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Abstract. Methods for detecting and quantifying nonlinear-
ities in nonstationary time series are introduced and devel-
oped. In particular, higher-order wavelet analysis was ap-
plied to an ideal time series and the quasi-biennial oscilla-
tion (QBO) time series. Multiple-testing problems inherent
in wavelet analysis were addressed by controlling the false
discovery rate. A new local autobicoherence spectrum facili-
tated the detection of local nonlinearities and the quantifica-
tion of cycle geometry. The local autobicoherence spectrum
of the QBO time series showed that the QBO time series con-
tained a mode with a period of 28 months that was phase
coupled to a harmonic with a period of 14 months. An addi-
tional nonlinearly interacting triad was found among modes
with periods of 10, 16 and 26 months. Local biphase spectra
determined that the nonlinear interactions were not quadratic
and that the effect of the nonlinearities was to produce non-
smoothly varying oscillations. The oscillations were found to
be skewed so that negative QBO regimes were preferred, and
also asymmetric in the sense that phase transitions between
the easterly and westerly phases occurred more rapidly than
those from westerly to easterly regimes.

1 Introduction

Spectral analysis is a tool for extracting embedded struc-
tures in a time series. In particular, Fourier analysis has been
used extensively by researchers for extracting deterministic
structures from time series but is incapable of detecting non-
stationary features often present in geophysical time series.
Wavelet analysis can extract transient features embedded in
time series, with a wavelet power spectrum representing vari-
ance (power) of a time series as a function of time and pe-
riod. Since the seminal work of Torrence and Compo (1998),
wavelet analysis has been applied extensively to geophysi-

cal time series such as the indices for the North Atlantic Os-
cillation (Olsen et al., 2012), Arctic Oscillation (Jevrejeva et
al., 2003), Pacific Decadal Oscillation (Macdonald and Case,
2005; Newmann et al., 2003), El Niño–Southern Oscillation
(ENSO; Torrence and Webster, 1999), Pacific–North Ameri-
can pattern, and west Pacific pattern (Gan et al., 2007). The
application of wavelet coherence and cross-wavelet analyses
(Grinsted et al., 2004), moreover, has proven useful in re-
lating geophysical time series to other time series (Jevrejeva
et al., 2003; Gan et al., 2007; Labat, 2010; Lee and Lwiza,
2008).

Many statistical methods, including power and cross-
spectral analyses, rely on the assumption that the variable
in question is Gaussian distributed (King, 1996). For a linear
system in which the output is proportional to the input, the
first- and second-order moments (the mean and variance) can
fully describe the distribution of a process. In the frequency
domain, by analogy, the variable can be fully described by
the power spectrum, the decomposition of variance as a func-
tion of frequency. Suppose, however, that the distribution is
non-Gaussian so that higher-order moments such as skew-
ness and kurtosis exist. In this case, the mean and variance,
while useful, are unable to fully describe the distribution in
question. In a time series context, non-Gaussian distributions
can arise from nonlinear systems, systems for which the out-
put is no longer simply proportional to the input. For a non-
linear system, if the input is the sum of two sinusoids with
different frequency components the output will contain addi-
tional frequency components representing the sum and dif-
ference of the input frequencies (King, 1996). In such cases,
it is necessary to examine the decomposition of higher-order
moments in frequency space.

The frequency decomposition of the third-order moment,
for example, results in a bispectrum or skewness function that
measure deviations from Gaussianity (Nikias and Raghuveer,
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1987; King, 1996). In fact, Hinich (1985) developed a bispec-
tral test to determine if a time series is non-Gaussian and non-
linear. In some situations, higher-order nonlinearities such
as cubic nonlinearities may exist, in which case the trispec-
trum or other polyspectra would have to be used (Collis et
al., 1998).

Another advantage of higher-order spectral analysis is that
the cycle geometry of oscillations, such as asymmetry with
respect to a horizontal axis (skewed oscillation) or with re-
spect to a vertical axis (asymmetric oscillation) can be quan-
tified using the biphase. A pure sine wave, for example, is
neither skewed nor asymmetric, whereas a time series resem-
bling a sawtooth is asymmetric. Skewed and asymmetric cy-
cle geometry can identify, for example, abrupt climatic shifts,
sudden shifts in the climate system that exceed the magnitude
of the background variability (King, 1996). Abrupt climate
shifts have occurred numerous times in the past and have
dire impacts on ecological and economic systems (Alley et
al., 2003). An understanding of past abrupt climate shifts is
essential to understanding future climate change and so there
is a need to quantify nonlinearities present in climatic oscil-
lations.

