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Summary 

Potatoes (Solanum tuberosum, L.) are one of the most important crops worldwide and 

beside of rice, wheat and maize of an essential importance for the nourishment of the 

world population. However, potato plants are sensitive to a broad range of pests and 

pathogens and cultivation without a proper plant protection management can be 

difficult or impossible. Over the past decade, quality issues caused by wireworm 

(Agriotes spp.) tuber feeding became more and more relevant. Due to the soil born 

character of this pest species complex management is far more complicated, 

particularly because efficient protection agents are missing. Moreover, well managed 

pests like the Colorado potato beetle (Leptinotarsa decemlineata, SAY) developed 

resistances against often used insecticides e.g. pyrethroids. The development of new 

biological control agents against these and other pests is therefore of high importance, 

to overcome disadvantages of chemically synthetic plant protection products, which 

can be highly efficient but with indeterminate environmental effects. 

Metarhizium brunneum PETCH is known to comprise many different isolates each 

specialized to one or more insect hosts. This makes M. brunneum a promising 

biological agent against several, relevant agricultural pests. However, field-scale, 

spray applications are difficult, not only because of a high sensitivity against UV-

radiation and limited efficacy under arid conditions but also a low competitive 

competence against nematodes or microorganism like bacteria or other fungi can 

reduce the activity of M. brunneum in field. An option to protect the fungus from 

environmental influences and exploit its entomopathogenic nature is to introduce the 

fungus into crop plants as an endophyte to build up a systemic protection against pests. 

As a consequence, M. brunneum isolates must be entomopathogenic to target 

organisms, endophytic in the specific crop plant and an industrial propagation and 

formulation should be possible. 

To outline how a novel biological control agent is introduced to modern, biological plant 

protection management, this dissertation is structured in three chapters and focused 

on finding a new M. brunneum isolate, which can be systemically used to control potato 

pests. 
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1. Chapter: To identify a broad acting endophytic entomopathogen, M. brunneum 

isolates from soil samples were collected and tested against a model organism 

(Tenebrio molitor L.), important potato pests and inoculated into potato tubers.  

• General pathogenicity test: Seven M. brunneum isolates were tested against 

the larvae of T. molitor due to the known high sensitivity against 

entomopathogenic fungi. Two isolates were identified as highly pathogenic with 

mortalities up to 100 % within 7 days after inoculation. 

 

• Pathogenicity test against Agriotes spp.: The two most promising isolates 

(Cb15III and Gc2II) from the “general pathogenicity test” were tested against 

the larvae of Agriotes sputator (L.), A. obscurus (L.) and A. lineatus (L.). Isolate 

Cb15III was able to significantly reduce the number of vital A. obscurus and A. 

lineatus larvae compared to control groups within a time span of 70 days. 

 

• Pathogenicity test against CPB: The M. brunneum isolate Cb15III was tested 

against the larval and adult stages of the CPB. 100 % of the inoculated larvae 

died within 21 days and 80 % of those showed a characteristic M. brunneum 

mycosis. Adult CPB beetles were not susceptible to the M. brunneum treatment.  

 

• Endophytism test in potato: M. brunneum Cb15III was tested for its endophytic 

potential to colonize potato tuber tissue. Therefore, 20 potato varieties were 

selected and M. brunneum Cb15III was inoculated into tubers. Re-isolation of 

M. brunneum from new developed shoots was successful, however with very 

low re-isolation rates. 

 

2. Chapter: Potato tubers were inoculated with the M. brunneum isolate Cb15III and 

used to evaluate the effects of colonized plants on the development of CPB. For the 

inoculation, dipping and injection methods were tested under greenhouse conditions 

and the more promising injection method was evaluated in two field experiments in 

southern Lower Saxony. 

It was shown that larval development was influenced by the endophyte and 

significantly less beetle emerged from treated plants in the greenhouse experiment. In 

the field experiments the number of laid CPB eggs, L1 – L3 and L4 larvae was 

significantly reduced when tubers inoculated with M. brunneum. 
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3. Chapter:  To improve technical feasibility of field scale applications, M. brunneum 

Cb15III mycelium was imbed in a biopolymer matrix and formulated into dry 

microcapsules. Capsules with varying formulation adjuvants were tested in field in two 

consecutive years. Field trials were set up following the EPPO guideline for wireworms. 

