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Abstract 9  

The real-time Probabilistic Seismic Hazard Assessment (PSHA) is developed for considering the 10  

practicability for daily life and the rate of seismic activity with time. The real-time PSHA follows 11  

the traditional PSHA framework, but the statistic occurrence rate is substituted by time-dependent 12  

seismic source probability. Pattern Informatics method (PI) is a proper time-dependent probability 13  

model of seismic source, which have been developed over a decade. Therefore, in this research, 14  

we chose the PI method as the function of time-dependent seismic source probability and selected 15  

two big earthquakes in Taiwan, the 2016/02/05, Meinong earthquake (ML 6.6) and the 2018/02/06, 16  

Hualien earthquake (ML 6.2), as examples for the real-time PSHA. The forecasting seismic 17  

intensity maps produced by the real-time PSHA present the maximum seismic intensity for the 18  
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next 90 days. Compared to real ground motion data from the P-alert network, these forecasting 19  

seismic intensity maps have considerable effectiveness in forecasting. It indicates that the real-20  

time PSHA is practicable and can provide a useful information for the prevention of earthquake 21  

disasters.  22  

 23  

1   Introduction  24  

At present, there are two major phases about the researches and applications of seismic hazard: the 25  

pre-earthquake and the post-earthquake. The most important usage of the post-earthquake seismic 26  

hazard assessment is the Earthquake Early Warning (EEW) system (Cooper, 1868; Wu et al., 1998; 27  

Wu et al., 2013). It provides extra time for people to take refuge before the larger seismic wave 28  

arrives. On the other hand, Probabilistic Seismic Hazard Analysis (PSHA; Cornell, 1968; SSHAC, 29  

1997) is the most common methodology of the pre-earthquake seismic hazard assessment and 30  

mainly for engineering design. PSHA determines the exceeding probability of ground motion level 31  

over a specified time period based on the occurrence rate of earthquake and ground motion 32  

prediction equations (GMPEs). The occurrence rate of earthquake is generally described by the 33  

truncated exponential model (Cosentino et al., 1977) and the characteristic earthquake model 34  

(Schwartz and Coppersmith, 1984; Wang et al., 2016). No matter the data is from long-term 35  

observations or paleoseismic studies, the earthquake occurrence rate computed from these models 36  

https://doi.org/10.5194/nhess-2019-167
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



3  
  

will not change with time. However, the seismic activity is a complex dynamic process in time and 37  

space and usually fluctuates enormously in short time scale (Chen et al., 2006). Furthermore, the 38  

assessment is usually computed by using very long recurrence interval, 475 or 2475 years, for the 39  

purpose of engineering design (Iervolino et al., 2011). As a result, it is hard to verify the accuracy 40  

of seismic hazard assessment in limited life because of such long period. On the other hand, such 41  

long interval is suitable for buildings, but not for human’s life which is definitely much shorter 42  

than the life span of buildings. In other words, the concept of catastrophic in such long recurrence 43  

intervals is difficult to resonate in the daily life of general public. In addition, the definition like 44  

10% probability in 50 years is hard to image for most ordinary people. Therefore, a statistical long-45  

term seismic hazard assessment is useless in our daily life. On the contrary, we believe that a short-46  

term and time-dependent pre-earthquake hazard assessment is necessary for everyone’s daily use. 47  

In this study, we suggested a preliminary method to achieve this goal by using a time-dependent 48  

seismic source probability instead of the static one in the long-term assessment. One of the capable 49  

candidates as a time-dependent seismic source probability is the Pattern Informatics (PI) method, 50  

which has developed over the past decade (Rundle et al., 2000; Tiampo et al., 2002; Wu et al., 51  

2008a; Chang et al., 2016). 52  

 53  

Anomalous change in seismicity is widely used as precursory indicator for big earthquakes and is 54  
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usually classified into seismic activation or seismic quiescence, depending on ascending or 55  

descending number or occurrence rate of seismicity (Chen et al., 2005; Wu et al., 2008b). In the 56  

PI method, big earthquakes tend to occur after precursory anomalous seismic changes and its 57  

occurrence probability can be quantified by the magnitude of spatiotemporal variation of 58  

seismicity. In preliminary researches, PI performs good in identifying locations nearby upcoming 59  

big earthquakes. A modified version of PI developed in the recent researches has obviously 60  

improved the accuracy of identifying occurrence time interval of big earthquakes. The occurrence 61  

probability of big earthquakes in the next 90 days is plausible after a series of verification (Chang 62  

et al., 2016; Chang, 2018). Therefore, we used the modified PI method to compute the time-63  

dependent seismic source probability of each location while the area of interest is coarse-grained 64  

by square in uniform size.  65  

 66  

In this research, we illustrate a simple way to achieve a real-time seismic hazard assessment. The 67  

crucial step is to replace statistical seismic probability by the time-dependent probability from the 68  

modified PI method. The real-time seismic hazard assessment produced the seismic hazard 69  

forecasting maps for the next 90 days. The “real-time” PSHA can be updated with earthquake 70  

catalog refreshing (time-dependent) and forecast for the near future (short-term), and compared 71  

with the forecasting time scale and static seismic rate of the traditional PSHA, these can be called 72  
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“real-time”. We illustrated this real-time assessment process by two recent big earthquakes in 73  

Taiwan, the 2016 Meinong earthquake (ML 6.6) (Lee et al., 2016; Chen et al., 2017; Lee et al., 74  

2017) and the 2018 Hualien earthquake (ML 6.2) (Hsu et al., 2018). Detailed parameters about 75  

these two earthquakes are listed in Table 1. Finally, the reliability of the seismic hazard maps was 76  

verified by comparing with real ground motion data recorded by the P-alert network. 77  