The quasi-biennial oscillation (QBO), as another example,
has been shown to behave nonlinearly, transitioning from
easterly phases to westerly phases more rapidly than from
westerly to easterly phases (Lu et al., 2009). Another source
of asymmetry in the QBO time series arises from the westerly
shear zone descending more regularly than the easterly shear
zone. Asymmetries in the QBO time series are not well cap-
tured by linear methods such as linear principal component
and singular spectrum analyses (Lu et al., 2009) but are bet-
ter captured using, for example, nonlinear principal compo-
nent analysis (Hamilton and Hsieh, 2002). Another example
of a nonlinear time series is the sunspot cycle. Solar activ-
ity undergoes an 11-year oscillation characterized by asym-
metric cycle geometry, with solar maxima generally rising
faster than they fall, indicating the presence of nonlinear-
ities (Moussas et al., 2005; Rusu, 2007). ENSO, a climate
phenomenon with regional- to global-scale impacts, has also
been shown to exhibit nonlinearities (Timmermann, 2003).
The presence of nonlinearities and possible nonstationarities
in the QBO, ENSO and sunspot time series makes traditional
Fourier and wavelet analysis inadequate for feature extrac-
tion, underscoring the need to develop methods for quantify-
ing nonlinearities in a nonstationary geophysical setting.

The application of higher-order wavelet analysis has been
rather limited compared to traditional wavelet analysis (van
Millagan et al., 1995; Elsayed, 2006). One geophysical appli-
cation of higher-order wavelet analysis is to oceanic waves
(Elsayed, 2006), which was found to be capable of identi-
fying nonlinearities in wind–wave interactions. However, the
study lacked rigorous statistical significance testing, which is
problematic because even a Gaussian process of finite length
can produce nonzero bicoherence. Therefore, the first aspect
of this paper is to apply significance testing methods for

higher-order wavelet analysis to aid physical interpretation
of results.

The number of bicoherence estimates to which the statis-
tical test is applied will be large and multiple artifacts will
result. The multiple-testing problem was already identified
for traditional wavelet analysis (Maraun et al., 2007; Schulte
et al., 2015; Schulte, 2016). The first objective of this pa-
per will be therefore to apply statistical methods controlling
false positive detection. It is also noted that the bicoherence
spectra calculated are only sample estimates of the true bico-
herence spectra. The second objective of this paper will be to
develop a procedure for calculating confidence intervals cor-
responding to the sample estimates, which represent a range
of plausible values for the sample estimates.

Another problem with the application of higher-order
wavelet analysis is selection of a time interval on which
to calculate the high-order wavelet quantities. Such an ap-
proach is subjective and the result of the analysis may de-
pend on the time interval chosen. Objective three of this pa-
per will address the time interval selection problem. Such
an approach has already been adopted in wavelet coherence
analysis (Grinsted et al., 2004).

Additionally, properties of the biphase have only been ex-
amined for Fourier-based bispectral analysis (Elgar and Se-
bert, 1989; Maccarone, 2013) and its usefulness in higher-
order wavelet analysis has yet to be examined. For non-
stationary time series, the biphase and cycle geometry cor-
responding to the time series may change with time and
thus objective four of this paper will be to introduce a local
wavelet-based biphase spectrum.

In this paper, higher-order wavelet analysis is put in a sta-
tistical framework and applied to the QBO time series to
demonstrate the insights afforded by the methods. Before de-
scribing higher-wavelet analysis, a brief overview of wavelet
analysis is first presented in Sect. 2. Higher-order wavelet
analysis is described in Sect. 3 and a new local autobicoher-
ence spectrum is introduced, eliminating the selection of a
time interval on which to calculate nonlinear properties of
time series. The new and existing methods are applied to an
ideal time series and the QBO index. In Sect. 4, a new proce-
dure for estimating confidence intervals of global autobico-
herence quantities is developed to estimate uncertainties in
the sample autobicoherence spectra. The application of the
new procedure to the sample autobicoherence spectrum of
the QBO time series is then used to further assess confidence
in results.

2 Wavelet analysis

The idea behind wavelet analysis is to convolve a time series
with a function satisfying certain conditions. Such functions
are called wavelets, of which the most widely used is the
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Morlet wavelet, a sinusoid damped by a Gaussian envelope:

ψ0 (η)= π
−1/4eiω0ηe−

1
2 η

2
, (1)

where ψ0 is the Morlet wavelet, ω0 is the dimensionless
frequency and η is the dimensionless time (Torrence and
Compo, 1998; Grinsted et al., 2004). In practical applica-
tions, the convolution of the wavelet function with a time
series X = (xn; n= 1, . . ., N ) is calculated discretely using

WX
n (s)=

√
δt

s

N∑
n′=1

xn′ψ0[
(
n′− n

) δt
s
], (2)

where δt is a uniform time step, s is scale, η = s× t and
WX
n (s) is the wavelet transform. The wavelet power is given

by
∣∣WX

n (s)
∣∣2 (Torrence and Compo, 1998; Grinsted et al.,

2004). For the Morlet wavelet with ω0 = 6, the wavelet
scale and the Fourier period λ are approximately equal (λ=
1.03s). A more detailed discussion of wavelet analysis can
be found in Torrence and Compo (1998).

