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1. Introduction

1. Introduction

1.1 Hepatitis E Virus — Introducing the causative agent of hepatitis E

1.1.1 Classification and Taxonomy

Hepatitis E virus (HEV) belongs to the family Hepeviridae, including the two genera
Orthohepevirus and Piscihepevirus (Purdy et al., 2017; Smith et al., 2014, see Figure 1).
The genus Piscihepevirus only contains the species Piscihepevirus A, with strains detected
in cutthroat trout (cutthroat trout virus; CTV) and related fish species (Batts et al., 2011).
The genus Orthohepevirus contains four species, namely Orthohepevirus A -
Orthohepevirus D. Orthohepevirus A contains currently seven genotypes (HEV-1 - HEV-
7) and a proposed genotype HEV-8, with specific reservoir hosts (Smith et al., 2016; Woo
etal., 2016).

Family ‘ Genus Species Genotype Host
HEV-1/ HEV-2 —— Human

Orthohepevirus ¢ Orthohepevirus A

HEV-5/ HEV-6 Wild boar

HEV-8 (?) ——— Bactrian camel

Hepeviridae

Orthohepevirus B8 HEV-B Chicken

HEV-C1

Orthohepevirus C / HEV-C2 Ferret, mink, red fox
X HEV-C3 (?) Chevrier’s field mouse

HEV-C4 (?)

Norway/black rat, bandicoot rat

Pére David’s vole

Orthohepevirus D Different bat species

CcTv

Piscihepevirus Piscihepevirus A Trout and related fishes

Transmission from human to human [ Potential transmission from animal to human ]

Figure 1. Taxonomy of the family Hepeviridae and host association of the genotypes. The classification
follows the taxonomy suggested by Smith et al., (2014 and 2016) and Batts et al., 2011, including proposed
genotypes HEV-C3, HEV-C4 (Wang et al. (2018)) and HEV-8 (Woo et al. (2016)) labeled with a question
mark. Possible transmission routes are indicated by different colors. For details see chapter 1.1.3 and
1.1.4.

Orthohepevirus B genotypes were found in birds exclusively, namely chickens and wild
bird species (Hagshenas et al., 2001; Huang et al., 2004; Reuter et al., 2016b). Small
mammal-associated HEV strains found in rats, foxes, minks and ferrets were classified
within the species Orthohepevirus C. Rat-associated HEV (ratHEV) belongs to the

genotype HEV-C1, whereas carnivore-associated HEV strains are grouped together as
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1. Introduction

HEV-C2 (Smith et al., 2014). Two recently detected, rodent associated HEV strains, found
in Chevrier’s field mouse (Apodemus chevrieri) and Pére David’s vole (Eothenomys
melanogaster), respectively, were proposed as genotypes HEV-C3 and HEV-C4 (Wang et
al., 2018). Bat-associated HEV strains, members of the species Orthohepevirus D, were
found in different bat species worldwide (Drexler et al., 2012). The described taxonomical
classification is in line with the phylogenetic reconstruction of the protein encoded by the
concatenated region of the open reading frame (ORF) 1 and ORF2 from representative
members of the family Hepeviridae (see Figure 2).

+ Orthohepevirus A

100

I Orthohepevirus C

100 HEV-C1 b
{HEV—B ]- Orthohepevirus B

]- Orthohepevirus D

iuTVl }PiscihepevirusA

X

Transmission from human to human [ Potential transmission from animal to human ]

Figure 2. Phylogenetic relationship of genotypes and species within the family Hepeviridae. The
phylogenetic tree was generated by fusion of trees calculated by Maximum-likelihood (Substitution model:
Jukes-Cantor with gamma distribution and 1000 bootstraps) and Bayesian analysis (15 million generations,
burn-in phase of 25%). The amino acid sequences of the concatenated open reading frame (ORF) 1 and
ORF2, used for the calculation, are reference sequences for hepatitis E virus (HEV), proposed by Smith et
al., (2014 and 2016) and Batts et al., 2011. Additionally the proposed genotypes HEV-C3/HEV-C4 (Wang et
al., 2018) and HEV-8 (Woo et al., 2016) were included as well. Maximum-likelihood and Bayesian
calculations were done via CIPRES Online Portal (Miller et al., 2015). Support values above 70 are shown.
The possible transmission routes are indicated by different colors. For details see chapters 1.1.3 and 1.1.4.

Recent high-throughput sequencing (HTS) investigations revealed novel hepevirus-related
pathogens in white-backed planthopper (Sogatella furcifera), an insect from southern
China (N. Wu et al., 2018), and in agile frog (Rana dalmatina) from Hungary (Reuter et
al., 2018). The frog-associated virus and the Sogatella furcifera hepe-like virus (SfHeV)
are sharing the typical genomic attributes of other hepeviruses, with an unknown taxonomic

position.

Page 10| 142



1. Introduction

1.1.2 Structure and genome organization of hepeviruses

The hepevirus virion was initially described as a “non-enveloped”, spherical particle with
a diameter of about 27-34 nanometer (nm) (Mori and Matsuura, 2011). Recent
investigations indicated its association with lipids and therefore it is described as “quasi-
enveloped” (Yamada et al., 2009; Yin et al., 2016). Hepeviruses contain a single stranded
ribonucleic acid (RNA) genome, having a positive polarity and a size ranging from 6.2 —
7.4 kilo bases (kb) (Tam et al., 1991). The single-stranded RNA genome contains three
major ORFs, flanked by a 5’ non-coding region (NCR), which is m’G-capped, and a 3’
NCR, with a polyadenylation. The NCRs differ in length among the different HEV-strains
(Purdy et al., 2017). The ORFs are arranged by different overlapping patterns, even for
members of the same HEV species. The major ORF1 encodes a nonstructural polyprotein
of about 1700 aa (see Figure 3), that is translated from the genomic RNA. The potentially
functional domains were predicted by computer-based search for homologues and
conserved domains within the genome of HEV and other viruses (Koonin etal., 1992; Tam
et al., 1991, see Figure 3). The cleavage of the ORF1-encoded polyprotein into smaller
polypeptides, corresponding to the functional domains, was shown in a baculovirus
expression system (Sehgal et al., 2006). Cell culture and/or animal experiments revealed
the functionality of the predicted domains (see Figure 3):

- Methyl-/Guanyltransferase (Mt) is a 110 kilo Dalton (kDa) protein (P110) and catalyzes
the transfer of a methyl group from S-adenosylmethionin to guanosine-triphosphate (GTP)
and guanosine-diphosphate (GDP) to yield m’GTP or m’GDP and thus forms a covalent
enzyme-m’guanosine-monophosphate (GMP) complex needed for the capping of the viral
RNA (Magden et al., 2001);

- The “Y-like domain” (Y has a critical role in HEV replication cycle by affecting the gene

regulation and/or membrane binding in intracellular replication complexes (Parvez, 2017);
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1. Introduction

VP
5076 5447
HVR ORF 3
m vy PP x ML RaRp - CP 3.NCR
— — —JUNCtion
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— ORF 1 ORF 2 —
1 145 5079 db 5117 7099
5“NCR Predicted SL T

Figure 3. Genome organization of hepatitis E virus. The location of the overlapping major open reading
frames ORF1, ORF2, ORF3, and the 5 - and 3’ non-coding regions (NCR) as well as the junction region
with the predicted stem-loop (SL) structure are indicated based on HEV prototype strain SAR 55, accession
number M80581 (Cao et al., 2010; Ding et al., 2017; Johne et al., 2014a; Pudupakam et al., 2009).
Functional domains are: Mt, methyltransferase; Y, Y-like domain; PCP, papain-like cysteine protease;
HVR, hypervariable region; X, X domain/ADP-ribose-binding site; Hel, Helicase; RARP, RNA-dependent
RNA polymerase; CP, capsid protein; VP, viroporin.

- The papain-like cysteine protease (PCP) is involved in the proteolytic processing of the
ORF1-encoded polyprotein as demonstrated by characterization of variant molecules with
aa exchanges within its catalytic active center (Parvez, 2013). Additionally, it was shown
that PCP downregulates melanoma differentiation associated gene 5 (MDADS5)-mediated
activation of interferon 3 induction, suggesting a role of PCP as an interferon I antagonist

(Kim and Myoung, 2018);

- Homologues of the HEV cellular X domain/ADP-ribose-binding site activities were
identified in rubella virus and different corona- and alphaviruses. The role of this domain
for HEV replication was shown in the human hepatoma cell line HuH7/S10-3 using X-

domain aa exchanges (Parvez, 2015);

- In addition to the PCP and X-domain, a proline rich/ hypervariable region (HVR) of
different length was identified, but seems to have no influence on HEV infectivity
(Pudupakam et al., 2009; Tsarev et al., 1992).

- The HEV Helicase (Hel) is a nucleoside triphosphatase (NTPase) that mediates the
unwinding of the RNA duplex in 5’ to 3” direction and the first steps of 5’ cap synthesis
(Karpe and Lole, 20104, b);

- RNA-dependent RNA polymerase (RdRP) is needed for HEV replication and
transcription. Electrophoretic mobility shift assays (EMSA) demonstrated a high affinity
of recombinant RARP for the 3’-end of the HEV genome, including the polyadenylated

12 | 142



1. Introduction

region, secondary stem-loop (SL) structures and putative subgenomic (SG) promotor
regions (Agrawal et al., 2001; Mabhilkar et al., 2016).

The ORF2 and ORF3 are located within a bicistronic subgenomic RNA of HEV (Graff et
al., 2006). For the translation of this subgenomic RNA a secondary SL structure was
identified within the junction region between ORF1 and ORF2/ORF3 (Cao et al., 2010, see
Figure 3). The ORF2 encodes the capsid protein (CP; see Figure 3), which is subsequently
processed into multiple monomeric forms with sizes ranging from 74 to 88 kDa (Jameel et
al., 1996). Expression of a N-terminally truncated ORF2 (amino acid, aa, residues 112 to
600) by a recombinant baculovirus in insect cell line Trichoplusia ni, BTL-Tn 5B1-4 (Tn5)
cells, revealed two forms of the CP, a native one (58 kDa) and a slightly smaller one (50
kDa). As evidenced by electron microscopy, the smaller one was found to self-assemble
into empty virus-like particles (VLPs) (Li et al., 1997). Analyses of different N-terminally
and C-terminally truncated CPs in the baculovirus-mediated expression system resulted in
the identification of aa residues 125 and 601 as essential elements for initiation of VLP
assembly (Li et al., 2005b). In a recent study, three different forms of the CP were identified
(ORF2 i, g/c) and the existence of two production pathways of the CP were proposed:
ORF2 i is produced by delivering cytosolic ORF2 proteins to the virion assembly sites and
thus is associated with infectious virus particles. The ORF2 g/c variants are generated in a
nonproductive way and are absent in infectious particles. ORF2 proteins are pushed into
the secretion route, get glycosylated/cleaved and secreted out of the cells. These ORF2 g/c
forms were proposed to function as immunological baits in chronically HEV infected
patients (Montpellier et al., 2018). The ORF3 encodes a multifunctional protein that is
supposed to function as a viroporin (VP) and seems to be involved in virus release (Ding
et al., 2017; Tyagi et al., 2002; Tyagi et al., 2004; Tyagi et al., 2005 and see Figure 3).
Additionally, the ORF3-encoded protein interacts with the CP (Tyagi et al., 2002) and thus,
could play arole in regulating the virion assembly.

A putative ORF4 exclusively for members of the species Orthohepevirus C was predicted.
Three genotypes, HEV-C1, HEV-C2 and the proposed HEV-C3, share the putative ORF4,
whereas it is absent in members of the proposed genotype HEV-C4 (Johne et al., 20144;
Wang et al., 2018). The ORF4 is overlapping with the ORF1 at its 5’ end, has a size of
about 552 nucleotides (nt) and encodes a putative protein of 183 aa residues (Johne et al.,
2014a). Transfection of the human hepatoma carcinoma cell line PLC/PRF/5 cells with

infectious ORF4-defective mutant copy deoxynucleic acid (¢cDNA) clones of ratHEV
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1. Introduction

demonstrated no difference in the replication to the corresponding wild type ORF4 cDNA
clone. Therefore, the function of the putative ORF4 encoded protein remains still unclear
(Tanggis et al., 2018).

1.1.3 Transmission routes of hepatitis E virus

The routes of HEV transmission are very complex and not all of them are fully understood.
Most likely pathways are via faecally contaminated water, blood products, food,
environment and direct contact with animals as well as infected humans (Lewis et al.,
2010). The possible route of transmission differs strongly among the different HEV
genotypes. The genotypes HEV-1 and HEV-2 are restricted to humans and were
responsible for large hepatitis E outbreaks in the past years. The genotypes HEV-3 and
HEV-4 are zoonotic pathogens and can cause an infection in humans (Li et al., 2005a;
Takahashi et al., 2002; Pavio et al., 2015; Smith et al., 2016). These pathogens can be found
in different reservoir hosts like domestic pigs or wild boars, deer and rabbits. The most
probable way of infection for humans is by the consumption of undercooked meat of
infected animals, like from deer, rabbits, pigs or wild boars (Abravanel et al., 2017; Izopet
et al.,, 2012; Li et al., 2005a; Sonoda et al., 2004; Yazaki et al., 2003). Furthermore,
camelids are also reservoir hosts for a zoonotic HEV-strain, HEV-7, which was found in a
dromedary species (Arabian camel; Camelus dromedaries) and infected a human, who was
frequently consuming milk and meat from Arabian camel (Lee et al., 2016). Similarly, the
proposed genotype HEV-8, which was found in a Bactrian camel (Camelus bactrianus) is
most likely non-zoonotic (Takahashi et al., 2014; Woo et al., 2016). The genotypes HEV-
5 and HEV-6 were found exclusively in wild boar (Sus scrofa) with no hints for a zoonotic
potential (Takahashi et al., 2014). All members of the species Orthohepevirus B,
Orthohepevirus D and Piscihepevirus A have no or an unknown zoonotic potential (Batts
etal., 2011; Drexler et al., 2012; Huang et al., 2004).

1.1.4 Hepatitis E virus infection in humans

HEYV is the main causative agent of an acute hepatitis in humans (Rein et al., 2012). After
two to eight weeks of incubation flu-like symptoms arise, followed by emesis, fever, pain
of the limbs or headache and epigastralgia before signs of acute hepatitis and liver failure
occur. The fatality rates are very low in general and range between 0.2% and 4%, but case
fatality rates of up to 25% can occur in immunocompromised persons, i.e. pregnant women

or persons who received an organ transplantation (Kumar et al., 2013). These high rates of
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1. Introduction

mortality were observed during larger hepatitis E outbreaks in endemic regions of China,
India, Somalia and Uganda (Kamar et al., 2012). Immunocompromised persons can also
develop a chronic HEV infection, which is associated with liver failure and liver cirrhosis
(Gerolami et al., 2008; Kamar et al., 2008). HEV infections are not only a problem of
developing countries with known endemic regions, but in industrialized countries also HEV
infections occur as sporadic autochthonous cases and in exposure risk groups (Clemente-
Casares et al., 2003, 2016; King et al., 2018; Sayed et al., 2015). Serological investigations
of blood donors and the general population revealed highly divergent seroprevalences (2.1
- 52.2%) in different European countries and even between parts of one country (Clemente-
Casares et al., 2016). A serosurvey in blood donors from the United States of America
(USA) showed an age-dependence and general decrease in anti-HEV seroprevalences of
21.8% (2006) to 16% (2012) (Sayed et al., 2015). Seroprevalences of 4.2% and 9.7% were
detected in blood donors from New Zealand in the year 2007 and in the years 2014/2015,
respectively (King et al., 2018). Additionally, HEV could be detected in sewage and human
samples from different high human-density cities in Spain, Greece, France, Sweden and the
USA, indicating a circulation of different HEV-strains even in one location/city (Clemente-
Casares et al., 2003).

More than one third of the world-wide human population, approximately more than two
billion humans, lives in highly endemic regions for the genotypes HEV-1 and HEV-2, like
South-East Asia, the Middle East, India, Central Asia, Middle and South America (World
Health Organization, 2017). The consumption of water, contaminated by human excreta, is
the most probable transmission route for these two genotypes (Nelson et al., 2018). A
vertical, transplacental transmission or intrauterine infection with HEV has been reported
in India, with fatality rates of the mothers up to 100% and HEV-RNA detection rates of
50% in their children (Khuroo et al., 1995; Singh et al., 2003).

Hepatitis E is a notifiable disease in Germany since 2001 and cases have to be reported to
the Robert Koch-Institute, if at least one of the following methods can detect HEV-RNA
or anti-HEV antibodies (Robert Koch-Institute, 2015a):

- Direct detection of HEV by detecting HEV-RNA via reverse transcription-
polymerase chain reaction (RT-PCR) from serum or stool;
- Indirect detection of HEV infection by serological assays; measuring of

immunoglobulin M (IgM) antibodies (e.g. by enzyme-linked immunosorbent assay
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1. Introduction

(ELISA)) or by observing an increased titer of HEV-specific immunoglobulin G
(1gG) antibodies (e.g. via ELISA).

The number of recorded HEV infections in Germany increased from less than 50 cases in
the year 2001 to more than 3000 cases in 2018 (Figure 4). This increased number of
reported HEV infections might be explained by better diagnostic assays for HEV and a
greater awareness of the physicians (Robert Koch-Institute, 2015b).

Number of recorded cases from 2001 to 2018

3500 3275

3000 2951
2500
1995
2000
1500 e
1000
671
459
388

7 222 238

32 17 33 53 54 51 73 104 109 I I

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Year of record

Figure 4. Recorded cases of human hepatitis E virus (HEV) infections in Germany. Taken from the Robert Koch-
Institute (Faensen and Krause, 2004, accessed 07.01.2019).

The general seroprevalence for humans living in Germany was calculated to be 16.8%
(samples taken between 2008 and 2011) (Faber et al., 2012). Another study in southeast
Germany demonstrated a decrease of the anti-HEV antibody prevalence from 50.7% in
1996 to 34.4% in 2011 (Wenzel et al., 2014). Investigation of risk groups with an
occupational exposure to pigs, like butchers, meat inspectors, pig farmers or veterinarians,
demonstrated a higher seroprevalence (28.3%) than the corresponding control group
(15.5%, Krumbholz et al., 2012). A large-scale study for the presence of anti-HEV
antibodies in humans living in North Rhine-Westphalia and Lower Saxony, known federal
states of Germany with a high domestic pig density, revealed a higher seroprevalence for
the group with direct contact to pigs (13.2 - 32.8%) in comparison to the group without
direct contact to pigs (7.7 - 21.7%). The investigation of forestry workers, another

potentially risk group for HEV-infections, revealed an anti-HEV antibody prevalence of
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1. Introduction

21% (Dremsek et al., 2012). In addition to the exposure risk, the HEV seroprevalence
increased with age as observed in studies in Germany and USA (Faber et al., 2012;
Krumbholz et al., 20144, b; Sayed et al., 2015).

Until today, there is only one vaccine (HEV 239 vaccine/Hecolin) available, which is only
licensed in China and not in Germany or the European Union (Park, 2012). Another HEV-
1 recombinant protein is also efficacious against HEV (Shrestha et al, 2007). Despite these
two HEV-1 derived vaccines novel vaccines, including a HEV-4 derived peptide vaccine,
are in different stages of development (Cao et al., 2017; Kulkarni et al., 2016; Wen et al.,
2016; Xia et al., 2016). To date, there is no approved specific therapy for the treatment of
acute or chronic HEV-3 or HEV-4 infection. The off-label use of ribavirin seems to be
suitable for the elimination of chronic HEV infection (Kamar and Pischke, 2018; Todt et
al., 2018).

1.2. Hepatitis E virus in small mammals

1.2.1 Hepatitis E virus-specific antibodies in rodents

Rodents represent the most diverse group of small mammals, according to the number of
taxa and number of individuals (Wilson and Reeder, 2005). They are well known carriers
of a wide number of zoonotic viral, bacterial and parasite agents (Meerburg et al., 2009).
In addition, rodents carry rodent-specific pathogens that are most likely non-zoonotic,
however, the current knowledge on these rodent-associated pathogens is still very limited
(Drewes et al., 2017; Olival et al., 2017; Z. Wu et al., 2018).

Large serosurveys in rodents suggest the presence of additional hepeviruses (see
Supplementary Table 1). During 1994 and 1998 more than 800 rodents, including 26
different species of 15 genera, were collected throughout the USA and investigated for
the prevalence of anti-HEV antibodies. The majority of the positive animals belonged to
the genus Rattus, with a prevalence of 59.7% (166/278). In addition, animals belonging to
the genera Neotoma, Peromyscus, Oryzomys, Sigmodon, Mus and Myodes were tested
positive for HEV-specific antibodies (Supplementary Table 1). Serological investigations
of different rodent specimens (Bandicota bengalensis, Rattus spp. and Mus spp.) from
India resulted in the detection of anti-HEV IgG antibodies in the rodent species Rattus
rattus rufescens, Bandicota bengalensis and Rattus rattus andamanensis (Arankalle et al.,
2001).
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1. Introduction

1.2.2 Discovery and characterization of rat-associated hepatitis E virus
(ratHEV)

A novel rat-associated HEV (ratHEV) was discovered by investigating 30 faecal samples
of wild Norway rats (Rattus norvegicus) trapped around the sewerage of Hamburg,
Germany (Johne et al., 2010b). Two faecal samples were positive by HEV broad-spectrum
RT-PCR and revealed partial genome sequences with 50% and 60% sequence similarity to
avian and human HEV strains, respectively. In a follow-up study, additional nine animals
were trapped around the same location like twelve months before and the complete genome
of the novel ratHEV prototype strains R63 and R68 were determined and characterized.
RatHEV shares the typical genomic attributes of hepeviruses, like the genomic organization
or the size of the genome (Johne et al., 2010a). These initial findings were confirmed by
the detection of additional ratHEV-positive rats in populations from other cities of
Germany (Johne et al., 2012).

In 2012, Norway rats and Black rats (Rattus rattus) were found to be infected with a
zoonotic HEV-3-strain. Some of the rats were trapped next to pig farms, whereas others
were trapped at urban and rural sites (Kanai et al., 2012; Lack et al., 2012).

1.2.3 Novel hepeviruses in rodents and birds of prey

Nearly 300 specimens from seven wild small mammal species from Yunnan province,
China, have been collected between 2014 and 2015 and tested for the presence of HEV-
RNA by a broad-spectrum RT-PCR. HEV-RNA was found exclusively in two rodent
species, Chevrier’s field mouse and Pére David’s vole, with HEV-RNA detection rates of
29% and 7%, respectively. By determining the complete genomes of four representative
strains, two of each specie, followed by a phylogenetic analysis and characterization, two
novel genotypes within the species Orthohepevirus C, HEV-C3 and HEV-C4, were
proposed (Wang et al., 2018). By a HTS approach of different rodents from Sao Paulo
State, Brazil, two novel members of the species Orthohepevirus C were found, one in the
hairy-tailed bolo mouse (Necromys lasiurus) and the second one in the delicate vesper
mouse (Calomys tener). Thus, this study increased the knowledge about the broad host
range of HEV and described HEV in additional members of the family Cricetidae (de Souza
etal., 2018).

Attempting to find novel HEV-strains in birds of prey from Hungary, faecal samples of

common kestrel (Falco tinnunculus) and red-footed falcon (Falco vespertinus) were
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1. Introduction

investigated by HTS and RT-quantitative real-time PCR (RT-qPCR). Thereby, HEV-RNA
was detected in faecal samples of both species and one complete genome was generated.
Interestingly, this kestrel-derived sequence shows the highest similarity towards members
of the rodent and carnivore associated species Orthohepevirus C, instead towards the bird
associated Orthohepevirus B. A dietary origin of infection could not be excluded as
explanation of this interesting finding in a bird of prey (Reuter et al., 2016a). Broad
spectrum RT-PCR investigation of liver samples of more than 330 different rodents of five
species from Hungary resulted in the detection of HEV-RNA exclusively in eleven
common voles (Microtus arvalis). Phylogenetic reconstruction revealed a close
relationship towards the previously described kestrel-derived HEV-strain (Kurucz et al.,
2018).

1.2.4 Rabbit-associated hepatitis E virus in rabbit breedings, wild life

populations and pet animals

Rabbit-associated hepatitis E virus (rabbitHEV) was described for the first time in a
Chinese breeding of farmed Rex rabbits, a breed of European rabbits (Oryctolagus
cuniculus). In this initial study of rabbits from two farms from Gansu province, China, the
seroprevalence was 57% and the HEV-RNA detection rate 7.5% (Zhao et al., 2009).
Thereafter, rabbitHEV was found in different other breedings in China (J. Geng et al., 2011,
Y. Geng et al., 2011), but also in breedings in USA (Cossaboom et al., 2011), Mongolia
(Jirintai et al., 2012), the Netherlands (Burt et al., 2016) and Korea (Ahn et al., 2017).
Additional investigations revealed the presence of rabbitHEV in pet rabbits from Italy and
the Netherlands (Burt et al., 2016; Caruso et al., 2015; Di Bartolo et al., 2016) and in
different wild life populations and archived serum samples of rabbits from Germany (Eiden
et al., 2016; Hammerschmidt et al., 2017). No rabbitHEV-RNA was detected in hares so

far, although HEV-reactive antibodies were detected (Hammerschmidt et al., 2017).

