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Abstract

First, we analyse game-theoretic solution concepts for the assessment
of members of a network drawing on the Shapley Value. Our approach
starts with the concept of Betweenness Centrality as known from Social
Network Analysis. We will also be interested in Centrality Concepts,
which satisfy the conditions of Core Allocations of the value of the whole
network and their relationship to Shapley Value based concepts. It turns
out that a centrality concept derived from the membership of vertices in
global shortest paths within the network provides a Core Allocation and
is therefore in some sense agreeable by the members of the network. We
will also consider relative shortest paths within coalitions of vertices. For
this approach, which leads to a concept of Bypass Centrality, we get a
different assessment method, which better reflects the local connectivity
of the network and respects the capability of vertices to form bypasses for
connections potentially blocked for some reason. For this type of alloca-
tions it seems to be an open problem, whether the Shapley Value satisfies
the conditions of a Core Allocation in general. Apart from these game-
theoretical questions, our focus concerns the computational complexity
for the calculation of the Shapley Value, which is in general considered
to be a NP-complete problem. For the computation of the Shapley Value
based on global shortest paths an efficient algorithm has already be found.
We can show that also for the concept based on relative shortest paths
an algorithm exists, which solves the problem in pseudo-polynomial time,
depending on a limitation of the number of connecting paths considered
for each pair of vertices. This shows that in our situation the approach
reduces the calculation to a weakly NP-complete problem.

Keywords: Social Network Analysis, Centrality Measures, Game Theory,
Shapley Value, Core, Algortithm, Complexity

1 Motivation

We consider networks consisting of nodes and edges. The network model serves
as an appropriate abstraction for transportation systems, informal networks
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or social structures. A special field of interest for Mathematical analysis of
networks is the identification as well as the numerical assessment of important
vertices and edges based on the structural properties of the network. We will
focus on this aspect and discuss some approaches from a game-theoretic view.
One of the most intensively used concepts of assessment of actors within the
set of all possible coalitions from a certain set of actors is the Shapley Value.
On the individual level this value can be interpreted as the average marginal
contribution of a given actor to every possibly existing coalition. The basic
idea behind the Shapley Value strongly suggests to apply it in the context of
Social Network Analysis (SNA). The list of contributors to SNA is very long.
An overview can for instance be found in [3]. The marginal contribution of
an actor to an existing coalition of vertices may be a new path of information
flow or flow of objects which becomes accessible through the inclusion of the
actor. The practical disadvantage of this approach results from the definition
of the Shapley Value as an expectation value over all permutations of the set
of actors. The calculation of this expectation value turns out to be a NP-
hard problem in the general case and is often impractical even for networks
with few vertices. Therefore it is remarkable that in some cases there exist
relatively simple calculation schemes and efficient algorithms to overcome these
difficulties. One of these approaches focuses on Betweenness Centrality measures
and is described in the paper of P. L. Szczepanski, T. Michalak and T. Rahwan
([4]). The authors consider the case where, with respect to a permutation of
the set of all actors, a certain actor is the first, who resides on a shortest path
connecting two different actors. We will concentrate on another interesting
interpretation of the same resulting centrality measure. In fact, this value of
an actor is identical for the case, where the actor completes a shortest path
within an existing coalition in the network. The latter interpretation seems to
be more intuitive, because the actor functions as the missing link to improve
the connectivity within the coalition.

Apart from these insights, we propose to take also the concept of the Core
of a coalition game into account for the assignment of centrality values to the
actors of a network. It seems to be reasonable to assign values to the actors in
a way that no coalition can oppose to it. In this sense the concept of the Core
satisfies the requirements of fairness and acceptance by the actors concerning
the assignment of values. This property of Core Allocations may for instance be
important in the case where centrality measures serve as basis for a prioritized
list of nodes according to which financial resources have to be distributed. In
the underlying situation it is not very difficult to show that the given game is a
convex game. As known from game theory for a game of this type the Core is
not empty and the Shapley Value is the center of the Core. This result may be
seen as a justification for the chosen approach.

