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Risk is like fire: If controlled it will help you;
if uncontrolled it will rise up and destroy you.

Theodore Roosevelt
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Summary

This dissertation addresses the risk measures Value-at-Risk (VaR) and Expected Shortfall
(ES) that have been used in finance for several years to assess the market risk of investments.
The VaR is the maximum loss that will not be exceeded with a given probability (usually
between 1% and 5%) over a target period (usually 1 to 10 days) and the ES is the expected
(average) loss in case of an exceedance of the VaR. Statistically these two quantities are the
quantile of a distribution and the expected value over all observations smaller than the VaR.
Financial institutions use these two risk measures to manage bank-internal processes; but
above all, the Basel Committee requires banks to stockpile capital reserves determined by
these measures. The VaR used for this purpose is to be replaced by the ES at the end of
2019, as it solves some of the VaR’s problems. However, the ES is clearly inferior to the
VaR in other areas, which are among the topics addressed in this dissertation.

Two fundamental questions in this area of research are how to estimate and forecast
these risk measures as precisely as possible, and how to validate (“backtest”) our predictions.
The three chapters of this thesis are therefore concerned with the estimation, forecasting
and backtesting of the VaR and the ES. The methodological link between each article is the
use of regression techniques for the corresponding functional of the underlying distribution
function. Therefore, we model the conditional VaR or the pair consisting of VaR and ES as
a function of covariates in the articles and use the regression models in different contexts.

The essays are independent research papers that I wrote during my doctoral studies at
the University of Konstanz. I wrote the first article completely myself, the second and third
articles were written together with Timo Dimitriadis. As usual in the related literature, the
author or authors are always referred to as “we”.

The first chapter, Combining Value-at-Risk Forecasting Using Penalized Quantile Regres-
sion, currently in press at Econometrics and Statistics, is concerned with the combination
of VaR forecasts. In particular, here we consider the combination of a large number
of predictions, as no risk model has been found so far, which consistently makes good
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predictions. Rather, the optimal model depends on the data and can change at any time.
Combining many predictions with a data driven choice of combination weights provides a
good way to improve and robustify VaR forecasts. We estimate the weights of the standalone
forecasts with quantile regressions, which are regularized with the Elastic Net. The main
reason for this regularization is an almost perfect multicollinearity between the individual
predictions, which leads to instability and overfitting of the weights, if estimated without
penalty term. In the empirical application, we find that our method combines the individual
VaR predictions more reliably than established methods from the literature. In particular,
the hypothesis of the correctness of our combined forecasts is less frequently rejected by
backtests, and our forecasts lead to lower values of the tick loss function, with which quantile
predictions are often evaluated.

One of the main problems of the functional ES is that it is not elicitable, i.e. there is no
loss function that is minimized by correct ES forecasts. Among other things, this property
implies that it is not possible to directly estimate the parameters of an ES regression model.
In a recent paper, however, Fissler and Ziegel (2016) show that the pair consisting of quantile
and ES is jointly elicitable and introduce an associated class of loss functions. We use this
class in the second chapter, A Joint Quantile and Expected Shortfall Regression Framework,
to extend the linear quantile regression to the simultaneous modeling of the conditional
quantile and the conditional ES. For the estimation of the regression parameters we propose
an M- and a Z-estimator, prove the consistency for both and show the asymptotic distribution.
Furthermore, we introduce several estimators of the covariance of the parameters, since this
contains some nuisance quantities that are difficult to estimate. In an extensive simulation
study, we compare several members of the underlying class of loss functions and conclude
that, in particular, homogeneous variants are promising, which has since been confirmed in
other papers. We also show that the M-estimator is clearly preferable to the Z-estimator,
since the latter is unstable. To illustrate the many uses of our method, we simultaneously
forecast the VaR and the ES based on realized variances and compare the predictions to
those of a parametric and a non-parametric risk model.

In the third chapter, Regression Based Expected Shortfall Backtesting, we use the method
we introduce in the second Chapter to propose new ES backtests. These are analogous to
the well-known method of Mincer and Zarnowitz (1969), which is often used to evaluate
predictions of the conditional mean. For our first test, we regress the returns on the ES
predictions and use a Wald test to test whether the intercept and slope parameter of the ES
regression equation are 0 and 1. In a second proposal we set the slope parameter to 1 and only
test the estimated intercept with a t-test, which allows the definition of a one-sided hypothesis
that is of interest to the financial authorities. Of particular note is that our backtests are
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the first to require only ES predictions as input parameters. All previous tests require at
least VaR predictions, but often also other quantities such as predictions of the volatility or
even the whole distribution function, which are not available for regulators. In extensive
simulation studies, we show that our tests have an empirical size close to the chosen level of
significance, especially if the tests are applied using the bootstrap procedure. In addition, our
tests have good power, so they reliably detect wrong predictions, especially when compared
to existing literature proposals. The existing tests fail several times to detect the misspecified
predictions, whereas our tests can discriminate between correct and incorrect predictions
in every situation examined. Furthermore, our one-sided test performs well in detecting
too large ES forecasts and is therefore particularly relevant to financial regulators who are
interested in having a sufficiently large capitalization of financial institutions.

References

Fissler, T. and J. F. Ziegel (2016). “Higher order elicitability and Osband’s principle”. Annals
of Statistics 44 (4), 1680–1707 (see pp. 9, 12, 53–56, 58, 70, 71, 76, 95, 100).

Mincer, J. and V. Zarnowitz (1969). “The Evaluation of Economic Forecasts”. In: Economic
Forecasts and Expectations: Analysis of Forecasting Behavior and Performance. National
Bureau of Economic Research, Inc, 3–46 (see pp. 9, 13, 95, 96, 99, 118).
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Zusammenfassung

Diese Dissertation befasst sich mit den beiden Risikomaßen Value-at-Risk (VaR) und
Expected Shortfall (ES), die seit einigen Jahren im Finanzwesen verwendet werden, um
das Marktrisiko von Investitionen zu bewerten. Der VaR ist der maximale Verlust, der mit
einer gewissen Wahrscheinlichkeit (meist zwischen 1% und 5%), über einen Zielzeitraum
(üblicherweise 1 bis 10 Tage), nicht überschritten wird und der ES ist der erwartete
(durchschnittliche) Verlust im Falle einer Überschreitung des VaR. Statistisch gesehen
sind diese beiden Größen das Quantil einer Verteilung und der Erwartungswert über alle
Beobachtungen kleiner dem VaR. Finanzinstitutionen verwenden diese beiden Risikomaße,
um bankinterne Abläufe zu steuern; vor allem aber schreibt der Basler Ausschuss vor, dass
Banken Kapitalreserven vorrätig halten müssen, die durch diese Maße bestimmt werden. Der
hierfür bisher verwendete VaR soll ab Ende des Jahres 2019 durch den ES abgelöst werden,
da dieser einige Probleme des VaR löst. Jedoch ist der ES dem VaR in anderen Bereichen
klar unterlegen, die in dieser Dissertation unter anderem thematisiert werden.

Zwei grundlegende Fragen in diesem Forschungsbereich sind, wie sich diese Risikomaße
möglichst genau berechnen bzw. vorhersagen lassen und wie wir unsere Vorhersagen vali-
dieren (“backtesten”) können. Die drei Kapitel dieser Dissertation befassen sich daher mit
der Messung, der Vorhersage und dem Backtesting des VaR und des ES. Das methodische
Verbindungsglied zwischen den einzelnen Artikeln ist die Verwendung von Regressionstech-
niken für die entsprechenden Funktionale der zugrundeliegenden Verteilungsfunktion. Wir
modellieren deshalb in den Artikeln jeweils den konditionalen VaR bzw. das Paar bestehend
aus VaR und ES als eine Funktion von Kovariaten und verwenden die Regressionsmodelle
in verschiedenen Kontexten.

Die Aufsätze sind eigenständige Forschungspapiere, die ich während meines Promotions-
studiums an der Universität Konstanz verfasst habe. Den ersten Artikel habe ich vollständig
selbst geschrieben, der zweite und dritte Artikel sind gemeinsam mit Timo Dimitriadis



12

entstanden. Wie in der verwandten Literatur üblich, werden der Autor bzw. die Autoren stets
als “wir” (“we”) bezeichnet.

Das erste Kapitel, Combining Value-at-Risk Forecasts Using Penalized Quantile Re-
gressions, das derzeit bei Econometrics and Statistics im Druck ist, beschäftigt sich mit der
Kombination von VaR Vorhersagen. Insbesondere betrachten wir hier die Kombination einer
großen Anzahl an Vorhersagen, da bisher kein Risikomodell gefunden wurde, das durchweg
gute Vorhersagen trifft. Vielmehr hängt das optimale Modell von den Daten ab und kann
sich jederzeit ändern. Die Kombination vieler Vorhersagen durch eine datengetriebene Wahl
der Kombinationsgewichte bietet daher eine gute Möglichkeit, die VaR Vorhersagen zu
verbessern und zu robustifizieren. Die Gewichtung der einzelnen Vorhersagen schätzen wir
über Quantilsregressionen, die mit dem Elastic Net regularisiert werden. Der Hauptgrund
für diese Regularisierung ist eine fast perfekte Multikollinearität zwischen den einzelnen
Vorhersagen, die zu einer Instabilität und Überschätzung (“overfitting”) der Gewichte führt,
wenn diese ohne Bestrafungsterm geschätzt werden. In der empirischen Anwendung kommen
wir zu dem Ergebnis, dass unsere Methode die einzelnen VaR Vorhersagen zuverlässiger
kombiniert als etablierte Methoden aus der Literatur. Insbesondere wird die Hypothese
der Korrektheit unserer kombinierten Vorhersagen seltener durch Backtests verworfen
und unsere Vorhersagen führen zu geringeren Werten der Tick Loss Funktion, mit der
Quantilsvohersagen oft bewertet werden.

Eines der Hauptprobleme des Funktionals ES ist dass es nicht elicitable ist, es also
keine Verlustfunktion gibt, die durch korrekte ES Vorhersagen minimiert wird. Diese
Eigenschaft impliziert unter anderem, dass es nicht möglich ist, die Parameter eines ES
Regressionsmodells direkt zu schätzen. In einem aktuellen Paper zeigen Fissler und Ziegel
(2016) jedoch, dass das Paar bestehend aus Quantil und ES gemeinsam elicitable ist und
führen eine dazugehörige Klasse von Verlustfunktionen ein. Wir benutzen diese Klasse im
zweiten Kapitel, A Joint Quantile and Expected Shortfall Regression Framework, um die
lineare Quantilsregression auf die gleichzeitige Modellierung des konditionalen Quantils und
des konditionalen ES zu erweitern. Für die Schätzung der Regressionsparameter schlagen
wir einen M- und einen Z-Schätzer vor, beweisen für beide die Konsistenz und zeigen
die asymptotische Verteilung. Weiterhin führen wir mehrere Schätzer der Kovarianz der
Parameter ein, da diese einige Störgrößen beinhaltet, die schwer zu schätzen sind. In einer
extensiven Simulationsstudie vergleichen wir mehrere Mitglieder der zugrundeliegenden
Klasse von Verlustfunktionen und kommen zu dem Schluss, dass insbesondere homogene
Varianten vielversprechend sind, was inzwischen auch in anderen Artikeln bestätigt wurde.
Wir zeigen weiterhin, dass der M-Schätzer dem Z-Schätzer klar vorzuziehen ist, da letzterer
instabil ist. Um die zahlreichen Einsatzmöglichkeiten unserer Methode zu illustrieren,
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prognostizieren wir gleichzeitig den VaR und den ES basierend auf realisierten Varianzen und
vergleichen die Vorhersagen mit denen eines parametrischen und eines nicht-parametrischen
Risikomodells.

Im dritten Kapitel, Regression Based Expected Shortfall Backtesting, verwenden wir
die Methode, die wir im zweiten Kapitel einführen, um neue ES Backtests vorzuschlagen.
Diese sind analog zu dem bekannten Verfahren von Mincer und Zarnowitz (1969), das
häufig verwendet wird, um Vorhersagen des konditionalen Mittelwerts zu bewerten. Für
unseren ersten Test regressieren wir die Renditen auf die ES Vorhersagen und testen mit
einem Wald Test, ob der Interzept und Steigungsparameter der ES Regressionsgleichung
0 und 1 sind. In einem zweiten Vorschlag setzen wir den Steigungsparameter auf 1 und
testen nur den geschätzten Interzept mit einem t-Test, was die Definition einer einseitigen
Hypothese erlaubt die für die Finanzbehören interessant ist. Besonders hervorzuheben ist,
dass unsere Backtests die ersten sind, die nur ES Vorhersagen als Inputgröße benötigen. Alle
bisherigen Tests benötigen zumindest VaR Vorhersagen, oft aber auch weitere Größen wie
Vorhersagen der Volatilität oder sogar die ganze Verteilungsfunktion, die für Regulatoren
nicht verfügbar sind. In umfangreichen Simulationsstudien zeigen wir, dass unsere Tests
eine empirische Size nahe am gewählten Signifikanzniveau haben, vor allem wenn die
Tests mithilfe des Bootstrapverfahrens durchgeführt werden. Zudem haben unsere Tests
eine gute Power, erkennen also zuverlässig falsche Vorhersagen, vor allem im Vergleich zu
bestehenden Vorschlägen aus der Literatur. Den existierenden Tests gelingt es mehrmals
nicht, die fehlspezifizierten Vorhersagen zu erkennen, wohingegen unsere Tests in jeder
untersuchten Situation zwischen korrekten und falschen Vorhersagen unterscheiden können.
Weiterhin zeigt unser einseitiger Test eine gute Leistung bei der Erkennung von zu großen ES
Vorhersagen und ist daher besonders für Finanzregulatoren relevant, die an einer ausreichend
großen Kapitalausstattung der Finanzinstitute interessiert sind.

Literatur

Fissler, T. and J. F. Ziegel (2016). “Higher order elicitability and Osband’s principle”. Annals
of Statistics 44 (4), 1680–1707 (see pp. 9, 12, 53–56, 58, 70, 71, 76, 95, 100).

Mincer, J. and V. Zarnowitz (1969). “The Evaluation of Economic Forecasts”. In: Economic
Forecasts and Expectations: Analysis of Forecasting Behavior and Performance. National
Bureau of Economic Research, Inc, 3–46 (see pp. 9, 13, 95, 96, 99, 118).
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Chapter 1
Combining Value-at-Risk Forecasts Using
Penalized Quantile Regressions
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1.1. Introduction

Although difficult, it is important to decide between alternative Value-at-Risk (VaR)modeling
and forecasting strategies. A poorly selected risk model may have drastic effects on banks
and the economy as a whole, as evidenced during the previous financial crisis when many
standard approaches predicted inadequately low levels of risk. Einhorn (2008) compares the
VaR to “an airbag that works all the time, except when you have a car accident”. The VaR is
defined as the worst possible loss over a target horizon that will not be exceeded with a given
probability (Jorion, 2006). Therefore, VaR is a quantile of the distribution of returns over
a horizon (usually one or ten days) for a given probability level (typically 1%). A major
reason for its popularity is that the Basel Committee (1996, 2006, 2011) utilizes the VaR for
calculation of the minimum capital requirements which banks need to keep as reserves to
cover the market risk of their investments.

Extensive literature exists on how to estimate and predict VaR (see Kuester et al. (2006),
Komunjer (2013) and Nieto and Ruiz (2016) for overviews). The primary issue with VaR
forecasting, however, is that the models’ performance and reliability in accurately predicting
the risk depends heavily on the data. While a parsimonious model might perform well in
economically stable periods, it can fail tremendously during a volatile period. Likewise,
highly parameterized models might be adequate during periods of high volatility, but can
be easily outperformed by simpler approaches in less turbulent times. To date, no unique
model or approach dominates throughout the existing VaR forecasting comparisons (see
Kuester et al. (2006), Marinelli et al. (2007), Halbleib and Pohlmeier (2012), Abad and
Benito (2013), Boucher et al. (2014), Louzis et al. (2014), Ergen (2015), Nieto and Ruiz
(2016) and Bernardi and Catania (2016)). The key reasons for this finding are that the
applied models are prone to suffer from model misspecification (e.g. through the application
of an overly simplistic model) and estimation uncertainty (e.g. they imply a complicated
estimation procedure). For a more detailed discussion of the risks and uncertainties involved
in VaR forecasting, see Boucher et al. (2014).

If the best model is unknown or likely to change over time, a promising alternative to
deciding on a specific risk model is to combine the predictions stemming from several
approaches. In an overview on forecasting combinations, Timmermann (2006) provides three
arguments in favor of combining forecasts for the stabilization and improvement of predictive
performance upon standalone models: First, there are diversification gains stemming from the
combination of forecasts computed from different assumptions, specifications or information
sets. Second, combined forecasts tend to be robust against structural breaks. Third, the
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influence of potential misspecification of the individual models is reduced due to averaging
over a set of forecasts stemming from several models.

Halbleib and Pohlmeier (2012) propose the combination of VaR forecasts using quantile
regression (QR), introduced by Koenker and Bassett (1978), as the QR estimator minimizes
the tick loss function. This asymmetric and piecewise linear loss function is consistent
for quantiles, which implies that the true quantile prediction minimizes expected tick loss
(Gneiting, 2011b). Therefore, it is reasonable to incorporate the tick loss for the estimation
and evaluation of VaR forecasts. If someone aims at combining a large number of VaR
forecasts, he or she likely faces the issue of multicollinearity among them, since they stem
from the same data and similar mathematical approaches. This is the case in our empirical
application: we observe high pairwise correlations among the forecasts (sometimes greater
than 99%), which indicates the presence of severe multicollinearity. In this situation, the
standard QR estimator is unstable: small variations in the data can lead to large changes
in the estimated parameters. Moreover, it can overfit the data such that, for two highly
correlated forecasts, we obtain a large positive weight for one and a large negative weight
for the other. From an in-sample perspective, this is not problematic because the estimated
coefficients still minimize the tick loss function. For out-of-sample purposes, however,
such imprecisely estimated parameters can be harmful because the model fails to properly
generalize to new data (Hastie, Tibshirani, and Friedman, 2011, p. 38). An obvious solution
is to only combine forecasts with small to moderate cross-correlations. However, we aim
to avoid manually selecting models over whose forecasts we average, and instead consider
combination techniques that can withstand high correlations among the predictions.

In this paper, we propose penalized QR as a novel VaR combination technique. In
particular, we consider regularization with the elastic net penalty of Zou and Hastie (2005),
which represents a convex combination of the well-known least shrinkage and selection
operator (lasso) of Tibshirani (1996) and the ridge penalization of Hoerl and Kennard
(1970a,b). Due to the geometry of the penalty function, the elastic net simultaneously
induces coefficient shrinkage and variable selection. These two properties allow for the
combination of a large number of potentially highly correlated VaR forecasts, since the
parameter estimates are stable, overfitting is reduced and variables are automatically selected.

Penalized QR feature a number of advantages over alternative combination techniques:
(1) They perform a data-driven selection of forecasts: the coefficients of uninformative
standalone models can be set to zero. This has the potential to improve the predictability, as
only a subset of the available forecasts enters the combination. We explore this by comparing
lasso and elastic net QR with ridge QR, which shrinks the coefficients but selects no variables.
(2) They can cope with nearly collinear forecasts through the regularization of the estimated
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weights. (3) They include an intercept term for the purpose of bias correction (Halbleib and
Pohlmeier, 2012). This is important when all standalone predictions systematically over- or
underestimate the VaR: an intercept can shift the combined forecast outside the range of the
standalone predictions. Simple averaging techniques, for instance the mean over all forecasts,
do not include such an intercept term and are furthermore bound between the minimum and
maximum of the standalone forecasts. (4) They minimizes the (penalized) tick loss function.

A range of other quantile combination techniques is proposed in the literature. Giacomini
and Komunjer (2005) introduce a generalized method of moments (GMM) estimator aimed
at the minimization of the tick loss function for the purpose of forecasting combination and
encompassing tests. Halbleib and Pohlmeier (2012), in addition to QR, introduce a GMM
estimator to determine the optimal combination weights by minimizing the conditional
coverage test (Christoffersen, 1998). QR is further applied by Fuertes and Olmo (2013),
who utilize it for combining VaR forecasts from intra- and inter-day models and for a
conditional QR forecast encompassing test. QR forecast combination under a variety of
restrictions is also explored by Jeon and Taylor (2013), who combine predictions stemming
from the conditional autoregressive VaR class of models (Engle and Manganelli, 2004) with
the predictions from an option implied volatility model. The mean and median over all
standalone forecasts is considered by Huang and Lee (2013), who combine VaR predictions
from models using high frequency information. McAleer et al. (2013a,b) combine VaR
forecasts by the percentiles of their predictions with the goal of minimizing capital charges
imposed by the Basel Accord. Shan and Yang (2009) and Casarin et al. (2013) introduce
sequential combination approaches wherein the weights of the previously well performing
models are increased and vice versa. While Shan and Yang (2009) assess the performance of
the standalone models via tick loss, Casarin et al. (2013) evaluate the models with respect to
the capital requirements imposed by the Basel Accords. An alternative route is described by
Hamidi et al. (2015), who average VaR forecasts stemming from conditional autoregressive
expectile models (Taylor, 2008a) and estimate the combination weights by optimizing the
squared difference between the nominal probability and the hit rate, i.e. the share of times a
VaR prediction is smaller than the realized return. Recently, Bernardi, Catania, and Petrella
(2017) suggest filtering the standalone models with the model confidence set of Hansen et al.
(2011) prior to averaging the forecasts.

In the empirical portion of this paper, we assess the performance of the proposed penalized
QR combination method for a data set comprising 30 constituents of the Dow Jones Industrial
Average Index (DJIA) over a horizon of 8 years. We compare the performance of the elastic
net, lasso and ridge QR combined forecasts to a large variety of competing approaches.
For forecast evaluation, we use backtesting via the dynamic quantile backtest of Engle and
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Manganelli (2004) and the unconditional coverage backtest of Kupiec (1995). Furthermore,
we compare the forecasts with the model confidence set of Hansen et al. (2011) to determine
the approach that produces the most precise predictions. The results indicate that the
penalized QR combined forecasts exhibit the lowest number of backtest rejections and the
tick losses are comparably low. By splitting the evaluation sample into two subperiods, we
additionally determine that during volatile periods, lasso and elastic QR net perform slightly
better than ridge QR. This relationship reverses during calm periods. Additionally, we do not
face the “forecast combination puzzle” (Stock and Watson, 2004), which states that simple
approaches are difficult to outperform. In the combination of VaR forecasts, it appears as
though complexity pays off.

The remainder of this paper is organized as follows. Section 1.2 introduces the
methodology and provides details on penalized QR. Section 1.3 introduces the data set,
evaluation horizons, the forecast evaluation method and the standalone models. Section 1.4
presents the results of the empirical application. Section 3.6 consists of a conclusion and an
outlook on potential future research areas.

1.2. Methodology

Let the price of a financial asset or a portfolio at time t be Pt such that the logarithmic return
from time t to t + h is rt+h = log (Pt+h/Pt). We denote the VaR forecast from t to t + h,
conditional on all available information Ft , as qt+h|t(α). The VaR is defined as,

α = Pr
(
rt+h ≤ qt+h|t(α)|Ft

)
, (1.1)

where α ∈ (0, 1) is the probability level. Throughout the paper, we focus on the probability
level α = 1% and the forecast horizon h = 1 day.

In the following, qm,t+1|t(α) is the VaR forecast for day t + 1 of model m = 1, . . . , M

based on the information available at t and qt+1|t(α) = (q1,t+1|t(α), . . . , qM,t+1|t(α))
′ is the

vector of all forecasts. The linear combination of the M forecasts, including an intercept
term, is given by,

qc
t+1|t(α) = β0,t(α) + β1,t(α)q1,t+1|t(α) + . . . + βM,t(α)qM,t+1|t(α)

= β0,t(α) + q′t+1|t(α)βt(α),
(1.2)

where βt(α) is the quantile-specific vector of slope coefficients, which we loosely call the
combination weights, even though the sum of the coefficients is not necessarily one. We
explicitly incorporate an intercept term β0,t(α) to correct a potential bias of misspecified
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standalone forecasts. If all standalone predictions systematically over- or underestimate
the VaR, an intercept can shift the combined forecast outside the range of the standalone
predictions (Halbleib and Pohlmeier, 2012). The time index of the coefficients indicates that
the weights are time-varying. In order to incorporate the most recent information into the
model parameters, we re-estimate the combination weights every day.

In order to determine the optimal combination weights, we assume that the loss of the
forecaster only depends on the forecast error ut+1(α) = rt+1 − β0,t(α) − q′t+1|t (α) βt (α).
For quantiles, a consistent loss function is the asymmetric and piecewise linear tick loss
(Giacomini and Komunjer, 2005; Gneiting, 2011b) given by,

ρα(u) =
(
α − 1{u≤0}

)
u. (1.3)

Consistency of the tick loss implies that the true quantile prediction minimizes the ex-
pected tick loss, a concept directly linked to the fact that the VaR is elicitable (Gneiting,
2011b). Equipped with a consistent loss function, the optimal forecast combination weights
consequently minimize the expected loss of the forecast error,(

β∗0,t(α), β
∗
t (α)

)
= arg min

β0,t (α), βt (α)
E

[
ρα

(
rt+1 − β0,t(α) − q′t+1|t (α) βt(α)

)
| Ft

]
, (1.4)

which can be estimated by performing a linear QR of the standalone forecasts on the returns,
as the tick loss lies at the heart of QR (Koenker and Bassett, 1978). We therefore obtain a
consistent and asymptotically normal estimator of the combination weights by minimizing
the average tick loss,(

β̂0,t(α), ̂βt(α)
)
= arg min

β0,t (α), βt (α)

1
t

t−1∑
τ=0

ρα

(
rτ+1 − β0,t(α) − q′τ+1|τ(α)βt(α)

)
, (1.5)

which can then be used to form the combined forecast for the next day via q̂c
t+1|t(α) =

β̂0,t(α) + q′t+1|t(α)
̂βt(α).

1.2.1. The Effect of Multicollinearity on Forecast Combinations

Although combination weights estimated via QR are optimal for an in-sample combination
of the standalone forecasts (they minimize the tick loss), they might not be optimal for
out-of-sample purposes. This is due to the almost perfect multicollinearity of the standalone
forecasts (here denoted by X), which implies that the X X′ matrix is close to singular. As the
asymptotic distribution of the QR estimator depends on the inverse of X X′ (Koenker and
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Bassett, 1978), the variance of the QR estimator increases with the degree of correlation
among the standalone forecasts.

In order to understand why a high variance of the combination weights can be an issue
when combining forecasts, assume for the moment that we forecast the mean instead of
the quantiles. Suppose we have a model of the form Y = f (X) + ε with E [ε] = 0 and
V [ε] = σ2, where X are the covariates, Y is the dependent variable, f is a function of the
data and f̂ is an estimate of f . Then, the expected prediction error under squared error loss
is,

E
[
(Y − f̂ (X))2

]
= E

[
f (X) − f̂ (X)

]2
+ E

[
( f (X) − f̂ (X))2

]
+ σ2, (1.6)

which is the usual bias-variance tradeoff (e.g. Hastie, Tibshirani, and Friedman, 2011, p. 223).
Thus, we see that an increase in the variance of f̂ (e.g. through multicollinearity of the
covariates) increases the expected squared prediction error.

Such straightforward and general calculations in terms of mean and variance are available
only for the mean squared error, but not for the tick loss function. James (2003) generalizes
the bias-variance tradeoff to general symmetric loss functions, but the case of asymmetric loss
functions, such as the tick loss, is to the best of our knowledge still unexplored. Nevertheless,
this logic intuitively carries over to the tick loss: an increase of the variance of the estimated
combination weights increases the expected tick loss of the prediction error, although the
exact relation is unknown and is likely not as simple as in eq. (1.6).

We thus conclude that forecast combination is mainly beneficial if we can estimate
the combination weights with a reasonable precision. The precision, however, correlates
negatively with the degree of multicollinearity among the forecasts.

1.2.2. Elastic Net Penalized Quantile Regression

The elastic net penalty of Zou and Hastie (2005) represents a linear combination of the
ridge penalty of Hoerl and Kennard (1970a,b) and the lasso of Tibshirani (1996). While
the ridge term shrinks the coefficients towards zero, the lasso shrinks the coefficients and
additionally selects variables. The automatic variable selection through the lasso is attractive
as the weights of uninformative models can be set to zero. With highly correlated variables,
however, the lasso tends to select one of the coefficients of the correlated variables randomly,
whereas the ridge shrinks them towards each other (Zou and Hastie, 2005). In this case,
the elastic net offers a compromise: similar to ridge, the elastic net shrinks the variables in
groups and similar to lasso, it sets some coefficients to zero. Thus, the elastic net, combines
the strengths of both approaches so that Zou and Hastie (2005) interpret the elastic net as a
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stabilized version of the lasso penalization. The QR estimator under elastic net penalization
is given by(

β̂0,t(α, λ, δ), ̂βt(α, λ, δ)
)
= arg min

β0,t (α), βt (α)

1
t

t−1∑
τ=0

ρα

(
rτ+1 − β0,t(α) − q′τ+1|τ(α)βt(α)

)
+

+ λ
(
δ | |βt(α)| |1 + (1 − δ)| |βt(α)| |

2
2/2

)
,

(1.7)

where λ is the regularization parameter and δ ∈ [0, 1] balances the ridge and the lasso
term, given by the sum of the absolute, respectively the sum of the squared parameters. We
estimate (1.7) with the semismooth Newton coordinate descent algorithm proposed by Yi
and Huang (2017), which is available through the R (R Core Team, 2016) implementation of
Yi (2017) in the hqreg library.

If λ → ∞, eq. (1.7) simplifies to the intercept as it remains unpenalized. In this case,
we simply estimate the empirical quantile of the returns. For λ = 0, eq. (1.7) reduces to
unpenalized QR. Therefore, the value of λ controls the influence of the standalone predictions
on the combined forecast. Considering the parameter δ, we obtain lasso QR for δ = 1 and
a pure ridge penalization for δ = 0. As suggested by Hastie, Tibshirani, and Wainwright
(2015, p. 57), we only estimate the λ parameter and consider preselected values of δ. In
particular, we consider the three cases of δ = 0 (ridge), δ = 1 (lasso) and δ = 0.5 (elastic
net) in the empirical application.

Relation to Convex Weights

In the forecast combination literature (see e.g. Hansen, 2008; Timmermann, 2006), convexity
is frequently imposed on the combination weights and this restriction typically improves the
predictive performance upon the non-constrained estimator. Convex weights are non-negative
and they sum to one, i.e. 0 ≤ βm(α) ≤ 1, for m = 1, . . . , M and ∑M

m=1 βm(α) = 1. This
particular restriction bears an interesting relation to the elastic net penalty, which we can see
by rewriting the Lagrangian form of the elastic net QR given in eq. (1.7) in its restricted
variant,(
β̃0,t(α, ξ, δ), ˜βt(α, ξ, δ)

)
= arg min

β0,t (α), βt (α)

1
t

t−1∑
τ=0

ρα

(
rτ+1 − β0,t(α) − q′τ+1|τ(α)βt(α)

)
s.t.

(
δ | |βt(α)| |1 + (1 − δ)| |βt(α)| |

2
2/2

)
≤ ξ,

(1.8)
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where ξ is the regularization parameter for the restricted estimator. As usual, there is a
one-to-one mapping between λ in eq. (1.7) and ξ in eq. (1.8).

If we now consider the case of lasso QR (δ = 1) and we furthermore assume all slope
coefficients to be non-negative, then eq. (1.8) collapses to convex QR if ξ = 1. Therefore,
we can interpret the frequently imposed convexity constraint as a special case of the elastic
net penalty, which is more general due to three reasons: (1) the combination weights are
allowed to be negative; (2) the weights must not sum to one, as one can choose the value of
the regularization parameter and (3) one can select the degree of sparsity that the model is
enforcing by varying the balance between the ridge and the lasso terms.

1.2.3. Selection of the Regularization Parameter

The optimal shrinkage parameter for forecasting purposes is the value that minimizes
the expected prediction error over the out-of-sample data. The in-sample tick loss,
1
t
∑t−1
τ=0 ρα(rτ+1 − β̂0,t(α, λ, δ) − q

′
τ+1|τ(α)

̂βt(α, λ, δ)), can not be used as this loss decreases
in λ. The standard approaches for estimating the parameter λ include information criteria
and cross validation, which we discuss below. Additionally, we propose a computationally
convenient heuristic rule based on the sum of the absolute combination weights.

Bayesian Information Criterion

The simplest approach for estimating the regularization parameter λ is via the Bayesian
Information Criterion (BIC), which penalizes the in-sample loss. For the application of the
BIC, we require a measure of the effective degrees of freedom of the model. In the case of
lasso QR, Li and Zhu (2008) show that the effective degrees of freedom can be estimated by
the number of non-zero coefficients, i.e. by df = ∑M

m=1 1
{
β̂m,t (α, λ,δ=1),0

} . Consequently, the
BIC for lasso QR regression is given by,

BICt(α, λ) = ln

(
1
t

t−1∑
τ=0

ρα

(
rτ+1 − β̂0,t(α, λ, δ = 1) − q′τ+1|τ(α)

̂βt(α, λ, δ = 1)
))
+

ln t
2t

df,

(1.9)

and we determine the estimate of λ as the value that minimizes the BIC. This approach is
implemented only for lasso QR, given that there is no similar approach available for elastic
net and ridge QR.
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Time Series Cross Validation

More appropriate for out-of-sample purpose is cross validation (CV) as it aims at minimizing
the out-of-sample prediction error by evaluating a model on data that was not part of the
estimation process. However, the two most common approaches, leave-v-out and K-fold
CV, are not applicable in the present context. The reason is a violation of the fundamental
assumption of CV that the estimation and evaluation samples are independent (Arlot and
Celisse, 2010). Financial returns may be assumed to be at least uncorrelated, but they are
neither independent nor identically distributed. Furthermore, VaR predictions exhibit high
positive autocorrelation. In our application, the autocorrelations decrease only slowly, even
after 250 days the autocorrelations of several forecasts are well above 50%.

