
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Crawling Hardware for
OpenTOSCA

Pushpam Choudhury

Course of Study: INFOTECH

Examiner: Prof. Dr. Dr. h. c. Frank Leymann

Supervisor: M.Sc. Kálmán Képes

Commenced: 24. April, 2017

Completed: 24. October, 2017

CR-Classification: C.2.1, C.2.2, D.2.11, D.2.12

Abstract

Heterogeneity is the essence of the IoT paradigm. There is heterogeneity in communica-
tion and transport protocols, in network infrastructure, and even among the interacting
devices themselves. Managing discovery of the different devices in such a paradigm
is an extremely complex task. The typical solutions include an abstraction layer, com-
monly known as the middleware layer, that handles this complexity for the devices,
thereby, allowing them to interact with one another. One major limitation of the existing
middleware solutions is in their ability to allow for an easily con�gurable approach
required to handle the tremendous scale of heterogeneous components in the IoT. The
objective of this thesis is to develop such a highly con�gurable discovery middleware
approach. The proposed approach aims to discover a variety of heterogeneous devices
and services depending on a multi-level plugin layer, consisting of independent plugins
that interact with each other based on the pipes and �lters architectural pattern. To allow
for the dynamic con�guration of the middleware, a discovery con�guration is developed.
The output from the middleware includes a list of devices and their capabilities and is
accessible via a web interface which can interact with a range of different clients. The
proposed approach is validated on a scenario in a real-life environment.

3

Contents

1 Introduction 15
1.1 Problem Domain and Motivation . 16
1.2 Methodology . 16
1.3 Structure of the Report . 17

2 Fundamentals 19
2.1 IoT and its Characteristics . 19
2.2 Device Discovery Paradigm . 21
2.3 Discovery Protocols . 22

2.3.1 UPnP . 23
2.3.2 Bonjour . 26
2.3.3 SLP . 28
2.3.4 ICMP . 29

2.4 Pipes and Filters Architectural Pattern 30
2.4.1 Properties . 31
2.4.2 Implementation of Pipes and Filters Pattern 31

2.5 Summary . 32

3 Related Work 33
3.1 Device Discovery Middlewares based on SDPs 33

3.1.1 SeDiM Middleware . 34
3.1.2 MUSDAC Middleware . 35

3.2 An Agent-based Middleware for the IoT 36
3.2.1 UBIWARE project . 37

3.3 Usage of a Plugin Layer for Application Topology Discovery 38
3.4 Summary . 40

5

4 Discovery Approach and Framework 41
4.1 Requirements for an IoT Middleware . 42
4.2 Architecture of Device Discovery Middleware 44

4.2.1 Attributes of the Discovery Con�guration 47
4.2.2 Framework for Discovery Service 48
4.2.3 Deduplication Service . 49
4.2.4 Discovery API for the Client Applications 52

4.3 Summary . 52

5 Validation of the Discovery Approach 53
5.1 Motivating Scenario for Validation . 53
5.2 Test Environment . 54
5.3 Mapping of Architecture to Technology 55

5.3.1 Discovery Con�guration for the Motivating Scenario 55
5.3.2 Implementation Details for the Discovery Service 57
5.3.3 Implementation Details for the Deduplication Service 61
5.3.4 Implementation Details for the Discovery API 62

5.4 Discussion of the Result . 64
5.5 Evaluation of the Developed Middleware 65
5.6 Summary . 66

6 Conclusion 67
6.1 Further Research . 68

Bibliography 69

6

List of Figures

2.1 De�nition of IoT [SGFW10] . 20
2.2 Pipes and �lters architectural pattern . 31

3.1 Overview of the MUSDAC platform [RICL06] 35
3.2 Core platform of UBIWARE project [KKK+08]. 38
3.3 An example growth of an ETG before and after �ve iterations of the

discovery approach [BBKL13] . 39

4.1 Layered architecture for device discovery middleware 44
4.2 Device discovery middleware behavioral overview 46
4.3 The steps involved in the device discovery procedure 48
4.4 An example execution of the three level deduplication process 51

5.1 Motivating scenario for the validation of the discovery middleware . . . 53
5.2 Class diagram for DiscoveryCon�guration 57
5.3 Discovery middleware excerpt for PluginManager 58
5.4 Discovery middleware excerpt for ActivePluginExecutor 59
5.5 Excerpt for Deduplication Service . 61
5.6 REST API for the discovery middleware 62
5.7 MQTT API for the discovery middleware 63

7

List of Tables

2.1 Some example values for the type �eld in ICMP header 29

4.1 Parameters for the discovery con�guration of a discovery request 47

5.1 Run-times for individual plugins and discovery middleware 65

9

List of Listings

2.1 Format for the ssdp:alive message . 24
2.2 Format for the ssdp:byebye message . 25
2.3 Format for the ssdp:update message . 25
2.4 Format for the M-SEARCH message . 26

5.1 Discovery con�guration for the validation scenario 56
5.2 Results for the validation scenario . 64

11

List of Abbreviations

API Application Program Interface. 21

ICMP Internet Control Message Protocol. 23

IERC European Research Cluster on the Internet of Things. 19

IoT Internet of Things. 15

JSON JavaScript Object Notation. 55

MOM Message-oriented middleware. 21

OCF Open Connectivity Foundation. 23

OUI Organizationally Unique Identi�er. 60

RDF Resource Description Framework. 23

REST Representational State Transfer. 62

RFID Radio-frequency identi�cation. 19

SDP Service Discovery Protocol. 15

SLP Service Location Protocol. 15

SOA Service-Oriented Architecture. 21

SOC Service-Oriented Computing. 21

SOM Service Oriented Middleware. 21

SSDP Simple Service Discovery Protocol. 23

UDA UPnP Device Architecture. 23

UPnP Universal Plug and Play. 15

URI Unique Resource Identi�er. 49

UUID Universally Unique Identi�er. 49

WSN Wireless Sensor Network. 20

13

1 Introduction

The term Internet of Things (IoT) was �rst coined by Kevin Ashton in 1999 in the context
of supply chain management [Ash09]. In recent years, the de�nition of things has
evolved with the advancement in technology. Nowadays, one of the main objectives of
the IoT domain is to combine various technologies and disciplines to enable connectivity
between the Internet and physical devices [FKBT13]. With around 50 billion devices
expected to be connected to the Internet by 2020 [Eva11], there is a paradigm shift
in which more and more things are becoming interconnected and smarter every day.
This presents us with our �rst major issue: to enable seamless discovery of heterogeneous
connected things, in a network.

A thing can be a physical device like a laptop, a smart-phone or, a service like a Tomcat
web server, MySQL database and so forth. These devices and services are heterogeneous
in nature due to diversity in environments employed within: (i) the languages used to
describe and advertise the speci�cations, (ii) the content and format of the transport
layer protocols, (iii) the discovery behavior, for example, active or passive discovery
mode, (iv) the network communication protocols, and, (v) the Operating System (OS)
running on them. Before such heterogeneous things can communicate, they must be able
to discover each other. Existing discovery protocols, such as, Service Location Protocol
(SLP) [GPVD99; GVPK97], Universal Plug and Play (UPnP) [Don+15; Pre+08; UPnP00]
or Bonjour [App13], are all limited by the above mentioned constraints. Therefore, a
highly con�gurable discovery framework is needed with a scalable abstraction layer that
can utilize the existing technologies and protocols. The scope of this thesis revolves
around developing this con�gurable middleware for discovering the heterogeneous
devices and services in the IoT.

