Contents

1 Random Signals —— 1
 1.1 Signal Classifications —— 1
 1.2 Correlation Function, Covariance Function, and Power Spectral Density —— 6
 1.2.1 Autocorrelation Function, Autocovariance Function, and Power Spectral Density —— 6
 1.2.2 Cross Correlation Function, Cross Covariance Function, and Cross Power Spectral Density —— 10
 1.3 Comparison and Discrimination between Two Random Signals —— 13
 1.3.1 Independence, Uncorrelatedness, and Orthogonality —— 14
 1.3.2 Gram-Schmidt Orthogonalization Process of Polynomial Sequence —— 18
 1.4 Linear System with Random Input —— 19
 1.4.1 The Power Spectral Density of System Output —— 19
 1.4.2 Narrow Band Bandpass Filter —— 22
Summary —— 25
Exercises —— 25

2 Parameter Estimation Theory —— 30
 2.1 Performance of Estimators —— 30
 2.1.1 Unbiased and Asymptotic Unbiased Estimation —— 31
 2.1.2 Effectiveness of Estimators —— 33
 2.2 Fisher Information and Cramér-Rao Inequality —— 35
 2.2.1 Fisher Information —— 35
 2.2.2 Cramér-Rao Lower Bound —— 36
 2.3 Bayes Estimation —— 38
 2.3.1 Definition of Risk Function —— 39
 2.3.2 Bayes Estimation —— 40
 2.4 Maximum Likelihood Estimation —— 43
 2.5 Linear Mean Squares Estimation —— 47
 2.6 Least Squares Estimation —— 49
 2.6.1 Least Squares Estimation and Its Performance —— 49
 2.6.2 Weighted Least Squares Estimation —— 51
Summary —— 53
Exercises —— 53

3 Signal Detection —— 57
 3.1 Statistical Hypothesis Testing —— 57
 3.1.1 Basic Concepts of Signal Detection —— 57
 3.1.2 Signal Detection Measures —— 61
3.1.3 Decision Space — 65
3.2 Probability Density Function and Error Function — 68
3.2.1 Probability Density Function — 69
3.2.2 Error Function and Complementary Error Function — 71
3.3 Probabilities of Detection and Error — 73
3.3.1 Definitions of Detection and Error Probabilities — 74
3.3.2 Power Function — 77
3.4 Neyman-Pearson Criterion — 78
3.4.1 Probabilities of False Alarm and Miss alarm in Radar Signal Detection — 79
3.4.2 Neyman-Pearson Lemma and Neyman-Pearson Criterion — 82
3.5 Uniformly Most Power Criterion — 86
3.5.1 Communication Signal Detection Problem — 86
3.5.2 Uniformly Most Power Test — 88
3.5.3 Physical Meaning of UMP Criterion — 91
3.6 Bayes Criterion — 92
3.6.1 Bayes Decision Criterion — 92
3.6.2 Detection of Binary Signal Waveform — 95
3.6.3 Detection Probability Analysis — 98
3.7 Bayes Derived Criteria — 100
3.7.1 Minimum Error Probability Criterion — 100
3.7.2 Maximum A Posteriori Probability Criterion — 102
3.7.3 Minimax Criterion — 104
3.8 Multivariate Hypotheses Testing — 107
3.8.1 Multivariate Hypotheses Testing Problem — 108
3.8.2 Bayes Criteria for Multiple Hypotheses Testing — 109
3.9 Multiple Hypothesis Testing — 110
3.9.1 Error Rate of Multiple Hypothesis Testing — 111
3.9.2 Error Control Method of Multiple Hypothesis Testing — 114
3.9.3 Multiple Linear Regression — 116
3.9.4 Multivariate Statistical Analysis — 120
Summary — 125
Exercises — 125