Shown in Fig. 1a is the time series of the QBO index
and shown in Fig. 1b is the corresponding wavelet power
spectrum. The QBO data from 1950 to 2013 were ob-
tained from the National Oceanic Atmospheric Administra-
tion Earth System Research Laboratory (available at: http://
www.esrl.noaa.gov/psd/data/climateindices/list/). The QBO
index is defined as the zonal average of the 30 hPa zonal
wind at the Equator. As such, a positive index indicates west-
erly winds and a negative index indicates easterly winds.
The most salient feature of the time series is the rather reg-
ular periodicity of approximately 28 months. Also note the
asymmetry between the negative and positive phase, with
the negative phases generally being stronger. The periodic
behavior of the QBO was corroborated by examining the
wavelet power spectrum. A well-defined 28-month period-
icity is evident, with the associated wavelet power changing
little throughout the study period.

There are also secondary features located at a period of
approximately 14 months, primarily from 1985 to 2013. The
appearance of significant power at a period of 14 months
also coincides with most of the largest negative phases of the
QBO. Such a correspondence may not have been a coinci-
dence; the 14-month mode and the 28-month mode may have
interacted constructively to generate large negative events
but interacted destructively to create smaller positive events.
However, additional tools are needed to confirm if the period-
icities are interacting and to understand how the interactions
were related to the behavior of the QBO.

3 Higher-order wavelet analysis

3.1 Wavelet-based autobicoherence

Higher-order spectral analysis provides the opportunity to
quantify nonlinearities and allows for the detection of inter-

Figure 1. (a) The QBO index and (b) the corresponding wavelet
power spectrum. Contours enclose regions of 5 % statistical point-
wise significance (Torrence and Compo, 1998). Light shading rep-
resents the cone of influence; i.e., the region in which edge effects
cannot be ignored.

acting oscillatory modes within a time series. More specifi-
cally, nonlinearities are quantified using bicoherence, a tool
for measuring quadratic nonlinearities, where quadratic non-
linearities imply that for frequencies f1, f2 and f3 and cor-
responding phases φ1,φ2 and φ3 the sum rules

f1+ f2 = f3 (3)

and

φ1+φ2 = φ3 (4)

are satisfied; Eq. (3) implies frequency coupling and Eq. (4)
implies phase coupling. To see from where Eqs. (3) and (4)
originate let

X(t)= sin(2πf1t + φ1) + sin(2πf2t + φ2) (5)

be the input into a system, whose output is related to the input
by

Y (t)= X(t)+ εX(t)2+w(t). (6)

The multiplicative factor ε is used to represent the contri-
bution of the nonlinear component of the signal and w(t) is
Gaussian white noise. Note that if ε = 0, then the system is
linear because the output contains the same frequency com-
ponents as the input. The substitution of Eq. (5) into Eq. (6)
results in

Y (t)= sin(2πf1t +φ1)+ sin(2πf2t +φ2)

+
ε

2

[
1− cos(2(2πf1t +φ1))− cos(2(2πf2t +φ2))

+cos(2π(f2 − f1)t +φ2−φ1)− cos(2π(f1+ f2)t

+φ1+φ2)]+w(t) (7)

and thus the output has sinusoids with additional frequency
components 2f1, 2f2, f2−f1 and f2+f1, which arise from
the second term in right-hand side of Eq. (6).
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Figure 2. (a) a skewed time series and (b) its corresponding local
biphase. The biphase close to zero indicates a nonlinear interaction
resulting in a skewed oscillation. The biphase was calculated from
the first three cosines in the summation described in the text.

Unlike the power spectrum, which is the Fourier transform
of the second-order moment of a time series, the bispectrum
is defined as the double Fourier transform of the third-order
moment, or, more generally, the third-order cumulant, i.e.,

bxxx (f1,f2)=

∞∫
−∞

∞∫
−∞

C(t1, t2)e
−i2π(f1t1+ f2t2)dt1dt2, (8)

where C is the third-order cumulant, defined as

C (t1, t2)=M3 (t1, t2)+ M1 [M2 (t1)+M2 (t2)