The term con�gurable discoveryis used in the context of being able to use a speci�c or a
set of discovery protocols, as required to discover a target device. Some of the existing
work try to combine the architectural and design similarities among existing discovery
protocols [FGB11] for discovering the devices or, require an additional input such as
a snapshot of an enterprise application to extract its various topologies [BBKL13]. In
contrast, our work provides a con�gurable and scalable service-oriented plugin-based
framework and a bottom-up discovery approach i.e., a network level approach in which
plugins are con�gured to discover devices or services on a particular network. Each
plugin uses a single protocol to enable discovery.

15

1 Introduction

1.1 Problem Domain and Motivation

In general, most of the existing Service Discovery Protocols (SDP) for pervasive com-
puting environments [Sil17], such as a smart homeenvironment, depend on service
advertisement messages from devices as de�ned by their manufacturers. This presents
us with the problem of being able to intercept the message in the �rst place and then to
understand its speci�cations. This typically requires an abstraction layer, which enables
this translation between advertisement messages, so that devices need not worry about
the difference in OS, network or transport protocols. Due to the presence of dozens of
independent SDP, each addressing a different mix of issues, this message translation
layer becomes highly complex and also increases the communication overhead [AHA13].
To ful�ll the requirement of integrating existing technologies and protocols, a highly but
easily con�gurable discovery middleware is required.

Our approach aims to maintain the diversity of the middleware layer by enabling the
orchestration of different discovery protocols. A brief introduction about some of the
protocols is provided in section 2.3. The proposed approach does not require any prior
knowledge of the devices to be discovered, although an understanding of the plugins
used for the discovery is required. The motivation behind this thesis is to extend the
work done in the �eld of integrating OpenTOSCA to IoT [SBK+16]. The proposed
discovery middleware can provide discovery services to the SmartOrchestra project1 that
aims at providing a marketplace for cloud-based IoT platforms.

1.2 Methodology

The framework proposed in this thesis attempts to discover devices and their services
from the network layer up to the application layer, by employing a pipes and �lters based
orchestration of plugins. The plugins are responsible for discovering speci�c device
capabilities. The current approach employs multi-level plugins, with each level aimed
at discovering a particular service layer, such as the OS or the web server running on
the device. This bottom-up approach is, therefore, both lightweight and independent of
device's type, thereby, solving most of the issues related to device heterogeneity.

1http://smartorchestra.de/

16

1.3 Structure of the Report

1.3 Structure of the Report

This remainder of the report is organized as follows:

• Chapter 2 discusses relevant theoretical concepts and background necessary to
understand the terms related to the thesis.

• Chapter 3 summarizes literature study related to existing IoT middleware solu-
tions for device and service discovery and an existing plugin-based approach for
automated discovery of application topologies.

• Chapter 4 describes the proposed middleware approach for discovering a device
and its services using an easily con�gurable multi-level plugin layer.

• Chapter 5 presents a scenario-based validation of the approach and the correspond-
ing implementation details.

• Chapter 6 includes the summary of the thesis, enlists the goals that have been
achieved and suggests possible extensions for the thesis.

17

2 Fundamentals

A device discovery approach for the IoT needs to be highly customisable as there is
a tremendous amount of heterogeneity in the IoT. In this chapter, all the important
concepts necessary to understand the proposed customisable discovery approach, are
explained. Firstly, the �eld of IoT and its main characteristics are outlined. Then the
concept of device discovery paradigm is discussed, followed by a discussion about some
existing discovery protocols. Lastly, the pipes and �lters architecture pattern, used in the
proposed discovery middleware, is highlighted.

2.1 IoT and its Characteristics

The IoT has created a dynamic network of billions of wireless things communicating
with one another. The IoT connects the digital world to the physical world by bringing
in new concepts like pervasive computing [Sil17], ubiquitous computing [Wei93], and
ambient intelligence [Sad11]. Fig. 2.1 illustrates the European Research Cluster on the
Internet of Things (IERC) vision for IoT, where “The Internet of Things allows people
and things to be connected anytime, anyplace, with anything and anyone, ideally using
any path/network, and any service” [SGFW10].

According to Razzaqueet al. [RMPC16], the main characteristics of the IoT are as
follows:

• Heterogeneous devices:Device heterogeneity is the backbone of the IoT infrastruc-
ture. The infrastructure must provide support for multivendor products providing
different applications. Typically, the IoT is composed of simple embedded devices
and sensors to heavy-duty computing devices for routing, switching, data pro-
cessing, etc. In order to connect all these different devices to the Internet, the
infrastructure must enable connectivity via WiFi, cellular networks, and low power
radios.

• Resource-constrained:Most of the IoT devices have limited computational, network-
ing, and storage capabilities. For example, Radio-frequency identi�cation (RFID)
tags may lack any processing capacity or battery power in them.

19

2 Fundamentals

Figure 2.1: De�nition of IoT [SGFW10]

• Real time: For some of the IoT domains, such as, healthcare and transportation,
the on-time delivery of data and services is essential. Delayed delivery may render
the application useless and can cause catastrophic effects. For example, in �ight
control systems, failure to provide real-time updates can cause an accident.

• Complex network of devices and a large number of events:The IoT networks are
much larger than the traditional networks. In places like supermarket or university,
thousands of devices may interact with each other. As predicted by Gartner [RM13],
the IoT will be a global ultra-large-scale network containing billions and even in
trillions of nodes. Thus, an enormous number of events will be generated as the
IoT devices interact with each other. If not handled properly, this may cause event
congestion, thereby, reducing the capabilities of the IoT devices.

• Everything-as-a-service (XaaS):As more and more things get connected, the services
are also expected to grow and be available to consumers for usage. Bene�ts of a
XaaS model is its ef�ciency, scalability, and ease of usage [BFB+11]. For example,
in the �eld of Wireless Sensor Networks (WSN), sensing is being provided as a
service [TS13], which will eventually lead to a XaaS model.

• Context-awareness:In order to create value from a large amount of data generated
from a large number of sensors, the context in which the data is generated needs
to be understood. It basically eases the interpretation of data. For example,
location-awareness is an integral part of context-awareness.

20

2.2 Device Discovery Paradigm

• Distributed: The data generated by the IoT applications must always be available.
To provide this availability of data, a distributed network of nodes is required. Due
to this distributed structure, according to Brewer's conjecture [Bre00], popularly
known as the CAP theorem, it is impossible for a distributed web service to provide
guarantees for consistency, availability and partition tolerance. So an agreeable
trade-off will be required.

• Security: In order to realize the vision of the IoT i.e., to allow access to any service
by anyone, at any time and anyway, all the security leakage in different applications
and networks must be addressed. This tremendously increases the complexity of
security mechanisms.

Any discovery approach for the IoT must take all the above-mentioned characteristics
into account. Nowadays, middleware solutions are gaining popularity in the �eld of
device discovery for IoT. In the following section, the device discovery paradigm for the
IoT is discussed.

2.2 Device Discovery Paradigm

In IoT, it is dif�cult to enforce a common standard for all the diverse devices representing
different domains in IoT. Therefore, there is a requirement for an abstraction layer
among applications of diverse domains. A middleware provides such an abstraction, by
providing an Application Program Interface (API) to physical layer communications up
to required services, covering all the complexities of heterogeneity [BSMD11]. Based on
existing design approaches the various middleware solutions for IoT paradigm, can be
grouped according to [BSMD11], into the following categories:

• Event-based:In an event-based middleware, events are used for interaction among
different components and applications. The events propagate from the sending
application components (producers) to the receiving application components
(consumers). Each event has associated with itself a set of typed parameters which
helps in identifying a change in producer's state. Message-oriented middleware
(MOM) [Cur05] is an example for an event-based middleware. Instead of events,
MOM relies on messages that are passed on between senders and receivers.