 78  

2   Data 79  

2.1   Central Weather Bureau Seismic Network (CWBSN) catalog 80  

We used the CWBSN catalog maintained by the Central Weather Bureau (CWB), Taiwan 81  

(https://www.cwb.gov.tw/V7e/earthquake/seismic.htm and http://gdms.cwb.gov.tw/index.php, 82  

last access: July 2018). The completeness magnitude (Mc) of this catalog is estimated 83  

approximately 2.0 in local magnitude (ML) (Wu et al., 2008c). In the analysis of focal depth, Wu 84  

et al. (2008b) showed that the focal depth for about 80% earthquakes is shallower than 30 km. 85  

Therefore, we used ML 2.0 and 30 km as the threshold of magnitude and focal depth to select 86  

earthquakes used in the PI calculation.  87  

 88  

2.2   P-alert network 89  

In this research, the ground motion recordings from the P-alert network were used to verify the 90  
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effectiveness of the real-time seismic hazard assessments from our idea. The EEW research group 91  

of the National Taiwan University (NTU) have begun to set up the P-alert real-time strong-motion 92  

network since 2010. The device of the P-alert network can record real-time acceleration signals in 93  

three-component and publish alerts if the peak initial-displacement amplitude (Pd) or peak ground 94  

acceleration (PGA) exceeds a redefined threshold (Wu et al., 2013, 2016b). Nowadays, there are 95  

more than 600 stations in Taiwan; most of them are located in elementary schools (Wu et al., 2013; 96  

Yang et al., 2018). We mainly adopted the P-alert waveform database maintained by Taiwan 97  

Earthquake research Center (TEC) and the data from NTU were as an auxiliary catalog (The data 98  

of the P-alert network can be downloaded from the Data Center of TEC: 99  

http://palert.earth.sinica.edu.tw/db/ (last access: July 2018) or contact with Prof. Yih-Min Wu at 100  

NTU for NTU’s catalog: drymwu@ntu.edu.tw). However, even if there are so many stations 101  

covering Taiwan, the distribution of the P-alert network is still nonuniform (see Fig. 2b and 3b). 102  

This nonuniform distribution may causes some problems that we will discuss later. 103  

 104  

3   Method 105  

3.1   Pattern Informatics (PI) 106  

The physical fundamental of the PI method is phase dynamics which describes changes of a system 107  

by rotation of state vector in the Hilbert space (Rundle et al., 2002; 2003). The evolution of state 108  
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vector in a dynamic fault system is suggested to be related to stress accumulation and release (Chen 109  

et al., 2006). The computation steps we addressed here are a modified version developed by Chang 110  

et al. (2016) and Chang (2018) to improve temporal resolution of PI. The research area (119°~123° 111  

E 21°~26° N) is divided into boxes of grid size 0.1°×0.1°, and each box is indicated by parameter 112  

𝑥". Because of the Mc and the distribution of focal depth (mentioned in Section 2.1), all events 113  

having ML ≥ 2.0 and depth ≤ 30 km were used. In the PI computation, 𝑡$ and 𝑡% are the beginning 114  

and end of a change interval, respectively, and the length of change interval is 4 years. The 115  

beginning time of calculation, 𝑡& , is defined as 12 years before 𝑡% . Then, 𝑡'  is a sampling 116  

reference time between 𝑡& and 𝑡$ which shifts 𝑡' each time. The forecasting interval, 𝑡(, starts 117  

after 𝑡%. According to Chang et al. (2016), the forecasting interval of the PI method reaches 90 118  

days. Lastly, the PI method produces a forecasting probability distribution of seismic sources for 119  

ML ≥ 5.0 within the forecasting interval. 120  

 121  

3.2   Real-time PSHA 122  

In the traditional PSHA framework (Cornell, 1968; Wang et al., 2016), the probability of an 123  

earthquake’s occurrence follows the Poisson process and the average recurrence interval for an 124  

annual frequency of exceedance can be expressed as 125  
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(1) 127  

where 𝑓9:
(𝑚)  and 𝑓<:(𝑟)  are the probability density functions of magnitude and distance, 128  

respectively; 𝑃(𝑍 > 𝑧	
  |	
  𝑚, 𝑟) is the conditional probability of ground motion 𝑍  exceeding a 129  

specified value 𝑧 for a specific magnitude 𝑚 and distance 𝑟. 𝑁2̇  is the annual occurrence rate 130  

of earthquakes and described by the truncated exponential model (Cosentino et al., 1977) and the 131  

characteristic earthquake model (Schwartz and Coppersmith, 1984). Finally, to consider all 132  

scenarios, the total probability of 𝑁C earthquakes is summarized in a given region. 133  

 134  

In the real-time PSHA, the occurrence rate of earthquake used in the traditional PSHA framework 135  

is replaced by seismic forecasting probability to achieve spatiotemporal variability of the hazard 136  

assessment. Then, considering the gridded space, the real-time PSHA can be expressed as  137  

𝜐(𝑍 > 𝑧) =00𝑃9:,DEF:(𝑚, 𝑙𝑜𝑐)
DEF595

𝑃(𝑍 > 𝑧|𝑚, 𝑙𝑜𝑐)	
   138  

 (2) 139  

where 𝑃9:	
  ,	
  DEF:(𝑚, 𝑙𝑜𝑐), the forecasting probability distribution, is a function of magnitude and 140  

location. It specifies an occurrence probability for specific magnitude, 𝑀", at each spatial location, 141  

