywith
respect to the y-axis is preserved by the 
ow of the NLS, and this symmetry is
broken by the imaginary part being an odd function. Consequently,re
ection of
the initial data at the y-axis leads to a solitary wave that travels with the same
velocity, but in the opposite direction.

Let us also have a look at the values of� 1 and � 2 that were obtained by our
numerical computation.

0 200 400 600 800 1000
-1.5

-1

-0.5

0

0.5

� 1

� 2

t

�

Figure 5.1.3: Frequency and Velocity

The blue line corresponds to oscillation, whereas the red line describes the
velocity of translation. We have to emphasize that, as described in Section 4.3,
we do not solve the PDAE system, but in each step compute� in a preliminary
calculation before we treat the linear part. While this is highly e�cient, the



5.1. Nonlinear Schr•odinger Equation 117

numerical solution does not necessarily stay on the manifold given bythe phase
condition, and any deviation e�ects the subsequent steps. Nevertheless, the values
of � 1 and � 2 appear quite constant.

However, this is no longer true as soon as we consider perturbed initial data.
The perturbation is generated by callingrng('default') and rand(1,2*K) in
MATLAB. Then we multiply this vector by the perturbation factor

%
100

and add

the result to the real part of the pro�le v?; which has already served as the initial
data for the unperturbed problem.

-30 -20 -10 0 10 20 30
0

0.5

1

1.5

x

R
e(

v)

Figure 5.1.4: Perturbed initial data (%= 5)

On the considerably large time intervalI = [0; 1000] the pro�le remains in
place, and in the same way, the oscillation is reduced to a negligible level.

t

x

R
e(

v)

Figure 5.1.5: Solution of the perturbed problem (%= 5)

But, in contrary to dissipative systems, perturbations do not die out. This
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is due to the fact, that the linerization at the relative equilibrium has apurely
imaginary spectrum. The asymptotic stability, which one can �nd in parabolic
problems, does not occur in the Hamiltonian systems that we consider.
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Figure 5.1.6: Frequency (%= 5)

This has even more serious consequences for the frequency� 1 and the velocity
� 2. Since the initial deviations never extinct, both components of� 
uctuate
continuously.

0 200 400 600 800 1000
-2

-1

0

1

2

3

t

�
2

Figure 5.1.7: Velocity (%= 5)

However, we must acknowledge that the high intensity of 
uctuation is caused
by the numerical scheme. Giving up the operator splitting, solving the PDAE
system by the implicit midpoint scheme, and thereby complying the phase condi-
tion for all times, is highly recommended for much larger perturbations and leads
to less 
uctuation.
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While we do not present any results for di�erent values of� ?, we want to
remark that the oscillation tends to stabilize the pro�le, whereas the translation
behaves to the contrary in numerical computations. We also have to mention that
the choice of a perturbation with positive real numbers is completelyarbitrary.

Next, we numerically analyze the stability of the relative equilibrium. What
we mean by stability is that deviations for all (or at least over long) times remain
small if the initial perturbation is small enough. This, of course, corresponds
to our stability result in Section 2.3, even though the abstract theory does not
include the impact of spatial discretization and time stepping. In order to sustain
the theoretical by numerical results, we compare the deviations that occur for
those initial perturbations that correspond to the parameters

%2 f 4; 2; 1; 0:5; 0:25g:

With respect to the discreteL2-norm

kvk� x;K;L 2 = � x
s X

j 2Z K

jvj j2;

where ZK = f� K; :::; K � 1g � Z , we compute the di�erence of the perturbed
problem and the steady state of the unperturbed problem.

We should emphasize that we do not numerically solve the unperturbed sta-
tionary problem, but assume that the projection of the steady state of the con-
tinuous problems is close enough to the discrete steady state. Thecorresponding
abstract result in Section3.4 can be applied to the NLS, but only in the case of
the one-parameter group of gauge transformations.
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Figure 5.1.8:L2-error

For the presentation of the results, a double logarithmic scale plot isused. We
can see that for any parameter%2 f 4; 2; 1; 0:5; 0:25g the L2-error on the entire
time interval I = [0; 1000] remains close to the initial deviation.
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In addition to that, we consider the same errors in the discrete norm of the
homogeneous Sobolev space_H 1, which is given by

kuk� x;K; _H 1 = � x

s X

j 2Z K

�
�
�
�
F � 1

� x;K p1F � x;K u) j

�
�
�
2

with p1(� ) = i� . Here, the operationsF � 1
� x;K and F � 1

� x;K are carried out by the
fast Fourier transform in MATLAB.
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Figure 5.1.9: _H 1-error

As for the L2-error, we observe a stable behavior of the pro�le with respect to
the _H 1-norm. Here, we should point out that the scale on they-axis is di�erent.