• Semantic model-driven:A semantic model-driven middleware maps physical de-
vices to semantic devices. the mapping can range from one-to-one to many-to-one.
Semantic devices are basically software representation of physical devices. Infor-
mation such as device capabilities, services, and device security properties are
usually included in the semantic device description.

21

2 Fundamentals

• Service-oriented:Service-Oriented Computing (SOC) [Pap03] is based on Service-
Oriented Architecture (SOA) approaches that relies on software or applications
as services. The characteristics of SOC, like technology neutrality, loose coupling,
service reusability, service composability and service discoverability, are potentially
bene�cial to IoT applications. A Service Oriented Middleware (SOM) can alleviate
the challenges of IoT's ultra-large-scale network, resource-constrained devices, and
mobility characteristics, by provisioning of appropriate functionalities to deploy,
publish/discover, and access services at run-time.

• Agent-based:For an agent-based middleware, applications are divided into mod-
ular programs to facilitate injection and distribution through the network using
mobile agents. For such an architecture it is assumed that agents are associated
with all devices in the network. This approach provides potential bene�ts such as
asynchronous and autonomous execution, protocol encapsulation, network load
and latency reduction, and fault-tolerance. Additionally, agent-based approaches
consider the resource limitations. For example, UBIWARE [KKK+08] middle-
ware supports the creation of an autonomous, complex, �exible, and extensible
industrial systems.

• Database-oriented:For a database-oriented middleware, the sensor network in the
IoT is viewed as a virtual relational database system. The applications can query
the required data from the database using SQL-like languages.

All these different IoT middleware solutions perform discovery based on the different
existing discovery protocols, a discussion for which is presented in the next section.

2.3 Discovery Protocols

In the IoT paradigm, the networks will dynamically change and continuously evolve.
Heterogeneous devices connect and disconnect at every instant. Therefore, automated
discovery mechanisms are essential, without which it is impossible to achieve a scalable
and accurate network management. Dynamic network discovery mechanisms allow
dynamic, run-time con�guration of connections, thereby, enabling devices to adapt to
the changing contexts.

22

2.3 Discovery Protocols

The existing discovery protocols can be broadly classi�ed into two categories:

• SDP:SDPs rely on service descriptions according to which discovery is performed.
These service descriptions can be in XML format, attribute-value pairs or a Resource
Description Framework (RDF).

• network discovery protocol:Network discovery protocol checks for the reachability
of a network device. Ping is such a network utility which is based on the Internet
Control Message Protocol (ICMP) protocol.

In this thesis, the discovery architecture is based on two types of plugins: (i) active
discovery plugins, which perform network scanning using the network discovery protocol
such as the ICMP, and (ii) passive discovery plugins, which are based on different SDPs.
A brief introduction, to some of the SDPs and the ICMP protocol, is provided in the
following sub-sections.

2.3.1 UPnP

The UPnP speci�cation, which was originally maintained by the UPnP Forum, formed
in October 1999, is now being managed by the Open Connectivity Foundation (OCF),
effective January 1, 2016. The UPnP speci�cation has three versions: (i) version 1.0,
released in June 2000 [UPnP00], (ii) version 1.1, released in October 2008 [Pre+08],
and (iii) version 2.0, released in February 2015 [Don+15].

UPnP provides a platform for pervasive peer-to-peer network connectivity of intelligent
appliances, PCs, and wireless devices. The UPnP Device Architecture (UDA) is designed
to support zero-con�guration, dynamic networking, and automatic discovery for a range
of device categories. The motivation behind this speci�cation, according to the of�cial
documentation, is to allow a device to dynamically join a network, obtain an IP address
automatically, convey its capabilities, know about the presence and capabilities of other
devices and, �nally, leave the network smoothly and automatically without leaving any
unwanted state behind.

The �rst step in UPnP networking is discovery. The UPnP discovery protocol, known
as the Simple Service Discovery Protocol (SSDP), allows a device to advertise itself to
the control points or the control point to search for devices, on the network. When a
device joins a new network, it must multicast discovery messages advertising itself, its
embedded devices, and its services for any control point on the network. Similarly, when
a control point is added to a network, it can multicast a discovery message for devices
or services of interest or both. Also in the event of leaving a network, a device should, if
possible, multicast discovery messages declaring that it will no longer be available. All
the discovery messages are based on the SSDP.

23

2 Fundamentals

After a device becomes available, it shall multicast discovery messages to advertise its
capabilities. Each discovery message contains four major parts in the message header:

• NT (Noti�cation Type): This �eld refers to the device type.

• USN (Unique Service Name):This �eld points to the composite identi�er for the
advertisement.

• LOCATION:This �eld represents the device URL for more information about the
device.

• CACHE-CONTROL:It represents the duration for which the advertisement message
is valid.

When a device is added to the network, it shall send a multicast message with method
NOTIFYand ssdp:alivein the NTSheader �eld in the format as shown in listing 2.1.

Listing 2.1 Format for the ssdp:alive message
NOTIFY * HTTP/1.1

HOST: 239.255.255.250:1900

CACHE-CONTROL: max-age = seconds until advertisement expires

LOCATION: URL for the UPnP description of root device

NT: notification type

NTS: ssdp:alive

SERVER: this field contains the OS version as well as the UPnP version

USN: Field value contains Unique Service Name

BOOTID.UPNP.ORG: an integer number that increases after every initial announement message

CONFIGID.UPNP.ORG: an integer number used for caching description information

SEARCHPORT.UPNP.ORG:an integer number that identifies the port on which device responds

to unicast M-SEARCH messages from control points

The HOST �eld value of the advertisement is the standard multicast address spec-
i�ed for the protocol (IPv4 or IPv6) used on the interface. For IPv4, its value is
239.255.255.250:1900. The SERVER, BOOTID.UPNP.ORGand CONFIGID.UPNP.ORG
header �elds are also required in every discovery message. The header �eldSEARCH-
PORT.UPNP.ORGis optional. The description of these header �elds is provided in the
listing 2.1.

When a device and its services become unavailable, the device should multicast a
ssdp:byebyemessage corresponding to each of thessdp:alivemessages it sent as a
multicast which is not already expired. Each of the multicast messages must have
method NOTIFYand ssdp:byebyein the NTSheader �eld, as shown in listing 2.2.

24

2.3 Discovery Protocols

Listing 2.2 Format for the ssdp:byebye message
NOTIFY * HTTP/1.1

HOST: 239.255.255.250:1900

NT: notification type

NTS: ssdp:byebye

USN: Contains the Unique Service Name

BOOTID.UPNP.ORG: an integer number that increases each time device sends an initial

announce or an update message

CONFIGID.UPNP.ORG: an integer number used for caching description information

The third type of NOTIFYmessage has anNTSheader �eld of ssdp:update. This message
is used by a device to announce to a control point about changes in the root device,
the embedded devices and the embedded services. The device can send this message
as soon as its IP address changes. An example of this message format is provided in
listing 2.3.

Listing 2.3 Format for the ssdp:update message
NOTIFY * HTTP/1.1

HOST: 239.255.255.250:1900

LOCATION: URL for the UPnP description of root device

NT: notification type

NTS: ssdp:update

USN: Contains the Unique Service Name

BOOTID.UPNP.ORG: an integer number increased each time device sends an initial announce or

an update message

CONFIGID.UPNP.ORG: an integer number used for caching description information

NEXTBOOTID.UPNP.ORG: new BOOTID value that the device will use for subsequent

announcements

SEARCHPORT.UPNP.ORG:an integer number which identifies port on which device responds to

unicast M-SEARCH

The NOTIFYmessages do not have a message body, but the message must have a blank
line following the last header �eld.