The concepts of Betweenness in Social Network Analysis draw on shortest
paths between two nodes within the whole network. We will modify this concept
and allow bypassing through the assignment of a characteristic value to each
coalition of nodes which reflects the internal structure of the coalition as well
as their capability to interact, even though some external connections are not
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available. In detail, we consider relative shortest paths formed by the members
of the coalition themselves rather than including other members. This concept
emphasizes the local capabilities of the network to contribute to the connectivity
of subnetworks. Unfortunately, the according game is not convex as in the case
of global shortest paths. Therefore, there is no guaranty that the Shapley Value
is a Core Allocation. However, as many examples show, it seems that even for
these games there is a chance for the Shapley Value to satisfy the conditions
of a Core Allocation. We will identify some special characteristic functions and
networks for which the questionable property can be verified.

2 Notations and Preliminaries

We assume all networks G(N,E) of nodes N and edges E to be embedded in
a metric space and to satisfy some regularity conditions, i.e. different vertices
have a positive distance. This implies the validity of the triangle inequality and
the possibility to calculate the length of a path within the network. Paths are
defined as sequences of at least two pairwise different adjacent vertices. The
set of all shortest paths connecting two not identical nodes s and t within the
network will be denoted by Ψst

1. Additionally, we will make use of the set of
all shortest paths, which will be addressed by

Ψ := ΨN :=
⋃
s 6=t

Ψst. (1)

We will also consider shortest paths relative to a given set S ⊂ N . The
shortest paths connecting two not identical nodes s and t by vertices from S,
is denoted by ΨS

st. The set of all shortest paths within S will be addressed
by ΨS . We have to note that a shortest connection relative to a subset S of
N may be different from the (overall) shortest connection relative to N . But,
generally, the length of paths from ΨS

st is greater than that of paths in ΨT
st,

whenever S ⊂ T . To keep notation simple, we will not distinguish between the
path ψ = (v1, . . . , vr) as a sequence of points and the set of points {v1, . . . , vn}.
The length of a path ψ in N will be denoted by λ(ψ). We will further assume
that a utility function u : Φ → R+ exists, which is defined on the set Φ of all
paths in N , and is monotone decreasing in the length of paths. For instance,
u := 1

λ would be a candidate for this. Another candidate is u(ψ) := 1
#ψ , which

seems to be an appropriate measure for networks with equal length for all edges.
2

For each path ψst ∈ Φ we denote the interior points of the path by ∇ψst,
i.e. ∇ψst := ψst \ {s, t} and the set of endpoints of the path by ∂ψst := {s, t}.

Our analysis focuses on two different characteristic functions. The first will
be based on the connectivity of coalitions S ⊂ N by the set of shortest paths

1This set may contain zero, one or more elements. Nevertheless, applying a suitable per-
turbation on the edge lengths ensures that between each pair of nodes there exists at most a
single shortest path.

2The cardinality of S ⊂ N will be denoted by #S.
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within N and aggregates the utilities of these paths:

vglobal(S) :=
∑

s,t∈S,s 6=t

∑
ψ∈Ψst

u(ψ) (∀S ⊂ N). (2)

This measure of the connectivity of the set S is known as the concept of
Betweenness of points from the subsets S within N and is well-known and
analyzed in Social Network Analysis.

We will therefore call vglobal the Global Connectivity Function. The
first important insight concerns the convexity of vglobal.

2.1 Lemma: The game with vglobal as characteristic function is convex.

Proof: To prove this statement, we only need to have a look at marginal con-
tributions of players i. In doing so, we conclude that

vglobal(S ∪ {i})− vglobal(S) =
∑

s,t∈S∪{i}

∑
ψ∈Ψs,t,i∈ψ

u(ψ) (∀S ⊂ N, i /∈ S).