RabbitHEV shares the typical genome organization with other HEV strains: three ORFs
with a genome length of about 7.2 kb (Zhao et al., 2009). In contrast to all other HEV
strains, rabbitHEV has a unique and so far, rabbitHEV-specific 93nt- in-frame insertion
within the X-domain (Zhao et al., 2009). Based on phylogenetic analysis of full-length
sequences, rabbitHEV strains belong to the zoonotic HEV-3 clade of HEV, but forming a
well-separated cluster, designated as HEV-3ra (Smith et al., 2016).
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1.3 Objectives
To understand the zoonotic transmission and pathogenicity of HEV as well as to evaluate
anti-HEV vaccines and antiviral drugs, the development of small mammal animal models

is needed. Therefore, the objectives of this study were:
-to search for novel hepeviruses in other rodents
-to identify rat and rabbit populations with ratHEV and rabbitHEV infections

-to characterize the sequence variation of these hepeviruses within their reservoirs

and evaluate their persistence within the populations
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Abstract

Rodents host different orthohepeviruses, namely orthohepevirus C genotype HEV-C1 (rat hepatitis E virus, HEV) and the
additional putative genotypes HEV-C3 and HEV-C4. Here, we screened 2,961 rodents from Central Europe by reverse tran-
scription polymerase chain reaction (RT-PCR) and identified HEV RNA in 13 common voles (Microtus arvalis) and one bank
vole (Myodes glareolus) with detection rates of 2% (95% confidence interval [CI]: 1-3.4) and 0.08% (95% CI: 0.002-0.46),
respectively. Sequencing of a 279-nucleotide RT-PCR amplicon corresponding to a region within open reading frame (ORF)
1 showed a high degree of similarity to recently described common vole-associated HEV (cvHEV) sequences from Hungary.
Five novel complete cvHEV genome sequences from Central Europe showed the typical HEV genome organization with
ORF1, ORF2 and ORF3 and RNA secondary structure. Uncommon features included a noncanonical start codon in ORF3,
multiple insertions and deletions within ORF1 and ORF2/ORF3, and the absence of a putative ORF4. Phylogenetic analysis
showed all of the novel cvHEV sequences to be monophyletic, clustering most closely with an unassigned bird-derived
sequence and other sequences of the species Orthohepevirus C. The nucleotide and amino acid sequence divergence of the
common vole-derived sequences was significantly correlated with the spatial distance between the trapping sites, indicating
mostly local evolutionary processes. Detection of closely related HEV sequences in common voles in multiple localities
over a distance of 800 kilometers suggested that common voles are infected by cvHEV across broad geographic distances.
The common vole-associated HEV strain is clearly divergent from HEV sequences recently found in narrow-headed voles
(Microtus gregalis) and other cricetid rodents.

Introduction

The family Hepeviridae comprises two genera, genus Pis-
cihepevirus, with only one fish-associated virus [2], and
genus Orthohepevirus, with four species. Species Ortho-
hepevirus A comprises eight genotypes, of which HEV-1 to
HEV-4 and HEV-7 have been found in humans. Genotypes
HEV-1 and HEV-2 seem to be restricted to humans. The
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other genotypes occur in various animals, including pigs and
wild boar (HEV-3 to HEV-6), rabbits (HEV-3), and camelids
(HEV-7 and HEV-8) [44]. The species Orthohepevirus B
and Orthohepevirus D include only non-zoonotic avian HEV
and bat HEV strains, respectively. Members of the species
Orthohepevirus C were first detected in Norway rats (Rattus
norvegicus; genotype HEV-C1) and in different carnivore
species (genotype HEV-C2) [20, 37].

Hepeviruses have a single-stranded RNA genome of posi-
tive polarity with a size of about 6.9-7.2 kilobases (kb), a
short 5° untranslated region (UTR), three major open read-
ing frames, and a 3’-UTR with a poly-A tail [23, 44]. Open
reading frame (ORF) 1 is 4.6 to 5.2 kb in length and encodes
a polyprotein including different non-structural proteins
(Mt, methyltransferase; Y, Y-like domain; PCP, papain-like
cysteine protease; X, X domain/ADP-ribose-binding mod-
ule; Hel, helicase; RdRp, RNA-dependent RNA polymerase)
[23]. ORF2 is about 2.0 kb in length and encodes the capsid
protein [55]. ORF3 is approximately 342 nucleotides (nt)
long and encodes a multifunctional protein that seems to
function as an ion channel (viroporin) and is needed for the
release of viral particles [9, 54]. In addition to these three
ORFs, members of the species Orthohepevirus C share an
additional putative fourth ORF [20].

Rodents represent the largest mammalian order, in terms of
both the number of species and the number of individuals, and
have various life history traits [50]. They are well-known car-
riers of a large number of zoonotic viral, bacterial and parasite
agents [31], but although the number of pathogens identified
in rodent species is steadily increasing, our current knowledge
of rodent-borne agents is still very limited [34, 53].

Norway rat-associated HEV (rat HEV) was detected first
in Germany [18, 19], but was found later in Norway rats and
Black rats (Rattus rattus) from various other European coun-
tries, Asia and the USA [26, 27, 32, 33, 35, 36, 39, 51]. This
virus has also been detected in Asian house shrews (Suncus
murinus), which might have been due to spillover infections
[13]. Similarly, rat HEV RNA was detected in a Syrian brown
bear (Ursus arctos syriacus) in a zoo in Germany, probably
due to a spillover infection from free-living rats in the same
zoo [46]. Serological and experimental infection studies sug-
gest that rat HEV could have zoonotic potential although this
is controversial [7, 10, 20, 36, 42]. Recently, HEV-C1-re-
lated RNA was detected in an immunocompromised patient
from Hong Kong, China, and a healthy, immunocompetent
patient from Halifax, Canada, underlining the need for a criti-
cal assessment of the zoonotic potential of members of the
genotype HEV-CI [1, 47]. Additionally, HEV-3 strains of
the species Orthohepevirus A were detected in rats, probably
transmitted by spillover infection [22, 25, 39].

Recently, two novel rodent-associated hepeviruses were
identified in a Chevrier’s field mouse (Apodemus chevrieri)
and a Pere David’s vole (Eothenomys melanogaster) from

@ Springer

China, and proposed as genotypes HEV-C3 and HEV-C4
[49] within the species Orthohepevirus C. Additional novel,
unassigned rodent-associated HEV-strains were detected in
cricetid and murine rodents in Brazil and China, namely
in a hairy-tailed bolo mouse (Necromys lasiurus), a deli-
cate vesper mouse (Calomys tener), a striped field mouse
(Apodemus agrarius), a Chinese striped hamster (Cricetu-
lus barabensis), a grey-sided vole (Myodes rufocanus), a
narrow-headed vole (Microtus gregalis), a grey dwarf ham-
ster (Cricetulus migratorius), and a kolan vole (Eotheno-
mys inez) [8, 53]. Furthermore, a HEV-strain originating
from a kestrel (Falco tinnunculus) showed higher sequence
similarity to members of the species Orthohepevirus C than
to the avian-associated HEV-strains [38]. Investigation of
more than 330 rodents from five different species in Hungary
resulted in the detection of HEV RNA exclusively in eleven
common voles (Microtus arvalis). Phylogenetic reconstruc-
tion of the short screening fragment within the coding region
of the RdRp of HEV revealed a close relationship to the
previously described kestrel-derived HEV-strain. The com-
plete genome sequences of these novel HEV strains were
not determined [24].

Here, we describe the screening of nearly 3,000 rodents
originating from Central Europe by broad-spectrum, nested
reverse transcription polymerase chain reaction (RT-PCR)
for the presence of HEV RNA. We determined and analyzed
the complete genome sequences of novel hepevirus strains
associated with common voles.

Materials and methods
Animal collection

A total of 2,961 rodents were used for this study (for detailed
information see Table 1 and Figure 1). This includes 2,662
animals collected previously and screened for novel rodent
hepaciviruses [12] and 299 animals trapped along a transect
at the border of Germany and the Czech Republic [3, 41].

RNA extraction

Viral RNA was extracted from serum pools or individual
liver samples. Viral RNA was extracted from about 30 mg
of liver tissue or 10-50 pL of serum. RNA was purified using
a MagNA Pure 96 DNA and Viral NA Large Volume Kit
(Roche, Penzberg, Germany) for tissue specimens and a
DNA and Viral NA Small Volume Kit (Roche) for serum.

Molecular detection of HEV RNA

For the detection of HEV RNA, a nested RT-PCR targeting
the RdRp-encoding domain of the ORF1 of HEV was used

Page 23] 142



2. Publications

Common-vole-associated HEV

Table 1 Results of RT-PCR screening of rodents collected in Germany and the Czech Republic

Number of RT-PCR positive/total number of animals tested

Country Federal state/ Trapping site Microtus Microtus Apod. Apod. Apod, Mpyodes Subtotal
region arvalis agrestis favicollis  agrarius sylvaticus  glareolus
Germany Berlin Berlin - - 0/10 0/40 - - 0/50
Brandenburg ~ Muckrow 1716 - - - 0/2 - 1/18
(Muc)®
four other sites  0/14 - 0/3 0/3 0/14 0/1 0/35
Baden-Wuert-  Weissach 1/24 0/4 0/34 - 0/2 0/150 1214
temberg (Wei)®
Ditzingen - - 0/20 - - 1/28 1/48
(Dit)*
ten other sites ~ 0/25 0/2 0/118 - 0/7 0/213 0/365
Bavaria Falkenstein 2/32 - - - - - 2/32
(Fal)®
eleven other 0/73 - 0/1 - 0/4 0/1 0/79
sites
Hesse seven sites 0/15 0/13 0/17 - 0/27 0/88 0/160
Mecklenburg- nine sites 0720 0/18 0/76 0/20 - 0/73 0/207
Western
Pomerania
North Rhine-  twelve sites 0/11 - 0/80 - 0/35 0/177 0/303
Westphalia
Lower Saxony twelve sites 0/3 - 0/192 - 0/55 0/187 0/437
Thuringia Creuzburg 1/14 0/1 0/1 0/4 0/16 - 1/36
(Cre)*
eight other 0/211 0/113 0/145 0/19 0/13 0/288 0/789
sites
Subtotal 9 79 5/458 0/151 0/697 0/86 0/175 1/1206 6/2,773
Czech Repub-  Plzen Region  Hayek (Hay)®  5/39 - - - - - 5/39
lic Zalesi (Zal)®  3/17 - - - - - 317
four other sites  0/132 - - - - - 0/132
Subtotal 1 6 8/188 - - - - - 8/188
Total 10 85 13/646 0/151 0/697 0/86 0/175 1/1206 14/2,961

 Trapping site with at least one hepatitis E virus (HEV)-RNA-positive animal (see Fig. 1, filled squares or circles); ® Trapping sites where addi-
tionally at least one complete genome sequence of the novel common-vole-associated HEV was obtained (see Fig. 1, trapping sites indicated by

asterisks)

as described before [11]. The PCR product has an expected
size of 279 nt, without the primers. PCR products were
separated by agarose gel electrophoresis and visualized by
staining with Midori Green Advance (Biozym, Hessisch
Oldendorf, Germany).

Complete genome sequence determination

For complete genome sequence determination of five repre-
sentative HEV strains of the common vole-associated HEV,
a primer-walking approach was used, including a 5" and 3’
rapid amplification of cDNA ends (5'/3" RACE System, Inv-
itrogen, Carlsbad, CA, USA). RT-PCR was carried out under
the following conditions: 50 °C for 15 min, 94 °C for 2 min,
40 PCR cycles at 94 °C for 15 s, 60 °C for 30 s, 72 °C for 1-2
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min, and a final extension at 72 °C for 10 min. The primers
used for determination of the complete genome sequences
are listed in Supplementary Table 1. RT-PCR products were
sequenced directly using a BigDye Terminator 1.1 Cycle
Sequencing Kit (Applied Biosystems, Darmstadt, Germany).

Sequence and phylogenetic analysis

Sequence alignments were produced using BioEdit [14],
and phylogenetic analysis was done using MEGA 6 [48].
The amino acid (aa)-sequence-based phylogenies were
reconstructed by a maximum-likelihood analysis with the
Jones-Taylor-Thornton (JTT) substitution model with invari-
ant sites, a gamma distribution shape parameter of five,
and 1,000 bootstrap replicates. The phylogenetic analysis
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Fig. 1 Map of the trapping sites
of common voles (Microtus
arvalis) and bank voles (Myo-
des glareolus) in Germany and
the Czech Republic. Trapping
sites of hepatitis E virus (HEV)-
RNA-positive common voles
and bank voles are indicated

by filled squares and circles,
respectively. Asterisks indicate
the origins of complete common
vole-derived HEV sequences
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used the proposed reference sequences of HEV [44, 45],
sequences for the proposed genotypes HEV-8, HEV-C3,
and HEV-C4 [49, 52], two unassigned sequences [8, 38],
five rodent-associated HEV-strains from China [53] and
recently described HEV sequences from common voles
[24]. If available, complete genome sequences were used.
Otherwise, a fragment of the RdRp-encoding region was
used for phylogenetic analysis. Pairwise distances were cal-
culated at the nt and aa level with MEGA 6 [48]. Tests for
potential recombination events were done using Bootscan
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[29], implemented within RDP4 software [30], using the
reference sequences listed above. For Simplot analysis with
a window size of 100 nt and a step size of 25 nt, scripts
were written in R [6]. The identification of conserved protein
coding domains was done using CDD/SPARCLE, using the
default settings [28]. For the prediction of RNA secondary
structures within the intergenic region between ORF1 and
ORF2, the program mfold [57] was used with default set-
tings. We tested for largely local transmission of cvHEV
resulting in “isolation-by-distance” patterns by computing
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pairwise genetic and geographic distances between sampling
locations [40]. Pairwise genetic distances were calculated
using MEGA 6 [48] for all common vole-associated HEV
sequences, including the kestrel-derived HEV sequence (see
Fig. 2A, clades I-1II), and geographic distances were calcu-
lated using the “dist”-function, implemented in R [6], by
using the coordinates of the individual trapping sites. We
tested for statistical significance between half matrices at
the nt and aa level using Mantel tests, implemented in the
package “ade4” of R. The 95% confidence interval (CI) was
calculated in R by using the binom.test() function [5, 6].

Results
Screening of rodents by nested RT-PCR

RT-PCR screening of 432 serum pools with 2,961 individual
samples (Table 1) resulted in the detection of 14 positive
pools with a band of the expected size in agarose gel elec-
trophoresis. Subsequent analysis of individual samples from
the positive pools showed 14 animals, including 13 common
voles and one bank vole (Myodes glareolus), to be RT-PCR
positive. HEV-RNA-positive animals originated from seven
trapping sites (Fig. 1). The detection rate of HEV RNA was
2% (13/646; 95% CI: 1-3.4) for all common voles tested
and 0.08% (1/1206; 95% CI: 0.002-0.46) for all bank voles
tested using broad-spectrum nested RT-PCR (Table 1). For
single trapping sites, the detection rate in common voles
reached 4.2% (1/24, site Wei; 95% CI: 0.1-21.1), 7.1% (1/14,
site Cre; 95% CI: 0.18-33.86), 6.2% (2/32, site Fal; 95%
CI: 0.76-20.8 and 1/16, site Muc; 95% CI: 0.1-30.2), 12.8%
(5/39, site Hay; 95% CI: 4.2-27.4), 17.6% (3/17, site Zal;
95% CI: 3.7-43.4) and in bank voles 3.5% (1/28, site Dit;
95% CI: 0.01-18.34). For the locations of the trapping sites,
see Fig. 1.

Phylogenetic analysis and spatial relationships

Phylogenetic analysis based on predicted aa sequences of a
portion of ORF 1 (GenBank accession numbers MK192405
to MK192409 and MK 192412 to MK192420) revealed a
monophyletic group of three major clades, I-III, includ-
ing the previously reported common vole-associated HEV
sequences and a kestrel-derived HEV strain from Hungary
(Fig. 2A, indicated by an arrow) within the species Ortho-
hepevirus C. Clade I includes sequences from common voles
trapped at different sites at the border between Germany
(GER) and the Czech Republic (CZE; Fig. 1). The second
clade, clade II, includes only sequences derived from four
common voles trapped at Hayek (Hay), CZE. Clade III
includes sequences from voles from four trapping sites in
GER, including three sequences from common voles and
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one sequence from a bank vole, and several common vole
derived HEV sequences and a kestrel-derived sequence from
Hungary [24].

Pairwise sequence identity values for the sequences
within clade I ranged from 91.7 to 100% at the nt level and
were 100% at the aa level. The identity values for nt and
aa sequences within clades II and III were similar (clade
II: 99.6 to 100% and 100%, respectively; clade I1I: 86.6
t0 99.6% and 98.9 to 100%, respectively). Comparing the
sequences from clades I, II and IIT with the kestrel-derived
sequence, the sequence identity ranged from 83.7 to 92.4%
and 94.6 to 98.9% at the nt and aa level, respectively (Sup-
plementary Table 2).

The nt and aa sequence divergence of all common vole-
derived HEV sequences and the spatial distances of the cor-
responding trapping sites showed significant correlations (r
=0.7; p < 0.00001 and r = 0.6; p < 0.00001, respectively;
see Fig. 3).

The phylogenetic tree revealed that the common vole (and
kestrel-) associated HEV sequences clustered together with
a narrow headed vole-derived sequence from China (HEV-
RtMg/XJ2016, indicated by a dotted arrow in Fig. 2A).
Members of the species Orthohepevirus C not associated
with cricetid rodents were only found in a separate clade
(rat-associated HEV-C1, carnivore-associated HEV-C2, and
Apodemus chevrieri-associated putative genotype HEV-C3).

Generation of complete genome sequences
from novel common vole-associated hepatitis E
virus

Complete genome sequences of this novel common vole-
associated HEV (cvHEV) were obtained by a primer-walk-
ing approach for five common vole-derived strains (Gen-
Bank accession numbers MK 192405 to MK192409; Fig. 1).
The genomes of these novel strains all have the same organi-
zation but with slight variation in length, ranging from 7020
to 7077 nt (Fig. 4A and B). The 5 UTR has a length of 33
nt, and ORF1 has a length of 4914-4971 nt and encodes a
polyprotein of 1638-1657 aa. ORF2 had a length of 1992 nt
and encodes a protein of 664 aa residues. The 3’ UTR has
a length of 55 nt, excluding the poly-A tail. The different
lengths of ORF1 are caused by short in-frame insertions/
deletions (indels) of different lengths within the Y-domain
and PCP- and RdRp-encoding regions of ORF1 (Fig. 4C).
ORF3 has a length of 363 nt and encodes a protein of
121 aa, overlapping with ORF2 and starting within the
non-coding region between ORF1 and ORF2 (Fig. 4A-C).
It contains an alternative start codon (UUG encoding leu-
cine) at the 5' end, as it was described previously for the
kestrel-derived HEV genome [16, 38]. In addition, all five
novel genome sequences contain an in-frame indel within
the ORF2/ORF3 overlapping region in comparison to the
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Fig.3 Relationships between geographical distance and genetic
divergence based on a portion of the RdRp coding region of rodent-
associated hepatitis E virus (HEV) sequences at the nt level (A) and
the corresponding amino acid sequence level (B). Sequences of all
common vole-associated HEV strains (see Fig. 2A) were included.

kestrel-derived sequence (Fig. 4B and C). In contrast to
other members of the species Orthohepevirus C, an addi-
tional putative ORF4 overlapping with the ORF1 was not
found at the 5* end (Fig. 4A) [20].

An RNA secondary structure prediction revealed a similar
stem-loop structure in all five novel common vole-derived
genomes and the kestrel-derived sequence at the same posi-
tion within the junction region between ORF1 and ORF2
(Fig. 4A and Supplementary Fig. 1) as described for mem-
bers of the species Orthohepevirus A [4].

Comparison of the complete common
vole-associated HEV genome sequence with those
of other members of the family Hepeviridae

Phylogenetic analysis and pairwise sequence comparison
of the concatenated ORF1 and ORF2 nt and aa sequences
showed almost the same patterns as the analysis of the
screening fragment (Fig. 2B and Supplementary Tables 2
and 3). The cvHEV sequences again had the highest similar-
ity to the narrow headed vole-derived sequence from China
(HEV-RtMg/XJ2016). Together with other cricetid-rodent-
associated HEV strains, they formed a sister clade to murid-
rodent- and carnivore-associated HEV strains. The Chinese
striped hamster-associated sequence formed a separate clade
(Fig. 2B).

In a comparison to the kestrel-derived HEV sequence,
the sequence identity values ranged from 83.7 to 86.2% and
94.6 t0 96.7% for the clades I, IT and IIT at the nt and aa level,
respectively. The similarity of the concatenated ORF1 and
ORF?2 sequence to other members of the species Orthohepe-
virus C ranged from 59.6 to 67.8% and 61.1 to 76.6% at the
nt and aa level, respectively (Supplementary Table 3).
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Pairwise geographic distances were calculated by using the coordi-
nates (longitude and latitude) of each trapping site, the “dist” function
implemented in R [6], and the genetic distance (p-distance), which
was calculated using MEGA 6 [48]. Pairwise distance plots were gen-
erated using the “plot” function implemented in R [6]

Simplot analysis of the novel cvHEV revealed no obvi-
ous differences compared to other members of the species
Orthohepevirus C. Additionally, no recombination events
were detected by Bootscan analysis (data not shown).

Five conserved protein coding domains were identified
in all five complete genome sequences of the novel cvHEV,
the reference sequence originating from a kestrel (GenBank
accession number KU670940), and the narrow-headed vole-
derived sequence (GenBank accession number KY432902):
viral methyltransferase, Appr-17-p processing enzyme, RNA
helicase, RNA-dependent RNA polymerase, structural pro-
tein 2 (Supplementary Table 4).

Discussion

By screening nearly 3,000 rodents from Central Europe, we
identified a novel HEV strain in 14 samples and determined
the complete genome sequences of five isolates of this strain
from common voles collected at different sites. The multiple
detection of this strain in common voles from different trap-
ping sites (this study and [24]) and its complete absence in
other rodent species from the same region suggests that this
novel virus is specific for common voles. The detection of
cvHEV in one bank vole might be explained by a spillover
infection. These findings again underline the necessity of
multiple detections of a pathogen in a single species from
different geographical regions in order to make a reliable
conclusion about a reservoir-virus association, as discussed
previously for hantaviruses [15].

The average infection rate observed here (2%; 95% CI:
1-3.4) was low; however, when calculating the detection rate
for single trapping sites it ranged between 4.2% (95% CI:
1-21.1) and 17.6% (95% CI: 3.7-43.4). A previous study in
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«Fig.4 Comparison of the genomic organization of members of the
species Orthohepevirus C (genotypes HEV-C1 and HEV-C2), includ-
ing the putative genotypes HEV-C3/HEV-C4, the kestrel-derived
HEV and the novel common vole-associated HEV. (A) A schematic
representation showing the length and position of the open reading
frames (ORFs) 1, 2 and 3, including the putative ORF4 (dotted lines).
The functional domains encoded by ORF1 (Mt, methyltransferase;
Y. Y-like domain; PCP, papain-like cysteine protease; X, X domain/
ADP-ribose-binding module; Hel, helicase; RdRp, RNA-dependent
RNA polymerase [23]), the ORF2-encoded capsid protein (CP), and
the ORF3-encoded viroporin (VP) are located at the corresponding
positions, and the junction region with a stem-loop (SL) secondary
structure between the ORF1 and the overlapping ORF2/ORF3 of
rat HEV (HEV-C1, GU345042), ferret HEV (HEV-C2, JN998606),
putative HEV-C3 (MG020023), putative HEV-C4 (MG020024),
kestrel-derived HEV (KU670940), and common-vole associated
HEV (cvHEYV, strain MK192496) are shown. (B) Insertions or dele-
tions (indels) of the five cvHEV strains 1641, 2645, 700, 746 and 819
(GenBank accession numbers MK192405-MK192409) compared to
the kestrel-derived HEV-strain (KU670940) are indicated by empty
or filled squares. Indels are located at the nucleotide positions 1666-
1671, 2233-2235, 2269-2325, 3820-3870 and 5216-5218. Nucleotide
sequences of indels are highlighted by a grey colored box. (C) Nucle-
otide sequences of the indels within ORF1 and ORF2/ORF3

Hungary indicated a detection rate of 10.2% at the single site
investigated [24]. Future investigations would have to apply
a cvHEV-specific RT-PCR assay for potentially improved
sensitivity.

The detection of this virus in common voles from Ger-
many, the Czech Republic (this study) and Hungary [24]
suggests a broad geographical distribution and individual
strains of the novel cvHEV in Europe. This conclusion was

confirmed by an “isolation-by-distance” pattern that showed
a strong, positive correlation between the geographic and
genetic distances of the novel cvHEV strains. This suggests
that the spread and evolution of cvHEV occur mostly at a
local or regional spatial scale, probably tightly associated
with common voles [40]. Further investigations are needed
to evaluate if the presence of various cvHEV strains can
be explained by their association with different lineages of
common voles in Europe [41].

The high sequence similarity and phylogenetic relation-
ship of the cvHEV sequences, and in particular those from
Hungary, may indicate a dietary origin of the kestrel-derived
HEV strain [38]. Supporting this assumption, the kestrel-
derived HEV strain and the cvHEYV strains share attributes
that are unique among the members of the family Hepeviri-
dae: an alternative noncanonical start codon for ORF3 and
the absence of a putative ORF4, previously found in mem-
bers of genotypes HEV-C1 and HEV-C2 and the putative
genotype HEV-C3 ([16], Fig. 4A).