The second type of message is anM-SEARCHmessage. This message is sent when
a control point wants to search for devices in the network. The control point sends
a multicast, a search message with search target, on the reserved address and port
(239.255.255.250:1900). An example format for the search request with method M-
SEARCHis shown in listing 2.4.

25

2 Fundamentals

Listing 2.4 Format for the M-SEARCH message
M-SEARCH* HTTP/1.1

HOST: 239.255.255.250:1900

MAN: "ssdp:discover"

MX: seconds to delay response

ST: search target

USER-AGENT: OS version and UPnP version

CPFN.UPNP.ORG: a friendly name of the control point

CPUUID.UPNP.ORG: uuid of the control point

The different header �elds of to the M-SEARCHmessage are as follows:

• MAN: This header �eld is required and it must be enclosed in double quotes as
shown in listing 2.4.

• MX: This required �eld refers to the wait time in seconds. This value must be
greater than or equal to 1 and less than 5.

• ST: This required �eld contains the information regarding the search target.

• USER-AGENT:It is speci�ed by the UPnP vendor and includes the device's OS, the
UPnP version, and the product version.

• CPFN.UPNP.ORG:It represents the friendly name for a control point, which is
speci�ed by the vendor.

• CPUUID.UPNP.ORG:It represents the UUID of the control point.

The M-SEARCHmessages can be unicast, in which case the hostname and the port
number must be speci�ed in the HOSTheader instead of the reserved multicast address
and port speci�ed in listing 2.4.

2.3.2 Bonjour

The Bonjour zero-con�guration networking architecture [App13] provides support for
publishing and discovering TCP/IP-based services in a local area or a wide area network.
Bonjour is Apple's implementation of zero-con�guration networking protocols [SC05].
Bonjour basically covers three areas for zero-con�guration networking in IP networks:

• allocating IP addresses to hosts,

• using host names instead of IP addresses, and

• automated service discovery on the network.

26

2.3 Discovery Protocols

Bonjour uses self-assigned link-local addressing to assign IP addresses to devices on the
local network. When a device joins a network, Bonjour �nds an unused local address
and assigns it to the device. For name-to-address translation on a local network, the
protocol uses Multicast DNS (mDNS), as de�ned in RFC6762 [CK13], in which DNS-
format queries are sent over the local network using IP multicast. Because these DNS
queries are sent to a multicast address, each service or device can provide its own DNS
capability. When a device or service encounters a query for its own name, it provides a
DNS response with its own address. For a correct name-to-address translation, a unique
name on the local network is required.

The �nal element of Bonjour is service discovery, which allows applications to �nd
all available instances of a particular type of service and to maintain a list of named
services and port numbers. Service discovery in Bonjour is accomplished bybrowsing. An
mDNS query is sent out for a given service type and domain, and any matching services
reply with their names. Therefore, a list of matching services to choose from becomes
available. Additionally, Bonjour takes the service-oriented view, which means queries
are made according to the type of service needed, not the hosts providing them.

A Multicast DNS responder registers the devices or applications that want to publish a
service. After registration of a service, three DNS records are created: a service (SRV)
record, a pointer (PTR) record, and a text (TXT) record. The SRV record maps the name
of the service instance to the information needed by a client to actually use the service
and typically includes two pieces of information to identify a service: i) hostname, and
ii) port number. The created SRV record consists of following parts:

• the instance name which refers to the name of a service instance,

• the service type which is a standard IP protocol name, preceded by an underscore,
and

• the domain which refers to a standard DNS domain.

The PTR records include the service type and the domain, but they do not include an
instance name. The TXT record includes additional data needed to resolve or use the
service. The TXT record is often empty.

Bonjour provides various APIs at multiple layers for OS X an iOS with support for
different languages.

27

2 Fundamentals

2.3.3 SLP

The SLP version 1 and version 2 as de�ned in RFC2165 [GVPK97] and RFC2608
[GPVD99] respectively, provides a �exible and scalable framework for providing infor-
mation about the existence, location, and con�guration of networked services. SLP
eliminates the need for users to know the names of network hosts. A user only needs to
know the description of the desired service, based on which, SLP is able to discover the
URL for the service. In SLP, all the activities are carried out by three software entities
termed as agents:

• User Agent (UA):It is a software entity which is looking for a one or more services
and provides client applications with a simple interface for accessing registered
service information.

• Service Agent (SA):This software entity advertises the location of one or more
services. SLP advertisement messages include multicast messages and unicast
responses to queries.

• Directory Agent(DA):This software entity acts as the centralized repository for the
service location information.

These agents communicate with each other to provide the necessary framework. The
messages related to service management are as follows:

• Service Request (SrvRqst):This message is sent by UAs to SAs and DAs to request
for the location of a service.

• Service Reply (SrvRply):This message is sent by SAs and DAs in response to a
SrvRqst message. It contains the URL of the requested service.

• Service Registration (SrvReg):Message sent by SAs to DAs to inform about a service
that is available.

• Service Deregister (SrvDeReg):Message sent by SAs to DAs to inform about a service
that is no longer available.

• Service Acknowledge (SrvAck):An acknowledgment message sent by DAs to SAs in
response to SrvReg and SrvDeReg messages.

Also in order for UA's to �nd the different services, SA's send an advertisement message,
SA Advertisement (SAAdvert), to let UA's know where they are. Similarly, the DA's send an
advertisement message,DA Advertisement (DAAdvert), to let SA's and UA's know where
they are. The SLPv2 was designed to be more secure and to provide a scalable solution
for enterprise service location. An API for SLP is provided in [KG99].

28

2.3 Discovery Protocols

2.3.4 ICMP

The ICMP [Pos81] is a part of the Internet Protocol (IP) Suite and was designed for the
purpose of error reporting by gateway devices or routers during an error in datagram
processing. ICMP is an integral part of IP and must be implemented by every IP module.
So, all IP network devices have the ability to send, receive or process ICMP messages.
The IP is not designed to be absolutely reliable and the purpose of ICMP error messages
is to provide feedback about any problem during communication of IP packets.

The ICMP provides error reporting, �ow control, and �rst-hop gateway redirection
capabilities. The ICMP messages are sent in various situations, for instance, during
failure of a datagram to reach its destination, when the gateway does not have enough
buffering capacity to forward a datagram, and when the gateway directs the host to
send traf�c on a shorter route. The ICMP messages are sent using the basic IP header.
The �rst octet of the data portion of the datagram refers to the ICMP type �eld, which
determines the format of the remaining data. The ICMP header can be divided into:

• Type: It speci�es the ICMP message format. A subset of the different values of this
�eld along with the corresponding message description is provided in table 2.1.

• Code:This �eld is 8 bit long and is used for further qualifying the ICMP message.

• ICMP Header Checksum:It is 16 bits long and provides the checksum for covering
the ICMP message.

• Data: It is of variable length and contains the data speci�c to the message type
indicated by Typeand Code�elds.

Type Description
0 Echo Reply
3 Destination Unreachable
5 Redirect
8 Echo
11 Time Exceeded
12 Parameter Problem

Table 2.1: Some example values for the type �eld in ICMP header

29

2 Fundamentals

A ping sweep or an ICMP sweep is a basic network scanning technique, which is used
to �nd out the destination hosts that are alive for a given IP range. The ping program
includes a client interface to ICMP. Apart from checking if the host is alive, the ping
program also collects performance statistics such as the measured round trip time and
the number of times the remote server fails to respond. Each ICMP Echo message
contains a sequence number, starting from 0, that increments after each transmission
and a time-stamp value that indicates the transmission time. Apart from ping sweep,
ICMP can be used as a tool for OS �ngerprinting as well. This feature is utilized in our
implementation presented in chapter 5.