(3)
Since the right side of this equation is monotone increasing in S, we conclude
that vglobal is convex. 2

The second characteristic function is similarly defined, but measures the set
of shortest paths relative to a coalition S. Formally, we define the function
vbypass by

vbypass(S) :=
∑

s,t∈S,s 6=t

∑
ψ∈ΨS

st

u(ψ) (∀S ⊂ N) (4)

and call it the Bypass Connectivity Function.
The measure vbypass seems to be very similar to vglobal in the concept of

Betweenness, but requires that the elements of subsets S of N are able to form
connections by their own not being dependent on the other nodes of N . We will
therefore address this concept by Bypass Centrality rather than Betweenness
par excellence. For the complete set N the concepts of Bypass Centrality and
Betweenness in the classical sense coincide, that means

vbypass(N) = vglobal(N). (5)

It does not conform with the concept of Betweenness to assign values also
to the end points of paths, which can better be characterized as dispatchers
for connections. With respect to this inconsistency we can consider dispatching
points to be more central for the concept of Closeness than for Betweenness.
An illustrative example is the set of angle points of a block graph. Nevertheless,
no path is complete without the end points. Therefore, they will be taken into
account in the subsequent calculations. The convexity of vbypass is not assured
in general. But we can make a note on a weaker property.
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2.2 Lemma: The characteristic function vbypass is super-additive.

Proof: Let S, T ⊂ N be two arbitrary disjoint sets. Then

vbypass(S) + vbypass(T ) = (6)

=
∑
ψ∈ΨS

u(ψ) +
∑
ψ∈ΨT

u(ψ) ≤ (7)

≤
∑

ψ∈ΨS∪T

u(ψ) = (8)

= vbypass(S ∪ T ). (9)

2

This result implies that there exists an individual rational imputation of the
game with characteristic function vbypass, which is of course also evident from
the fact

vbypass({s}) = 0 ∀s ∈ N. (10)

Therefore, the value of the whole network can be distributed among the members
anyway as long as each member gets a non-negative share.

For bypassing we will consider a suitable set of paths connecting a given
pair of vertices s and t in the network. To make this approach more precise we
define an algorithm which identifies the paths of interest.

2.3 Algorithm: Given an arbitrary pair of vertices s and t in the network, we
start with a global shortest path ψ0

st connecting both vertices. This path may
be the result of any efficient algorithm like the well-known technique of Dijkstra
[1]. Given any path ψist connecting the vertices s and t, we remove the set ∇ψist
of internal vertices of the path from the network and apply the algorithm to
the remaining network. The algorithm will give us a new path ψi+1

st or tell us
that there exists no further connection. This procedure will identify a series
ψ0
st, . . . , ψ

m
st of paths with non-decreasing length. If we assume that there are

no connecting paths for s and t with the same length, the given series will be
unique. The obtained series of paths will be called the Bypass Bundle of s
and t.

We have to note that this algorithm will stop immediately, if we start with a
path for which s and t are connected by an edge. If we want to avoid this effect,
we can also block the edges of the iterated paths instead of removing the interior
points. But, this question is not important for the further investigations.
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Figure 1: Bypass Bundle obtained by algorithm 2.3

Normally, we will not be interested in the whole set of bypasses. We will
rather consider a limited number of such paths depending on the structure of
the network. Some bypasses may be too long in comparison with the shortest
connection and will therefore be of minor interest. If the connectivity of the
network is weak enough, there may also be a natural limitation of the number
of bypasses.

The above defined algorithm does of course not end up in all connections
between vertices s and t. This will be illustrated by the following example.

2.4 Example: Figure 2 shows how bypassing works.

Figure 2: Bypassing by minor valued connections
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The paths ψ1 and ψ2 are bypasses for ψs,r1 and ψr1,r2 , respectively. But
the combined path ψ1 ⊕ ψ2 ⊕ ψ3 is not considered as bypass for ψs,t = ψs,r1 ⊕
ψr1,r2 ⊕ ψr2,t, because there exist common intermediate points.