Treatments were applied as spot applications beneath each tuber to enhance 

mycelium growth into the tuber tissue. Quantity and quality of potato yield was 

assessed and wireworm holes counted during harvest to assess quality losses. None 

of the tested treatments reduced the damage caused by wireworms; also no effects on 

plant grow or yield were observed. 
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General introduction 

Potato, Solanum tuberosum L., is an economically important staple crop cultivated 

across the world. With a total yield of 376.83 million tons in 2016, it is beside of maize, 

wheat and rice the most produced crop worldwide (FAO 2016). However, it is also one 

of the most susceptible crops in arable crop rotations. Potato plants are not only 

infested by several pathogens (e.g. Phytophthora infestans) but also by a large number 

of pests threatening yield and quality (Kapsa 2008). In conventional farming systems, 

pests and pathogens are controlled and managed with chemically synthetic plant 

protection agents (Kapsa 2008).To protect growing plants from pathogens and pests, 

fungicides are applied in intervals of 7 – 10 days during growing season plus  

1 – 2 herbicide and 2 – 4 insecticide applications (Kapsa 2008; Cooke et al. 2011). 

This high input of chemical agents with partially unknown effects on ecosystems 

(Matson et al. 1997; Stoate et al. 2001; Kremen et al. 2002) is leading to an increased 

public demand for naturally produced foodstuff. Consequently, the worldwide 

organically farmed land increased from 11.0 (0.3 % of overall agricultural land) to 57.8 

(1.2 %) million hectares in the years 1999 to 2016 (Willer and Lernoud 2018) 

In organic farming systems, chemically synthetic agents are not permitted. 

Alternatively, copper compounds can be applied against pathogens and biologicals 

(e.g. neem, Bacillus thuringiensis or spinosad) against pests (Anonymous 2008). 

Nevertheless, pathogens and pests are a tremendous challenge in organic farming, 

which is reflected in average yield varying between 39.8 and 22.9 t/ha in conventional 

and organic potato farming, respectively (Pawelzik and Möller 2014). Beside of the 

pathogens P. infestans and Rhizoctonia solani, wireworms, the larvae of click beetles 

(Agriotes spp., Coleoptera: Elateridae) (French and White 1965), and the Colorado 

potato beetle (CPB), Leptinotarsa decemlineata SAY (Coleoptera: Chrysomelidae), are 

some of the most devastating threats to potatoes (French and White 1965; Hare 1990; 

Vernon and van Herk 2013). 

Adults and larvae of the CPB are a serious foliar pest in potato and widely spread in 

North America and Europe (Hare 1990; Grapputo et al. 2005; Kapsa 2008). In spring, 

female CPB deposit up to 4000 eggs in clusters of 20 – 60 eggs on the surface of host 

plant foliage (Hare 1990). Hatched larvae can defoliate more than 100 cm² of leaf 

surface within 4 larval stages until they burrow into soil for pupation (Ferro et al. 1985; 

Hare 1990). A new CPB generation can emerge within 14 days after pupation and lay 
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new eggs after maturation feeding (Hare 1990). An emergence of two or more 

generations in one year can lead to full defoliation of potato plant and therefore 

significant yield losses (Zehnder and Evanylo 1988). CPB have a high adaptability and 

evolved resistances to nearly all available insecticidal classes used over the past 

decades (Roush et al. 1990; Mota-Sanchez et al. 2006; Alyokhin et al. 2008). In organic 

farming CPB are attempted to be managed with the biologicals Bacillus thuringiensis 

and/ or neem extracts (Trisyono and Whalon 1999; Kryukov et al. 2009; Yaroslavtseva 

et al. 2017). In the field, efficacies of both agents are limited as neem extracts are 

mainly just effective against the first larval stages and CPB have evolved resistances 

against Bt-products. As a consequence, CPB adults and their late instars impair an 

efficient pest management in field (Whalon et al. 1993; Trisyono and Whalon 1999; 

Crowder et al. 2005; Premachandra et al. 2005). Without a prospective, sufficient pest 

management, CPB will threat organic potato production and cause defoliation and yield 

losses (Zehnder and Evanylo 1988; Kapsa 2008; Ertürk 2017).  