The cvHEYV strains show a high degree of sequence simi-
larity to other members of the species Orthohepevirus C
and form a large cluster with HEV strains from different
cricetid rodents, including the putative HEV-C4 genotype
[49]. A coevolution scenario might explain the phylogenetic
relationships of the rodent-associated hepeviruses, at least in
part. The common vole-associated HEV is closely related to
the narrow-headed vole-associated HEV strain from China,
and both reservoir species belong to the genus Microtus.
The next most closely related HEV strains were identified

(o] 1641:  GCACCA| |ACAGAC
2645:  CCTCCG| |ACTGAT

700:  GCCCCA|ATCACTGTGCTGGCGTTGTCTGAGACTGTTCACTGCCGCATGGCGGCCCCC|ACTGAC

746:  GCCCCA| |ACTGAC

819:  GCeecc| |ACCGAC

1641:  GCCAGT|--- |CTTTGT Kestrel: GCCCCA| |ACCGAC

2645: GCGAAG|ATT|TTGTGT
700: GCAAAA|ATT|CTTTGC
746: GCAAAA|ATT|CTCTGC
819: GCAAAA|ATT|CTTTGC
Kestrel: GCGAGG|ATC|CTTTGC

3820 3870

ORF1

2233\ I 2235

| Nor2 |

1666, 1671 2269 325
+1

1641: GTGGTT| ------ | TCAGAA
2645:  GTAGTT| ------ | TCAGAA
700:  GCTGTT|AAATCA |TCAGAA
746:  GCAGCT|GAATTA|TCAGAA
819:  GCCGTT|GAATCA|TCAAAA
Kestrel: GCAAAC|GAGCCG |ATAGTG

1641: TGCTGT| |
2645:  TGTGAC|TGGCTT|

700:  TGTGAC|TGGCTT|

746:  TGTGAT|TGGCTT|

819: TGTGAC|TGGCTC|ACGGCAGTCGTTGCAAGCCGCGTCCCATACTATTTCCGTCGCACG|CGCGTT|CATCGA

Kestrel: TGTGAT|TGGCTT|

Fig.4 (continued)
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in other arvicoline rodents, followed by a strain from a sig-
modontine rodent from South America. Members of the
previously proposed genotype HEV-C3 are most closely
related to rat HEV (genotype HEV-C1) and have also been
discovered in the murine species Apodemus chevrieri, which
belongs to the same subfamily as rats, which are reservoirs
of rat HEV. The most divergent HEV strain within the spe-
cies Orthohepevirus C was found in Chinese striped hamster
(HEV-RtCb/HeB2014 K'Y432899).

Interestingly, multiple insertions/deletions were identified
in the genomes of common vole-associated HEV strains;
all indels were in-frame, and none of them interrupted the
ORF1 coding sequence. The positions of these indels within
ORF]1 of common vole-associated HEV diftered from those
of indels previously detected in HEV-3 strains from chroni-
cally infected patients or in rabbit HEV strains [17, 21, 43,
56]. The occurrence of these indels suggests genomic plas-
ticity in the ORF1 region, and this might be used in the
future as a marker for molecular epidemiological studies.

In conclusion, this study confirms that members of the
species Orthohepevirus C are associated with rodents and
refutes an evolutionary origin of these viruses in avian hosts.
The overrepresentation of cricetid-rodent-associated hepevi-
ruses needs to be confirmed by large-scale studies of other
rodent families.
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Supplementary Figure 1 Predicted RNA secondary structures of the junction region between the ORF1 and ORF2 for the five cvHEV genomes 1641, 2645,
700, 746 and 819 and the kestrel-derived HEV genome used as reference. For the prediction of RNA secondary structure within the intergenic region between
ORF1 and ORF2 the negative strand RNA region spanning nt positions 4981 to 5047 was analysed by the program mfold [1], with its default settings. The
conserved AGA triplet motifs in the subgenome (SG) promotor region are boxed with solid lines. Additionally, the HEV bicistronic SG start site is indicated, as
well as the start sites of the ORF2 and ORF3, by arrows. Dotted lines label the stop codon of the ORF1. The “energy” is given below of each prediction.
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Supplementary Table 1 Primers used for primer walking approach to determine complete genomes of
novel common vole-associated hepatitis E virus.

Primer® Sequence (5’->3°)
104 as AAAGCATTAGCCAACGAGGCGGTG
234 as TGTGCACCCACTTCGAGGCA
360 as TGGCGACATTTTTCAAATCCGGA
3s GGATCCTGTGGTATTGATCCC
816 as CGATGTCYARCARRAARTGACARC
55s TCCGTGCYSCMGGGGTTAC
1352 as TCAAARTARCAVCCDGCDSWVACCCAATC
1123 s CCACYGATGARTAYGCVCTCA
2353 as GGCTGCTCAAAACTCGTTGG
2265 s TGTGAYTGGCTBGTBAAYGCWAGYAAYCC
2955 as GGKGGCATDGMHGGSGCYTCATCAAC
2913 s CAGCATGCKGCCATHCGYMAWGT
3789 as GCATABCKVCCRACAAGRGTRGTRAGKAC
3565 s GATGAAGCGGACATGATCCCA
4354 as TAATCATCCACACCGGCATCC
4239 s TTTCCGCCGGGTTTTTGAGA
4979 as CCGGGGCCCAAGAAAGAATG
4715 s GARAAGAAYTGGGGSCCHGRT
5618 as GTRGGVGCDGTRGADGAYTGVGGCCAAAAHGABAT
4929 s CGGGCCTCYTTYACYGARATT
6335 as ATDGGRATRCCCTGGKCTARYT
5912 s GAGTATCGCAACCTCACCCC
6307 as GAGACACCCAGGTCAAGGTC
6173 s GGGCAGTTGTTTTATGGCCG
7016 as TTTTTTTTTGTYKTGCGRAMBGCAGAA

2 Positions according to kestrel-derived hepatitis E virus strain (accession number KU670940)
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Supplementary Table 2 Pairwise sequence comparison of the screening fragment within the open reading frame 1 of the novel common vole-associated hepatitis E virus
to related hepatitis E virus sequences on nucleotide and amino acid level. Sequences used for the calculation of the pairwise sequence identities were the unassigned hepatitis
E virus (HEV) sequence from a kestrel 2] and the common vole-associated HEV strains, described here and those recently identified in Hungary [1]. Additionally, the screening
fragment of one novel rodent-associated HEV-strain (HEV-RtMg/XJ2016 KY432902) from China was included, too [7]. Pairwise distance calculation was done with MEGA [5],
above/below the diagonal the pairwise amino acid/nucleotide sequence identities are shown. The corresponding clades (see Figure 2 A) are condensed (I-111) and novel complete
genomes (see Figure 2 B) are written in bold.

i T
ey | BBV | (100,705 | e arevens (3456, 3499, 2645, 1641, UJH126, KFD154,
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Kestrel-derived HEV d_ | 891 [946-946] 96.7-96.7 94.6-98.9
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Supplementary Table 4 Prediction of different conserved domains among the genome of the novel common vole-associated hepatitis E virus strains, in comparison to a
kestrel-derived hepatitis E virus genome and a novel rodent-associated hepatitis E virus (HEV-RtMg/XJ2016) from China.
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genotypes. Only in a single Norway rat from Belgium a rabbit HEV-like genotype 3 sequence was detected.
Phylogenetic analysis indicated a clustering of all other novel Norway and Black rat-derived sequences with
ratHEV sequences from Europe, the USA and a Black rat-derived sequence from Indonesia within the proposed
ratHEV genotype 1. No difference in infection status was detected related to age, sex, rat species or density of
human settlements and zoological gardens.

In conclusion, our investigation shows a broad geographical distribution of ratHEV in Norway and Black rats
from Europe and its presence in all settlement types investigated.

1. Introduction

The family Hepeviridae comprises an increasing number of viruses in
mammals, birds and fish (Johne et al., 2014; Pérez-Gracia et al., 2015).
Initially, hepatitis E virus (HEV) was the only member of this virus
family, which was divided into four genotypes. The genotypes 1 and 2
are supposed to exclusively infect humans, whereas genotypes 3 and 4
are zoonotic with wild boar, domestic pig and deer representing animal
reservoirs (Meng, 2013). In chicken, additional divergent genotypes
were discovered and designated as avian HEV, which can be associated
with the diseases Big Liver and Spleen Disease and Hepatitis-Spleno-
megaly Syndrome (Handlinger and Williams 1988; Ritchie and Riddell
1991; Gerber et al., 2015). The International Committee on Taxonomy
of Viruses (ICTV) currently classifies the human pathogenic HEV gen-
otypes 1-4 into species Orthohepevirus A, avian HEV into Orthohepevirus
B, bat HEV into Orthohepevirus D and the carnivore and rat HEV into

Orthohepevirus C (Smith et al, 2014; http://ictvonline.org/
individuals per site
2
® <
@ s
@
Q- f§
: = &
@
. Bélgiu

France

virusTaxonomy.asp, Accessed 07 April 2017).

The hepevirus genome is a positive stranded RNA of approximately
6.7-7.3 kilobases (kb) (Meng et al., 2012). The genome contains the
typical sequence elements of an eukaryotic mRNA with a cap structure
at its 5’-end and a polyadenylation at its 3"-end (Tam et al., 1991). For
all hepeviruses, three major open reading frames (ORF) were identified
with almost the same organization, but differences in the junction or
overlapping region of ORF1 and ORF2/ORF3 (Johne et al., 2014). The
ORF1 of 4.6 to 5.2 kb is located at the 5’-end of the genome and codes
for a polyprotein comprising several nonstructural proteins including
regions with similarity to methyltransferases, papain-like proteases,
helicases and RNA-dependent RNA polymerases (Koonin et al., 1992).
The capsid protein of 600-675 amino acid residues is encoded by ORF2
and contains three domains with the carboxyterminal domain being
exposed on the surface of the virion (Yamashita et al., 2009). The
overlapping ORF3 codes for a small phosphoprotein of strongly varying
length in avian, mammalian and fish hepeviruses (Zafrullah et al.,
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Fig. 1. G hical map rep

ing the rat

llection sites in Denmark (1, Copenhagen), Germany (2, Hamburg; 3, Elmenhorst; 4, Stahlbrode; 5, Osnabriick; 6, Wolbrechtshausen; 7,

Magdeburg; 8, Kampehl; 9, Berlin; 10, Neschwitz; 11, Konigshain; 12, Gorlitz; 13, Niederoderwitz; 14, Zittau; 15, Aachen; 16, Koln; 17, Oer-Erkenschwick; 18, Miinster; 19, Ahlen; 20,
Warburg; 21, Heidelberg; 22, Stuttgart; 23, Esslingen; 24, Moggingen), Switzerland (25, Granichen, 26, Diibendorf, 27, Zurich), Austria (28, Vienna), Hungary (29, Budapest), France (30,
five sites close to Lyon), Belgium (31 Dender, 32 ljzer), ltaly (33 Pianosa Island), Slovenia (34 close to Ljubljana), Spain (35 Cadiz), Czech Republic (36 Prague, 37 Brno, 38 Northern

Moravia), Greece (39 Thessaloniki, 40 Kilkis, 41 Chalkidiki). All or some of the rats from sites 1, 2, 9, 19, 22 and 23 were i

d for ratHEV p (Johne et al., 2010a,b, 2012;

Wolf et al., 2013; indicated by empty or half-filled circles, respectively) and were included here for analysis of demographic, reservoir and human settlement type association of ratHEV

infections (see Heuser et al., 2017).
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1997; Holla et al., 2013; Johne et al., 2014). This protein is essential for
virus egress and found to be associated with lipid membranes
(Okamoto, 2013). Interestingly, ratHEV as well as ferretHEV contain an
additional putative open reading frame (ORF4), overlapping ORF1 at its

’-end, of still unknown function (Johne et al., 2010a; Raj et al., 2012).

Using a broad-spectrum RT-PCR assay, a novel, only distantly-re-
lated hepevirus was identified in 2010 in Norway rats (Rattus norve-
gicus) from Hamburg, Germany (Johne et al., 2010a, 2010b). This in-
itial finding was confirmed by detection of closely related sequences in
Norway rats from other cities in Germany (Johne et al., 2012). Detec-
tion of related sequences in rats from the USA, Vietnam, Denmark,
France, China and Indonesia suggests a host specificity of ratHEV for
rats of the genus Rattus and indicated its broad geographical distribu-
tion (Li et al., 2013b,d; Mulyanto et al., 2013, 2014; Purcell et al., 2011;
Widen et al., 2014; Wolf et al., 2013). The host specificity of this virus
was also demonstrated by infection experiments using laboratory rats
and other mammals (Cossaboom et al., 2012; Li et al., 2013c). How-
ever, recent studies in China suggested a broader host range of the virus
or frequent spillover infections of bandicoot rats and even shrews (Guan
et al., 2013; Li et al., 2013d). The genotypes G1, G2 and G3 of ratHEV
were previously defined on the basis of a complete genome sequence
comparison; a further comparison of 31 ORF 2-derived sequences of
281-bp length revealed two additional es of a non-designated
clade (ND), which clustered with G1 (Mulyanto et al., 2014). All G1
ratHEV sequences in previous studies originated from R. norvegicus or
Black rats (Rattus rattus), whereas ratHEV sequences of G3 originated
exclusively from R. rattus. In contrast, genotype G2 was detected in R.
rattus, Rattus tanezumi, Rattus rattoides losea and the Asian house shrew
Suncus murinus (Li et al., 2013b, 2013d; Mulyanto et al., 2013).

The zoonotic potential of ratHEV is currently controversially dis-
cussed. Serological studies in forestry workers from Germany showed a
few seropositive individuals (Dremsek et al., 2012). In addition, febrile
patients from China showed a stronger reactivity with ratHEV antigen
than with genotype 1 and 3 antigens (Shimizu et al., 2016). Further-
more, ratHEV was shown to replicate in a human-derived cell line
(Jirintai et al., 2014; Li et al., 2015). In contrast, experimental infection
of monkeys and domestic pigs with ratHEV failed (Cossaboom et al.,
2012; Purcell et al., 2011). Reproducible experimental infections of
nude rats and Wistar rats with ratHEV (Li et al., 2013c¢; Purcell et al.,
2011) and the availability of a recently developed reverse genetics
system for ratHEV (Li et al., 2015) led to the suggestion to use
ratHEV-infected laboratory rats as an infection model for hepeviruses.
On the other hand, Norway rats were found to be infected with human
pathogenic genotype 3 associated strains, suggesting a potential role for
zoonotic transmission (Lack et al., 2012; Kanai et al., 2012).

Here, we describe a molecular survey of Norway and Black rats from
12 European countries for ratHEV and human pathogenic HEV
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genotypes, and evaluated influences of sex, age, rat species and human
settlement type on ratHEV prevalence.

2. Material and methods
2.1. Rat collection, dissection and sample collection

The collection of Norway rats in Copenhagen and Berlin has been
already described previously (Sachsenroder et al., 2014; Wolf et al.,
2013). Additional Norway rats were collected in Germany, Denmark,
Austria, Switzerland, Czech Republic, Belgium, France, Slovenia and
Greece; Black rats were collected in Italy, Slovenia, Greece and Spain
(Fig. 1).

The dissection and collection of tissue samples followed standard
protocols. For the evaluation of the influence of sex, age, reservoir
species and human settlement type on ratHEV prevalence, previously
published results for rats from Hamburg, Berlin, Stuttgart, Esslingen
and Copenhagen (Johne et al., 2012, 2010a, 2010b; Wolf et al., 2013)
were also included.

2.2. RNA isolation, real-time and conventional RT-PCR and sequencing

After homogenizing rat liver tissue using a TissueLyser (Qiagen,
Hilden, Germany), RNA was extracted with the RNeasy Mini Kit
(Qiagen). A ratHEV-specific real-time RT-PCR (Johne et al., 2012, RTD,
see Fig. 2) and a real-time RT-PCR specific for HEV genotypes 1-4
(Jothikumar et al., 2006) were performed as previously published. The
QuantiTect Probe RT-PCR Kit (Qiagen) was used in a 7500 Real Time
PCR System (Applied Biosystems Life Technologies, Darmstadt, Ger-
many) and the data were evaluated using 7500 Software v2.0.1 (Ap-
plied Biosystems Life Technologies, Darmstadt, Germany).

A one-step RT-PCR (designated SW-RT-PCR; see Fig. 2) was then
performed using a SuperScriptlll One-Step RT-PCR with PlatinumTaq
Kit (Invitrogen Life Technologies, Carlsbad, CA, USA) in a C1000
Thermal Cycler (Bio-Rad Laboratories, Munich, Germany). Reverse
transcription was conducted at 42 °C for 50 min, followed by a dena-
turation step at 94 °C for 2 min. A total of 45 PCR cycles each consisting
of 30s at 94°C, 30s at the primer-specific annealing temperature
(Table 1), 1 min at 68 °C and a final incubation at 68 °C for 10 min were
performed.

Additionally, a slightly modified nested broad-spectrum (NBS) RT-
PCR was performed to test the samples for all possible HEV strains,
including ratHEV and human pathogenic genotypes as described (Johne
et al., 2010b; see Fig. 2). A first RT-PCR was performed using a One-
Step RT-PCR kit (Qiagen) with primers HEV-cs and HEV-cas in a 2720
thermal cycler (Applied Biosystems). The thermal profile comprised
42 °C for 60 min and 95 °C for 15 min, followed by 40 cycles of 94 °C for

R63 SW RTD
4105 4387 5238 5275
4000 , o 4agr 4423
NBS rHEV-4939s rHEV-5582as
4957 5566
rHEV-4180s/4288s rHEV-4980as
g 4186 4294 4971 - .
5 — AAAAA 3
L " H*
= ORF1 4921 4949 ORF2 6883

4938 QRF3 5246

Fig. 2. Genome organization of ratHEV, prototype strain R63 (accession number GU345042), and location of primer binding sites for real-time (RTD) and conventional screening SW-/
NBS-RT-PCR and primer-walking RT-PCRs as well as the corresponding amplification products.
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Table 1
Oligonucleotides used in the RT-PCR and corresponding i p
RT-PCR assay Primer pair Primer sequence I e fe
SW-RT-PCR rHEV-SW-for and 5-GCNCTGTTYGGCCCNTGGTT 56 °C Wolf et al. (2013)
rHEV-SW-rev 5-GGYTCACCRGARTGYTTYTTCCA
NBS-RT-PCR HEV-cs 5-TCGCGCATCACMTTYTTCCARAA 50°C Johne et al. (2010b), modified
HEV-cas 5-GCCATGTTCCAGACDGTRTTCCA
HEV-csn 5-TGTGCTCTGTTTGGCCCNTGGTTYCG 50°C
HEV-casn "-CCAGGCTCACCRGARTGYTTCTTCCA
Primer-walking RT-PCR I rHEV-4180s/ 5-AGGAGAARTTGGAGGCCGC 58 °C This paper
rHEV-4288 s and 5-GAGTGCYTRYTGATGAAGGAGGC
rHEV-4980as 5-CAGCAGCGGCACGAACAGC
Primer-walking RT-PCR II rHEV-4939s and 5"-GTAGCATGTGTGCGGAATGCGTGT 58°C This paper
rHEV-5230as/ 5-GTCATTGGCGACTGCCCGGCATC
rHEV-5582as 5-GTGATGGAATTCATRTCCACCGACGT

NBS, nested broad-spectrum.

30s, 50 °C for 30 s and 74 °C for 45 s, with a final incubation at 74 °C
for 5 min. An aliquot of the RT-PCR product (5 pl) was used in a nested
PCR with a GoTaq kit (Promega) and the primers HEV-csn and HEV-
casn. The thermal profile consisted of 95 °C for 5 min and 35 cycles of
94 °C for 30 s, 50 °C for 30 s and 72 °C for 45 s, with a final incubation
at 72 °C for 5 min.

To generate a longer sequence stretch, overlapping the SW-/NBS-
RT-PCR products and including the 3"-end of ORF 1, the 5’-region of
ORF 2 and a partial or complete ORF 3, selected samples were analyzed
by a primer walking-based attempt using two different primer pairs and
following the protocols of the SW-RT-PCR (see Fig. 2 and Table 1;
Primer-walking RT-PCR-1/11).

RT-PCR products were purified using a MiniElute PCR Purification
Kit (Qiagen) or a NucleoSpin Gel and PCR Clean-up Kit (Machery-
Nagel, Diiren, Germany), separated by agarose gel electrophoresis and
visualized by ethidium bromide staining.

For sequencing, the purified RT-PCR product was amplified by PCR
using the same primers and the following temperature profile: 96 °C for
1 min, followed by 30 cycles of 96 °C for 15s, 50 °C for 15 s and 60 °C
for 90s. Amplicons were purified using a Sigma Spin Post-Reaction
Clean-up Column Kit (Sigma-Aldrich, Hamburg, Germany) and se-
quenced on an ABI 3100 Avant DNA-Sequencer (Applied-Biosystems,
Darmstadt, Germany). Sequences were assembled and aligned using
BioEdit 7.2.0 (Hall, 1999) and MEGA 7 (Kumar et al., 2016), respec-
tively. The novel HEV sequences were deposited at GenBank (for ac-
cession numbers see Fig. 3 B-D).

Table 2

2.3. Phylogenetic analysis

The General Time Reversible + discrete Gamma distribution (GTR
+ G) model was the best suited substitution model determined by
MEGA 7 for both regions spanning nucleotides (nt) 4105-4387 (num-
bering based on strain R63, acc. no. GU345042) and nt 4105-5226. The
phylogenetic analyses were performed by Bayesian algorithms via
MrBayes v.3.2.2 and CIPRES online portal (Ronquist et al., 2012) and
by Maximum likelihood algorithm performed via MEGA7 (Kumar et al.,
2016).

2.4. Evaluation of demographic, rat species and human settlement type
influence

The statistical evaluation of demographic, rat species and human
settlement type influences on individual ratHEV infection status was
performed similarly to the previously described methodology for other
infectious agents on a sub-sample (Heuser et al., 2017). Briefly, gen-
eralized linear modelling (GLM) with a binomial error distribution was
applied using individual infection status as the response variable, with
sex and age classes (< 200 g (juvenile) and > 200 g (adult) (Webster
et al., 1995)) as demographic predictors as well as the association of
ratHEV with a particular Rattus species (R. norvegicus vs. R. rattus) and
human settlement type, based on human population density (urban
(> 1500 inhabitants/km®), small town (300-1500 inhabitants/km?),
rural (< 300 inhabitants/km®)) (database: Geostat initiative, 2012).
Rats collected in zoological gardens were put in a separate category.

Results of real-time (rt) RT-PCR screening and conventional/nested RT-PCR (SW-RT-PCR) analysis of rats.

Country Site number’  Total number of rats sampled  ratHEV rt RT-PCR” GT 1-4 rt RT-PCR* SW-RT-PCR NBS-RT-PCR ratHEV (total)”
Germany 2-5,7-24 156 5/145 3.4% 0/145 0.0% 17/154  11.0%  0/2 0.0%  17/156  10.8%
Hungary 29 18 1/18 5.5% 0/18 0.0% 2/18 11.1% nd. - 2/18 11.1%
Denmark 1 112 2/11 18.1% 0/11 0.0% 3/11" 27.2%' nd. - 3/11* 27.2%"
Austria 28 43 0/43 0.0% 0/43 0.0% 7/43 16.2%  nd. - 7/43 16.2%
Switzerland 25-27 29 4/29 13.7% 0/29 0.0% 4/29 13.7% nd. - 4/29 13.7%
France 30 28 3/28 10.7% 0/28 0.0% 5/28 17.8% nd. - 5/28 17.8%
Italy 33 17 nd. - 0/17 0.0% 0/17 00% 1/17  58% 1/17 5.8%
Spain 35 50 nd. - 0/50 0.0% 2/50 40%  2/50  40%  2/50 4.0%
Greece 39-41 20 nd. - 0/18 0.0% 0/20 0.0%  2/18 11.1% 2/20 10.0%
Slovenia 34 18 nd. - 0/18 0.0% 0/18 0.0%  0/18  0.0% 0/18 0.0%
Belgium 31,32 60 nd. - 0/60 0.0% 6/60 10.0% 5/60  83%  8/60 13.3%
Czech Republic 3638 58 nd. - 0/58 0.0% 9/58 155% 10/58 17.2% 12/58  20.6%
Total 508" 15/274 5.4% 0/494 0.0% 55/506° 10.8%' 20/225 8.8%  63/508" 12.4%°

NBS, nested broad-spectrum; n.d., not determined.
! numbers according to trapping sites, for detailed information see Fig. 1.

2 All ct values of positive samples in ratHEV rt RT-PCR were lower than 35; all ct values of GT1-GT4 rt RT-PCR were higher than 35 and set to be negative.

* samples positive in real-time RT-PCR and/or SW/nested-RT-PCR.
# includes a published ratHEV positive specimen (Wolf et al., 2013).
® includes 6 samples from the vicinity of Zurich.
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Model selection was performed using the dropl function. Goodness of
fit of all performed regression models was assessed using the Le Cessie-
van Houwelingen test statistic implemented in the rms-package. All
analyses were performed in R (R Core Team, 2015).