In the sequel, we assume that different paths between two vertices have
different length. We will call this kind of network a non − degenerate network .
In this case, #ΨS

st is a boolean function with values 0 or 1 indicating, whether
a connection of s and t exists in S or not. The first result is an immediate
consequence of the initial remarks about the length of shortest paths relative to
a subset.

2.5 Lemma: In a non-degenerate network we have

vbypass ≤ vglobal (11)

and
vbypass(N) = vglobal(N) (12)

This result shows that vbypass is dominated by the convex characteristic
function vglobal, and on account of this, that the corresponding game has a
nonempty Core. More precisely, the Core of the game with vbypass includes the
Core of the game with vglobal. Hence, the Shapley Value for vglobal is a member
of the Core for vbypass. It is still an open question, in which cases the Shapley
Value for vbypass is a Core Allocation.

Some examples show that vbypass is generally not convex. Nevertheless, there
exist many examples, where the Shapley Value for vbypass is a Core Allocation
even though not the center of the Core.

The question whether the Shapley Value is generally part of the Core, seems
to be a bit difficult. In a first, but very simple case the open question can be
answered positively. The following analysis focuses on the characteristic function
vbypass and the relationship between Core Allocations and Shapley Values.

3 Acyclic Networks

For a special case, we can answer the open question of group rationality of the
Shapley Value positively.

3.1 Lemma: Let N be an acyclic graph, then vbypass is a convex characteristic
function and therefore, the Shapley Value SVvbypass

is an element of the Core
Core(vbypass).

Proof: To prove this statement, we only need to have a look at marginal contri-
butions of players i. Since N is an acyclic graph, the connecting path between
two different points in N is unique, if it exists. Thus, we conclude that

ψ ∈ ΨS ⇔ ψ ∈ ΨN , ψ ⊂ S ∀S ⊂ N, (13)
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which yields us the equality vbypass = vglobal. The assertion is now a conse-
quence of Lemma 2.1. 2

4 Block Graphs

Block graphs have some nice properties in the context of Shapley Values and
Core of vertex coalitions. A game theoretic analysis of this type of graphs is
given in the bachelor thesis of a degree holder in mathematics of the German
Feruniversität [2]. We will only sum up a few results of this analysis.

4.1 Definition: A connected graph G(N,E) is a graph, for which each pair
of distinct vertices is connected by a path. A graph G(N,E) is said to be a Block
Graph if and only if for each pair of connected sub-graphs, the intersection is
a connected sub-graph or empty. A complete subset of a network is a graph
for which all vertices are mutually connected.

Within a block graph each closed not self-crossing cycle must be a complete
sub-graph. This property is essential for the proof of the following fact:

ΨS ∩ΨT = ΨS∩T ∀S, T ⊂ N,S ∩ T 6= ∅. (14)

A detailed proof is given in [2]. Applying this result to a given set S ⊂ N , we
conclude

ΨS ⊂ ΨN ∀S ⊂ N. (15)

Therefore, the local shortest paths are all global shortest paths within block
graphs. As a consequence of this result, we obtain an important property of
block graphs.

4.2 Theorem: For each block graph G(N,E) we have

vbypass = vglobal (16)

Moreover, this leads us to the following game theoretic insight.

4.3 Corollary: Let G(N,E) be a block graph. Then vbypass is a convex char-
acteristic function and therefore, the Shapley Value SVvbypass

is an element of
the Core Core(vbypass).

Proof: The proof is an immediate consequence of the previous theorem together
with Lemma 2.1. 2

5 Probabilistic Analysis

The following result serves as preparation for a probabilistic analysis of the
Shapley Values of members in the network.
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5.1 Lemma: We denote the set of all permutations of N by Perm(N). For
each subset S of N and k ∈ N , we define

MS(k) := {π ∈ Perm(N)|π(i) ≤ π(k)(i ∈ S)}. (17)

Then, the probability of each k ∈ S to be the last entry of S is given by

Prob(MS(k)) =
1

#S
∀S ⊂ N, k ∈ S, (18)

Moreover, each pair of subsets L,R of N satisfies

ML(k) ∩MR(k) = ML∪R(k). (19)

In addition, the algebra of the sets ML(k) provides a scheme to calculate
the probabilities for finite unions of sets.