In order to account for this dependence in the data, we employ the time series CV method
of Hart (1994) which takes the form,

CVt(α, λ, δ) =
1

t − nmin

t−1∑
τ=nmin

ρα

(
rτ+1 − q̂c

τ+1|τ(α, λ, δ)
)
, (1.10)

where q̂c
τ+1|τ(α, λ, δ) = β̂0,τ(α, λ, δ)+ q

′
τ+1|τ(α)

̂βτ(α, λ, δ) is the combined VaR prediction
for τ + 1 based on the information available up to τ and nmin is the minimum number of
observations required to initially estimate the combination weights (we set nmin to 4 years in
our application). In contrast to leave-v-out or K-fold CV, this approach only employs past
information to predict future values and is robust to autocorrelation in the data (Hart and
Lee, 2005). Eventually, for a given value of δ, we select λ by the value that minimizes the
CV loss.

Heuristic Rule

Apart from the BIC for lasso QR and time series CV for lasso, ridge and elastic net QR,
we propose a computationally convenient heuristic rule for selecting the regularization
parameter λ. Our suggestion is to choose the most restricted model such that for a given
value of δ, the sum of the absolute estimated weights (i.e. the L1-norm) is smaller than some
value s,

λ̂ = max λ, s.t.
M∑

m=1
| β̂m,t(α, λ, δ)| ≤ s. (1.11)

The intuition for this rule stems from the fact that the elastic net penalty generalizes the
convexity restriction, for which we find s = 1, given that βm,t(α) ≥ 0 for m = 1, . . . , M.
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The suggestion given in eq. (1.11) therefore connects a generalized variant of the convexity
constraint (the L1-norm) with the regularization parameter λ.

To find reasonable values of s, we compute ∑M
m=1 | β̂m,t(α, λ, δ)| when λ is estimated

with the time series CV procedure. It turns out that while the estimates of λ vary greatly
depending on δ and the data, the values of ∑M

m=1 | β̂m,t(α, λ, δ)| are remarkably stable over
the time, the asset space and even across the different values of δ. We find that most of the
L1-norms of the weights are in the range between (0.7, 1.1) with the majority of values at 0.8.
In the empirical application, we therefore include predictions formed with the above rule
and set s = 0.8. Furthermore, we provide a robustness check on the choice of s in which
we show that actually a wide range of values of s yields precise predictions. This rule for
selecting λ might be not optimal from a theoretical point of view, but on the practical side, it
performs well empirically, it is robust, easy to implement and requires no computationally
expensive CV procedure.

1.3. Empirical Application: Setup

In the empirical application, we compare the predictions of the penalized QR with forecasts
of the standalone models and several competing combination approaches. This section
outlines the data, the models to be combined, some competing combination techniques and
the forecast evaluation methodology. The results are presented in Section 1.4.

1.3.1. Data and Evaluation Horizon

The dataset under consideration are the daily closing (dividend and split adjusted) prices
of 30 constituents of the DJIA for a time horizon from January 2, 1996 to December 31,
2014, a total of 4784 days, which we obtained from Thomson Reuters Eikon. Note that the
DJIA composition as of March 19, 2015 includes Goldman Sachs (GS) and Visa (V), which
were only listed after 1996. Consequently, we replace these two stocks with two immediate
predecessors, AT&T (T) and Hewlett Packard (HPQ). The symbols of the assets we analyze
are thus: AAPL, AXP, BA, CAT, CSCO, CVX, DD, DIS, GE, HD, HPQ, IBM, INTC, JNJ,
JPM, KO, MCD, MMM, MRK, MSFT, NKE, PFE, PG, T, TRV, UNH, UTX, VZ, WMT
and XOM.

Figure 1.5 in the Appendix shows the log return series of the stocks and Table 1.2 presents
the corresponding summary statistics, together with the ticker symbols and company names.
The return series show volatility clustering, especially in the time around the dot-com bubble
and in the time of the previous global financial crisis. Moreover, the returns exhibit excess
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kurtosis and non-zero skewness, the Jarque-Bera test strongly rejects normality of the log
returns.

As we require data to estimate the standalone models, to estimate the regularization
parameter and to combine the forecasts, our evaluation horizon spans the time from January
3, 2007 to December 31, 2014 (2014 days). Besides the full 8 years of data, we split the
sample into two equally sized windows of 4 years each, as the first half of the overall sample
is mainly driven by the financial crisis and is much more volatile compared to the second
subperiod. The goal of this split is to evaluate the models under different volatility regimes,
which we term the crisis and the calm period. For an illustration of the data and sample split,
consider Figure 1.1, which shows the log returns of the equally weighted portfolio of the 30
return series. The light and dark gray areas depict the crisis period from January 3, 2007
to December 31, 2010 (1008 days), respectively the calm period from January 3, 2011 to
December 31, 2014 (1006 days). Both areas taken together represent the overall period.
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Figure 1.1: Equally weighted portfolio of the 30 assets included in the empirical application. The gray shaded
areas indicate the forecast evaluation horizons January 3, 2007 to December 31, 2010 (1008 days, light gray),
January 3, 2011 to December 31, 2014 (1006 days, dark gray) and January 3, 2007 to December 31, 2014
(2014 days, both areas).

1.3.2. Standalone Models

Our pool of models which we utilize to form the standalone VaR forecasts consists of
17 approaches. The selected models cover a wide range of frequently used parametric,
semi-parametric and non-parametric techniques. While some of them are parsimonious,
others are highly parametrized and can account for rich dynamics in the data.

Static Normal Distribution

This approach assumes that the returns are normally distributed with mean µ and variance
σ2. The quantile prediction for the next day is qt+1|t(α) = µ̂ + σ̂Φ(α)−1, where Φ(·)−1 is
the inverse of the standard normal distribution and we estimate µ and σ2 based on a rolling
window of 250 observations.
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Weighted Historical Simulation

The historical simulation (HS) approach predicts the next day’s VaR by the empirical
α-quantile of the past returns. While the standard HS weights all past days equally, the
weighted HS technique of Boudoukh et al. (1998) uses a geometrically declining weighting
scheme: more recent data points are more important for the prediction. The weight of day
τ = t − w + 1, . . . , t is ητ = ητ−1(1 − η)/(1 − ηw), where w is the window length and we
set η = 0.99. We estimate the empirical quantile of the HS, respectively the weighted HS
approach using a rolling window of 250 observations.

RiskMetrics

The exponential smoothing RiskMetrics method (RiskMetrics Group, 1996) assumes the
VaR forecast for day t + 1 to be qt+1|t(α) = σt+1Φ

−1(α), where σ2
t = 0.06r2

t−1 + 0.94σ2
t−1.

CAViaR Models

The conditional autoregressive VaR (CAViaR) class of models introduced by Engle and
Manganelli (2004) assumes the VaR forecast to be a function of lagged VaR predictions and
other explanatory variables. They propose the following four specifications,

Symmetric absolute value (SAV) qt+1|t(α) = β0 + β1qt |t−1(α) + β2 |rt |,
Asymmetric slope (AS) qt+1|t(α) = β0 + β1qt |t−1(α) + β2(rt)

+ + β3(rt)
−,

Indirect GARCH(1, 1) (IG) qt+1|t(α) = (β0 + β1q2
t |t−1(α) + β2r2

t )
1/2,

Adaptive (AD) qt+1|t(α) = qt |t−1(α) + β1{[1 + exp(G[rt − qt |t−1(α)])]
−1 − α},

where (x)+ = max(x, 0), (x)− = −min(x, 0) and we set G = 10 as in Engle and Manganelli
(2004). The estimation of the CAViaR models follows the procedure described in Engle and
Manganelli (2004) using a rolling window of 1000 days.

GARCHModels

The remaining 9 models are all of the GARCH-type, i.e. we assume that returns can
be decomposed into rt = µt + σt zt . The component µt is the mean of the conditional
distribution of rt , σt is a volatility process and the innovation term zt is independent
and identically distributed with mean zero and unit variance. The VaR forecasts are
qt+1|t(α) = µt+1|t + σt+1|tQα(zt), where µt+1|t and σt+1|t are one-step-ahead forecasts of the
mean, respectively the volatility and Qα(zt) is the unconditional α quantile of the innovations.

We assume that returns are not predictable and set the conditional mean to zero. For
the volatility process, we assume either the standard GARCH(1, 1) of Bollerslev (1986), the
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exponential GARCH(1, 1) of Nelson (1991) or the asymmetric power ARCH(1, 1) of Ding
et al. (1993), subsequently denoted by GARCH, EGARCH and APARCH. They are given by:

GARCH(1, 1) σ2
t = ω + αε2

t−1 + βσ
2
t−1,

EGARCH(1, 1) log
(
σ2

t
)
= ω + αzt−1 + γ (|zt−1 | − E [|zt−1 |]) + β log

(
σ2

t−1

)
,

APARCH(1, 1) σδ
t = ω + α (|εt−1 | − γεt−1)

δ + βσδ
t−1.

In contrast to the standard GARCH, the EGARCH and APARCH specifications can respond
asymmetrically with respect to positive and negative returns. The APARCH additionally
accounts for the Taylor effect, the finding that the autocorrelation of absolute returns is
typically larger than that of squared returns (Taylor, 1986).

For the innovations zt we assume the normal distribution (abbreviated by N in the
following), the Student-t distribution (t) and the filtered historical simulation (FHS) method
of Barone-Adesi et al. (1999), which estimates Qα(zt) by the empirical quantile of the
standardized returns. Combining the three variance processes with the three assumptions on
the innovations, we obtain a total of 9 models. For estimation of the GARCH models we
employ the rugarch library for R by Ghalanos (2015) and a rolling window of 1000 days.

1.3.3. Competing Combination Approaches

This section introduces a range of competing quantile combination approaches. Note that
only the first two, the unpenalized and the convex QR, estimate an intercept term. For the
seven others β0,t = 0 and furthermore, the combined forecast of these approaches is bounded
between the minimum and the maximum of the standalone predictions since their weights
are non-negative and sum to one.

Unpenalized Quantile Regression

For a comparison with its penalized variants, we include the unpenalized QR estimator
(which we estimate with the quantreg library by Koenker (2016)),

̂βt(α) = arg min
β0,t (α), βt (α)

1
t

t−1∑
τ=0

ρα

(
rτ+1 − β0,t(α) − q′τ+1|τ(α)βt(α)

)
. (1.12)
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Convex Quantile Regression

Since we interpret the convexity constraint as a restricted variant of the elastic net, we include
convex QR to evaluate whether the more general penalty is necessary for good forecast
performance,

̂βt(α) = arg min
β0,t (α), βt (α)

1
t

t−1∑
τ=0

ρα

(
rτ+1 − β0,t(α) − q′τ+1|τ(α)βt(α)

)
, (1.13)

s.t. βm,t(α) ≥ 0 for m = 1, . . . , M and
M∑

m=1
βm,t(α) = 1.

Simple Mean

Due to the simplicity and empirical success of this approach in the mean forecasting literature
(Timmermann, 2006), we consider the simple average over all forecasts,

β̂m,t(α) =
1
M
, for all m = 1, . . . , M . (1.14)

Trimmed Mean

A trimmed variant of the simple mean combination is proposed by Timmermann (2006),
which uses the relative rankings of the models to set the weight of certain models to zero.
This method is supposed to be more robust than the simple mean as only the forecasts of the
best performing models enter the combination. The weights are given by

β̂m,t(α) =


1
bηMc , if Rm

t (α) ≤ ηM

0, else,
for all m = 1, . . . , M, (1.15)

where Rm
t (α) is the rank of model m at time t with respect to the sum of tick losses up to

time t, given by Lm
t (α) =

∑t−1
τ=0 ρα(rτ+1 − qm

τ+1|τ(α)). We set η = 0.25 such that we average
over the forecasts of the four previous best models.

Single Best

This approach assigns all weight to the previously best performing model,

β̂m,t(α) =


1, if Rm

t (α) = 1

0, else.
for all m = 1, . . . , M . (1.16)
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Inverse Loss

A further approach from the mean forecasting literature is to weight the forecasts inversely
proportional with respect to their historical performance measured by the losses of the
standalone models (Timmermann, 2006),

β̂m,t(α) =
Lm

t (α)
−1∑M

n=1 Ln
t (α)

−1
for all m = 1, . . . , M . (1.17)

Inverse Rank

Timmermann (2006) suggests to weight the forecasts inversely proportional to their rank
instead of the losses directly, as ranks are less sensitive to outliers than losses,

β̂m,t(α) =
Rm

t (α)
−1∑M

n=1 Rn
t (α)

−1
for all m = 1, . . . , M . (1.18)

Optimizing the Hit Rate

Hamidi et al. (2015) propose to estimate the combination weights by minimizing Mallows’s
Cp (Mallows, 1973) on the squared difference between the nominal and empirical hit rates
(the share of times the VaR is smaller than the return) subject to the convexity restriction on
the weights, i.e.

̂βt(α) = arg min C(βt(α)), s.t. βm,t(α) ≥ 0 for m = 1, . . . , M and
M∑

m=1
βm,t(α) = 1,

(1.19)

where C(βt(α)) = (α − α̂t(βt(α)))
2
+ 2M

∑M
m=1 βm,t(α)s2

m. The term α̂t(βt(α)) is the in-
sample hit rate of the combination when using the weight βt(α), α̂m,t is the hit rate of the
mth model and s2

m = (α − α̂m,t)
2/(t − M).

Sequential Relative Performance Approach

Shan and Yang (2009) propose a sequential method that is based on the relative historical
performance of the standalone forecasts. Their approach takes the form,

β̂m,t(α) =
β̂m,t−1(α) exp

(
−φρα

(
rt − qm

t |t−1(α)
))

M∑
n=1

β̂n,t−1(α) exp
(
−φρα

(
rt − qn

t |t−1(α)
)) for m = 1, . . . , M, (1.20)
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where the initial weights are βm,0(α) = 1/M for all m = 1, . . . , M. In each period, this
technique increases the weight of the models with low losses in the past and vice versa. We
set the tuning parameter to φ = 1 as this value performs best in the empirical application of
Shan and Yang (2009).

1.3.4. Forecast Evaluation

We evaluate the VaR forecasts by two approaches. First, we test whether the VaR forecasts
are by themselves valid or not, i.e. if the risk prediction is correct. For this purpose, we
consider the unconditional coverage backtest by Kupiec (1995) and the conditional coverage
backtest by Engle and Manganelli (2004). Second, we evaluate the precision of the forecasts
by comparing the tick losses with the Model Confidence Set (MCS) of Hansen et al. (2011).
This allows us to find the statistically most precise prediction, that is the model that produces
the lowest tick losses.

Christoffersen (1998) terms a VaR forecast efficient with respect to the available
information Ft if the hit variable Ht+1(α) = 1{rt+1≤qt+1 |t (α)} satisfies the property of correct
conditional coverage given by E [Ht+1(α)|Ft] = α. If it is not possible to reject this
hypothesis, we call the VaR forecast to be conditionally correct.

As the original likelihood ratio test of Christoffersen (1998) has inferior size and power
properties compared to more recent alternatives (see Berkowitz et al., 2011), we test the
hypothesis of correct conditional coverage of a VaR forecast with the dynamic quantile (DQ)
backtest of Engle and Manganelli (2004). For the DQ test we estimate the equation

Ht+1(α) − α = γ0 + γ1Ht(α) + γ2qt+1|t(α) + ut+1, (1.21)

with least squares. The choice of the regressors is as in Berkowitz et al. (2011), who assess
the size and power properties of a wide variety of backtests. The actual backtest is then the
Wald test for γ0 = γ1 = γ2 = 0, which is asymptotically χ2

3 distributed.
In addition to the DQ test, we also test the unconditional coverage hypothesis given

by E [Ht+1(α)] = α. Tests for this hypothesis thus examine whether the average of the hit
variable coincides with the nominal quantile level, without taking the possibility of clustered
violations into account. Here, we utilize the frequently used likelihood ratio test of Kupiec
(1995), which tests whether Ht+1(α) is Bernoulli distributed with success probability α.

For the relative evaluation of the forecasts, we compare the tick losses over the evaluation
period by the MCS, similar to McAleer et al. (2013a) and Bernardi and Catania (2016).
The MCS procedure repeatedly evaluates the hypothesis E

[
di j

]
= 0 for all i, j = 1, . . . , M ,

where di j is the loss differential between the predictions of model i and model j. Whenever
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it is possible to reject the hypothesis of equal predictive ability among all forecasts, the
worst performing model (with respect to the losses) is eliminated and the procedure starts
anew. This approach terminates with a set of models that statistically can not be further
distinguished at a certain significance level.

For computation of the MCS we use the ARCH package for Python by Sheppard (2017).
We report results for the TR statistic (Hansen et al., 2011), based on 100,000 repetitions of the
moving block bootstrap with a block size of 10 days to account for the possibility of clustered
VaR hits. We also check the results for block sizes of 5 and 20 days and find the results to be
robust with respect to the choice of the block length. Note that Hansen et al. (2011) express
concerns about the validity of the assumption of stationarity loss differentials di j when the
model parameters are recursively estimated. In order to account for this concern, we perform
unit-root tests on the loss differentials and do not find evidence against stationarity.

1.4. Empirical Results

1.4.1. Estimation Window of the Penalized Quantile Regressions

Apart from the value of the regularization parameter and the balance between lasso and ridge,
we need to decide on the length of the estimation window for the penalized QR estimators.
In order to determine the optimal estimation window for lasso, elastic net and ridge QR, we
compare the out-of-sample predictive performance depending on the window length used
for the estimation of the parameters when we hold the regularization parameter λ fixed. For
each stock i = 1, . . . , N , rolling window sizes w = 250, 500, 1000, 1500 and a recursively
extending window starting in January 3, 2000, we compute the average tick loss over the
out-of-sample window with size R,

TLi,w(α, λ, δ) = 1/R
T+R−1∑

t=T
ρα

(
r i

t+1 − q̂c,i
t+1|w(α, λ, δ)

)
, (1.22)

where r i
t+1 is the return of stock i at time t + 1 and q̂c,i

t+1|w(α, λ, δ) is the penalized QR
combined VaR forecast of stock i for day t + 1 based on a window of data w. Here, the
out-of-sample period spans the overall evaluation period from January 3, 2007 to December
31, 2014 (R = 2014).

For a simple interpretation of the predictive performance, we average over the assets to
get a single number per shrinkage value and window length,

TLw(α, λ, δ) =
1
N

N∑
i=1

TLi,w(α, λ, δ), (1.23)
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and thereby obtain a measure of the average precision of the penalized QR estimators.
Figure 1.2 shows the average tick loss for ridge (δ = 0), elastic net (δ = 0.5) and lasso
(δ = 1) QR for regularization parameters λ between 10−5 and 102. We can see that all
loss curves reach their minimum within the considered grid of shrinkage values, which
implies that neither the empirical quantile of the data (λ → ∞) nor the unpenalized QR
estimator (λ→ 0) is optimal. Considering these two extreme cases, we see that the empirical
quantile is best estimated with short windows, while less penalized models profit from longer
estimation samples. When we consider the minimum of the five loss curves per panel, we
see that the minimum loss is decreasing in the length of the estimation window. Therefore, it
is reasonable to use all available information for the estimation of the combination weights
and in what follows, we estimate the penalized QR with the recursively extending window
approach. For a fair comparison with the competing combination approaches, we apply
them with the same window of data.
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Figure 1.2: Average tick loss x 105 over all 30 assets for ridge, elastic net and lasso QR for a grid of values
for the regularization parameter λ between 10−5 and 102. Each of the three panels shows the tick losses for a
variety of rolling window sizes and a recursively extending window.

1.4.2. Conditional Coverage Backtesting

After having decided on an estimation strategy for the penalized QR, we start the discussion
of the forecast comparison results by evaluating the standalone and the combined predictions
by conditional coverage backtesting. Since presenting detailed tables with p-values of the
backtest for all 30 assets is not feasible, we condense the results by presenting the number of
times the forecasts are rejected at certain significance levels. We consider two significance
levels. First, we record whether the hypothesis of correct conditional coverage is rejected at
the 1% significance level, which indicates severe evidence against the validity of the forecast.
We call this a severe rejection. Second, we check if the p-value of the backtest is between
1% and 10%, which could indicate either a valid or a non-valid prediction and we call this a
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mild rejection. Thus, a good risk model should produce as few severe and mild rejections as
possible.

The results for all evaluation periods are presented in Figure 1.3; one panel for each of
the three out-of-sample horizons. Each of these panels shows stacked bar plots with the
number of backtest rejections at the two significance levels. The red and orange bars denote
the number of severe and mild rejections of the hypothesis of a correct VaR forecast. Since
we are aggregating the test decisions over all considered assets, the number of rejections can
be at most 30 for each risk model and evaluation period.
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Figure 1.3: Number of dynamic quantile backtest rejections for all approaches at two different significant levels
indicated by the colored bars. The three panels show the results for the overall / crisis / calm period, respectively.
The empty lines separate the standalone models, the penalized QR and the competing combination techniques.

The first panel shows the number of rejections during the overall evaluation period from
January 2007 to December 2014. We can see that the standalone models are often and highly
rejected. Especially the HS and RiskMetrics, which are particularly popular in practice, are
among the models that are most frequently rejected. The best standalone models are the
GARCH models using the t-distribution and the FHS method with one severe and five mild
rejections. Considering the combination approaches, we find that with the exception of the
unpenalized QR and lasso QR with BIC estimated regularization parameters, the combined
forecasts are less often rejected than the standalone predictions. Thus, implementing forecast
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combination is generally beneficial for VaR prediction and it is a major improvement upon
the standalone models.

In evaluating the different combination approaches, we find that the unpenalized QR
often fails to produce valid VaR forecasts. The reason for its poor performance is the
previously discussed multicollinearity among the forecasts: the unpenalized QR overfits the
data and the weights are unstable. Imposing the convexity restriction on the QR estimator
improves the predictions, which already indicates that regularizing the QR estimator is
beneficial. From the other competing combination approaches, we find that trimming the
models prior to averaging them leads to more backtest rejections than the simple mean, even
though the trimmed mean is supposed to improve the predictions upon its simpler variant.
Also averaging over the inverse of the ranks of the models instead of the inverse of the
tick losses does not improve the predictive performance. Thus, two conclusions from the
mean forecasting literature (Timmermann, 2006), namely that trimming and averaging based
on ranks improve upon the simpler variants, do not apply in our comparison. Moreover,
selecting a single model on a day-by-day basis performs worse than the averaging techniques
and even worse than many of the standalone models, which is in line with the findings in
Aiolfi and Timmermann (2006). The quantile-specific combination approaches of Shan and
Yang (2009) and Hamidi et al. (2015) exhibit roughly the same number of rejections as the
other competing combination approaches and thus do not improve upon simpler combination
techniques.

Considering the penalized QR in more detail, we find that the forecasts of lasso with BIC
selected shrinkage values are nearly as often rejected as the unpenalized QR. The reason
is that the BIC induces an insufficient amount of shrinkage such that the predictions are
too similar to those of the unpenalized QR, which is in line with the findings in Koenker
(2011). We furthermore find that lasso and elastic net QR are less often rejected than ridge
QR, independent of the approach of selecting the shrinkage parameter. Thus, the sparsity
enforcing property of the lasso operator is crucial for good predictions in this period. When
we compare the proposed heuristic rule (denoted by fix) and the time series CV (denoted by
CV) approaches for selecting the regularization parameter, we see that the heuristic rule leads
to slightly less rejections than the CV, which demonstrates the robustness of the proposed
way of estimating the regularization parameter. In fact, lasso and elastic net QR with the
heuristic rule are just once mildly rejected in the overall period, much less than all other
approaches.

Next, we evaluate the forecasts during the first half of the overall sample from, i.e.
January 3, 2007 to December 31, 2014. This sample represents a period of high volatility
around the 2007 – 2008 global financial crisis. As predicting the risk in volatile periods
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is difficult (Halbleib and Pohlmeier, 2012), we find in the second panel of Figure 1.3 that
the number of backtest rejections generally increases in comparison to the overall period.
The number of rejections rises especially for the standalone models, which are now at least
5 times severely rejected. The only exception is the GARCH model with t-distributed
innovations, which is 2 times severely and 6 times mildly rejected. Likewise, the forecasts
of the combination approaches are more often rejected, which is a direct consequence of
the poor performance of the standalone models during this time. Nevertheless, we find
that certain approaches still perform well. In particular, the only approaches that are never
severely rejected are lasso and elastic net QR with the regularization amount estimated by
the heuristic rule. In contrast to that, the competing combination approaches are at least
twice severely rejected. Using the penalized QR it is thus possible to obtain VaR forecasts
that exhibit a good performance even during this crisis period.

The last panel shows the results for the relatively calm period from January 3, 2011
to December 31, 2014. During this time, the volatility is lower and, thus, the VaR is
easier to predict than during the crisis or the overall period. Therefore, we see that several
standalone models are now hardly rejected at all (e.g. GARCH-FHS, EGARCH-FHS or
CAViaR-AS) and exhibit a good performance. Nevertheless, the techniques involving
the Normal distribution are still often rejected, raising doubt against the validity of this
assumption, even in relatively calm times. Since most standalone forecasts are quite good,
we furthermore find that most competing combination approaches perform well: even very
simple techniques (e.g. the simple mean) are just twice rejected. In contrast to that, the
unpenalized QR is still rejected frequently. When we evaluate the penalized QR in more
detail, we find that with the exceptions of lasso QR (with shrinkage values selected by the
BIC) and ridge QR (with CV selected shrinkage values), there is not a single severe or mild
rejection of the conditional coverage hypothesis. Thus, the penalized QR once again exhibit
less rejections of the conditional coverage hypothesis than the competing standalone and
combination approaches. The proposed heuristic in particular performs well since none
of the forecasts of lasso, ridge or elastic net QR are rejected with the amount of shrinkage
selected using this rule.

1.4.3. Hit Ratios: Unconditional Coverage

We proceed by showing details on the hit rates of the VaR forecasts and the unconditional
coverage backtest results of Kupiec (1995). Figure 1.4 displays the empirical hit rates,
i.e. the share of times the predicted VaR is smaller than the return. If the VaR forecast is
correct, the empirical hit rate should be close to 1%. In each of the panels for the three
time periods, the 30 gray dots represent the empirical hit rates in percentage points for the
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different risk models. The gray line is the 1% value and the two black lines depict the 99%
confidence interval of the unconditional coverage backtest. Occasionally, the CAViaR-AD
model produces hit rates larger than 4%. For the sake of clarity of Figure 1.4, we do not
show these outliers.
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Figure 1.4: Empirical VaR hit rates. The figure is split into panels for the overall / crisis / calm period. In
each of them, every dot represents the empirical hit rate in percentage points for one of the assets. The gray
line denotes the nominal value of 1% and the two black lines indicate the 99% confidence interval for the
unconditional coverage test of Kupiec (1995). This figure only shows empirical hit rates smaller than 4% in
order to improve the presentation of the results.

In this figure, we can see that most standalone models tend to produce hit rates larger
than 1%, i.e. they underestimate the true risks. Many of the hit rates are moreover outside
the confidence bands and are thus rejected by the unconditional coverage backtest at the 1%
level. A notably exception is the weighted HS approach which is the only standalone model
whose hit rates are always within the 99% confidence interval.

Several combination approaches perform well with respect to the unconditional coverage
criterion. For instance, the approach Hamidi et al. (2015) is always within the confidence
interval, as this technique estimates the combination weights by optimizing the hit rate.
Likewise, the penalized QR perform very well as almost always, the hit rates are within
the 99% confidence interval for all three evaluation periods. The hit rates of the penalized
QR are moreover centered around the 1% value, i.e. there is no tendency to underestimate
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the risks. This is in contrast to the combination approaches not involving a bias correcting
intercept term which exhibit hit rates usually larger than 1% as the hit rates of the standalone
forecasts are mostly larger than 1%. Thus, the bias correcting intercept term of the QR in
combination with the regularization helps to obtain precise VaR forecasts.

1.4.4. Relative Evaluation of all Forecast Approaches

Besides the evaluation of the forecasts via backtesting, we next present the results of the
MCS. The application of the MCS on the tick losses of the forecasts yields a p-value for
each of the models and forecast horizons, which can be used to decide whether some model
is in or out of the superior set of models (SSM). For the evaluation, we count for how many
assets a model is included in the 90% and the 75% SSM, so that it is statistically not possible
to distinguish between the models at the 10%, respectively the 25% significance level. Thus,
the more often a model is within the SSM, the better is its predictive power. Like Grigoryeva
et al. (2017), we additionally provide the average of the 30 MCS p-values. The larger this
average p-value, the higher a model is ranked by the MCS. Table 1.1 contains the results
and consists of one panel per evaluation horizon. In each of them, the first and the second
column are the number of times a model is included in the 90%, respectively the 75% SSM.
The third column contains the average MCS p-value.

Overall, the results of the MCS are less decisive than the backtesting, as typically a large
number of models is included in the 90% and 75% SSM. This is similar to the findings of
Bernardi and Catania (2016), who can only eliminate a small number of models using the
MCS. Nevertheless, we can find some differences between the different risk models.

Regarding the standalone models, we find that some approaches (the Normal Distribution,
HS and CAViaR-AD) perform much better during the calm period than during the crisis
and the overall period. For instance, the CAViaR-AD is just 4 times within the 75% SSM
during the overall and crisis period, but 29 times during the calm period. We furthermore
find that the RiskMetrics model is frequently included in the SSM, although both backtests
regularly reject its VaR forecasts. In contrast to that, the Weighted HS approach is not often
in the SSM but is much less often rejected than the forecasts of RiskMetrics. Thus, for some
standalone models there seems to be a tradeoff between absolute and relative accuracy of
the forecasts. However, for the forecast combination approaches, we do not face a similar
tradeoff since most of them exhibit a good absolute and relative performance.

If we inspect the competing combination forecasts more closely, we find that they perform
relatively well throughout all three horizons. They are often included in the SSM and
their average MCS p-values are high. Two exceptions are the unpenalized QR and the
approach of Hamidi et al. (2015), which are less often in the SSM and exhibit lower average
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Table 1.1: Relative Comparison of all forecasting approaches

Overall period Crisis period Calm period

Approach #90% #75% pMCS #90% #75% pMCS #90% #75% pMCS

Normal Distr 25 17 0.32 24 19 0.34 30 30 0.77
HS 20 9 0.27 24 12 0.31 29 27 0.63
Weighted HS 16 13 0.31 18 15 0.42 17 13 0.30
RiskMetrics 30 28 0.72 30 30 0.82 30 29 0.64
GARCH-N 30 27 0.68 30 26 0.70 30 29 0.75
GARCH-t 28 26 0.74 30 26 0.75 27 24 0.66
GARCH-FHS 28 25 0.62 26 25 0.63 27 23 0.61
EGARCH-N 30 30 0.83 30 29 0.76 30 30 0.92
EGARCH-t 30 30 0.90 30 30 0.87 30 29 0.88
EGARCH-FHS 29 28 0.77 29 28 0.73 29 29 0.81
APARCH-N 30 29 0.72 30 29 0.76 30 30 0.78
APARCH-t 30 29 0.85 29 29 0.84 29 29 0.79
APARCH-FHS 26 23 0.60 25 23 0.57 29 27 0.69
CAViaR-SAV 29 27 0.64 29 25 0.67 28 26 0.69
CAViaR-AS 30 29 0.67 30 27 0.62 29 29 0.84
CAViaR-IG 28 26 0.65 29 25 0.67 27 23 0.66
CAViaR-AD 9 4 0.10 11 4 0.12 30 29 0.71

Lasso QR (BIC) 27 24 0.54 27 24 0.60 28 23 0.59
Ridge QR (CV) 29 29 0.76 29 28 0.76 30 27 0.67
Elastic net QR (CV) 30 30 0.77 30 30 0.80 29 23 0.62
Lasso QR (CV) 30 30 0.79 30 30 0.80 27 23 0.63
Ridge QR (fix) 30 30 0.84 30 29 0.82 29 28 0.70
Elastic net QR (fix) 30 30 0.85 30 30 0.85 29 26 0.72
Lasso QR (fix) 30 30 0.86 30 30 0.88 27 25 0.68

Unpenalized QR 24 19 0.37 28 22 0.46 26 24 0.55
Convex QR 30 29 0.78 30 28 0.77 27 24 0.65
Simple Mean 30 29 0.84 29 27 0.75 30 29 0.84
Trimmed Mean 30 29 0.79 29 28 0.75 29 27 0.75
Inverse Loss 29 29 0.77 27 25 0.63 30 29 0.81
Inverse Rank 30 30 0.83 30 28 0.76 30 30 0.82
Single Best 30 27 0.71 30 29 0.69 29 28 0.76
Hamidi et al 24 22 0.58 25 22 0.65 26 25 0.59
Shan and Yang 30 30 0.84 29 27 0.74 30 29 0.83

This table presents the results of the model confidence set over all 30 assets. #90% and #75% are the number
of times a model is included in the 90%, respectively 75% SSM and pMCS is the average over the 30
individual MCS p-values based on the TR statistics using 100,000 iterations of the moving block bootstrap
with a block length of ten days.

MCS p-values in comparison to the other competitors. In line with the existing literature
on forecasting combination, we furthermore find that the simple mean over all forecasts
performs quite well and often performs as good as more sophisticated approaches.

When we evaluate the penalized QR combinations in more detail, we find that most
of them are almost always included in the 75% and 90% SSM and achieve high average
MCS p-values. Therefore, the penalized QR exhibit a good relative accuracy in addition to
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the excellent backtest results. The only approach that performs not as good as the others
is the lasso QR when the shrinkage values are estimated via the BIC, as the BIC induces
insufficient shrinkage. Comparing the time series CV with the proposed heuristic rule, we
find that the number of times the models are within the SSM are comparable for both ways
of estimating the shrinkage parameter. However, the average MCS p-values are larger for the
heuristic rule and, therefore these models are higher ranked by the MCS. We furthermore
find that during the crisis time, the lasso and elastic net QR is more often included in the
75% and 90% SSM than the ridge QR and their average MCS p-values are larger. That
once more indicates that penalized QR performs better when the model is allowed to set
certain weights to zero in times when many standalone models perform poorly. During
the calm time, this relation reverses: the forecasts of ridge QR are more often included in
the SSM. We can thus conclude that the variable selection property of the elastic net and
lasso penalties is especially important in volatile times when many of the standalone models
fail. When all models perform well (for instance during the calm time), shrinkage without a
variable selection suffices to obtain precise predictions.

