Contents

Preface — ix

1 Maxwell’s Equations — 1
 1.1 Coulomb’s and Gauss’ Law — 2
 1.2 Faraday’s Law — 4
 1.3 Ampere-Maxwell Law — 5
 1.4 Electromagnetic Waves in Free Space — 6
 1.5 Electromagnetic Waves in Matter — 9
 1.6 Snell’s Law and Evanescent Waves — 13
 1.7 Group and Phase Velocity — 17
 1.8 Waveguides — 19

2 Electromagnetic Properties of Metals — 25
 2.1 Origin of Permittivity — 25
 2.2 Permittivity and Conductivity of Conductors — 27
 2.3 Electromagnetic Waves in a Conductor — 29

3 Plasma Kinetic Theory — 33
 3.1 Introduction — 33
 3.2 Exact Solutions for Time-Independent Electric Fields — 35
 3.3 Linear Response Theory (Plasma Waves) — 37
 3.4 Ponderomotive Theory — 39
 3.5 $\vec{E} \times \vec{B}$ Drift — 43

4 Plasma Fluid Theory — 45
 4.1 Introduction — 45
 4.2 Derivation of the Fluid Equations — 45
 4.3 Electrostatic Wave — 48
 4.4 Plasma Conductivity and Permittivity — 50
 4.5 Electromagnetic Waves — 51

5 Surface Plasmon Polaritons (SPP) — 55
 5.1 SPP on Single Interface — 56
 5.1.1 TE Mode of SPP — 57
 5.1.2 TM Mode of SPP — 58
5.2 SPP on Multilayer Systems 60
5.3 Excitation of SPP 62
5.4 Localized Surface Plasmon Resonance (LSPR) 65
5.5 Applications of Surface Plasmons 69

6 Spoof Surface Plasmons (SSP) 71
6.1 SSP at Low Frequencies 71
6.2 SSP at High Frequencies 73
6.3 Self-collimation in SSP 77

7 Advanced Topics in Plasmonics 83
7.1 Negative Index Metamaterials (NIMs) 83
7.2 Surface-Enhanced Raman Scattering (SERS) 88
7.3 Particle Traps 90

8 Mathematical Foundations 99
8.1 Scalars and Vectors 99
8.1.1 Coordinate Systems: Cartesian, Cylindrical and Spherical 99
8.1.2 Gradient of a Scalar 104
8.1.3 Divergence and Curl of a Vector 105
8.1.4 Scalar and Vector Integration 107
8.1.5 Vector Identities 110
8.1.6 Scalar and Vector Potential 111
8.2 Lorentz Transformations and Special Relativity 113
8.3 LTI Systems and Green’s Function 117
8.4 Fourier Transform 121
8.5 Linear Stability Analysis of ODEs 125
8.6 Hamiltonian Formulation of Charged Particle Dynamics 134

9 Numerical Methods for Electromagnetics 139
9.1 Laplace Equation 139
9.2 Runge-Kutta Method 141
9.3 Wave Equation: FDTD Method 144
9.4 FDTD Dispersion Relation 146
9.5 Dispersive Materials 148

Appendix: Legendre Polynomials 153
Bibliography 155
Index 157