2.4 Pipes and Filters Architectural Pattern

An IoT middleware is a highly complex system consisting of numerous heterogeneous
components. In order to integrate these heterogeneous components, the complex process
needs to be divided into a sequence of smaller and independent processing steps. As
a result of the combination of these independent components, the overall architecture
become loosely-coupled, which in turn makes the architecture more tolerant to changes.
Such an architecture can be realized using the pipes and �lters architectural pattern.

In the pipes and �lters architectural style [GS94], every component has a set of inputs
and a set of outputs. Each component reads a stream of data at its input and produces a
stream of data on its output. This process is accomplished via a local transformation to
the input stream and incrementally computing the output. Therefore, these components
are termed as�lters . The connectors between �lters transmit the outputs of one �lter to
the inputs of another. Therefore the connectors are termed aspipes. Figure 2.2 provides
a visual representation of the pipes and �lters architectural pattern.

In �gure 2.2, the input to the �lter chain is data from another �lter or a data source.
Similarly, the output of the �lter chain is sent to another �lter or to a data sink. Pipes
and �lters, perceived as �lter chains, constitute the building blocks of this architectural
pattern. The pipes and �lters pattern employs abstract pipes to decouple the �lter
components from each other. The pipe receives an input from a �lter component and
passes it on to another component for processing, without the knowledge of the �rst
component, based on the desired functionality.

30

2.4 Pipes and Filters Architectural Pattern

Figure 2.2: Pipes and �lters architectural pattern

2.4.1 Properties

The pipes and �lters pattern has a number of useful properties:

• it enables the designer to comprehend the overall input/output behavior of the
entire system as a simple composition of the behaviors of the individual �lters,

• it supports reuse by connecting any two �lters together, provided the data to be
transmitted is agreed upon between them,

• it allows easy maintenance of the system by adding or removing �lters, and

• it supports concurrent execution, where each �lter can be implemented as a
separate task and executed in parallel with other �lters.

2.4.2 Implementation of Pipes and Filters Pattern

This architectural pattern is bene�cial for applications where large amounts of data are
to be processed, such as with web servers and rendering, imaging or sound processing
as well as applications for message processing. For example, in their book on enterprise
integration patterns, Hohpe and Woolf [HW03] envisioned a messaging channel based
on the pipes and �lters pattern. In their architecture, each �lter exposes a very simple
interface:

• to receive a message from the inbound pipe and process it, and

• to publish the message after processing through an outbound pipe.

31

2 Fundamentals

The pipe transfers the message from one �lter to the next. All the components use the
same external interface and therefore, the same set of �lters can be used for different
solutions by rearranging them to form a new sequence.

2.5 Summary

In order to perform device discovery in the IoT domain, this thesis attempts to generate
a multiagent-based middleware solution. These agents or plugins, use multiple discovery
protocols to discover the devices and communicate with each other using a pipes and
�lters design pattern. This chapter has stated all the necessary fundamentals needed to
understand the suggested approach proposed in this thesis.

32

3 Related Work

This chapter discusses the existing literature related to the thesis work. As the focus of
this thesis is to develop a device discovery middleware solution for the IoT, we discuss
two existing device discovery middleware approaches in section 3.1. Then, due to the
plugin-based approach of the proposed discovery service, we look into an existing agent-
based IoT middleware solution in section 3.2, and lastly, we discuss an approach that
demonstrates how the plugin-based architecture can be used to discover an application
topology in section 3.3.

3.1 Device Discovery Middlewares based on SDPs

The SDPs such as UPnP [Don+15; Pre+08; UPnP00], and SLP [GPVD99; GVPK97]
enable devices to advertise their capabilities to other devices and search for required
services, with minimal or no human intervention. In the proposed discovery middleware,
the passive discovery plugins use these SDPs to discover desired devices. In their survey,
Feng Zhu et al. [ZMN05] provided a classi�cation for the existing SDPs based on their:

• discovery infrastructure which can either be directory-based or non-directory
based,

• discovery scope which are based on network topologies, user roles and context
information,

• service selection that is either manual or automatic, and

• service status inquiry which ranges from polling periodically to transient event
noti�cations.

In order to handle the heterogeneity in IoT, approaches are required that can integrate
the different SDPs. A brief description of two such approaches are provided in following
sub-sections.

33

3 Related Work

3.1.1 SeDiM Middleware

The SeDiM is aService Discovery Middlewaresolution [FGB11]. It was developed by
Carlos Flores and his colleagues at the Lancaster University in February 2011. This
approach provides a middleware solution, which supports heterogeneous discovery
protocols, to allow interoperation between different service domains. The main objective
of this framework is to provide multi-protocol interoperability with legacy applications.
The SeDiM middleware utilizes the architectural and design commonalities of the
existing discovery protocols.

The SeDiM middleware can achieve interoperability between protocols in the same
domain as well as between protocols in different domains. A case study is presented
in the paper which highlights this capability of the middleware. After deploying the
middleware on the devices, the middleware allows them to locate required services
irrespective of the underlying SDP. The authors highlight following features of the
middleware to provide these capabilities:

• A framework based on con�gurable components to allow dynamic con�guration
of the SDPs.

• An abstraction for discovery events so that protocol-speci�c messages can be
understood and translated between one another. All messages receive by the
middleware are converted into this intermediary format.

• A bridge component known as the domain hub, that ensures messages are for-
warded between different SDPs.

• An abstraction for the service description so that services from different protocols
can be matched. Therefore, all advertisement and search messages are translated
into this abstract format.

The main contribution of the SeDiM middleware is that it provides a solution for handling
following issues related to heterogeneous SDPs:

• Heterogeneity in discovery model behavior which the middleware solves by using
a con�gurable component framework,

• Heterogeneity in message content which is solved by abstracting the discovery
event messages to understand, process, and use translation to the target protocol,
and

• Heterogeneity in service description which is addressed through an abstraction for
the service description messages.

34

3.1 Device Discovery Middlewares based on SDPs

The limitation for this middleware solution, as pointed out by its authors, is that it
does not support semantic device discovery and lacks any mechanism for matching
non-functional features. Apart from these, since the focus of this solution is to enable
interoperability between legacy devices, no studies have been conducted to check the
feasibility of this middleware for the discovery of resource-constrained devices in the
IoT.

3.1.2 MUSDAC Middleware

MUSDAC stands for the “MUlti-protocol Service Discovery and ACcess” middleware
platform, as presented in [RICL06]. The objective of this middleware solution is to
handle the interoperability issues related to the existing discovery and access protocols as
well as to manage the inter-connectivity between different networks in a dynamic multi-
network environment. This platform is designed keeping the heterogeneity of pervasive
computing environment in mind. It enables clients to interact with heterogeneous
services as well as services present on a different network than that of the client.

The MUSDAC platform is based on all-IP networking environment consisting of loosely
connected and highly heterogeneous networks. This network heterogeneity allows
devices connected via different networks such as cellular networks and home networks
to interact with each other. Each network has their own MUSDAC instance which is
provided as a service through existing discovery protocols. These MUSDAC instances
interact with one another to distribute discovery requests and provide remote access to
services. An overview of the MUSDAC platform is provided in �gure 3.1.

Figure 3.1: Overview of the MUSDAC platform [RICL06]

35

3 Related Work

The different components highlighted in the �gure 3.1 are described as follows:

• The Manager component handles all discovery and access requests within a net-
work to provide services for local as well as remote clients.

• The Service Discovery and Access (SDA) plugins whose activities are to interact
with and collect service information from individual SDPs, register MUSDAC service
for local clients, and access services on behalf of remote clients.

• The Transformer component add context information to the service description
generated by the SDA plugins.

• The Bridge component allows the Manager component to perform service discovery
and access for remote networks.