3. Results
3.1. Collection of rats and initial real-time RT-PCR screening of rats

From 2005 to 2016 a total of 508 rats were collected in 12 European
countries (Fig. 1). This sample contained 420 Norway rats from trap-
ping sites in Germany (23 sites, 156 rats), Denmark (1 site, 11 rats),
Austria (1 site, 43 rats), Switzerland (3 sites, 29 rats), Czech Republic (3
sites, 58 rats), Belgium (2 sites, 60 rats), France (1 site, 28 rats), Slo-
venia (1 site, 1 animal) and Greece (3 sites, 16 rats) and 88 Black rats
from trapping sites in Italy (1 site, 17 rats), Slovenia (1 site, 17 rats),
Greece (2 sites, 4 rats) and Spain (1 site, 50 rats). Initially, liver-derived
RNA preparations of a Norway rat sample subset were tested in parallel
by real-time RT-PCR assays either targeting ratHEV or HEV genotypes 1
to 4. The ratHEV-specific real-time RT-PCR (RTD) resulted in the de-
tection of 5 out of 145 (3.4%) samples from Germany (Table 2). Norway
rat samples from Hungary, Denmark, Switzerland and France were also
positive for ratHEV-RNA by ratHEV-specific real-time RT-PCR with a
detection range of 5.5% (1/18)-18.1% (2/11; see Table 2). The Ct
values of positive samples ranged between 20 and 34. In the real-time
RT-PCR targeting the human pathogenic genotypes 1-4 none of the
Norway rat samples showed a Ct value < 35, used as cut-off (Table 2).

3.2. Conventional SW-RT-PCR and NBS-RT-PCR analysis
A conventional RT-PCR approach using ORF1-specific SW-RT-PCR
(nt positions 4105-4387, prototype strain R63, accession number

GU345042, see Fig. 2) and NBS RT-PCR (nt positions 4000-4423, see
Fig. 2) resulted in the detection of HEV-specific RNA in 17 of 156

(A)

Orthohepevirus A

100/96 .
——== Orthohepevirus c2

100/99

008 Orthohepevirus ct

100/- | bat-hepevirus-bat-NC 018382
100/96 batHEV-BS7-bat-JQ001749
batHEV-Rf-Shanxi2013-bat-KJ562187
avianHEV-06-561-chicken-AM943647

avianHEV-USA-chicken-AY535004
avianHEV-05-5492-chicken-AM943646

100/99|

72/99
74/62

100/90 L avianHEV-HU-16773-chicken-JN997392

62

avianHEV-TWNaHEV-chicken-KF511797
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(10.8%) samples from Germany (Table 2). The prevalence for samples
from the sites in the other ten countries reached from 4% (2/50) to
27.2% (3/11; Table 2). The prevalences in Norway rats and Black rats
were 10%-27.2% (2/20 and 3/11) and 4%-5.8% (2/50 and 1/17), re-
spectively. None of the single Norway rat and 17 Black rats from Slo-
venia was HEV-RNA positive (Table 2).

Using a primer-walking based approach for thirteen samples from
nine sites in Germany, France, Spain, Belgium, Austria and Denmark, a
1122/1125-base pair (bp) long region including parts of ORF1, ORF2
and partial or entire ORF3 (see Fig. 2) was RT-PCR amplified and se-
quenced. The different lengths of the sequences B1 and B4 from France
were caused by a triplet indel, i.e., insertion/deletion of three nucleo-
tides (data not shown).

3.3. Sequence comparison and phylogenetic analysis

Phylogenetic analysis of the 280 nt fusion-product of the SW-/NBS-
RT-PCR assays showed that almost all novel sequences, independently
whether from Norway or Black rats, clustered together with ratHEV
sequences, species Orthohepevirus C, genotype HEV-C1, well separated
from sequences of species Orthohepevirus C, genotype HEV-C2 (Fig. 3 A
and B). In one Norway rat sample from Belgium (KS16/825) a sequence
with 88.8% sequence similarity to genotype 3 HEV sequences was
found (see below); in no other sample human pathogenic genotype-
related sequences were found. This HEV genotype 3—like sequence
from the single Norway rat sample from Belgium clustered in the
phylogenetic tree with three rabbit HEV strains from China and a
human rabbit HEV sequence from France within species Orthohepevirus
A (Fig. 3C); attempts to generate a longer sequence failed. The phylo-
genetic analysis of the concatenated 1122/1125 nt product of the
coding sequences revealed clustering of all novel sequences within the
ratHEV genotype G1 defined by Mulyanto et al. (2014), in sister clade
relationship with ratHEV genotypes G2 and G3 (Fig. 3D). Genotype G1
contains the prototype sequence R63 from a Norway rat from Hamburg,

Fig. 3. Phylogenetic reconstructions of all species
within the genus Orthohepevirus based on a 280 nt
section of ORF1 (A-C) or 1122 nt concatenated se-
quence from ORF1 and ORF2/ORF3 (D). (A) shows
the overall topology for the major groups in
Orthohepevirus; the detailed phylogenetic relation-
ships for the condensed groups (black triangles) are
displayed in (B) and (C). Consensus phylogenetic
trees were based on Bayesian analyses with
8,000,000 (A) or 6,000,000 (D) generations and a
burn-in of 25%. Maximum-Likelihood analyses were
run with 1000 bootstraps and 50% cut-off. Posterior
probability/bootstrap values of > 50 are given at the
supported nodes. Novel sequences are given in bold
and labeled by a star. Identical sequences were
omitted from the analysis and only different se-
quence types are presented (Berlin KS11/
573 = KS11/576,/578,/580,/587, Esslingen Mul0/
1564 = Mul0/1567,/1568,/1571, Warburg Mul0/
697 = Mul0/698, Zurich KS12/1361 = KS12/
1363, Czech Republic KS14/73 = KS14/75,/76,/99,
and KS14/70 = KS14/80,/98).

Reference sequences for all species within genus
Orthohep and for genotypes within species
Orthohepevirus A were taken from Smith et al., 2014,
2016, respectively.

(B) The two sequences of ratHEV clade ND (not de-
signated) clustered separately from the Orthohepe-
virus C1 genotypes G1, G2 and G3, while partial
ORF2 data joined them with G1 (Mulyanto et al.,
2014).

Rnor, Rattus norvegicus; Rrat, Rattus rattus; Bind,
Bandicota indica; Smur, Suncus murinus; Rratto, Rattus
rattoides losea; Rtan, Rattus tanezumi.

Orthohepevirus D

Orthohepevirus B
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Fig. 3. (continued)

Norway rat-derived sequences from different European countries and
the USA, Black rat-derived sequences from Spain and Italy and one
sequence originating from a Black rat collected in Solo, Indonesia
(Fig. 3B and D).

A novel sequence from rats in Berlin, detected in five animals,
clustered with a previously determined sequence from Berlin and two
novel sequences from rats in Esslingen, with one found in four animals,
clustered with a sequence detected previously in Stuttgart, a site close
to Esslingen (Johne et al., 2012; see Fig. 3B, and legend to Fig. 3). Si-
milarly, two sequences from Warburg formed a well-separated subclade
and all sequences from Czech Republic were highly related (Fig. 3B).
Most novel ratHEV sequences from Vienna formed a well-supported
cluster, but one sequence (KS12/1338) was highly divergent. Both se-
quences from Spain are closely related, independently if the 280 nt or
1222 nt products were analyzed (Fig. 3B and D). Interestingly, ratHEV
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sequences from three trapping sites close to Lyon (B and E/A) formed
two well-separated subclades and sequences from Zurich belonged also
to two subclades (Fig. 3B). Sequences from Norway rats from Belgium
were found at highly divergent positions within the tree (Fig. 3B).
Comparison of ORF1-derived sequences from the fusion product of
SW-/NBS-RT-PCR from the same site resulted in an intra-cluster se-
quence similarity of 79.6% to 100% for the nucleotide and 86.8% to
100% for the corresponding amino acid sequences (Table 3). When
analyzing the nucleotide sequence similarity within partial ORF1 or the
overlapping ORF1/0ORF2/ORF3 regions between different sites, the
values reached similar levels of 81.0% to 96.1% and 87.2% to 91.5%,
respectively (Supplementary Table and Table 4). The corresponding aa
sequence similarities of ORF1-encoded protein and concatenated ORF1-
and ORF2-encoded proteins ranged between 93.4% and 100% and
95.9% and 98.6%, respectively (Supplementary Table and Table 4).
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Fig. 3. (continued)
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Orthohepe-
virus A

3.4. Association of ratHEV infections with age, sex, rat species and human
settlement density

For a total of 668 rats, including those of this study (n = 508) and
those investigated previously (n = 160; Johne et al., 2012, 2010a; Wolf
et al., 2013), no association with age, sex or the Rattus species and the
individual ratHEV infection status could be detected (Table 5). In ad-
dition, ratHEV was detected in rats from all four settlement types in-
vestigated. Human population density did not seem to have an effect on
ratHEV occurrence, as prevalences in small towns and rural sites did not
differ significantly from high density urban areas. The prevalence in
zoological gardens was lower compared to urban areas, though not

64

formally significant (Table 5). For all models goodness of fit analysis did
not provide any evidence of a lack of fit.

4. Discussion

In this study, we investigated Norway and Black rat samples from 12
European countries for the presence of ratHEV and other hepeviruses
using ratHEV-specific real-time RT-PCR (Johne et al., 2010a) and
human HEV genotype 1-4-specific real-time RT-PCR (Jothikumar et al.,
2006) as well as conventional RT-PCR assays (SW-RT-PCR (Wolf et al.,
2013) and NBS RT-PCR (Johne et al., 2010b)). Using these four
methods, almost exclusively ratHEV was detected in Norway and Black
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Fig. 3. (continued)

rats from 11 of 12 countries. This finding is in line with the previously
demonstrated inability in experimentally infecting Norway rats with
human pathogenic genotypes (Li et al., 2013a, 2013c; Purcell et al.,
2011) and results from earlier field studies in Norway rats (Johne et al.,
2012, 2010a). Similar to previous studies reporting the human patho-
genic HEV genotype 3 in Norway rats (Lack et al., 2012; Kanai et al.,
2012), in one Norway rat from Belgium a short rabbit HEV-like geno-
type 3 sequence was detected. This might be explained by a spillover
infection of this strain from a rabbit reservoir. Rabbits and rats may
share their habitats in this region of Belgium, either in wildlife habitats
or when wild (pest) rats search for food close to private rabbit hus-
bandry.

This study demonstrates the occurrence of ratHEV not only in
Norway rats, as previously reported for Germany, France and Denmark,
but for the first time in Europe also in Black rats, namely from Italy and
Spain. This finding is in line with studies in Asia, where ratHEV has
been demonstrated in different Rattus species and in Greater bandicoot
rats (Bandicota indica) (Guan et al., 2013; Li et al., 2013d).

In addition, in our study ratHEV was not only detected in rats from
urban areas, but also in rats from small towns and rural areas. The
detection of ratHEV in rural areas complements our previous finding of
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a local absence of ratHEV in a rural area close to Ahlen (Johne et al.,
2012), which may suggest site-specific differences and a heterogeneous
distribution of ratHEV not primarily driven by human settlement. In
addition, ratHEV was identified in pest rats from zoological gardens
raising questions on the potential transmission of this virus to zoo an-
imals. In fact, serological investigations have detected HEV-specific
antibodies in captive macaques and HEV-RNA in different mammalian
and avian species in a wildlife rescue center in China (Korzaia et al.,
2007; Zhang et al., 2008). The recently developed in-house ELISA
technology based on ratHEV- and HEV genotype 3-derived recombinant
capsid protein derivatives (Dremsek et al., 2012; Johne et al., 2012)
may be used in the future for differentiation of antibodies raised against
these viruses in zoo animals.

The phylogenetic analysis of the novel ratHEV sequences showed for
almost all a high similarity to ratHEV genotype G1 defined recently
(Mulyanto et al., 2014), independently whether the sequences origi-
nated from Norway or Black rats. In line with a previous investigation
(Purdy and Sue, 2017), the resolution of the phylogenetic analysis using
the short-sized ORF1 region was lower than the resolution for the larger
segment of ORF1/0ORF2/0RF3. The observed phylogenetic clustering of
many sequences from the same or neighbouring sites may indicate the
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Table 3

Intracluster nucleotide (nt) and amino acid (aa) sequence identity for the region spanning
nt positions 4108-4387 (SW-/NBS-RT-PCR product) or aa positions 1369-1462, based on
strain R63, acc.no. GU345042.

Site (number) Number of Nt identity (in  Aa identity (in
Sequences” %) %)
Berlin, B, DE (9) 5 100 100
Warburg, NW, DE (20) 3 95.3-100 100
Esslingen, BW, DE (23) 5 99.6-100 100
Copenhagen, DK (1) 2 88.2 98.7
Vienna, AUT (28) 7 84.2-100 94.7-100
Zurich, CH (27) 4 81.0-100 96.1-100
Budapest, HU (29) 2 89.6 97.4
Lyon, FR (30) 5 84.2-99.6 96.1-100
Cadiz, ES (35) 2 91.4 100
Northern Moravia, CZ 5 90-99.6 86.8-100
(38)
Dender, BE (31) 5 79.6-89.2 92.3-98.9

DE, Germany; DK, Denmark; AUT, Austria; CH, Switzerland; HU, Hungary; FR, France;
ES, Spain; CZ, Czech Republic; BE, Belgium.

* For the trapping sites Pianosa island (Italy), Thessaloniki (Greece), Chalkidiki
(Greece) and three trapping sites in Germany (Kampehl, Wolbrechtshausen and Zittau),
only single sequences were obtained and therefore they were not included in this analysis.

persistence of ratHEV strains within the local populations. The separate
clustering of sequences from the same geographical origin might be
caused by an incursion (and perhaps establishment) of additional,
highly divergent ratHEV strains by invading rats. In line with this as-
sumption, sequences from the USA (strain LA-8350) and Indonesia
(strain SOLO-006SF) cluster also within genotype G1 of ratHEV (Fig. 3B
and D).

The previous finding of the majority of rats being only HEV RNA or
anti-ratHEV antibody positive suggested non-persistent infections in
individual rats (Johne et al., 2012). In line with this assumption, we did
not find here a significantly higher RNA prevalence in adult rats com-
pared to juvenile animals. These findings of non-persistent infections of
rats are also in line with results of experimental infection studies in
Norway rats (Purcell et al., 2011). At this time we cannot exclude age-
dependent differences in susceptibility and mortality of rats for ratHEV
infection, possibly associated with co-infections with other pathogens
or genetic or environmental factors.

5. Conclusion

The detection of ratHEV in Norway and Black rats from 11 European
countries indicates a broad geographical distribution of ratHEV sug-
gesting an (almost) continent-wide occurrence and no specific asso-
ciation with human population density. Phylogenetic investigations
indicated clustering of all European ratHEV sequences within ratHEV
genotype G1. Well-separated subclades of sequences from the same or
neighbouring sites might indicate the incursion of novel ratHEV strains
into local Norway rat populations with a parallel persistence of a local
ratHEV strain. This necessitates future studies on the population
structure and potential invasion of individuals into existing rat popu-
lations and their association with ratHEV incursion. In addition, the
finding of ratHEV infections in zoological gardens may allow future
studies on the zoonotic potential of ratHEV based on the investigation
of putative natural ratHEV transmission to non-human primates.
Finally, the finding of a rabbit HEV-like sequence in a single Norway rat
necessitates further studies, especially in habitats with sympatric oc-
currence of rabbits or pigs and rats, to evaluate potential spillover in-
fections of human pathogenic genotype(s) and their potential public
health impact.
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Table 4

4105-4921 and 4949-5566 or concatenated aa sequence of positions 1369-1640 of

d region

Intercluster nucleotide (nt, above diagonal) and amino acid (aa, below diagonal) sequence identity in percentage, for the cc

ORF1-encoded protein and positions 1-207 of ORF2 encoded capsid protein, based on R63, acc.no. GU345042.

Reference (27)

Cadiz, ES (2")

Lyon, FR (3") Dender,BE (1)

Zurich, CH (1)

Warburg, NW, DE (1%) Esslingen, BW, DE (2")  Copenhagen,DK (1) Vienna,AUT (17)

Kampehl,BB, DE (17)

aa/nt

86.2-86.5
87.1

85.3-86.4

86.7

83.9-87.6
83.5-88.6

87.1

87.0 87.3

87.4-87.5

87.8
1]

1D
9

Kampehl, BB, DE (1)

86.2-86.7

87.3

87.8

87.6 87.8

86.9-87.0

5.5

Warburg, NW, DE (1)

87.5-87.8

87.3-88.4
87.5-87.7

87.9-88.0

85.8

83.7-89.9
84.0-87.6

83.9-91.5

87.6-87.9

87.2

89.9-90.2

87.6
1D

87.8-87.9
D

D

96.3-96.9
95.7

95.7

Esslingen, BW, DE (2")
Copenhagen, DK (1)
Vienna, AUT (1)
Zurich, CH (17)

Lyon, FR (3")

88.4-89.0
87.8-87.9
86.6-86.7
82.6-87.6
86.3-86.8
87.4-88.0

96.0

95.5

86.7-88.2
87.3-88.0

91.3

87.3
D

96.6

97.4-98.0

97.4

86.2

83.7-87.9

D

96.9

95.5

95.5

94.9

84.2-88.1

85.0-91.8
1)

93.5-96.6

95.7

93.5-98.0

96.6

95.7-96.9
95.2

92.9-97.7
96.3

93.2-97.4
95.5

92.9-97.1
94.9

87.8-88.2

93.2-97.4
94.1-96.9

92.4-97.1

Dender, BE (17)
Cadiz, ES (2")

Reference (2)

95.7-96.0
96.0-96.3

96.0

96.6-96.9

95.5-96.3
94.3-94.9

95.5-96.3

95.5-95.7
95.5-95.7

94.1-94.3
95.2-97.1
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94.3-95.2

94.6-95.5

96.0-96.6

95.7-96.6

Reference: ratHEV sequences of R63 and R68 prototype strains from rats collected in Hamburg (Johne et al., 2010a).

BW, Baden-Wuerttemberg; DK, Denmark; AUT, Austria; CH, Switzerland; FR, France; BE, Belgium; ES, Spain.

'g; NW, North Rhi

® Number of sequences per site.

DE, Germany; BB,
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Table 5

Results of the binomial generalized linear model for factors associated with ratHEV in-
fection. Reference categories are juvenile/subadult individuals in high human density
urban areas. There were no effects of sex and species (Rattus norvegicus vs. Rattus rattus)
and therefore these factors were removed during model selection.

ratHEV
Source of Variation ~ Coef. Std.Er  z-value  p-value OR (+/-CI)
Intercept -1.601 0214 -7.490 <0.001 0.20 (0.13-0.30)
Weight [juvenile] -0.332 0257 -1.293 0.19 0.72 (0.43-1.18)
Pop [town] 0.035 0325  0.107 0.915 1.04 (0.54-1.93)
Pop [rural] -0271 0.309 -0.876 0.381 0.76 (0.41-1.38)
Pop [zoo] -0.868 0435 -1.998 0.05 0.42 (0.17-0.93)

OR = odds ratio; CI = Confidence interval.
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ARTICLE INFO ABSTRACT

Keywords: Hepatitis E virus (HEV) is the causative agent of hepatitis E, an emerging infectious disease of humans. HEV
Hepatitis E virus infections have also been described in various animal species. Whereas domestic pigs and wild boars are well-
Zoo animals

known animal reservoirs for HEV, the knowledge on natural HEV infection in zoo animals is scarce so far. Here,
we analysed 244 sera from 66 mammal species derived from three zoos in Germany using a commercial double
antigen sandwich ELISA. HEV-specific antibodies were detected in 16 animal species, with the highest detection
rates in suids (33.3%) and carnivores (27.0%). However, RNA of the human pathogenic HEV genotypes 1-4 was
not detected in the serum samples from suids or carnivores. Using a broad spectrum RT-PCR, a ratHEV-related
sequence was identified in a sample of a female Syrian brown bear (Ursus arctos syriacus). Subsequent serum
samples within a period of five years confirmed a HEV seroconversion in this animal. No symptoms of hepatitis
were recorded. In a follow-up investigation at the same location, closely related ratHEV sequences were iden-
tified in free-living Norway rats (Rattus norvegicus), whereas feeder rats (Rattus norvegicus forma domestica) were
negative for HEV-specific antibodies and RNA. Therefore, a spillover infection of ratHEV from free-living
Norway rats is most likely. The results indicate that a wide range of zoo animals can be naturally infected with
HEV or HEV-related viruses. Their distinct role as possible reservoir animals for HEV and sources of HEV in-
fection for humans and other animals remains to be investigated.

Cross-species transmission
Syrian brown bear (Ursus arctos syriacus)
Norway rat (Rattus norvegicus)

1. Introduction phosphoprotein. The human-pathogenic genotypes (GT) HEV-1 to HEV-

4 are classified together with additional GT from wild boars and camels

Hepatitis E virus (HEV) infections represent the most common cause
of acute hepatitis in humans worldwide (Rein et al., 2012). In several
European countries, the number of recorded human hepatitis E cases
steadily increased during the past ten years (Adlhoch et al., 2016). The
disease is mostly characterized by mild to moderate acute hepatitis;
subclinical infections appear to be frequent. However, pregnant women
in endemic regions with HEV-1 and persons with underlying liver dis-
ease portray a risk group for severe acute hepatitis including lethal
outcomes. In addition, chronic infections, which can develop to liver
cirrhosis, have been identified in immunosuppressed transplant patients
(Kamar et al., 2012).

HEV belongs to the family Hepeviridae and possesses an RNA
genome containing three open reading frames (ORFs). ORF1 encodes a
non-structural polyprotein, ORF2 the capsid protein and ORF3 a small

into the species Orthohepevirus A (Smith et al., 2014). The species Or-
thohepevirus B contains avian HEV strains, whereas mainly strains from
rats and ferrets are found in Orthohepevirus C and batHEV strains in
Orthohepevirus D (Smith et al., 2014).

The sources of infection with human-pathogenic HEV are GT-de-
pendent (Johne et al., 2014). HEV-1 and HEV-2 are restricted to hu-
mans and mainly transmitted by fecally contaminated water. In con-
trast, HEV-3 and HEV-4 are zoonotic viruses, with pigs and wild boars
representing the main animal reservoirs. These animals do not show
any clinical symptoms due to HEV infection. Direct contact between
humans and animals and ingestion of virus-containing food are the
main transmission routes of these genotypes.

RNA of HEV-3 or HEV-4 as well as HEV-specific antibodies have also
been detected in a considerable variety of other wildlife, farmed and pet
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animal species (Spahr et al., 2017b; Doceul et al., 2016; Pavio et al.,
2010). To gain knowledge about the distribution of HEV infections in
different animal species, zoo-like locations with a large diversity of
mammal species represent interesting sites. However, only a few studies
analysing zoo animals have been published yet (Spahr et al., 2017a; Li
et al., 2015; Zhang et al., 2008).

To analyse HEV infections in zoo animals, a serological survey on
HEV-specific antibodies was performed with animals from three zoos in
Germany. Animals of taxa showing comparably high seroprevalences
were additionally analysed by RT-PCR for the presence of HEV RNA.
Follow-up investigations in free-living and feeder Norway rats should
identify the source of HEV infections in zoo animals. The results of the
investigation should contribute to further clarify the role of zoo animals
as susceptible hosts of HEV.

2. Materials and methods

2.1. Sampling

In total, 244 individual sera from 66 mammal species were collected
in three zoos (A-C) in Germany (Suppl. Table 1), though most sera were
obtained from zoo A. The sera were obtained between 2006 and 2016
during animal immobilizations for different purposes, e.g. routine
health checks, and stored at —20 °C. Additionally, liver samples from
12 animals were taken during routine dissections of died zoo animals
between 2015 and 2016 and stored at —20 °C. No animal was sampled
for the sole profit of this study. All animals in the zoos were routinely
checked by their keepers for physical health, which was documented
daily. 73 free-living Norway rats were collected between 2009 and
2016 from two zoos (A and D) and stored at —20 °C (Suppl. Table 2).
These rats were collected routinely for use in the network “Rodent-
borne pathogens” and standard protocols of the network were used for
preparation of liver samples and extraction of transudates from the
thoracic cavity (Ulrich et al., 2008). Additionally, 20 randomly selected
feeder rats from zoo A were killed for internal stock control, using CO,
inhalation in accordance with animal welfare regulations. All liver and
transudate samples were stored at — 20 °C until further investigation.

2.2. Serological analysis

The serum samples were analysed for HEV-specific antibodies using
the Axiom" HEV-Ab EIA (Axiom Diagnostik, Biirstadt, Germany) and
the results were evaluated according to the recommendations of the
manufacturer. This assay is based on HEV-1 capsid protein antigens and
uses the test principle of a double antigen sandwich ELISA. By this, it is
species-independent and can detect all immunoglobulin classes.

2.3. RNA isolation

RNA was extracted from serum samples using the NucleoMag VET
kit (Macherey-Nagel, Diiren, Germany) in a King Fisher 96 Flex
Workstation (Thermo Fisher Scientific GmbH, Schwerte, Germany),
following the manufacturer’s instructions. Liver samples were homo-
genized using a TissueLyser (Qiagen GmbH, Hilden, Germany) and
QIAzol Lysis Reagent (Qiagen GmbH), and RNA was extracted by a
modified QIAzol protocol method as described before (Schmidt et al.,
2016). The RNA pellets were resolved in 100 ul DEPC-treated water and
stored at —80 °C until further use.

2.4. Real-time RT-PCR (RT-qPCR)

RNA samples were tested for the presence of HEV-1 to HEV-4 using
a previously described RT-qPCR protocol (Jothikumar et al., 2006). The
QuantiTect” Probe RT-PCR Kit (Qiagen GmbH) was used in 20 ul re-
actions with conditions as previously described (Schielke et al., 2011).
The limit of detection of this RT-qPCR as determined by dilution series
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of in vitro transcribed RNA was seven genome equivalents per PCR
reaction (Schielke et al., 2011).