A no less major threat to potatoes are wireworms, which are among the most important 

soil dwelling pests in potato causing substantial problems throughout the northern 

hemisphere (Parker and Howard 2001; Vernon et al. 2008). In May and June, female 

click beetle lay their eggs singly or in small clusters just below the soil. Thereby, weed 

or grass covered soil is preferred to protect eggs from desiccation (Parker and Howard 

2001). Larvae hatch within 13 to 45 days after oviposition depending on temperature 

(Furlan 1998). Larval development is slow and can take up to five years or more with 

several larval stages, which are mainly dependent on soil moisture, temperature and 

food source (Furlan 1998; Parker and Howard 2001; Vernon and van Herk 2013). 

Mature click beetles hibernate in their pupation cells before emerging from soil in next 

year spring (Parker and Howard 2001). Larval stages are feeding on roots and 

decomposing plant material but can also cause severe damage to potato tubers. 

Wireworm damage is not causing yield losses but impair tuber quality (Vernon and van 

Herk 2013). Even slight wireworm damages can render harvest unmarketable, 

especially with coinciding drycore symptoms (Parker and Howard 2001; Keiser et al. 

2012). Agriotes lineatus, A. obscurus, A. sputator and in some regions A. ustulatus are 

the most abundant and destructive wireworm species in European agriculture (Ritter 

and Richter 2013) Since the 1990s, these species reappeared as serious potato pests 

and problems exacerbated within the last years. Reasons are among other a cessation 

of non-specific insecticides such as organochlorides, organophosphates and 
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carbamates,(Parker and Howard 2001) a transformation of permanent grassland to 

arable land and a reduction of soil tillage (Parker and Howard 2001; Vernon and van 

Herk 2013). Additionally, a proper pest management in Europe is difficult, not only due 

to the sheltered habitat of wireworms in soil but also a lack of permitted insecticides. 

Therefore, not just organic farmers have to use partially effective, non-chemical 

alternatives, such as an intensification of soil tillage to desiccate eggs, larvae and 

pupae or an incorporation of cruciferous plants (e.g. Brassica juncea) into soil (Furlan 

et al. 2010). It was also shown that an incorporation of entomopathogenic fungi into 

the soil can potentially manage wireworms (Reddy et al. 2014; Eckard et al. 2014; 

Rogge et al. 2017; Brandl et al. 2017; Razinger et al. 2018). Nevertheless, there is no 

agent on market protecting potato tubers sufficiently from wireworm damage, thus 

novel control agents and strategies to control wireworms and CPB are urgently 

needed. Finding and development of one single biological control agent that protects 

potatoes from wireworm tunneling and CPB defoliation would be highly beneficial for 

organic farmers. 

Entomopathogenic fungi (EFP) are promising candidates in biological control and their 

potential to control pests was reviewed in several articles (Hajek and St. Leger 1994; 

Shah and Pell 2003; Hajek et al. 2007; Zehnder et al. 2007; Faria and Wraight 2007). 

Furthermore, studies revealed that wireworms as well as CPB are susceptible to an 

infection with EPF of the families Metarhizium spp. and Beauveria spp. (Wraight and 

Ramos 2002; Kabaluk and Ericsson 2007; Kryukov et al. 2009, 2014; Akbarian 2012; 

Tyurin et al. 2016; Yaroslavtseva et al. 2017). Wireworms are more susceptible to an 

infection with Metarhizium than with Beauveria (Kabaluk et al. 2007; Kabaluk and 

Ericsson 2007; Ritter and Richter 2013; Eckard et al. 2014; Razinger et al. 2018), 

whereas CPB can be infected by both fungal families (Wraight and Ramos 2002; 

Kryukov et al. 2009; Akbarian 2012; Tyurin et al. 2016). Therefore, Metarhizium spp. 

and in particular Metarhizium brunneum PETCH (Ascomycota: Hypocreales: 

Clavicipitaceae) seems to be appropriate to control both potato pests. 