One major advantage of MUSDAC middleware approach over that of SeDiM is that in
MUSDAC, context-awareness is included in service descriptions. In MUSDAC, context
information regarding the network environment, the interacting clients, and the service
instance are collected. This allows MUSDAC to provide a better match for the services
requested by the clients as it also takes the environment into account. The context
information has two parts:

• context parameters which represent the static and dynamic attributes of the entity,
and

• context rules which refer to control policies such as preferences, choices and �lters
used for controlling the desired resources, type of services and so on.

The major contribution of MUSDAC can, therefore, be summarized as a platform for
enabling client applications to discover and access desired services irrespective of their
communication protocols and location in a multi-network environment. One limitation
of the MUSDAC middleware approach, as pointed out by the authors, is the increase
in communication overhead during the service discovery phase. This delay in commu-
nication may cause problems for the IoT applications which rely heavily on real-time
data.

3.2 An Agent-based Middleware for the IoT

In their survey, Chaqfeh and Mohamed [CM12] highlight the existing technical chal-
lenges for an IoT middleware. These challenges include interoperability, scalability,
abstraction provision, security and privacy, and so on. In [KKK+08], a vision for a mid-
dleware for the IoT is described. This vision forms the basis of the UBIWARE research
project which utilizes the agent technology, and is described in the next section.

36

3.2 An Agent-based Middleware for the IoT

3.2.1 UBIWARE project

The objective of the UBIWARE research project is the development of a new genera-
tion of middleware platform which is basically a self-managed complex system. The
system consists of distributed, heterogeneous, shared and reusable components. These
components are of diverse nature comprising of sensors, RFIDs, smart devices and
machines, web-services, software applications and others. This approach allows the
various components to automatically discover each other and to con�gure the complex
functionality of the middleware based on the functionalities of individual components.

The conceptual architecture of the project consists of following components:

• resources:These represent the different domains in the IoT.

• agents:The state for each resource is monitored by an autonomous software agent.
This agent makes decisions on behalf of the resource such as to discover and
request for services as required.

• adapters:The adapters mediate the connection between a resource and its agent.
These adapters can be sensors, actuators, data structuring elements such as XML
or semantic components for generating a semantic representation.

The semantic information envisioned in the project has a two-fold value. The �rst
aspect of the semantic information is to monitor the heterogeneous resources and data
integration across multiple resources. The second aspect is to enable behavioral control
and coordination of the agents representing those resources. Thus, the context infor-
mation includes the descriptive information about the services offered by the different
resources as well as the perspective information regarding the expected behavior of the
resources.

A major component of UBIWARE project is itsagent core. All the different agents are
based on this core. This agent core is depicted in �gure 3.2. The agent core has three
layers:

• the behavior engine implemented in Java,

• the declarative middle-layer with behavior models corresponding to different agent
roles, and

• the third layer containing reusable atomic behaviors (RAB) which are shared and
reusable resources interpreted as Java components.

A behavior model contains a set of behavior rules which specify the execution conditions
for the different RABs. The behavior engine parses the RDF-based scripts in a behavior
model and implements the run-time loop for an agent.

37

3 Related Work

Figure 3.2: Core platform of UBIWARE project [KKK+08].

The major contribution of this project is that it directly addresses the IoT requirements
and domains. It envisions to create a new generation of middleware solutions that
enable the creation of self-managed complex systems. The UBIWARE research project
handles the heterogeneity in the IoT very well and has become popular in the research
and development community.

3.3 Usage of a Plugin Layer for Application Topology
Discovery

In the proposed discovery middleware, we aim to discover the different capabilities of the
discovered devices. This step is based on a con�gurable plugin layer which is controlled
by the discovery service. Our current approach is inspired by the previous work done by
Binz et al. [BBKL13] in the �eld of discovery and maintenance of enterprise topology
graphs (ETGs).

An ETG [BFL+12] is a graph containing the �ne-grained technical snapshot of an entire
enterprise IT. Binz et al. proposed an extensible framework based on a plugin-based
approach for automated discovery of different application layers and maintenance of
ETGs. In the beginning, the authors highlight following requirements for the automated
discovery and maintenance approach:

• To ensure the ETG quality, the completeness, accuracy, freshness and granularity
of an ETG is taken into account,

• The framework must have the ability to integrate new types of components and
relations to be discovered based on open world assumptions,

38

3.3 Usage of a Plugin Layer for Application Topology Discovery

• The framework must possess the ability to integrate the different existing technolo-
gies to itself,

• The framework must be able to adapt to the frequent changes in the enterprise IT,

• The framework must minimize of operational impact caused by analyzing a pro-
duction component of the enterprise IT.

The automated discovery approach is an iterative process. The discovery logic is provided
by different type-speci�c plugins which can �nd information about a component or its
relations with other components. The components of the enterprise IT are not aware
of the presence of these plugins and do not push any information to them, rather the
plugins pull the desired information from the components. Due to this architecture, the
framework supports different protocols such as HTTP, SSH, SCP, etc, and different data
formats such as XML, text, databases, property �les, etc. The iterative discovery process
is depicted below in �gure 3.3.

Figure 3.3: An example growth of an ETG before and after �ve iterations of the discovery
approach [BBKL13]

39

3 Related Work

The �gure 3.3 shows the growth of an ETG, from a given starting node, after �ve
iteration of the discovery approach. In each iteration one or more plugins are executed.
Based on the use case, the starting node must be provided by the user or another system.
Each of the executed plugins extract speci�c information about the provided node. For
example, the WebServerplugin, executed in iteration 2 of �gure 3.3, provides the type
and version information of the web server running on the node. The OperatingSystem
plugin identi�es the type of OS hosted on the node, as shown in iteration 3 of �gure 3.3.
In the next iterations, OS-speci�c and server-speci�c plugins are executed to obtain the
�nal ETG.

Through their framework, Binz et al. tried to �ll the gap created due to the absence
of an automated approach for obtaining and maintaining insights about an enterprise
IT. Although our current approach for discovering device capabilities is inspired by this
work, there are some major differences in the two approaches. First of all, our current
approach discovers the device capabilities using a bottom-up approach, instead of the
top-down approach followed by the Binz et al. Also due to the bottom-up approach,
our discovery process does not require an application snapshot in the beginning as an
input.

3.4 Summary

By studying the literature, concepts and related work stated in this chapter, we present
our device discovery middleware in the next chapter. The work mentioned in section 3.3
is useful for the implementation of the prototype of the thesis. Further details about the
approach is provided in chapter 4 and chapter 5.

40

4 Discovery Approach and Framework

The objective of this master's thesis is to design a highly con�gurable discovery mid-
dleware to discover IoT devices on the local network by combining common network
protocols and the existing SDPs such as UPnP. The developed middleware also provides
a list of services running on the device. For the network protocol based approach, the
middleware pulls the data from alive hosts in the provided address space, and for the
SDP based approach, the middleware collects data from thepush noti�cations from
the devices. So the proposed middleware supports both (i) active discovery behavior
where the middleware searches for all devices currently on the network, and (ii) passive
discovery behavior where the middleware listens for transient service announcements.

Both discovery behaviors have their own advantages, for instance, the active discovery
provides an accurate depiction of all devices present in the network, whereas passive
discovery is better for quickly �nding devices that want to be discovered like an Internet
Gateway Device. Apart from network-speci�c information, the developed middleware
provides information about the discovered device, such as the device model, device
vendor or OS running on the device. This chapter describes the requirements de�ned
for the proposed device discovery middleware.