	
  𝐿𝑜𝑐". The summations are to consider the whole of the contribution from any possible magnitude, 142  
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𝑀C, and location, 𝐿𝑜𝑐C. In this research, we adopted the forecasting probability from the PI method 143  

as 𝑃9,DEF(𝑚, 𝑙𝑜𝑐). 𝐿𝑜𝑐  refers to 𝑥"  in the PI method. The forecasting probability of the PI 144  

method presents a distribution of cumulative forecasting probability for ML ≥ 5.0. Thus, we 145  

referred to the average character of Gutenberg-Richter law in Taiwan (Gutenberg and Richter, 146  

1944; Wang et al., 2015) to turn it into probability density function (PDF). It can be corresponded 147  

to the specific magnitude conditions for 𝑃(𝑍 > 𝑧	
  |	
  𝑚, 𝑙𝑜𝑐). To evaluate the ground motion, we 148  

used the GMPE published by Lin et al. (2012), which was also adopted for the issue of Taiwan 149  

PSHA in Lee et al. (2017). In this GMPE, the earthquake type is one of the important parameters. 150  

However, the divisions of seismic source in the PI method is no longer based on the geological 151  

classification, but the grid box, 𝑥". Considering that the most faults in Taiwan are reverse faults 152  

(Shyu et al., 2016), we adopted the reverse fault parameters setting for the entire research area. 153  

Finally, the forecasting maximum PGA from the real-time PSHA is transferred to seismic intensity 154  

according to the seismic intensity scale of CWB listed in Table 2 (Wu et al., 2003). It means that 155  

the forecasting seismic intensity map presents the maximum seismic intensity which every site 156  

will encounter in the following 90 days.  157  

 158  

3.3   Performance verification  159  

3.3.1   Receiver Operating Characteristic curve (ROC)  160  
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The ROC diagram is a binary classification model and widely used as a tool for quantifying the 161  

performance of earthquake prediction (Holliday et al., 2006; Nanjo et al., 2006; Wu et al., 2016a). 162  

We used the ROC diagram as an objective quantitative indicator to evaluate the performance of 163  

the forecasting seismic probability computed by the PI method. For each box 𝑥", there are four 164  

situations, parameters, while comparing forecasting hotspot and target earthquake: 𝑎 means any 165  

target earthquake in a hotspot; 𝑏 means no target earthquake in a hotspot; 𝑐 means no hotspot 166  

but with at least one target earthquake; 𝑑  means no target earthquake and no hotspot. True 167  

positive rate (TPR) is defined as 𝑎 (𝑎 + 𝑐)⁄  and false positive rate (FPR) is defined as 𝑏 (𝑏 + 𝑑)⁄ . 168  

The values of 𝑎, 𝑏, 𝑐, and 𝑑 change with threshold of forecasting probability, and therefore 169  

TPR and FPR change as well. The area under the ROC curve (AUC) is between 0 and 1. AUC=1 170  

is a perfect prediction; AUC=0.5 is a random guess. For each forecasting map of PI, we generated 171  

1000 random tests by re-distributing the hotspots randomly over the research area to examine the 172  

possibility that a specific distribution of hotspots can generate by chance. In Fig. 1c and 1d, the 173  

blue line is the 95% confidence interval based on two standard deviations. The standard deviation 174  

is calculated by the random test results in each bin of the x-axis. The 95% confidence interval helps 175  

us differentiate the distributing range of random tests and the significant of forecasting probability.  176  

 177  

3.3.2   Average Percent Hit Rate (APHR) 178  
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The success rate of forecasting seismic intensity is a predictive accuracy of classification problems 179  

for which the average percent hit rate (APHR) is arguably the most intuitive measure of 180  

discrimination. The APHR is a rate at which the forecasting data are classified into the correct 181  

classes (Sharda and Delen, 2006). In this research, the APHR was used to quantify the forecasting 182  

performance of the real-time seismic hazard assessments. In the APHR, the exact hit rate which 183  

only counts the correct classifications to the exact same class can be expressed as:  184  

APHRTUVWX =
1
𝑁0𝑝"

[

"6$

 185  

    (3) 186  

where, in our case, 𝑁 is the total number of the P-alert stations or the boxes on the forecasting 187  

hazard map, 𝑔 is the total number of seismic intensity classes (=8, according to the CWB’s 188  

seismic intensity scale), and 𝑝" is the total number of samples classified as class 𝑖. In the random 189  

test, we further generated 1000 random tests by randomly re-distributing the forecasting maximum 190  

seismic intensity over the research area and the stations to examine the possibility that a specific 191  

distribution of the forecast can generate by chance.  192  

 193  

4   Results  194  

4.1   Forecast of earthquake occurrences 195  
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Figure 1a and 1b show the forecasting probability maps computed by the PI method, and Fig. 1c 196  

and 1d are corresponding forecasting performance verified by the ROC tests. In the case of 2016 197  

Meinong earthquake, 𝑡&, 𝑡$, and 𝑡% are 2004/01/31, 2012/01/31, and 2016/01/31. In the case of 198  

2018 Hualien earthquake, 𝑡& , 𝑡$ , and 𝑡%  are 2006/01/31, 2014/01/31, and 2018/01/31. The 199  

forecasting intervals of both cases are 90 days after 𝑡%. Cyan star in Fig. 1a and 1b is the main 200  

shock of 2016 Meinong and 2018 Hualian earthquakes, and the biggest earthquake in the 201  

forecasting interval. Gray circles in Fig. 1a and 1b are the earthquakes with magnitude ML ≥ 5.0 202  

in the forecasting interval, and more detailed information about these earthquakes can be obtained 203  

in Table 1. A notable point is that both main shocks and most big earthquakes are located in or 204  

very close to the hotspots. The performance of the PI forecasting probabilities seems to be good 205  

simply by visual inspection. 206  

 207  

In Fig. 1c and 1d, red curves are far above the blue curves (95% confidence interval). The AUCs 208  

of red curves are 0.91 and 0.94, and are apparently larger than the AUCs of blue curves, which are 209  