+M2 (t1− t2)]+ 2M3
1 (9)

and the ti are lags. IfX(t) is zero-mean, then in Eq. (9),M1 =

E [X(t)]= 0 denotes the first-order moment (mean), M2 =

E [X(t)X(t + t1)] denotes the second-order moment (au-
tocorrelation) and M3 (t1, t2)= E [X(t)X(t + t1)X(t + t2)]
denotes the third-order moment (Nidal and Malik, 2013).
Also note that for a zero-mean process, the third-order cumu-
lant reduces to the third-order moment (Collis et al., 1998).
A more useful quantity is the normalized version of the bis-
pectrum, the autobicoherence spectrum (Collis et al., 1998),
which can be computed using the following:

b2 (f1, f2)=

|bxxx(f1,f2)|
2

E
[
|Xf(f1)Xf(f2)|

2]E [Xf|(f1+ f2)|
2] , (10)

where b2 (f1, f2) is bounded by 0 and 1 by the Schwarz
inequality and Xf denotes the Fourier transform of X.
b2 (f1, f2) can be interpreted as the fraction of power at
f1+ f2 due to quadratic phase coupling among f1, f2 and
f1+ f2 such that the sum rule f1+ f2 = f3 is satisfied (El-
gar and Chandran, 1993). For a more in-depth discussion of
higher-order spectral analysis the reader is referred to Nikias
and Raghuveer (1987).

Figure 3. (a) A sawtoothed time series and (b) its corresponding
local biphase. The biphase close to 90◦ indicates a nonlinear in-
teraction resulting in an asymmetric waveform. The biphase was
calculated from the first three cosines in the summation.

Phase information and cycle geometry can be obtained
from the biphase, which is given by

ψ = tan−1
(

Im(bxxx)
Re(bxxx)

)
= φ1+φ2− φ3. (11)

It was noted by Maccarone (2013), however, that the biphase
should be defined on the full 2π interval and thus in this pa-
per the four-quadrant inverse tangent is computed and not
the inverse tangent as shown above. By doing so, statisti-
cally significant autobicoherence detected together with the
biphase can be used to quantify cycle geometry. A biphase
of 0◦ indicates positive skewness and a biphase of 180◦ indi-
cates negative skewness (Maccarone, 2013). An example of
a skewed oscillation time series with biphase close to 0◦ is
shown in Fig. 2a. Mathematically, the time series is written
as

X(t)=
∑40

j=1

1
j

cos
[
0.1j t + a (j − 1)

]
, (12)

where a = 0 (Maccarone, 2013). The time series is skewed
because the positive spikes are not accompanied by negative
spikes of equivalent magnitude and therefore the distribution
of the time series would be positively skewed, with the right
tail being larger than the left tail.

For asymmetric waveforms, a biphase of 90◦ indicates that
the time series is linearly rising but rapidly falling as shown
in Fig. 3, whereas a biphase of −90◦ indicates that the time
series rises rapidly and falls linearly. A purely asymmetric
time series will have a biphase of 90◦ or −90◦, as shown in
Fig. 3, where the sawtoothed time series obtained by setting
a = π/2 in Eq. (12) rises more slowly than it falls. In a phys-
ical setting, asymmetric cycle geometry implies that phase
transitions occur at different rates, as observed in the QBO
time series.
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According to Elsayed (2006), the wavelet-based autobico-
herence is defined as

bw
xxx (s1, s2)= ∣∣Bw

xxx(s1, s2)
∣∣2(∫

T
|Wx(s1, t)Wx(s2, t)|

2dt
)(∫

T
|Wx(s, t)|

2dt
) , (13)

where

Bw
xxx (s1, s2)=

∫
T

W ∗x (s, t)Wx(s1, t)Wx(s2, t)dt, (14)

1
s1
+

1
s2
=

1
s
, (15)

T is a time interval, Wx(s, t) is the wavelet transform of a
time series X at scale s and time t , and W ∗x (s, t) denotes
the complex conjugate of Wx(s, t). The wavelet-based au-
tobicoherence measures the degree of quadratic phase cou-
pling, where a peak at (s1, s2) indicates a statistical depen-
dence among the scale components s1, s2 and s.

In practice, the autobicoherence is computed discretely so
that Eq. (16) can be written as

Wb (s1, s2)= ∣∣Bw
xxx(s1, s2)

∣∣2(∑n2
n=n1

∣∣WX
n (s1)W

X
n (s2)

∣∣2)(∑n2
n=n1

∣∣WX
n (s)

∣∣2) , (16)

where

Bw
xxx (s1, s2)=

n2∑
n=n1

W ∗Xn (s)WX
n (s1)W

X
n (s2) (17)

=

∑n2

n=n1
Bw
n (s1, s2) , (18)

n1 ≥ 1, and n2 ≤N . Note that if n1 = 1 and n2 =N , then
Eq. (16) represents the global autobicoherence spectrum.

The Monte Carlo approach to pointwise significance test-
ing is adopted in this paper and is similar to that used in
wavelet coherence (Grinsted et al., 2004). To estimate the
significance of wavelet-based autobicoherence at each point
(s1, s2), Monte Carlo methods are used to (1) generate a large
ensemble of red-noise processes with the same lengths and
lag-1 autocorrelation coefficients as the input time series and
(2) compute for each randomly generated red-noise process
the autobicoherence spectrum. From the ensemble of autobi-
coherence spectra, the p = 100(1−αp) percentile of the au-
tobicoherence estimates is computed for every point (s1, s2),
where p corresponds to the critical level of the test and αp is
the pointwise significance level of the test. Given the symme-
try of the autobicoherence spectrum, the critical level of the
test can be computed using only half of the autobicoherence
estimates, reducing computational costs.