4 Modern Spectral Estimation — 132
4.1 Nonparametric Spectral Estimation — 132
4.1.1 Discrete Stochastic Process — 133
4.1.2 Non-parametric Power Spectrum Estimation — 134
4.2 Stationary ARMA Process — 135
4.3 Power Spectral Density of Stationary Process — 141
4.3.1 Power Spectral Density of ARMA Process — 141
4.3.2 Power Spectrum Equivalence — 146
4.4 ARMA Spectrum Estimation — 149
4.4.1 Two Linear Methods for ARMA Power Spectrum Estimation — 150
4.4.2 Modified Yule-Walker Equation — 151
4.4.3 Singular Value Decomposition Method for AR Order Determination — 154
4.4.4 Total Least Squares Method for AR Parameter Estimation — 157
4.5 ARMA Model Identification — 160
4.5.1 MA Order Determination — 160
4.5.2 MA Parameter Estimation — 163
4.6 Maximum Entropy Spectrum Estimation — 165
4.6.1 Burg Maximum Entropy Spectrum Estimation — 165
4.6.2 Levinson Recursion — 168
4.6.3 Burg Algorithm — 173
4.6.4 Burg Maximum Entropy Spectrum Analysis and ARMA Spectrum Estimation — 174
4.7 Pisarenko Harmonic Decomposition Method — 177
4.7.1 Pisarenko Harmonic Decomposition — 177
4.7.2 ARMA Modeling Method for Harmonic Recovery — 180
4.8 Extended Prony Method — 182
Summary — 188
Exercises — 188

5 Adaptive Filter — 193
5.1 Matched Filter — 193
5.1.1 Matched Filter — 194
5.1.2 Properties of Matched Filter — 199
5.1.3 Implementation of Matched Filter — 200
5.2 Continuous Time Wiener Filter — 201
5.3 Optimal Filtering Theory and Wiener Filter — 203
5.3.1 Linear Optimal Filter — 203
5.3.2 Orthogonality Principle — 205
5.3.3 Wiener Filter — 206
5.4 Kalman Filter — 209
5.4.1 Kalman Filtering Problem — 209
5.4.2 Innovation Process — 210
5.4.3 Kalman Filtering Algorithm — 212
5.5 LMS Adaptive Algorithms — 214
5.5.1 Descent Algorithm — 214
5.5.2 LMS Algorithm and Its Basic Variants — 216
5.5.3 Decorrelation LMS Algorithm — 217
5.5.4 Selection of the Learning Rate Parameter — 221
5.5.5 Statistical Performance Analysis of LMS Algorithm — 223
5.5.6 Tracking Performance of LMS Algorithm — 225
5.6 RLS Adaptive Algorithm — 228
5.6.1 RLS Algorithm — 229
5.6.2 Comparison between RLS Algorithm and Kalman Filtering Algorithm — 232
5.6.3 Statistical Performance Analysis of RLS Algorithm — 234
5.6.4 Fast RLS Algorithm — 235
5.7 Adaptive Line Enhancer and Notch Filter — 237
5.7.1 Transfer Functions of Line Enhancer and Notch Filter — 237
5.7.2 Adaptive Notch Filter based on Lattice IIR Filter — 239
5.8 Generalized Sidelobe Canceller — 242
5.9 Blind Adaptive Multiuser Detection — 244
5.9.1 Canonical Representation of Blind Multiuser Detection — 245
5.9.2 LMS and RLS Algorithms for Blind Multiuser Detection — 246
5.9.3 Kalman Adaptive Algorithm for Blind Multiuser Detection — 249
Summary — 253
Exercises — 253