0.73 and 0.70. The ROC tests verified quantitatively that the performance of the PI forecasting 210  

probability is significant, and these patterns are not just generated by random distribution of 211  

hotspots by chance. Both distributions of hotspot are physically meaningful. Therefore, we can use 212  

these probability maps as the function of earthquake occurrence rate in subsequent calculation for 213  
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the real-time PSHA. 214  

 215  

4.2   Real-time PSHA 216  

In Fig. 2 and 3, panel (a) shows the map of forecasting max seismic intensity estimated by the real-217  

time PSHA for the forecasting interval; panel (b) shows the map of max seismic intensity recorded 218  

by the P-alert network during the forecasting interval. To ensure that it is absolutely maximum 219  

intensity during the forecasting interval, we only used the stations which have recorded all the 220  

target events (ML ≥ 5.0) in the forecasting interval. Although there are over 600 P-alert stations 221  

distributing widely in Taiwan, some boxes still do not contain any station, for example, the Central 222  

Mountain Range (see Fig. 5a and 5b). Therefore, we had to estimate the intensities in such kind of 223  

boxes by interpolating. Thus, this strategy indeed generates the artificial effect and we will show 224  

it later. 225  

 226  

Comparing Fig. 2a and 2b, we suggest that both seismic intensity distributions are very similar. 227  

An apparent deviation of forecasting seismic intensities from the recorded values is in the 228  

southwestern Taiwan, especially the area closer to the 2016 Meinong main shock. Fig. 2c shows 229  

the difference of intensity between Fig. 2a and 2b; the color of blue and red means that the 230  

forecasting value in a box is underestimated or overestimated. Most boxes have intensity 231  
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difference in the range -1 to 1, but some boxes in the southwestern Taiwan are underestimated; the 232  

differences are most 2 or even up to 3.  233  

 234  

Comparing Fig. 3a and 3b, we suggest that both seismic intensity distributions are still very similar. 235  

In this case, an apparent deviation of forecasting seismic intensities from the recorded values is in 236  

the southern Taiwan and a part of southwestern area. Figure 3c shows that most boxes in the 237  

southern Taiwan have smaller recorded intensity, and the recorded intensities in a part of 238  

southwestern Taiwan are larger than the forecasting values. 239  

 240  

Figure 4 shows the verifications generated by the APHR to quantitatively evaluate the performance 241  

of the forecasting seismic intensity. We considered the denominator of two classifications in Eq. 242  

3, i.e. the total number of the P-alert stations and the total number of boxes in the research area. 243  

The results are indicated by “P-alert” and “Map” in Fig. 4, respectively. While comparing 244  

forecasting intensity to recorded value, both cases “forecasting = recorded” and “forecasting = 245  

recorded +1” belong to “successful forecasting”. The definition of the tolerance range that depends 246  

on the perspectives and allowance of different users is  certainly debatable (Hsu et al., 2018). In 247  

our case, the reason is that considering to prevent or mitigate earthquake disaster, “overestimation” 248  

is better than “underestimation”. Therefore, we tolerated the case of overestimation of 1 intensity 249  
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rather than underestimation.  250  

 251  

First, all red lines are above the maximum hit rate of random tests and higher than 0.5, not to 252  

mention the random guess of the eight choices of the seismic intensity scale. It means that these 253  

forecasting seismic intensity maps have considerable effectiveness in the forecast, and their good 254  

performance can’t merely happen by chance. Moreover, another property is that both hit rates of 255  

the “P-alert” cases are higher than the rates of the “map” cases. This result could be attributed to 256  

the influence of the artificial effect generated by the interpolation of seismic intensity from the P-257  

alert data of nonuniform distribution. Last, it is emphasized that we just focus on the earthquakes 258  

with ML ≥ 5 in this research, but we cannot deny the possibility of a ML < 5 earthquake to cause 259  

large seismic intensity in the near field. 260  

 261  

5   Discussion 262  

The results of the APHR performance test indicates that the maps and stations of forecasting max 263  

seismic intensity by the real-time PSHA are significant and effective. Figure 5 is a concretization 264  

of the APHR verification and further gives more details. It clearly shows the P-alert station 265  

distributions of the “hit” and “not hit”, considering only the station-to-station prediction 266  

relationship between the forecasts and records. In both cases, most of the P-alert stations are hit 267  
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(Fig. 5a and 5b), and the hit percentages distribute along the diagonal  and tolerant ranges (Fig. 5c 268  

and 5d). However, there still are some locations or stations with wrong forecast. In the case of 269  

2016 Meinong earthquake, the stations located in the southwestern Taiwan do not match the real 270  

records, and at high seismic intensities (>3), the forecasting results at some stations are 271  

underestimated (Fig. 5c), especially in the southwestern area. In the case of 2018 Hualien 272  

earthquake, the result from the “P-alert” APHR seems better than former, and further the 273  

distribution of the hit percentage is more concentrated along the diagonal  and tolerant ranges. 274  