3.2 Multiple testing

Let αp be the significance level of the pointwise significance
test as described above and let K denote the number of auto-
bicoherence estimates being tested, then there will be on av-
erage αpK false positive results. A similar problem occurs in
traditional wavelet analysis (Maraun et al., 2007; Schulte et
al., 2015; Schulte, 2016). In the case of simultaneously test-
ing multiple hypotheses, the number of false positive results
can be reduced by applying, for example, the Bonferonni cor-
rection (Lehmann, 1986). However, this simple correction
often results in many true positives being rejected and is es-
pecially permissive in the case of autocorrelated data (Ma-
raun et al., 2004). Other procedures also exist, including the
Walker p value adjustment procedure, which has more sta-
tistical power than the Bonferonni correction. An even more
powerful method is the Benjamini and Hochberg (1995) pro-
cedure, which controls the false discovery rate (FDR), where
the FDR is the expected proportion of the false rejections that
are actually true. An advantage of this method, in addition to
its statistical power, is that it takes into account the confi-
dence with which local hypotheses are rejected and is robust
even in the case of autocorrelated data (Wilks, 1997). Ben-
jamini and Yekutieli (2001) developed a modified version of
the Benjmini and Hochberg (1995) procedure that works for
any dependency structure among the local test statistics and
thus this procedure will be used in this paper to control the
FDR.

The procedure can be described as follows: suppose that
K local hypotheses were tested. Let p(i) denote the smallest
of the K local p values, then, under the assumption that the
K local tests are independent, the FDR can be controlled at
the q level by rejecting those local tests for which p(i) is no
greater than

pFDR = max
j=1,...,k

[
p(j) : p(j) ≤ q (j/K)

]
= max
j=1,...,k

[
p(j) : p(j) ≤ αglobal (j/K)

]
(19)

so that the FDR level is equivalent to the global test level
αglobal. For a local p value to be deemed significant using this
procedure, it must be less than or equal to the largest p value
for which Eq. (19) is satisfied. If no such local p values exist,
then none are deemed insignificant, and, therefore, the global
test hypothesis cannot be rejected. If the test statistics have
an unknown dependency structure, q can be replaced with
q/
∑K
i=1

1
i
, though this substitution makes the procedure less

powerful (Groppe et al., 2011). This modified method will be
applied to autobicoherence spectra at the 0.05 level through-
out this paper.

3.3 Wavelet-based autobicoherence of an idealized time
series

To demonstrate the features of a time series that can be ex-
tracted using higher-order wavelet analysis, an idealized non-
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Figure 4. (a) Time series corresponding to Eq. (20). (b) Corre-
sponding wavelet power spectrum.

stationary time series will first be considered. Consider the
quadratically nonlinear time series

X(t)= cos(2πf t +φ)+ γ (t)cos(4πf t + 2φ)+w(t), (20)

where f is frequency, w(t) is Gaussian white noise and γ (t)
is a time-dependent nonlinear coefficient given by

γ (t)= 0.001t. (21)

Note that Eqs. (3) and (4) are satisfied because f1+ f2 =

2f1 = 2f2 and similarly for φ. The sinusoid with frequency
2f1 is said to be the harmonic of the primary frequency com-
ponent with frequency f2, where the amplitude of the har-
monic depends on γ (t), the strength of the quadratic nonlin-
earity. X(t) and the corresponding wavelet power spectrum
for the case when f1 = 0.03 is shown in Fig. 4. The signal-to-
noise ratio of the Gaussian white noise was set to 1 decibel.
The primary frequency component results in a large region of
5 % pointwise significance at λ= 30, whereas its harmonic
only results in a few small significance regions located from
t = 700 to t = 1000. It also noted that the appearance of the
significance power at λ= 15 from t = 700 to t = 1000 is ac-
companied by large positive spikes in the time series that re-
sult in the time series favoring positive values. Prior to the
emergence of the significant power at λ= 15, the time se-
ries varied smoothly in the sense that negative phases were
accompanied by positive phases of similar amplitude.

To determine if the oscillations are quadratically interact-
ing, the autobicoherence ofX(t) was computed (Fig. 5). The
significant peak centered at (30, 30) indicates that an oscil-
lation with period 30 is phase coupled to an oscillation with
λ= 15. The result implies that the variability at λ= 15 is
partially related to the statistical dependence between the two
modes. The fraction of variability is determined by the auto-
bicoherence value corresponding to the significant peak. In
the present case, Wb (s1, s2)= 0.5 so about half of the vari-
ability at λ= 15 is due to the nonlinear interaction. Note that
no other peaks were found to be significant.