5.2 Remark: Let be given an arbitrary finite sequence K1, . . . ,Km of subsets
of N . Then, by the well-known formula of Poincaré and Sylvester, we obtain
the expression

Prob

(
m⋃
i=1

MKi
(k)

)
=

m∑
i=1

(−1)i+1
∑

I⊂{1,...,m},#I=i

Prob

(⋂
i∈I

MKi
(k)

) =

=

m∑
i=1

(−1)i+1
∑

I⊂{1,...,m},#I=i

Prob (M∪i∈IKi
(k))

 .

(20)

The calculation steps for this expression need still exponential time depending
on m. But keeping in mind that we want to apply these results to Bypass
Bundles, we can restrain the number of bypasses artificially by a certain limit
or apply it to networks which have per se a limited number of bypasses. For
instance, closed circles will have at most two members in each Bypass Bundle
independent from the number of vertices.

6 Analysis for Multiple Connecting Paths

We consider the impact of multiple connections between each pair of points.
A stochastic analysis concerning permutations which assign certain values to
vertices will be given. As described in the algorithm 2.3, we can identify a
uniquely defined Bypass Bundle, if we assume the network to satisfy some non-
degeneration conditions. In this way, we will analyse the situation of two vertices
s, t for which the connecting paths are given by a sequence of paths ψ1, ..., ψh
in strictly increasing order of their utility such that the interiors of the paths
are pairwise disjoint. Suppose now, the vertex k is an element of ψl for some
l ∈ {1, . . . , h}.
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We consider the pairwise disjoint sets L :=
⋃
i∈H ψi with H ⊂ {1, . . . , h}, l ∈

H and ∇ψi, i ∈ K with K ⊂ Hc of paths not containing k in their interior. We
are interested in permutations, for which the vertices of set L have all entry
times less or equal to k and the sets ∇ψi, i ∈ K do all have at least one vertex
with later entry time. First, we can put the following fact on the record.

6.1 Lemma: A permutation π of all vertices puts k as last of the vertices of L
and keeps all sets ∇ψi, i ∈ K incomplete at the entry time of k, if and only if

π ∈ML(k) \
⋃
i∈K

ML+∇ψi
(k). (21)

Proof: The first statement of the assertion is equivalent to

π ∈ML(k) and π /∈M∇ψi(k) (i ∈ K), (22)

which is in turn equivalent to

π ∈ML(k) ∩
⋂
i∈K

M c
∇ψi

(k). (23)

From this fact, the assertion follows by a simple transformation. 2

We will now give a probabilistic investigation of the case, where the entry
time of k is the latest entry time of all members of paths with index in H and
none of the paths ψi(i ∈ K) is completed at the entry time of k. Clearly, the
missing points of the paths ψi(i ∈ K) must be interior points. We are interested
in the set of permutations for which this event happens. This set of permutations
is given by D(k,H,K) := ML(k) \

⋃
i∈KML+∇ψi(k) with L :=

(⋃
i∈H ψi

)
. The

next result provides a simple scheme for the calculation of the probability of the
incidence in question.

6.2 Corollary: The probability for the event of k to be the last entry of L :=(⋃
i∈H ψi

)
and all paths ψi, i ∈ K remain incomplete, is given by

Prob(D(k,H,K)) =
∑
I⊂K

(−1)#IProb
(
ML+

∑
i∈I ∇ψi

(k)
)

=

=
∑
I⊂K

(−1)#I 1

#L+
∑
i∈I #∇ψi

. (24)

Proof: The calculation of the desired probability is a consequence of Remark
5.2 together with Lemma 5.1. 2