The question arises, whether the pro�le remains stable for other types of
perturbation. Instead of adding a global perturbation, we now locally modify the
initial data.
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Figure 5.1.10: Local perturbation (̀ = 4)
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We choose the peak to be roughly at� 10:933 and create a perturbation based
on the sequence 1, 4, 9, 16, 9, 4, 1, which we again multiply by a perturbation

factor
`

100
. In particular, only an area of � 4� x around the peak is e�ected by

the initial perturbation.

x

t

Figure 5.1.11: Time-space plot (` = 4)

In contrary to the red pro�le, which remains centered atx = 0, the freezing
method hardly e�ects the additional peak. On the short time scaleI = [0; 5] the
top view gives us an impression of the rapid propagation of the perturbation and
the interference of the wave fronts.
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Figure 5.1.12: Solution of the locally perturbed problem (` = 4)

On the larger time scale [0; 1000] the localization ceases to exist really soon.
The red arrow points at the initial peak.



122 Chapter 5. Numerical Computations

10 0 10 1 10 2 10 3
10 -4

10 -3

10 -2

10 -1

10 0

` = 4

` = 2

` = 1

` = 0:5

` = 0:25

t

L
2
-e

rr
or

Figure 5.1.13:L2-error - local perturbation

In the same way as before, the errors in theL2-norm and _H 1-seminorm remain
fairly close to the corresponding initial deviation. We should emphasize that the
scale is di�erent from the error plots for the global perturbation,and that there
is no intuitive relation of %and `.
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Figure 5.1.14: _H 1-error - local perturbation

Before we turn our focus to our next numerical example, the nonlinear Klein-
Gordon equation, we �rst consider the NLS with another phase condition, to be
more precise, the orthogonality phase condition from [6]. The basic setting is the
same, in particular, the Gelfand triple

X ,! X 0 = X ?
0 ,! X ?

remains unchanged. However, we require



 vt




 2

0
to be minimal at any time in-
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stance. As a necessary condition this yields
�
d[a( 1 )v]�; v t

�
0

= 0; � 2 A ;

and inserting the right hand side of the di�erential equation leads to
�
d[a( 1 )v]�; F (v) � d[a( 1 )v]�

�
0

= 0; � 2 A :

By solving this equation with respect to� , we obtain the implicit function

�̂ (v) =
�
d[a( 1 )v]?d[a( 1 )v]

� � 1
d[a( 1 )]?F (v):

Here we recall that the adjoint of d[a( 1 )v] with respect to
�
�; �

�
0

is given by

d[a( 1 )v]? : X ! A ?; hd[a( 1 )v]?y; � i =
�
d[a( 1 )v]�; y

�
0

for y 2 X and � 2 A . By choosing a basis in the Lie algebraA , the orthogonal-
ity phase condition is transformed into a system ofd equations, whered is the
dimension ofA .

t

x

R
e(

v)

Figure 5.1.15: Orthogonality phase condition (%= 5)

5.2 Nonlinear Klein-Gordon Equation

The NLKG, just like the NLS, possesses oscillating and traveling wavesolutions,
where the number of parameters depends on the dimension of the system. In case
of complex-valued solutions the rotation group is only one-dimensional. Now that
we consider solutions to the NLKG with images inR

3, the rotation group is three-
dimensional, which together with the translation gives us four free parameters.
We select at will

� ? =
�

s?

c?