Figure 5. (a) Wavelet-based autobicoherence spectrum of the ideal
time series. Thick contours enclose regions of 5 % pointwise sig-
nificance after controlling the FDR. The diagonal line separates the
spectrum into two symmetric regions. (b) The diagonal slice of the
autobicoherence spectrum at s1 = s2 = s. The critical level for the
test represented by the dotted line was calculated using Monte Carlo
methods.

3.4 Wavelet-based autobicoherence of geophysical time
series

Shown in Fig. 6 is the wavelet-based autobicoherence spec-
trum for the QBO time series. A large region of significance
was identified, which contained the local maximum at (28,
28) months. The peak represents the phase coupling of the
primary frequency component with its harmonic with a pe-
riod of 14 months. The power at λ= 14 months therefore
is partially related to the statistical dependence between its
primary frequency component and its harmonic. The signif-
icance and magnitude of the autobicoherence in the QBO
spectrum is consistent with how the QBO does not vary
smoothly, shifting to the easterly phase more quickly than
to the westerly phase and with the westerly phase tending to
be stronger than the easterly phase. The asymmetry in both
phase transition and magnitude are suggestive of nonlineari-
ties.

3.5 Local wavelet autobicoherence

It may also be desirable to see how autobicoherence along
slices of the full autobicoherence spectrum changes with
time. To compute local autobicoherence, apply a smooth-
ing operator S(W)= Sscale

(
Stime

(
WX
n (s)

))
(Grinsted et al.,

2004) to each term in Eq. (13) instead of summing in time,
i.e.„

bw
n (s1, s2)= ∣∣∣S(s−1

1 Bw
n (s1, s2))

∣∣∣2
S
(
s−1

1

∣∣WX
n (s1)W

X
n (s2)

∣∣2)× S (s−1
∣∣WX

n (s)
∣∣2) . (22)

The smoothing operator for the Morlet wavelet is given by

Stime (W) |s =

(
WX
n (s)× c

−t2

2s2
1

)
|s (23)
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Figure 6. The wavelet-based autobicoherence spectrum of the QBO
index for the period 1950–2013. Thick contours enclose regions of
5 % pointwise significance.

and

Sscale (W) |n =
(
WX
n (s)× c25(6s)

)
|n, (24)

where c1 and c2 are normalization constants determined nu-
merically and 5 is the rectangular function.

It is important to mention that the numerator of Eq. (22)
contains a term with wavelet coefficients at two different
scales so that the choice of smoothing is not as straightfor-
ward as for wavelet coherence. Smoothing autobicoherence
estimates with respect to smin =min(s1, s2) was found to re-
sult in larger autobicoherence estimates, whereas smoothing
the autobicoherence with respect to smax =max(s1, s2) re-
sulted in smaller autobicoherence estimates. Given that the
autobicoherence estimates are influenced by the choice of
smoothing, it is inevitable that the significance of the autobi-
coherence estimates is also impacted. In particular, smooth-
ing the autobicoherence spectrum with respect to smax al-
lowed extrema to be smoothed out, eliminating spuriously
large autobicoherence. For this reason, all local autobicoher-
ence spectra in this paper will be computed by smoothing
with respect to smax.

The advantage of using Eq. (22) is that transient quadratic
nonlinearities can now be detected and the need for choosing
an integration time interval has been eliminated. If s1 = s2,
then (t, s1, s1)= (t, s2, s2)= (t, s) and thus, in the case of
this diagonal slice, the local wavelet-based bicoherence spec-
trum is a two-dimensional representation of the degree of lo-
cal quadratic nonlinearity. The vertical axis corresponds to
the primary frequency and the horizontal axis corresponds to
time. As a concrete example, a peak at (64, 64) would indi-
cate that at time index t = 50 the oscillation with a funda-
mental period λ= 1.03s ≈ 64 is locally coupled to an oscil-
lation with period λ≈ 32.

One can also compute a local biphase from the smoothed
bispectrum by taking the four-quadrant inverse tangent of the
smoothed imaginary part divided by the smoothed real part.
The local biphase, for example, was computed for the skewed
time series shown in Fig. 2a. As expected, the biphase fluc-
tuates regularly around 0◦ and the mean is 2◦. The local
biphase for the sawtoothed time series is shown in Fig. 3b.
The biphase fluctuates about 90◦ and the mean biphase is
90◦ as expected.

The procedure for the estimation of the statistical signif-
icance of local autobicoherence is the following: generate
red-noise time series with the same lag-1 autocorrelation co-
efficients as the input time series and use the local autobi-
coherence estimates outside the COI to generate a null dis-
tribution of bw

n (s1, s2). Note that the calculation only needs
to be performed at a fixed time outside of the COI because
red-noise is a stationary process, which produces a stationary
background spectrum.