Next, we consider the case, where ψl is the path with maximal utility of the
paths ψi(i ∈ H). Due to the increasing order of utilities, this situation implies
that the marginal contribution of k is the utility of ψl minus the maximum of the
utilities of paths with index in H \{l}. In all cases where H contains paths with
higher utilities than the utility of ψl, the contribution of k is zero. Therefore,
these cases are irrelevant. We first put the following fact on the record.
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6.3 Remark: We denote the utilities of the paths ψi by ui := u(ψi) for i =
1, . . . , h and set u0 := 0. We define Hj := {j, l} for j = 1, . . . , l, H0 := {l} and
Kj := {j + 1, . . . , h} \ {l} for j = 0, . . . , l. First, we assume k 6= s, t. Then,
vertex k contributes a positive value for a permutation π, if and only if there
exists a j ∈ {0, . . . , l − 1} such that π ∈ D(k,Hj ,Kj). Moreover, all the sets
D(k,Hj ,Kj) are pairwise disjoint for j = 0, . . . , l− 1. The vertex k contributes
the value ul − uj in each case. For k = s or k = t, vertex k contributes ul for a
permutation π , if and only if π ∈ D(k,Hl,Kl).

Keeping this remark in mind, we are now in a position to specify an algo-
rithm, which determines the Shapley Value of k for the bypass characteristic
function.

6.4 Algorithm: For all vertices s, t we construct the Bypass Bundle as de-
scribed in algorithm 2.3, and calculate Prob(D(k,Hj ,Kj))(ul − uj) for the
notations given by remark 6.3. Then the mean marginal contribution of k 6= s, t
to the underlying partial network of the Bypass Bundle is given by

SVvbypass
(k) =

l−1∑
j=0

Prob(D(k,Hj ,Kj))(ul − uj). (25)

In the case k = s or k = t we get

SVvbypass
(k) = Prob(D(k,Hl,Kl))ul. (26)

The given algorithm for the calculation of the Shapley Values is weakly
NP-complete, since the algorithm 2.3 takes polynomially increasing time and
the steps of algorithm 6.4 have also polynomial dependence on the number of
vertices and the number of considered bypasses in the network. By these means,
we have proven the following theorem.

6.5 Theorem: In the given situation, the Shapley Value can be calculated by
the algorithms 2.3 and 6.4 in pseudo-polynomial time. The problem is therefore
weakly NP-complete.

7 Comparison of the Results with Classical Con-
cepts

We will illustrate the results of the assessment scheme of Bypass Centrality in
comparison to the concept of Global Betweenness Centrality using Shapley’s
Value as well as the classical concept of Betweenness Centrality.
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Figure 3: Classical Betweenness Centrality

Some of the vertices have zero value, because they never appear on shortest
paths between other vertices.
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Figure 4: Global Betweenness Centrality by Shapley Value

The result is very similar to the classical Betweenness. The only difference
is that paths, which appear more frequently in partial networks, assign higher
values to their vertices.
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Figure 5: Bypass Centrality by Shapley Value

The assessment of the marginal area of the network is different from the pre-
vious cases. The higher assessment of these vertices results from their bypassing
capabilities. The thickness of the edges reflects their use for the traffic in the
network depending on the applied centrality measure. Our calculations make
use of the Agent Based Simulation frame NetLogo [5] which can be downloaded
from the cited website.

8 Conclusions

We have introduced a concept of Bypass Centrality, which better reflects the
local structure of a network than the classical concepts. For some special cases
we can show that the Shapley Values of vertices based on Bypass Centrality
provide a Core Allocation. Moreover, we have found a method to calculate the
Shapley Value for Bypass Centrality in polynomial time, if we assume some
limitations on the number of bypassing connections. For large networks, this
amount of processing time may still increase enormously. Nevertheless, we have
explained an approach which opens access to much larger networks than the
classical calculation of the Shapley Value running through all permutations of
entry times for all vertices. The latter procedure is computationally unaccept-
able even for relatively small networks. This gives some justification to look for
alternative approaches like in our case.
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