2.5. Nested broad-spectrum RT-PCR (NBS-RT-PCR)

The NBS-RT-PCR was performed according to Johne et al. (2010).
This assay amplifies a conserved region within the RNA-dependent RNA
polymerase (RdRp)-encoding region of OFR1 and has been demon-
strated to be capable of detection of HEV strains from the species Or-
thohepevirus A, B and C (Johne et al., 2010). The RT-PCR was performed
using the One-Step RT-PCR kit (Qiagen GmbH) and the nested PCR
using the TaKaRa ExTaq kit (TaKaRa Bio, Japan) as described before
(Johne et al, 2010). The nested PCR products were separated by
agarose gel electrophoresis and bands according to a length of 331-334
nucleotides (nt) were excised and purified using the QIAquick Gel Ex-
traction Kit” (Qiagen GmbH).

2.6. SW-RT-PCR

The SW-RT-PCR targets a similar genomic region of the HEV
genome like the NBS-RT-PCR, but is designed as one-step RT-PCR (Wolf
et al., 2013). It has been shown to efficiently detect ratHEV, but should
also be able to detect strains of the species Orthohepevirus A based on
the primer sequences. This RT-PCR was performed using the Super-
ScriptlII with PlatinumTagq Kit (Invitrogen Life Technologies, Carlsbad,
CA, USA) in a 25 pl reaction (Wolf et al., 2013). RT-PCR products with a
length of 282 bp were purified using the NucleoSpin~ Gel and PCR
Clean-up Kit (Macherey-Nagel).

2.7. Sequence analyses

Purified amplification products were either sequenced by a com-
mercial company (Eurofins GmbH, Hamburg, Germany) or sequenced
in-house using the BigDye" Terminator version 1.1 Cycle Sequencing
Kit (Applied Biosystems, Darmstadt, Germany) in an HITACHI 3130
Genetic Analyser (Applied Biosystems, Darmstadt, Germany). For se-
quence comparisons and phylogenetic analyses, a sequence fragment of
the RdRp-encoding region with a length of 279 nt (nt 4108-4387;
numbering according to ratHEV reference strain R63, acc. no.
GU345042), derived from the products of the NBS-RT-PCR and/or the
SW-RT-PCR, was used. The newly generated HEV sequences were de-
posited at GenBank (sequence from the Syrian brown bear: acc. no.
MF480313, sequences from rats: acc. nos. MF480314-480320).
Sequence alignments were performed using BioEdit 7.2.0 (Hall, 1999)
and MEGA 7 (Kumar et al., 2016). The GTR+G model was used as it
was identified as the best suited substitution model by MEGA 7. The
phylogenetic analyses were performed by Bayesian algorithms via the
CIPRES online portal (Ronquist et al., 2012) with 8 million generations
and by Maximum likelihood algorithm performed via MEGA7 (Kumar
et al., 2016) with 1.000 bootstrap replicates and a consensus tree was
generated. Reference sequences for phylogenetic reconstructions were
taken from Smith et al. (2014).

3. Results

3.1. HEV-specific antibodies are mainly detected in zoo animals of the
family Suidae and the order Carnivora

A total of 244 serum samples from mammalian zoo animals, be-
longing to 66 species, were tested for the presence of HEV-specific
antibodies (Table 1 and Suppl. Table 1). In total 28/244 (11.5%) turned
out to be anti-HEV antibody-positive. Animals from 16 species in three
orders (Artiodactyla, Carnivora, Perissodactyla) were tested positive.
The highest seroprevalence was found in animals from the family
Suidae with 9/27 (33.3%) positive samples originating from three dif-
ferent species. A high seroprevalence was also recorded for animals of
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Table 1
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Prevalence of HEV-specific markers in zoo animals from Germany using serological and molecular detection methods.

Order Family Axiom” HEV-Ab EIA RT-qPCR NBS-RT-PCR SW-RT-PCR Sequencing
pos./total % pos./total % pos./total % pos./total % pos./total
Afrosoricida 0/1 N/A - - - - - -
Tenrecidae 0/1 N/A = = = - = e =
Artiodactyla 16/167 9.6 0/98 0 - - 0/8° 0 -
Suidae 9/27 33.3 0727 0 - - 072" 0 -
Tayasuidae 0/1 N/A 01 N/A = = = = =
Hippopotamidae 01 N/A - - - - - - -
Camelidae 0/15 0 - - - - - - -
Cervidae 2/25 8 0/16 0 - - - = =
Giraffidae 0/4 0 - - - - 0/1° N/A -
Bovidae 5/94 5.3 0/54 0 - - 0/5" 0 -
Carnivora 10/37 27 0/37 0 3/37 8.1 2/37 27 1/3
Canidae 2/8 25 0/7 0 177 0 0/7 0 0/1
Hyaenidae 1/1 N/A 0/1 N/A 0/1 0 0/1 N/A =
Otariidae 11 N/A 0/1 N/A 0/1 0 0/1 N/A =
Phocidae 0/1 N/A 0/1 N/A 0/1 0 0/1 N/A =
Ursidae 1/12 8.3 0/12 0 2/12 16.6 2/12 8.3 1/2
Felidae 5/10 50 0/10 [ 0/11 0 0/11 0 -
Herpestidae 074 0 0/3 0 0/4 0 0/4 0 -
Chiroptera 0/4 0 0/4 0 - - - - -
Pteropodidae 0/4 0 0/4 0 - - - - -
Diprotodontia 0/2 0 0/1 N/A - - - - -
Macropodidae 0/2 0 0/1 N/A - - - - -
Perissodactyla 2/24 8.3 0/20 0 - - 0/2° 0 -
Equidae 2/20 10 0/20 0 - - 0/2° 0 -
Rhinocerotidae 0/3 0 = = s = = = =
Tapiridae 0/1 N/A - - - - - -
Proboscidea 0/6 0 = =) = = = e -
Elephantidae 0/6 0 = & = = & &3 =
Rodentia 0/2 0 0/3 0 - - 0/2° 0 -
Castoridae 0/2 0 0/2 0 - = 0/2° 0 -
Chinchillidae 0/1 N/A 0/1 N/A = = = & -
Total 28/244 11.5 0/161 0 3/37 8.1 2/49 4.1 1/3

pos., positive; total, total number of individual samples analysed; -, not determined.

N/A, not applicable (only 1 sample analysed).

RT-qPCR, reverse transcripti

Results printed in bold are positive results.
* Liver samples.

itative poly

the order Carnivora with 10/37 (27.0%) positive samples originating
from six different species. Table 1 gives an overview on the findings,
whereas individual data are listed in the Suppl. Table 1.

3.2. RatHEV RNA is detected in a Syrian brown bear sample by RT-PCR

A subset of 161 serum samples, which were selected according to
the availability of sample material, was analysed by the RT-qPCR for
detection of RNA of HEV-1 to HEV-4 (Table 1). None of the investigated
samples was positive in the assay. To allow the detection of hepeviruses
from other species than Orthohepevirus A, two broadly reactive RT-PCR
assays were applied to 37 individual serum samples belonging to ani-
mals of the order Carnivora and to 12 liver samples originating from
different animal species, obtained during necropsy (Table 1). Three
serum samples originating from a South American coati (Nasua nasua),
a bush dog (Speothos venaticus) and a Syrian brown bear (Ursus arctos
syriacus) showed bands of the expected lengths in the NBS-RT-PCR. The
South American coati and the Syrian brown bear were also positive in
the SW-RT-PCR. Attempts to sequence the amplicons were only suc-
cessful for the products of the NBS-RT-PCR and the SW-RT-PCR of the
Syrian brown bear sample, whereas the fainter bands of the other an-
imals could not be sequenced. The analysis of the sequences indicated
the closest relationship to ratHEV strain R68 from the species Ortho-
hepevirus C (Fig. 1A). The serum sample of the female Syrian brown
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bear of zoo A was taken in 2011, when the animal was 22 years old.
This serum sample was negative for HEV-specific antibodies. However,
a second serum sample taken in 2016, before the age-related death of
the animal at 27 years, was positive for HEV-specific antibodies (Suppl.
Table 1).

3.3. RatHEV RNA sequences from wild rats of the same zoo are closely
related to that of the Syrian brown bear

To investigate the source of infection of the bear with ratHEV, rat
samples from the same geographic location were analysed. 20 feeder
rats from zoo A, hold in 2017, were tested negative in the Axiom" HEV-
Ab EIA assay as well as in the SW-RT-PCR (Suppl. Table 2). Additional
samples of 73 wild Norway rats, trapped between 2009 and 2016 in
zoos A and D (located in a distance of 16 km from each other), were
available. HEV-specific antibodies could not be demonstrated in
transudates from the thoracic cavity of these rats using the EIA (Suppl.
Table 2). HEV-RNA could be detected in 8/73 (10.9%) liver samples
using the SW-RT-PCR (Suppl. Table 2). Sequencing of the RT-PCR
products revealed the presence of ratHEV in 7/8 of the RNA-positive
samples (1 positive sample from zoo D could not be sequenced). A
phylogenetic tree was set up for the obtained 279 nt sequences from the
RdRp-encoding region of the HEV ORF1 together with other available
ratHEV sequences, also including previously published sequences from
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(A) 10098 HEV genotype 3a Meng-AF082843
Orthohepevirus HEV genotype 3ra GDC9-FJ906895

HEV genotype 8 BcHEV-48XJ-KX387866
HEV genotype 7a 178C-KJ496143

HEV genotype 1a Burma-M73218

HEV genotype 2a M1-M74506

HEV genotype 6a wbJOY 06-AB602441

HEV genotype 5a JBOAR135-Shiz09-AB573435

HEV genotype 4d T1-AJ272108

M{:avianHEV-USA-ch icken-AY535004
batHEV-BS7-bat-JQ001749

72/88

—
0.1

(B)

Orthohepevirus C 1

ratHEV_KS_17_379-MF480314*
ratHEV_KS_17_373-MF480320*
ratHEV-Mu10-1564-KX774671
ratHEV_KS_17_378-MF480315*
ratHEV_KS_17_376-MF480316*
ratHEV-Mu10-1563-KX774659
ratHEV-Mu09-0434-DEU-2010-rat-JN167538
ratHEV_Ra51-MF480317*

;“30’ ratHEV_Ra5-MF480319*
ratHEV-Mu10-697-Warburg-KX774662
ratHEV-VAS-E3-France-KX774666
ratHEV-strain-LA-B350-rat-KM516906
ratHEV_Ra7-MF480318* | ZooA
Germany ratHEV R63 2009-GU345042
100/97 Germany ratHEV R68 2009-GU345043
;‘1”’ ratHEV-rat-Isolate-R4-GQ504009
ratHEV-ratESOLO-006SF-rat-AB847308
_EatHEV-M1366-Spain-KY938026
= ratHEV-rat-Isolate-R8-GQ504010
_|:ratHEV-KS1 2-1344-Vienna-KX774653
ratHEV-Mu09-0685-DEU-2010-rat-JN167537
ratHEV-KS-14-89-Czech Republic-KY938018
ratHEV-VAS-B1-France-KX774664
ratHEV-ESOLO-014SF-rat-AB847306
ratHEV-ratELOMB-187SF-rat-AB847307
ratHEV-Vietnam-105-rat-JX120573
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Fig. 1. Phylogenetic relationship between the se-
quences from animals of zoos A and D and other HEV
strains. (A) Comparison of reference sequences from
the Genus Orthohepevirus with the derived
from the Syrian brown bear of zoo A (marked by an
arrow). The species Orthohepevirus A, B, C and D are
indicated right and the established genotypes are im-

)! d into the strain d (B) Comparison
of sequences from ratHEV and ferretHEV strains within
species Orthohep C with the from the
Syrian brown bear of zoo A (marked by an arrow).
Sequences newly established in this study are marked
by asterisks. The origin of sequences from zoo A or D as
well as the proposed genotypes of ratHEV according to
Mulyanto et al. (2014) are indicated.

Syrian brown bear showed nt sequence identities of 94.6% to 97.8% to
each other and define a well separated cluster within the ratHEV-clade
(Fig. 1B). A sister cluster is formed by the sequence of an already

2

published strain from the same location and published strains from zoo
D. One of the newly determined ratHEV sequences (Ra7) from zoo A
clusters differently but still within the proposed ratHEV GT1 clade
(Mulyanto et al., 2014), which is typical for European ratHEV strains
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(Ryll et al., 2017). Asian ratHEV sequences and ferretHEV strains are
found in other branches of the tree.

4. Discussion

HEV infections in zoo animals have been investigated scarcely so
far. In a previous study, 38 faecal samples belonging to 22 animal
species from a zoo-like centre in Eastern China were analysed for the
presence of HEV-RNA, revealing a positive result of 28.9% (Zhang
et al., 2008). All detected sequences belonged to HEV-4 and were de-
rived from three deer and two carnivore species. A larger study invol-
ving 244 sera from 66 mammal species from zoos in Germany was in-
itiated here. HEV-reactive antibodies were detected in 11.5% of the
animals belonging to 16 mammalian species out of nine families, in-
dicating that infections with HEV or HEV-like viruses occur in a wide
range of different zoo animal species. These data confirm that from
other published studies: markers of HEV infection have been identified
in suids and cervids, bovids, canids, felids, ursids and equids (Spahr
et al., 2017b). In addition, we demonstrated for the first time the pre-
sence of HEV-specific antibodies in antelopes, hyenas and otariids. The
host spectrum of HEV should be investigated in future studies involving
a broader range of animal species and geographical areas.

Domestic pigs and wild boars are well known reservoirs for zoonotic
HEV-3 and HEV-4. Therefore, the high seroprevalence of 33.3% ob-
tained for the zoo-housed pigs is in line with the expectations. Reported
anti-HEV-IgG seroprevalences in domestic pigs range between 23%
(Argentina) and 100% (USA) (Doceul et al., 2016; Pavio et al., 2010)
and in wild boars between 3% (USA) and 42.7% (Spain) (De Deus et al.,
2008; Dong et al., 2011). Despite the high seroprevalence, we did not
detect HEV RNA in the zoo-housed pigs. Productive infection com-
monly occurs in young pigs and viral excretion decreases with the ap-
pearance of antibodies (McCreary et al., 2008). Zoo-housed pigs usually
have a long lifetime leading to a high median age of the study group,
which could explain the high antibody prevalence and the absence of
HEV RNA. In addition, serum may not represent the best sample ma-
terial for HEV RNA detection as viremia during HEV infection is usually
short (Grierson et al., 2015). Studies investigating younger animals and
other sample types like faeces or liver should increase the chance to
detect HEV RNA and to identify the involved HEV type.

A high seroprevalence of 27% was also identified for zoo-housed
carnivores. For mongooses, which are small wild carnivores, ser-
oprevalences of 21% were reported from Japan (Nakamura et al.,
2006). Seroprevalences up to 21% for pet dogs (Liang et al., 2014) and
30% for pet cats (Mochizuki et al., 2006) have also been described. The
distinct reasons for the high seroprevalence in carnivores are not known
yet. However, virus transmission by ingestion of infected animals seems
to be a reasonable source of infection.

So far, different HEV GT have been identified in carnivores: HEV-3
in mongooses, HEV-4 in leopards and bears and Orthohepevirus C car-
nivore strains in minks and ferrets (Spahr et al., 2017b). Attempts to
detect RNA of HEV-3 and HEV-4 in our carnivore samples failed. In
contrast, RNA of ratHEV was identified in a Syrian brown bear. This
sample was seronegative for HEV, whereas a second serum sample
taken 5 years later was antibody-positive. This might indicate ser-
oconversion due to a ratHEV infection. During this time, no clinical
symptoms were reported by the animal keepers performing daily rou-
tine checks. The distribution of ratHEV infections in carnivores and its
clinical consequences for the animals should be investigated in further
studies.

Different sources for the ratHEV infection of the bear can be ima-
gined. Infections with ratHEV seem to be common in free-living Norway
rats (Rattus norvegicus) in Germany, but also in other parts of the world
(Ryll et al., 2017; Mulyanto et al., 2014). In addition, ratHEV has been
detected in Black rats (Rattus rattus), Bandicoot rats (Bandicota indica)
and Asian musk shrews (Suncus murinus) (Spahr et al., 2017b). No HEV-
specific antibodies were detected in free-living and feeder Norway rats
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in our study. However, ratHEV-RNA was detected in free-living Norway
rats and the identified ratHEV sequences from zoo A were highly similar
to the sequence obtained from the bear. A geographical clustering of
ratHEV sequences from different locations in Germany has been pre-
viously described (Johne et al., 2012). Taken together, the results in-
dicate that free-living Norway rats might have served as a source of
ratHEV infection for this bear. Generally, the distinct host range of
ratHEV is largely unknown. The experimental infection of rhesus ma-
caques (Macaca mulatta) with ratHEV did not result in seroconversion
or virus excretion (Purcell et al., 2011). In contrast, antibodies from
healthy German forestry workers showed a higher reactivity to ratHEV
than to HEV-3 (Dremsek et al., 2012) and ratHEV-reactive antibodies
were recently identified in febrile patients with mild liver dysfunction
from Vietnam (Shimizu et al., 2016). The zoonotic potential and the
spillover potential of ratHEV therefore deserve more attention in future
studies.

5. Conclusion

Our study indicates, that infection of various zoo animals of dif-
ferent mammal species with HEV or HEV-related viruses occurs. The
observed seroprevalences were considerably low, except for suids and
carnivores, which showed rather high antibody detection rates.
Whereas pigs are commonly considered as reservoir animals for HEV,
the reason for the high seroprevalence in carnivores remains unclear.
The identification of ratHEV in a bear indicates that this virus is also
able to infect non-rodent animal species under certain conditions. In the
presented case, an accidental spillover infection from the infected wild
rats to the bear is most likely. Control of pest animals and feed used for
carnivores should be considered in zoos in order to prevent virus
transmissions. Further investigations are needed to prove the role of zoo
animals and especially carnivores as potential reservoirs for HEV or
HEV-related viruses.
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Supplementary Table 1. Detailed data on the prevalence of HEV-specific markers in zoo animals in Germany.

Order Species Scientific name Zoo A Zoo B Zoo C Axiom” HEV-Ab RT-qPCR NBS-RT-PCR SW-RT-PCR
Family (race) EIA
antibody positive / pos. / % pos. / % pos. { % pos. / %
animals per zoo total total total total
Afrosoricida 0/1 - - 0/1 N/A - - - - - -
Tenrecidae Lesser Madagascar Echinops telfairi 0/1 - - 0/1 N/A - - - - - -
hedgehog tenrec
Artiodactyla 11/146 2/4 n7 16/167 9.6 0/98 0 - = 0/8 0
Suidae Aftican bush pig Potamochoerus porcus - 2/4 12 3/6 50 0/6 0 - - - -
pictus
Babirusa Babyrousa babyrussa 0/6 - - 0/6 0 0/6 0 - - 0/1 N/A
Common warthog Phacochoerus africanus - - 1/1 111 N/A 0/1 N/A - - - -
Domestic pig Sus scrofa scrofa 02 - - 0/2 0 0/2 0 - - - -
(Kunekune pig) kunekune
Domestic pig Sus scrofa forma 511 - - 511 45.5 0/11 0 - - 0/1 N/A
(Schwiibisch-Hall) domestica
European wild boar Sus scrofa 01 - - 0/1 N/A 0/1 N/A - - - -
Tayasuidae Collared peccary Pecari tajacu 0/1 - - 0/1 N/A 01 N/A - - - -
Hippopotamidae Pygmy hippopotamus  Choeropsis liberiensis 0/1 - - 0/1 N/A - - - - - -
liberiensis
Camelidae Alpaca Lama pacos domestic 0/11 - - 0/11 0 - - - - - -
Bactrian camel Camelus bactrianus 0/2 - - 0/2 0 - - - - - -
Vicugna Vieugna vicugna 02 - - 0/2 0 - - - - - -
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Addax Addax nasomaculatus 0/1 0/1 N/A - - - - -
Common waterbuck Kobus ellipsiprymnus 0/1 0/1 N/A 0/1 - - - -
Domestic cattle Bos taurus tauris 0/1 0/1 N/A 0/1 - - - -
(Hinterwald cow) hinterwald
Domestic cattle Bos taurus taurus 0/4 0/4 0 0/4 - - - -
(Limpurger cow) limpurger
African buffalo Syncerus caffer nanus - 02 0 0/2 - - - -
European wisent Bison bonasus bonasus - 0/5 0 0/5 - - - -
9/33 10/37 27 0/35 337 8.1 2/37 5.4
Fennec fox Vulpes zerda 0/1 0/1 N/A 0/1 0/1 0 0/1 N/A
Maned wolf Chrysocyon brachyurus 212 2/3 66.7 0/3 /3 0 0/3 0
Bush dog Speothos venaticus 0/3 0/3 0 0/3 12 50 0/2 0
European grey wolf Canis lupus lupus - 0/1 N/A 0/1 0/1 0 0/1 N/A
Hyaenidae Spotted hyena Crocuta crocuta - - 171 11 N/A 0/1 N/A 0/1 0 0/1 N/A
Otariidae California sea lion Zalophus californianus 1/1 - - 1711 N/A 0/1 N/A 0/1 0 0/1 N/A
Phocidae Harbor seal Phoca vitulina - - 0/1 0/1 N/A 0/1 N/A 0/1 0 0/1 N/A
Ursidae Syrian brown bear lrsus arclos syriacus 1/4% - - 1/4%* 25 0/4 0 1/4%% 25 1/4%% 25
Spectacled bear Tremarctos ornatus 0/2 072 0 02 0/2 0 0/2 0
Polar bear Ursus maritimus 0/1 0/1 N/A 0/1 0/1 0 0/1 N/A
South American coati Nasua nasua 0/5 0/5 0 0/5 1/5 20 1/5 20
Felidae Jaguar Panthera onca 0/1 0/1 N/A 0/1 N/A 0/1 0 0/1 N/A
Persian leopard Panthera pardus 2/3 = = 2/3 66.7 0/3 0 0/3 0 0/3 0
saxicolor
Snow leopard Uncia uncia 3/5 - - 3/5 60 0/5 0 0/5 0 0/5 0
Serval Leptailurus serval 0/1 - - 0/1 N/A 0/1 N/A 0/1 0 0/1 N/A
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Supplementary Table 1 (cont.). Dctailed data on the prevalence of HEV-specific markers in zoo animals in Germany.

Rodentia 0/3 - - 0/3 0 0/3 0 - - 0/2
Castoridae American beaver Castor canadensis 072 - - 0/2 0 0/2 0 - - 0/2
Chinchillidae Plains viscacha Lagostomus maximus 0/1 - - 0/1 N/A 0/1 0 - - -
total positive / 22/216 2/4 4/24 28/244 11.5 0/161 0 3/37 8.1 2/49
investigated

samples

pos., positive; total, total number of samples analysed; -, not determined;

*_seroconversion from 2011-2016; *#, Sequence from a Syrian brown bear (GenBank Acc.-No. MF480313) was identified as ratHEV.

N/A, not applicable (only 1 sample analysed);

RT-qPCR, reverse transcription-quantitative polymerase chain reaction; NBS-RT-PCR, nested broad-spectrum RT-PCR; SW-RT-PCR, (rat)HEV-specific RT-PCR.
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2.4 Paper IV
Ryll, R., Eiden, M., Heuser, E., Weinhardt, M., Ziege, M., Hoper, D., Groschup, M.H.,
Heckel, G., Johne, R., Ulrich, R.G., 2018. Hepatitis E virus in feral rabbits along a rural-

urban transect in Central Germany. Infection, genetics and evolution 61, 155-159.
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ARTICLE INFO ABSTRACT

Rabbit associated genotype 3 hepatitis E virus (HEV) strains were detected in feral, pet and farm rabbits in
different parts of the world since 2009 and recently also in human patients. Here, we report a serological and
molecular survey on 72 feral rabbits, collected along a rural-urban transect in and next to Frankfurt am Main,
Central Germany. ELISA investigations revealed in 25 of 72 (34.7%) animals HEV-specific antibodies. HEV
derived RNA was detected in 18 of 72 (25%) animals by reverse transcription-polymerase chain reaction assay.
The complete genomes from two rabbitHEV-strains, one from a rural site and the other from an inner-city area,
were generated by a combination of high-throughput sequencing, a primer walking approach and 5- and 3"-
rapid amplification of cDNA ends. Phylogenetic analysis of open reading frame (ORF)1-derived partial and
complete ORF1/0ORF2 conc d coding es indicated their similarity to rabbit-associated HEV strains.
The partial sequences revealed one cluster of closely-related rabbitHEV sequences from the urban trapping sites
that is well separated from several clusters representing rabbitHEV sequences from rural trapping sites. The
complete genome es of the two novel strains indicated similarities of 75.6-86.4% to the other 17
rabbitHEV sequences; the amino acid sequence identity of the concatenated ORF1/ORF2-encoded proteins
reached 89.0-93.1%. The detection of rabbitHEV in an inner-city area with a high human population density
suggests a high risk of potential human infection with the zoonotic rabbitHEV, either by direct or indirect
contact with infected animals. Therefore, future investigations on the occurrence and frequency of human in-
fections with rabbitHEV are warranted in populations with different contact to rabbits.

Keywords:

European rabbit (Oryctolagus cuniculus)
Hepatitis E virus

Germany

Inner-city area

Rural habitat

Zoonosis

1. Introduction

Hepatitis E virus (HEV) is the causative agent of acute hepatitis in
humans and belongs to family Hepeviridae, genus Orthohepevirus, species
Orthohepevirus A (Smith et al., 2014). The small, non-enveloped virus
contains a single-stranded RNA genome of positive polarity with three
major open reading frames (ORF; Fig. S1). HEV was subdivided into
seven major genotypes: Genotypes 1 and 2 are only found in humans,
transmitted via fecal-oral route. Genotypes 5 and 6 were exclusively
detected in wild boar, whereas genotypes 3 (HEV-3), 4 (HEV-4) and 7

(HEV-7) are found to cause zoonotic infections in humans. The re-
servoir of HEV-7 is the camel, whereas HEV-3 and HEV-4 have been
found in different mammals like pig, deer, rabbit and wild boar (Smith
et al., 2014, 2016).