�
=

0

B
B
@

0:7
0:4
0:1
0:5

1

C
C
A :
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By imposing the equationS?� = s? � � , which we require for all� 2 R

3, the �rst
three componentss? determine the rotation matrix

S? =

0

@
0 � 0:1 0:4

0:1 0 � 0:7
� 0:4 0:7 0

1

A :

The last component, which we denote byc? = 0:5, describes the velocity of the
solitary wave. Compared to the previous example the deduction of the corre-
sponding pro�le is much more involved. Since the NLKG is a second order evolu-
tion equation, we consider the transformation to a system of �rstorder equations,
which takes the form

ut =
�

u2

u1;xx � u1 + ju1j2u1

�
: (5.2.1)

In terms of the new variables (v; S; c), this system is rewritten as

vt =
�

v2 � Sv1 � cv1;x

v1;xx � v1 + jv1j2v1 � Sv2 � cv2;x

�
:

As we have discussed in Section1.3.2, the stationary problem can be reduced to
the scalar equation

0 = (1 � c2)� xx +
jsj2

1 � c2
� � � + � 3;

the solution of which is given by

� ?(x) =
p

2� ?

cosh(� ?x)

with the two constants � ? = 1 �
js?j2

1 � c2
?

and � ? =
r

� ?

1 � c2
?
. By writing

� ?(x) = � ?(x)e� ? xS? � ?

with � ? =
c?

1 � c2
?
, the pro�le takes the form

v? =
�

� ?

c?� ?;x + S?� ?

�
:

The vector � ? must be of unit length and orthogonal tos?, which is why we choose

� ? =
1

p
17

0

@
0
1

� 4

1

A :

The solution to the original problem (5.2.1) takes the form

u?(t; x ) = etS? v?(x + c?t);
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and its behavior is not much di�erent from those of the NLS. Each component of
the solution is time-independent except for an oscillation and translation, which
is caused by the equivariance of the NLKG.

Hence, we consider directly the solution to the freezing system withperturbed
initial data. As before, we obtain a global perturbation by callingrng('default')
and rand(1,2*K) in MATLAB, scale this vector by the perturbation factor

%
100

,

and add it to the �rst component of the exact pro�le.

t
x

v1

t
x

v2
Figure 5.2.1: First and second component of the solution (%= 2)

t
x

v3

t
x

v4

Figure 5.2.2: Third and fourth component of the solution (%= 2)

t
x

v5

t
x

v6

Figure 5.2.3: Fifth and sixth component of the solution (%= 2)

On the time interval [0; 1000] the solitary wave neither travels nor oscillates.
But, as expected, the perturbations do not die out.
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Figure 5.2.4: Frequencies (%= 2)

The frequenciess and the velocity c 
uctuate continuously, the latter with
a huge margin even for the small perturbation that corresponds to %= 2. As
before, this is ampli�ed by the numerical scheme.
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Figure 5.2.5: Velocity (%= 2)

In order to analyze the stability of the relative equilibrium, we compute the
di�erence of the perturbed and the unperturbed problem with respect to the dis-
creteL2-norm. As in the previous example, we compare the deviations that occur
for initial perturbations that correspond to the parameters%2 f 4; 2; 1; 0:5; 0:25g.
We observe a stable behavior for the small values%2 f 2; 1; 0:5; 0:25g, whereas for
%= 4 the linear systems to compute� (tn ) become ill-posed after a few time-steps.
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Figure 5.2.6:L2-error

Let us remark that there is a compromise to settle this issue. Since we choose

template functions of the form v̂ =
�

�̂
0

�
; the �xed phase condition does not

depend on the nonlinearityjv1j2v1. Hence, it is an option to combine the Strang
splitting with the PDAE formulation for the linear part of the problem and
thereby reduce the 
uctuation of the frequencies and of the velocity.

5.3 Korteweg-de Vries Equation

Our last numerical example is a mathematical model for surface water waves in
a canal (see [42]). The Korteweg-de Vries equation (KdV)

ut (t; x ) = � uxxx (t; x ) � 6u(t; x )ux(t; x ); u(0; x) = u0(x) (5.3.1)

can be written as an abstract evolution equation

ut = F (u)

by setting

F (u) = � uxxx � 6uux = � (uxx + 3u2)x :

This function splits into two parts, the linear part L(u) = uxxx and the Burgers'
nonlinearity N (u) = 6 uux . Hence, the KdV is a nonlinear perturbation of the
Airy equation

ut (t; x ) = � uxxx (t; x ):

We refer to [9] and [40] for the well-possedness of the inital value problem for
the KdV. The main di�erence compared to the previous examples is the order of
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the highest derivative. In order to deal with the additional derivative, a suitable
symplectic form (see [46]) is given by

! (u; v) =
1
2

Z

R

�
d� 1u(x)v(x) � d� 1v(x)u(x)

�
dx =

�
d� 1u; v

�
0
: (5.3.2)