The architecture behind the proposed approach is based on pipes and �lters design
pattern of plugins, capable of �nding a device and the services hosted by it. The idea
is to pass on the information produced by one plugin to the next one. The proposed
architecture extracts information using a bottom-up approach, starting from the network
layer up to the application layers. For example, at the bottom level, network-speci�c
information such as device's IP address is present, followed by device's model or vendor-
speci�c information, then the OS installed on it or the type of web server hosted by it
and so forth.

41

4 Discovery Approach and Framework

4.1 Requirements for an IoT Middleware

Based on the characteristics for an IoT middleware, as outlined in section 2.1, we
have identi�ed following requirements for our IoT middleware, which can be grouped
into two broad categories: 1) the services a middleware should provide and, 2) the
architectural features a middleware must have.

1. Middleware service requirements:The service requirements for an IoT middleware
can be classi�ed as functional requirements meaning the functions a middleware
provides and nonfunctional requirements like Quality of Service (QoS) or per-
formance of those functions. The generic functionalities of a middleware are as
follows:

• Resource discovery:Due to the heterogeneous nature of the IoT, resource
discovery is the �rst and one of the most challenging tasks for an IoT mid-
dleware. It is necessary to automate this discovery process [RKLB09]. In the
IoT, resource discovery can be divided into three main groups: i) centralized
systems, where resource publication, discovery, and communication are gener-
ally managed by a dedicated server, ii) distributed systems, where every node
announces its presence and the resources it offers, and iii) hybrid systems,
like a centralized peer-to-peer (P2P) system, which includes multiple server
nodes. In general, centralized systems are more ef�cient than distributed
systems, whereas distributed systems are more robust as there is no single
point of failure and also provide a better scalability. Hybrid systems aim to
integrate the bene�ts of both centralized and distributed systems.

• Resource management:An IoT middleware must provide services to manage
the resource constrained devices in the IoT. This means the middleware
must monitor the resources and resolve any resource con�icts, to provide
the necessary QoS for the IoT application. Especially for service-oriented
middlewares, as explained in section 2.2, the middleware needs to provide
spontaneous resource management to satisfy application needs.

• Data management:An IoT middleware should provide data management ser-
vices like data acquisition services, data storage services and data processing
services. Additionally, data pre-processing services must also be provided by
the middleware to �lter or compress the sensed data, before sending it to the
IoT application.

42

4.1 Requirements for an IoT Middleware

Some of the major nonfunctional requirements of a middleware are given below:

• Scalability: The IoT middleware must be able to scale according to the growth
of the IoT's network. Loose coupling and virtualization of components help
in improving the scalability of the middleware.

• Availability: An IoT middleware must ensure availability of services, at all
times, even if there is a failure in the system. The recovery time for the failure
and the frequency of failures must be small in order to achieve required
availability requirements.

• Timeliness:For real-time IoT applications, the middleware must ensure that
the applications receive the data before the deadline expires. For IoT domains
like health-care and transportation, on-time delivery of services is critical.

• Ease-of-deployment:The setup for the IoT middleware must be simple. Even if
user interventions are required during the setup process, it must not require
expert knowledge.

2. Middleware architectural requirements:The main advantage of a middleware is
that it allows the application developers to focus on the design aspects rather than
the architectural requirements of the application, which mainly are:

• Programming abstraction:The middleware must provide services as an API to
application developers. The abstraction is needed to isolate the development
of an application from the functions provided by the underlying heterogeneous
infrastructure.

• Interoperable:The middleware must be able to handle heterogeneous devices
or technologies without any additional effort needed by the application
developer. The middleware should allow heterogeneous components to
exchange data and services.

• Adaptive: In order to tackle changes in the underlying network and the
application requirements, the middleware must be adaptive. It must have
provision for upgrading the technology to be able to evolve as per changes in
requirements.

• Autonomous: The middleware must be self-governed. The heterogeneous
devices and applications must interact and communicate among one another
without direct, or with minimal human intervention.

43

4 Discovery Approach and Framework

4.2 Architecture of Device Discovery Middleware

Before diving further into details of the approach, some assumptions are made which
are clearly stated as below:

1. The discovery process is limited to a single-hop local-area or WiFi network.

2. The plugins can be deployed and run on the network.

We propose overall architecture of the discovery middleware as shown in �gure 4.1.

Figure 4.1: Layered architecture for device discovery middleware

44

4.2 Architecture of Device Discovery Middleware

The steps involved in the behavioral �ow are as follows:

1. The discovery process is started, when a discovery con�guration is received by
the discovery API. The con�guration details information about the list of plugins
to be executed for the discovery process. The detailed structure of this discovery
con�guration �le is provided in section 4.2.1.

2. The discovery API forwards this request to the Discovery and Registry Management
component which starts the requested discovery process by activating the active or
the passive discovery plugins. The detailed explanation of the procedure is present
in section 4.2.2.

3. The discovery services search for the devices present in the desired network with
the help of the activated plugins.

4. The discovery plugins, based on their type either pull the data from the devices or
intercept the push noti�cations from them. The discovered data include network-
speci�c as well as device-speci�c information.

5. After execution, the discovery services pass the data to the deduplication services,
which perform three levels of data deduplication as explained in section 4.2.3.

6. After the discovery and deduplication of data, the Discovery and Registry Manage-
ment stores the data in the device information database and returns the discovered
information to the discovery API.

7. Finally, the discovery API sends the details about the discovered devices to the
requesting client interfaces. The returned data includes a list of device and service-
speci�c information. The middleware supports multiple messaging patterns for
communication with the client applications. This component is explained in detail
in section 4.2.4.

The proposed architecture, therefore, can be divided into four main structural compo-
nents:

1. a Discovery Con�guration designed for the purpose of managing data-�ow among
discovery plugins,

45

4 Discovery Approach and Framework

2. a Discovery and Registry Management component which manages the discovery of
desired devices and the subsequent storage of the discovered information through
following two services:

• a Discovery Servicewhich translates this discovery con�guration and enables the
discovery of the devices, and

• a Deduplication Servicethat helps to maintain a single instance for each discov-
ered device, and

3. �nally, a Discovery API for interacting with the client applications.

Figure 4.2: Device discovery middleware behavioral overview

Figure 4.2 depicts the behavioral overview of the proposed discovery middleware. After
the initiation of the discovery process, the �rst step is to parse the discovery con�guration
�le to determine the type of plugin to be activated for the discovery process. For active
discovery plugins, typically a range of IP addresses is also included in the discovery
con�guration. The plugins are executed until all devices in the mentioned range are
checked. For passive discovery plugins, the discovery con�guration includes a timeout
value. The passive discovery plugins keep listening to service advertisement messages
until the timeout expires. After execution, the plugins forward the discovered data to the
deduplication service. In the �nal step, the discovered data is returned to the requesting
application. In the following sections, all the four components are described in detail.

46

4.2 Architecture of Device Discovery Middleware

4.2.1 Attributes of the Discovery Con�guration

The discovery con�guration enables the con�gurable discovery, based on plugins, for
the proposed discovery middleware. This component generates the pipes and �lters
based design pattern among the discovery plugins. This section describes the different
attributes of the discovery con�guration. For the discovery process, plugins are divided
into two major groups, namely active discovery pluginsfor extracting information using
network protocols such as ICMP, andpassive discovery pluginswhich extract information
from the advertisement messages for the respective discovery protocol. In order to
maintain the pipes and �lters data-�ow between the discovery plugins, the input and
the output for each plugin must be clearly linked. Plugins may also require an additional
information to execute the desired functionality. Keeping all these requirements in mind,
we proposed some attributes for the discovery con�guration format, listed in table 4.1.