Rabbit-associated HEV strains were first described in farmed rex
rabbits, a breed of European rabbit (Oryctolagus cuniculus) in China
(Zhao et al., 2009) and thereafter in rabbit breedings in Mongolia
(Jirintai et al., 2012), USA (Cossaboom et al., 2011), The Netherlands
(Burt et al., 2016), Korea (Ahn et al., 2017) and in pet rabbits in Italy
(Caruso et al., 2015) and The Netherlands (Burt et al., 2016).

* Corresponding author at: Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Siidufer 10, 17493 Greifswald-

Insel Riems, Germany.
E-mail address: Rainer.Ulrich@fli.de (R.G. Ulrich).
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RabbitHEV strains belong to zoonotic HEV-3 genotype, but form a clade
that is well separated from other HEV-3 subtypes and HEV genotypes
(Smith et al., 2016). Their zoonotic character was shown by experi-
mental infection of non-human primates (Liu et al., 2013), and detec-
tion of related rabbitHEV sequences in rabbits and several acute and
chronically infected humans in France (Izopet et al., 2012; Abravanel
et al., 2017).

The average seroprevalence of the human population in Germany
was found to be 16.8% (Faber et al., 2012) and the number of recorded
hepatitis E cases per year is increasing since 2001 (Robert Koch-
Institute, 2017). Zoonotic HEV-3 strains have been detected with high
prevalence in domestic pig, wild boar, red and roe deer (Bichlein et al.,
2013; Anheyer-Behmenburg et al., 2017). HEV infections were ser-
ologically also detected in primates and other zoo animals in Germany
(Spahr et al., 2017a, 2017b). In addition, ratHEV was found to be
broadly distributed in Norway rats in Germany (Johne et al., 2010; Ryll
et al., 2017). Furthermore, rabbitHEV RNA has been detected in feral
rabbits from Germany (Eiden et al., 2016; Hammerschmidt et al.,
2017).

Here we describe a serological and molecular HEV survey of rabbits
collected along a transect in Central Germany including an inner-city
area with high human density.

2. The study

Seventy-two feral European rabbits were collected at three rural (R)
and eight urban (U) sites (Fig. 1) during October 2012-March 2013 as
part of a regular hunting (V54-19¢ 20/15 -F 104/59), organized by the
city of Frankfurt (for urban sites) and conducted by local hunters
(hunting license ID 1000250221).

Serological screening by commercial antibody ELISA (HEV Ab-
ELISA kit; Axiom, Biirstadt, Germany) revealed 25 of 72 (34.7%) rab-
bits from ten sites being anti-HEV antibody positive (Tables 1 and 2).

Infection, Genetics and Evolution 61 (2018) 155-159

Table 1
Results of the serological and RT-PCR investigations of rabbits collected in and
around Frankfurt am Main, Germany.

Results

No of positive/total no of tested

animals

Habitat  Site* No of animals  Sex Antibody SW-RT- t RT-
per site (m/f)  ELISA PCR' PCR”

Rural 1 17 413 7/17 117 0/17
Rural 2 9’ 6/2 4/9 4/9 4/9
Rural 3 8 5/3 2/8 4/8 4/8
Subtotal 34° 15/18 13/34 9/34 8/34
Urban 4 2 11 2/2 172 0/2
Urban 5 9 2/7 1/9 0/9 0/9
Urban 6 1 0/1 0/1 11 11
Urban 7 6 1/5 1/6 0/6 0/6
Urban 8 4 173 2/4 3/4 1/4
Urban 9 6 2/4 4/6 0/6 0/6
Urban 10 32 2/0 1/3 2/3 2/3
Urban 11 7 3/4 1/7 2/7 2/7
Subtotal 38° 12/25 12/38 9/38 6/38
Total 72 27/43  25/72 18/72 14/72

(34.7%) (25%)

m, male; f, female.
No, number.
! SW-RT-PCR (Wolf et al., 2013).
2 SYBR-Green rt. RT-PCR (Vina-Rodriguez et al., 2015).
3 Total number of animals including one animal with unknown sex.
4 Including two animals with unknown sex.
* For additional information see Fig. 1.

Fig. 1. Location of trapping sites 1 to 11 along a transect next to Frankfurt am Main, Germany. Trapping sites 1-3 were defined as “rural” trapping sites and sites 4 to
11 as “urban” trapping sites (consequently, rabbits from these sites were designated as “R” or “U” animals, see Table 2). (A) shows a more detailed map of the
trapping sites around Frankfurt am Main and (B) shows the trapping sites within the inner-city area of Frankfurt am Main.

DK, Denmark; NL, The Netherlands; BE, Belgium; LU, Luxemburg; FR, France; CH, Switzerland; AT, Austria, CZ, Czech Republic; PL, Poland.
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Table 2

Results of antibody ELISA, SYBR-Green based real-time RT-PCR (rt RT-PCR),
SW-RT-PCR and the corresponding accession numbers for partial and complete
genome sequences for all rabbits found to be positive in at least one assay.

Sample Site Antibody ELISA rt RT-PCR' SW-RT-PCR  Acc.no.

R3 1 pos neg neg -

R6 1 pos neg neg -

R8 1 pos neg neg -

R9 1 pos neg neg -

R12 1 pos neg neg -

R 14 1 pos neg neg -

R15 1 pos neg neg -

R17 1 neg neg pos MF480300
R 30 2 pos pos pos MF480301
R 31 2 neg pos pos MF480302
R33 2 pos pos pos MF480303
R 36 2 pos neg neg -

R37 2 pos neg neg -

R 38 2 neg pos pos MF480304
R 40 3 pos neg neg -

R 41 3 neg pos pos MF480305
R 42 3 neg pos pos MF480297*
R 44 3 pos pos pos MF480306
R 46 3 neg pos pos MF480307
U1 4 pos neg neg -

u2 5 pos neg pos MF480309
un 5 pos neg neg -

ul12 6 neg pos pos identical to U 19
uile 7 pos neg neg -

u19 8 neg neg pos MF480308
u20 8 pos neg neg =

U22 8 neg pos pos identical to U23
u23 8 pos neg pos MF480299
U 30 9 pos neg neg -

U3l 9 pos neg neg -

u32 9 pos neg neg -

u33 9 pos neg neg -

u37 10 pos neg pos MF480310
U39 10 neg pos pos MF480311
U 40 1 pos pos pos MF480312
U 46 11 neg pos pos MF480298"

Acc.no., accession number at GenBank; neg, negative; pos, positive.

v Samples with threshold cycle (Ct) values > 35 were counted as negative,
samples with Ct values < 35 as positive; samples R42 and U46 were selected for
complete genome determination due to a high viral RNA load.

2 Complete genomes determined.

RNA was extracted from liver tissue by Qiazol reagent (QIAGEN,
Hilden, Germany) and screening by a conventional RT-PCR, targeting a
RNA-dependent RNA-polymerase (RdRp)-encoding region between
nucleotides 4367 to 4649 (Wolf et al., 2013; see Table S1; numbering
according rabbitHEV reference strain 3ra GDC9, accession number
FJ906895), detected HEV-RNA in 18 of 72 (25%) animals (Tables 1 and
2). Seven of 18 RT-PCR-positive rabbits were also positive in antibody
ELISA (Table 2).

RT-PCR products were sequenced using BigDye Terminator
1.1 Cycle Sequencing-Kit (Applied Biosystems, Darmstadt, Germany)
and sequences were deposited to GenBank (for accession numbers see
Fig. 2A). Phylogenetic analyses, including reference sequences for HEV
genotypes and other hepeviruses (Smith et al., 2014, 2016), were done
by maximum-likelihood- and Bayesian-methods via CIPRES portal
(Miller et al., 2010) and subsequent generation of consensus trees. The
phylogenetic tree for the partial RdRp-encoding nucleotide sequence
shows a clade for the rabbitHEV-sequences within HEV-3 cluster, but
well separated from sequences of other HEV-3 subtype strains and other
HEV genotypes (Fig. 2A). The rabbitHEV nucleotide and amino acid
sequences from rabbits collected in the inner-city area showed a high
similarity to each other (94.3-98.6% and 95.7-100%, respectively;
Table S2). This high similarity is also reflected in the phylogenetic tree
(Fig. 2A, clade U). Sequences from rural sites were more divergent as
documented in their positions in the phylogenetic tree (Fig. 2A, clades

157
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RI - RIV) and the similarity values (Table $3; 80.1-99.6%; 82.8-100%).

To generate the complete rabbitHEV genomes from one urban an-
imal and one rural animal, a SYBR-Green based real-time RT-PCR (rt
RT-PCR), targeting the RdRp-encoding sequence between nucleotides
4402 and 4684 (Vina-Rodriguez et al., 2015) was used to select animals
with the highest viral RNA load. Positive samples were identified by
melting curve analysis and sequencing of the amplicon. Thirteen of 72
samples from six trapping sites were rt. RT-PCR positive, indicating a
lower sensitivity of the rt. RT-PCR as compared to the conventional RT-
PCR (Tables 1 and 2). Similar discordant results between a rt. RT-PCR
and a conventional RT-PCR were previously observed in a molecular
survey on ratHEV (Ryll et al., 2017). These discrepancies might be
explained by the high divergence of the HEV sequences in the primer
binding region of the rt. RT-PCR assay. The rabbitHEV-strains R42 (site
3) and U46 (site 11) were selected due to the high viral RNA load and a
high-throughput sequencing approach was performed as described
previously (Juozapaitis et al., 2014). This resulted in four consensus
sequences around positions 500-1000 and 6000-6500 (numbered ac-
cording to reference strain 3ra-GDC9, accession number FJ906895).
Thereafter, the complete genome sequences were generated by 5- and
3" Rapid Amplification of ¢cDNA Ends (RACE) analysis (5"/3" RACE
System, Invitrogen, Carlsbad, CA, USA) and primer-walking approach
(for primers see Table S1). Both complete sequences have a length of
7263 nucleotides and a nucleotide sequence identity of 86.4% to each
other. The nucleotide and amino acid sequence similarities to the re-
ference strain and further 16 rabbitHEV sequences were 75.6-86.4%
and 89.0-93.1%, respectively.

Prediction of potential ORFs resulted in the identification of ORFs 1,
2 and 3 in the expected regions of the genome, in the expected reading
frames and with the expected overlapping pattern (Fig. S1). Simplot
analysis revealed that most parts of the concatenated ORF1/ORF2 re-
gion of the two novel strains R42 and U46 share a nucleotide and amino
acid sequence similarity of 62-89% and 69-99%, respectively, to the
other rabbitHEV, HEV-3 and HEV genotype sequences (Fig. S2A and B).
Nucleotide (and amino acid) sequences of both strains showed a lower
level of similarity within ORF1 at the X-domain and the helicase pro-
tein-encoding (helicase) region (Fig. S2; regions I and II). A 93-nu-
cleotide insertion, compared to other HEV 3 strains, was found in the X-
domain region of all rabbitHEV strains, including the two novel strains
R42 and U46. In contrast, for three regions the two novel strains
showed a different level of sequence similarity to the other sequences
(Fig. S2; regions a, b and c).

Phylogenetic analysis of the complete genomes and ORF1 and ORF2
nucleotide sequences separately as well as the amino acid sequences
deduced from concatenated ORF1/ORF2 and separate ORF1 and ORF2
of rabbitHEV showed a clustering of the novel sequences (R42 and U46)
with a previously determined sequence from Germany, other rabbit-
and human patient-derived rabbitHEV-sequences as a separate sub-
cluster within the HEV-3 clade (Figs. 2B and S3A-F). The ORF2- and
ORF3-based amino acid sequence phylogenetic trees showed slightly
different positions of the R42- and U46-derived sequences (Figs. S3D
versus S3F).

3. Conclusions

The serological and molecular survey indicated a high prevalence of
rabbitHEV in rabbits from Central Germany. Frequent detection and
geography-based clustering of rabbitHEV sequences suggest a virus
circulation in the local rabbit populations. The close similarity of se-
quences detected in the inner-city area of Frankfurt am Main may in-
dicate a bottleneck in the rabbit population caused by immigration. The
zoonotic potential of rabbitHEV warrants future investigations in
human populations with increased risk of exposure due to contact to
rabbits.
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Fig. 2. Consensus phylogenetic trees of the novel rabbitHEV sequences, Orthohepevirus A reference sequences proposed by Smith et al.,
1 with 10,000,000 generations and a burn-in of 25%, and Maximum-Likelihood analysis with 1000 bootstraps and

rabbitHEV- es based on Bayesi ly
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2016, and additional

50% cut-off. In (A) the tree for the RdRp-encoding ORF 1 screening fragment, nucleotide positions 4341-4623 (numbering according to rabbitHEV reference strain
3ra GDC9, accession number FJ906895), and in (B) the tree of the concatenated complete coding part of ORF1 and ORF2 are shown. Sequences of the rabbitHEV
cluster are highlighted by a grey square. Posterior probability values/bootstrap values > 50 are given at the supported nodes. Novel sequences are given in bold and

labeled by an asterisk. For location information, see Fig. 1.
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Table S1: Primers used for screening SW-RT-PCR and generation of complete rabbitHEV genome sequences.

Strain Primer/-pair Primer sequence Annealing Reference
temperature
R42/U46 | 5’-RACE-100as 5’-GCC AAG GCA GAATTG GCC G-3’ 60°C
R42/U46 | 5-RACE-200as 5’-AAA GAT CTC CGG GCG AAA G-3’ 58°C This paper
R42/U46 | 5’-RACE-300as 5’-CCT CCC AAC GGG TCG AAG A-3’ 50°C
R42/U46 15s 5’-ATG TGG TCG ATG CCA TGG AGG CCC A-3’ 58°C lzopet et al,, 2012
R42/U46 15as 5’-CTC ATT ATG TAT AAC ACG TTG AAT AG-3’ !
R42 152s 5’-AGA CAG ATATTC TTA TCA ATT TAA TGC AAC CCC GC-3’ 58°C lzopet et al,, 2012
R42 152as 5’-GCC GCA AGT AAC ACG GGC GGC CGT GTG AGG TGT GAA-3’ i
R42 R42-1080s 5’-CTT GTT GCT AAC GAG GGC TGG AA-3’ 58°C THis papar
R42 R42-2000as 5’-TGT AAC CAY AGC CCR CCR ACA A-3’
R42 R42-2000s 5’-AGA TAC AAC AGG ACT ATC CAG C-3’ . .
. = 58°C This paper
R42 R42-2600as 5’-TCA GGG GCA ACT GCA TGR ATG AT-3
R42 R42-2400s 5’-CAC TTC TCA GGC TAG GGT TCG-3’ 58°C ThiiE
R42 R42-3100as 5’-GTC ACC AAG GAG ATG CAC AGA-3’
R42/U46 3207s 5’-AAG TCT AGG TCT ATA CAG CAG GG-3’ 58°C Izopet et al., 2012
R42/U46 rHEV-SWas 5’-GGY TCA CCR GARTGY TTY TTC CA-3’ 56°C Wolf et al., 2013
R42 R42-3900s 5’-GCC TGC TGT ACATGC CAC AGG A-3’ o .
- . 58°C This paper
R42 R42-4200as 5’-CGT TAT TCG GGA CAC ATC TCG G-3
R42/U46 rHEV-SWs 5-GCNCTGTTY GGC CCN TGG TT-3’ .
R42/U46 | rHEV-SWas 5"_GGY TCA CCR GAR TGY TTY TTC CA-3’ 0L Wethetal..2013
R42/U46 R42-4626s 5’-TGG ATT CTA CAG GCC CCA AAG GA-3’ 58°C THiS baier
R42/U46 R42-5500as 5’-GGC AGC GGR GGG GCG CTG GGA CA-3’
R42/U46 R42-5500s 5’-CCC CCT TGG CTC CTCTTG GCG-3’ 58°C This aier
R42/U46 R42-6560as 5’-CTG GTT ATC ATA GTC CTG GAT G-3’
R42 R42-6272s 5-TTT ACC GGG ATG AAT GGG GT-3’ 58°C THiS abar
R42/U46 R42-7268as 5’-TTT TTC CAG GGG AGC GCG-3’
R42/U46 | 3’-RACE-240s 5-ATT TCT GCA GTC GGT GTC CT-3’ 52°¢ THisapEs
R42/U46 | 3’-RACE-100s 5-GCA GGG TTG TGC TTT CCA AT-3’
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Table S2: Nucleotide and amino acid sequence similarity (in %) of the novel rabbitHEV sequences at each trapping site in Germany.

Nucleotide | Amino acid Clade
Trapping site* Animal number M%nﬂmmm“ sequence | sequence .
similarity | similarity | (Fi9-2A)
1 R17 1 - - RII
2 R30, R31, R33, R38 4 83.7-97.9 86.2-97.9 RI, RII
3 R41, R42, R44, R46 4 86.2-99.6 | 90.4-100 RIl, RIV
4 U4 1 - - U
5 U2 1 - - U
6 u12 1 - - u
7 =
8 u19, U22, Uz23 3 96.8-98.2 97.9-98.9 U
9 s
10 U37, U39 2 98.2 100 u
11 U40, U46 2 98.6 96.8 u

R, rural site; U, urban site

*For details see Fig. 1
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Figure S1: Genome organization and localization of major predicted open reading frames (ORFs) for
the two novel complete genomes of rabbitHEV (R42, MF480297 and U46, MF480298). Both genomes
have the same length and positions of the three major ORFs.

Nucleotide numbering according to rabbitHEV reference strain 3ra GDC9, accession number
FJ906895.

(NCR; Non coding region, Mt, methyltransferase; Y, Y-like domain; Prot?, papain-like cysteine
protease; X?, X domain/ADP-ribose-binding module; Hel, Helicase; RdRp, RNA-dependent RNA
polymerase; CP, capsid protein; VP, viroporin (Johne et al., 2014; Ding et al., 2017).

VP
5192 5560
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Prot? Hel
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Figure S2: Simplot analysis of concatenated open reading frame (ORF) 1/ORF2 nucleotide (A) and
amino acid sequences (B) of the novel rabbitHEV strains R42 (MF480297, red) and U46 (MF480298,
blue) compared with rabbitHEV reference strain 3ra GDC9, accession number FJ906895, other
rabbitHEV, HEV-3 and HEV genotype sequences.

The concatenated ORF1/ORF2 nucleotide and amino acid sequences were compared with rabbitHEV,
other HEV-3 and HEV genotype strain sequences given in Figure 2B. For Simplot analysis with a
window size of 100 nt and a step size of 25 nt, scripts were written in R (R Core Team, 2015). A
schematic representation of ORF1 and ORF2 coding regions is shown with putative functional
domains of nonstructural proteins encoded by ORF1 (Mt, methyltransferase; Y, Y-like domain; Prot?,
papain-like cysteine protease; X?, X domain/ADP-ribose-binding module; Hel, Helicase; RdRp, RNA-
dependent RNA polymerase), ORF2 (CP, capsid protein) and ORF3 (VP, viroporin). The overlapping
ORF3 and the encoded proteins are indicated by dotted lines and a dotted square, respectively.
Regions where the nucleotide or amino acid sequences of the two novel strains R42 and U46 show
an almost identical low level similarity to all other sequences are labeled by “I” and “1I”, whereas
regions with a different level of sequence similarity of the two novel strains to the other sequences
were labeled by “a”, “b” and “c”.
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Figure S2 (continued)
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Figure S3: Consensus phylogenetic trees based on Bayesian analyses with 10,000,000 generations
and a burn-in of 25%, and Maximum-Likelihood analysis with 1,000 bootstraps and 50% cut-off of the
complete coding ORF1 on nucleotide (A) and amino acid (B) level, the complete ORF2 on nucleotide
(C) and amino acid (D) level and the complete ORF3 on nucleotide (E) and amino acid (F) level of the
two novel rabbitHEV genomes from Germany, additional rabbitHEV-sequences and HEV reference
sequences taken from (Smith et al., 2014, 2016). The rabbitHEV-clade is highlighted by a grey square.
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Figure S3 (continued)
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Figure S3 (continued)
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Figure S3 (continued)
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Figure S3 (continued)
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Figure S3 (continued)
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3. Results and Discussion

3.1. Detection and typing of HEV infections
3.1.1 Prevalence of anti-HEV antibodies and HEV-RNA detection rates

The majority of surveillance studies are based on serological investigations and indirectly
reflect the occurrence of HEV (for review see (Spahr et al.,, 2018)). Serological
investigations of several mammal species from Germany, including different zoo animals,
and two rat species from European countries detected anti-HEV antibodies with different
prevalences (PAPER I1-1V). These studies were done by using a commercially available,
broadly reactive double antigen sandwich anti-HEV antibody ELISA (Axiom Diagnostik,
Burstadt, Germany). This assay used a recombinant CP of HEV-1 and can be applied for
different mammal species, but did not differentiate between IgM and IgG antibodies. HEV-
RNA was detected in several small mammal populations from Germany (PAPER I, Figure
2; PAPER II, Figure 3 and PAPER 1V, Figure 1) and Europe (PAPER I, Figure 2 and
PAPER 11, Figure 3). The in-house assay used for comparative studies is based on a
truncated variant of ratHEV ORF2-encoded CP (Dremsek et al., 2012). Serological
investigation of rabbits in other studies used antigens expressed by parts of the ORF2 and
ORF3 of HEV-1 or HEV-3 (Table 1).

Presence of HEV-RNA was evaluated by different conventional and real-time RT-PCR
protocols, namely three different conventional assays and two real-time RT-PCR assays
(PAPER I - PAPER 1V). The conventional assays are broad-spectrum RT-PCRs targeting
regions within the ORF1 coding region (Drexler et al., 2012, Johne et al., 2012, Wolf et al.,
2012), whereas the real-time assays are specific for genotypes HEV-1 to HEV-4 or ratHEV
(Johne et al., 2012, Jothikumar et al., 2006).
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Table 1. Rabbit HEV-RNA and anti-HEV antibody detection in wild, breeding and pet rabbits from

different countries.

HEV-
Type of RT-PCR RNA HEV- Antibody | Seropre
Country ] ] o Reference
population | results | detection | genotype | reactivity | valence
rate
o pet 8/35 22.8% HEV-3ra n.d. n.d.
The
farm 0/10 0% - n.d. n.d. Burt et al., 2016
Netherlands _
wild 23/62 37.1% HEV-3ra n.d. n.d.
farm 017 n.d. - 71206 3.4% )
Italy Di Bartolo et al., 2016
pet 0/8 n.d. - 8/122 6.5%
51/139 36.7% .
. ) Eiden et al., 2016;
] (rabbit) (rabbit) .
Germany wild 29/801 3.6% HEV-3ra Hammerschmidt et al.,
14/624 2.2%
2017
(hares) (hares)
farm 14/200 % HEV-3ra n.d. n.d.
France _ 1zopet et al., 2012
wild 47/205 22.9% HEV-3ra n.d. n.d.
J. Geng etal., 2011; Y.
Geng et al., 2011,
China farm 212/2247 9.4% HEV-3ra | 546/1759 31% Jirintai et al., 2012; Xia
et al., 2015b; Zhao et
al., 2009
USA farm 14/85 15.3% HEV-3ra 31/85 36.4% | Cossaboom etal., 2011

n.d.: not determined

The investigation of different zoo animal species for anti-HEV antibodies by using the
AXIOM ELISA revealed an average prevalence of 11.5% (28/244; PAPER 111, Table 1).
In contrast to the other investigated species, suid and carnivore species had a higher anti-
HEV antibody prevalence of 33% and 27%, respectively (PAPER 111, Table 1 and

Supplementary Table 1). Different suid species most likely represent reservoir hosts for

members of the species Orthohepevirus A and are therefore highly susceptible for HEV

infection (Caruso et al., 2017; Johne et al., 2014a). In line with the high seroprevalence in

carnivore species kept in zoos, investigations of different wild and domestic carnivore

species from Brandenburg, Germany, including cats, dogs, raccoon and raccoon dogs,
revealed an anti-HEV antibody prevalence of 53.8% (Daehnert et al., 2018; Table 2).
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Table 2. Detection in different carnivore species populations from four countries.

3. Results and Discussion

HEV-RNA .
. Type of RT-PCR . HEV- Antibody Seropre
Country Species . detection . Reference
population results ; genotype reactivity valence
rate
Red fox
. Bodewes et
(Vulpes wild 2/13 15.4% HEV-C2 n.d. -
al., 2013
The vulpes)
Netherlands Ferret .
Raj et al.,
(Mustela pet 4/43 9.3% HEV-C2 n.d. -
. 2012
putorius)
Ferret .
Lietal,
(Mustela pet 6/85 7.1% HEV-C2 n.d. -
] 2015
putorius)
Japan* Nakamura
Mongoose
. et al., 2006,
(Herpestes wild 7/309 2.2% HEV-3 21/100 21% o
) . Nidaira et
javanicus)
al., 2012
Mink
(Neovison farm 4/318 1.2% HEV-C2 n.d. -
vison) Krog et al.,
Denmark
Mink 2013
(Neovison wild 0/89 0% n.d. -
vison)
. Dog** (not Zhang et
China pet 0/101 0% 21/101 17.8%
reported) al., 2008

n.d.: not determined; *ferrets are nonindigenous in Japan and the investigated ferrets were imported from the USA, New
Zealand and Canada or of unknown origin; ** specie of the investigated dogs were not reported by Zhang et al., 2008

In total, 8.1% (3/37) of the carnivore samples revealed detectable HEV-RNA (PAPER I11,
Supplementary Table 1). HEV-RNA was detected in one of two Bush dogs (Speothos
venaticus), one of four Syrian brown bears and in one of five South American coati (Nasua
nasua). The low detection rates in carnivore species from the zoos are in line with other
studies, investigating the presence of HEV-RNA in carnivore species (Bodewes et al.,
2013, Raj et al., 2012, Li et al., 2015, Nakamura et al., 2006, Nidaira et al., 2012, Krog et
al., 2013, see Table 1). In addition to the detection of HEV-3 in wildlife Mongoose
(Herpestes javanicus), HEV-4 was identified in an Asiatic black bear (Selenarctos
thibetanus) and a Clouded leopard (Neofelis nebulosa) kept in zoos (for Review see Spahr

etal., 2018).

