Inhaltsverzeichnis

Versi	Versicherung5					
Vorbemerkung6						
Dank	Danksagung7					
1	Einleitung					
1.1	Von der Elektromobilität zur Notwendigkeit des C-Faser-Recyclings					
1.2	Motivation für die Gewinnung von rC-Fasern aus CFRTS					
1.2.1	Rechtliche Restriktionen					
1.2.2	Ökonomische Hintergründe14					
1.2.3	Ökologische Aspekte					
1.3	C-Faser-Recycling mittels elektrohydraulischen Effektes					
1.3.1	Forschungsthema					
1.3.2	Zentrale und weiterführende Forschungsfrage17					
1.3.3	Potenzielle Anwendungsmöglichkeiten für rC-Fasern					
1.4	Methodik, Ziel und Aufbau der Arbeit20					
2	Stand der Technik des C-Faser-Recyclings aus CFRTS					
2.1	Übersicht bekannter C-Faser-Recyclingprozesse					
2.2	Mechanische Recyclingprozesse					
2.2.1	Mechanischer Aufschluss					
2.2.2	Elektrodynamische Fragmentierung					
2.3	Thermische Recyclingprozesse					
2.3.1	Pyrolyse im Gasgemisch, Metallbad und mit Mikrowellen24					
2.3.2	Thermische Oxidation in der Wirbelschicht					
2.4	Chemische Recyclingprozesse					
2.4.1	Solvolyse und Hydrolyse					
2.4.2	Solvolyse mit überkritischen Fluiden					
3	Grundlagen der EHZ für die Anwendung an CFRTS29					
3.1	Grundprinzip der EHZ von CFRTS					

ı	n	h	а	lts	ve	:rz	eı	C	h	n	15	٠

3.2	Bisherige Forschung, Anwendungen und Parameter von EHZ-Anlagen	30
3.3	Wandlung elektrischer in mechanische Energie bei der Unterwasserfunkenentladung	33
3.3.1	Konstruktiver Aufbau einer elektrohydraulischen Nasszerkleinerungsanlage	33
3.3.2	Vereinfachte elektrische Ersatzschaltung für die Unterwasserfunkenentladung	35
3.3.3	Entladungsablauf der Unterwasserfunkenstrecke	41
3.3.4	Zeitlicher Zusammenhang zwischen dem Leistungs- und Druckverlauf	45
3.4	Bekannte Zerkleinerungsmechanismen der EHZ für Verbunde	48
3.4.1	Nasse EHZ von Verbundmaterialien	48
3.4.2	Flächenbezogener Energieeintrag der Schockwelle über die Materialoberfläche	49
3.4.3	Verhalten der Schockwelle in Verbundmaterial-Schichten	50
3.4.4	Partielle Stromführung durch elektrisch leitende Verbund-Komponenten	52
3.5	Übertragung bekannter Zerkleinerungseffekte von Verbundmaterialien auf CFRTS	52
3.5.1	CFRTS als Zwei-Komponenten-Verbund im Quasi-Schichtaufbau	52
3.5.2	Makroskopische Schäden durch Schockwellen an der CFRTS-Oberfläche	54
3.5.3	Akustische Eigenschaften von CFRTS bei der Schockwellenbehandlung	54
3.5.4	Elektrische Eigenschaften von CFRTS bei Unterwasserfunkenentladungen	56
4	Vorversuche für die EHZ von CFRTS	58
4.1	Versuchsplanung und Aufbereitung von Produktionsabfällen zu Probematerialien	58
4.1.1	Eingesetzte Probematerialien	58
4.1.2	Aufbereitung der Produktionsabfälle	59
4.1.3	Planung der Vorversuche	62
4.2	Versuchsreihe V1: C-Fasern (Komponente A)	64
4.2.1	Präparation der C-Faser-Proben	64
4.2.2	Fibre Cube-Fasermessmethodik	65
4.2.3	Ergebnisse der Versuchsreihe V1	66
4.3	Versuchsreihe V2: EP (Komponente B)	69
4.3.1	Massebilanz der zerkleinerten EP(B)-Proben mit den Ausgangsmassen	69
4.3.2	Siebanalyse der zerkleinerten EP(B)-Partikel	70
4.3.3	Verlauf der EHZ von EP-Granulat in Abhängigkeit der Beanspruchungsenergie	70
4.4	Versuchsreihe V3: CFRTS (Materialverbund AB)	71

Inhaltsverzeichnis

4.4.1	Manuelles Trennverfahren freier Komponenten(A+B) von Restverbunden(AB)	71
4.4.2	Masseanteilverlauf freier Komponenten w _{frei, A+B} (x)	73
4.4.3	REM-Untersuchung der freien Komponenten(A+B)	75
4.5	Zusammenfassung der Ergebnisse der Vorversuche	76
5	Weiterführende Untersuchungen zur EHZ von CFRTS	79
5.1	Methodik	79
5.1.1	Ziel der Untersuchungen	79
5.1.2	Inhalt der Versuchsplanung	79
5.1.3	Vereinfachte Systemanalyse der EHZ von CFRTS	80
5.1.4	Betrachtung der Versuchsanlage EHZ1001	83
5.1.5	Betrachtung des Probenmaterials	88
5.1.6	Planung der Versuchsreihen	91
5.1.7	Beschreibung der Versuchsdurchführung	94
5.2	Versuchsdurchführung	95
5.2.1	Bestimmung des Masseanteilverlaufs freier Komponenten wfrei, A+B(x)	95
5.2.2	Masseverlust bei der EHZ von CFRTS	100
5.2.3	Bestimmung der Längenverteilung des rC-Faserkonzentrats	102
5.2.4	REM-Untersuchung des rC-Faserkonzentrats	108
5.2.5	Einzelfaserzugversuche der rC-und C-Neufasern	110
5.3	Rückschlüsse bezüglich des C-Faser-Recyclings	114
6	Zusammenfassung und Schlussfolgerung	117
Litera	aturverzeichnis	121
Abbild	dungsverzeichnis	130
Tabel	llenverzeichnis	134
Symb	polverzeichnis	135
Abküı	rzungsverzeichnis	138
A nha	na.	140