3.6 Local wavelet-based autobicoherence of an
idealized time series

The local autobicoherence spectrum of X(t) for (30, 30)
is shown in Fig. 6b. Initially, there is no local autobicoher-
ence that exceeds the 5 % significance level. At t = 250 and
t = 500, on the other hand, small regions of 5 % significant
autobicoherence emerge, indicating a transient nonlinear in-
teraction. At t = 500 the nonlinearity is strong and results in
a large region of significant local autobicoherence extending
from t = 500 to the edge of the wavelet domain

In order to determine if the peaks in autobicoherence are
associated with a quadratic nonlinearity, it is important to
compute the biphase, which is shown in Fig. 7b. From t = 0
to t = 400 there is an unstable phase relationships between
the phase of the primary frequency component and its har-
monic. Such a lack of phase coherence indicates a weak non-
linear interaction, which is consistent with how the autobi-
coherence is lower before t = 400. In contrast, after t = 400,
the biphase becomes stable, changing little with time, indi-
cating a consistent phase relationship between the primary
frequency mode and its harmonic. It also noted that the
biphase during this time fluctuates near 0◦, which implies
that the phase relationships arise from a quadratic nonlinear-
ity. The near-zero biphase is consistent with how X(t) was
constructed from the sum of two cosines with zero phase
and also suggests that the interaction results in skewed cy-
cle geometry, where positive values of the time series are
preferred. Indeed, by inspection of Fig. 4a the oscillations
initially appear to be sinusoidal, varying smoothly, whereas
after t = 400 spikes begin to appear and X(t) favors positive
values.
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Figure 7. (a) The local autobicoherence and (b) local biphase corresponding to (30, 30) in the full autobicoherence spectrum shown in
Fig. 5a. Biphases differing from 90◦ indicate that the nonlinear interaction resulted in a waveform with skewness.

Figure 8. Same as Fig. 7 except at (28, 28) in the autobicoherence spectrum of the QBO index. Biphases differing from 90◦ indicate that the
nonlinear interaction resulted in a waveform with skewness.

3.7 Local wavelet-based autobicoherence of the QBO
time series

The local autobicoherence spectrum of the QBO index at the
point (28, 28) in the full autobicoherence spectrum is shown
in Fig. 8. From 1950 to 1970 the magnitude of the autobi-
coherence fluctuated and consisted of one local significant
peak at 1965. Significant autobicoherence was also found
from 1975 to 1998, contrasting with the autobicoherence af-
ter 1998, which was not found to be significant until 2010.

To determine if the peaks indicated in the autobicoher-
ence spectrum are associated with a quadratic nonlinearity,
the local biphase was computed. Figure 8a shows the local
biphase for the autobicoherence peak at (28, 28). For most of
the study period, the biphase was found to vary considerably,
particularly during the 1950–1970 and 1995–2013 periods.
On the other hand, the biphase varied smoothly from 1970

to 1995, consistent with how the autobicoherence during that
period was large and stable (Fig. 8a). Also, during that period
the biphase was nonzero; in fact, the mean biphase during the
period was −100◦, suggesting that the phase coupling is not
the result of a quadratic interaction. A biphase of−100◦ indi-
cated asymmetric geometry, which physically represents how
phase transitions of the QBO occurred at different rates. Re-
call that it has already been discussed in the introduction that
the QBO transitions from easterly phases to westerly phases
more rapidly than from westerly to easterly phases (Lu et al.,
2009). Another interesting feature is the general increase in
the biphase from 1970 to 1995. In the beginning of the time
period, the biphase was −180◦ and after 1980 the biphase
switched to −90◦.

The local autobicoherence and biphase corresponding to
the peak (16, 26) was also computed (Fig. 9). The mean of the
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Figure 9. Same as Fig. 8 except at the point (16, 26).

Figure 10. Same as Fig. 5b except for the QBO index for the period
1950–2013.

absolute value of the biphase for the period 1950–2013 was
130◦, indicating a statistical dependency among the modes
with periods of 10, 16 and 26 months resulted in skewed
waveforms. In fact, because the biphases were close to 180◦

the waveforms should have been skewed to negative values
(Maccarone, 2013) and such skewness is evident by inspect-
ing Fig. 1. Also note that some of the largest negative phases
of the QBO occurred from 1995 to 2010, which coincided
with the period of most significant autobicoherence as shown
in Fig. 9a.

4 Block bootstrapping methods

4.1 Block bootstrapping autobicoherence

Bootstrapping is a widely used technique to estimate the vari-
ance or uncertainty of a sample estimate. For independent
data, one samples with individual replacement data points
(Efron, 1979); for dependent data one must sample with
replacement blocks of data to preserve the autocorrelation
structure of the data (Kunsch, 1989). The latter technique is
called block bootstrapping and should be used for variance

estimation of global wavelet quantities, as wavelet coeffi-
cients are known to be autocorrelated in both time and scale.
The use of traditional bootstrapping techniques would result
in confidence intervals that are too narrow. It is expected,
however, that the choice of the bootstrapping technique is
more critical at larger scales, as the decorrelation length of
the mother wavelet increases with scale.