Attribute Description Required
name The name of the plugin Yes
type Distinguishes active discovery plugin from passive discovery one Yes

con�g A map of plugin speci�c properties No
input Represents the entries consumed by a plugin No

output Represents the entries generated by a plugin Yes
nextPlugins A list of plugin objects consuming the output generated by the current plugin No

Table 4.1: Parameters for the discovery con�guration of a discovery request

The explanation for each attribute is as follows:

1. name: It is a mandatory attribute and refers to the unique identi�er for a plugin.
On receiving this attribute, the discovery service activates the corresponding plugin.

2. type: This mandatory attribute refers to the discovery mechanism employed by
the plugin to be activated. If the plugin uses network discovery protocol, then the
value of this attribute is active, otherwise if the plugin is based on an SDP, then
the value must bepassive.

3. con�g : This attribute is optional and includes input parameters required for the
activated plugin. These inputs are usually �xed and known in advance. For
example, in order to discover the type of web server hosted by a device, a plugin
will require the IP address and port number of the device. Another usage for this
attribute could be to specify the execution mode for a plugin that has multiple
functionalities. For example, in our implementation, we have used Nmap [Lyo09]
plugin for identifying alive hosts as well as for identifying the type of OS running
on them. Using the execution mode property in the con�g attribute, we can activate
either host scanning or OS scanning functionality of Nmap plugin.

47

4 Discovery Approach and Framework

4. nextPlugins : This optional attribute enables the proposed architecture to realize
the pipes and �lters design pattern among the activated plugins. Each plugin can
act as a parent for multiple other plugins known as child plugins, where each child
plugin consumes the data produced by the parent plugin. This attribute, therefore,
includes a list of discovery con�gurations for the child plugins.

5. input : This is also an optional attribute which refers to the run-time inputs
required by a plugin. This attribute is useful for the child plugins that aim to
discover a particular service for a device, and therefore, may require device-
speci�c information such as its IP address as an input. This input information is
provided by a preceding plugin at run-time.

6. output : It is understandably a mandatory attribute which refers to the output
generated by a plugin. In an abstract view, the output generated by a plugin can
be labeled as“table-name:column”. As the name suggests, the �rst part of this label
points to the database table which stores the output of the discovery plugin, and
the second part refers to the column of data generated by it.

4.2.2 Framework for Discovery Service

In this section, we discuss the various steps involved in the discovery service. The
discovery service supports device discovery using both active discovery as well as passive
discovery plugins. Figure 4.3 details the steps involved in the discovery procedure.

Figure 4.3: The steps involved in the device discovery procedure

48

4.2 Architecture of Device Discovery Middleware

The discovery service is initiated from the client end. After receiving the discovery
request, the discovery service forwards the request to the Plugin Manager component
as depicted by step (1) in �gure 4.3. The discovery request includes a valid discovery
con�guration �le, as explained in the earlier section. The Plugin Manager parses the
discovery con�guration �le and checks the value of the attribute type. If the attribute
has a value “active”, then active discovery plugin is activated, otherwise, if the value is
“passive”, then passive discovery plugin is activated as illustrated by steps (2) and (3) in
�gure 4.3.

In the �rst case, the active discovery plugin searches for all devices in the IP range
provided in the discovery con�guration. The typical information retrieved by such a
plugin includes the IP address and the MAC address of the devices. Steps (5) and (6) in
�gure 4.3 depict this information retrieval process. For the second case, the activated
passive plugin listens for advertisement messages from devices, as shown in step (4)
in �gure 4.3. The advertisement message contains device speci�c information such as
Universally Unique Identi�er (UUID), Unique Resource Identi�er (URI), model speci�c
information and vendor details. Usually, a timeout value is mentioned for such a plugin,
until which it listens for device advertisements.

At the end of execution, both the plugin forward the discovered information to the
Plugin Manager, as shown in steps (7) and (8) in �gure 4.3. The plugin Manager stores
the device information, after deduplication of data, on the Device Information DB and
also wraps this data in the required response format to present it back to the client, as
depicted in steps (9) and (10) in �gure 4.3.

4.2.3 Deduplication Service

The goal of deduplication service is to have only one entry for each discovered device
on the network. We have not performed semantic matching of data for the purpose of
deduplication. We have achieved the same via syntactic and type checking of the data.

We propose a three-level deduplication process as given below:

• Con�guration level deduplication: This step is performed at the discovery con�gu-
ration level. The discovery API receives multiple con�gurations from the clients.
Some of these con�gurations will have the same discovery process outlined in
them. Using the con�guration deduplication method, these duplicate discovery
con�gurations can be avoided and a single instance for the discovery con�guration
can be executed instead.

49

4 Discovery Approach and Framework

• Plugin level deduplication:This deduplication step is initiated by the discovery
service itself. The goal for this step is to effectively manage the execution of a
plugin. In situations where multiple discovery con�gurations share a particular
plugin executing the same functionality, instead of creating multiple instances for
that plugin, a single instance of it can be created. Although before making this
decision, the discovery service must take multiple factors into account such as
what happens in case of sudden failure of the running instance. In such a case,
another instance of the plugin needs to created and execution must start from the
beginning. A better approach is to cache the execution state of the plugin instance
such that in case of a sudden failure, the execution can be resumed from the last
executed state.

• Registry level deduplication:This deduplication step is initiated by the individual
plugins. The requirement is to have a single instance of data in the registry. During
this step, the deduplication service checks the outputs generated by the requesting
plugin against the existing data instances in the registry. Based on the results
obtained from this check, the deduplication service either adds or updates the
speci�c data instance in the registry.

The �gure 4.4 depicts an example �ow for the execution of the three-level deduplication
process. As depicted in the �gure 4.4, the con�guration level deduplication occurs
when the discovery API forwards the received discovery con�gurations to the Discovery
and Registry Management component. After the con�guration level deduplication, the
discovery service initiates the discovery process through mentioned plugins. The second
level of deduplication is performed when the discovery service requests for it at this
stage. The �nal level of deduplication takes place when a plugin, after its execution,
requests the deduplication service to store its output on behalf of the plugin.

50

	1 Introduction
	1.1 Problem Domain and Motivation
	1.2 Methodology
	1.3 Structure of the Report

	2 Fundamentals
	2.1 IoT and its Characteristics
	2.2 Device Discovery Paradigm
	2.3 Discovery Protocols
	2.3.1 UPnP
	2.3.2 Bonjour
	2.3.3 SLP
	2.3.4 ICMP

	2.4 Pipes and Filters Architectural Pattern
	2.4.1 Properties
	2.4.2 Implementation of Pipes and Filters Pattern

	2.5 Summary

	3 Related Work
	3.1 Device Discovery Middlewares based on SDPs
	3.1.1 SeDiM Middleware
	3.1.2 MUSDAC Middleware

	3.2 An Agent-based Middleware for the IoT
	3.2.1 UBIWARE project

	3.3 Usage of a Plugin Layer for Application Topology Discovery
	3.4 Summary

	4 Discovery Approach and Framework
	4.1 Requirements for an IoT Middleware
	4.2 Architecture of Device Discovery Middleware
	4.2.1 Attributes of the Discovery Configuration
	4.2.2 Framework for Discovery Service
	4.2.3 Deduplication Service
	4.2.4 Discovery API for the Client Applications

	4.3 Summary

	5 Validation of the Discovery Approach
	5.1 Motivating Scenario for Validation
	5.2 Test Environment
	5.3 Mapping of Architecture to Technology
	5.3.1 Discovery Configuration for the Motivating Scenario
	5.3.2 Implementation Details for the Discovery Service
	5.3.3 Implementation Details for the Deduplication Service
	5.3.4 Implementation Details for the Discovery API

	5.4 Discussion of the Result
	5.5 Evaluation of the Developed Middleware
	5.6 Summary

	6 Conclusion
	6.1 Further Research

	Bibliography