Summing up the results from backtesting and the relative comparison via the MCS, we
find that: (1) The conditional coverage hypothesis is less often rejected for the penalized QR
than for the standalone models and the competing combination forecasts. (2) The hit rates of
the penalized QR combined forecasts are close to the nominal value of 1% and are hardly
rejected by the unconditional coverage test. (3) The regularized QR are often included in
SSM and the average MCS p-values are high, which indicates a good relative performance.
(4) The proposed heuristic rule performs well and even better than the time series CV. (5)
The differences in the performance of lasso, elastic net and ridge QR are rather small, yet
the former two perform slightly better during the crisis time and the overall period. (6)
Contradictory to the fact that elastic net QR should be superior to ridge and lasso QR as it
combines the strengths of both, we do not find that elastic net QR performs better than lasso
QR on its own.

1.4.5. Robustness Check: The Heuristic Rule

The empirical comparison reveals that the proposed heuristic rule performs very well with
respect to backtesting and tick losses. In order to demonstrate that the results are not simply
due to a fortunate choice of the parameter of the heuristic rule, we verify the robustness of
the proposition by examining the results when we vary the maximum allowed L1-norm of
the weights, i.e. the parameter s in eq. (1.11).

Figure 1.6a shows the number of 1% conditional coverage backtest rejections for the
VaR forecasts of ridge, lasso and elastic net QR for values of s between 0.5 and 1.5 and
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all three evaluation periods. For a value of s in the range from 0.75 to 1, we find just up
to two severe rejections of the conditional coverage hypothesis for all models and periods.
Furthermore, for many values there is not even a single rejection. Figure 1.6b presents the
tick loss averaged over all 30 assets. In this Figure, can see that the tick loss curves are
relatively flat in the considered region of values for s. Thus, the relative performance of the
penalized QR is hardly influenced by the choice of the parameter s.

These two findings confirm the robustness and the performance of the proposed way of
selecting the regularization parameter of the penalized QR. Therefore, a time consuming
cross validation is not essential for good forecast performance of the penalized QR.

1.4.6. Combination Weights and Relative Importance of the Predictors

In order to get some intuition into how the penalized QR estimates the combination weights
and selects the standalone models, Figure 1.7 shows the weights for the VaR forecasts of the
AT&T stock as an illustration. The three panels show the estimated weights and intercepts
for lasso, elastic net and ridge QR over the period from January 3, 2007 to December 31,
2014. For that particular stock, the models RiskMetrics and APARCH-N dominate the
estimated weights of lasso and elastic net QR. The weights of the other standalone models
are comparably small, so that the lasso and the elastic net penalty set the coefficients of
15 out of 17 variables to zero or almost zero, see Figures 1.7a and 1.7b. When we look at
the estimated weights of ridge QR (Figure 1.7c), we find that the weights are very similar
for the different standalone models. This reveals the grouping effect of the ridge penalty:
the coefficients of highly correlated variables are shrunk towards each other. For all three
penalized QR, the combination weights are furthermore relatively stable over time, there is
not much variation in the choice of the standalone models or in the estimated weights.

For a more complete picture of the estimated weights, Figure 1.8 displays the median
of the estimated weights and intercepts over the out-of-sample period, as the estimated
weights are relatively stable over time. In this Figure, we find that for lasso and elastic net
QR, the most important predictors are the GARCH models and RiskMetrics. Even though
RiskMetrics is individually not a well performing model (it is often rejected by the backtests),
the lasso and elastic net strongly opt for its inclusion in the combinations. A potential reason
is that RiskMetrics’ estimation error is zero as it is a calibrated model, i.e. it may serve as a
stabilizing component. From the median weights of ridge QR, we can again observe the
strong grouping effect of this penalty as almost all weights are between 0 and 0.1.

Finally, we evaluate the number of active predictors, i.e. the number of non zero
coefficients for lasso and elastic net QR as they enforce sparsity. In Figure 1.8, we see
that the lasso and elastic net QR combine the predictions of up to 6 models. However, for
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many stocks there is just one standalone model that dominates the combination weights.
For instance, the VaR forecasts of the Wal-Mart stock (WMT) are mainly driven by the
forecasts of RiskMetrics. However, the standalone models that dominate the forecasts change
throughout the assets, so that a data-driven selection of the standalone models is required.

1.5. Conclusion

In this paper, we propose the combination of VaR forecasts with penalized QR. In particular,
we consider regularization with the ridge, the lasso and the elastic net penalties. The primary
advantage of the regularization over the unpenalized estimator is that it reduces overfitting
due to the high multicollinearity of the standalone forecasts. Through the shrinkage and
variable selection properties of the penalties, regularized QR stabilize the estimates of the
combination weights and thereby improve the predictions.

In the empirical application, we combine the VaR forecasts of 17 standalone models
for 30 assets of DJIA and consider three evaluation horizons. We compare the penalized
QR combined predictions with the standalone forecasts and a large variety of competing
combination approaches. The penalized QR combined forecasts are less often rejected by
two backtests than the alternative approaches and are frequently included in the superior set
of models. We find that in volatile periods, the lasso and elastic net QR perform slightly
better than the ridge QR, i.e. in periods when many standalone models fail, so that the
variable selection property is highly relevant. We also observe that the elastic net QR does
not perform better than the lasso QR, even though the elastic net is supposed to stabilize the
lasso in case of highly correlated covariates (Zou and Hastie, 2005). Furthermore, we find
that the proposed heuristic rule performs well for all out-of-sample horizons and all three
penalized QR estimators.

For future research, a comparison of penalized QR to QR boosting (Zheng, 2012) would
be interesting. One could furthermore consider nonlinear forecast combination via quantile
random forests introduced by Meinshausen (2006) or the post-lasso QR estimator by Belloni
and Chernozhukov (2011).

Appendix 1.A Plots and Summary Statistics of the Return Series
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Figure 1.5: Log return series from January 2, 1996 to December 31, 2014. The gray shaded areas indicate the
forecast evaluation horizons January 3, 2007 to December 31, 2010 (1008 days, light gray), January 3, 2011 to
December 31, 2014 (1006 days, dark gray) and January 3, 2007 to December 31, 2014 (2014 days, both areas).
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Table 1.2: Ticker symbols, company names and summary statistics of the log returns x 100.

Symbol Name Min Max Mean Var. Kurt. Skew. JB JB-p

AAPL Apple −73.12 28.69 0.10 9.54 73.62 −2.56 1.0e6 0.00
AXP American Express Company −19.35 18.77 0.04 5.66 10.97 0.01 1.3e4 0.00
BA The Boeing Company −19.39 14.38 0.02 4.07 9.78 −0.37 9.3e3 0.00
CAT Caterpillar Inc. −15.69 13.73 0.04 4.55 7.17 −0.09 3.5e3 0.00
CSCO Cisco Systems, Inc. −17.69 21.82 0.04 7.21 9.38 0.05 8.1e3 0.00
CVX Chevron Corporation −13.34 18.94 0.03 2.71 12.40 0.08 1.8e4 0.00
DD E. I. du Pont de Nemours and Company −12.03 10.86 0.02 3.51 7.17 −0.15 3.5e3 0.00
DIS The Walt Disney Company −20.29 14.82 0.03 4.07 10.69 −0.07 1.2e4 0.00
GE General Electric Company −13.68 17.98 0.02 3.79 10.52 0.01 1.1e4 0.00
HD The Home Depot, Inc. −33.88 13.16 0.05 4.47 20.33 −0.79 6.0e4 0.00
HPQ Hewlett-Packard Company −22.35 15.95 0.01 6.53 10.08 −0.30 1.0e4 0.00
IBM International Business Machines −16.89 12.37 0.04 3.36 10.50 −0.03 1.1e4 0.00
INTC Intel Corporation −24.89 18.33 0.03 6.41 9.79 −0.37 9.3e3 0.00
JNJ Johnson & Johnson −17.25 11.54 0.03 1.82 13.00 −0.22 2.0e4 0.00
JPM JPMorgan Chase & Co. −23.23 22.39 0.02 6.74 14.26 0.23 2.5e4 0.00
KO The Coca-Cola Company −11.07 13.00 0.02 2.20 9.57 0.00 8.6e3 0.00
MCD McDonald’s Corporation −13.72 10.31 0.03 2.52 8.47 −0.04 6.0e3 0.00
MMM 3M Co −10.08 10.50 0.03 2.41 7.30 −0.02 3.7e3 0.00
MRK Merck & Co., Inc. −31.17 12.25 0.01 3.37 25.90 −1.26 1.1e5 0.00
MSFT Microsoft Corporation −16.96 17.87 0.04 4.25 10.11 −0.07 1.0e4 0.00
NKE Nike −21.65 13.78 0.05 4.45 11.84 −0.15 1.6e4 0.00
PFE Pfizer, Inc. −11.82 9.69 0.02 3.17 6.84 −0.19 3.0e3 0.00
PG Procter & Gamble −36.01 9.73 0.03 2.31 73.03 −2.96 9.8e5 0.00
T AT&T Inc. −13.54 15.08 0.00 3.14 8.26 0.06 5.5e3 0.00
TRV The Travelers Companies, Inc. −20.07 22.76 0.03 3.70 16.55 0.35 3.7e4 0.00
UNH UnitedHealth Group −35.59 29.83 0.05 5.61 34.18 −1.36 2.0e5 0.00
UTX United Technologies Corporation −33.20 12.79 0.05 3.21 30.93 −1.30 1.6e5 0.00
VZ Verizon Communications Inc. −12.61 13.66 0.01 2.91 7.97 0.14 4.9e3 0.00
WMT Wal-Mart Stores, Inc. −10.26 10.50 0.04 2.87 7.14 0.08 3.4e3 0.00
XOM Exxon Mobil Corporation −15.03 15.86 0.03 2.53 11.61 0.02 1.5e4 0.00
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Appendix 1.B Robustness Check
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(a) Number of dynamic quantile backtest rejections at the 1% level.
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Figure 1.6: This figure shows a robustness check for the value of s in the heuristic rule in eq. (1.11). The upper
figure shows the number of backtest rejections at the 1% significance level and the lower shows the average tick
loss. In each of them, the numbers are depicted for lasso, ridge and elastic net QR and for all three the three
evaluation horizons.
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Appendix 1.C Estimated Combination Weights for AT&T
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Figure 1.7: Estimated combination weights and intercepts for the AT&T stock over the time from January
2007 to December 2014 for lasso, elastic net and ridge QR.
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Appendix 1.D Median Estimated Combination Weights
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(a) Lasso Quantile Regression
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(b) Elastic Net Quantile Regression
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Figure 1.8: Median estimated combination weights and intercepts (over the time from January 2007 to
December 2014) for lasso, elastic net and ridge QR. The values of the median weights are given in the cells, a
blank entry indicates that a weight is on average zero.
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2.1. Introduction

Measuring and forecasting risks is essential for a variety of academic disciplines. For this
purpose, risk measures which are formally defined as a map (with certain properties) from
a space of random variables to a real number, are applied to condense the complex nature
of the involved risks to a single number (Artzner et al., 1999). In the context of financial
risk measurement, to date the most commonly used risk measure is the Value-at-Risk (VaR),
which is the α-quantile of the return distribution. Its popularity is mainly due to its simple
nature and the fact that up to now, the Basel Accords stipulate its use for the calculation of
capital requirements for banks. Besides being not coherent (Artzner et al., 1999), the main
drawback of the VaR is its inability to capture tail risks beyond itself. This deficiency is
overcome by the risk measure Expected Shortfall (ES) at level α, which is defined as the
mean of the returns which are smaller than the α-quantile of the return distribution. The ES
has the desired ability to capture information from the whole left tail of the return distribution,
which is particularly important for measuring extreme financial risks. Over the past few
years, ES has increasingly become the object of interest for practitioners, academics, and
regulators, especially since its recent introduction into the Basel Accords (Basel Committee,
2016).

A major drawback of the ES (regarded as a statistical functional) is that it is not elicitable,
which means that there exists no loss function (scoring function, scoring rule) which the
ES uniquely minimizes in expectation (Gneiting, 2011a; Weber, 2006). This result has two
main consequences. First, consistent ranking of competing forecasts for the ES based on
such a loss function is infeasible. Second, and more substantial for this paper, modeling
the conditional ES given a set of covariates through a regression model without specifying
the full conditional distribution is infeasible since estimation of the regression parameters
through M-estimation requires such a loss function. Consequently, and in contrast to quantile
regression (which can be used to model the VaR), to date, there exists no such regression
framework which models the ES based on a set of covariates.

Nadarajah et al. (2014) provide an overview of estimation methods for the ES. However,
the reviewed approaches are only applicable for univariate data and not suitable for estimating
the conditional ES based on covariates such as in mean and quantile regression. Nevertheless,
there are some approaches for the ES which incorporate explanatory variables through
indirect estimation procedures. Taylor (2008b) proposes an implicit approach for forecasting
ES using exponentially weighted quantile regression and Taylor (2008a) introduces a
procedure based on expectile regression and a relationship between the ES and expectiles.
Taylor (2017) suggests a joint modeling technique for the quantile and the ES based on
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maximum likelihood estimation of the asymmetric Laplace distribution. Barendse (2017)
proposes generalized method of moments (GMM) estimation for a regression framework for
the interquantile expectation.

Even though the ES is not elicitable stand-alone, Fissler and Ziegel (2016) show in their
seminal paper that the quantile (the VaR) and the ES are jointly elicitable by introducing a
class of joint loss functions, whose expectation is minimized by these two functionals. This
joint elicitability result and the associated class of loss functions gives rise to a growing
literature in both, joint estimation (Zwingmann and Holzmann, 2016) and in joint forecast
evaluation (Acerbi and Szekely, 2014; Fissler, Ziegel, and Gneiting, 2016; Nolde and Ziegel,
2017; Ziegel et al., 2017) for the risk measures VaR and ES.

In this paper, we utilize the class of loss functions of Fissler and Ziegel (2016) for the
introduction of a novel simultaneous regression framework for the quantile and the ES and
propose both, an M- and a Z-estimator for the joint regression parameters. These strictly
consistent loss functions facilitate the opportunity to introduce M- and Z-estimation of the
regression parameters without specifying the full conditional distribution of the model, as
opposed to maximum likelihood estimation. We show consistency and asymptotic normality
for both estimators under weak regularity conditions which are typical for such a regression
framework. To the best of our knowledge, we are the first to propose such a joint regression
framework for the quantile and the ES together with the joint M- and Z-estimation and the
associated results of consistency and asymptotic normality. Furthermore, we are the first to
propose a joint semiparametric regression framework for two different functionals based on
joint M-estimation without specifying the full conditional distribution.

The employed joint loss function, the estimating equations (for the Z-estimator) and the
resulting parameter estimates depend on two specification functions, which can be chosen
from some class of functions. Even though consistency and asymptotic normality hold for
all applicable choices of these specification functions, they affect the necessary moment
conditions, the resulting asymptotic covariance matrices of the estimators, the numerical
stability of the optimization algorithm, and the computation times. We discuss the choice of
these functions in a theoretical context with respect to asymptotic efficiency and necessary
regularity conditions, and with respect to the numerical properties of the optimization
algorithm.

The estimation of the asymptotic covariance matrix imposes some difficulties. The first
occurs in the estimation of the density quantile function, analogous to quantile regression (cf.
Koenker, 2005) and thus, we utilize estimation procedures stemming from this literature. The
second issue is the estimation of the variance of the negative quantile residuals conditional
on the covariates, a nuisance quantity which is new to the literature. We introduce several
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estimators for this quantity which are able to cope with limited sample sizes and which can
model the dependency of the negative quantile residuals on the covariates. Furthermore, we
estimate the covariance matrix using the bootstrap. For ease of application, we provide an R
package (Bayer and Dimitriadis, 2017b) which contains the implementation of the M- and
Z-estimator. The user can choose the specification functions, the numerical optimization
procedure and the estimation method for the covariance matrix of the parameter estimates.

We conduct a Monte-Carlo simulation study where we consider three data generating
processes with different properties. We numerically verify consistency and asymptotic
normality of the M-estimator for a range of different choices of the specification functions.
Furthermore, we find that the Z-estimator is numerically unstable due to the redescending
nature of the utilized estimating equations and consequently, we rely on M-estimation of the
regression parameters. Moreover, we find that the performance of the M-estimator strongly
depends on the specification functions, where choices resulting in positively homogeneous
loss functions (Efron, 1991; Nolde and Ziegel, 2017) lead to a superior performance in terms
of asymptotic efficiency, computation times, and mean squared error of the estimator.

This joint regression technique for the quantile and ES has a wide range of potential
applications as it generalizes quantile regression to the pair consisting of the quantile and
the ES. Such estimation, forecasting, and backtesting methods for the ES are particularly
sought-after in light of the recent shift from VaR to ES in the Basel Accords. As an
illustration, we present an empirical application where we use our regression framework to
jointly forecast VaR and ES based on the realized volatility.

The rest of the paper is organized as follows. In Section 2.2, we introduce the joint
regression framework, the underlying regularity conditions together with the asymptotic
properties of our estimators and discuss the choice of the specification functions. Section 2.3
provides details on the numerical implementation of the estimators and on the estimation of
the asymptotic covariance matrix. Section 2.4 presents an extensive simulation study and
Section 2.5 contains an empirical application. Section 2.6 provides concluding remarks.
The proofs are deferred to Appendices 2.B and 2.C.

2.2. Methodology

2.2.1. The Joint Regression Framework

Following Lambert, Pennock, et al. (2008), Gneiting (2011a) and Fissler and Ziegel (2016),
we introduce the concept of (multivariate) p-elicitability. We consider a random variable
Z : Ω→ Rd , defined on some complete probability space

(
Ω,F, P

)
, a class of distributions

P on Rd , equipped with the Borel σ-field and a functional T : P → D with its domain of



Chapter 2. Joint Quantile and ES Regression 55

action D ⊆ Rp, p ∈ N. We call an integrable loss function ρ : Rd ×D→ R strictly consistent
for the functional T relative to the class of distributions P , if T is the unique minimizer of
E
[
ρ(Z, ·)

]
for all distributions F ∈ P , where F is the distribution of Z . Furthermore, we

call a p-dimensional functional T p-elicitable relative to the class P , if there exists a loss
function ρ which is strictly consistent for T relative to P . If the dimension p is clear from
the context, we simply call the functional elicitable instead of p-elicitable.

Given the generalized α-quantile Qα(Z) = F−1(α) = inf
{
z ∈ R : F(z) ≥ α

}
for some

α ∈ (0, 1), the ES of the random variable Z at level α is defined as ESα(Z) = 1
α

∫ α

0 Qu(Z) du.
If the distribution function of Z is continuous at its α-quantile, this definition can be
simplified to the conditional tail expectation ESα(Z) = E

[
Z

�� Z ≤ Qα(Z)
]
. Gneiting (2011a)

shows that the ES is not 1-elicitable with respect to any classP of probability distributions on
intervals I ⊆ R, which contain measures with finite support or finite mixtures of absolutely
continuous distributions with compact support (see also Weber (2006)). This result has
several consequences for the risk measure ES. First, consistent and meaningful ranking of
competing forecasts for the functional ES is infeasible. Second, and more consequential for
this work, estimating the parameters of a stand-alone regression model for the functional
ES in the sense that ESα(Y |X) = X′θe by means of M-estimation, i.e. by minimizing some
strictly consistent loss function, is infeasible. Even though the ES is not 1-elicitable, Fissler
and Ziegel (2016) show that the pair consisting of the ES and the quantile at common
probability level α is 2-elicitable relative to the class of distributions with finite first moments
and unique α-quantiles and they characterize the full class of strictly consistent loss functions
for this pair subject to some regularity conditions. Since the definition of the ES already
depends on the respective quantile, the fact that the ES is only elicitable jointly with the
quantile is not surprising.

We utilize this joint elicitability result for the introduction of a new joint regression
framework for the quantile and the ES where the aforementioned class of strictly consistent
loss functions serves as the basis for the M-estimation of the joint regression parameters.
For this, let Y : Ω → R and X : Ω → Rk be random variables defined on the same
probability space

(
Ω,F, P

)
as above. Henceforth, the transpose of X will be denoted by

X′, the cumulative distribution function of Y given X by FY |X and the conditional density
function by fY |X . For a k-times differentiable real-valued function G : R→ R, we denote
the k-th derivative by G(k)(·).
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Assumption 2.2.1 (The joint regression model). The regression framework which jointly
models the conditional quantile and ES of Y given X for some fixed level α ∈ (0, 1) is given
by

Y = X′θq
0 + uq and Y = X′θe

0 + ue, (2.1)

where Qα(uq |X) = 0 and ESα(ue |X) = 0. The model is parametrized by θ0 = (θ
q′
0 , θ

e′
0 )
′ ∈

Θ ⊂ R2k , where the parameter space Θ is compact with nonempty interior, int(Θ) , ∅.

We propose both, an M-estimation and a Z-estimation procedure for the compound
regression parameter vector θ0. For the M-estimation, we adapt the class of strictly consistent
joint loss functions1 for the quantile and ES as given in Fissler and Ziegel (2016) such that it
can be used in a regression framework,

ρ(Y, X, θ) =
(
1{Y≤X ′θq} − α

)
G1(X′θq) − 1{Y≤X ′θq}G1(Y )

+ G2(X′θe)

(
X′θe − X′θq +

(X′θq − Y )1{Y≤X ′θq}

α

)
− G2(X′θe) + a(Y ),

(2.2)

where the function G1 is twice continuously differentiable, G2 is three times continuously
differentiable, G(1)2 = G2, G2 and G(1)2 are strictly positive, G1 is increasing and a and
G1 are integrable. We discuss the choice of the specification functions G1 and G2 in
a theoretical context in Section 2.2.3 and by their numerical performance in Section
2.4.2. The corresponding (ρ-type) M-estimator is defined by a sequence θ̂ρ,n, such that
θ̂ρ,n = argminθ∈Θ 1

n
∑n

i=1 ρ(Yi, Xi, θ).
Instead of minimizing some objective function ρ(Y, X, θ) such as in (2.2), we can also

define the corresponding Z-estimator (or ψ-type M-estimator), which sets a vector of
estimating equations (moment conditions), denoted by ψ(Y, X, θ), to zero. More generally,
it suffices that these estimating equations converge to zero almost surely. Formally, the
Z-estimator is a sequence θ̂ψ,n, such that 1

n
∑n

i=1 ψ(Yi, Xi, θ̂ψ,n) → 0 almost surely, where

ψ(Y, X, θ) =

(
ψ1(Y, X, θ)

ψ2(Y, X, θ)

)
=

©«
1
α (1{Y≤X ′θq} − α)

(
αXG(1)1 (X

′θq) + XG2(X′θe)
)

XG(1)2 (X
′θe)

(
X′θe − X′θq + 1

α (X
′θq − Y )1{Y≤X ′θq}

)ª®¬ ,
(2.3)

1One can interpret the structure of this loss function as follows (Fissler, Ziegel, and Gneiting, 2016): The
first summand in (2.2) is a strictly consistent loss function for the quantile (Gneiting, 2011a) and hence only
depends on the quantile, whereas the second summand cannot be split into a part depending only on the
quantile and one depending only on the ES. This illustrates the fact that the ES itself is not 1-elicitable, but
2-elicitable together with the respective quantile.
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which is obtained by differentiating2 (2.2) and where the functions G1 and G2 are given as
above. When the loss function ρ(Y, X, θ) is continuously differentiable in θ, it is obvious
that the M- and Z-estimation approaches are equivalent. However, in this case the loss
function ρ(Y, X, θ) is not differentiable and ψ(Y, X, θ) is discontinuous at the points where
Y = X′θq. Thus, we treat these two estimation approaches as different estimators and show
their asymptotic behavior separately.

2.2.2. Asymptotic Properties

In this section, we present the asymptotic properties of the M- and Z-estimator of the
regression parameters. Consistency and asymptotic normality hold under the following set
of weak regularity conditions, which are natural for this regression framework.

Assumption 2.2.2 (Regularity Conditions).

(A-1) The data (Yi, Xi) for i = 1, . . . , n is an iid series of randomvariables, distributed such
as (Y, X) given above. Furthermore, the conditional distribution FY |X has finite
second moments and is absolutely continuous with probability density function
fY |X , which is strictly positive, continuous and bounded in a neighbourhood of
the true conditional quantile, X′θq

0 .

(A-2) The matrix E
[
X X′

]
is positive definite.

(A-3) The functions ρ(Y, X, θ) and ψ(Y, X, θ) are given as in (2.2) and (2.3), where the
function G1 is twice continuously differentiable, G2 is three times continuously
differentiable, G(1)2 = G2, G2 and G(1)2 are strictly positive, G1 is increasing and a

and G1 are integrable.

Remark 2.2.3 (Finite Moment Conditions). We further have to assume that certain
moments of X are finite. For the sake of space, we specify the Finite Moment Conditions
(M-1) - (M-4) in Appendix 2.A. Note that these general moment conditions simplify
substantially for sensible choices of the specification functions G1 and G2 as further outlined
in Section 2.2.3.

Assumption (A-1) is a combination of typical regularity conditions of mean and quantile
regression. Absolute continuity of FY |X with a strictly positive, bounded and continuous
density function in a neighborhood of the true conditional quantile is also imposed for the

2 Note that the function ρ(Y, X, θ), given in (2.2) is only differentiable for Y , X ′θq . However, the points
of non-differentiability, Y = X ′θq form a nullset with respect to the absolutely continuous distribution of Y
given X .
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asymptotic theory of quantile regression. Existence of the conditional moments of Y given
X is subject to the conditions of mean regression and is included in our regularity conditions
since ES is a truncated mean. The positive definiteness (full rank condition) in (A-2) is
common for any regression design with stochastic regressors in order to exclude perfect
multicollinearity of the regressors. The conditions for the specification functions G1 and
G2 in (A-3) mainly originate from the conditions for the joint elicitability of the quantile
and ES in Fissler and Ziegel (2016). Differentiability of these functions is required in this
setup for obtaining the estimating equations and for the differentiations in the computation
of the asymptotic covariance in Theorem 2.2.6 and Theorem 2.2.7. The existence of certain
moments of the explanatory variables as in conditions (M-1) - (M-4) in Appendix 2.A
is also standard in any regression design relying on stochastic regressors. Even though
compactness of the parameter space Θ in Assumption 2.2.1 generally simplifies the proofs,
in this setup it is crucial for consistency of the Z-estimator as the estimating equations ψ2

are redescending to zero for many reasonable choices of the G2 function such as e.g. the
choices resulting in positively homogeneous loss functions. For details on this, we refer to
Section 2.3.1.

Theorem 2.2.4. Assume that Assumption 2.2.1, Assumption 2.2.2 and the Moment Con-
ditions (M-1) in Appendix 2.A hold true. Then, for every sequence θ̂ψ,n ∈ Θ satisfying
1
n
∑n

i=1 ψ(Yi, Xi, θ̂ψ,n)
a.s.
−→ 0, it holds that θ̂ψ,n

a.s.
−→ θ0.

Theorem 2.2.5. Assume that Assumption 2.2.1, Assumption 2.2.2 and the Moment Con-
ditions (M-2) in Appendix 2.A hold true. Then, for every sequence θ̂ρ,n ∈ Θ such that
1
n
∑n

i=1 ρ(Yi, Xi, θ̂ρ,n) ≤
1
n
∑n

i=1 ρ(Yi, Xi, θ0) + oP(1), it holds that θ̂ρ,n
P
−→ θ0.

Theorem 2.2.6. Assume that Assumption 2.2.1, Assumption 2.2.2 and the Moment Con-
ditions (M-3) in Appendix 2.A hold true. Then, for every sequence θ̂ψ,n ∈ Θ satisfying
1√
n
∑n

i=1 ψ(Yi, Xi, θ̂ψ,n)
P
−→ 0, it holds that

√
n
(
θ̂ψ,n − θ0

) d
−→ N

(
0,Λ−1CΛ−1

)
, (2.4)

with

Λ =

(
Λ11 0
0 Λ22

)
and C =

(
C11 C12

C21 C22

)
, (2.5)
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where

Λ11 =
1
α
E

[
(X X′) fY |X(X′θ

q
0)

(
αG(1)1 (X

′θ
q
0) + G2(X′θe

0)
) ]
, (2.6)

Λ22 = E
[
(X X′)G(1)2 (X

′θe
0)
]
, (2.7)

C11 =
1 − α
α
E

[
(X X′)

(
αG(1)1 (X

′θ
q
0) + G2(X′θe

0)
)2

]
, (2.8)

C12 = C21 =
1 − α
α
E

[
(X X′)

(
X′θq

0 − X′θe
0
) (
αG(1)1 (X

′θ
q
0) + G2(X′θe

0)
)
G(1)2 (X

′θe
0)
]
, (2.9)

C22 = E

[
(X X′)

(
G(1)2 (X

′θe
0)
)2

(
1
α

Var
(
Y − X′θq

0
��Y ≤ X′θq

0, X
)
+

1 − α
α

(
X′θq

0 − X′θe
0
)2

)]
.

(2.10)

Theorem 2.2.7. Assume that Assumption 2.2.1, Assumption 2.2.2 and the Moment Con-
ditions (M-4) in Appendix 2.A hold true. Then, for every sequence θ̂ρ,n ∈ Θ such that
1
n
∑n

i=1 ρ(Yi, Xi, θ̂ρ,n) ≤ infθ∈Θ 1
n
∑n

i=1 ρ(Yi, Xi, θ) + oP(n−1), it holds that

√
n
(
θ̂ρ,n − θ0

) d
−→ N

(
0,Λ−1CΛ−1), (2.11)

where the matrices Λ and C are given as in Theorem 2.2.6.

Remark 2.2.8 (Quantile Regression). Notice that the asymptotic covariance matrix of the
quantile-specific parameter estimates θ̂q is given by α(1 − α)D−1

1 D0D−1
1 , where

D1 = E
[
(X X′) fY |X(X′θ

q
0)

(
αG(1)1 (X

′θ
q
0) + G2(X′θe

0)
) ]

and (2.12)

D0 = E
[
(X X′)

(
αG(1)1 (X

′θ
q
0) + G2(X′θe

0)
)2

]
. (2.13)

This simplifies to the covariance matrix of quantile regression parameter estimates by setting
G1(z) = z and G2(z) = 0, which means ignoring the ES-specific part of our loss function
and estimating equations. This demonstrates that the quantile regression method is nested in
our regression procedure, also in terms of its asymptotic distribution.

Remark 2.2.9 (Asymptotic Covariance of the ES and the Oracle Estimator). The ES-
specific part of the asymptotic covariance is mainly governed by the term C22, which depends
on the quantity

1
α

Var
(
Y − X′θq

0
��Y ≤ X′θq

0, X
)
+

1 − α
α

(
X′θq

0 − X′θe
0
)2
=

1
α2 Var

(
(Y − X′θq

0)1{Y≤X ′θq0 }

��� X
)
.

(2.14)



Chapter 2. Joint Quantile and ES Regression 60

It is reasonable that the asymptotic covariance of ES regression parameters depends on
the truncated variance of Y given X as the asymptomatic covariance of mean regression
parameters is driven by the conditional (non-truncated) variance of Y given X . The second
term

(
X′θq

0 − X′θe
0
)2 in (2.14) is included since the ES represents a truncated mean where the

truncation point itself is a statistical functional (the quantile). In comparison, we consider an
oracle M-estimator for the ES-specific regression parameters θe, given by the loss function

ρOracle(Y, X, θe) = (Y − X′θe)21{Y≤X ′θq0 }
, (2.15)

where we assume that the true quantile regression parameters θq
0 are known. The resulting

asymptotic covariance is given by

AVar
(
θ̂e
Oracle

)
=

1
α
E
[
X X′

]−1
· E

[
(X X′)Var

(
Y − X′θe

0
��Y ≤ X′θq

0, X
)]
· E

[
X X′

]−1
,

(2.16)

which shows that the additional term
(
X′θq

0 − X′θe
0
)2 is not included for this estimator with

fixed truncation point X′θq
0 .

Remark 2.2.10 (Joint Estimation of the Sample Quantile and ES). We can use this
regression framework to jointly estimate the quantile and ES of an identically distributed
sample Y1, . . . ,Yn by regressing on a constant only. The asymptotic covariance matrix given
in Theorem 2.2.6 and Theorem 2.2.7 then simplifies to Σ with components

Σ11 =
α(1 − α)

f 2
Y (θ

q
0)

, (2.17)

Σ12 = Σ21 = (1 − α)
θ

q
0 − θ

e
0

fY (θ
q
0)
, (2.18)

Σ22 =
1
α

Var(Y − θq
0 |Y ≤ θ

q
0) +

1 − α
α
(θ

q
0 − θ

e
0)

2, (2.19)

where θq
0 and θ

e
0 are the true quantile and ES ofY . The same result is obtained by Zwingmann

and Holzmann (2016), who further allow for a distribution function for Y which is not
differentiable at the quantile with strictly positive derivative. Notice that in this simplified
case without covariates, the asymptotic covariance matrix is independent of the specification
functions G1 and G2 used in the loss function and in the estimating equations. Furthermore,
(2.17) implies that quantile estimates stemming from our joint estimation procedure have the
same asymptotic efficiency as quantile estimates stemming from minimizing the generalized
piecewise linear loss (Gneiting, 2011a) and as sample quantiles (cf. Koenker (2005)). The
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same holds true for the efficiency of the sample ES estimators (based on the sample quantile)
of Brazauskas et al. (2008) and Chen (2008).

Remark 2.2.11 (Pseudo-R2 and the choice of a(Y)). By choosing a(Y ) = αG1(Y )+G2(Y )

in (2.2), we can guarantee non-negative losses ρ(Y, X, θ) ≥ 0. This choice enables us to
define a pseudo-R2 for our joint regression framework in the sense of Koenker and Machado
(1999),

RQE = 1 −
ρ(Y, X, θ̂)
ρ(Y, X, θ̃)

, (2.20)

where θ̂ denotes the parameter estimates of the full regression model and θ̃ denotes the
parameter estimates of a regression model restricted to an intercept term only. However, this
choice of a(Y ) comes at the cost of more restrictive moment conditions, since we need to
impose that E

[
G1(Y ) + G2(Y )

]
< ∞.

2.2.3. Choice of the Specification Functions

The loss functions and the estimating equations given in (2.2) and (2.3) depend on two
specification functions, G1 and G2 (with derivative G2), which have to fulfill the regularity
conditions (A-3) in Assumption 2.2.2. Fissler, Ziegel, and Gneiting (2016) already mention
the feasible choices G1(z) = 0, G1(z) = z, G2(z) = exp(z) and G2(z) = exp(z)/

(
1 + exp(z)

)
in order to show that this class is non-empty. In contrast to the loss functions of mean,
quantile and expectile regression, there is no natural choice for these specification functions
for the quantile and ES yet (Nolde and Ziegel, 2017). However, as the choice of these
functions strongly influences the performance of our regression procedure in terms of its
asymptotic efficiency, the necessary moment conditions of the regressors and the numerical
performance of the optimization algorithm, we discuss sensible selection criteria in the
following.