Technical applications of Metarhizium spp. on field scale are, however, difficult. Aerial 

applied conidia are sensitive to changes in relative air humidity, temperature and UV-

radiation (Hywel-Jones and Gillespie 1990; Hallsworth and Magan 1999; Lovett and 

St. Leger 2014). In addition, unformulated EPF degrade over time and can be outpaced 

by antagonistic organisms when artificially introduced into soil (Scheepmaker and Butt 

2010; Pilz et al. 2011) 
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The discovery that EPF are also endophytes in plants revealed new opportunities in 

biological plant protection (Quesada-Moraga et al. 2014; Vidal and Jaber 2015; 

Moonjely et al. 2016). EPF, colonizing plants, can affect insect pests (Batta 2013; 

Contreras et al. 2014; Muvea et al. 2014; Mantzoukas et al. 2015) and have, 

furthermore, multiple beneficial effects on host plants such as growth promotion (Khan 

et al. 2012), nutrient uptake (Behie et al. 2012), salt stress mitigation (Khan et al. 2012) 

and protection against plant pathogens (Sasan and Bidochka 2012). Recently 

published studies indicated that M. brunneum can be established in potatoes as an 

endophyte (Ríos-Moreno et al. 2016; Krell et al. 2018b). Thus, an endophytic 

M. brunneum strain can be a promising way to control wireworms and CPB without 

exposing M. brunneum to environmental influence (Ownley et al. 2010). However, the 

mode of action in this complex plant – entomopathogen – insect – system is still 

unknown and data on insects infected by an endophytic, entomopathogenic fungus are 

rare. 
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Objectives 

In this study, novel endophytic Metarhizium spp. strains were isolated from soil 

samples and identified. Promising strains were evaluated for their potential to protect 

potatoes from wireworm and CPB damage in laboratory, greenhouse and field scale. 

 

1. Isolation and identification of a novel Metarhizium spp. strain that possess 

requirements to protect potato plants endophytically. Therefore, strains were 

tested to be: 

a. Virulent to the wireworm species A. lineatus, A. sputator and A. obscurus 

b. Virulent to CPB larvae and/ or beetles 

c. Able to colonize potato plant tissue endophytically 

 

2. Evaluation of an endophytic control approach to manage CPB on field scale. 

a. Do potato plants colonized by M. brunneum influence the development 

of CPB? 

b. Does an endophytic M. brunneum changes plants preference of adult 

CPB?  

c. Can an endophytically applied M. brunneum strain protect potato plants 

on field scale? 

 

3. Evaluation of technically encapsulated M. brunneum mycelium on field scale 

and its potential to manage wireworms. 

a. Is M. brunneum able to colonize potato plants in field and do formulations 

affect endophytism? 

b. Can technical applications reduce wireworm damage on tubers? 

c. Is M. brunneum persistent in field soil during growing season? 
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Isolation and identification of a novel endophytic Metarhizium brunneum strain 
from Central Germany with potential activity against potato pests 

L. Hettlage1, D.-J. Haunschild1, M. A. Stöppler1, S. Vidal1 
1Georg-August University, Department of Crop Sciences, Agricultural Entomology, Grisebachstr. 6, 

37077 Göttingen, Germany, 

Phone: +49 (0) 551–39 33732, E-mail: laurenz.hettlage@agr.uni–goettingen.de 

Abstract 

Potato (Solanum tuberosum, L.) crops are vulnerable to a broad range of pests and 

pathogens. In particular organic farmers are challenged to protect their crops from 

infestations and therefore crop losses. Beside of pathogens, wireworms (Agriotes spp., 

Coleoptera: Elateridae) and the Colorado potato beetle (CPB), 

Leptinotarsa decemlineata SAY (Coleoptera: Chrysomelidae) are hardly manageable 

pests in organic potato farming. CPB evolved resistances against nearly all insecticidal 

agents available and wireworm are well protected in their below ground habitats. 