The anti-HEV antibody prevalence in European rabbits from in and around Frankfurt am
Main, Germany, reached approximately 35% (PAPER 1V, Table 1). A slightly higher anti-
HEV antibody prevalence was detected at the rural trapping site (38%, 13/34) in contrast
to the urban trapping site (31.6%, 12/38) (PAPER 1V, Table 1). The seroprevalence in
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rabbits from the rural trapping site was similar to the seroprevalence from wildlife rabbits
from the Netherlands (37.1%, 23/62), but the average seroprevalence was higher compared
to other rabbits originating from wild life, breeding and pet populations (see Table 1). The
analysis of rabbits by using a RT-PCR (Wolf et al., 2013) and a SYBR-green based RT-
gPCR (Vina-Rodriguez et al., 2015) resulted in 25% (18/72; RT-PCR) and 19.4% (14/72;
RT-gPCR) HEV-RNA positive animals (detection rate of 25%; PAPER 1V, Table 1). All
of the HEV-sequences were identified as rabbitHEV. The difference between the detection
rate at the rural (26.5%, 9/34) and the urban (23.6%, 9/38) trapping sites was very low. The
average HEV-RNA detection rate observed here is in line with a study in wild rabbits from
the Netherlands, but differ to other studies with a larger number of investigated animals
(see Table 1).

A subset of rats was investigated by the AXIOM ELISA and by ratHEV-specific ELISA.
Only 3.1% (3/414) of Norway rat sera showed a specific reaction in the commercial ELISA
(PAPER 11 and unpublished data). In contrast to these results, the analysis of Norway rats
from different countries from Europe by an in-house ELISA, based on a ratHEV CP
antigen, showed a prevalence of 28% (32/114, Bernstein, 2013). The AXIOM ELISA
detected anti-HEV antibodies in only 5.2% (6/114) of the same rats. Only two animals
showed a reactivity in both ELISAs. Thereby, the comparison of the results of the
serological investigations suggested a higher sensitivity of the in-house ELISA than the
AXIOM ELISA. In line, a serological study of Norway and Black rats from Lithuania by
AXIOM ELISA detected no anti-HEV positive animals, whereas an in-house ELISA using
a yeast expressed truncated ratHEV CP variant indicated a seroprevalence of 31.2%
(Simanavicius et al., 2018). The reason for a lower sensitivity of the AXIOM ELISA (HEV-
1 antigen) than that of the ratHEV antigen based ELISAs (HEV-CL1 antigen) in detecting
ratHEV-specific antibodies is the high aa sequence divergence of the CP between HEV-
strains of the species Orthohepevirus C and Orthohepevirus A (40%, PAPER I,
Supplementary Table 3). Therefore, the AXIOM ELISA is not suitable for highly sensitive
serological detection of antibodies raised against non-Orthohepevirus A species strains in

rodents.

HEV-RNA detection in rats (Norway and Black rats) was done by using two RT-PCR
assays targeting the RARP coding region of the ORF1 of HEV (PAPER 11, Figure 2), i.e.
a one-step RT-PCR (Wolf et al., 2013) and a broadly reactive nested RT-PCR (Johne et al.,
2010b). In total, 12.4% (63/508) of the investigated rats were positive for HEV-RNA by at
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least one of RT-PCR assays (PAPER 11, Table 2). The detection rate of the nested RT-
PCR (9%, 20/221) was slightly higher than that of the one-step RT-PCR (7.7%, 17/221)
(PAPER 11, Table 2). The detection rates of ratHEV-RNA observed here are in line with
investigations of rats from eight other countries (Table 3). Similar results were obtained
during the HEV-RNA testing of three carnivore species. The nested RT-PCR was able to
detect HEV-RNA in one additional sample compared to the one-step RT-PCR (PAPER
111, Supplementary Table 1). These discrepant results might be explained by the higher
sensitivity of the nested RT-PCRs to amplify even low amounts of viral RNA.

Table 3. Results of ratHEV RT-PCR and anti-HEV antibody detection in rats from eight
countries.

ratHEV-
Country RT-PCR RNA_\ Antit?o.dy Seroprevalence Reference
results detection | reactivity
rate
China 12/59 20.3% 166/713 23.3% W. Lietal., 2013
Vietnam 1/5 20% n.d. n.d. T.C. Lietal, 2013b
Mulyanto et al., 2013;
Indonesia | 99/611 16.2% 168/611 27.5% Mulyanto et al., 2014;
Primadharsini et al., 2018
France 12/81 14.8% n.d. n.d. Widen et al., 2014
Johne et al., 2012; Johne et
Germany 19/183 10.4% 36/153 23.5% al., 2010a; Johne et al.,
2010b
Denmark 1/11 9.1% n.d. n.d. Wolf et al., 2013
Lithuania 9/109 8.3% 13/109 11.9% Simanavicius et al., 2018
USA 2/134 1.5% 105/134 78.3% Purcell et al., 2011

n.d. not determined

Initial testing of nearly 3000 rodents by another broadly reactive, nested ORF1-specific
RT-PCR (Drexler et al., 2012) resulted in the detection of HEV-RNA in 13 common voles
(Microtus arvalis) and one bank vole (Myodes glareolus) (PAPER 1, Table 1). The
obtained HEV-sequences shared the highest similarities towards an unassigned kestrel-
derived HEV-strain, obtained from a faecal sample of a bird of prey (Reuter et al., 2016a),
and HEV-sequences obtained from common voles from Hungary (Kurucz et al., 2018).
Phylogenetic analysis of the common vole associated HEV (cvHEV) showed that the
cvHEV-sequences formed a well-separated clade, next to the proposed genotype HEV-CA4.
Investigation of a subset of 181 common voles from 19 different trapping sites, with HEV-
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RNA positive common voles or from those close to a HEV-RNA positive trapping site, by
the commercial ELISA revealed a seroprevalence of 5.5% (10/181) of the investigated

common voles (PAPER 1, unpublished data; see Table 4).

Table 4. Comparison of the detection rate of HEV-RNA and anti-HEV antibody seroprevalence
in Common voles and Norway rats from Germany.

) o HEV-RNA anti-HEV
Species Trapping site ) Reference
detection rate | seroprevalence*
Weissach 1/24 (4.2%) 4/24 (16.6%)
Stuttgart 0/1 1/1 (100%)
Altd6bern 0/14 1/14 (7.1%)
Common vole i PAPER I
Rutesheim 0/15 2/15 (13.3%)
Bergatreute 0/3 1/3 (33.3%)
Falkenstein 2/32 (5.3%) 1/32 (3.1%)
Subtotal 6 sites 3/89 (3.3%) 10/89 (11.2%)
Ahlen 0/21 (0%) 0/21 (0%)
Hamburg 6/17 (35.3) 7117 (41.2%)
Johne et al.,
Norway rat Stuttgart 1/34 (2.9%) 5/34 (14.7%) 2010
Esslingen 1/14 (7.1%) 3/14 (21.4%)
Berlin 7/61 (11.5%) | 21/61 (34.4%)
Subtotal 5 sites 15/147 (10.2%) | 36/147 (24.5%)

*. Common voles were investigated for anti-HEV antibodies by using a commercially available ELISA
(AXIOM, HEV-1 antigen) and the Norway rats were investigated by an in-house ratHEV-specific ELISA
(HEV-C1 antigen)

Commonly used ELISAs for serological detection of anti-HEV antibodies are using
different antigens (truncated variant of ratHEV ORF2-encoded CP or parts of the ORF2
and ORF3 of HEV-1 or HEV-3). Thereby, cross-reactivities of the antigens were observed,
like a high discrepancy between the broadly reactive AXIOM ELISA and an in-house
ELISA for the detection of rodent-associated HEV-specific anti-HEV antibodies. Thus, the
use of the commercially available AXIOM ELISA seems to be not suitable for a highly

sensitive detection of anti-HEV antibodies among different rodent species.

The studies indicated differences in the sensitivity of the different types of RT-PCRs (one-
step, two-step/nested and real-time) all targeting a similar region of the RdRP encoding
region of the ORF1 of HEV for detecting HEV-RNA. In total, the nested RT-PCRs seems
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to perform better by detecting more HEV-RNA positive animals but they are also more
time consuming due to a second round of PCR step and more vulnerable to contamination.
None of the used RT-PCRs were able to detect all HEV-RNA positive individuals, even by
amplifying within a highly conserved region within the HEV genome.

3.1.2. Identification of the causative agent by serological and molecular

methods

As mentioned above, the surveillance of HEV reservoirs and humans is mainly done by
serological assays (Khudyakov and Kamili, 2011). These investigations frequently use
assays with standard antigens, mainly ORF2-derived CP derivatives, exploiting the high
cross-reactivity of CP-reactive antibodies. This high cross-reactivity of HEV-reactive
antibodies is explained by the antigenic similarity of HEV genotypes, which represent a
single serotype (Wang et al., 2013). As a consequence, the differentiation of antibody
reactivities is rather complicated. For the differentiation of ratHEV and HEV-3 specific
antibodies, two homologous ELISAs, that allowed the typing of antibody reactivities, were
developed (Dremsek et al., 2012, 2013). A limitation of this typing is, that the antibody
specificities can be typed only to the antigens used in the assays. As a prerequisite, the aa
sequence divergence between the used antigens must be high enough to allow the
differentiation. Comparing the CP encoding aa residues of representative members of the
family Hepeviridae (Smith et al., 2014; Smith et al., 2016), including proposed genotypes
(Wang et al., 2018; Woo et al., 2016), the differences range from 32.7% (Orthohepevirus
A compared with Orthohepevirus C) to 53.6% (Orthohepevirus B compared with
Orthohepevirus C). Therefore, the detection of ratHEV reactive antibodies in forestry
workers (Dremsek et al., 2012) might be alternatively also explained by infection of the
forestry workers with related, rodent- or carnivore-borne HEV, such as the novel cvHEV
(Bodewes et al., 2013; Johne et al., 2012; Kurucz et al., 2018; Raj et al., 2012, PAPER I).

During acute infection or in persistently infected reservoirs a molecular identification
(“typing”) and even the molecular epidemiological evaluation of the source of infection
might be possible. Using conventional RT-PCR assays targeting a highly variable region
or by the use of highly specific real-time RT-PCR assays this aim could be reached. Thus,
the differentiation of ratHEV and HEV-1 - HEV-4 infections of rats and zoo animals was
evaluated by two RT-qPCR assays (PAPER 11 and PAPER 111, Table 2). Alternatively, a

broad spectrum (one-step) RT-PCR assay or two broad spectrum nested (two-step) RT-
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PCR assays, with subsequent sequence determination of the amplicons, were used (PAPER
| and PAPER 11, Table 2, and PAPER 111, Table 1). By using two types of RT-PCRs (RT-
gPCR and one-step RT-PCR) rabbitHEV-RNA in rabbits and ratHEV in rats were almost
exclusively detected (PAPER I, Figure 3B, PAPER 1V, Figure 2A). However, in addition
to ratHEV sequences, the use of the broad-spectrum RT-PCR detected a rabbitHEV-like
sequence in a Norway rat from Belgium, indicating the first finding of a rat being infected
with a zoonotic HEV-strain (HEV-3ra) in Europe (PAPER 11, Figure 3 C). The RT-gPCR
failed to detect this strain in the Norway rat (PAPER 11, Table 2). Additionally, by one-
step and two-step RT-PCR assays, a spillover infection of a Syrian brown bear with ratHEV
was detected, but not by the ratHEV-specific RT-qPCR.

The most sophisticated typing can be achieved by complete genome sequence
determination. Initially, a shot-gun HTS approach was applied to determine the complete
genomes of rabbitHEV in rabbit samples. Unfortunately, this approach resulted only in the
identification of four regions with a coverage of 1000 nt (PAPER 1V). Therefore, a primer-
walking approach was used and allowed the determination of complete rabbitHEV
sequences (PAPER 1V) and of novel complete cvHEV sequences (PAPER 1). A very low
viral RNA copy number might cause the failure in the HTS approach. The complete
genome determination of cvHEYV strains from different common vole trapping sites allowed
a precise molecular phylogenetic analysis. Based on this, a previously found kestrel-derived
HEV sequence was concluded to be originated from an infected common vole (Reuter et
al., 2016, PAPER I, Figure 2B). Interestingly this conclusion was not only possible with
the complete genomes of kestrel-derived HEV and cvHEV, but also when analyzing an
ORF1-derived short sequence (PAPER I, Figure 2A). Similarly, ratHEV trees with nearly
the same topology were obtained by phylogenetic analysis of a 1122 nt fragment and the
screening fragment of 280 nt of the genome (PAPER 11, Figure 2 and PAPER 11, Figure
3B and D). This observation is in line with a study on the topology of phylogenetic trees
for HEV-3 strains. Analyzing fragments from the HVR (263 nt or 293 nt), RARP (330 nt)
or ORF2 (241 nt) resulted in phylogenetic trees with the same topology like using the whole
genome (Vina-Rodriguez et al., 2015).

For sequence-based typing it is very important to exclude regions with overlapping reading
frames, as here selection pressure on two coding sequences is different from that on a single
non-overlapping reading frame and may thereby influence the phylogenetic relationships

(Holmes, 2009). This was most obvious when comparing the topology of phylogenetic trees
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of the complete ORF2 and ORF3 encoded aa sequences of HEV (see PAPER 1V, Figures
3C-F).

Finally, the molecular characterization of the novel cvHEV genomes identified multiple
insertions/deletions (InDels) that might be also used in the future for a molecular typing, at
least for cvHEV (PAPER | Figure 4B and 4C).

3.2. Host association, persistence and spillover infections

The definition of a “host” or even a “reservoir host” is difficult and usually approached by
field studies and/or experimental studies in vitro and in vivo and may differ between
pathogens (Jones et al., 2008; Sawyer and Elde, 2012). A try to generally define a “reservoir
host” was given by Olival et al, e.g. (i) isolation of the pathogen from the host, (ii)
significant higher detection rates of nucleic acid in a proportion of individuals from a
population or (iii) detection of antibodies in a significant number of individuals from the
target population (Olival et al., 2012). The problems of “host” definition can be illustrated
by two examples, Puumala orthohantavirus (PUUV), a member of the family Hantaviridae
and rabies virus (RABV), a member of the family Rhabdoviridae (Walker et al., 2018). For
hantaviruses the definition of a reservoir host is based on the molecular detection rate of
the virus with higher frequency in the putative reservoir host than in sympatrically
occurring other species (Hjelle and Yates, 2001). Furthermore, the pathogen must have the
ability to cause a persistent infection in the reservoir host (Schonrich et al., 2008), with
lifelong shedding (Villarreal et al., 2000), but should not cause obvious disease (Schonrich
et al., 2008). This definition of a reservoir host for hantavirus is in line with a previous try
to define a reservoir host in general (Olival et al., 2012). Thus, the bank vole represents the
only reservoir of PUUV (Vapalahti et al., 2003). In contrast, RABV infection leads to the
death of the host (World Health Organization, 2018). The RABV has a wide range of
reservoir hosts among different mammal species (Rupprecht et al., 1995) and as potential,
original reservoir host, bats were identified (Hurst and Pawal, 1931). Experimental
infections of different bat species showed the susceptibility of the bats to RABV, the typical
clinical symptoms and the ability of transmitting and even surviving a RABV infection
(Baer and Bales, 1967, Jackson et al., 2008) in contrast to other mammal reservoir hosts
(Rupprecht et al., 1995). A potential explanation of these observations is the assumption
that the original reservoir of RABV are bats and the virus was more recently transferred to
carnivores where it causes lethal cases (e.g. Ethiopian wolves) (Badrane and Tordo, 2001,
Sillero-Zubiri et al., 1996).
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The definition of a reservoir association of hepeviruses was also tried by HEV analysis in
field studies and cross-species infection experiments. For some members of the family
Hepeviridae a narrow host range was determined, but for other members a wide host range
is assumed (Johne et al., 2014a). Examples for host-specific hepeviruses are the genotypes
HEV-1 and HEV-2, being restricted to humans as reservoir hosts. On the other side,
members of the genotypes HEV-3 and HEV-4 were detected in humans, pigs, wild boar,
deer, mongoose and rats (Meng, 2013).

The novel cvHEV was detected exclusively in common voles, but not in sympatrically
occurring other rodents (PAPER |, Kurucz et al., 2018). Supporting this observation,
multiple molecular detection in common voles at a geographical range of approximately
800 km were detected (PAPER I, Kurucz et al., 2018). Sequence comparison, phylogenetic
analysis and “isolation-by-distance” investigation confirmed a persistence in local

populations and evolution on a local scale (PAPER 1).

The host association of rabbitHEV to the European rabbit is confirmed by a large number
of field studies (Table 1) and experimental investigations (Cheng et al., 2012; Ma et al.,
2010, see also 3.3). The field study in Frankfurt am Main and its surrounding (PAPER 1V)
and all other field studies, revealed exclusively rabbitHEV in the rabbits investigated (Table
1). Comparison of rabbit-associated sequences from different geographic origins indicated
a well-separated clade of related rabbitHEV sequences (HEV-3ra) (Zhao et al., 2009). The
successful infection of pigs with two strains of rabbitHEV, one obtained from China and
one obtained from the USA, shows the ability of rabbitHEV to cross the species barrier.
The infected pigs developed a transient viremia and sporadic fecal shedding (Cossaboom
et al., 2012). Besides different animal experiments, also cell culture-based infection
experiments were done with rabbitHEV. A successful propagation of rabbitHEV, obtained
from farmed rabbits in China, was shown in human lung cancer cell line A549 and in the
human hepatoma carcinoma cell line PLC/PRF/5 (Jirintai et al., 2012). The zoonotic
character of rabbitHEV was shown by successful experimental infections of non-human
primates (Liu etal., 2013) and the detection of rabbitHEV related sequences in both, rabbits
and several acute and chronically infected humans in France (Abravanel et al., 2017; 1zopet
et al., 2012). Parallel analysis of anti-HEV antibodies and HEV-RNA revealed for the
majority of rabbits the presence of antibodies or RNA, only in a small proportion of animals
both was detected (PAPER 1V, Table 2). The parallel detection of viral RNA and specific

antibodies might indicate that a few animals become (at least temporally) persistently
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infected; alternatively, this finding might be interpreted as a late acute phase of the
infection, where RNA is still detected (Schlosser et al., 2018). The exclusive detection of
rabbitHEV RNA or rabbitHEV-reactive antibodies might be seen as a non-persistent
infection with virus clearance. In vivo studies showed a seroconversion of rabbits, being
infected with rabbitHEV, after three months (Ma et al., 2010) and a clearence of the virus
(Cheng et al., 2012; Zhang et al., 2015).

In contrast to the situation for cvHEV or rabbitHEV, the reservoir of ratHEV is more
difficult to identify as ratHEV was found in different rat species, including Norway rat,
Black rat, Lesser rice-field rat, Yellow-breasted rat and Bandicoot rat (PAPER 11, and
Supplementary Table 1). The detection of similar sequences in Norway and Black rats
suggest a reservoir function of both and did not indicate a rat species specific separate
evolution of ratHEV (PAPER Il and Simanavicius et al., 2018). The subgenotypes defined
by Mulyanto follows a spatial distribution, independently from the reservoir rat species
(PAPER I1, Mulyanto et al., 2014). Related sequences were identified in rats from different
parts of the world, like in rats from USA (Rattus norvegicus), Vietnam (R. norvegicus or
Rattus tanezumi), Denmark (R. norvegicus), France (R. norvegicus), China (R. norvegicus,
Rattus flavipectus, Rattus rattoides losea), Indonesia (Rattus rattus) and Lithuania (R.
norvegicus/ R. rattus), indicating a strong host association of ratHEV towards members of
the genus Rattus and showing its broad geographical distribution (T. C. Li et al., 2013b; W.
Li et al.,, 2013; Mulyanto et al., 2013; Mulyanto et al., 2014; Purcell et al., 2011;
Simanavicius et al., 2018; Widen et al., 2014; Wolf et al., 2013, see, Supplementary Table
1). Successful experimental ratHEV infection to laboratory rats, but lacking replication in
other mammals confirmed the natural host association of ratHEV (Cossaboom et al., 2012;
Johne et al., 2014a; T. C. Li et al., 2013c). The multiple detection of ratHEV sequences in
different rodent species makes the reservoir host identification even more complicated.
Thus, the virus was detected in bandicoot rats (Bandicota indica) and even Asian musk
shrew (Suncus murinus) in China suggesting an even broader host range or frequent
spillover infections of ratHEV (Guan et al., 2013; W. Li et al., 2013). Prior to our study
(PAPER I1), it was reported only for Black rats from Indonesia to be infected with ratHEV,
whereas in USA Norway and Black rat populations were found the be infected with a
zoonotic HEV-3 strain, indicating the susceptibility of Black rats for members of the
species Orthohepevirus A and Orthohepevirus C (Kanai et al., 2012; Lack et al., 2012;
Mulyanto et al., 2013).
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In line with the latter assumption Norway rat faeces was found to contain human pathogenic
norovirus and extended spectrum B-lactamase producing enterobacteria (Guenther et al.,
2012; Wolf et al., 2013).

None of the seropositive common voles was HEV-RNA positive, suggesting a clearance of
a cvHEV infection. Interestingly, the detection rates for HEV-RNA are in rat and vole
species lower compared to the detection rate of anti-HEV antibodies suggesting a non-
persistent infection with HEV in both species (Table 4). Currently, it is unclear if the virus
IS causing a persistent infection in common voles or if the persistence in populations is
driven by a high stability of the pathogen in the environment. Thermal stability studies on
other hepeviruses suggested a high stability and infectivity at different temperature — time
points, helping to estimate the stability of hepeviruses in environment and food (Johne et
al., 2016, Schielke et al., 2011). Additionally, infection experiments showed a potential
route of transmission of HEV by the environment (Andraud et al., 2013).

An initial longitudinal study indicated a persistence of ratHEV in the Norway rat
populations (Johne et al., 2012). Similarly, Norway rats at the zoo where the bear got
infected were investigated during years 2009-2010 and 2010-2016 confirming the
persistence of ratHEV in the local population (PAPER I11, Supplementary Table 1). A
comparison of the results of serological and RT-PCR investigations suggest, however, that
the infection in Norway rats is not persistent (PAPER Il and Johne et al., 2012). This
conclusion is in line with results of in vivo studies, which showed that laboratory rats are
susceptible for ratHEV, showing no persistence, but a clearance of the virus and a
seroconversion (T. C. Li et al., 2013c; Purcell et al., 2011, Schlosser et al., 2018).

The detection of a cvHEV sequence in a bank vole might be explained by a spillover
infection by common voles that occur sympatrically with the bank vole (PAPER I, Figure
1, Figure 2A, Table 1). Interestingly, a cvHEV-related sequence was found in a faecal
sample of a kestrel earlier. A pairwise comparison of the complete genome of the kestrel-
derived sequence with the five common vole derived complete genomes and phylogenetic
analysis of sequences confirmed this high sequence similarity. This similarity is also
evidenced by specific attributes common to all these sequences, i.e. a noncanonical start
codon (UUG encoding for leucine) for the ORF3 encoded protein and the absence of a
putative ORF4, previously found in other genera of the species Orthohepevirus C (Johne
et al., 2014a). Therefore, it is most likely that the kestrel was affected by a spillover

infection of cvHEV; common voles are the usual diet of birds of prey like the kestrel (Steen
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et al., 2011). The authors describing this infection already hypothesized this dietary origin
of the infection (Reuter et al., 2016a).

The high seroprevalence observed in carnivore species might indicate that they were (i)
infected by consuming HEV-infected animals or alternatively (ii) a carnivore specific
HEV-strain exists, which is suitable to be detected by a broadly reactive ELISA. In favor
with the first assumption (i), the seroconversion of a Syrian brown bear was shown and
(rat)HEV-RNA was detected, indicating a self-limiting, spillover infection with (rat)HEV
in a carnivore species in captivity (PAPER 111, Figure 1B and Supplementary Table 1). To
find the possible source of this HEV infection, feeder rats and free-living pest rats from the
zoo were investigated and ratHEV-RNA was only detected in three free-living wild rats
(PAPER 111, Supplementary Table 2). The potential route of transmission of ratHEV to
the Syrian brown bear might be explained by the hunting and eating of a ratHEV-infected,
free-living wild rat from the same zoo. Besides the detection of a rodent associated HEV-
strain in a bird of prey (Reuter et al., 2016a), this is the first description of a carnivore
species to be (spillover) infected by a rodent associated HEV-strain.