Nevertheless, the stations in the southern and part of southwestern Taiwan are still missed. These 275  

abovementioned differences between forecasting results and recorded seismic intensities in both 276  

cases can be mainly attributed to three aspects.  277  

 278  

First of all, the forecasting model that determines the probability distributions of earthquake 279  

occurrences is critical for the real-time PSHA. If the probability distribution is missing or false 280  

alarm in somewhere, it directly causes the inaccurate forecasts to the real-time PSHA. In the PI 281  

results, some differences are located on the hotspots with relatively higher probability, for example, 282  

the area in 22.6º to 23ºN and 120.9º to 121.3ºE in Fig. 1a, and 22.7º to 23.1ºN and 120.4º to 120.8ºE 283  

in Fig. 1b. Compared the locations of the earthquakes, these hotspots just shift slightly and it seems 284  

acceptable. However, in the results of the real-time PSHA, it leads the maps of forecasting max 285  

https://doi.org/10.5194/nhess-2019-167
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



17  
  

seismic intensity to underestimate in the area near the epicenters and overestimate in the area 286  

without any earthquake event, but with high probability of earthquake occurrence. For instance, 287  

the southwestern area in the case of 2018 Hualien earthquake is underestimated because of this 288  

reason, and then it also causes overestimated in the southern area (see Fig. 3 and 5b). Therefore, a 289  

more accurate and precise forecasting model helps us get a more positive result in a real-time 290  

PSHA. Even if the PI results perform well in the ROC test, the PI method still needs to be improved. 291  

 292  

Secondly, the evaluation of earthquake ground motion suffers from the limitations of GMPEs. We 293  

adopted the GMPE produced by Lin et al. (2012) whose data (ML ≥ 5.0) within 50 km are less than 294  

14% of all data for the regression of GMPE. If there is a shortage of data in near field and for larger 295  

events in the regression of GMPEs, the applicability of GMPEs is limited (Edwards and Fäh, 2014). 296  

Therefore, that probably causes the deviation of evaluation on forecasting seismic intensity maps, 297  

for instance, the underestimation of the areas around the two main shocks (Fig. 2c and 3c). 298  

Moreover, the site effect is difficult to be properly and comprehensively evaluated in GMPEs,  but 299  

it dramatically affects the behavior of seismic waves. For example, the amplitudes in the Meinong 300  

earthquake were amplified extending along the northwest (in Fig. 2b) because of the Western Plain 301  

composed of thick and low velocity sedimentary deposits (see Fig. 4 in Lee et al., 2016). As a 302  

result, the site effect also contributes and leads the seismic intensity forecast to underestimate (Fig. 303  
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2c and 5a). 304  

 305  

Last but not least, the directivity effect also plays an important role in the distribution of ground 306  

motion. For the main shocks in two cases, the rupture characteristic brings a strong directivity 307  

effect that causes the significant amplification of ground motion along the rupture direction (Lee 308  

et al., 2016; Hsu et al., 2018). However, GMPEs are basically a statistical distribution of PGA 309  

generated by all data at the same radical distance without considering possible effect of rupture 310  

directivity. As a result, GMPEs are only able to provide the ground motion estimation of radial 311  

extension. Besides, the forecasting model does not include the information of rupture direction 312  

either. Therefore, we suggest that some differences which along the rupture direction may belong 313  

to this effect.  314  

 315  

6   Conclusion  316  

This study presents how the real-time seismic hazard assessment can be achieved by replacing the 317  

static seismic rate, i.e. the truncated and characteristic earthquake models, with the time-dependent 318  

seismic source probability of the PI method. With regard to the time-dependent seismic source 319  

probability, the ROC tests verified quantitatively that the performances of the PI forecasting 320  

probabilities in forecasting interval are quite effective. Therefore, those significant probability 321  
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distributions can be used as the function of earthquake occurrence rate,	
  𝑃(𝑚, 𝑙𝑜𝑐), in the real-time 322  

PSHA. Our forecasting seismic intensity maps of the real-time PSHA have the hit rates 323  

outperformed the random guesses and higher than 0.5 for both cases of the Meinong and Hualien 324  

earthquakes. This study thus suggests that these real-time PSHA maps are effective in terms of 325  

forecasting, and their good performances are not likely coincidence. We demonstrated that the real-326  

time seismic hazard assessment is doable and can be realized and updated by the time-dependent 327  

seismic source probability.  328  

 329  

In the future, the different time-dependent seismic source probability models can be introduced to 330  

provide a more accurate and robust estimation for earthquake occurrences. Also, a possible 331  

improvement for our results could be from the estimated PGA distribution not only by means of 332  

the state-of-the-art machine learning tools for a big data bank of the P-alert network but also by 333  

physics-based numerical simulations (PBS) of seismic ground motion, instead of the empirical 334  

GMPEs. Presumably, a real-time forecasting map of seismic intensity enables governments or 335  

businesses to efficiently prepare for earthquake disasters. Moreover, the seismicity intensity scale 336  

based on PGA are related to the vulnerability level of buildings, which will also be changed with 337  

time due to the degradation and upgrades (e.g. obsolescence, retrofitting actions, climate events). 338  

Therefore, when further assessing a seismic risk fluctuating with time, the real-time PSHA and the 339  

https://doi.org/10.5194/nhess-2019-167
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



20  
  

change of vulnerability should be considered. 340  

 341  

Acknowledgments 342  

The authors are grateful for research support from the Ministry of Science and Technology (ROC) 343  

and the Department of Earth Science, National Central University, Taiwan (ROC). This work is 344  

supported by "Earthquake-Disaster & Risk Evaluation and Management Center, E-DREaM" from 345  

The Featured Areas Research Center Program within the framework of the Higher Education 346  

Sprout Project by the Ministry of Education (MOE) in Taiwan. 347  

 348  

References 349  

Chang, L.-Y., Chen, C.-c., Wu, Y.-H., Lin, T.-W., Chang, C.-H., and Kan, C.-W.: A Strategy for 350  

a Routine Pattern Informatics Operation Applied to Taiwan, Pure Appl. Geophys., 173, 235-351  