6 Higher-Order Statistical Analysis — 259
6.1 Moments and Cumulants — 259
6.1.1 Definition of Higher-order Moments and Cumulants — 259
6.1.2 Higher-order Moments and Cumulants of Gaussian Signal — 262
6.1.3 Transformation Relationships between Moments and Cumulants — 263
6.2 Properties of Moments and Cumulants — 265
6.3 Higher-order Spectra — 270
6.3.1 Higher-order Moment Spectra and Higher-order Cumulant Spectra — 270
6.3.2 Bispectrum Estimation — 272
6.4 Non-Gaussian Signal and Linear System — 276
6.4.1 Sub-Gaussian and Super-Gaussian Signal — 276
6.4.2 Non-Gaussian Signal Passing Through Linear System — 277
6.5 FIR System Identification — 280
6.5.1 RC Algorithm — 280
6.5.2 Cumulant Algorithm — 284
6.5.3 MA Order Determination — 288
6.6 Identification of Causal ARMA Models — 289
6.6.1 Identification of AR Parameters — 290
6.6.2 MA order Determination — 293
6.6.3 Estimation of MA Parameters — 296
6.7 Harmonic Retrieval in Colored Noise — 299
6.7.1 Cumulant Definition for Complex Signal — 300
6.7.2 Cumulants of Harmonic Process — 302
6.7.3 Harmonic Retrieval in Colored Gaussian Noise — 304
6.7.4 Harmonic Retrieval in Colored Non-Gaussian Noise — 305
6.8 The Adaptive Filtering of Non-Gaussian Signal — 311
6.9 Time Delay Estimation — 312
6.9.1 The Generalized Correlation Method — 312
6.9.2 Higher-Order Statistics Method — 314
6.10 Application of Bispectrum in Signal Classification — 319
6.10.1 The Integrated Bispectra — 319
6.10.2 Selected Bispectra — 322
Summary — 325
Exercises — 325

7 Linear Time-Frequency Transform — 329
7.1 Local Transformation of Signals — 329
7.2 Analytic Signal and Instantaneous Physical Quantity — 332
7.2.1 Analytic Signal — 333
7.2.2 Baseband Signal — 335
7.2.3 Instantaneous Frequency and Group Delay — 337
7.2.4 Exclusion Principle — 339
7.3 Short-Time Fourier Transform — 342
7.3.1 The Continuous Short-Time Fourier Transform — 342
7.3.2 The Discrete Short-Time Fourier Transform — 345
7.4 Gabor Transform — 348
7.4.1 The Continuous Gabor Transform — 348
7.4.2 The Discrete Gabor Transform — 354
7.5 Fractional Fourier transform — 357
7.5.1 Definition and Properties of Fractional Fourier Transform — 358
7.5.2 Calculation of Fractional Fourier Transform — 361
7.6 Wavelet Transform — 362
7.6.1 Physical Considerations of Wavelets — 362
7.6.2 The Continuous Wavelet Transform — 364
7.6.3 Discretization of Continuous Wavelet Transform — 366
7.7 Wavelet Analysis and Frame Theory — 367
7.7.1 Wavelet Analysis — 368
7.7.2 Frame Theory — 372
7.8 Multiresolution Analysis — 377
7.9 Orthogonal Filter Banks — 381
7.9.1 Orthogonal wavelet — 381
7.9.2 Fast Orthogonal Wavelet Transform — 384
7.10 Biorthogonal Filter Bank — 388
7.10.1 Biorthogonal Multiresolution Analysis — 388
7.10.2 Design of Biorthogonal Filter Banks — 391
7.10.3 Biorthogonal Wavelet and Fast Biorthogonal Transform — 393
Summary — 397
Exercises — 397

8 Quadratic Time-frequency Distribution — 401
8.1 The General Theory of Time-frequency Distribution — 401
8.1.1 Definition of the Time-frequency Distribution — 402
8.1.2 Basic Properties of Time-frequency Distribution — 403
8.2 The Wigner-Ville Distribution — 405
8.2.1 Mathematical Properties — 406
8.2.2 Relationship to Evolutive Spectrum — 408
8.2.3 Signal Reconstruction based on Wigner-Ville Distribution — 410
8.3 Ambiguity Function — 412
8.4 Cohen’s Class Time-frequency Distribution — 416
8.4.1 Definition of Cohen’s Class Time-frequency Distribution — 416
8.4.2 Requirements for Kernel Function — 420
8.5 Performance Evaluation and Improvement of Time-frequency Distribution — 422
8.5.1 Time-frequency Aggregation — 422
8.5.2 Cross-Term Suppression — 424
8.5.3 Other Typical Time-frequency Distributions — 428
Summary — 435
Exercises — 436