Efron (1991) and Nolde and Ziegel (2017) argue that for M-estimation of regression
parameters it is crucial that the utilized loss function is positively homogeneous of some
order b ∈ R in the sense that

ρ(cY, X, cθ) = cbρ(Y, X, θ) (2.21)

for all c > 0. This is an important property for loss functions since the ordering of the losses
should be independent of the unit of measurement, e.g. the currency we measure the prices
and risk forecasts with. Loss functions following this property guarantee that we can change
the scaling and still obtain the same optima and consequently the same parameter estimates.
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For the pair consisting of the quantile and the ES, Nolde and Ziegel (2017) characterize the
full class of positively homogeneous3 loss functions of order b for the case where we restrict
the domain of G2, i.e. the conditional ES to the negative real line4,

b < 0 : G1(z) = −c0, G2(z) = c1(−z)b + c0, (2.22)

b = 0 : G1(z) = d01{z≤0} + d′01{z>0}, G2(z) = −c1 log(−z) + c0, (2.23)

b ∈ (0, 1) : G1(z) =
(
d11{z≤0} + d′11{z>0}

)
|z |b − c0, G2(z) = −c1(−z)b + c0, (2.24)

for some constants c0, d0, d′0 ∈ Rwith d0 ≤ d′0, d1, d′1 ≥ 0 and c1 > 0. There are no positively
homogeneous loss functions for the cases b ≥ 1. Our numerical simulations show that there
is no gain in efficiency or numerical accuracy by deviating from the choice G1(z) = 0 (see
also Fissler, Ziegel, and Gneiting (2016), Nolde and Ziegel (2017), and Ziegel et al. (2017)),
which is also consistent with the homogeneity result. Consequently, we use G1(z) = 0 in the
following.

A different natural guiding principle for selecting the specification functions is induced
by choosing G2 (and G1) such that the moment conditions (M-1) - (M-4) in Appendix 2.A
are as least restrictive and as parsimonious as possible. For instance, choosing G2 such
that G2 and its first and second derivatives are bounded functions (and G1(z) = 0) results
in the moment condition E

[
| |X | |5 + | |X | |4E

[
|Y |

��X]
+ | |X | |3E

[
Y2

��X]
+ |a(Y )|

]
< ∞. This

motivates the usage of bounded functions5 for G2 such as e.g. the second example of Fissler,
Ziegel, and Gneiting (2016), G2(z) = exp(z)/

(
1 + exp(z)

)
, which is the distribution function

of the standard logistic distribution. Further examples of bounded G2 functions include the
distribution functions of absolutely continuous distributions on the real line. In the simulation
study in Section 2.4.2, we compare the performance of different specification functions in
terms of mean squared error, asymptotic efficiency of the estimator and computation times.

2.3. Numerical Estimation of the Model

In this section, we discuss the difficulties one encounters and the solutions we propose for
estimating the joint regression model. Section 2.3.1 illustrates the numerical optimization

3For b = 0, only the loss differences are positively homogeneous. However, the ordering of the losses is
still unaffected under this slightly weaker property.

4Since the conditional ES of financial assets for small probability levels is always negative, this is no critical
restriction. However, for the numerical parameter estimation, we have to restrict the parameter space Θ such
that X ′i θ

e < 0 for all θ ∈ Θ and for all Xi in the underlying sample. For details on this, we refer to Section 2.3.1.
5 Note that the positively homogeneous loss functions exhibit unbounded G2 functions. However, as the

function G2(z) does not grow faster than linear as z tends to infinity, the resulting finite moment conditions are
not too restrictive.
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procedure we employ for estimating the regression parameters and Section 2.3.2 discusses
different estimation methods for the covariance matrix of the estimator.

2.3.1. Optimization

Theorem 2.2.6 and Theorem 2.2.7 imply that both, M-estimation and Z-estimation of the
regression parameters θ have the same asymptotic efficiency and consequently, we discuss
these estimation approaches in terms of their numerical performance in the following.
The numerical implementation of the Z-estimator relies on root-finding of the estimating
equations given in (2.3), which we implement as in GMM-estimation by minimizing the inner
product ∑i ψ(Yi, Xi, θ)

′ ·
∑

i ψ(Yi, Xi, θ). However, the estimating equations are redescending
to zero for many attractive choices of G2 in the sense that ψ2(Y, X, θ) → 0 for X′θe → −∞.
Consequently, for θ such that θq = θ

q
0 and X′θe → −∞, we get the same minimal value of

the Z-estimation objective function ∑
i ψ(Yi, Xi, θ)

′ ·
∑

i ψ(Yi, Xi, θ) as for the true regression
parameters θ0. Thus, the Z-estimator is numerically unstable and diverges in many setups.

Consequently, we rely on M-estimation of the regression parameters in the following.
As the loss functions given in (2.2) are not differentiable and non-convex for all applicable
choices of the specification functions (Fissler, 2017), we apply a derivative-free global
optimization technique. More specifically, we use the Iterated Local Search (ILS) meta-
heuristic of Lourenço et al. (2003), which successively refines the parameter estimates by
repeated optimizations with iteratively perturbed starting values. Our exact implementation
consists of the following steps. First, we obtain starting values for θq and θe from two
quantile regressions ofY on X for the probability levels α and α̃, where we choose α̃ such that
the α̃-quantile and the α-ES coincide under normality. Second, using these starting values
we minimize the loss function with the derivative-free and robust Nelder-Mead Simplex
algorithm (Nelder and Mead, 1965). Third, we perturb the resulting parameter estimates
by adding normally distributed noise with zero mean and standard deviation equal to the
estimated asymptotic standard errors of the initial quantile regression estimates. Fourth, we
re-optimize the model with the perturbed parameter estimates as new starting values. If the
loss is further decreased by this re-optimization, we update the estimates and otherwise, we
retain the previous ones. Fifth, we iterate over the previous two steps until the loss does
not decrease in m = 10 consecutive iterations. Our numerical experiments indicate that
this repeated optimization procedure yields estimates very close to the ones stemming from
other global optimization techniques such as e.g. simulated annealing, whereas the major
advantage of ILS is the considerably lower computation time.

For the choices of the specification functions which result in positively homogeneous
loss functions, we have to restrict the domain of G2 to the negative real line as already
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discussed in Section 2.2.3. Thus, we have to restrict Θ such that X′i θ
e < 0 for all θ ∈ Θ

and for all i = 1, . . . , n during the optimization process. Even though in financial risk
management the response variable Y is usually given by financial returns where the true
(conditional) ES is strictly negative, there might still be some outliers Xi such that X′i θ

e
0 ≥ 0.

In such a case, imposing the restriction X′i θ
e < 0 for all i = 1, . . . , n during the optimization

process generates substantially biased estimates for θe. In order to avoid this, we estimate
the regression model for the transformed dependent variables Y −max(Y ) for the positively
homogeneous loss functions and add max(Y ) to the estimated intercept parameters to undo
the transformation6.

We provide an R package for the estimation of the regression parameters (see Bayer and
Dimitriadis, 2017b). This package contains an implementation of both, the M- and the Z-
estimator, where different optimization algorithms can be chosen (ILS, simulated annealing).
The package allows for choosing the specification functions G1 and G2 and it includes an
option to estimate the model either with or without the translation of the dependent variable.
Furthermore, the covariance matrix of the parameter estimates can be estimated either by
using the asymptotic theory and the resulting techniques we discuss in the next section,
or by using the nonparametric iid bootstrap (Efron, 1979). We recommend applying the
M-estimator with the ILS algorithm as this procedure exhibits the best performance in our
numerical experiments with respect to accuracy, stability and computation times.

2.3.2. Asymptotic Covariance Estimation

While most parts of the asymptotic covariance matrix given in Theorem 2.2.6 and Theo-
rem 2.2.7 are straightforward to estimate, two nuisance quantities impose some difficulties.
The first is the density quantile function fY |X(X′θ

q
0), which is already well investigated in the

quantile regression literature. In particular, we consider the estimators proposed by Koenker
(1994), henceforth denoted by iid and by Hendricks and Koenker (1992), henceforth denoted
by nid. The main difference between these is that the first is based on the assumption that
the quantile residuals are independent of the covariates, whereas the second allows for a
linear dependence structure. Both approaches depend on a bandwidth parameter which we
choose according to Hall and Sheather (1988).

6 Note that this data transformation changes the average loss function as the applied loss functions are in
general not translation invariant. Thus, optimizing the translated loss function can lead to different parameter
estimates. However, we do not face the risk of obtaining substantially biased estimates in cases where X ′i θ

e
0 ≥ 0

for some i ∈ {1, . . . n}. Our numerical experiments indicate that the difference between estimating the model
for Y and for Y −max(Y ) is small when X ′i θ

e
0 < 0 for all i ∈ {1, . . . n}, but can be quite substantial if there is an

outlier for Xi such that X ′i θ
e
0 ≥ 0.
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The second nuisance quantity is the variance of the quantile residuals, conditional on the
covariates and given that these residuals are negative,

Var
(
Y − X′θq

0
��Y ≤ X′θq

0, X
)
= Var

(
uq

��uq ≤ 0, X
)
. (2.25)

Estimation of this quantity is demanding for two reasons. First, for very small probability
levels which are typical in financial risk management such as e.g. α = 2.5%, the truncation
uq ≤ 0 cuts off all but very few (about α · n) observations. Second, modeling this truncated
variance conditional on the covariates X is challenging, especially considering the very small
sample sizes. Under the assumption of homoscedasticity, i.e. that the distribution of uq is
independent of the covariates X , we can simply estimate (2.25) by the sample variance of
the negative quantile residuals and we refer to this estimator as ind in the following.

We propose two further estimators which allow for a dependence of the quantile residuals
on the covariates. For this purpose, we assume a location-scale process with linear7
specifications of the conditional mean and standard deviation in order to explicitly model
the conditional relationship of uq on X ,

uq = X′ζ + X′φ · ε, (2.26)

for some parameter vectors ζ, φ ∈ Rk and where ε ∼ G(0, 1) follows a zero mean, unit
variance distribution, such that uq |X ∼ G

(
X′ζ, (X′φ)2

)
with distribution function FG and

density fG. As we need to estimate the truncated variance of uq given uq ≤ 0, i.e. a truncated
variant of (X′φ)2, one possibility is to estimate (2.26) only for those observations where
uq ≤ 0. However, this approach particularly suffers from the very few negative quantile
residuals as we need to estimate additional parameters compared to the ind approach.

We present a feasible alternative by estimating the parameters ζ and φ using all available
observations of uq and X by quasi generalized pseudo maximum likelihood (Gourieroux and
Monfort, 1995, Section 8.4.4) and we obtain the truncated conditional variance by the scaling

formula Var (uq |uq ≤ 0, X) =
∫ 0
−∞

z2h(z) dz −
(∫ 0
−∞

zh(z) dz
)2
, where h(z) = fG(z)/FG(0)

is the truncated conditional density of uq given X and uq ≤ 0. We propose one parametric
estimator, henceforth denoted by scl-N, where we assume that the distribution G is the
normal distribution and apply a closed-form solution to the scaling formula. We further
propose a semiparametric estimator, henceforth denoted by scl-sp, where we estimate the

7 This approach can further be generalized by considering more general specifications for the conditional
mean and standard deviation. However, our numerical experiments indicate that the estimation accuracy for
the asymptotic covariance matrix does not increase by deviating from these linear specifications.
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distribution G nonparametrically and then apply the scaling formula for this estimated density
by numerical integration.

2.4. Simulation Study

In this section, we investigate the finite sample behavior of the M-estimator and verify
the asymptotic properties derived in Section 2.2.2 through simulations. Furthermore, we
compare the performance of different choices for the specification functions and evaluate the
precision of the different covariance matrix estimators described in Section 2.3.2.

2.4.1. Data Generating Process

In order to assess the numerical properties of estimating the joint regression model, we
simulate data from a linear location-scale data generating process (DGP),

Y = X′γ + (X′η) · v, (2.27)

where v ∼ F(0, 1) has zero mean and unit variance, X =
(
1, X2, . . . , Xk

)′ and γ, η ∈ Rk . For
this process, the true conditional quantile and ES are linear functions in X , given by

Qα (Y |X) = X′(γ + zαη) and ESα (Y |X) = X′(γ + ξαη), (2.28)

where zα and ξα are the quantile and ES of the distribution F(0, 1), which implies that
θ

q
0 = γ + zαη and θe

0 = γ + ξαη. Furthermore, the conditional distributions of the quantile-
and ES-residuals are given by

uq |X ∼ F
(
−zα(X′η), (X′η)2

)
and ue |X ∼ F

(
−ξα(X′η), (X′η)2

)
. (2.29)

For the simulation study, we want to assess the performance of our regression procedure
in various setups. Thus, we specify γ, η and F in the following such that we get data which
is homoscedastic (DGP-(1)) and heteroskedastic (DGP-(2)). Furthermore, we include a
regression setup with multiple, correlated regressors and a leptocurtic conditional distribution
(DGP-(3)),

DGP-(1): X = (1, X2), X2 ∼ χ2
1 and Y |X ∼ N

(
−X2, 1

)
DGP-(2): X = (1, X2), X2 ∼ χ2

1 and Y |X ∼ N
(
−X2, (1 + 0.5X2)

2)
DGP-(3): X = (1, X2, X3) X2, X3 ∼ U[0, 1] with corr(X2, X3) = 0.5 and

Y |X ∼ t5
(
X2 − X3, (1 + X2 + X3)

2
)
.
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We simulate all three processes 25,000 times with varying sample sizes of n = 250, 500,
1000, 2000 and 5000 observations. For each replication and for each of the sample sizes
we regress the simulated Y ’s on the covariates X using our joint regression method for the
probability level α = 2.5%.

2.4.2. Comparing the Specification Functions

We start the discussion of the simulation results by investigating the numerical performance
of the M-estimator based on different choices of the specification function8 G2 used in the
loss function in (2.2). We use three natural examples resulting in positively homogeneous
loss functions of order b = −1, b = 0 and b = 0.5 respectively9, a bounded G2 function and
the (unbounded) exponential function:

G2(z) = −1/z, G2(z) = − log(−z), G2(z) = −
√
−z,

G2(z) = log
(
1 + exp(z)

)
, and G2(z) = exp(z).

(2.30)
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Figure 2.1: Sum of the mean squared errors of the parameter estimates for all three DGPs. The results are
shown for the five choices of the specification functions given in (2.30) and a range of sample sizes.

Figure 2.1 presents the sum (over the 2k regression parameters) of the mean squared
errors (MSE) of the regression parameters for the three DGPs described above, different
sample sizes and for the five choices of the specification functions given in (2.30). As
implied by the asymptotic theory, we obtain consistent parameter estimates for all five
choices of the specification functions as the MSEs converge to zero for all three DGPs.
However, they differ substantially with respect to their small sample properties. The three
positively homogeneous specifications result in the most accurate estimates, whereas the
choices G2(z) = −

√
−z and G2(z) = − log(−z) tend to perform slightly better than the choice

8Following the reasoning of Section 2.2.3 and Nolde and Ziegel (2017) and Ziegel et al. (2017), we fix
G1(z) = 0 throughout the simulation study.

9Our numerical simulations show that the numerical results are unaffected by different choices of the
associated constants in (2.22) - (2.24).
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G2(z) = −1/z. Furthermore, the bounded choice G2(z) = log
(
1 + exp(z)

)
still performs

better than the unbounded exponential function.
Table 2.1 reports the Frobenius norms of the lower triangular parts of the true asymptotic

covariance matrices and of the respective (lower triangular) quantile-specific and the ES-
specific sub-matrices for the three DGPs and for the five choices of the specification functions
given in (2.30). For comparison, we also report the Frobenius norm of the lower triangular
part of the asymptotic covariance of the quantile regression estimator. We approximate the
true asymptotic covariance matrix through Monte-Carlo integration with a sample size of 109

using the formulas in Theorem 2.2.6 and by using the true density and conditional truncated
variance. On average, the specification functions G2(z) = − log(−z) and G2(z) = −

√
−z

exhibit the smallest asymptotic covariances, closely followed by the third choice for a
positively homogeneous loss function, G2(z) = −1/z. The non-homogeneous choices lead
to considerably larger asymptotic variances for all considered DGPs and sub-matrices.
Furthermore, by comparing the quantile-specific parameters of the joint estimation approach
(from the positively homogeneous loss functions) to quantile regression estimates, we roughly
obtain the same asymptotic efficiency.

Table 2.1: This table reports the Frobenius norms of the lower triangular parts of the asymptotic covariance
matrices and the respective quantile-specific and the ES-specific sub-matrices for the three DGPs and for the
five choices of the specification functions given in (2.30). For comparison, we report the same quantity for the
asymptotic covariance of the quantile regression estimator.

DGP-(1) DGP-(2) DGP-(3)

Q ES Full Q ES Full Q ES Full

G2(z) = − log(−z) 7.5 13.1 9.2 17.9 26.9 20.0 581.1 1739.1 1053.0
G2(z) = −

√
−z 7.0 11.8 8.4 18.0 25.4 19.3 584.5 1740.1 1054.4

G2(z) = −1/z 9.1 16.9 11.8 24.1 39.4 28.5 613.7 1851.9 1119.8
G2(z) = log(1 + exp(z)) 15.4 21.5 16.6 72.4 80.1 67.1 987.9 2393.0 1496.4
G2(z) = exp(z) 15.8 22.6 17.2 74.6 84.5 70.0 1001.9 2440.4 1524.6
Quantile Regression 6.8 – – 21.4 – – 600.5 – –

2.4.3. Comparing the Variance-Covariance Estimators

In this section, we compare the empirical performance of the asymptotic covariance estimators
discussed in Section 2.3.2. For the comparison of their precision, Figure 2.2 reports the
average of the Frobenius norm of the lower triangular part of the differences between the
estimated covariances and the empirical covariance of the estimated parameters. We report
results for the three homogeneous loss functions and the three DGPs, where each of the plots
presents the average norm differences for the four covariance estimators (iid/nid, nid/scl-N,
nid/scl-sp and the iid bootstrap) depending on the sample size.
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Figure 2.2: This figure compares four covariance estimation approaches described in Section 2.3.2 for the
three data generating processes, a range of sample sizes and the three positively homogeneous choices of the
G2-functions. We report the average of the Frobenius norm of the lower triangular part of the differences
between the estimated asymptotic covariances and the empirical covariance of the M-estimator.

We find that the iid/nid estimator performs well for the first, homoscedastic DGP whereas
for the other two DGPs, it fails to capture the underlying more complicated dynamics of
the data. The nid/scl-N estimator outperforms the other estimation approaches in the first
two DGPs, where the underlying conditional distribution follows a normal distribution
whereas its performance drops for the third DGP, which follows a Student-t distribution. The
performance of the flexible nid/scl-sp estimator is the most stable throughout all three DGPs.
Eventually, the bootstrap estimator accurately estimates the covariance for all three DGPs,
whereas in comparison to the other estimators, it is particularly good in small samples. The
provided R package contains all four covariance estimators.
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2.5. Empirical Application

In this empirical application, we use our joint regression framework for forecasting the VaR
and ES of the close-to-close log returns of the IBM stock.

Qα(rt |RVt−1) = θ
q
1 + θ

q
2RVt−1 and ESα(rt |RVt−1) = θ

e
1 + θ

e
2RVt−1, (2.31)

where RVt = (
∑

i r2
t,i)

1/2 denotes the realized volatility estimator (Andersen and Bollerslev,
1998) for day t, where rt,i denotes the i-th high-frequency return of day t. Our dataset consists
of the five minute returns of the IBM stock from January 3, 2001 to July 18, 2017 with total
of 4120 days, which we obtain from the TAQ database. We estimate the model parameters
using a rolling window of 1000 days and evaluate the forecasts on the remaining 3120 days.

We compare the predictive power of this model against three standard models from the
literature. The first is the historical simulation (HS) approach, which forecasts the VaR
and ES for day t as the sample quantile and ES of the daily returns of the past 250 trading
days. The second is an AR(1)-GARCH(1,1)-t model (Bollerslev, 1986), and the third is
the Heterogeneous Auto-Regressive (HAR) model of Corsi (2009), based on the realized
volatility estimates given above. Forecasts of the VaR and ES for the HAR model are
obtained from the volatility forecasts and by assuming a Gaussian return distribution. While
the first two of these approaches rely on daily data only, the third one incorporates the same
high frequency information as our approach.

We evaluate the forecasting power of the VaR and ES of these models by the class of
strictly consistent loss (scoring) functions for the VaR and ES of Fissler and Ziegel (2016).
We useMurphy diagrams introduced by Ehm et al. (2016) and Ziegel et al. (2017), which
provide a parsimonious way to evaluate competing forecasts simultaneously for a full class
of strictly consistent loss functions. In fact, one forecasting model significantly dominates
another one with respect to the full class of strictly consistent loss functions if and only if the
elementary score differences plotted in the Murphy diagrams are strictly negative (positive).
For further details on the theory and the implementation of Murphy diagrams, we refer to
Ehm et al. (2016) and Ziegel et al. (2017).

Figure 2.3 displays the average of the elementary score differences of the joint VaR and
ES regression model against the three alternative models together with the respective 95%
pointwise confidence bands for the elementary scores provided in Ziegel et al. (2017) for
the pair VaR and ES. Using this graphical method, we can see that the elementary score
differences for the joint regression forecasting model against the historical simulation and
AR(1)-GARCH(1,1)-t model are significantly negative for the vast majority of threshold
values. This implies that the joint regression forecasting model significantly dominates these
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Figure 2.3: Elementary Score Differences of the VaR/ES Regression and the respective comparison models

other two forecasting approaches. Even though we also observe strictly negative elementary
score differences in comparison against the HAR model, these differences are not significant
and consequently, we cannot significantly outperform this model.

2.6. Conclusion

In this paper, we introduce a joint regression technique for the quantile (the VaR) and the
ES. This regression approach relies on the class of strictly consistent joint loss functions
introduced by Fissler and Ziegel (2016), which permits the joint elicitation of the quantile and
the ES.We introduce anM- and a Z-estimator for the parameters of the joint regression model.
Given a set of standard regularity conditions, we show consistency and asymptotic normality
for both estimators, which we also verify numerically through extensive simulations. The
underlying loss functions, the estimating equations and the asymptotic covariance matrices
of the estimators depend on the choice of two specification functions, which we investigate in
terms of the resulting moment conditions, asymptotic efficiency, numerical performance and
computation times. In our numerical simulations, we find that choices resulting in positively
homogeneous loss functions dominate other choices with respect to the aforementioned
criteria. Furthermore, we propose several estimation methods for the asymptotic covariance
matrix, which are able to cope with different properties of the underlying data. We provide an
R package (see Bayer and Dimitriadis, 2017b), which implements the M- and Z-estimation
procedures where one can choose the underlying specification functions, the numerical
optimization approach and the estimation method for the asymptotic covariance matrix.

Our new joint regression technique allows for a wide range of applications for the risk
measures VaR and ES. As an illustration, we present an empirical application in this paper
where we use this regression framework to jointly forecast VaR and ES based on realized
volatility estimates. Furthermore, Bayer and Dimitriadis (2017c) use this regression to
develop an ES backtest which is particularly relevant in light of the recent introduction of ES
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into the Basel regulatory framework and the present lack of accurate backtesting methods
for the ES.

Appendix 2.A Finite Moment Conditions

For convenience of the supremumnotation, for all θ ∈ int(Θ) and for d > 0, we define the open
neighborhoodUd(θ) = {τ ∈ Θ : | |τ−θ | | < d} and its closure Ūd(θ) = {τ ∈ Θ : | |τ−θ | | ≤ d}.

(M-1) For Theorem 2.2.4, we assume that the following moments are finite for some
d0 > 0:

• E[| |X | |2 supθ∈Ud0 (θ0) |G
(1)
1 (X

′θq)|]

• E[| |X | |2 supθ∈Ud0 (θ0) |G
(2)
1 (X

′θq)|]

• E[| |X | |2 supθ∈Ud0 (θ0) |G2(X′θe)|]

• E[| |X | |3 supθ∈Ud0 (θ0) |G
(1)
2 (X

′θe)|]

• E[| |X | |3 supθ∈Ud0 (θ0) |G
(2)
2 (X

′θe)|]

• E[| |X | |2 supθ∈Ud0 (θ0) |G
(1)
2 (X

′θe)| E[|Y | |X]]

• E[| |X | |2 supθ∈Ud0 (θ0) |G
(2)
2 (X

′θe)| E[|Y | |X]]

(M-2) For Theorem 2.2.5, we assume that the following moments are finite:

• E[| |X | |2]
• E[supθ∈Θ |G1(X′θq)|]

• E[|G1(Y )|]

• E[|a(Y )|]

• E[| |X | | supθ∈Θ |G2(X′θe)|]

• E[supθ∈Θ |G2(X′θe)| E[|Y | |X]]

• E[supθ∈Θ |G2(X′θe)|]

(M-3) For Theorem 2.2.6, we assume that the following moments are finite for some
constant d0 > 0 and for all θ ∈ Ūd0(θ0):

• E[| |X | |3(supτ∈Ūd0 (θ0)G
(1)
1 (X

′τq))(supτ̃∈Ūd0 (θ0)G
(2)
1 (X

′τ̃q))]

• E[| |X | |3(supτ∈Ūd0 (θ0)G
(1)
1 (X

′τq))(supτ̃∈Ūd0 (θ0)G
(1)
2 (X

′τ̃e))]

• E[| |X | |3(supτ∈Ūd0 (θ0)G2(X′τe))(supτ̃∈Ūd0 (θ0)G
(2)
1 (X

′τ̃q))]

• E[| |X | |3(supτ∈Ūd0 (θ0)G2(X′τe))(supτ̃∈Ūd0 (θ0)G
(1)
2 (X

′τ̃e))]

• E[| |X | |3 supτ∈Ūd0 (θ0)(G
(1)
1 (X

′τq))2]

• E[| |X | |3 supτ∈Ūd0 (θ0)(G2(X′τe))2]

• E[| |X | |3 supτ∈Ūd0 (θ0)G
(1)
1 (X

′τq)G2(X′τe)]

• E[| |X | |5(supτ∈Ūd0 (θ0)G
(1)
2 (X

′τe))(supτ̃∈Ūd0 (θ0)G
(2)
2 (X

′τ̃e))]

• E[| |X | |5(supτ∈Ūd0 (θ0)G
(1)
2 (X

′τe))2]
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• E[| |X | |4(supτ∈Ūd0 (θ0)G
(1)
2 (X

′τe))(supτ̃∈Ūd0 (θ0)G
(2)
2 (X

′τ̃e))E[|Y | |X]]

• E[| |X | |3G(1)2 (X
′θe)(supτ∈Ūd0 (θ0)G

(1)
2 (X

′τe))E[|Y | |X]]

• E[| |X | |3G(1)2 (X
′θe)(supτ∈Ūd0 (θ0)G

(2)
2 (X

′τe))E[Y2 |X]]

• E[| |X | |3(supτ∈Ūd0 (θ0)G
(1)
2 (X

′τe))(supτ̃∈Ūd0 (θ0)G
(2)
2 (X

′τ̃e))E[Y2 |X]]

(M-4) For Theorem 2.2.7, we assume that the following moments are finite for some
constant d0 > 0:

• E[|G1(Y )|]

• E[|a(Y )|]

• E[| |X | | supθ∈Ūd0 (θ0) |G
(1)
1 (X

′θq)|]

• E[| |X | |2 supθ∈Ūd0 (θ0)(G
(1)
1 (X

′θq))2]

• E[| |X | |2 supθ∈Ūd0 (θ0) |G
(1)
1 (X

′θq)G2(X′θe)|]

• E[| |X | | supθ∈Ūd0 (θ0) |G2(X′θe)|]

• E[| |X | |2 supθ∈Ūd0 (θ0) |G
(1)
2 (X

′θe)|]

• E[| |X | |2 supθ∈Ūd0 (θ0)(G2(X′θe))2]

• E[| |X | |4 supθ∈Ūd0 (θ0)(G
(1)
2 (X

′θe))2]

• E[| |X | | supθ∈Ūd0 (θ0) |G
(1)
2 (X

′θe)| E[|Y | |X]]

• E[| |X | |3 supθ∈Ūd0 (θ0)(G
(1)
2 (X

′θe))2 E[|Y | |X]]

• E[| |X | |2 supθ∈Ūd0 (θ0)(G
(1)
2 (X

′θe))2 E[Y2 |X]]

Appendix 2.B Proofs

Henceforth, | |v | | denotes the maximum norm for a vector v ∈ Rk and for a matrix A,
| |A| | denotes the row-sum matrix norm which is induced by the maximum norm for
vectors. For convenience of the supremum notation, for all θ ∈ int(Θ) and for some
d > 0, we define the open neighborhood Ud(θ) = {τ ∈ Θ : | |τ − θ | | < d} and its closure
Ūd(θ) = {τ ∈ Θ : | |τ − θ | | ≤ d}.

Proof of Theorem 2.2.4. We apply Theorem 2 from Huber (1967) and show that the function
ψ(Y, X, θ) as given in (2.3) satisfies the respective assumptions of this theorem. Note that the
parameter spaceΘ is assumed to be compact and thus, we do not have to show condition (B-4)
in the notation of Huber (1967). As the product of continuous functions and the indicator
function 1{Y≤X ′θq}, the function ψ is measurable and regarded as a stochastic process in θ,
ψ is separable in the sense of Doob as it is almost surely continuous in θ (Gikhman and
Skorokhod (2004), p.164). This condition assures measurability of the suprema10 given
below and in Lemma 2.C.1.

10 Many other authors such as e.g. Andrews (1994), Newey and McFadden (1994), and van der Vaart (1998)
rely on outer probability in order to avoid these measurability issues.
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In oder to show that ψ has a unique root at θ0, let us first define the sets

Uθ =
{
ω ∈ Ω

��X(ω)′θq , X(ω)′θq
0
}
, and Wθ =

{
ω ∈ Ω

��X(ω)′θq = X(ω)′θq
0
}
,

(2.32)

for all θ ∈ Θ such that Ω = Wθ ∪Uθ and Wθ ∩Uθ = ∅. We first show that P(Uθ) > 0 for
all θ , θ0. In order to see this, we assume the converse, i.e. let us assume that for a fixed
θ , θ0, it holds that P(Wθ) = P

(
X′θq = X′θq

0
)
= 1, which implies that

(θq − θ
q
0)
′ E[X X′] (θq − θ

q
0) = E

[ (
X′θq − X′θq

0
)2]
= 0. (2.33)

However, since θq , θ
q
0 , this contradicts the assumption that the matrix E[X X′] is positive

definite and we can conclude that P(Uθ) > 0.
The quantity

λ1(θ) = E
[
ψ1(Y, X, θ)

]
= 1/α E

[
X

(
αG(1)1 (X

′θq) + G2(X′θe)
) (

FY |X(X′θq) − FY |X(X′θ
q
0)

) ]
exists under the moment conditions (M-1) in Appendix 2.A and if θq = θ

q
0 , it holds that

λ1(θ) = 0. Now, we assume that θ ∈ Θ such that θq , θ
q
0 . By splitting the expectation, we

get that

λ1(θ)
′(θq − θ

q
0)

= 1/α E
[ (
αG(1)1 (X

′θq) + G2(X′θe)
) (

X′θq − X′θq
0
) (

FY |X(X′θq) − FY |X(X′θ
q
0)

)
1{ω∈Wθ }

]
+ 1/α E

[ (
αG(1)1 (X

′θq) + G2(X′θe)
) (

X′θq − X′θq
0
) (

FY |X(X′θq) − FY |X(X′θ
q
0)

)
1{ω∈Uθ }

]
.

The first summand is obviously zero since for all ω ∈ Wθ , FY |X(X′θq) − FY |X(X′θ
q
0) = 0.

Since the distribution of Y given X has strictly positive density in a neighbourhood of X′θq
0 ,

we get that FY |X is strictly increasing in a neighbourhood of X′θq
0 and thus(

X′θq − X′θq
0
) (

FY |X(X′θq) − FY |X(X′θ
q
0)

)
> 0 (2.34)

for all ω ∈ Uθ . Furthermore, since αG(1)1 (X
′θq)+G2(X′θe) > 0 for all θ ∈ Θ and P(Uθ) > 0,

we get that

λ1(θ)
′(θq − θ

q
0)

= 1/α E
[ (
αG(1)1 (X

′θq) + G2(X′θe)
) (

X′θq − X′θq
0
) (

FY |X(X′θq) − FY |X(X′θ
q
0)

)
1{ω∈Uθ }

]
> 0,



Chapter 2. Joint Quantile and ES Regression 75

and consequently λ1(θ) , 0. This implies that λ1(θ) = 0 if and only if θq = θ
q
0 . Furthermore,

λ2(θ) = E
[
XG(1)2 (X

′θe)
(
X′θq (

FY |X(X′θq) − α
)
/α + X′θe − 1/α E

[
Y1{Y≤X ′θq}

��X] ) ]
.

(2.35)

Assuming that θq = θ
q
0 , which results from λ1(θ) = 0, we get that FY |X(X′θq) = FY |X(X′θ

q
0) =

α and 1/α E
[
Y1{Y≤X ′θq0 }

��X]
= X′θe

0. Thus, (2.35) simplifies to E
[
(X X′)G(1)2 (X

′θe)
] (
θe−θe

0
)

and by applying Lemma 2.C.2, we get that the matrix E
[
(X X′)G(1)2 (X

′θe)
]
is positive definite

for all θ ∈ Θ. Consequently, λ2(θ) = 0 if and only if θe = θe
0 and together with the arguments

for λ1, we get that λ(θ) = 0 if and only if θ = θ0. Eventually, assumption (B-2)’ from
Theorem 2 of Huber (1967) follows directly from Lemma 2.C.1, which concludes this
proof. �

Proof of Theorem 2.2.5. For this proof, we apply Theorem 5.7 from van der Vaart (1998)
and show that the respective assumptions of this theorem hold. As in the proof of Theorem
2.2.6, we can conclude measurability of the suprema since the process ρ is continuous and
consequently separable in the sense of Doob. Thus, we do not have to rely on outer probability
measures such as in van der Vaart (1998). We start by showing uniform convergence in
probability of the empirical mean of the objective function by the help of Lemma 2.4 of
Newey and McFadden (1994). Since we have iid data, a compact parameter space Θ and
ρ(Y, X, θ) is continuous for all θ ∈ Θ, it remains to show that there exists a dominating
function d(Y, X) ≥ |ρ(Y, X, θ)

�� for all θ ∈ Θ with E
[
d(Y, X)

]
< ∞. We define

d(Y, X) = sup
θ∈Θ
|G1(X′θq) + 1/αG2(X′θe)(X′θq − Y )| +

��G1(Y )
��

+ sup
θ∈Θ

��G2(X′θe)
(
X′θe − X′θq) �� + sup

θ∈Θ
|G2(X′θe)| +

��αG1(Y ) + a(Y )
�� (2.36)

and it holds that d(Y, X) ≥
��ρ(Y, X, θ)

�� for all θ ∈ Θ and consequently, we can conclude
uniform convergence in probability.