244, doi:10.1007/s00024-015-1079-9, 2016. 352  

Chang, L.-Y.: A study on an improved pattern informatics method and the soup-of-group model 353  

for earthquakes. Doctoral dissertation, Department of Earth Sciences, National Central 354  

University, Taiwan, R. O. C., 2018. 355  

Chen, C.-c., Rundle, J. B., Holliday, J. R., Nanjo, K. Z., Turcotte, D. L., Li, S.-C., and Tiampo, K. 356  

F.: The 1999 Chi-Chi, Taiwan, earthquake as a typical example of seismic activation and 357  

https://doi.org/10.5194/nhess-2019-167
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



21  
  

quiescence, Geophys. Res. Lett., 32, L22315, doi:10.1029/2005GL023991, 2005. 358  

Chen, C.-c., Rundle, J. B., Li, H.-C., Holliday, J. R., Turcotte, D. L., and Tiampo, K. F.: Critical 359  

point theory of earthquakes: Observation of correlated and cooperative behavior on 360  

earthquake fault systems, Geophys. Res. Lett., 33, L18302, doi:10.1029/2006GL027323, 361  

2006. 362  

Chen, H.-J., Chen, C.-c., Ouillon, G., and Sornette, D.: Using geoelectric field skewness and 363  

kurtosis to forecast the 2016/2/6, M L 6.6 Meinong, Taiwan Earthquake, Terr. Atmos. Ocean. 364  

Sci., 28, 745-761, doi:10.3319/TAO.2016.11.01.01, 2017. 365  

Cooper, J. D.: Letter to editor, San Francisco Daily Evening Bulletin, Nov. 3, 1868. 366  

Cornell, C. A.: Engineering seismic risk analysis, Bull. Seismol. Soc. Am., 58, 1583-1606, 1968. 367  

Cosentino, P., Ficarra, V., and Luzio, D.: Truncated exponential frequency-magnitude relationship 368  

in earthquake statistics, Bull. Seismol. Soc. Am., 67, 1615-1623, 1977. 369  

Edwards, B., and Fäh, D.: Ground motion prediction equations, ETH-Zürich, 2014. 370  

Holliday, J. R., Rundle, J. B., Turcotte, D. L., Klein, W., Tiampo, K. F., and Donnellan, A.: Space-371  

Time Clustering and Correlations of Major Earthquakes, Phys. Rev. Lett., 97, 238501, 372  

doi:10.1103/PhysRevLett.97.238501, 2006. 373  

Gutenberg, B. and Richter, C. F.: Frequency of earthquakes in California, Bull. Seism. Soc. Am., 374  

34, 185–188, 1944. 375  

https://doi.org/10.5194/nhess-2019-167
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



22  
  

Hsu, T. Y., Lin, P. Y., Wang, H. H., Chiang, H. W., Chang, Y. W., Kuo, C. H., Lin, C. M., and 376  

Wen, K. L.: Comparing the Performance of the NEEWS Earthquake Early Warning System 377  

Against the CWB System During the 6 February 2018 Mw 6.2 Hualien Earthquake, Geophys. 378  

Res. Lett., 45, 6001-6007, doi:10.1029/2018GL078079, 2018. 379  

Iervolino, I., Chioccarelli, E., and Convertito, V.: Engineering design earthquakes from 380  

multimodal hazard disaggregation, Soil Dynam. Earthquake Eng., 31, 1212-1231, 381  

https://doi.org/10.1016/j.soildyn.2011.05.001, 2011. 382  

Lee, S.-J., Yeh, T.-Y., and Lin, Y.-Y.: Anomalously Large Ground Motion in the 2016 ML 6.6 383  

Meinong, Taiwan, Earthquake: A Synergy Effect of Source Rupture and Site Amplification, 384  

Seismol. Res. Lett., 87, 1319-1326, doi:10.1785/0220160082, 2016. 385  

Lee, Y.-T., Wang, Y.-J., Chan, C.-H., and Ma, K.-F.: The 2016 Meinong earthquake to TEM 386  

PSHA2015, Terr. Atmos. Ocean. Sci., 28, 703-713, doi:10.3319/TAO.2016.12.28.02, 2017. 387  

Lin, P.-S., Hsie, P.-S., Lee, Y.-R., Cheng, C.-T., and Shao, K.-S.: The research of probabilistic 388  

seismic hazard analysis and geological survey of nuclear power plant: Construction of ground 389  

motion prediction equation for response spectra., Commission Report of the Institute of 390  

Nuclear Energy Research, Atomic Energy Council, Executive Yuan. (in Chinese), 2012. 391  

Nanjo, K. Z., Holliday, J. R., Chen, C.-c., Rundle, J. B., and Turcotte, D. L.: Application of a 392  

modified pattern informatics method to forecasting the locations of future large earthquakes 393  

https://doi.org/10.5194/nhess-2019-167
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



23  
  

in the central Japan, Tectonophysics, 424, 351-366, 394  

https://doi.org/10.1016/j.tecto.2006.03.043, 2006. 395  

Rundle, J. B., Klein, W., Tiampo, K., and Gross, S.: Linear pattern dynamics in nonlinear threshold 396  

systems, Phys. Rev. E, 61, 2418-2431, doi:10.1103/PhysRevE.61.2418, 2000. 397  

Rundle, J. B., Tiampo, K. F., Klein, W., and Sá Martins, J. S.: Self-organization in leaky threshold 398  

systems: The influence of near-mean field dynamics and its implications for earthquakes, 399  

neurobiology, and forecasting, Proc. Nat. Acad. Sci., 99, 2514-2521, 400  

doi:10.1073/pnas.012581899, 2002. 401  

Rundle, J. B., Turcotte, D. L., Shcherbakov, R., Klein, W., and Sammis, C.: Statistical physics 402  

approach to understanding the multiscale dynamics of earthquake fault systems, Rev. 403  