Recently, ratHEV spillover infections were documented in an immunocompromised and in
an immunocompetent human. Therefore, the zoonotic potential of ratHEV seems to be
evident, although experimental infections to non-human primates failed (Andonov et al.,
2019; Sridhar et al., 2018, see 3.3).

In general, the investigations on ratHEV, cvHEV and rabbitHEV suggest a local evolution
of these pathogens. This was evidenced by results of extensive phylogenetic investigations
(PAPER I, Figure 2A, PAPER 11, 3B, PAPER IlI, Figure 1B and PAPER 1V, Figure
2A) and for cvHEV by an “isolation by distance” analysis (PAPER 1, Figure 3). In
addition, to the local evolution of ratHEV, there were indications for an incursion or
invasion of rats in certain rat populations, e.g. single ratHEV positive rats originating from
Austria, Belgium and France did not cluster together with other ratHEV sequences from
rats from the same trapping site like the majority of ratHEV from Austria or Czech Republic
(PAPER I, Figure 3B and 3D). To clarify the potential invasion of ratHEV-infected rats
phylogeographic studies of the potential hosts are needed, e.g. by analysis of the
mitochondrial DNA (mtDNA) (Avise et al., 1987) like the cytochrome b gene (cyt b) (Johns
and Avise, 1998) or cytochrome ¢ oxidase 1 (COX 1) (Hebert et al., 2003) and nuclear
DNA (Shaw, 2002). Similarly, the results of the rabbitHEV investigations may suggest an
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invasion of rabbits from the surroundings of Frankfurt am Main to the city area, which
results in a founder population; the high sequence similarity of rabbitHEV strains in the
city area might support this bottleneck event for the rabbit population (PAPER 1V).
Phylogenetic analysis of rabbitHEV complete genomes, using the concatenated ORF1/
ORF2, showed a clustering of a “European rabbitHEV clade” and an “Asian rabbitHEV
clade” (Paper 1V, Figure 2 B). This might indicate a local evolution of different lineages
of rabbitHEV.

Additionally, a high discrepancy between the detection rates of HEV-RNA and anti-HEV
antibodies was observed. In all our studies, the detection rate of HEV-RNA was lower in
comparison to the prevalence of anti-HEV antibodies (PAPER I, unpublished data and
Table 1; PAPER 11, unpublished data and Table 2, Bernstein 2013; PAPER 111, Table 1
and Supplementary Table 1; PAPER 1V, Table 1). This leads to the assumption, that HEV
causes a non-persistent infection in their suspected reservoir hosts, although rarely

persistent/chronic infections may occur (Schlosser et al., 2014).

3.3. Cell culture and animal models

Currently available cell culture models for HEV are based on tumor cell lines of human
origin — PLC/PRF/5, HuH-7 and HepG2 (Jirintai et al., 2014; Tanaka et al., 2007). Rodent
cell lines can be generated in different ways, by spontaneous immortalization or by SV-40
mediated immortalization (Eckerle et al., 2014a; Eckerle et al., 2014b). Thus, a vole-

derived permanent cell line was generated (Essbauer et al., 2011).

Human PLC/PRF/5 and A549 cell lines were used to evaluate the replication of rabbitHEV
by in vitro studies confirming its zoonotic potential (Jirintai et al., 2012). In addition, in
vitro experiments showed an efficient replication of ratHEV (from Black rats) in human
hepatoma carcinoma cell lines PLC/PRF/5, HuH-7 and HepG2 cells (Jirintai et al., 2014),
but no replication was seen by inoculating rat liver cell lines and human lung cancer cell
line A549 (Jirintai et al., 2014; Johne et al., 2010D).

Histopathological and immunohistochemistry investigations in ratHEV-infected rats and in
HEV-3 infected wild boar or pig— revealed certain cell types as target for HEV, namely
Kupffer stem cells, liver sinusoidal endothelial cells, lymphocytes, plasma cells and/or
stellate cells (de Deus et al., 2008; Johne et al., 2010a; Lee et al., 2009; Schlosser et al.,
2014; Williams et al., 2001). So far, these cell types have not been evaluated for their

susceptibility for HEV infection in vitro.
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Interestingly, HEV strains from chronically infected patients were found to replicate more
efficiently in human tumor cell lines (Johne et al., 2014b; Shukla et al., 2012). Complete
genome analysis of these strains indicated in-frame insertions within the ORFL1 region; the
place and length of the insertions were found to be similar (Johne et al., 2014b; Shukla et
al., 2012). The rabbitHEV strains described here (PAPER 1V) also have typical insertions
within the ORF1 region (Zhao et al., 2009) and might be therefore interesting to be tested
in the in vitro system. Similarly, the novel cvHEV strains demonstrated a genomic plasticity
within the ORF1 region containing multiple InDels (PAPER 1).

Animal models are an important tool to study the disease (animal disease model), the
persistence and transmission of its causative agent (reservoir model) and to develop and
evaluate anti-HEV vaccines and therapies (Krawczynski et al., 2011; Schlosser et al.,
2018). Currently, different animal models were established to prove the zoonotic potential

(see chapter 1.1.3), study pathogenesis or evaluate antiviral strategies.

For mammal associated HEV strains several animal models were established. A fish HEV
(CTV)! fish-based system was used to study antiviral therapies, but might be limited in its
application (Debing et al., 2013). For zoonotic genotypes HEV-3, HEV-4 and HEV-7 pig,
wild boar and non-human primate models were established (Krawczynski et al., 2011).
Alternatively, to pigs and wild boars, minipigs were recently introduced as potential model
animals (Schlosser et al., 2014). Non-zoonotic genotypes HEV-1 and HEV-2 do not
replicate in rats and pigs, therefore here only non-human primates can be used for
pathogenicity studies (T. C. Li et al., 2013c; Maneerat et al., 1996; Meng et al., 1998;
Purcell et al., 2011; Purcell et al., 2003; Krawczynski et al., 2011).

Rabbits seems to be the most promising candidate animal model to study various aspects
of HEV pathogenesis and evaluation of antiviral strategies. A successful infection of rabbits
with rabbitHEV (Chinese strain) and with human derived HEV-4 was shown, but not with
a human derived HEV-1 strain (Ma et al., 2010). To prove the transplacental/vertical
transmission of human related HEV strains, pregnant rabbits were inoculated with
rabbitHEV and the transplacental transmission of rabbitHEV from the infected females to
their unborn babies was shown (Xia et al., 2015a). Furthermore, rabbits were used for
evaluation of the protective potential of the only available vaccine for HEV, Hecolin
against rabbitHEV and HEV-4 challenge (Zhang et al., 2015). Additionally, it was noted
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that all unvaccinated rabbits developed hepatitis, with liver enzyme elevations, viremia and
fecal virus shedding (Liu et al., 2014; Zhang et al., 2015).

Laboratory rats (R. norvegicus) are frequently used as animal model. Inoculation of Wistar
rats (R. norvegicus) with a stool solution from a HEV-positive patient (HEV-1)
demonstrated the susceptibility of rats for human derived HEV (T. C. Li et al., 2013c).
Human derived HEV-RNA was found in various tissues of the inoculated rats indicating
that the virus replicated efficiently in these rats (Maneerat et al., 1996). Moreover, the
successful infection of Sprague-Dawley rats (R. norvegicus) with an infectious cDNA clone
of swine-derived HEV-4 (strain SAAS-FX17) supports the potential role of rats as a model
organism for HEV (Zhu et al., 2013). Under laboratory conditions rats were not susceptible
to HEV-3 (T. C. Lietal., 2013a; T. C. Lietal., 2013c; Purcell et al., 2011) but under natural
conditions, rats were identified to harbor zoonotic HEV-3 strains (Kanai et al., 2012; Lack
etal., 2012; PAPER II).

Common voles are already in use as an animal model for the investigation of cowpox virus
(Hoffmann et al., 2015), Francisella tularensis (Rossow et al., 2014) or tick-borne
encephalitis virus (Achazi et al., 2011) and could serve therefore as an animal model for
cvHEV as well. Different linages of common voles, as they are present in Europe (Beysard
and Heckel, 2014), should be taken into account, when establishing an animal model for

cvHEV by using common voles.

In conclusion, the strains of ratHEV, rabbitHEV and cvHEV detected here (PAPER | -
PAPER 1V) represent promising candidates for the development of suitable animal
models. This includes the four clades of cvHEV (PAPER I, Figure 2 A), and the highly
divergent ratHEV strains decribed here (PAPER Il and PAPER I11) as well as the
divergent rabbitHEV strains described here (PAPER 1V) and by others (Hammerschmidt
et al., 2017). Furthermore, the detection of ratHEV in ratHEV-RNA positive populations
could be very promising to gain ratHEV-RNA to allow future broad screening of strains
with a higher in vitro replication capacity. In some rat populations a persistence of ratHEV
was already detected (Johne et al., 2012, PAPER Il and I11).
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4. Outlook

The recent finding of the zoonotic potential of ratHEV (Andonov et al., 2019; Sridhar et
al., 2018) together with the here described broad geographical distribution of this virus in
rats from Europe indicate the necessity of future molecular and serological surveillance and
case control studies in the human population. As the HEV infection is usually rapidly
cleared, the differentiation of the causative agent of a hepatitis E needs the improvement of
existing diagnostic tools or the development of novel ones. Previous studies have indicated
that antibodies against HEV-3 and ratHEV can be differentiated by the selection of the
homologous and heterologous antigens (Dremsek et al., 2012; Shimizu et al., 2016). Results
from real-time RT-PCR investigations illustrated the problems in the sensitivity of the
assays for detection of selected HEV-3 or ratHEV strains. And finally, standardization and
harmonization of HEV detection methods are still very important issues to get comparable

seroprevalence and RNA detection rate data.

The detection of rabbitHEV in a high-human density area in Germany together with
findings of rabbitHEV sequences in human patients (Abravanel et al., 2017; Izopet et al.,
2012) indicate the necessity of further studies on the role of rabbits in the transmission of
HEV to human and the development of hepatitis E in humans. For a risk assessment, further
studies are needed on the occurrence of this virus in additional wildlife populations, pet
animals and breeding colonies. Furthermore, it remains unclear why rabbitHEV was found
exclusively in rabbits and seems to be absent in hares (Hammerschmidt et al., 2017).
Therefore, molecular studies on the replication of rabbitHEV in rabbits of different breeds
and in vitro assays to pinpoint potential factors differentiating the susceptibility of different
lagomorphs for rabbitHEV are needed. Additionally, the investigation of environmental

samples would improve our understanding of potential transmission routes.

The identification of a novel hepevirus in common voles (cvHEV) raised the question of
its zoonotic potential, the possibility of crossing the species barrier, its origin and
distribution in other parts of Europe. This is especially important as the common vole is a
pest animal in agriculture with large population outbreaks that have been shown already
also to cause disease outbreaks in humans, e.g. of leptospirosis (Desai et al., 2009) or
tularemia (Luque-Larena et al., 2017). Therefore, further studies are warranted to prove the
presence of this virus in common voles during different phases of the population dynamics.

For this purpose, highly specific and sensitive serological and RT-PCR assays should be
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developed. Furthermore, the large-scale screening of small mammals should be continued
to understand the deep phylogeny of hepeviruses in general. An enrichment of the viral
RNA, e.g. by a hybrid-capture approach, and subsequent HTS analysis could improve the
generation of complete hepevirus genomes (Drewes et al., 2017; Ho et al., 1999).

The frequent detection of these three small mammal-associated hepeviruses, ratHEV,
rabbitHEV and cvHEV, may allow in the future to isolate these viruses and the
development of small mammal animal models for further studies on the transmission and
pathogenicity of HEV in general. Interestingly, currently running in vitro systems for HEV
replication are mainly based on HEV strains with insertions in ORF1 (Johne et al., 2014b;
Shukla et al., 2012) — therefore it would be especially interesting to evaluate rabbitHEV

and cvHEYV for their replication capability in vitro.
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Hepeviruses are small viruses with a RNA-genome of positive polarity that form the family
Hepeviridae. The family includes two genera: members of the genus Piscihepevirus were
detected in fish species and members of the genus Orthohepevirus were found in different
mammal and bird species. The genus Orthohepevirus contains four different species,
namely Orthohepevirus A, B, C and D. The species Orthohepevirus A contains five human
pathogenic genotypes, with three of them being zoonotic. The species Orthohepevirus C
contains mammal-associated pathogens, which were identified in rats and carnivores. The
human pathogenic genotypes are responsible for a self-limiting acute hepatitis in humans,
which could become chronically in immunocompromised individuals. The main route of
transmission is the consumption of undercooked meat and direct contact with HEV-positive
excreta or blood. In Germany, hepatitis E is a notifiable disease since 2001 with an
increased number of cases per year. Rats are the reservoir of rat-associated HEV (ratHEV),
but also the zoonotic HEV-3 genotype was detected in rats. The European rabbit
(Oryctolagus cuniculus) was identified as a reservoir host of a subgenotype of human
pathogenic HEV-3 (HEV-3ra).

For the development of small mammal animal models, the objective of this study was to
evaluate different small mammal populations for novel hepeviruses and to study the
presence of HEV and sequence divergence of ratHEV and rabbitHEV in rat and rabbit

populations from Europe.

Approximately 3000 rodents from Germany and the Czech Republic were screened by
broad spectrum HEV-RT-PCR. As a result, 13 common voles (Microtus arvalis) and one
bank vole (Myodes glareolus) were detected to be HEV-RNA positive. Comparison of the
obtained sequences, complete genome determination and phylogenetic analysis indicated
the finding of a novel common vole-associated HEV (cvHEV), which shows a high
sequence divergence towards other members of the species Orthohepevirus C, but shares a
high sequence similarity to a HEV-genome derived from a kestrel (Falco tinnunculus). The
finding of cvHEV-RNA in a bank vole might be caused by a spillover infection. The
cVHEV genome shares the hepevirus-typical open reading frames, but also has unique
cvHEV-specific attributes in its genome.

The investigation of 420 Norway rats (Rattus norvegicus) and 88 Black rats (Rattus rattus)

identified HEV-RNA in Norway rats from eight of nine and Black rats from two of four
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European countries. In a single Norway rat from Belgium, a HEV-3-strain with high
sequence similarities to rabbitHEV (HEV-3ra), was detected. The investigation of zoo
animals revealed a ratHEV spillover infection in a Syrian brown bear (Ursus arctos
syriacus). This infection was most likely caused by ratHEV-infected free-living, wild rats

from the same zoo.

Investigation of wild rabbit populations trapped in and around Frankfurt am Main,
Germany, showed anti-HEV antibodies (34.7%) and rabbitHEV-RNA (25%). A high
sequence similarity of rabbitHEV in the animals trapped at the urban site was observed,
whereas a high sequence divergence was seen for the animals trapped at the rural trapping
sites.

In conclusion, hepeviruses are widespread among different small mammal populations in
Europe. The broad geographical distribution of these hepeviruses should be taken into
account in further public health risk assessments. Further investigations are needed to
characterize the presence of cvHEV in more detail, especially by taking the population
dynamics of common voles into account. The detected HEV-strains could be taken as basis
for the establishment of novel HEV-animal models, which might replace the so far used

swine and non-human primate models.
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Hepeviren sind kleine Viren mit einem einzelstrangigen RNA-Genom positiver Polaritat
und bilden die Familie Hepeviridae. Die Familie beinhaltet zwei Gattungen: Zur Gattung
Piscihepevirus gehort ein bei Fischen gefundenes Virus, wahrend Vertreter der Gattung
Orthohepevirus in Séugetieren und V0Ogeln nachgewiesen wurden. Die Gattung
Orthohepevirus enthélt die Arten Orthohepevirus A, B, C und D. Die Spezies
Orthohepevirus A beinhaltet funf humanpathogene Genotypen, von denen drei zoonotische
Erreger sind (HEV-3, HEV-4, HEV -7). Die Spezies Orthohepevirus C beinhaltet ebenfalls
Saugetier-assoziierte Viren, die bei Ratten und Karnivoren identifiziert worden sind. Die
humanpathogenen Genotypen sind fiir eine akute selbstlimitierende Hepatitis beim
Menschen, die bei immungeschwéchten Individuen chronisch werden kann,
verantwortlich. Als Hauptibertragungsweg wird der VVerzehr von rohem oder ungentigend
gegartem Fleisch sowie der direkte Kontakt mit HEV-positiven Ausscheidungen oder Blut
angenommen. In Deutschland ist die Hepatitis E seit 2001 eine meldepflichtige Krankheit
mit einer jahrlich steigenden Zahl von gemeldeten Féllen. Ratten stellen das Reservoir des
Ratten-Hepatitis E-Virus (ratHEV) dar, dessen zoonotisches Potenzial kontrovers
diskutiert wird. Dartber hinaus wurde in Wanderratten (Rattus norvegicus) der
humanpathogene Genotyp HEV-3 nachgewiesen. Kaninchen (Oryctolagus cuniculus)
wurden als Reservoir eines Subgenotyps des humanpathogenen Genotyp HEV-3
(Kaninchen-assoziiertes HEV, rabbitHEV, HEV-3ra) identifiziert.

Im Rahmen der Entwicklung von Kleinsduger-Tiermodellen fir HEV sollte in der
vorliegenden Studie in Kleins&dugerpopulationen nach neuen Hepeviren gesucht werden
und das Vorkommen und die Sequenzvariation von ratHEV und rabbitHEV in Ratten- und

Kaninchenpopulationen in Europa genauer charakterisiert werden.

Bei der Suche nach neuen Hepeviren wurden ca. 3000 Kleinsduger aus Deutschland und
der Tschechischen Republik mittels einer Breitspektrum HEV-RT-PCR untersucht. Dabel
wurde in 13 Feldmdusen (Microtus arvalis) und einer Rtelmaus (Myodes glareolus) HEV-
RNA nachgewiesen. Sequenzvergleiche und phylogenetische Untersuchungen anhand von
partiellen und Komplettgenomen zeigten, dass es sich dabei um ein neues Feldmaus-
assoziiertes HEV handelt (common vole HEV, cvHEV), das sich deutlich von den bisher
bekannten Genotypen der Spezies Orthohepevirus C unterscheidet, aber eine grolie

Ahnlichkeit zu einem bei einem Falken (Falco tinnunculus) gefundenen Virusgenom
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zeigte. Der Nachweis von cvHEV-RNA in einer Rotelmaus konnte auf eine
Spilloverinfektion zurlickzufuhren sein. Das cvHEV-Genom besitzt die flr alle Hepeviren
typischen offenen Leserahmen, zeigt aber auch einige cvHEV -spezifische Besonderheiten

im Genom.

Im Rahmen der Untersuchungen wurden insgesamt 420 Wanderratten und 88 Hausratten
(Rattus rattus) aus zwolf européischen Landern auf das Vorhandensein von HEV-RNA
untersucht. In Wanderratten aus acht europdischen Landern und Hausratten aus zwei
Landern konnte ratHEV-RNA nachgewiesen werden. In einer Wanderratte aus Belgien
wurde ein HEV-3-Stamm mit grofRer Sequenzéhnlichkeit zum rabbitHEV (HEV-3ra)
identifiziert. Bei der Untersuchung von Zootieren wurde eine ratHEV-Spilloverinfektion
in einem syrischen Braunbéaren (Ursus arctos syriacus) nachgewiesen, welche vermutlich

durch Schadratten im gleichen Zoo verursacht worden ist.

Die Untersuchung von Wildkaninchenpopulationen aus der Stadt Frankfurt am Main und
deren Umgebung zeigte das Vorkommen von anti-HEV Antikdrpern (34.7%) und
rabbitHEV-RNA (25%). Die rabbitHEV-Stamme der urbanen Population zeigten eine sehr
grolle Sequenzéhnlichkeit, wéhrend bei den Tieren aus der landlichen Population eine
starke Sequenzdivergenz des rabbitHEV beobachtet wurde.

Die hier vorgestellten Ergebnisse belegen das gleichzeitige Vorkommen verschiedener
Hepeviren in Kleinsdugerpopulationen in Europa. Die weite geografische Verbreitung der
Erreger sollte zukiunftig bei einer Geféhrdungsbeurteilung fir die Bevolkerung
beruicksichtigt werden. Weitere Untersuchungen sollten das Vorkommen des cvHEV
genauer  charakterisieren, insbesondere  auch ~ im  Zusammenhang  mit
Populationsverédnderungen bei der Feldmaus. Auf der Basis der hier nachgewiesenen
Erreger konnen zukiinftig neue HEV-Tiermodelle entwickelt werden, die die bisher

verwendeten Schweine- und Primatenmodelle moglicher Weise ersetzen konnten.
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Appendix Supplementary Table 1 (continued)

Number of
Order Family Species investigated Antigen (Serological Results) _“N._.-A_uﬁom_:_‘mvm ults References
animals ypIng
Indochinese forest rat
(Rattus rattus 55 SAR 55 HEV CP (pos) n.d. Arankalle et al., 2001
andamanensis)
Asian rat (Rattus partial ORF1 and . .
tanezumi) 18 n.d. ORE2 (ratHEV) Lietal, 2011; B. Wang et al., 2018
Polynesian rat -
(Rattus exulans) 18 SAR 55 HEV CP (pos) n.d. Kabrane-Lazizi et al., 1999
Ryuku mouse (Mus
caroli) 1 n.d. neg B. Wang et al., 2018
. . Wood mouse
Rodentia | Muridae (Apodemus -* CP of HEV-3 (neg) n.d. Peralta et al., 2009
sylvaticus)
Yellow-necked
mouse (Apodemus -* CP of HEV-3 (neg) n.d. Peralta et al., 2009
flavicollis)
Chevrier’s field
mouse (Apodemus 202 n.d. Ooa%mm_m@/m\wosm B. Wang et al., 2018
chevrieri)
House mouse (Mus ORF2 and ORF3 of HEV-2 (Mexican) and HEV-1 Arankalle et al., 2001; de Souza et al.,
26* (Burma) (pos), CP of HEV-3 (neg), SAR 55 HEV CP neg 2018; Favorov et al., 2000; Peralta et
musculus)
(neg) al., 2009
Southern red-backed .
vole (Myodes 6 ORF2 and ORF3 of HEV-2 (Mexican) and HEV-1 n.d. Favorov et al., 2000
. (Burma) (pos)
gapperi)
Meadow vole .
- ORF2 and ORF3 of HEV-2 (Mexican) and HEV-1
Rodentia | Cricetidae :,\__Qofm 9 (Burma) (pos) n.d. Favorov et al., 2000
pennsylvanicus)
White-throated wood .
rat (Neotoma 29 ORF2 and ORF3 of HEV-2 (Mexican) and HEV-1 nd. Favorov et al., 2000
. (Burma) (pos)
albigula)
Mexican <<oo.a rat 84 ORF2 and ORF3 of HEV-2 (Mexican) and HEV-1 nd. Favorov et al., 2000
(Neotoma mexicana) (Burma) (pos)

n.d.: not done; pos: positive; neg: negative; ORF: open reading frame; VLPs: virus-like particles; CP: capsid protein; *: Peralta et al., investigated 166 rodents
without specifying the number of individuals per species; **downgraded to R. rattus andamanensis (Musser and Carleton, 2005)
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Appendix Supplementary Table 1 (continued)

Number of RT-PCR
Order Family Species investigated Antigen (Serological Results) results References
animals (typing)
Black-footed pygmy rice rat
(Oligoryzomys nigripes) 63 n.d. neg de Souzaetal., 2018
. Complete
Delicate vesper mouse 109 n.d. genome de Souza et al., 2018
(Calomys tener) (ratHEV)
. Complete
. s Hairy-taled co_o. mouse 252 n.d. genome de Souza et al., 2018
Rodentia Cricetidae (Necromys lasiurus) (ratHEV)
. - Complete
Pére David's vole 55 n.d. genome B. Wang et al., 2018
(Eothenomys melanogaster) (ratHEV)
Montane grass mouse
(Akodon montensis) 199 n.d. neg de Souza et al., 2018
Bank vole (Myodes * CP of HEV-3 (neg) nd. Peralta et al., 2009
glareolus)
Mexican ground squirrel ORF2 and ORF3 of HEV-2 (Mexican)
(Citellus mexicanus) 2 and HEV-1 (Burma) (pos) n.d. Favorov etal., 2000
Rock squirrel (Citellus ORF2 and ORF3 of HEV-2 (Mexican)
Rodentia Sciuridae variegatus) ! and HEV-1 (Burma) (pos) n.d. Favorov et al., 2000
Eastern gray squirrel (Sciurus ORF2 and ORF3 of HEV-2 (Mexican)
carolinensis) 2 and HEV-1 (Burma) (pos) nd. Favorov et al., 2000
Chinese mole msa.<< 4 n.d. neg B. Wang et al., 2018
(Anourosorex squamipes)
. . Desert pocket mouse ORF2 and ORF3 of HEV-2 (Mexican)
Rodentia Heteromyidae (Perognathus penicillatus) 10 and HEV-1 (Burma) (pos) n.d. Favorov et al., 2000
. _— Meadow jumping mouse ORF2 and ORF3 of HEV-2 (Mexican)
Rodentia Dipodidae (Zapus hudsonius) 2 and HEV-1 (Burma) (pos) n.d. Favorov et al., 2000
. ) . partial ORF1
Soricomorpha Soricidae Asian musk m.:a<< (Suncus 260 N ﬁm.qS_:m__V\ truncated CP fragment Guan et al., 2013
murinus) (recombinant ratHEV-VLPS) (pos) (ratHEV)

n.d.: not done; pos: positive; neg: negative; ORF: open reading frame; VLPs: virus-like particles; CP: capsid protein; *: Peralta et al.,
investigated 166 rodents without specifying the number of individuals per species
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