We now show that E
[
ρ(Y, X, θ)

]
has a unique and global minimum at θ = θ0. For this,

we assume that θ ∈ Θ such that θ , θ0 and we define the sets

Uθ =
{
ω ∈ Ω

��X(ω)′θq , X(ω)′θq
0 or X(ω)′θe , X(ω)′θe

0
}

and (2.37)

Wθ =
{
ω ∈ Ω

��X(ω)′θq = X(ω)′θq
0 and X(ω)′θe = X(ω)′θe

0
}
, (2.38)

such that Ω = Uθ ∪Wθ and Uθ ∩Wθ = ∅. We first show that P(Uθ) > 0 for all θ , θ0. In
order to see this, we assume the converse, i.e. we assume that P(Wθ) = 1, which implies
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that (θq − θ
q
0)
′ E[X X′] (θq − θ

q
0) = E

[ (
X′θq − X′θq

0
)2

]
= 0, since P

(
X′θq = Xθq

0
)
= 1 and

equivalently (θe − θe
0)
′E[X X′](θe − θe

0) = 0. However, since θ , θ0 and consequently either
θq , θ

q
0 or θe , θe

0, this contradicts the assumption that the matrix E[X X′] is positive definite
and it follows that P(Uθ) > 0.

From the joint elicitability property of the quantile and ES of Fissler and Ziegel (2016),
Corollary 5.5 we get that for all x ∈ Rk such that x′θq , x′θq

0 or x′θe , x′θe
0, it holds that

E
[
ρ(Y, X, θ0)

��X = x
]
< E

[
ρ(Y, X, θ)

��X = x
]
, (2.39)

since the distribution of Y given X has a finite first moment and a unique α-quantile. Thus,
for all ω ∈ Uθ ,

E
[
ρ(Y, X, θ0)

��X]
(ω) < E

[
ρ(Y, X, θ)

��X]
(ω). (2.40)

We now define the random variable

h(X, θ, θ0)(ω) = E
[
ρ(Y, X, θ0)

��X]
(ω) − E

[
ρ(Y, X, θ)

��X]
(ω), (2.41)

and (2.40) implies that h
(
X, θ, θ0

)
(ω) < 0 for all ω ∈ Uθ . Since P(Uθ) > 0, this implies

that E
[
h(X, θ, θ0)1{ω∈Uθ }

]
< 0. Furthermore, for all ω ∈ Wθ , it obviously holds that

h(X, θ, θ0)(ω) = 0 and consequently E
[
h(X, θ, θ0)1{ω∈Wθ }

]
= 0. Thus, we get that

E
[
h(X, θ, θ0)

]
= E

[
h(X, θ, θ0)1{ω∈Uθ }

]
+ E

[
h(X, θ, θ0)1{ω∈Wθ }

]
< 0 (2.42)

for all θ ∈ Θ such that θ , θ0, which shows that E
[
ρ(Y, X, θ)

]
has a unique minimum at

θ = θ0. �

Proof of Theorem 2.2.6. We apply Theorem 3 of Huber (1967) for the ψ-function as given
in (2.3) and show the respective assumptions of this theorem. Consistency of the Z-estimator
is shown in Theorem 2.2.4. For the measureability and separability of the ψ function,
we refer to the proof of Theorem 2.2.4. It is already shown in the proof of Theorem
2.2.4 that there exists a θ0 ∈ Θ such that λ(θ0) = 0. For the technical conditions (N-
3), we apply Lemma 2.C.3, Lemma 2.C.1 and Lemma 2.C.4. It remains to show that
E
[
| |ψ(Y, X, θ0)| |

2] < ∞, which follows from the subsequent computation of C and the
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Moment Conditions (M-3) in Appendix 2.A. The asymptotic covariance matrix is given by
Λ−1CΛ−1, where C = E

[
ψ(Y, X, θ0)ψ(Y, X, θ0)

′
]
and

Λ =
∂λ(θ)

∂θ

����
θ=θ0

=

(
Λ11 Λ12

Λ21 Λ22

)
=

©«
∂λ1(θ)
∂θq

���
θ0

∂λ1(θ)
∂θe

���
θ0

∂λ2(θ)
∂θq

���
θ0

∂λ2(θ)
∂θe

���
θ0

ª®®¬ . (2.43)

Straightforward calculations yield thematrixC as given in (3.17) - (3.19). For the computation
of Λ, we first notice that the function

E
[
ψ(Y, X, θ)

��X]
=

©«
1
α

(
FY |X(X′θq) − α

) (
αG(1)1 (X

′θq) + G2(X′θe)
)

XG(1)2 (X
′θe)

(
X′θe − X′θq + 1

αE
[
(X′θq − Y )1{Y≤X ′θq}

��X] )ª®¬ (2.44)

is continuously differentiable for all θ in some neighborhood Ud(θ0) around θ0, since the
distribution FY |X has a density which is strictly positive, continuous and bounded in this area.
Let us choose a value θ̃ ∈ Ud(θ0) such that X′θ̃ ≤ X′θ. Then,

∂

∂θqE
[
Y1{Y≤X ′θq}

��X]
=

∂

∂θqE
[
Y1{Y≤X ′θ̃q}

��X]
+

∂

∂θqE
[
Y1{X ′θ̃q<Y≤X ′θq}

��X]
=

∂

∂θq

∫ X ′θq

X ′θ̃q
y fY |X(y)dy = X(X′θq) fY |X(X′θq).

(2.45)

We consequently get that for all θ ∈ Ud(θ0),

∂

∂θqE
[
ψ1(Y, X, θ)

��X]
= 1/α (X X′)

[ (
αG(1)1 (X

′θq) + G2(X′θe)
)

fY |X(X′θq)

+G(2)1 (X
′θq)

(
FY |X(X′θq) − α

) ]
,

∂

∂θeE
[
ψ1(Y, X, θ)

��X]
=

∂

∂θqE
[
ψ2(Y, X, θ)

��X]
= 1/α (X X′)G(1)2 (X

′θe)
(
FY |X(X′θq) − α

)
,

∂

∂θeE
[
ψ2(Y, X, θ)

��X]
= 1/α (X X′)G(2)2 (X

′θe)
[
X′θq (FY |X(X′θq) − α

)
+ α(X′θe) − E

[
Y1{Y≤X ′θq}

��X] ]
+ (X X′)G(1)2 (X

′θe).

In order to conclude that ∂
∂θE

[
E
[
ψ(Y, X, θ)

��X] ]
= E

[
∂
∂θE

[
ψ(Y, X, θ)

��X] ]
, we apply a

measure-theoretical version of the Leibniz integration rule, which requires that the derivative
of the integrand exists and is absolutely bounded by some integrable function d(Y, X),
independent of θ. For the first term, this can easily be obtained by defining

d(Y, X) = sup
θ∈Ud(θ0)

������1/α (X X′)
[ (
αG(1)1 (X

′θq) + G2(X′θe)
)

fY |X(X′θq) + G(2)1 (X
′θq)

(
FY |X(X′θq) − α

) ] ������ ,
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which has finite expectation by the Moment Conditions (M-3). The other two terms follow
the same reasoning. Inserting θ = θ0 eventually shows (3.15) and (3.16). �

Proof of Theorem 2.2.7. For this proof, we apply Theorem 5.23 from van der Vaart (1998)
and show that the respective assumptions of this theorem hold. Theorem 2.2.5 shows
consistency of the M-estimator. The map (Y, X) 7→ ρ(Y, X, θ) is obviously measurable as
the sum of measurable functions. Furthermore, the map θ 7→ ρ(Y, X, θ) is almost surely
differentiable since the only point of non-differentiability occurs where Y = X′θq, which is a
nullset with respect to the joint distribution of Y and X and for all θ ∈ Θ such that Y , X′θq,
its derivative is given by ψ(Y, X, θ). Local Lipschitz continuity with square-integrable
Lipschitz-constant follows from Lemma 2.C.5. We have already seen in the proof of
Theorem 2.2.5 that the function E

[
ρ(Y, X, θ)

]
is uniquely minimized at the point θ0 and is

twice continuously differentiable and consequently admits a second-order Taylor expansion
at θ0. Thus, we have shown the necessary assumptions of Theorem 5.23 from van der Vaart
(1998).

For the computation of the covariance matrix, we notice that the distribution of Y

given X has a density fY |X in a neighborhood of X′θ0, which is strictly positive, con-
tinuous and bounded. Therefore, by the same arguments as in (2.45), we get that
∂
∂θqE

[
G1(Y )1{Y≤X ′θq}

��X]
= XG1(X′θq) fY |X(X′θq). Thus, straight-forward calculations

yield that for all θ ∈ Ud(θ0), it holds that ∂
∂θE

[
ρ(Y, X, θ)

��X]
= E

[
ψ(Y, X, θ)

��X]
and by

applying the Leibniz integration rule such as in the proof of Theorem 2.2.6, we finally get
that

∂

∂θ
E
[
ρ(Y, X, θ)

]
= E

[
ψ(Y, X, θ)

]
. (2.46)

Consequently, the asymptotic covariance matrix equals the one given in Theorem 2.2.6. �

Appendix 2.C Technical Results

Lemma 2.C.1. Let

u(Y, X, θ, d) = sup
τ∈Ūd(θ)

����ψ(Y, X, τ) − ψ(Y, X, θ)
���� (2.47)

and assume that Assumption 2.2.1, Assumption 2.2.2 and the Moment Conditions (M-1) in
Appendix 2.A hold. Then, there are strictly positive real numbers b and d0, such that

E
[
u(Y, X, θ, d)

]
≤ b · d for | |θ − θ0 | | + d ≤ d0, (2.48)
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and for all d ≥ 0.

Proof of Lemma 2.C.1. For measurability of the suprema, we refer to the proof of Theorem
2.2.4. Let in the following d > 0 and θ ∈ Θ such that | |θ − θ0 | | + d ≤ d0. We first notice
that for some fixed X ∈ Rk and for all τ ∈ Ūd(θ), it holds that��1{Y≤X ′θq} − 1{Y≤X ′τq}

�� ≤ 1{X ′θq−≤Y≤X ′θq+}
(2.49)

for all Y ∈ R and for some θq
−, θ

q
+ ∈ Ūd(θ). Since Ūd(θ) is compact, we get that

sup
τ∈Ūd(θ)

��1{Y≤X ′θq} − 1{Y≤X ′τq}
�� ≤ 1{X ′θq−≤Y≤X ′θq+}

(2.50)

for all Y ∈ R and for some values θq
−, θ

q
+ ∈ Ūd(θ). Note that the values θq

− and θ
q
+ depend on

X and θ, however they are independent of Y . Consequently, it holds that

E

[
sup

τ∈Ūd(θ)

��1{Y≤X ′θq} − 1{Y≤X ′τq}
������� X

]
≤ E

[
1{X ′θq−≤Y≤X ′θq+}

��� X
]

= FY |X
(
X′θq
+

)
− FY |X

(
X′θq
−

)
= fY |X(X′θ̃q)

(
X′θq
+ − X′θq

−

)
≤ 2| |X | | · sup

τ∈Ūd(θ)

fY |X(X′τq) · d,

(2.51)

where we apply the mean value theorem for some θ̃q on the line between θq
− and θ

q
+, i.e.

θ̃q ∈ Ūd(θ).
For the first component of ψ, we get that

E

[
sup

τ∈Ūd(θ)

����ψ1(Y, X, θ) − ψ1(Y, X, τ)
����]

≤ E

[
sup

τ∈Ūd(θ)

��������X (
G(1)1 (X

′θq) − G(1)1 (X
′τq) +

G2(X′θe) − G2(X′τe)

α

)��������]
+ E

[
sup

τ∈Ūd(θ)

��������X (
G(1)1 (X

′τq) +
G2(X′τe)

α

)�������� · E [
sup

τ∈Ūd(θ)

��1{Y≤X ′θq} − 1{Y≤X ′τq}
������� X

] ]
.

(2.52)



Chapter 2. Joint Quantile and ES Regression 80

The first term in (2.52) isO(d) since G(1)1 (X
′θq) and G2(X′θe) are continuously differentiable

functions w.r.t θ and thus, by the mean value theorem we get that

sup
τ∈Ūd(θ)

��G(1)1 (X
′θq) − G(1)1 (X

′τq)
�� ≤ sup

τ̃∈Ūd(θ)

����XG(2)1 (X
′τ̃q)

���� · sup
τ∈Ūd(θ)

����θq − τq
����

≤ sup
τ̃∈Ūd(θ)

����XG(2)1 (X
′τ̃q)

���� · d, (2.53)

and the respective moments are finite by assumption. The same arguments hold for the
function G2. For the second term in (2.52), we apply (2.51) and thus get that

E

[
sup

τ∈Ūd(θ)

��������X (
G(1)1 (X

′τq) +
G2(X′τe)

α

)�������� · E [
sup

τ∈Ūd(θ)

��1{Y≤X ′θq} − 1{Y≤X ′τq}
������� X

] ]
≤ E

[
sup

τ∈Ūd(θ)

��������X (
G(1)1 (X

′τq) +
G2(X′τe)

α

)�������� | |X | | · sup
τ∈Ūd(θ)

fY |X(X′τq)

]
· d.

(2.54)

Since the density fY |X is bounded in a neighborhood of X′θq
0 and the respective moments

are finite by assumption, we get that this term is also O(d).
For the second component of ψ, we get that

E

[
sup

τ∈Ūd(θ)

����ψ2(Y, X, θ) − ψ2(Y, X, τ)
����]

≤ E

[
sup

τ∈Ūd(θ)

����X(X′θe − X′θq)G(1)2 (X
′θe) − X(X′τe − X′τq)G(1)2 (X

′τe)
����]

+ E

[�����
�����XG(1)2 (X

′θe)X′θq

α

�����
����� · E

[
sup

τ∈Ūd(θ)

�� (1{Y≤X ′θq} − 1{Y≤X ′τq}
) ������� X

] ]
+ E

[
E

[
sup

τ∈Ūd(θ)

�����
�����1{Y≤X ′τq}

(
XG(1)2 (X

′θe)X′θq

α
−

XG(1)2 (X
′τe)X′τq

α

)�����
�����
����� X

] ]
+ E

[�����
�����XG(1)2 (X

′θe)

α

�����
����� · E

[
sup

τ∈Ūd(θ)

��Y (
1{Y≤X ′θq} − 1{Y≤X ′τq}

) ������� X

] ]
+ E

[
E

[
sup

τ∈Ūd(θ)

��������Y1{Y≤X ′τq}

α

(
XG(1)2 (X

′θe) − XG(1)2 (X
′τe)

) ������������� X

] ]
= (i) + (ii) + (iii) + (iv) + (v).

The first, third and fifth term are linearly bounded by (2.53) since the functions
(X′θe−X′θq)G(1)2 (X

′θe) and (X′θq)G(1)2 (X
′θe) andG(1)2 (X

′θe) are continuously differentiable.



Chapter 2. Joint Quantile and ES Regression 81

For the second term, we use the arguments from (2.51). For the fourth term, we use similar
arguments as in (2.51), and get that there exist some θq

−, θ
q
+ ∈ Ūd(θ) and a value θ̃q on the

line between θq
− and θ

q
+, such that

E

[�����
�����XG(1)2 (X

′θe)

α

�����
�����E

[
sup

τ∈Ūd(θ)

��Y (
1{Y≤X ′θq} − 1{Y≤X ′τq}

) ������� X

] ]
≤ E

[�����
�����XG(1)2 (X

′θe)

α

�����
�����E [
|Y | 1{X ′θq−≤Y≤X ′θq+}

��� X
] ]

= E

[�����
�����XG(1)2 (X

′θe)

α

�����
����� ∫ X ′θq+

X ′θq−
|y | fY |X(y)dy

]
≤ E

[�����
�����XG(1)2 (X

′θe)

α

�����
����� |X′θ̃q | fY |X(X′θ̃q)

(
X′θq
+ − X′θq

−

) ]
≤

2
α
E

[
G(1)2 (X

′θe)
����X ����2 sup

τ∈Ūd(θ)

|X′τq | fY |X(X′τq)

]
· d = O(d)

(2.55)

since fY |X is bounded in a neighborhood of X′θ0 and the respective moments exist by
assumption. This concludes the proof of the lemma. �

Lemma 2.C.2. Let the random variable X ∈ Rk with distribution P be such that its second
moments exist and the matrix E[X X′] is positive definite. Furthermore, let Θ̃ ⊂ Rk be a
compact subspace with nonempty interior and let g : Rk × Θ̃ → R be a strictly positive
function. Then, the matrix

E
[
(X X′)g(X, θ)

]
(2.56)

is also positive definite.

Proof of Lemma 2.C.2. Since E[X X′] is positive definite, we know that for all z ∈ Rk

with z , 0, it holds that 0 < z′E[X X′]z = E[z′(X X′)z] = E[(X′z)2] and consequently
P
(
X′z , 0

)
> 0. Since

√
g(X, θ) is a strictly positive scalar for all θ ∈ Θ̃, it also holds that

P
(
(X′z)

√
g(X, θ) , 0

)
> 0 and thus, for all z , 0,

z′E
[
(X X′)g(X, θ)]z = E

[(
X′z

√
g(X, θ)

)2
]
> 0. (2.57)

This positivity statement holds since
(
X′z

√
g(X, θ)

)2 is a non-negative random variable
and P

(
(X′z)

√
g(X, θ) , 0

)
> 0. This shows that the matrix E

[
(X X′)g(X, θ)

]
is positive

definite. �
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Lemma 2.C.3. Assume that Assumption 2.2.1, Assumption 2.2.2 and the Moment Condi-
tions (M-3) in Appendix 2.A hold. Then, for

λ(θ) = E
[
ψ(Y, X, θ)

]
, (2.58)

there are strictly positive numbers a, d0, such that

| |λ(θ)| | ≥ a · | |θ − θ0 | | for | |θ − θ0 | | ≤ d0. (2.59)

Proof of Lemma 2.C.3. Let d0 > 0 and let | |θ − θ0 | | ≤ d0. Then, applying the mean value
theorem, we get that

λ1(θ) =
1
α
E

[
(X X′)

(
αG(1)1 (X

′θq) + G2(X′θe)
)

fY |X(X′θ̃q)

]
(θq − θ

q
0) (2.60)

for some θ̃q on the line between θq and θq
0 . Similarly, for the second component we get that

λ2(θ) = E

[
X

G(1)2 (X
′θe) fY |X(X′θ̃q)

α

[
X′(θq − θ

q
0)

] [
X′(θ̃q − θq)

] ]
+ E

[
(X X′)G(1)2 (X

′θe)
]
(θe − θe

0),

(2.61)

where θ̃q lies on the line between θq and θq
0 .

We first assume that | |θ − θ0 | | = | |θ
q − θ

q
0 | |, i.e. | |θ

q − θ
q
0 | | ≥ | |θ

e − θe
0 | |. Since the matrix

A(θ) := E

[
(X X′)

(
αG(1)1 (X

′θq) + G2(X′θe)
)

α
fY |X(X′θ̃q)

]
(2.62)

exists and has full rank for all θ ∈ Θ by Lemma 2.C.2 and is obviously symmetric, A has
strictly positive real Eigenvalues γ1(θ), . . . , γk(θ) with minimum γ(1)(θ) and we thus get
that11

| |λ(θ)| | ≥ | |λ1(θ)| | = | |A(θ)(θq − θ
q
0)| | ≥ γ(1)(θ) · | |θ

q − θ
q
0 | | (2.63)

≥

(
inf

| |θ−θ0 | |≤d0
γ(1)(θ)

)
· | |θq − θ

q
0 | | = c1 | |θ − θ0 | |. (2.64)

11For a symmetric matrix A with full rank, we can find an orthogonal basis of Eigenvectors {v1, . . . , vk}
with corresponding nonzero Eigenvalues {γ1(θ), . . . , γk(θ)} such that x =

∑
bjvj with bj ∈ R. Then,

| |Ax | | = | |A
∑

bjvj | | = | |
∑

bj Avj | | = | |
∑

bjγjvj | | ≥ min |γj | · | |
∑

bjvj | | = min |γj | · | |x | |.
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Since | |θ − θ0 | | ≤ d0 is a compact set and the function θ 7→ inf | |θ−θ0 | |≤d0 γ(1)(θ), where
γ(1)(θ) is the smallest Eigenvalue of the matrix A(θ), is continuous12, we get that the infimum
coincides with the minimum and thus, the constant c1 := inf | |θ−θ0 | |≤d0 γ(1)(θ) is strictly
positive and does not depend on θ.

Now, we assume that | |θ − θ0 | | = | |θ
e − θe

0 | | ≤ d0, i.e. | |θe − θe
0 | | ≥ | |θ

q − θ
q
0 | |. For the

first term of λ2(θ), given in (2.61), we define the vector

b(θ) := E

[
X

G(1)2 (X
′θe) fY |X(X′θ̃q)

α

[
X′(θq − θ

q
0)

] [
X′θ̃q − X′θq)

] ]
, (2.65)

and for its l-th component, we get that

|bl(θ)| =

�����∑i, j (θq
i − θ

q
0i)(θ̃

q
j − θ

q
j )E

[
Xi X j Xl

G(1)2 (X
′θe) fY |X(X′θ̃q)

α

] �����
≤

∑
i, j
E

[�����Xi X j Xl
G(1)2 (X

′θe) fY |X(X′θ̃q)

α

�����
]
· |θ

q
i − θ

q
0i | · |θ̃

q
j − θ

q
j |

≤ c2
∑
i, j
|θ

q
i − θ

q
0i | · |θ̃

q
j − θ

q
j |

≤ c2k2 | |θ − θ0 | |
2,

(2.66)

for all l = 1, . . . , k, which implies that

| |b(θ)| | ≤ c3 | |θ − θ0 | |
2, (2.67)

for some c3 > 0. For D(θ) := E
[
(X X′)G(1)2 (X

′θe)
]
, it holds that | |D(θ)(θe − θe

0)| | ≥

c4 | |θ
e − θe

0 | | = c4 | |θ − θ0 | | for c4 > 0 by the same arguments as in (2.63). From (2.66), we
can choose d0 small enough such that

2| |b(θ)| | ≤ 2c3 | |θ − θ0 | |
2 ≤ c4 | |θ − θ0 | | ≤ | |D(θ)(θe − θe

0)| |. (2.68)

12 This follows since the entries of the matrix A(θ) are continuous in θ as the expectation of a continuous
function which is dominated by an integrable function is again continuous by the dominated convergence
theorem. Furthermore, the Eigenvalues of a matrix are the solution of the characteristic polynomial, which
has continuous coefficients since our matrix entries are continuous in θ. Eventually, since the roots of any
polynomial with continuous coefficients are again continuous, we can conclude that the Eigenvalues of A(θ)
are continuous in θ.
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Furthermore, by the submultiplicativity of thematrix norm, we also get that | |D(θ)(θe−θe
0)| | ≤

| |D(θ)| | · | |θe − θe
0 | | = c5 | |θ

e − θe
0 | | and by the inverse triangle inequality, we get that

| |λ(θ)| | ≥ | |λ2(θ)| | =
����D(θ)(θe − θe

0) + b(θ)
���� ≥ ���| |D(θ)(θe − θe

0)| | − | |b(θ)| |
���. (2.69)

From (2.68), we can choose d0 small enough such that | |D(θe − θe
0)| | > 2| |b| | and thus���| |D(θe − θe

0)| | − | |b| |
��� = | |D(θe − θe

0)| | − | |b| | ≥
1
2
| |D(θe − θe

0)| | (2.70)

≥
c4
2
| |θe − θe

0 | | =
c4
2
| |θ − θ0 | |. (2.71)

�

Lemma 2.C.4. Let

u(Y, X, θ, d) = sup
τ∈Ūd(θ)

����ψ(Y, X, τ) − ψ(Y, X, θ)
����. (2.72)

and assume that Assumption 2.2.1, Assumption 2.2.2 and the Moment Conditions (M-3) in
Appendix 2.A hold. Then, there are strictly positive numbers c and d0, such that

E
[
u(Y, X, θ, d)2

]
≤ c · d for | |θ − θ0 | | + d ≤ d0, (2.73)

and for all d ≥ 0.

Proof of Lemma 2.C.4. Let in the following d > 0 and θ ∈ Θ such that | |θ − θ0 | | + d ≤ d0.
It holds that(

sup
τ∈Ūd(θ)

����ψ(Y, X, τ) − ψ(Y, X, θ)
����)2

= sup
τ∈Ūd(θ)

����ψ(Y, X, τ) − ψ(Y, X, θ)
����2 (2.74)

and consequently, we show that

E

[
sup

τ∈Ūd(θ)

����ψ j(Y, X, τ) − ψ j(Y, X, θ)
����2] = O(d) (2.75)

for both components j = 1, 2 and for some d > 0 small enough.
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For the first squared component, we get that

E

[
sup

τ∈Ūd(θ)

����ψ1(Y, X, τ) − ψ1(Y, X, θ)
����2]

≤ max

(����1 − αα ����2 , 1) · E [
sup

τ∈Ūd(θ)

������X (
αG(1)1 (X

′θq) + G2(X′θe) − αG(1)1 (X
′τq) − G2(X′τe)

) ������2]
+

2
α2E

[
sup

τ∈Ūd(θ)

������X (
αG(1)1 (X

′τq) + G2(X′τe)
) ������2 | |X | | sup

τ∈Ūd(θ)

fY |X(X′τq)

]
· d

+
2
α2 max

(
1 − α, α

)
E

[
sup

τ∈Ūd(θ)

����X (
αG(1)1 (X

′θq) + G2(X′θe) − αG(1)1 (X
′τq) − G2(X′τe)

) ����
·

������X (
αG(1)1 (X

′τq) + G2(X′τe)
) ������],

where we apply (2.51) for the second summand. The remaining two summands can be
bounded linearly by the arguments given in (2.53) since G(1)1 and G2 are continuously
differentiable functions and the respective moments are finite.

For the second component of ψ, we get that����ψ2(Y, X, τ) − ψ2(Y, X, θ)
����

≤
����X(X′θe − X′θq)G(1)2 (X

′θe) − X(X′τe − X′τq)G(1)2 (X
′τe)

����
+

�����
�����XG(1)2 (X

′θe)X′θq

α

(
1{Y≤X ′θq} − 1{Y≤X ′τq}

) �����
�����

+

�����
�����1{Y≤X ′τq}

(
XG(1)2 (X

′θe)X′θq

α
−

XG(1)2 (X
′τe)X′τq

α

)�����
�����

+

�����
�����XG(1)2 (X

′θe)

α
Y

(
1{Y≤X ′θq} − 1{Y≤X ′τq}

) �����
�����

+

��������Y1{Y≤X ′τq}

α

(
XG(1)2 (X

′θe) − XG(1)2 (X
′τe)

) ��������
= (i) + (ii) + (iii) + (iv) + (v).

(2.76)
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Thus, in order to evaluate E
[
supτ∈Ūd(θ)

����ψ2(Y, X, τ) − ψ2(Y, X, θ)
����2] , we have to consider

all the cross products out of the five summands in (2.76). Since the techniques applied are
very similar, we only show details for two of the cross products.

E

[
sup

τ∈Ūd(θ)

(ii) · (v)

]
= E

[
sup

τ∈Ūd(θ)

�����
�����XG(1)2 (X

′θe)X′θq

α

(
1{Y≤X ′θq} − 1{Y≤X ′τq}

) �����
�����

·

��������Y1{Y≤X ′τq}

α

(
XG(1)2 (X

′θe) − XG(1)2 (X
′τe)

) ��������]
≤

1
α2E

[������XG(1)2 (X
′θe)X′θq

������ · E[|Y |��X]
· | |X | | · sup

τ∈Ūd(θ)

����G(1)2 (X
′θe) − G(1)2 (X

′τe)
����]

≤
1
α2E

[������XG(1)2 (X
′θe)X′θq

������ · E[|Y |��X]
· | |X | | · sup

τ∈Ūd(θ)

����XG(2)2 (X
′τe)

����] · d
= O(d),

by (2.53) since G(1)2 is continuously differentiable.
The following crossproducts can be bounded analogously by bounding the indicator

functions and by applying the mean value theorem as in (2.53): (i)2, (iii)2, (v)2, (i) · (iii),
(i) · (iv), (i) · (v), (ii) · (iv), (ii) · (v), (iii) · (iv), (iii) · (v) and (iv) · (v).
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A second type of technique, similar to the arguments in (2.55) arises in the cases (ii)2,
(iv)2 and (ii) · (iv). We get that there exists θq

−, θ
q
+ ∈ Ūd(θ) and a value θ̃q on the line between

θq
− and θ

q
+, such that

E

[
sup

τ∈Ūd(θ)

(iv)2
]
≤ E


�����
�����XG(1)2 (X

′θe)

α

�����
�����2 E

[
sup

τ∈Ūd(θ)

��Y (
1{Y≤X ′θq} − 1{Y≤X ′τq}

) ��2����� X

]
≤ E


�����
�����XG(1)2 (X

′θe)

α

�����
�����2 E [

Y2 1{X ′θq−≤Y≤X ′θq+}

��� X
]

= E


�����
�����XG(1)2 (X

′θe)

α

�����
�����2 ∫ X ′θq+

X ′θq−
y2 fY |X(y)dy


≤ E


�����
�����XG(1)2 (X

′θe)

α

�����
�����2 (X′θ̃q)2 fY |X(X′θ̃q)

(
X′θq
+ − X′θq

−

)
≤

2
α
E

[����X ����3 (G(1)2 (X
′θe)

)2
· sup
τ∈Ūd(θ)

(X′τq)2 fY |X(X′τq)

]
· d

= O(d),

where we apply a multivariate version of the mean value theorem and notice that fY |X is
bounded. �

Lemma 2.C.5. Assume that Assumption 2.2.1, Assumption 2.2.2 and the Moment Condi-
tions (M-4) in Appendix 2.A hold. Then, the function ρ(Y, X, θ), given in (2.2) is locally
Lipschitz continuous in θ in the sense that for all θ1, θ2 ∈ Ud(θ0) in some neighborhood of
θ0, it holds that ��ρ(Y, X, θ1) − ρ(Y, X, θ2)

�� ≤ K(Y, X) ·
����θ1 − θ2

����, (2.77)

where E
[
K(Y, X)2

]
< ∞.

Proof. We start the proof by splitting the ρ function into two parts,

ρ(Y, X, θ) = ρ1(Y, X, θ) + ρ2(Y, X, θ), (2.78)
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where

ρ1(Y, X, θ) = 1{Y≤X ′θq}

(
G1(X′θq) − G1(Y ) +

1
α

G2(X′θe)(X′θq − Y )
)
, (2.79)

ρ2(Y, X, θ) = G2(X′θe)
(
X′θe − X′θq) − G2(X′θe) − αG1(X′θq) + a(Y ). (2.80)

Local Lipschitz continuity of ρ2 follows since it is a continuously differentiable function and
thus locally Lipschitz. We consequently get that for some d > 0 and for all θ1, θ2 ∈ Ud(θ0),
it holds that

��ρ2(Y, X, θ1) − ρ2(Y, X, θ2)
�� ≤ ����θ1 − θ2

���� · sup
θ∈Ud(θ0)

�����
�����
(
−XG2(X′θe) − αXG(1)1 (X

′θq)

XG(1)2 (X
′θe)

(
X′θe − X′θq) )�����

����� ,
(2.81)

with Lipschitz-constant

K(Y, X) = sup
θ∈Ud(θ0)

�����
�����
(
−XG2(X′θe) − αXG(1)1 (X

′θq)

XG(1)2 (X
′θe)

(
X′θe − X′θq) )�����

����� , (2.82)

which is square-integrable by the moment conditions (M-4).
For the function ρ1, we consider three cases. First, let θ1, θ2 ∈ Θ such that X′θq

1 ≤

X′θq
2 < Y . Then it holds that,

ρ1(Y, X, θ1) = ρ1(Y, X, θ2) = 0, (2.83)

since 1{Y≤X ′θq1 }
= 1{Y≤X ′θq2 }

= 0, which is obviously a Lipschitz continuous function.
Second, let θ1, θ2 ∈ Θ such that Y ≤ X′θq

1 ≤ X′θq
2 . Then, for θ = θ1, θ2,

ρ1(Y, X, θ) = G1(X′θq) − G1(Y ) +
1
α

G2(X′θe)(X′θq − Y ), (2.84)

which is a continuously differentiable function and thus

��ρ1(Y, X, θ1) − ρ1(Y, X, θ2)
�� ≤ ����θ1 − θ2

���� · sup
θ∈Ud(θ0)

�����
�����
(
XG(1)1 (X

′θq) + 1
αXG2(X′θe)

1
αXG(1)2 (X

′θe)(X′θq − Y )

)�����
����� .
(2.85)
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Finally, let θ1, θ2 ∈ Θ such that X′θq
1 < Y ≤ X′θq

2 . Then, since G1 is increasing, we get
that��ρ1(Y, X, θ1) − ρ1(Y, X, θ2)

�� = ����G1(X′θ
q
2) − G1(Y ) +

1
α

G2(X′θe
2)(X

′θ
q
2 − Y )

����
≤

��G1(X′θ
q
2) − G1(X′θ

q
1)

�� + ���� 1αG2(X′θe
2)(X

′θ
q
2 − X′θq

1)

����
≤

����θq
1 − θ

q
2
���� · sup

θ∈Ud(θ0)

(����XG(1)1 (X
′θq)

���� + 1
α

����XG2(X′θe)
����) .