9 Blind Signal Separation — 438
9.1 Basic Theory of Blind Signal Processing — 438
9.1.1 A Brief Introduction to Blind Signal Processing — 438
9.1.2 Model and Basic Problem of BSS — 439
9.1.3 Basic Assumption and Performance Requirement of BSS — 442
9.2 Adaptive Blind Signal Separation — 443
9.2.1 Neural Network Implementation of Adaptive Blind Signal Separation — 444
9.2.2 Quasiidentity Matrix and Contrast Function — 447
9.3 Independent Component Analysis — 448
9.3.1 Mutual Information and Negentropy — 448
9.3.2 Natural Gradient Algorithm — 451
9.3.3 Implementation of the Natural Gradient Algorithm — 454
9.3.4 Fixed-Point Algorithm — 458
9.4 Nonlinear Principal Component Analysis — 460
9.4.1 Pre-whitening — 460
9.4.2 Linear Principal Component Analysis — 461
9.4.3 Nonlinear Principal Component Analysis — 464
9.5 Joint Diagonalization of Matrices — 465
9.5.1 Blind Signal Separation and Joint Diagonalization of Matrices — 466
9.5.2 Orthogonal Approximate Joint Diagonalization — 468
9.5.3 Nonorthogonal Approximate Joint Diagonalization — 470
9.6 Blind Signal Extraction — 472
9.6.1 Orthogonal Blind Signal Extraction — 472
9.6.2 Nonorthogonal Blind Signal Extraction — 473
9.7 Blind Signal Separation of Convolutively Mixed Sources — 476
9.7.1 Convolutively Mixed Sources — 477
9.7.2 Time Domain Blind Signal Separation of Convolutively Mixed Sources — 479
9.7.3 Frequency Domain Blind Signal Separation of Convolutively Mixed Sources — 482
9.7.4 Time-Frequency Domain Blind Signal Separation of Convolutively Mixed Sources — 484
Summary — 491
Exercises — 492

10 Array Signal Processing — 497
10.1 Coordinate Representation of Array — 497
10.1.1 Array and Noise — 498
10.1.2 Coordinate System of Array — 499
10.2 Beamforming and Spatial Filtering — 501
10.2.1 Spatial FIR Filter — 502
10.2.2 Broadband Beamformer — 505
10.2.3 Analogy and Interchange between Spatial FIR Filter and Beamformer — 508
10.3 Linearly-Constrained Adaptive Beamformer — 512
10.3.1 Classical Beamforming — 512
10.3.2 Direct Implementation of Adaptive Beamforming — 516
10.3.3 Generalized Sidelobe Canceling Form of Adaptive Beamforming — 518
10.4 Multiple Signal Classification (MUSIC) — 522
10.4.1 Spatial Spectrum — 522
10.4.2 Signal Subspace and Noise Subspace — 524
10.4.3 MUSIC Algorithm — 526
10.5 Extensions of MUSIC Algorithm — 529
10.5.1 Decoherent MUSIC Algorithm — 529
10.5.2 Root-MUSIC Algorithm — 532
10.5.3 Minimum Norm Algorithm — 533
10.5.4 First Principal Vector MUSIC Algorithm — 535
10.6 Beamspace MUSIC Algorithm — 537
10.6.1 BS-MUSIC Algorithm — 537
10.6.2 Comparison of BS-MUSIC and ES-MUSIC — 540
10.7 Estimating Signal Parameters via Rotational Invariance Techniques — 543
10.7.1 Basic ESPRIT Algorithm — 544
10.7.2 Element Space ESPRIT — 549
10.7.3 TLS-ESPRIT — 552
10.7.4 Beamspace ESPRIT Method — 553
10.8 Unitary ESPRIT and Its Extensions — 556
10.8.1 Unitary ESPRIT Algorithm — 556
10.8.2 Beamspace Unitary ESPRIT Algorithm — 560
Summary — 562
Exercises — 562

Index — 565

Bibliography — 577