Geophys., 41, 1019, doi:10.1029/2003RG000135, 2003. 404  

Senior Seismic Hazard Analysis Committee (SSHAC): Recommendations for probabilistic 405  

seismic hazard analysis: guidance on uncertainty and use of experts, US Nuclear Regulatory 406  

Commission Washington, DC, 1997. 407  

Schwartz, D. P., and Coppersmith, K. J.: Fault behavior and characteristic earthquakes: Examples 408  

from the Wasatch and San Andreas Fault Zones, J. Geophys. Res., 89, 5681-5698, 409  

doi:10.1029/JB089iB07p05681, 1984. 410  

Sharda, R., and Delen, D.: Predicting box-office success of motion pictures with neural networks, 411  

https://doi.org/10.5194/nhess-2019-167
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



24  
  

Expert Syst. Appl., 30, 243-254, https://doi.org/10.1016/j.eswa.2005.07.018, 2006. 412  

Shyu, J. B. H., Chuang, Y.-R., Chen, Y.-L., Lee, Y.-R., and Cheng, C.-T.: A New On-Land 413  

Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project 414  

for Seismic Hazard Analysis of Taiwan, Terr. Atmos. Ocean. Sci., 27, 311-323, 415  

doi:10.3319/TAO.2015.11.27.02(TEM), 2016. 416  

Tiampo, K. F., Rundle, J. B., McGinnis, S., Gross, S. J., and Klein, W.: Mean-field threshold 417  

systems and phase dynamics: An application to earthquake fault systems, Europhys. Lett., 60, 418  

481, doi:10.1209/epl/i2002-00289-y, 2002. 419  

Wang, J.-H., Chen, K.-C., Leu, P.-L., and Chang, J.-H.: b-Values Observations in Taiwan: A 420  

Review, Terr. Atmos. Ocean. Sci., 26, 475-492, doi:10.3319/TAO.2015.04.28.01(T), 2015. 421  

Wang, Y.-J., Chan, C.-H., Lee, Y.-T., Ma, K.-F., Shyu, J. B. H., Rau, R.-J., and Cheng, C.-T.: 422  

Probabilistic Seismic Hazard Assessment for Taiwan, Terr. Atmos. Ocean. Sci., 27, 325-340, 423  

doi:10.3319/TAO.2016.05.03.01, 2016. 424  

Wu, Y.-M., Shin, T.-C., and Tsai, Y.-B.: Quick and reliable determination of magnitude for 425  

seismic early warning, Bull. Seismol. Soc. Am., 88, 1254-1259, 1998. 426  

Wu, Y.-M., Teng, T.-l., Shin, T.-C., and Hsiao, N.-C.: Relationship between Peak Ground 427  

Acceleration, Peak Ground Velocity, and Intensity in Taiwan, Bull. Seismol. Soc. Am., 93, 428  

386-396, doi:10.1785/0120020097, 2003. 429  

https://doi.org/10.5194/nhess-2019-167
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



25  
  

Wu, Y.-H., Chen, C.-c., and Rundle, J. B.: Detecting precursory earthquake migration patterns 430  

using the pattern informatics method, Geophys. Res. Lett., 35, L19304, 431  

doi:10.1029/2008GL035215, 2008a. 432  

Wu, Y.-H., Chen, C.-c., and Rundle, J. B.: Precursory seismic activation of the Pingtung (Taiwan) 433  

offshore doublet earthquakes on 26 December 2006: A pattern informatics analysis, Terr. 434  

Atmos. Ocean. Sci., 19, 743-749, doi:10.3319/TAO.2008.19.6.743(PT), 2008b. 435  

Wu, Y.-M., Chang, C.-H., Zhao, L., Teng, T.-L., and Nakamura, M.: A Comprehensive Relocation 436  

of Earthquakes in Taiwan from 1991 to 2005, Bull. Seismol. Soc. Am., 98, 1471-1481, 437  

doi:10.1785/0120070166, 2008c. 438  

Wu, Y.-M., Chen, D.-Y., Lin, T.-L., Hsieh, C.-Y., Chin, T.-L., Chang, W.-Y., and Li, W.-S.: A 439  

High-­‐‑Density Seismic Network for Earthquake Early Warning in Taiwan Based on Low Cost 440  

Sensors, Seismol. Res. Lett., 84, 1048-1054, doi:10.1785/0220130085, 2013. 441  

Wu, Y.-H., Chen, C.-c., and Li, H.-C.: Conditional Probabilities for Large Events Estimated by 442  

Small Earthquake Rate, Pure Appl. Geophys., 173, 183-196, doi:10.1007/s00024-014-1019-443  

0, 2016a. 444  

Wu, Y.-M., Liang, W.-T., Mittal, H., Chao, W.-A., Lin, C.-H., Huang, B.-S., and Lin, C.-M.: 445  

Performance of a Low-­‐‑Cost Earthquake Early Warning System (P-­‐‑Alert) during the 2016 ML 446  

6.4 Meinong (Taiwan) Earthquake, Seismol. Res. Lett., 87, 1050-1059, 447  

https://doi.org/10.5194/nhess-2019-167
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



26  
  

doi:10.1785/0220160058, 2016b. 448  

Yang, B. M., Huang, T.-C., and Wu, Y.-M.: ShakingAlarm: A Nontraditional Regional Earthquake 449  

Early Warning System Based on Time-­‐‑Dependent Anisotropic Peak Ground-­‐‑Motion 450  

Attenuation Relationships, Bull. Seismol. Soc. Am., 108, 1219-1230, 451  

doi:10.1785/0120170105, 2018.  452  

https://doi.org/10.5194/nhess-2019-167
Preprint. Discussion started: 23 July 2019
c© Author(s) 2019. CC BY 4.0 License.