Here, the operator d� 1 takes the form

d� 1v = F � 1 1
i� (� )

F v;

whereF is the Fourier transform and� (� ) = �: As pointed out in [57], a suitable
domain for this operator is the homogeneous Sobolev space_H � 1

2 ( R ; R ), which is
de�ned as

_H s( R ; R ) =
�

v 2 S ?( R ; C ) : F � 1 _qsF v 2 L2( R ; C )
	

with _qs(� ) = j� js: Then d� 1 is a bounded linear operator

d� 1 : _H � 1
2 ( R ; R ) ! _H

1
2 ( R ; R );

and we obtain a continuous symplectic form

! : _H � 1
2 ( R ; R ) � _H � 1

2 ( R ; R ) ! R :

However, this homogeneous Sobolev space is not well-suited for thestability anal-
ysis of solitary waves. Without the convenience of having it �t into our abstract
setting, we are forced to deal di�erently with the additional derivative in the
linear part. Instead of the equation

! (ut ; y) = hdH (u); yi

for y 2 H 1( R ; R ), we rewrite the problem as

(ut ; y)0 = �h dH (u); yx i (5.3.3)

for y 2 H 2( R ; R ). Consequently, we modify the abstract de�nition (1.2.11) for
generalized solutions of the KdV.

De�nition 5.3.1. Let I � R be an interval. A function u 2 C(I ; H 1( R ; R )
�

is
called a generalized solution of the KdV if we have

Z

I

�
u(t); y

�
0

' t (t)dt =
Z

I
hdH (u(t)) ; yx i ' (t)dt (5.3.4)

for all y 2 H 2( R ; R ) and ' 2 C1
0 (I � ; R ).

In the above sense, the KdV is a Hamiltonian partial di�erential equation,
where the Hamiltonian onH 1( R ; R ) is given by

H (u) =
Z

R

�
1
2ux(x)2 � u(x)3

�
dx: (5.3.5)
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Proposition 5.3.2. The Hamiltonian (5.3.5) is associated with (5.3.1) in the
sense that

�
F (u); v

�
0

= hdH (u); vx i

for all u 2 H 3( R ; R ) and v 2 H 2( R ; R ).

Proof. We start with the right hand side, the derivative of the Hamiltonian. The
linear term already appeared in the previous examples. For the nonlinear term
we get

Z

R

�
u(x) + v(x)

� 3
dx =

Z

R

u(x)3dx +
Z

R

3u(x)2v(x)dx

+
Z

R

�
3u(x) + v(x)

�
v(x)2dx

=
Z

R

u(x)3dx +
Z

R

3u(x)2v(x)dx + O
�
kvk2

1

�

sinceH 1( R ; R ) is a generalized Banach-algebra. This implies

H (u + v) = H (u) +
Z

R

�
ux(x)vx (x) � 3u(x)2v(x)

�
dx + O

�
kvk2

1

�
;

whence we get

hdH (u); vi =
Z

R

�
ux(x)vx (x) � 3u(x)2v(x)

�
dx =

�
ux ; vx

�
0

�
�
3u2; v

�
0
:

Furthermore, integration by parts yields

�
F (u); v

�
0

= �
Z

R

�
uxx (x) + 3 u(x)2

�
x
v(x)dx

=
Z

R

�
uxx (x) + 3 u(x)2

�
vx (x)dx

= �
�
ux ; vxx

�
0

+
�
3u2; vx

�
0

= hdH (u); vx i

for all u 2 H 3( R ; R ) and v 2 H 2( R ; R ).

The Korteweg-de Vries equation is equivariant under the action of aone-
parameter translation group. This Lie group is simplyG = R and the group
action a: G ! GL

�
H 1( R ; R )

�
is given by

a(
 )v = v(� � 
 )

for 
 2 G = R . The derivative of a(�)v at the identity element 1 is

d[a( 1 )v]� = � �v x ;
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where we have� 2 A = R . Moreover, the expression

B(v)� = ! (d([a( 1 )v])�; �)

extends to a bounded linear operatorB(�)� : H 1( R ; R ) ! H � 1( R ; R ) with

B(v)� =
�
�v; �

�
0
:

As in the abstract setting, we rewrite this as dQ(v) : A ! X ? satisfying

hdQ(v)�; y i =
�
�v; y

�
0

for y 2 H 1( R ; R ).
This leads to the conserved quantity

Q(v)� = 1
2 � kvk2

0:

Due to the symmetry under translation, the KdV possesses solitary wave
solutions. As an example, the initial value

u0(x) =
1

2 cosh2
�

x
2

�

yields the solution

u?(t; x ) =
1

2 cosh2
�

x� t
2

� : (5.3.6)

A one-parameter family of solitary wave solutions (see e.g. [46]) is associated with
(5.3.6). As in the case of the nonlinear Schr•odinger equation, we deducethese
solutions by exploiting the scale invariance. Ifu is a solution onI = [0; T], then
so isu� on I � = [0; � 3T], whereu� is given by

u� (t; x ) = � 2u(� 3t; �x )

for � > 0. Due to this scaling, the solution (5.3.6) is transformed into

u?(t; x ) =
� 2

2 cosh2
�

�
2 (x � � 2t)

� : (5.3.7)

By setting � = � 2, we change the notation, such that (5.3.7) becomes

u?(t; x ) = v?(x � �t ) (5.3.8)

with

v?(x) =
�

2 cosh2
� p

�
2 x

� :

The orbital stability of solitary waves for equations of Korteweg-de Vries type
has been proven in [10]. We suppose that a modi�ed version of this approach
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might be used to analyze the stability of our PDAE formulation for theKdV.
This, however, is work in progress.

In the following, we restrict ourselves to numerical tests of the freezing method
for the KdV. An analytical approach to operator splitting for partial di�erential
equations with Burgers' nonlinearity, such as the KdV, can be found in [37] and
the references therein. In case of our freezing problem, we havea linear part

vt = � vxxx + i� 2vx ;

which in Fourier variables is solved by

[F u](�; t ) = ei (� 3+ � 2 � )t [F u](�; 0);

and a remaining nonlinear part

vt = � 6vvx = � 3
�
v2

�
x

with its 
ow denoted by � t
N . Then the Strang splitting reads

� � t
L + N � �

1
2 � t
L � � � t

N � �
1
2 � t
L ;

where � t
L is the linear 
ow. In our computations, we make use of the exact

solution for the linear part and apply the implicit midpoint scheme to approximate
in Fourier variables the solution of nonlinear part, i.e., we consider theequation

vt = � 3i� F
�
F � 1(v)

� 2
:

As in the previous examples, we call the codesrng('default') andrand(1,2*K)
in MATLAB to generate a global perturbation, which we scale by the perturba-
tion factor

%
100

and add to the unperturbed initial data.
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Figure 5.3.1: Perturbed initial data (%= 2)
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In contrary to the NLS and the NLKG there is no rotational symmetry in-
volved, i.e., the solutions of the original problem travel, but do not oscillate.
Thus, the freezing method only deals with the translation symmetry.

t

x

v

Figure 5.3.2: Solution of the perturbed problem (%= 2)

The results are not much di�erent from the two previous examples.For small
perturbations the pro�le stays in place, i.e., the freezing method works as ex-
pected. But, same as before, the velocity� is subject to a 
uctuation with high
intensity. As a result, for large perturbation we obtain ill-posed linear systems
for � (tn) after some time steps.
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Figure 5.3.3: Velocity (%= 2)

There is another very interesting aspect to the KdV. In [7] the freezing method
for parabolic problems was extended to handle multifronts and multipulses that
travel at di�erent speeds. While this is still an open problem for Hamiltonian
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systems, the collision of solitary waves and the decomposition of multi-soliton
solutions have already attracted interest among mathematicians and theoretical
physists (see e.g. [5]). Colliding solitary waves recover their shapes, where the
only result of the collision is a phase shift, a discovery that goes backto [66].
The faster solitary wave shifts slightly forward, and the slower oneis squeezed
backwards. Let us numerically show the phase shift in the collision between
two solitary wave solutions of the KdV equation. As our initial data weadd up
v?(� + 15) with � = 2 and v?(� + 5) with � = 1.

t
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v

Figure 5.3.4: Phase shift in the original problem

In general, the freezing method must be modi�ed to handle this situation in
a satisfactory manner. However, we can make use of our basic approach as long
as the two solitary waves di�er su�ciently in size. In our speci�c example we
choose� = 4 and add a small solitary wave centered atx = 8 with � = 1.
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Figure 5.3.5: Initial data
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Due to the periodicity of the spatial domain, the solitary waves collideseveral
times, but regain their shapes after each collision. The interaction during the
collision is very similar to the original problem, and we are rather interested in
long time e�ects. For the sake of presentability, we have shrunk the time domain
to [0; 100] and selected the top view.

x

t

Figure 5.3.6: Fixed phase condition (time-space plot)

The small solitary wave travels with non-zero velocity, whereas thered pro�le,
which corresponds to the large solitary wave, stays centered atx = 0 and no phase
shift occurs.