Thus, the function ρ(Y, X, θ) is locally Lipschitz continuous in θ with square-integrable
Lipschitz constants, E

[
K(Y, X)2

]
< ∞ by the Moment Conditions (M-4) in Appendix

2.A. �

Proposition 2.C.6. Let Y be a real-valued random variable with distribution function F,
finite first and second moments and a unique α-quantile qα = F−1(α). Then,

1
α2

∫ qα

−∞

∫ qα

−∞

F(x ∧ y) − F(x)F(y)dxdy =
1
α

Var(Y |Y ≤ qα) +
1 − α
α

(
qα − ξα

)2
, (2.86)

where ξα = E
[
Y
��Y ≤ qα

]
denotes the α-ES of Y .

Proof. We first notice that for a distribution F with finite second moment und unique
α-quantile, it holds that

E
[
Y
��Y ≤ qα

]
= −

1
α

∫ qα

−∞

F(x)dx + qα and (2.87)

E
[
Y2��Y ≤ qα

]
= −

2
α

∫ qα

−∞

xF(x)dx + q2
α, (2.88)

which can be obtained by using the identity

Y1{Y≤qα} = 1{Y≤qα}

(∫ ∞

0
1{Y>t} dt −

∫ 0

−∞

1{Y≤t} dt
)

(2.89)

and by taking expectations on both sides. By applying (2.87), we get that∫ qα

−∞

∫ qα

−∞

F(x)F(y)dxdy =
(∫ qα

−∞

F(x)dx
)2
=

(
αqα − αE

[
Y
��Y ≤ qα

] )2
= α2 (qα − ξα)2

.

(2.90)
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Furthermore, notice that∫ qα

−∞

∫ qα

−∞

F(x ∧ y)dxdy =
∫ qα

−∞

∫ y

−∞

F(x)dxdy +
∫ qα

−∞

∫ qα

y

F(y)dxdy, (2.91)

and by rearranging the order of integration for the first term in (2.91), we get that∫ qα

−∞

∫ y

−∞

F(x) dxdy =
∬

{(x,y): y≤qα, x≤y}

F(x) dxdy =
∬

{(x,y): x≤qα, y≥x}

F(x) dydx

=

∫ qα

−∞

∫ qα

x
F(x) dydx =

∫ qα

−∞

F(x)(qα − x) dx.

(2.92)

Thus, by first using (2.91) and (2.92) and by plugging in (2.87) and (2.90), we obtain∫ qα

−∞

∫ qα

−∞

F(x ∧ y)dxdy = 2
∫ qα

−∞

∫ qα

y

F(y) dxdy

= 2
∫ qα

−∞

F(y)(qα − y) dy

= 2qα

∫ qα

−∞

F(y) dy − 2
∫ qα

−∞

yF(y) dy

= 2qα
(
αqα − αξα

)
+ αE

[
Y2��Y ≤ qα

]
− αq2

α

= αE
[
Y2��Y ≤ qα

]
+ αq2

α − 2αqαξα.

(2.93)

Eventually, using (2.90) and (2.93), straight-forward calculations yield that

1
α2

∫ qα

−∞

∫ qα

−∞

F(x ∧ y) − F(x)F(y)dxdy =
1
α

Var(Y |Y ≤ qα) +
1 − α
α

(
qα − ξα

)2
, (2.94)

which concludes the proof. �

Appendix 2.D Separability of almost surely continuous functions

Definition 2.D.1 (Separability of a Stochastic Process). A stochastic process ψ(x, θ) :
Ω × Θ → Y is called separable in the sense of Doob, if there exists in Ω an everywhere
dense countable set I, and in Ω a nullset N such that for any arbitrary open set G ⊂ Θ and
every closed set F ⊂ Y , the two sets

{x |ψ(x, θ) ∈ F, ∀θ ∈ G} and (2.95)

{x |ψ(x, θ) ∈ F, ∀θ ∈ G ∩ I} (2.96)

differ from each other at most by a subset of N .



Chapter 2. Joint Quantile and ES Regression 91

Proposition 2.D.2 (Gikhman and Skorokhod (2004)). Let Θ and Y be metric spaces,
Θ be a separable space. The sets (2.95) and (2.96) coincide for all x ∈ Ω for which the
stochastic process ψ(x, θ) is continuous in θ.

Proof. It is clear that {x |ψ(x, θ) ∈ F, ∀θ ∈ G} ⊆ {x |ψ(x, θ) ∈ F, ∀θ ∈ G ∩ I}. We thus
only show the reverse.

Let G ⊂ Θ be an arbitrary open set and F ⊂ Y an arbitrary closed set. Let furthermore
x ∈ Ω such that ψ(x, θ) ∈ F for all θ ∈ G ∩ I. We have to show that ψ(x, θ̃) ∈ F for all
θ̃ ∈ G but θ̃ < I.

Thus, let θ̃ ∈ G \ I. Since I is a dense set in Θ, there exists a sequence (θn)n∈N ∈ Θ ∩ I,
such that θn → θ̃ and since G is an open set in Θ and θ̃ ∈ G, we can conclude that for
m ∈ N large enough, θn ∈ G for all n ≥ m. Furthermore, by continuity at θ, it holds that
ψ(x, θn) → ψ(x, θ̃) and since θn ∈ G ∩ I for all n large enough, ψ(x, θn) ∈ F by assumption.
Eventually, since F is a closed set, ψ(x, θ̃) ∈ F which proves the proposition. �

Corollary 2.D.3 (Separability of continuous functions). Let Θ and Y be metric spaces,
Θ be a separable space, and let the stochastic process ψ(x, θ) be almost surely continuous.
Then, ψ is separable.

Proof. Since ψ(x, θ) is continuous for all x ∈ Ω \ N for some N ⊂ Ω with P(N) = 0. We get
from Proposition 2.D.2 that the sets (2.95) and (2.96) coincide for all x ∈ Ω \ N , i.e. they
differ only by a subset of N . �
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3.1. Introduction

There is a great demand for reliable backtests for the Expected Shortfall (ES) stemming from
the transition from the Value-at-Risk (VaR) to the ES as the primary market risk measure in
the Basel Accord (Basel Committee, 2016). In general, backtesting is the process of testing
whether forecasts of risk measures are correct, which is done by comparing the history of
risk forecasts with the corresponding realized returns. Formally, the ES at level τ ∈ (0, 1) is
defined as the mean of the returns smaller than the respective τ-quantile (the VaR), and τ is
usually chosen to be 2.5% as stipulated by the Basel Accord. The ES is introduced into the
banking regulation because it overcomes several shortcomings of the VaR, such as not being
coherent and its inability to capture tail risks beyond the τ-quantile (Artzner et al., 1999;
Basel Committee, 2013). However, the ES is more difficult to backtest than the VaR since
the functional ES is not elicitable (Fissler, Ziegel, and Gneiting, 2016; Nolde and Ziegel,
2017).

Nevertheless, there is now a large amount of literature on ES backtesting, but unfortunately,
all the proposed approaches are either joint backtests for a vector of risk measures (such as
the triple containing the VaR, the ES, and the volatility) or even for the whole tail distribution
(Nolde and Ziegel, 2017). As the proposed backtests require further input parameters,
such as forecasts for the volatility, the tail distribution beyond some quantile, or even the
entire distribution, they are further not applicable for the regulatory authorities because
this additional private information is not reported by the financial institutions (Aramonte
et al., 2011; Basel Committee, 2016, 2017). In contrast, this paper is the first to develop ES
backtesting procedures that solely rely on ES forecasts (and the observable realized returns)
as input parameters, which makes these tests applicable for the regulatory authorities.

Triggered by the seminal paper of Fissler and Ziegel (2016) who show that the ES is
jointly elicitable with the VaR by proposing a class of strictly consistent joint loss functions
for these functionals, there is a growing amount of literature that utilizes these loss functions
to establish a regression framework for the functional ES. Dimitriadis and Bayer (2017)
propose a linear regression for the pair VaR and ES and show consistency and asymptotic
normality for the M- and the Z-estimators based on this class of strictly consistent loss
functions under standard regularity conditions. Patton et al. (2017) and Barendse (2017)
generalize these asymptotic results for more general dependence conditions of the underlying
stochastic process.

In this paper, we utilize this regression technique to propose a novel backtest for ES
forecasts which is based on the classical Mincer and Zarnowitz (1969) forecast evaluation
approach. The backtest uses the previously described joint regression framework in which we
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use financial returns as the response variable and the ES forecasts as the explanatory variable
including an intercept term. For correct ES forecasts, the intercept and slope parameters
should be equal to 0 and 1, respectively. We use a Wald statistic to test for these parameter
values, where we apply both, an asymptotic test using the covariance estimator introduced in
Dimitriadis and Bayer (2017), and a bootstrap hypothesis test. Such regression-based forecast
evaluation approaches are already used for testing mean forecasts (Mincer and Zarnowitz,
1969), quantile forecasts (Gaglianone et al., 2011; Guler et al., 2017), and expectile forecasts
(Guler et al., 2017).

We also introduce a second Mincer-Zarnowitz regression-based ES backtest by fixing the
slope parameter in the regression to 1, and by only estimating and testing the intercept term.
This second backtest allows for both, one-sided and two-sided hypotheses which contrasts
with the classical Mincer-Zarnowitz backtest that only allows a two-sided hypothesis because
it is generally unclear how underestimated and overestimated ES forecasts influence the slope
and intercept parameters. Because the capital requirements that the financial institutions
must keep as a reserve depend on the reported risk forecasts, the market participants have an
incentive to overestimate1 the risk forecasts to minimize these expensive capital requirements.
In contrast, underestimation of the risk forecasts results in too conservative risk forecasts
and larger capital reserves, which does not have to be punished by the regulatory authorities.
Thus, the regulatory authorities only have to prevent and penalize the overestimation of risk
forecasts, which demonstrates the necessity of one-sided testing procedures. For example,
the currently implemented traffic light system (Basel Committee, 1996) is in fact a one-sided
VaR backtest. Both backtesting procedures we introduce in this paper have the desired
property to only require ES forecasts as input parameters and consequently can be considered
as the first procedures that solely backtest the ES.

We introduce several simulation setups to evaluate the empirical properties of our novel
ES backtests and compare them to the existing backtests ofMcNeil and Frey (2000) and Nolde
and Ziegel (2017). In the first setup, we implement the classical size and power analysis for
backtesting risk measures, where we simulate data stemming from a realistic data generating
process and evaluate the empirical rejection frequencies of the backtests for forecasts
stemming from the true and from some misspecified forecasting models. In the second
setup, we introduce a novel technique for evaluating the power of backtests for financial
risk measures, where we continuously misspecify certain model parameters of the data
generating process to obtain a continuum of alternative models with a gradually increasing
degree of misspecification. Misspecifying the different model parameters separately allows

1Throughout the paper, we use the sign convention that losses are denoted by negative numbers and
overestimation of risk measures is meant in the mathematical sense, i.e. as reporting too large real numbers.
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us to misspecify certain model characteristics (such as the reaction to shocks) in isolation,
which permits a closer examination of the proposed backtesting procedures.

From these simulations, we find that our proposed backtests are reasonable sized,
especially when the tests are applied using the bootstrap. Moreover, they are more powerful
than the existing backtests in most considered simulation designs. This is the case for
two-sided hypothesis and for the one-sided version, which is of particular relevance for the
financial authorities. Notably, our backtests detect the misspecified forecasts in all considered
designs. In comparison to that, the backtests of McNeil and Frey (2000) and Nolde and Ziegel
(2017) fail several times to discriminate between the true and the misspecified forecasts, for
instance when the forecaster reports risk predictions for a wrong probability level.

The rest of this paper is organized as follows. Section 3.2 introduces the theory of our
new backtests, and Section 3.3 reviews the existing ES backtesting techniques. Section 3.4
contains two simulation studies, and Section 3.5 applies the backtests to the risk forecasts of
the S&P500 index. Section 3.6 concludes this paper and provides an outlook on potential
future research.

3.2. Theory

3.2.1. Setup and Notation

Let us consider a stochastic process

Z =
{

Zt : Ω→ Rk+1, k ∈ N, t = 1, . . . ,T
}
, (3.1)

defined on some complete probability space
(
Ω, F, P

)
, with the filtration F =

{
Ft, t =

1, . . .T
}
and Ft = σ{Zs, s ≤ t}. We partition the stochastic process Zt = (Yt, Xt), where Yt

is an absolutely continuous random variable of interest and Xt is a vector of explanatory
variables. We denote the conditional cumulative distribution function of Yt given the past
information Ft−1 by Ft(y) = P(Yt ≤ y | Ft−1) and the corresponding probability density
function by ft . The mean and variance of the distribution Ft are denoted by Et[·] and Vart(·),
whenever they exist.

In the context of this paper, Yt can be regarded as the daily log returns of a financial
asset (for instance, a stock or portfolio), i.e. Yt = log Pt − log Pt−1, where Pt denotes the
price of the asset at day t = 1, . . . ,T . This means that throughout this paper, we use the
sign convention that positive returns denote profits, and negative returns denote losses. The
vector Xt contains further variables that are used to produce forecasts for certain functionals
(usually risk measures) of the random variable Yt .
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We are interested in testing whether forecasts of a certain (d-dimensional, d ∈ N)
functional ρ :

(
Ω, F, P

)
→ Rd of the conditional distribution Ft are correctly specified. For

that, we define the most frequently used functionals for financial risk management in the
following. The conditional quantile of Yt given the information set Ft−1 at level τ ∈ (0, 1) is
defined as

Qτ

(
Yt | Ft−1

)
= F−1

t (τ) = inf
{
y ∈ R : Ft(y) ≥ τ

}
. (3.2)

Furthermore, we define the functional ES at level τ of Yt given Ft−1 as

ESτ
(
Yt | Ft−1

)
=

1
τ

∫ τ

0
F−1

t (s) ds. (3.3)

If the distribution function Ft is continuous at its τ-quantile, this definition can be simplified
to the truncated tail mean of Yt ,

ESτ
(
Yt | Ft−1

)
= Et

[
Yt | Yt ≤ Qτ

(
Yt | Ft−1

) ]
. (3.4)

We denote an Ft−1-measurable one-step-ahead forecast for day t for the risk measure (the
functional) ρ of the distribution Ft , stemming from an arbitrary external forecaster or model2
by ρ̂t = ρ̂t(Ft−1). Following this notation, we denote forecasts for the τ-quantile (in this
context also known as the VaR) by v̂t and for the τ-ES by êt for some fixed level τ ∈ (0, 1).
For simplicity, we drop the dependence on τ in the notation as it is a fixed quantity.

Testing correctness for a given series of forecasts
(
ρ̂t, t = 1, . . . ,T

)
for the functional ρ

relative to the realized (and observed) return series
(
yt, t = 1, . . . ,T

)
is called backtesting,

which we formally define in the following.

Definition 3.2.1. A backtest for the series of forecasts
(
ρ̂t, t = 1, . . . ,T

)
for the d-

dimensional risk measure (functional) ρ relative to the realized return series
(
yt, t = 1, . . . ,T

)
is a function

f : RT × RT×d → (0, 1), (3.5)

which maps the return and forecast series onto the respective p-value of the test.

Almost all of the VaR backtests in the literature satisfy Definition 3.2.1 (see e.g.
Christoffersen, 1998; Engle and Manganelli, 2004; Kupiec, 1995). However, as we discuss in
Section 3.3, this definition becomes relevant when considering backtesting the risk measure

2For recent overviews on VaR and ES forecasting approaches, see Komunjer (2013) and Nadarajah et al.
(2014).
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ES, because many of the recently proposed ES backtests are based on the knowledge of
forecasts for other quantities such as the volatility, the tail distribution or even the entire
distribution of the returns.

3.2.2. A Mincer-Zarnowitz regression based ES backtest

We now propose a new backtest for the risk measure ES, that tests whether the ES forecasts
êt (stemming from some risk model) coincide with the conditional ES of the returns by
regressing the returns Yt on the forecasts êt and an intercept term, similar to the Mincer-
Zarnowitz test for mean forecasts (Mincer and Zarnowitz, 1969). For that, we use a regression
equation designed specifically for the functional ES,

Yt = α + βêt + ue
t , (3.6)

where ESτ(ue
t | Ft−1) = 0. Given the structure in (3.6) and since êt is generated by using the

information set Ft−1, this assumption on the error term is equivalent to

ESτ (Yt | Ft−1) = α + βêt . (3.7)

We then test the hypothesis

H0 :
(
α, β

)
= (0, 1) against H1 :

(
α, β

)
, (0, 1), (3.8)

and under the H0 the ES forecasts are correctly specified since êt = ESτ (Yt | Ft−1).3
As outlined in Dimitriadis and Bayer (2017), estimating the parameters (α, β) in (3.6) by

M- or Z- (GMM-) estimation stand-alone using a semiparametric method without specifying
the full conditional distribution of the error term ue

t is not possible since the functional ES
is not elicitable. However, these parameters can be estimated through a joint regression
technique for the quantile and ES that we briefly review in the following. For a response
variable Yt and a k-dimensional vector of covariates Xt following the definition of the

3 Given that the ES forecasts are correctly specified, i.e. êt = ESτ (Yt | Ft−1), the condition (3.7) is
equivalent to α = (1 − β)êt . This results in the remark of Holden and Peel (1990), who claim that (3.7) is
only a sufficient, but not a necessary condition for correctly specified forecasts as α = (1 − β)êt is the required
necessary condition. However, the more general condition requires that the forecasts êt are constant for all
t = 1, . . . ,T , which is unrealistic given the dynamic nature of financial time series.



Chapter 3. Backtesting ES Forecasts 100

stochastic process in (3.1), they model the quantile and the ES at the joint level τ ∈ (0, 1)
through the linear regression equations

Yt = X′t θ
q + uq

t and (3.9)

Yt = X′t θ
e + ue

t , (3.10)

where Qτ(u
q
t | Ft−1) = 0 and ESτ(ue

t | Ft−1) = 0. Here, θ =
(
θq, θe) denotes the 2k-

dimensional vector of regression parameters of the joint model. The M-estimator of the
regression parameters θ is obtained by

θ̂ = arg min
θ

T∑
t=1

ρ(Yt, Xt, θ), (3.11)

where the loss function is given by

ρ(Yt, Xt, θ) =
1
−X′t θe

(
X′t θ

e − X′t θ
q +
(X′t θ

q − Yt)1{Yt≤X ′t θq}

α

)
+ log(−X′t θ

e). (3.12)

As shown by Dimitriadis and Bayer (2017), consistent and asymptotically normal M-
estimation of these regression parameters can be obtained by employing loss functions from
a whole class of functions, originally introduced by Fissler and Ziegel (2016) in the context
of forecast evaluation. However, consensus seems to emerge on the 0-homogeneous loss
function presented in (3.12), see Barendse (2017), Dimitriadis and Bayer (2017), Patton et al.
(2017), and Taylor (2017) and Nolde and Ziegel (2017).

Consistency and the asymptotic normality of the M-estimator of θ is shown by Patton
et al. (2017) for a stationary and α-mixing stochastic process Zt = (Yt, Xt). Under the further
technical conditions in Assumption 1 and 2 in Patton et al. (2017), it holds that

√
n
(
θ̂ − θ0

) d
−→ N

(
0, Λ−1CΛ−1

)
, (3.13)

where θ0 denotes the unknown true parameter value where

Λ =

(
Λ11 0
0 Λ22

)
and C =

(
C11 C12

C21 C22

)
, (3.14)
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with

Λ11 = −
1
αT
E

[
T∑

t=1
(Xt X′t ) ft(X

′
t θ

q
0)/(X

′
t θ

e
0)

]
, (3.15)

Λ22 = E

[
1
T

T∑
t=1
(Xt X′t )/(X

′
t θ

e
0)

2

]
, (3.16)

C11 =
1 − α
α
E

[
1
T

T∑
t=1
(Xt X′t )/(X

′
t θ

e
0)

2

]
, (3.17)

C12 = C21 = −
1 − α
α
E

[
1
T

T∑
t=1
(Xt X′t )

(
X′t θ

q
0 − X′t θ

e
0
)
/(X′t θ

e
0)

3

]
, (3.18)

C22 = E

[
1
T

T∑
t=1
(Xt X′t )/(X

′
t θ

e
0)

4
(

1
α

Vart
(
Yt − X′t θ

q
0 | Yt ≤ X′t θ

q
0
)
+

1 − α
α

(
X′t θ

q
0 − X′t θ

e
0
)2

)]
.

(3.19)

We use this joint regression framework and the asymptotic estimation theory for the
semiparametric estimation of (3.6) by estimating the joint system,

Yt = γ + δêt + uq
t , (3.20)

Yt = α + βêt + ue
t . (3.21)

Because we only want to test the correct specification in the regression equation for the ES
given in (3.21), we only test for the associated parameters (α, β) using a Wald statistic,

TESR =
( (
α̂, β̂

)′
− (0, 1)′

)′
Σ̂
−1
ES

( (
α̂, β̂

)′
− (0, 1)′

)′
, (3.22)

where Σ̂ES is an estimator for the submatrix ΣES = Λ
−1
22 C22Λ

−1
22 . By the asymptotic normality

of the parameter estimates in (3.13) and given that Σ̂ES
P
→ ΣES, the test statistic asymptotically

follows a χ2 distribution with two degrees of freedom,

TESR
d
→ χ2

2 . (3.23)

For the estimation of the asymptotic covariance matrix of the parameter estimates, Σ̂ES, we
employ the methods discussed in Dimitriadis and Bayer (2017). The main difficulty is the
estimation of the nuisance quantity Vart

(
Yt − X′t θ

q
0 | Yt ≤ X′t θ

q
0
)
, for which we employ the

scl-sp method introduced by them.
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We also use a bootstrap hypothesis test4 for testing whether (α, β) = (0, 1). For that, we
draw B = 1000 bootstrap samples from the data with replacement, i.e. we apply the iid
bootstrap of Efron (1979), since neither the M-estimator of the parameters nor the covariance
estimator depend on the temporal ordering of the data. In each bootstrap sample, we estimate
the model parameters and the covariance matrix to compute a total of B bootstrap Wald
statistics as in (3.22), where the bootstrap estimates are centered around the estimate for the
original sample. Finally, the bootstrap p-value is the share of the B bootstrap test statistics
that are larger or equal than the test statistic for the original sample.

3.2.3. A One-sided Mincer-Zarnowitz Intercept Test

The backtesting procedure introduced in the previous section only allows for testing two-sided
hypotheses as specified in (3.8) because it is generally unclear how too small or too large risk
forecasts influence the parameters α and β. Because the capital requirements the financial
institutions have to keep as a reserve depend on the reported risk forecasts, the market
participants have an incentive to overestimate the risk forecasts in order to keep as little
capital requirements as possible. In contrast, underestimation of the risk measures results
in too conservative risk forecasts and higher capital requirements that does not have to be
punished by the regulatory authorities. Thus, the regulatory authorities only have to prevent
and consequently penalize the overestimation of risk measures, which can be done by using
one-sided testing procedures. For example, the traffic light system (Basel Committee, 1996),
currently implemented in the Basel Accords, is in fact a one-sided backtest for the hit ratios
of VaR forecasts.

Consequently, in the following we introduce a Mincer-Zarnowitz backtesting procedure
for the ES that allows for both, a one-sided and a two-sided hypothesis. This backtest is
based on regressing the forecast error, Yt − êt , on an intercept term,

Yt − êt = α + ue
t , (3.24)

where ESτ(ue
t | Ft−1) = 0 and testing whether the parameter α is zero. Note that this is

equivalent to setting the slope parameter of the bivariate ESR test given in (3.6) to one

4This approach provides an asymptotic refinement, i.e. the error in the rejection probability decreases
faster compared to the asymptotic distribution or to using bootstrapped covariance matrices for the test, see e.g.
MacKinnon (2009). In the construction of confidence intervals this is also known as the percentile-t method.
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and only estimating and testing the intercept term. By using this restriction we can define
one-sided and the two-sided hypotheses,

H2s
0 : α = 0 against H2s

1 : α , 0, and

H1s
0 : α ≥ 0 against H1s

1 : α < 0,
(3.25)

which we test by using a t-test based on the asymptotic covariance and based on the bootstrap
procedure described above.

3.3. Existing Backtests

Over the past two decades and especially driven by the recent transition from VaR to ES in
the Basel regulatory framework, a large literature on backtesting the ES has emerged. These
backtests are usually introduced with financial regulators in mind who need to verify the
risk forecasts they receive from the financial institutions. To be applicable for the regulatory
authorities, a proper backtest for the risk measure ES thus follows Definition 3.2.1 and only
requires the observed return series and the ES forecasts as input variables. However, many of
the proposed backtests for the ES fail to have this property. In particular, several tests require
the whole return distribution (Acerbi and Szekely, 2014; Berkowitz, 2001; Graham and
Pál, 2014; Kerkhof and Melenberg, 2004; Wong, 2008), the cumulative violation process∫ τ

0 1{Yt≤v̂t (p)} dp (Costanzino and Curran, 2015; Du and Escanciano, 2017; Emmer et al.,
2015; Kratz et al., 2017), the volatility (McNeil and Frey, 2000; Nolde and Ziegel, 2017;
Righi and Ceretta, 2013, 2015), or the VaR (McNeil and Frey, 2000; Nolde and Ziegel,
2017) in addition to the ES forecasts. However, none of this private information (except the
VaR) will be reported by the financial institutions and therefore, most of these tests can not
be used by the regulators (Aramonte et al., 2011; Basel Committee, 2017).

Furthermore, when more information than solely the ES forecasts is used for backtesting,
then a rejection of the null hypothesis does not necessarily imply that the ES forecasts are
wrong. More precisely, a rejection of the null implies that some component of the input
parameters is wrong (cf. Nolde and Ziegel, 2017). A related concern is raised by Aramonte
et al. (2011), who note that financial institutions could be tempted to submit forecasts of
this additional information chosen such that the tests have particularly low power, so that
correctness of their internal model is not doubted.

Strictly following Definition 3.2.1, we would furthermore have to distinguish between
backtests for the ES and joint backtests for the pair VaR and ES. However, as the ES is
strongly intertwined with the VaR as the definition of the ES already depends on the VaR,
sensible forecasts for the ES are based on correctly specified VaR forecasts. Consequently,
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it is reasonable to backtest both quantities jointly and thus, we do not distinguish between
ES backtests and joint VaR and ES backtests. In the following, we describe the exceedance
residual test of McNeil and Frey (2000) and the conditional calibration tests of Nolde and
Ziegel (2017) in more detail, since both have versions that only require VaR forecasts in
addition to the ES.

3.3.1. Testing the Exceedance Residuals

One of the first and still most frequently used tests for the ES is the exceedance residual
(ER) backtest of McNeil and Frey (2000). This approach is based on the ES residuals that
exceed the VaR, ert =

(
Yt − êt

)
1{Yt≤v̂t }, that form a martingale difference sequence given

that v̂t and êt are the true Ft−1-measurable quantile and ES respectively. McNeil and Frey
(2000) furthermore consider a second version that uses ER standardized by the volatility, i.e.
ert/σ̂t , instead of the raw values.

For the actual backtest, we need to test whether the expected value of the (raw or
standardized) ER, µ, is zero using µ̂ = 1/(∑T

t=1 1{Yt≤v̂t })
∑T

t=1 ert in conjunction with a
bootstrap hypothesis test (see Efron and Tibshirani, 1993, p. 224). In the original paper,
McNeil and Frey (2000) propose to test µ against the one-sided hypothesis that µ is negative,
i.e. that the ES is overestimated. However, in this paper we discuss both, tests based on
the one-sided and two-sided hypothesis, so that we in addition to the original proposal also
include a two-sided test,

H2s
0 : µ = 0 against H2s

1 : µ , 0, and

H1s
0 : µ ≥ 0 against H1s

1 : µ < 0.
(3.26)

By Definition 3.2.1, the test using the standardized ER is in fact a joint backtest for the
triple VaR, ES and volatility, whereas the test using the raw ER is a joint backtest for the
pair VaR and ES. In light of the discussion above, the test using the raw ER is therefore
preferred. Nevertheless, in the simulation studies and the empirical application we apply
both approaches and find that they perform similar.

Although the intercept ESR test introduced in Section 3.2.3 and the ER backtest appear
to be similar, there is a subtle difference between the two test statistics. For the intercept
ESR test, we compute the empirical ES of Yt − êt , i.e. the average of Yt − êt given that Yt − êt

is smaller than its empirical τ-quantile. In contrast, the ER backtest computes the average
of Yt − êt , given that Yt is smaller than the respective forecast for its τ-quantile, v̂t . This
difference seems marginal, but it has severe consequences for the theoretical and empirical
properties of the tests. In particular, the ER backtest cannot distinguish between correct
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forecasts of the VaR and ES at level τ and forecasts for a misspecified probability level
τ̃ , τ, as the given level τ does not influence the ER test statistic at all. In contrast, by
computing the empirical τ-quantile of Yt − êt , the intercept ESR test does not suffer from
this shortcoming.

3.3.2. Conditional Calibration Backtests

Nolde and Ziegel (2017) introduce the concept of conditional calibration (CC) based on
strict identification functions (also known as moment conditions or estimating equations) of
the respective functional and show that many classical backtests for risk measures can be
unified using this concept. For the pair VaR and ES at level τ ∈ (0, 1), they choose the strict
identification function

V(Y, v, e) =

(
τ − 1{Y≤v}

e − v + 1{Y≤v}(v − Y )/τ

)
, (3.27)

whose expectation is zero if and only if v and e equal the true VaR and ES of Y respectively.
The CC test is based on the hypotheses

H2s
0 : E

[
V(Yt, v̂t, êt) | Ft−1

]
= 0 against E

[
V(Yt, v̂t, êt) | Ft−1

]
, 0, and

H1s
0 : E

[
V(Yt, v̂t, êt) | Ft−1

]
≥ 0 against E

[
V(Yt, v̂t, êt) | Ft−1

]
< 0,

(3.28)

component-wise and almost surely for all t = 1, . . . ,T . This is equivalent to testing
E
[
h′tV(Yt, v̂t, êt)

]
= 0 for all Ft−1 measurable R2-valued functions ht . As this is infeasible,

Nolde and Ziegel (2017) propose to use an Ft−1-measurable sequence of q × 2-matrices of
test functions ht for some q ∈ N and to use the Wald-type test statistic

TCC = T

(
1
T

T∑
t=1

htV (Yt, v̂t, êt)

)′
Ω̂
−1

(
1
T

T∑
t=1

htV (Yt, v̂t, êt)

)
, (3.29)

where Ω̂ = 1
T
∑T

t=1 (htV (Yt, v̂t, êt)) (htV (Yt, v̂t, êt))
′ is a consistent estimator of the covariance

of the q-dimensional vector htV (Yt, v̂t, êt). Under H0, the test statistic asymptotically follows
a χ2

q distribution with q degrees of freedom.
Nolde and Ziegel (2017) propose two versions of this test, where the first uses no

information beside the risk forecasts (termed simple CC test), and where the second
additionally requires volatility forecasts (termed general CC test). For the simple CC test,
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the test function is the identify matrix, ht = I2, for both, the one- and two-sided hypotheses.
For the general CC test, they propose to choose

ht = σ̂t
(
(êt − v̂t) /τ, 1

)
and ht =

(
1 |v̂t | 0 0
0 0 1 σ̂−1

t

)′
, (3.30)

for the two-sided and for the one-sided test, respectively, where σ̂t is a forecast of the volatility.
As with the standardized ER test, the general CC test is strictly speaking a backtest for the
triple VaR, ES, and volatility, but we nevertheless include both versions in our empirical
comparisons.

We provide implementations of the two ESR backtests proposed in this paper, the ER
test of McNeil and Frey (2000) and both CC backtests of Nolde and Ziegel (2017) in our R
package esback (Bayer and Dimitriadis, 2017a).

3.4. Monte-Carlo simulations

In this section, we evaluate the empirical performance of our proposed ES backtests and
compare them to the tests of McNeil and Frey (2000) and Nolde and Ziegel (2017). For
that, we first assess the empirical size of the tests, defined as the rejection frequency of the
test under the null hypothesis, that should equal the nominal significance level. Then, we
analyze the rejection frequency of the null hypothesis for misspecified forecasts, i.e. the
empirical power of the tests, that should be as close to one as possible.

This comparison is conducted using two different approaches. The first, presented in
Section 3.4.1, follows the typical strategy in the related literature of first assessing the size of
the backtests with some realistic data generating process (DGP), followed by an evaluation
of the power by backtesting forecasts of misspecified models, in our case the Historical
Simulation and the RiskMetrics model.

In the second setup, presented in Section 3.4.2, we misspecify the parameters of the
true model and thereby obtain alternative models with a continuously increasing degree of
misspecification. This approach of evaluating backtests has two main advantages. First, we
can obtain power curves which can be used to draw conclusions how an increasing model
misspecification influences the test decision. Second, misspecifying the different model
parameters separately allows us to misspecify certain model characteristics while leaving
the remaining model unchanged. Thus, we can evaluate which model misspecification
the backtests are able to identify, which allows for a closer examination of the backtesting
procedures.
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3.4.1. Traditional size and power comparisons

For the first simulation study, we simulate asset returns from the same model as used by
Nolde and Ziegel (2017), which is an AR(1) - GARCH(1,1) process (Bollerslev, 1986) with
skewed Student-t distributed innovations. This model is realistic and highly flexible because
it replicates the stylized facts typically found in financial return series such as non-normality,
volatility clustering, asymmetries, and fat tails. The model is given by,

rt = µt + εt,

εt = σt zt,

µt = −0.05 + 0.3rt−1,

σ2
t = 0.01 + 0.1ε2

t−1 + 0.85σ2
t−1,

zt
iid
∼ skew-t(5, 1.5),

(3.31)

where zt are innovations stemming from the standardized skewed Student-t distribution of
Fernandez and Steel (1998) with five degrees of freedom, and a skewness parameter of 1.5.
Since (3.31) is of the location-scale form, the conditional VaR and ES forecasts at level τ are
given by

v̂t = µt + σtqz(τ) and êt = µt + σtξz(τ), (3.32)

where qz(τ) and ξz(τ) are the τ-quantile, respectively the τ-ES of the innovations zt (see
Lambert and Laurent (2002) and Trottier and Ardia (2016) for the technical details). For the
following size and power analysis of the backtests, we simulate the process (3.31) 10,000
times with sample sizes of 250, 500, 1000, 2500, and 5000 observations and 250 additional
pre-sample values required for the power analysis. As stipulated by the Basel Accords, we
forecast the two risk measures for the probability level τ = 2.5%.