A brief overview of the procedure is provided below
but a more detailed discussion can be found in Schulte
et al. (2016). To find the approximate 100(1−β)% con-
fidence interval of an autobicoherence estimate, divide the
set of wavelet coefficients at each scale into overlapping
blocks. The lengths of the blocks at each scale should be
the same and the randomly resampled blocks chosen should
be the same at each scale to avoid randomizing the data.
The concatenation of the blocks then results in a synthetic
set of wavelet coefficients at each scale. The synthetic set
of wavelet coefficients can then be used to calculate a boot-
strap replicate of the autobicoherence. The iteration of the
procedure 1000 times results in a distribution of bootstrap
replicates from which a 95 % confidence interval can be ob-
tained.

As noted by Schulte et al. (2016), the appropriate block
length to use can be determined by Monte Carlo methods.
In that study, it was determined from a Monte Carlo exper-
iment that a block length of N0.6 produced accurate confi-
dence bounds for wavelet coherence while also producing the
widest confidence intervals at all scales. The Monte Carlo
experiment was repeated for 95 % confidence in this study
because bicoherence estimation requires the use of wavelet
coefficients at three wavelet scales, with the wavelet coeffi-
cients at each scale having a different correlation structure.
For wavelet coherence, the block length selection procedure
is simpler because a single wavelet scale is used so that
correlation structure of wavelet coefficients is similar. The
Monte Carlo experiment was performed by generating red-
noise processes of length 1000 with different lag-1 autocor-
relation coefficients and computing 95 % confidence inter-
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vals around the estimated autobicoherence. Remarkably, the
Monte Carlo experiment found that a block length of N0.6 is
also optimal for bicoherence confidence interval estimation.
For block lengths exceeding N0.6, confidence intervals were
found to be too narrow, with in some instances the estimated
bicoherence falling outside the 95 % confidence interval. It
is also noted that the results were insensitive to the chosen
lag-1 autocorrelation coefficient.

4.2 Application to ideal and climatic time series

Figure 5b shows the application of the block bootstrap pro-
cedure to the diagonal slice s1 = s2 = s of the autobicoher-
ence for the ideal case. The 95 % confidence intervals were
also obtained using the ordinary bootstrap method. A pro-
nounced peak at s = 30 was identified and represents the in-
teraction between the primary frequency and its harmonic.
By inspection of Fig. 5b, there is a clear difference be-
tween the widths of the confidence intervals obtained from
the two bootstrapping procedures. For the ordinary bootstrap,
the confidence intervals are narrow and the widths of the
confidence intervals appear to be only weakly dependent on
scale. On the other hand, the confidence intervals obtained
using the block bootstrap procedure are wide, especially at
large scales, and the width of the confidence intervals de-
pends strongly on scale, increasing from small scales to large
scales. It is also noted that, whereas the block bootstrap pro-
cedure has deemed no spurious peaks as significant, the ordi-
nary bootstrap procedure deemed two the spurious peaks at
s = 14 and s = 100 as significant. The implementation of the
block bootstrap procedure can therefore enhance confidence
in results, facilitating the investigation of a deeper physical
understanding.

The application of the block bootstrap procedure to the di-
agonal slice s1 = s2 = s of the full autobicoherence spectrum
of the QBO index is shown in Fig. 10. The 95% confidence
intervals corresponding to the peaks (14, 14) and (28, 28) do
not cross the 5 % significance bound and thus one has more
confidence that those peaks are significant. All other peaks
have been deemed insignificant.

5 Summary

Higher-order wavelet analysis together with significance test-
ing procedures were used to detect nonlinearities embedded
in an ideal time series and the QBO time series. The autobi-
coherence spectrum of the QBO index revealed phase cou-
pling of the 28-month mode with a higher-frequency mode
with period 14 months. A local autobicoherence spectrum of
the QBO index showed that the strength of the nonlineari-
ties varied temporally. Furthermore, the local biphase spec-
trum indicated that a statistical dependence among frequency
components resulted in waveforms that were both skewed
and asymmetric, indicating that the strength of negative QBO

events were stronger than positive events, and that transitions
between events occurred at different rates. The author has
written a software package (Schulte, 2015) to implement all
higher-order wavelet analysis methods presented in the pa-
per.

6 Data availability

The data for the Quasi-biennial Oscillation used in this pa-
per are freely available at the National Oceanic Atmospheric
Administration’s Earth System Research Laboratory Phys-
ical Science Division website available at: http://www.esrl.
noaa.gov/psd/data/climateindices/list/.
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