It is quite interesting to see that at the beginning of the interactionthe value
of � does not increase monotonically, but instead an adjustment occurs twice.
After that, the large values of� impede the phase shift to the right side.
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Figure 5.3.7: Fixed phase condition (velocity)
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For comparison, we repeat this numerical experiment, but replacethe �xed
phase condition by the orthogonality phase condition, which we already applied
to the NLS in Section5.1.

x

t

Figure 5.3.8: Orthogonality phase condition (time-space plot)

As we have seen in case of the NLS, the orthogonality phase condition is not
well-suited for Hamiltonian systems. We notice that the freezing does not work
as expected since the red pro�le moves to the right hand side. But,even more,
after each collision it is subject to an additional phase shift.
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Figure 5.3.9: Orthogonality phase condition (velocity)

From the values of� we can conclude two things. First, the values of� during
times when no interaction occurs are much lower than� ? = 4. This results in
the large solitary wave to travel to the right hand side. Second, the shape of the
graph of � during the collision is quite di�erent from the �xed phase condition
and the maximum is much lower. This is why the additional phase shift occurs.



Conclusions and Perspectives

In this thesis, we have considered the application of the freezing method to equiv-
ariant Hamiltonian systems such as the nonlinear Schr•odinger equation. By
adding a phase condition, the original problem was transformed intoa partial
di�erential algebraic equation, for which relative equilibria of the original prob-
lem appeared as stationary states.

In the well-known Grillakis-Shatah-Strauss setting, the freezing approach for
the continuous problem turns out quite satisfactory. As shown in Chapter 2, the
stationary states become stable in the sense of Lyapunov.

When it comes to the impact of spatial semi-discretization, there is still a big
discrepancy between analytical and numerical results. Accordingto our numerical
results, the freezing method is far more robust than expected.

The geometric numerical integration, in �rst place, the challenge toconstruct
a modi�ed energy and obtain backward error analysis results, remains an open
problem. The analysis of symplectic time discretization methods for the freezing
system goes beyond the scope of this thesis and provides much room for future
work.



Appendix A

Auxiliaries

A.1 Exponential Map

Given a Lie groupG with Lie algebra A , the exponential map fromA to G is
de�ned by e� = 
 (1), where 
 : R ! G is the unique one-parameter subgroup of
G generated by� 2 A .

Proposition A.1.1. Let G be a Lie group and letA be its Lie algebra.

(a) For any � 2 A , the mappingt 7! et� , t 2 R yields a one-parameter subgroup
of G generated by� .

(b) The exponential map is a smooth map fromA to G and restricts to a dif-
feomorphism from some neighborhood of0 2 A to a neighborhood of1 2 G.

Proof. See [43] for the proof.

A.2 Lie Group Inverse

Lemma A.2.1. Let G be a Lie group and letf : G ! G be the inverse mapping,
i.e. f(
 ) = 
 � 1. Then the derivativedf(
 ) : T
 G ! T
 � 1 G is given by

df(
 ) = � dL 
 � 1 ( 1 )dR
 � 1 (
 ) = � dR
 � 1 ( 1 )dL 
 � 1 (
 ):

In particular, we �nd at unity df( 1 ) : A ! A , v 7! � v.

Proof. We consider the equation1 = 

 � 1 and apply the chain rule (see [1]) to
deduce

0 = dL 
 (
 � 1)df(
 ) + d R
 � 1 (
 ):

A similar application of the chain rule, namely di�erentiating g = 
 � 1
g with
respect tog, shows that

� = d L 
 � 1 (
g )dL 
 (g)�

for all � 2 TgG, and in particular that dL 
 � 1 ( 1 )dL 
 (
 � 1) is the identity mapping
on T
 � 1 G. The second identity is proven in the same way by di�erentiating
1 = 
 � 1
 instead.
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A.3 Implicit Functions on Banach Manifolds

Lemma A.3.1. Let G, U, Y be Banach manifolds of classCk with 1 � k � 1 ,
U � G� U open, and(g0; u0) 2 U. Provided thatF 2 Ck(U; Y) and F (g0; u0) = 0 ,
the following statements are equivalent.