We evaluate the empirical sizes of the tests by backtesting the VaR and ES forecasts of the
true model and the respective simulated return series by computing the share of simulation
replications where we reject the null hypothesis at the significance levels 1%, 5%, and 10%.
In this part of the study, we focus on two-sided hypotheses and defer the one-sided case to
Sections 3.4.2 and 3.4.3.

Table 3.1 presents the rejection rates for forecasts of the true model for all backtests,
sample sizes, and nominal test sizes. We find that in large samples, all backtests display
rejection rates close to the respective nominal sizes. However, in small samples all backtests
are oversized and they differ with respect to their speed of convergence. Looking at the
individual tests in greater detail, we find that especially the tests relying on asymptotic
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quantities (i.e. the ESR and CC tests) are substantially oversized in small samples and
converge to the nominal size comparably slow. However, by using the bootstrap for the
intercept and bivariate ESR tests (indicated by (b) in the table), the empirical sizes are much
closer to the nominal sizes in small samples than for the asymptotic version. Comparing
the intercept and the bivariate ESR test, we find that the former has better size properties in
small samples, presumably because less parameters need be estimated and the covariance is
simpler. Furthermore, also the two ER tests (which also rely on bootstrapping) exhibit good
empirical sizes and there are hardly any differences between the raw and the standardized
version.

Table 3.1: Empirical sizes of the backtests

Nominal
Size

Sample
Size

bivariate
ESR (b)

bivariate
ESR

intercept
ESR (b)

intercept
ESR

General
CC

Simple
CC

Std.
ER ER

250 0.03 0.14 0.02 0.11 0.01 0.21 0.04 0.04
500 0.03 0.09 0.02 0.07 0.03 0.12 0.01 0.01

1% 1000 0.02 0.06 0.02 0.04 0.04 0.08 0.01 0.01
2500 0.01 0.02 0.01 0.02 0.03 0.04 0.01 0.01
5000 0.01 0.02 0.01 0.01 0.02 0.03 0.01 0.01

250 0.10 0.23 0.07 0.17 0.09 0.27 0.07 0.08
500 0.08 0.16 0.07 0.12 0.11 0.19 0.04 0.05

5% 1000 0.07 0.11 0.06 0.09 0.10 0.14 0.05 0.06
2500 0.06 0.07 0.05 0.06 0.08 0.09 0.06 0.06
5000 0.06 0.06 0.04 0.05 0.06 0.07 0.05 0.05

250 0.16 0.29 0.13 0.22 0.18 0.31 0.12 0.13
500 0.14 0.22 0.12 0.17 0.17 0.23 0.10 0.11

10% 1000 0.13 0.16 0.11 0.14 0.15 0.19 0.11 0.12
2500 0.12 0.12 0.10 0.11 0.13 0.15 0.11 0.11
5000 0.11 0.10 0.09 0.10 0.11 0.12 0.10 0.11

Notes: The table reports the empirical sizes of the backtests for an AR(1)-GARCH(1,1)-skewed-t process.
The number of Monte-Carlo repetitions is 10,000 and the probability level for the risk measures is τ = 2.5%.
ESR refers to the backtests introduced in this paper with (b) indicating the bootstrap version, CC to the
conditional calibration tests of Nolde and Ziegel (2017), and ER to the exceedance residuals tests of McNeil
and Frey (2000).

For a comparison of the power of the backtests, we evaluate their ability to reject the null
hypothesis for risk models producing incorrect ES forecasts. We utilize two models that are
popular in practice, the Historical Simulation approach and the RiskMetrics model (Zangari,
1996).

The Historical Simulation approach forecasts the VaR and ES by,

v̂t = Q̂τ (rt−1, rt−2, · · · , rt−w) and êt =
1∑w

i=1 1{rt−i≤v̂t }

w∑
i=1

rt−i · 1{rt−i≤v̂t }, (3.33)
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where Q̂τ is the empirical τ-quantile and w is the length of a rolling window, that we set
to 250, i.e. one year of data. Since the standardized ER and the general CC backtest both
require forecasts of the volatility, we estimate this quantity with the sample standard deviation
of the returns in the same rolling window.

The RiskMetrics model can be expressed as a location-scale model with zero mean,
conditional variance σ2

t = 0.06r2
t−1 + 0.94σ2

t−1 (an integrated GARCH model), and normally
distributed innovations, so that forecasts of the VaR and ES are given by,

v̂t = σ̂tΦ
−1(τ) and êt = −σ̂tφ(Φ

−1(τ))/τ, (3.34)

where Φ−1(τ) and −φ(Φ−1(τ))/τ are the τ-quantile and τ-ES for the standard normal
distribution.

For a meaningful and fair comparison of the power of the backtests to reject the null that
the forecasts of these two models are correct, we compare the size-adjusted power5 of the
backtests (Lloyd, 2005). For this, the original critical values of the tests are either increased
or decreased such that the rejection frequency for the true model equals the nominal test
size. Then, we obtain the size-adjusted power by the rejection frequencies for the alternative
models using these new critical values.

Figure 3.1 contains the size-adjusted power of the backtests for all empirical sizes in the
unit interval against RiskMetrics and the Historical Simulation for the sample size 1000.6
The black line depicts the case of equal empirical size and power, which can be seen as
a lower bound for any reasonable test: whenever the power is below this line, randomly
guessing the test decision is more accurate than performing the test. In this figure, we see
that the bivariate ESR backtest clearly dominates the others against both alternatives at all
empirical sizes, including the most relevant region of test sizes between 1% and 10%. The
bivariate ESR test using asymptotic quantities is slightly more powerful than the bootstrap
version (indicated by (b)), but the loss in power is negligible compared to the improvements
in the sizes we find in Table 3.1.

A common drawback of the other backtests is that they either perform well against
RiskMetrics or against the Historical Simulation, but not against both. For instance, the
simple CC test performs almost as good as the bivariate ESR test against RiskMetrics, but

5A comparison of the raw power (i.e. the rejection rate for the null hypothesis that these forecasts are
correct, analog to the empirical sizes) could be misleading due to the differences in the empirical sizes of the
backtests. In particular, an oversized test would exhibit unrealistically large rejection rates. For completeness,
Tables 3.B.5 and 3.B.6 report the raw powers of the tests.

6 These type of plots are known as the receiver operating characteristic (ROC) curve and origin from the
psychometrics literature (Lloyd, 2005). However, they can be used for general binary classification tasks such
as hypothesis testing.
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Figure 3.1: Size-adjusted power for both alternative models for a sample size of 1000 days. The number of
Monte-Carlo repetitions is 10,000 and the probability level for the risk measures is τ = 2.5%. ESR refers to the
backtests introduced in this paper with (b) indicating the bootstrap version, CC to the conditional calibration
tests of Nolde and Ziegel (2017), and ER to the exceedance residuals tests of McNeil and Frey (2000).

the power against Historical Simulation is below the critical black line in the relevant range
of sizes. Analogously, the ER backtest and its standardized version perform well against the
Historical Simulation (especially for empirical sizes below 10%), but have hardly any power
against RiskMetrics.

In order to present results in condensed form for all sample sizes, we summarize the
size-adjusted power by the partial area under the curve (PAUC), as proposed by Lloyd (2005).
For the PAUC, we numerically compute the area under each power curve for the empirical
sizes between 1% and 10% which is thus the average power to reject a false model for the
considered empirical test sizes.
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Figure 3.2: Partial area under the curve for empirical sizes between 1% and 10%. The number of Monte-Carlo
repetitions is 10,000 and the probability level for the risk measures is τ = 2.5%. ESR refers to the backtests
introduced in this paper with (b) indicating the bootstrap version, CC to the conditional calibration tests of
Nolde and Ziegel (2017), and ER to the exceedance residuals tests of McNeil and Frey (2000).
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In Figure 3.2, we present the PAUC for all backtests and sample sizes. As expected, the
average power increases in the sample size, so that using more information leads to more
reliable decisions about the quality of a forecast. Furthermore, also when evaluating all
considered sample sizes we find that the bivariate ESR backtest is the only approach that
exhibits good power properties against both alternative models.

As a robustness check for these findings, we repeat the experiment with the DGP used
by Gaglianone et al. (2011) which is less flexible than (3.31) due to its parsimonious
specification. The results are presented in Section 3.A of the Appendix and we find them to
be insensitive towards the choice of the DGP.

3.4.2. Continuous Model Misspecification

In the second simulation study, we use a GARCH(1,1) model with standardized Student-t
distributed innovations as the true model,

rt = σt zt,

σ2
t = γ0 + γ1r2

t−1 + γ2σ
2
t−1,

zt ∼ tν,

(3.35)

with the parameter values γ0 = 0.01, γ1 = 0.1, γ2 = 0.85, and ν = 5 for the true model. For
the analysis of the backtests, we simulate 10,000 times from the true model with a sample
size of 2500 observations and consider the probability level τ = 2.5% for the risk forecasts.

Table 3.2: Empirical sizes (nominal size: 5%) for the second simulation study.

Null Hypothesis bivariate
ESR (b)

bivariate
ESR

intercept
ESR (b)

intercept
ESR

General
CC

Simple
CC

Std.
ER ER

Two-Sided 0.06 0.07 0.05 0.06 0.08 0.09 0.05 0.06
One-Sided – – 0.07 0.03 0.02 0.02 0.06 0.06

Notes: This table shows the empirical sizes of the backtests for a GARCH(1,1)-t model. The number of
Monte-Carlo repetitions is 10,000 and the probability level for the risk measures is τ = 2.5%. ESR refers
to the backtests introduced in this paper with (b) indicating the bootstrap version, CC to the conditional
calibration tests of Nolde and Ziegel (2017), and ER to the exceedance residuals tests of McNeil and Frey
(2000). Note that the bivariate ESR test does not permit a one-sided hypothesis, and therefore we only
present sizes for the two-sided hypothesis.

Table 3.2 presents the empirical sizes of the backtests for a nominal size of 5% for the two-
and one-sided hypotheses. As in the first simulation study, we find that most of the backtests
are reasonably sized with rejection frequencies close to the nominal value. However, the two



Chapter 3. Backtesting ES Forecasts 112

CC tests reject the true model slightly too often in the two-sided, respectively too rarely in
the one-sided case.
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Figure 3.3: Illustration of the consequences for the ES forecasts of changing various aspects of the DGP. In
each of the subfigures, the black dashed line corresponds to the true model.

We next describe five misspecifications of the true model, alongside with the effects on
the ES forecasts and present the size-adjusted rejection rates for these modifications. As
an illustrative example, Figures 3.3a to 3.3e show 250 realizations of the returns of DGP
(3.35), together with the corresponding ES forecasts for the true (black dashed line) and
two misspecified models. The first misspecification concerns how strongly the conditional
variance reacts to the squared returns, i.e. the ARCH parameter γ1. For this, we vary γ1

and γ2 such that the persistence of the GARCH process remains constant, i.e. we choose
γ̃2 = 0.95 − γ̃1. When γ̃1 is below its true value, there is little variation in the ES forecasts
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due to the reduced response to shocks since the GARCH process approaches a constant
volatility model. For the second misspecification, we alter the unconditional variance of
the GARCH process E

[
σ2

t
]
= γ0/(1 − γ1 − γ2) by changing γ0 while holding γ1 and γ2

constant. Since the conditional variance is a weighted combination of the unconditional
variance, the past squared returns and the past conditional variance, this change implies
that the ES is always underestimated when the unconditional variance is larger than the
true value, and vice versa. In the third design, we alter the persistence of shocks by setting
γ̃1 = c · γ1 and γ̃2 = c · γ2 for a constant c that we vary, and γ̃0 = E

[
σ2

t
]
(1− γ̃1− γ̃2) to keep

the unconditional variance constant. In the exemplary series, we see that with a persistence
larger than true value, the ES forecasts react stronger and longer to shocks. Fourth, we vary
the degrees of freedom of the underlying Student-t distribution between 3 and∞. Since the
conditional variance is unaffected, this modification implies a relative horizontal shift of the
ES forecasts. The last modification concerns the probability level τ̃ that the forecaster uses
for making ES predictions. This represent the scenario that a forecaster submits (accidentally
or on purpose) predictions for some level τ̃ , τ. Similar to changing the degrees of freedom,
this modification implies a relative horizontal shift of the ES forecasts.

We proceed with presenting the size-adjusted rejection rates for these four designs in
Figures 3.4a to 3.4e, in which the true model is indicated by the gray vertical line. Several
conclusions can be drawn from this figure.

(1) Unlike in the first simulation study, there is no backtest that dominates the others
throughout all considered designs. However, we can identify certain patterns about the
relative performance of the tests depending on the type of misspecification.

(2) Our bivariate ESR test performswell whenwe change the dynamics of the ES forecasts,
i.e. in the cases of changing the ARCH parameter, the persistence or the unconditional
variance of the GARCH process, see Figures 3.4a to 3.4c. There, the power of the other
backtests is comparably low, especially the general CC and the two ER tests are not able
to detect these misspecification. However, the bivariate ESR test is not as powerful as our
intercept ESR or the simple CC test when we horizontally shift the ES forecasts, i.e. when
changing the degrees of freedom of the Student-t distribution or when the forecaster uses the
wrong probability level as can be seen in Figures 3.4d and 3.4e.

(3) The application of the bootstrap for our ESR tests mainly affects the empirical sizes,
the empirical power of the asymptotic and the bootstrap ESR tests is similar throughout all
designs.

(4) The general CC and the two ER tests perform similar across all designs. However,
only when altering the degrees of freedom they exhibit good power properties, in the other
scenarios, they can hardly distinguish between forecasts of the true and the alternative models.
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(d) Changing the degrees of freedom
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(e) Changing the probability level
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Figure 3.4: Size-adjusted rejection rates for various types of misspecification. The gray vertical line depicts the
true model. The number of Monte-Carlo repetitions is 10,000 and the probability level for the risk measures is
τ = 2.5%. ESR refers to the backtests introduced in this paper with (b) indicating the bootstrap version, CC
to the conditional calibration tests of Nolde and Ziegel (2017), and ER to the exceedance residuals tests of
McNeil and Frey (2000).
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In particular, they can not discriminate between ES forecasts for the level τ and some τ̃ , τ
(cf. Section 3.3.1), although changing the degrees of freedom and the probability level have a
similar effect on the ES forecasts (see Figures 3.3d and 3.3e). Thus, if these backtests would
be used by the regulatory authorities, the banks could submit ES forecasts for some level
τ̃ > τ to minimize the capital requirements without risk of being detected by these backtests.

(5) In this experiment, the simple CC backtest is very powerful in two of the five designs,
see Figures 3.4b and 3.4e, and generally exhibits a relatively good performance that is often
similar to our proposed tests. However, our two ESR backtests exhibit much better size
properties (see Tables 3.1 and 3.2) and do not fail (in contrast to the simple CC test) in
rejecting the Historical Simulation forecasts in the first simulation study (see Figure 3.1).

(6) Although the ER and our intercept ESR test are conceptually similar (see the
discussion in Section 3.3.1), the latter is in four of the five scenarios clearly more powerful,
which shows that jointly backtesting the VaR and ES without explicitly incorporating the
probability level τ can be problematic.

Taken as a whole, these findings, together with the results from the first simulation study,
show that our proposed ESR backtests are a powerful choice for backtesting ES forecasts.
They exhibits good power properties against a variety of misspecifications and are reasonably
sized. Notably, in contrast to the existing backtests, there is no single situation where our
ESR tests are unable to discriminate between forecasts of the true and the alternative models.

3.4.3. Testing one-sided hypotheses

For the regulatory authorities, a one-sided hypothesis might be more meaningful than the
two-sided version we considered so far. Holding more money than stipulated in the Basel
accords is no concern for regulators, as it is only important that banks keep enough monetary
reserves to cover the risk from their market activities. As all backtests (with exception of the
bivariate ESR) allow for testing one-sided hypotheses, we assess their ability to reject the
null hypothesis that the misspecified ES forecasts overestimate the true ES.

In Figures 3.5a to 3.5e, we present the size-adjusted rejection rates for one-sided
hypothesis tests and the structure of these figures is analog to the two-sided rejection rates
we considered in the previous section. However, the backtests should now only reject
the null hypothesis for ES predictions that overestimate the ES. The five modifications of
the true model in Section 3.4.2 exhibit clear patterns when they are over-, respectively
underestimating the true ES. In three of the five designs, the ES is either strictly overestimated
or underestimated in every period, whereas in the remaining two designs this is at least
on average the case. For details on this, see the upper part of Figures 3.5a to 3.5e which
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Figure 3.5: Size-adjusted rejection rates for various types of misspecification with a one-sided hypothesis.
The gray vertical line depicts the true model. The number of Monte-Carlo repetitions is 10,000 and the
probability level for the risk measures is τ = 2.5%. ESR refers to the backtests introduced in this paper with
(b) indicating the bootstrap version, CC to the conditional calibration tests of Nolde and Ziegel (2017), and ER
to the exceedance residuals tests of McNeil and Frey (2000).
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indicates the regions of parameter values where the ES forecasts are too large, respectively
too small.

In these five figures, we find that our intercept ESR (in the asymptotic and the bootstrap
version) backtest clearly dominates the ER and the CC tests in four out of five designs.
Only when changing the degrees of freedom, the ER test is slightly more powerful than the
intercept ESR. Surprisingly, we see that the one-sided CC tests (both, the simple and the
general version) reject too small ES forecasts in four out of the five cases, i.e. they make a
wrong decision.7

Summarizing these results, the proposed intercept ESR backtest is a powerful backtest
with good size properties for testing one-sided hypotheses. The existing backtests either fail
to detect rather obvious misspecifications or make false decisions altogether.

3.5. Empirical application

In the empirical application, we predict the market risk for the daily close-to-close log-returns
of the S&P500 index for the time period from January 3, 2000 to October 18, 2017, totaling
up to 4478 days. We predict the ES (and the VaR for application of the existing tests) for
this return series using 10 different risk models. The first two are the Historical Simulation
estimated with a rolling window of 250 days and RiskMetrics. The other 8 models are
combinations of the GARCH(1,1) and the asymmetric GJR-GARCH(1,1) of Glosten et al.
(1993) with with four assumptions on the conditional distribution of the innovations. These
are the standard normal distribution (abbreviated by N), the standardized Student-t (t), the
standardized skewed Student-t (skew-t) and the semi-parametric filtered historical simulation
approach (FHS) of Barone-Adesi et al. (1999), where the quantile, respectively the ES of the
innovations is estimated from the standardized returns. We estimate these 8 models on a
rolling window of 1000 days.

Table 3.3 presents the p-values of the backtests (for the two-sided hypothesis), the average
losses of the 0-homogeneous loss function (3.12), and the p-value of the Model Confidence
Set (MCS) of Hansen et al. (2011) applied to this loss function. With the MCS p-values, we
can determine a set of models having equal predictive ability at a certain significance level
with respect to the losses. The models are sorted according to the average loss.

From this table we can draw several conclusions. First, the MCS rejects 7 out of 10
models at the 5% significance level, i.e. only 3 models have equal predictive power with
respect to the joint loss function. These three (GJR-GARCH-skew-t, -FHS, -t) share the
same assumption on the volatility process and only differ with respect to the assumption on

7We verified our implementation of the CC tests with the codes provided by Nolde and Ziegel (2017) at
https://github.com/nnolde/Elicitability-and-Backtesting/.

https://github.com/nnolde/Elicitability-and-Backtesting/
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Table 3.3: Results of the empirical application.

Model biv.
ESR (b)

biv
ESR

int.
ESR (b)

int.
ESR

General
CC

Simple
CC

Std.
ER ER Mean

Loss
MCS

p-value

Historical Simulation 0.01 0.00 0.01 0.00 0.11 0.01 0.06 0.06 1.132 0.01
RiskMetrics 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.075 0.00
GARCH-N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.030 0.01
GARCH-t 0.03 0.05 0.05 0.03 0.57 0.02 0.58 0.60 1.000 0.03
GARCH-skew-t 0.12 0.19 0.92 0.92 0.33 0.05 0.38 0.10 0.986 0.05
GARCH-FHS 0.09 0.14 0.19 0.17 0.67 0.31 0.68 0.69 0.993 0.03
GJR-GARCH-N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.982 0.02
GJR-GARCH-t 0.06 0.10 0.06 0.04 0.28 0.11 0.23 0.90 0.963 0.28
GJR-GARCH-skew-t 0.07 0.12 0.78 0.77 0.85 0.08 0.87 0.14 0.951 1.00
GJR-GARCH-FHS 0.13 0.20 0.30 0.30 0.39 0.69 0.34 0.55 0.953 0.70

Notes: In this table, p-values smaller than 5% are printed bold-faced and the models are sorted by the
average loss. ESR refers to the backtests introduced in this paper with (b) indicating the bootstrap version,
CC to the conditional calibration tests of Nolde and Ziegel (2017), and ER to the exceedance residuals tests
of McNeil and Frey (2000). We compute the MCS p-values using the R-statistic of Hansen et al. (2011)
and 100,000 bootstrap iterations of the stationary bootstrap (Politis and Romano, 1994) with an average
block length of 10 days.

the innovations. Moreover, for these three models the null hypothesis of correct forecasts is
not rejected by almost all backtests at the 5% significance level. Thus, the backtests and
the MCS agree on which models predict the ES (and the VaR) well. Second, incorporating
leverage into the volatility dynamics appears to be important, since mainly the models using
the GJR-GARCH are not rejected by the backtests. Additionally, it is crucial to consider
models with flexible tails, e.g. by using the skewed Student-t or the FHS approach, since
the models based on conditionally normally distributed returns are collectively rejected
by the backtests and the MCS. Third, the CC and ER tests reject less forecasts at the 5%
significance level than the two ESR backtests, which reflects the findings of the simulation
studies where these backtests are often less powerful than our ESR tests. In particular, the
null hypothesis is not rejected for the Historical Simulation model, although this approach
yields large losses.

3.6. Conclusion

In this paper, we introduce two novel regression-based backtests for forecasts of the risk
measure ES. These are based on the idea of Mincer and Zarnowitz (1969) to regress the
response variable on the forecasts and to test the resulting parameter estimates. We introduce
a bivariate version where we test the intercept and the slope parameter for 0 and 1, and an
intercept version that only incorporates an intercept term being estimated and tested for 0.
The motivation for the latter test is the possibility to specify a one-sided hypothesis that is
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especially relevant for the regulatory authorities, whereas the bivariate test only permits a
two-sided hypothesis.

A unique feature of the backtests proposed in this paper is that they solely require
and consequently test forecasts of the ES. In contrast to that, a common drawback of the
existing backtests is that they need forecasts of further input parameters, such as the VaR, the
volatility, the tail distribution or even the whole return distribution. Using more information
than the ES forecasts is problematic for two reasons. First, these tests are not applicable
for the regulatory authorities, who receive forecasts of the risk measures, but not of the
additional information required by many tests. Second, rejecting the null hypothesis does
not necessarily imply that the ES forecasts are wrong since the rejection could be a result of
a false prediction of any of the input parameters.

In several simulation studies, we assess the empirical size and power properties of the
proposed tests and compare them to the approaches of McNeil and Frey (2000) and Nolde
and Ziegel (2017). We find that our regression-based tests are reasonably sized, especially
when they are applied using the bootstrap. Moreover, in most simulation designs our two
proposed backtests are more powerful than the existing tests. The backtests from the literature
are often not able to distinguish between forecasts of the true model and the misspecified
forecasts, for instance when the forecaster reports predictions for a wrong probability level.
In contrast to that, our two backtests detect the misspecification in all considered simulation
experiments. We provide an implementation of our backtests and several approaches from
the literature in the esback package for R (Bayer and Dimitriadis, 2017a).

For future research, it could be interesting to disentangle the VaR and ES forecast
performance of frequently used risk models to determine whether some models are better
suited for predicting the ES (or the VaR) than others. It could also be interesting to
introduce an ES encompassing test analog to the quantile encompassing test of Giacomini
and Komunjer (2005).

Appendix 3.A Robustness Check

The DGP used by Gaglianone et al. (2011) is a GARCH(1,1) model with standard normally
distributed innovations,

rt = σt zt,

σ2
t = 0.05 + 0.05r2

t−1 + 0.90σ2
t−1,

zt ∼ N (0, 1) .

(3.36)
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For this DGP, Table 3.A.4 and Figure 3.A.6 present the empirical sizes and the PAUC analog
to the results provided in Section 3.4.1.

Table 3.A.4: Empirical sizes of the backtests

Nominal
Size

Sample
Size

bivariate
ESR (b)

bivariate
ESR

intercept
ESR (b)

intercept
ESR

General
CC

Simple
CC

Std.
ER ER

250 0.02 0.10 0.01 0.07 0.01 0.17 0.04 0.04
500 0.02 0.05 0.01 0.05 0.02 0.08 0.00 0.00

1% 1000 0.01 0.04 0.01 0.03 0.02 0.05 0.00 0.01
2500 0.01 0.02 0.01 0.02 0.02 0.03 0.01 0.01
5000 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01

250 0.08 0.18 0.05 0.13 0.06 0.22 0.06 0.07
500 0.06 0.12 0.05 0.10 0.07 0.14 0.04 0.04

5% 1000 0.06 0.09 0.05 0.07 0.07 0.10 0.04 0.04
2500 0.06 0.07 0.05 0.06 0.06 0.07 0.05 0.05
5000 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.05

250 0.14 0.24 0.10 0.18 0.13 0.26 0.11 0.11
500 0.12 0.18 0.10 0.14 0.13 0.19 0.08 0.08

10% 1000 0.11 0.14 0.10 0.12 0.12 0.15 0.09 0.09
2500 0.10 0.12 0.10 0.11 0.11 0.12 0.10 0.10
5000 0.10 0.11 0.10 0.11 0.11 0.11 0.10 0.10

Notes: The table reports the empirical sizes of the backtests for a GARCH(1,1)-N process. The number of
Monte-Carlo repetitions is 10,000 and the probability level for the risk measures is τ = 2.5%. ESR refers
to the backtests introduced in this paper with (b) indicating the bootstrap version, CC to the conditional
calibration tests of Nolde and Ziegel (2017), and ER to the exceedance residuals tests of McNeil and Frey
(2000).
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Figure 3.A.6: Partial area under the curve for empirical sizes between 1% and 10%
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Appendix 3.B Raw Power

Table 3.B.5: Empirical power of the backtests against RiskMetrics

Nominal
Size

Sample
Size

bivariate
ESR (b)

bivariate
ESR

intercept
ESR (b)

intercept
ESR

General
CC

Simple
CC

Std.
ER

ER

250 0.13 0.40 0.04 0.18 0.02 0.40 0.16 0.16
500 0.19 0.41 0.06 0.16 0.01 0.37 0.01 0.01

1% 1000 0.27 0.48 0.08 0.15 0.01 0.42 0.01 0.01
2500 0.53 0.68 0.11 0.17 0.01 0.68 0.04 0.04
5000 0.78 0.87 0.19 0.25 0.02 0.93 0.11 0.08

250 0.27 0.50 0.12 0.25 0.05 0.48 0.17 0.18
500 0.35 0.53 0.15 0.24 0.06 0.49 0.04 0.05

5% 1000 0.48 0.61 0.19 0.25 0.05 0.57 0.07 0.07
2500 0.73 0.81 0.27 0.31 0.06 0.83 0.15 0.13
5000 0.89 0.94 0.38 0.41 0.15 0.97 0.28 0.24

250 0.37 0.56 0.19 0.31 0.11 0.52 0.20 0.21
500 0.46 0.60 0.23 0.31 0.11 0.55 0.10 0.11

10% 1000 0.59 0.69 0.27 0.32 0.11 0.65 0.14 0.14
2500 0.81 0.86 0.36 0.39 0.15 0.88 0.25 0.23
5000 0.93 0.96 0.49 0.51 0.28 0.99 0.39 0.35

Notes: The table reports the empirical power of the backtests against RiskMetrics for an AR(1)-GARCH(1,1)-
skewed-t process. The number of Monte-Carlo repetitions is 10,000 and the probability level for the risk
measures is τ = 2.5%. ESR refers to the backtests introduced in this paper with (b) indicating the bootstrap
version, CC to the conditional calibration tests of Nolde and Ziegel (2017), and ER to the exceedance
residuals tests of McNeil and Frey (2000).
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Table 3.B.6: Empirical power of the backtests against Historical Simulation

Nominal
Size

Sample
Size

bivariate
ESR (b)

bivariate
ESR

intercept
ESR (b)

intercept
ESR

General
CC

Simple
CC

Std.
ER

ER

250 0.10 0.34 0.02 0.10 0.01 0.16 0.05 0.05
500 0.07 0.21 0.00 0.03 0.00 0.04 0.01 0.01

1% 1000 0.06 0.23 0.01 0.05 0.00 0.01 0.03 0.03
2500 0.29 0.63 0.14 0.40 0.04 0.04 0.14 0.11
5000 0.79 0.96 0.79 0.96 0.20 0.28 0.41 0.33

250 0.20 0.46 0.07 0.20 0.04 0.22 0.09 0.09
500 0.15 0.37 0.04 0.13 0.03 0.08 0.07 0.06

5% 1000 0.22 0.49 0.11 0.24 0.06 0.06 0.14 0.12
2500 0.77 0.91 0.66 0.81 0.22 0.21 0.37 0.32
5000 0.97 1.00 0.98 1.00 0.57 0.74 0.73 0.63

250 0.29 0.54 0.14 0.28 0.11 0.28 0.15 0.15
500 0.24 0.50 0.12 0.22 0.09 0.14 0.14 0.13

10% 1000 0.45 0.66 0.29 0.41 0.15 0.14 0.24 0.21
2500 0.93 0.97 0.88 0.94 0.39 0.39 0.53 0.47
5000 0.99 1.00 1.00 1.00 0.77 0.90 0.85 0.78

Notes: The table reports the empirical power of the backtests against the Historical Simulation for an
AR(1)-GARCH(1,1)-skewed-t process. The number of Monte-Carlo repetitions is 10,000 and the probability
level for the risk measures is τ = 2.5%. ESR refers to the backtests introduced in this paper with (b)
indicating the bootstrap version, CC to the conditional calibration tests of Nolde and Ziegel (2017), and ER
to the exceedance residuals tests of McNeil and Frey (2000).

References

Acerbi, C. and B. Szekely (2014). “Back-testing Expected Shortfall”. Risk December, 76–81
(see pp. 53, 103).

Aramonte, S., P. Durand, S. Kobayashi, M. Kwast, J. A. Lopez, G. Mazzoni, P. Raupach, M.
Summer, and J. Wu (2011). Messages from the academic literature on risk measurement
for the trading book. Tech. rep. Working Paper No. 19, available at http://www.bis.
org/publ/bcbs_wp19.pdf. Bank for International Settlements (see pp. 95, 103).

Artzner, P., F. Delbaen, J.-M. Eber, and D. Heath (1999). “Coherent Measures of Risk”.
Mathematical Finance 9 (3), 203–228 (see pp. 52, 95).

Barendse, S. (2017). “Interquantile Expectation Regression”. Available at https://ssrn.
com/abstract=2937665 (see pp. 53, 95, 100).

Barone-Adesi, G., K. Giannopoulos, and L. Vosper (1999). “VaR without correlations for
portfolios of derivative securities”. Journal of Futures Markets 19 (5), 583–602 (see
pp. 27, 117).

Basel Committee (1996). Overview of the Amendment to the Capital Accord to Incorporate
Market Risks. Tech. rep. Available at http://www.bis.org/publ/bcbs23.pdf.
Bank for International Settlements (see pp. 15, 96, 102).

http://www.bis.org/publ/bcbs_wp19.pdf
http://www.bis.org/publ/bcbs_wp19.pdf
https://ssrn.com/abstract=2937665
https://ssrn.com/abstract=2937665
http://www.bis.org/publ/bcbs23.pdf


Chapter 3. Backtesting ES Forecasts 123

Basel Committee (2013). Fundamental review of the trading book: A revised market risk
framework. Tech. rep. Available at http://www.bis.org/publ/bcbs265.pdf. Bank
for International Settlements (see p. 95).

— (2016). Minimum capital requirements for Market Risk. Tech. rep. Available at http:
//www.bis.org/bcbs/publ/d352.pdf. Bank for International Settlements (see
pp. 52, 95).

— (2017). Pillar 3 disclosure requirements – consolidated and enhanced framework. Tech.
rep. Available at http://www.bis.org/bcbs/publ/d400.pdf. Basel Committee on
Banking Supervision (see pp. 95, 103).

Bayer, S. and T. Dimitriadis (2017a). esback: Expected Shortfall Backtesting. R package
version 0.1.1, available at https://github.com/BayerSe/esback (see pp. 106,
119).

Berkowitz, J. (2001). “Testing Density Forecasts, With Applications to Risk Management”.
Journal of Business & Economic Statistics 19 (4), 465–474 (see p. 103).

Bollerslev, T. (1986). “Generalized autoregressive conditional heteroskedasticity”. Journal
of Econometrics 31 (3), 307–327 (see pp. 26, 70, 107).

Christoffersen, P. (1998). “Evaluating Interval Forecasts”. International Economic Review
39 (4), 841–862 (see pp. 17, 30, 98).

Costanzino, N. and M. Curran (2015). “Backtesting general spectral risk measures with
application to expected shortfall”. Journal of Risk Model Validation 9 (1), 21–31 (see
p. 103).

Dimitriadis, T. and S. Bayer (2017). “A Joint Quantile and Expected Shortfall Regression
Framework”. arXiv:1704.02213 [math.ST] (see pp. 95, 96, 99–101).

Du, Z. and J. C. Escanciano (2017). “Backtesting Expected Shortfall: Accounting for Tail
Risk”. Management Science 63 (4), 940–958 (see p. 103).

Efron, B. (Jan. 1979). “Bootstrap Methods: Another Look at the Jackknife”. The Annals of
Statistics 7 (1), 1–26 (see pp. 64, 102).

Efron, B. and R. J. Tibshirani (1993). An Introduction to the Bootstrap. New York: Chapman
and Hall (see p. 104).

Emmer, S., M. Kratz, and D. Tasche (2015). “What Is the Best Risk Measure in Practice? A
Comparison of Standard Measures”. Journal of Risk 18 (2), 31–60 (see p. 103).

Engle, R. F. and S. Manganelli (2004). “CAViaR: Conditional Autoregressive Value at Risk
by Regression Quantiles”. Journal of Business & Economic Statistics 22 (4), 367–381
(see pp. 17, 26, 30, 98).