27  
  

 453  

Figure 1. Panels (a) and (b) show the forecasting probability maps of the Meinong earthquake and 454  

the Hualien earthquake, respectively. Panels (c) and (d) are the ROC curves of (a) and (b), 455  

respectively. Red, gray, blue, and black curve represent the forecasting probability map, random 456  

tests, 95% confidence interval, and the average of random tests, respectively. 457  

 458  
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 459  

Figure 2. The case of 2016 Meinong earthquake: (a) The map of forecasting max seismic intensity 460  

by the rea-time PSHA. The forecasting interval of seismic intensity is 90 days. (b) The map of 461  

max seismic intensity recorded by the P-alert network. Black and white triangles indicate the P-462  

alert stations which we used and didn’t use in the verification, respectively. (c) The difference of 463  

seismic intensity between the forecast and the record. Cyan star represents the Meinong earthquake; 464  

gray circles represent the earthquakes with magnitude ML ≥ 5 in this forecasting interval. 465  

 466  

 467  

 468  

 469  
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 471  

Figure 3. The case of 2018 Hualian earthquake: (a) The map of forecasting max seismic intensity. 472  

(b) The map of max seismic intensity recorded by the P-alert network. (c) The difference of seismic 473  

intensity between the forecast and the record. Cyan star represents the Hualian earthquake. 474  

 475  

 476  

 477  
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 478  

Figure 4. Performance test of APHR. Red line indicates the forecasts of the real-time PSHA; gray 479  

circle indicates the result of a random test by randomly re-distributing seismic intensities; blue 480  

error bar indicates the interval with two standard deviations over all random tests. 481  

 482  

 483  

 484  
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 486  

Figure 5. Panels (a) and (b) are the P-alert station distributions of the “hit” and “not hit”. Red and 487  

blue triangles present the “hit” and “not hit”, respectively. Panels (c) and (d) are the distributions 488  

of the hit percentage for the cases of 2016 Meinong and 2018 Hualian earthquake, respectively. 489  
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Red line area presents the acceptable prediction range. 490  

  491  
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Table 1. The earthquakes occurred in the forecast interval. “P-alert” indicates that the P-alert 492  

recording obtained from the Taiwan Earthquake Research Center (TEC) or the National Taiwan 493  

University (NTU). “Num.” is the number of recording stations. “Nan” indicates that there is no P-494  

alert data to be recorded in both TEC and NTU even if that event was recorded by CWB. The bold 495  

represents the Meinong and Hualian earthquakes. 496  

(a) Meinong case: 2016/02/01~2016/05/01 

Date Hour Min. Lon. Lat. Depth ML P-alert Num. 

02/05 19 57 120.54 22.92 14.64 6.60 TEC 338 

02/05 19 58 120.43 22.94 18.10 5.26 Nan Nan 

02/09 00 47 121.69 23.89 5.69 5.12 TEC 341 

02/18 01 09 120.87 23.02 5.44 5.27 TEC 357 

02/18 01 18 120.88 23.03 4.26 5.13 TEC 357 

04/16 10 55 121.80 22.44 11.83 5.22 TEC 436 

04/27 15 17 121.78 24.24 11.94 5.67 NTU 424 

04/27 15 27 121.75 24.25 12.99 5.13 NTU 425 

04/27 18 19 121.23 23.28 15.21 5.52 NTU 423 

 497  

(b) Hualian case: 2018/02/01~2018/05/02 

Date Hour Min. Lon. Lat. Depth ML P-alert Num. 

02/04 13 12 121.67 24.20 15.10 5.10 TEC 543 

02/04 13 56 121.74 24.15 10.60 5.80 TEC 519 

02/04 13 57 121.68 24.19 11.10 5.10 Nan Nan 

02/04 14 13 121.72 24.15 10.30 5.50 TEC 517 

02/05 15 58 121.72 24.14 10.00 5.00 TEC 522 

02/06 15 50 121.73 24.10 6.30 6.20 TEC 520 

02/06 15 53 121.59 23.98 5.10 5.00 TEC 520 
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02/06 18 00 121.73 24.12 6.70 5.30 TEC 516 

02/06 18 07 121.71 24.04 4.20 5.30 TEC 516 

02/06 19 15 121.73 24.01 5.70 5.40 TEC 516 

02/07 15 21 121.78 24.08 7.80 5.80 TEC 523 

02/25 18 28 121.90 24.44 17.70 5.20 TEC 533 

03/20 09 22 120.54 23.30 11.20 5.30 TEC 539 

03/29 00 17 121.01 24.00 11.10 5.00 NTU 388 

04/23 17 10 122.53 23.92 19.30 5.10 NTU 381 

 498  

Table 2. Seismic intensity scale of CWB. 499  

Intensity Scale 
Ground Acceleration 

(cm/s2, gal) 

Micro 0 <0.8 

Very minor 1 0.8~2.5 

Minor 2 2.5~8.0 

Light 3 8~25 

Moderate 4 25~80 

Strong 5 80~250 

Very Strong 6 250~400 

Great 7 ≥400 

 500  
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