(a) F (�; u0) is a Ck-di�eomorphism of an open neighborhood ofg0 onto an open
neighborhood of 0.

(b) Fg(g0; u0) is an isomorphism fromTg0G to T0Y.

(c) There are open neighborhoodsV � U of (g0; u0) and V � U of u0 and a
function ĝ 2 Ck(V; G) such that F (g; u) = 0 and (g; u) 2 V if and only if
g = ĝ(u) and u 2 V and

dĝ(u) = �
�
Fg(ĝ(u); u)

� � 1
Fu(ĝ(u); u):

Proof. We refer to Theorem 8.41 in [61].

A.4 Young's Inequality

Lemma A.4.1. For " > 0 and E 2 R it holds the inequality

"x 2 � E(xy + y2) � 1
2"x 2 �

�
E +

E 2

2"

�
y2:

Proof. Young's inequality gives us

"x 2 � 2Exy +
E 2

"
y2 =

�
p

"x �
E
p

"
y
� 2

� 0:

This implies

1
2"x 2 � Exy � �

E 2

2"
y2; (A.4.1)

which, by direct computation, leads to the assertion of the lemma.

A.5 Finite Rank Perturbations

Lemma A.5.1. Let
�
X; k�k

�
be a Banach space with dual space

�
X ?;




 �






X ?

�
and

L : X ! X ? a bounded linear operator. Moreover, letV = spanf v1; :::; vdg be a
�nite-dimensional subspace andv?

1; :::; v?
d form a dual basis, i.e.,hv?

j ; vk i = � jk for
j; k = 1; :::; d and hv?

j ; yi = 0 for all y 2 Y, whereX = V � Y. If hLy; y i � ckyk2

holds for all y 2 Y, then we can �nd � > 0, which only depends onc > 0 and


 L






X ?  X
, with the following property. The perturbed operator

eLu = Lu + �
dX

j =1

hv?
j ; ui v?

j (A.5.1)
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satis�es

heLu; u i � eckuk2

for all u 2 X .

Proof. We decomposeu = v + y into v 2 V and y 2 Y. The positivity of L on
the subspaceY and




 L






X ?  X
� C for someC > 0 lead to

hLu; u i = hLy; y i + hLy; vi + hLv; yi + hLv; vi

� ckyk2 � C(2kykkvk + kvk2) � mkyk2 � M kvk2;

where the last step is due to LemmaA.4.1. The proof is �nished by applying the
squared triangle inequality

kuk2 � (kyk + kvk)2 � 2kyk2 + 2kvk2

to the positivity estimate

heLu; u i = hLu; u i + � kvk2 � mkyk2 + ( � � M )kvk2;

where we have to choose� > M = C +
C2

2c
.

A.6 Lipschitz Inverse

Lemma A.6.1. Let
�
X;




 �






X

�
and

�
Y;




 �






Y

�
be Banach spaces withx0 2 X and

denote byL : X ! Y a linear homeomorphism. If there exist positive constants
�; c1; c2 > 0 and a mappingF : B� (x0) � X ! Y such that

(i)



 F (x1) � F (x2)






Y
� c0




 x1 � x2






X
,

(ii) c0 < c1 �
1



 L � 1





X  Y

,

(iii)



 Lx 0 + F (x0)






Y
� � (c1 � c0),

then the equation

(L + F )(x) = 0

has a unique solutionx? 2 B� (x0), and the stability estimate




 x1 � x2






X
�

1
c1 � c0




 (L + F )(x1) � (L + F )(x2)






Y

holds for all x1; x2 2 B� (x0).
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Proof. By de�ning T(x) = � L � 1F (x), we rewrite the equationLx + F (x) = 0 as
an equivalent �xed point problem T(x) = x. From the inequality




 T(x1) � T(x2)






X
�




 L � 1






X  Y




 F (x1) � F (x2)






Y
�
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we conclude thatT is a contraction on the closed ballB� (x0). Hence, the existence
of a unique solution follows from the contraction mapping principle. Moreover,
the stability estimate is a consequence of
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for x1; x2 2 B� (x0).
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