Fernandez, C. and M. F. J. Steel (1998). “On Bayesian Modeling of Fat Tails and Skewness”.
Journal of the American Statistical Association 93 (441), 359–371 (see p. 107).

Fissler, T. and J. F. Ziegel (2016). “Higher order elicitability and Osband’s principle”. Annals
of Statistics 44 (4), 1680–1707 (see pp. 9, 12, 53–56, 58, 70, 71, 76, 95, 100).

Fissler, T., J. F. Ziegel, and T. Gneiting (2016). “Expected Shortfall is jointly elicitable with
Value at Risk - Implications for backtesting”. Risk January, 58–61 (see pp. 53, 56, 61,
62, 95).

Gaglianone, W. P., L. R. Lima, O. Linton, and D. R. Smith (2011). “Evaluating Value-at-Risk
Models via Quantile Regression”. Journal of Business & Economic Statistics 29 (1),
150–160 (see pp. 96, 111, 119).

http://www.bis.org/publ/bcbs265.pdf
http://www.bis.org/bcbs/publ/d352.pdf
http://www.bis.org/bcbs/publ/d352.pdf
http://www.bis.org/bcbs/publ/d400.pdf
https://github.com/BayerSe/esback


Chapter 3. Backtesting ES Forecasts 124

Giacomini, R. and I. Komunjer (2005). “Evaluation and Combination of Conditional Quantile
Forecasts”. Journal of Business & Economic Statistics 23 (4), 416–431 (see pp. 17, 19,
119).

Glosten, L. R., R. Jagannathan, and D. E. Runkle (1993). “On the Relation between the
Expected Value and the Volatility of the Nominal Excess Return on Stocks”. The Journal
of Finance 48 (5), 1779–1801 (see p. 117).

Graham, A. and J. Pál (2014). “Backtesting value-at-risk tail losses on a dynamic portfolio”.
The Journal of Risk Model Validation 8 (2), 59 (see p. 103).

Guler, K., P. T. Ng, and Z. Xiao (2017). “Mincer–Zarnowitz quantile and expectile regressions
for forecast evaluations under aysmmetric loss functions”. Journal of Forecasting 36 (6),
651–679 (see p. 96).

Hansen, P. R., A. Lunde, and J.M. Nason (2011). “TheModel Confidence Set”. Econometrica
79 (2), 453–497 (see pp. 17, 18, 30, 31, 117, 118).

Holden, K. and D. A. Peel (1990). “On Testing For Unbiasedness And Efficiency Of
Forecasts”. The Manchester School 58 (2), 120–127 (see p. 99).

Kerkhof, J. and B.Melenberg (2004). “Backtesting for risk-based regulatory capital”. Journal
of Banking & Finance 28 (8), 1845–1865 (see p. 103).

Komunjer, I. (2013). “Quantile Prediction”. In: Handbook of Economic Forecasting. Ed. by
Elliott, G. and Timmermann, A. Vol. 2. Elsevier. Chap. 17, 961–994 (see pp. 15, 98).

Kratz, M., Y. H. Lok, and A. J. McNeil (2017). “Multinomial VaR Backtests: A simple
implicit approach to backtesting expected shortfall”. arXiv:1611.04851 [q-fin.RM] (see
p. 103).

Kupiec, P. H. (1995). “Techniques for Verifying the Accuracy of Risk Measurement Models”.
The Journal of Derivatives 3 (2), 73–84 (see pp. 18, 30, 35, 36, 98).

Lambert, P. and S. Laurent (2002). “Modelling skewness dynamics in series of financial
data”. Université Catholique de Louvain and Université de Liège, available at http:
//hdl.handle.net/2078.1/91035 (see p. 107).

Lloyd, C. J. (2005). “Estimating test power adjusted for size”. Journal of Statistical
Computation and Simulation 75 (11), 921–933 (see pp. 109, 110).

MacKinnon, J. G. (2009). “Bootstrap Hypothesis Testing”. In: Handbook of Computational
Econometrics. Ed. by Belsley, D. A. and Kontoghiorghes, E. J. John Wiley & Sons, Ltd.
Chap. 6, 183–213 (see p. 102).

McNeil, A. J. and R. Frey (2000). “Estimation of tail-related risk measures for heteroscedastic
financial time series: an extreme value approach”. Journal of Empirical Finance 7 (3–4),
271–300 (see pp. 96, 97, 103, 104, 106, 108, 110, 111, 114, 116, 118–122).

Mincer, J. and V. Zarnowitz (1969). “The Evaluation of Economic Forecasts”. In: Economic
Forecasts and Expectations: Analysis of Forecasting Behavior and Performance. National
Bureau of Economic Research, Inc, 3–46 (see pp. 9, 13, 95, 96, 99, 118).

Nadarajah, S., B. Zhang, and S. Chan (2014). “Estimation methods for expected shortfall”.
Quantitative Finance 14 (2), 271–291 (see pp. 52, 98).

Nolde, N. and J. F. Ziegel (2017). “Elicitability and backtesting: Perspectives for banking
regulation”. arXiv:1608.05498 [q-fin.RM] (see pp. 53, 54, 61, 62, 67, 95–97, 100,
103–108, 110, 111, 114, 116–122).

Patton, A. J., J. F. Ziegel, and R. Chen (2017). “Dynamic Semiparametric Models for
Expected Shortfall (and Value-at-Risk)”. arXiv:1707.05108 [q-fin.EC] (see pp. 95, 100).

http://hdl.handle.net/2078.1/91035
http://hdl.handle.net/2078.1/91035


Chapter 3. Backtesting ES Forecasts 125

Politis, D. N. and J. P. Romano (1994). “The Stationary Bootstrap”. Journal of the American
Statistical Association 89 (428), 1303–1313 (see p. 118).

Righi, M. B. and P. S. Ceretta (2013). “Individual and flexible expected shortfall backtesting”.
Journal of Risk Model Validation 7 (3) (see p. 103).

— (2015). “A comparison of Expected Shortfall estimation models”. Journal of Economics
and Business 78, 14–47 (see p. 103).

Taylor, J. W. (2017). “Forecasting Value at Risk and Expected Shortfall Using a Semi-
parametric Approach Based on the Asymmetric Laplace Distribution”. Forthcoming in
Journal of Business & Economic Statistics. DOI: 10.1080/07350015.2017.1281815 (see
pp. 52, 100).

Trottier, D.-A. and D. Ardia (2016). “Moments of standardized Fernandez-Steel skewed
distributions: Applications to the estimation of GARCH-type models”. Finance Research
Letters 18, 311–316 (see p. 107).

Wong, W. (2008). “Backtesting trading risk of commercial banks using expected shortfall”.
Journal of Banking & Finance 32 (7), 1404–1415 (see p. 103).

Zangari, P. (1996). RiskMetrics – Technical Document. Tech. rep. New York: Morgan
Guaranty Trust Company (see p. 108).



126

Complete References

Abad, P. andS.Benito (2013). “Adetailed comparison of value at risk estimates”.Mathematics
and Computers in Simulation 94, 258–276 (see p. 15).

Acerbi, C. and B. Szekely (2014). “Back-testing Expected Shortfall”. Risk December, 76–81
(see pp. 53, 103).

Aiolfi, M. and A. Timmermann (2006). “Persistence in forecasting performance and
conditional combination strategies”. Journal of Econometrics 135 (1â€“2), 31–53 (see
p. 34).

Andersen, T. and T. Bollerslev (1998). “Answering the skeptics: Yes, standard volatility
models do provide accurate forecasts”. International Economic Review 39 (4), 885–905
(see p. 70).

Andrews, D. (1994). “Empirical Process Methods in Econometrics”. In: Handbook of
Econometrics. Ed. by Engle, R. and McFadden, D. Vol. 4. Elsevier. Chap. 37, 2247–2294
(see p. 73).

Aramonte, S., P. Durand, S. Kobayashi, M. Kwast, J. A. Lopez, G. Mazzoni, P. Raupach, M.
Summer, and J. Wu (2011). Messages from the academic literature on risk measurement
for the trading book. Tech. rep. Working Paper No. 19, available at http://www.bis.
org/publ/bcbs_wp19.pdf. Bank for International Settlements (see pp. 95, 103).

Arlot, S. and A. Celisse (2010). “A survey of cross-validation procedures for model selection”.
Statistics Surveys 4, 40–79 (see p. 23).

Artzner, P., F. Delbaen, J.-M. Eber, and D. Heath (1999). “Coherent Measures of Risk”.
Mathematical Finance 9 (3), 203–228 (see pp. 52, 95).

Barendse, S. (2017). “Interquantile Expectation Regression”. Available at https://ssrn.
com/abstract=2937665 (see pp. 53, 95, 100).

Barone-Adesi, G., K. Giannopoulos, and L. Vosper (1999). “VaR without correlations for
portfolios of derivative securities”. Journal of Futures Markets 19 (5), 583–602 (see
pp. 27, 117).

Basel Committee (1996). Overview of the Amendment to the Capital Accord to Incorporate
Market Risks. Tech. rep. Available at http://www.bis.org/publ/bcbs23.pdf.
Bank for International Settlements (see pp. 15, 96, 102).

— (2006). International Convergence of Capital Measurement and Capital Standards. Tech.
rep. Available at http://www.bis.org/publ/bcbs107.pdf. Bank for International
Settlements (see p. 15).

— (2011). Basel III: A global regulatory framework for more resilient banks and banking
systems. Tech. rep. Available at http://www.bis.org/publ/bcbs189.pdf. Bank for
International Settlements (see p. 15).

http://www.bis.org/publ/bcbs_wp19.pdf
http://www.bis.org/publ/bcbs_wp19.pdf
https://ssrn.com/abstract=2937665
https://ssrn.com/abstract=2937665
http://www.bis.org/publ/bcbs23.pdf
http://www.bis.org/publ/bcbs107.pdf
http://www.bis.org/publ/bcbs189.pdf


Complete References 127

Basel Committee (2013). Fundamental review of the trading book: A revised market risk
framework. Tech. rep. Available at http://www.bis.org/publ/bcbs265.pdf. Bank
for International Settlements (see p. 95).

— (2016). Minimum capital requirements for Market Risk. Tech. rep. Available at http:
//www.bis.org/bcbs/publ/d352.pdf. Bank for International Settlements (see
pp. 52, 95).

— (2017). Pillar 3 disclosure requirements – consolidated and enhanced framework. Tech.
rep. Available at http://www.bis.org/bcbs/publ/d400.pdf. Basel Committee on
Banking Supervision (see pp. 95, 103).

Bayer, S. and T. Dimitriadis (2017a). esback: Expected Shortfall Backtesting. R package
version 0.1.1, available at https://github.com/BayerSe/esback (see pp. 106,
119).

— (2017b). esreg: Joint Quantile and Expected Shortfall Regression. R package version
0.3.1, available at https://CRAN.R-project.org/package=esreg (see pp. 54, 64,
71).

— (2017c). “Regression-based Expected Shortfall Backtesting”. Working Paper (see p. 71).
Belloni, A. and V. Chernozhukov (2011). “`1-penalized quantile regression in high-

dimensional sparse models”. The Annals of Statistics 39 (1), 82–130 (see p. 41).
Berkowitz, J. (2001). “Testing Density Forecasts, With Applications to Risk Management”.

Journal of Business & Economic Statistics 19 (4), 465–474 (see p. 103).
Berkowitz, J., P. Christoffersen, and D. Pelletier (2011). “Evaluating value-at-risk models

with desk-level data”. Management Science 57 (12), 2213–2227 (see p. 30).
Bernardi, M. and L. Catania (2016). “Comparison of Value-at-Risk models using the MCS

approach”. Computational Statistics 31 (2), 579–608 (see pp. 15, 30, 37).
Bernardi, M., L. Catania, and L. Petrella (2017). “Are news important to predict the

Value-at-Risk?” The European Journal of Finance 23 (6), 535–572 (see p. 17).
Bollerslev, T. (1986). “Generalized autoregressive conditional heteroskedasticity”. Journal

of Econometrics 31 (3), 307–327 (see pp. 26, 70, 107).
Boucher, C. M., J. Danielsson, P. S. Kouontchou, and B. B. Maillet (2014). “Risk models-at-

risk”. Journal of Banking & Finance 44, 72–92 (see p. 15).
Boudoukh, J., M. Richardson, and R. F. Whitelaw (1998). “The Best of Both Worlds: A

Hybrid Approach to Calculating Value at Risk”. Risk 11 (5), 64–67 (see p. 26).
Brazauskas, V., B. L. Jones, M. L. Puri, and R. Zitikis (2008). “Estimating conditional tail

expectation with actuarial applications in view”. Journal of Statistical Planning and
Inference 138 (11), 3590–3604 (see p. 61).

Casarin, R., C.-L. Chang, J.-A. Jimenez-Martin, M. McAleer, and T. Perez-Amaral (2013).
“Risk management of risk under the Basel Accord: A Bayesian approach to forecasting
Value-at-Risk of VIX futures”. Mathematics and Computers in Simulation 94, 183–204
(see p. 17).

Chen, S. X. (2008). “Nonparametric Estimation of Expected Shortfall”. Journal of Financial
Econometrics 6 (1), 87–107 (see p. 61).

Christoffersen, P. (1998). “Evaluating Interval Forecasts”. International Economic Review
39 (4), 841–862 (see pp. 17, 30, 98).

Corsi, F. (2009). “A simple approximate long-memory model of realized volatility”. Journal
of Financial Econometrics 7 (2), 174–196 (see p. 70).

Costanzino, N. and M. Curran (2015). “Backtesting general spectral risk measures with
application to expected shortfall”. Journal of Risk Model Validation 9 (1), 21–31 (see
p. 103).

http://www.bis.org/publ/bcbs265.pdf
http://www.bis.org/bcbs/publ/d352.pdf
http://www.bis.org/bcbs/publ/d352.pdf
http://www.bis.org/bcbs/publ/d400.pdf
https://github.com/BayerSe/esback
https://CRAN.R-project.org/package=esreg


Complete References 128

Dimitriadis, T. and S. Bayer (2017). “A Joint Quantile and Expected Shortfall Regression
Framework”. arXiv:1704.02213 [math.ST] (see pp. 95, 96, 99–101).

Ding, Z., C. W. J. G. Granger, and R. F. Engle (1993). “A long memory property of stock
market returns and a new model”. Journal of Empirical Finance 1 (1), 83–106 (see
p. 27).

Du, Z. and J. C. Escanciano (2017). “Backtesting Expected Shortfall: Accounting for Tail
Risk”. Management Science 63 (4), 940–958 (see p. 103).

Efron, B. (Jan. 1979). “Bootstrap Methods: Another Look at the Jackknife”. The Annals of
Statistics 7 (1), 1–26 (see pp. 64, 102).

— (1991). “Regression percentiles using asymmetric squared error loss”. Statistica Sinica
1 (1), 93–125 (see pp. 54, 61).

Efron, B. and R. J. Tibshirani (1993). An Introduction to the Bootstrap. New York: Chapman
and Hall (see p. 104).

Ehm, W., T. Gneiting, A. Jordan, and F. Krüger (2016). “Of quantiles and expectiles:
consistent scoring functions, Choquet representations and forecast rankings”. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 78 (3), 505–562 (see
p. 70).

Einhorn, D. (2008). “Private Profits and Socialized Risk”. In: Global Association of Risk
Professionals Risk Review (June/July 2008). Ed. by Einhorn, D. and Brown, A. Vol. 42,
10–26 (see p. 15).

Emmer, S., M. Kratz, and D. Tasche (2015). “What Is the Best Risk Measure in Practice? A
Comparison of Standard Measures”. Journal of Risk 18 (2), 31–60 (see p. 103).

Engle, R. F. and S. Manganelli (2004). “CAViaR: Conditional Autoregressive Value at Risk
by Regression Quantiles”. Journal of Business & Economic Statistics 22 (4), 367–381
(see pp. 17, 26, 30, 98).

Ergen, I. (2015). “Two-step methods in VaR prediction and the importance of fat tails”.
Quantitative Finance 15 (6), 1013–1030 (see p. 15).

Fernandez, C. and M. F. J. Steel (1998). “On Bayesian Modeling of Fat Tails and Skewness”.
Journal of the American Statistical Association 93 (441), 359–371 (see p. 107).

Fissler, T. (2017). “On Higher Order Elicitability and Some Limit Theorems on the Poisson
and Wiener Space”. PhD thesis. Universität Bern (see p. 63).

Fissler, T. and J. F. Ziegel (2016). “Higher order elicitability and Osband’s principle”. Annals
of Statistics 44 (4), 1680–1707 (see pp. 9, 12, 53–56, 58, 70, 71, 76, 95, 100).

Fissler, T., J. F. Ziegel, and T. Gneiting (2016). “Expected Shortfall is jointly elicitable with
Value at Risk - Implications for backtesting”. Risk January, 58–61 (see pp. 53, 56, 61,
62, 95).

Fuertes, A.-M. and J. Olmo (2013). “Optimally harnessing inter-day and intra-day information
for daily value-at-risk prediction”. International Journal of Forecasting 29 (1), 28–42
(see p. 17).

Gaglianone, W. P., L. R. Lima, O. Linton, and D. R. Smith (2011). “Evaluating Value-at-Risk
Models via Quantile Regression”. Journal of Business & Economic Statistics 29 (1),
150–160 (see pp. 96, 111, 119).

Ghalanos, A. (2015). rugarch: Univariate GARCH models. R package version 1.3-6. (see
p. 27).

Giacomini, R. and I. Komunjer (2005). “Evaluation and Combination of Conditional Quantile
Forecasts”. Journal of Business & Economic Statistics 23 (4), 416–431 (see pp. 17, 19,
119).



Complete References 129

Gikhman, I. and A. Skorokhod (2004). The Theory of Stochastic Processes I. Vol. 210.
Classics in Mathematics. Springer Berlin Heidelberg (see pp. 73, 91).

Glosten, L. R., R. Jagannathan, and D. E. Runkle (1993). “On the Relation between the
Expected Value and the Volatility of the Nominal Excess Return on Stocks”. The Journal
of Finance 48 (5), 1779–1801 (see p. 117).

Gneiting, T. (2011a). “Making and Evaluating Point Forecasts”. Journal of the American
Statistical Association 106 (494), 746–762 (see pp. 52, 54–56, 60).

Gneiting, T. (2011b). “Quantiles as optimal point forecasts”. International Journal of
Forecasting 27 (2), 197–207 (see pp. 16, 19).

Gourieroux, C. and A. Monfort (1995). Statistics and Econometric Models: Volume 1,
General Concepts, Estimation, Prediction and Algorithms. Cambridge University Press
(see p. 65).

Graham, A. and J. Pál (2014). “Backtesting value-at-risk tail losses on a dynamic portfolio”.
The Journal of Risk Model Validation 8 (2), 59 (see p. 103).

Grigoryeva, L., J.-P. Ortega, and A. Peresetsky (2017). “Volatility forecasting using global
stochastic financial trends extracted from non-synchronous data”. Forthcoming in
Econometrics and Statistics. DOI: 10.1016/j.ecosta.2017.01.003 (see p. 37).

Guler, K., P. T. Ng, and Z. Xiao (2017). “Mincer–Zarnowitz quantile and expectile regressions
for forecast evaluations under aysmmetric loss functions”. Journal of Forecasting 36 (6),
651–679 (see p. 96).

Halbleib, R. and W. Pohlmeier (2012). “Improving the Value at Risk Forecasts: Theory and
Evidence from the Financial Crisis”. Journal of Economic Dynamics and Control 36 (8),
1212–1228 (see pp. 15–17, 19, 35).

Hall, P. and S. J. Sheather (1988). “On the Distribution of a Studentized Quantile”. Journal
of the Royal Statistical Society. Series B (Methodological) 50 (3), 381–391 (see p. 64).

Hamidi, B., C. Hurlin, P. Kouontchou, and B. Maillet (2015). “A DARE for VaR”. Finance
36 (1), 7–38 (see pp. 17, 29, 34, 36, 37).

Hansen, B. (2008). “Least-squares forecast averaging”. Journal of Econometrics 146 (2),
342–350 (see p. 21).

Hansen, P. R., A. Lunde, and J.M. Nason (2011). “TheModel Confidence Set”. Econometrica
79 (2), 453–497 (see pp. 17, 18, 30, 31, 117, 118).

Hart, J. D. (1994). “Automated Kernel Smoothing of Dependent Data by Using Time Series
Cross- Validation”. Journal of the Royal Statistical Society. Series B (Methodological)
56 (3), 529–542 (see p. 23).

Hart, J. D. and C.-L. Lee (2005). “Robustness of one-sided cross-validation to autocorrela-
tion”. Journal of Multivariate Analysis 92 (1), 77–96 (see p. 23).

Hastie, T., R. Tibshirani, and J. Friedman (2011). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. 2nd ed. Springer (see pp. 16, 20).

Hastie, T., R. Tibshirani, and M. Wainwright (2015). Statistical Learning with Sparsity: The
Lasso and Generalizations. Chapman and Hall/CRC (see p. 21).

Hendricks, W. and R. Koenker (1992). “Hierarchical SplineModels for Conditional Quantiles
and the Demand for Electricity”. Journal of the American Statistical Association 87 (417),
58–68 (see p. 64).

Hoerl, A. E. and R. W. Kennard (1970a). “Ridge Regression: Applications to Nonorthogonal
Problems”. Technometrics 12 (1), 69–82 (see pp. 16, 20).

— (1970b). “Ridge Regression: Biased Estimation for Nonorthogonal Problems”. Techno-
metrics 12 (1), 55–67 (see pp. 16, 20).



Complete References 130

Holden, K. and D. A. Peel (1990). “On Testing For Unbiasedness And Efficiency Of
Forecasts”. The Manchester School 58 (2), 120–127 (see p. 99).

Huang, H. and T.-H. Lee (2013). “Forecasting Value-at-Risk Using High-Frequency Infor-
mation”. Econometrics 1 (1), 127–140 (see p. 17).

Huber, P. (1967). “The behavior of maximum likelihood estimates under nonstandard
conditions”. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability. Berkeley: University of California Press, 221–233 (see pp. 73, 75, 76).

James, G. M. (2003). “Variance and Bias for General Loss Functions”.Machine Learning
51 (2), 115–135 (see p. 20).

Jeon, J. and J. W. Taylor (2013). “Using CAViaR Models with Implied Volatility for
Value-at-Risk Estimation”. Journal of Forecasting 32 (1), 62–74 (see p. 17).

Jorion, P. (2006). Value at Risk: The New Benchmark for Managing Financial Risk. 3rd ed.
McGraw-Hill (see p. 15).

Kerkhof, J. and B.Melenberg (2004). “Backtesting for risk-based regulatory capital”. Journal
of Banking & Finance 28 (8), 1845–1865 (see p. 103).

Koenker, R. (1994). “Confidence Intervals for Regression Quantiles. Proceedings of the
Fifth Prague Symposium, held from September 4–9, 1993”. In: Asymptotic Statistics.
Ed. by Mandl, P. and Hušková, M. Heidelberg: Physica-Verlag HD, 349–359 (see p. 64).

— (2005). Quantile Regression. Econometric Society Monographs. Cambridge University
Press (see pp. 53, 60).

— (2011). “Additive models for quantile regression: Model selection and confidence
bandaids”. Brazilian Journal of Probability and Statistics 25 (3), 239–262 (see p. 34).

— (2016). quantreg: Quantile Regression. R package version 5.29 (see p. 27).
Koenker, R. and G. Bassett (1978). “Regression Quantiles”. Econometrica 46 (1), 33–50

(see pp. 16, 19).
Koenker, R. and J. A. F. Machado (1999). “Goodness of Fit and Related Inference Processes

for Quantile Regression”. Journal of the American Statistical Association 94 (448),
1296–1310 (see p. 61).

Komunjer, I. (2013). “Quantile Prediction”. In: Handbook of Economic Forecasting. Ed. by
Elliott, G. and Timmermann, A. Vol. 2. Elsevier. Chap. 17, 961–994 (see pp. 15, 98).

Kratz, M., Y. H. Lok, and A. J. McNeil (2017). “Multinomial VaR Backtests: A simple
implicit approach to backtesting expected shortfall”. arXiv:1611.04851 [q-fin.RM] (see
p. 103).

Kuester, K., S. Mittnik, and M. Paolella (2006). “Value-at-Risk Prediction: A Comparison
of Alternative Strategies”. Journal of Financial Econometrics 4 (1), 53–89 (see p. 15).

Kupiec, P. H. (1995). “Techniques for Verifying the Accuracy of Risk Measurement Models”.
The Journal of Derivatives 3 (2), 73–84 (see pp. 18, 30, 35, 36, 98).

Lambert, N. S., D. M. Pennock, and Y. Shoham (2008). “Eliciting Properties of Probability
Distributions”. In: Proceedings of the 9th ACM Conference on Electronic Commerce.
ACM, 129–138 (see p. 54).

Lambert, P. and S. Laurent (2002). “Modelling skewness dynamics in series of financial
data”. Université Catholique de Louvain and Université de Liège, available at http:
//hdl.handle.net/2078.1/91035 (see p. 107).

Li, Y. and J. Zhu (2008). “L1-Norm Quantile Regression”. Journal of Computational and
Graphical Statistics 17 (1), 163–185 (see p. 22).

Lloyd, C. J. (2005). “Estimating test power adjusted for size”. Journal of Statistical
Computation and Simulation 75 (11), 921–933 (see pp. 109, 110).

http://hdl.handle.net/2078.1/91035
http://hdl.handle.net/2078.1/91035


Complete References 131

Lourenço, H. R., O. C. Martin, and T. Stützle (2003). “Iterated Local Search”. In: Handbook
of Metaheuristics. Ed. by Glover, F. and Kochenberger, G. A. Boston, MA: Springer US,
320–353 (see p. 63).

Louzis, D. P., S. Xanthopoulos-Sisinis, and A. P. Refenes (2014). “Realized volatility models
and alternative Value-at-Risk prediction strategies”. Economic Modelling 40, 101–116
(see p. 15).

MacKinnon, J. G. (2009). “Bootstrap Hypothesis Testing”. In: Handbook of Computational
Econometrics. Ed. by Belsley, D. A. and Kontoghiorghes, E. J. John Wiley & Sons, Ltd.
Chap. 6, 183–213 (see p. 102).

Mallows, C. L. (1973). “Some Comments on Cp”. Technometrics 15 (4), 661–675 (see p. 29).
Marinelli, C., S. D’addona, and S. T. Rachev (2007). “A Comparison Of Some Univariate

Models For Value-at-risk And Expected Shortfall”. International Journal of Theoretical
and Applied Finance 10 (06), 1043–1075 (see p. 15).

McAleer, M., J.-A. Jimenez-Martin, and P.-A. Teodosio (2013a). “GFC-robust risk manage-
ment strategies under the Basel Accord”. International Review of Economics & Finance
27, 97–111 (see pp. 17, 30).

— (2013b). “International Evidence on GFC-Robust Forecasts for Risk Management under
the Basel Accord”. Journal of Forecasting 32 (3), 267–288 (see p. 17).

McNeil, A. J. and R. Frey (2000). “Estimation of tail-related risk measures for heteroscedastic
financial time series: an extreme value approach”. Journal of Empirical Finance 7 (3–4),
271–300 (see pp. 96, 97, 103, 104, 106, 108, 110, 111, 114, 116, 118–122).

Meinshausen, N. (2006). “Quantile Regression Forests”. Journal of Machine Learning
Research 7, 983–999 (see p. 41).

Mincer, J. and V. Zarnowitz (1969). “The Evaluation of Economic Forecasts”. In: Economic
Forecasts and Expectations: Analysis of Forecasting Behavior and Performance. National
Bureau of Economic Research, Inc, 3–46 (see pp. 9, 13, 95, 96, 99, 118).

Nadarajah, S., B. Zhang, and S. Chan (2014). “Estimation methods for expected shortfall”.
Quantitative Finance 14 (2), 271–291 (see pp. 52, 98).

Nelder, J. A. and R. Mead (1965). “A Simplex Method for Function Minimization”. The
Computer Journal 7 (4), 308–313 (see p. 63).

Nelson, D. B. (1991). “Conditional Heteroskedasticity in Asset Returns: A New Approach”.
Econometrica 59 (2), 347–370 (see p. 27).

Newey, W. and D. McFadden (1994). “Large sample estimation and hypothesis testing”.
In: Handbook of Econometrics. Ed. by Engle, R. and McFadden, D. Vol. 4. Elsevier.
Chap. 36, 2111–2245 (see pp. 73, 75).

Nieto,M. R. and E. Ruiz (2016). “Frontiers in VaR forecasting and backtesting”. International
Journal of Forecasting 32 (2), 475–501 (see p. 15).

Nolde, N. and J. F. Ziegel (2017). “Elicitability and backtesting: Perspectives for banking
regulation”. arXiv:1608.05498 [q-fin.RM] (see pp. 53, 54, 61, 62, 67, 95–97, 100,
103–108, 110, 111, 114, 116–122).

Patton, A. J., J. F. Ziegel, and R. Chen (2017). “Dynamic Semiparametric Models for
Expected Shortfall (and Value-at-Risk)”. arXiv:1707.05108 [q-fin.EC] (see pp. 95, 100).

Politis, D. N. and J. P. Romano (1994). “The Stationary Bootstrap”. Journal of the American
Statistical Association 89 (428), 1303–1313 (see p. 118).

R Core Team (2016). R: A Language and Environment for Statistical Computing. http:
//www.R-project.org. R Foundation for Statistical Computing. Vienna, Austria (see
p. 21).

http://www.R-project.org
http://www.R-project.org


Complete References 132

Righi, M. B. and P. S. Ceretta (2013). “Individual and flexible expected shortfall backtesting”.
Journal of Risk Model Validation 7 (3) (see p. 103).

— (2015). “A comparison of Expected Shortfall estimation models”. Journal of Economics
and Business 78, 14–47 (see p. 103).

RiskMetrics Group (1996). RiskMetrics – Technical Document. J. P. Morgan and Reuters.
New York (see p. 26).

Shan, K. and Y. Yang (2009). “Combining Regression Quantile Estimators”. Statistica Sinica
19 (3), 1171–1191 (see pp. 17, 29, 30, 34).

Sheppard, K. (2017). ARCH. Python package version 4.0 (see p. 31).
Stock, J. H. and M. W. Watson (2004). “Combination forecasts of output growth in a

seven-country data set”. Journal of Forecasting 23 (6), 405–430 (see p. 18).
Taylor, J. W. (2008a). “Estimating Value at Risk and Expected Shortfall Using Expectiles”.

Journal of Financial Econometrics 6 (2), 231–252 (see pp. 17, 52).
— (2008b). “Using Exponentially Weighted Quantile Regression to Estimate Value at Risk

and Expected Shortfall”. Journal of Financial Econometrics 6 (3), 382–406 (see p. 52).
— (2017). “Forecasting Value at Risk and Expected Shortfall Using a Semiparametric

Approach Based on the Asymmetric Laplace Distribution”. Forthcoming in Journal of
Business & Economic Statistics. DOI: 10.1080/07350015.2017.1281815 (see pp. 52,
100).

Taylor, S. J. (1986). Modelling Financial Time Series. World Scientific Publishing (see
p. 27).

Tibshirani, R. (1996). “Regression Shrinkage and Selection via the Lasso”. English. Journal
of the Royal Statistical Society. Series B (Methodological) 58 (1), 267–288 (see pp. 16,
20).

Timmermann, A. (2006). “Forecast Combinations”. In: Handbook of Economic Forecasting.
Ed. by Elliott, G., Granger, C. W., and Timmermann, A. Vol. 1. Elsevier. Chap. 4,
135–196 (see pp. 15, 21, 28, 29, 34).

Trottier, D.-A. and D. Ardia (2016). “Moments of standardized Fernandez-Steel skewed
distributions: Applications to the estimation of GARCH-type models”. Finance Research
Letters 18, 311–316 (see p. 107).

van der Vaart, A. W. (1998). Asymptotic statistics. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press (see pp. 73, 75, 78).

Weber, S. (2006). “Distribution Invariant Risk Measures, Information, and Dynamic Consis-
tency”. Mathematical Finance 16 (2), 419–441 (see pp. 52, 55).

Wong, W. (2008). “Backtesting trading risk of commercial banks using expected shortfall”.
Journal of Banking & Finance 32 (7), 1404–1415 (see p. 103).

Yi, C. (2017). hqreg: Regularization Paths for Lasso or Elastic-Net Penalized Huber Loss
Regression and Quantile Regression. R package version 1.4 (see p. 21).

Yi, C. and J. Huang (2017). “Semismooth Newton Coordinate Descent Algorithm for
Elastic-Net Penalized Huber Loss Regression and Quantile Regression”. Journal of
Computational and Graphical Statistics 26 (3), 547–557 (see p. 21).

Zangari, P. (1996). RiskMetrics – Technical Document. Tech. rep. New York: Morgan
Guaranty Trust Company (see p. 108).

Zheng, S. (2012). “QBoost: Predicting quantiles with boosting for regression and binary
classification”. Expert Systems with Applications 39 (2), 1687–1697 (see p. 41).

Ziegel, J. F., F. Krüger, A. Jordan, and F. Fasciati (2017). “Murphy Diagrams: Forecast
Evaluation of Expected Shortfall”. arXiv:1705.04537 [q-fin.RM] (see pp. 53, 62, 67, 70).



Complete References 133

Zou, H. and T. Hastie (2005). “Regularization and variable selection via the Elastic Net”.
Journal of the Royal Statistical Society. Series B (Methodological) 67 (2), 301–320 (see
pp. 16, 20, 41).

Zwingmann, T. and H. Holzmann (2016). “Asymptotics for the expected shortfall”.
arXiv:1611.07222 [math.ST] (see pp. 53, 60).



134

Eigenabgrenzung

Das erste Kapitel, Combining Value-at-Risk Forecasts Using Penalized Quantile Regressions,
habe ich selbstständig und nur mit den angegebenen Hilfsmitteln erstellt.

Das zweite und dritte Kapitel, A Joint Quantile and Expected Shortfall Regression
Framework und Regression Based Expected Shortfall Backtesting, sind in Zusammenarbeit
mit Timo Dimitriadis entstanden, der ebenfalls Dokotorand an der Graduate School of
Decision Sciences der Universität Konstanz ist. Meine individuellen Leistungen bei der
Erstellung der Kapitel betragen 40% für das zweite und 60% für das dritte Kapitel.
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