Endophytic, entomopathogenic fungi, such as Metarhizium brunneum PETCH 

(Ascomycota: Hypocreales: Clavicipitaceae), can have the potential to build up a 

systemic protection against pests. It is known that Metarhizium brunneum can infect 

wireworms or CPB, though no solely strain is descripted infecting both. In this study 

M. brunneum strains were isolated from soil probes, identified and tested for their 

ability to infect wireworms and CPB. The most promising strain was inoculated into 

potato tubers and re-isolated from newly developed shoots to unveil their endophytic 

potential. In this study, the M. brunneum strain Cb15III was observed to be the most 

promising candidate to protect potato crops from wireworms and CPB. The strain 

revealed LT50 values of 21 ± 7.75, 16 ± 1.55 and 18 days ± 15.02 for the wireworm 

species A. lineatus, A. obscurus and A. sputator, respectively. For CPB larvae a LT50 

value of 10 days ± 0.78 were observed. CPB adults were not affected by a M. 

brunneum Cb15III treatment. M. brunneum Cb15III was re-isolated from shoots after 

tubers have been inoculated, albeit re-isolation rates were very low. This study 

demonstrated the possibility to isolate novel entomopathogenic fungi from local 

habitats and unveil their potential as biological control agents against potato pests. 

 

Keywords:  Metarhizium brunneum, Colorado potato beetle, wireworms, potato,  

endophyte  
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Introduction 

Plant protection management in modern agriculture is based on chemically synthetic 

agents to protect crops from pests and pathogens. However, increasing public demand 

for naturally produced foodstuff is putting agriculture under pressure to reduce 

application of insecticides. Consequently, organic farming systems are getting more 

and more prominent, hence worldwide organically farmed land increased from 11.0 

(0.3 % of overall agricultural land) to 57.8 (1.2 %) million hectares in the years 1999 to 

2016 (Willer and Lernoud 2018). But organic farmers are facing a broad range of pests 

and diseases, since a lack of fast and predictable acting insecticidal agents is making 

organically cultivated crops vulnerable to yield losses due to severe pest infestations 

(Oerke 2006). Some biological control agents acting as effectively as chemically 

synthetic insecticide, such as spinosad (Salgado 1998; Sparks et al. 2001), can also 

be as devastating to non-target organisms (Biondi et al. 2012). Alternatively, farmers 

can apply products based on the bacterium Bacillus thuringiensis. The active 

ingredients of these products are proteins produced by B. thuringiensis and which 

toxically acting to the digested system of herbivore insects without harming pollinators 

(Slaney et al. 1992; Schnepf et al. 1998; Wang et al. 2008; Dai et al. 2016). However, 

insect resistances to Bt-toxins are reported which lowering the efficacy of these 

products (Whalon et al. 1993; Crowder et al. 2005). The botanical neem is a widely 

used alternative to manage pests. The efficacy is lower compared to spinosad or Bt-

products and the active ingredient azadirachtin is mainly active against early larval 

stages (Trisyono and Whalon 1999; Premachandra et al. 2005) 

Especially in potato crops, the lack of highly effective biological insecticides is a 

challenge. Pest infestation can be of significant relevance to tuber yield and quality 

(Kapsa 2008). The potato plant, Solanum tuberosum L., is attacked above and below 

ground by nematodes (Williamson and Hussey 1996), aphids (Landis et al. 1972), 

wireworms (Agriotes spp., Coleoptera: Elateridae) (French and White 1965), and the 

Colorado potato beetle (CPB), Leptinotarsa decemlineata SAY (Coleoptera: 

Chrysomelidae).  Management of these pests in organic potato crops is today limited 

to: cultivation of less susceptible crop varieties (Johnson et al. 2008), crop rotation 

(Kratochvil et al. 2004; Lamondia 2006) or natural insecticides (Schnepf et al. 1998; 

Copping and Duke 2007).  
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In addition, applications of entomopathogens showed sufficient efficacies against 

potato pests. Laznik et al. (2010) showed that entomopathogenic nematodes, 

Steinernema feltiae, can successfully be applied as a foliar treatment against CPB. 

Larvae of the CPB were also susceptible to the EPF Metarhizium anisopliae, 

Cordyceps militaris and Beauveria bassiana under laboratory conditions (Akbarian 

2012; Kryukov et al. 2014). 

Eckard et al. (2014) demonstrated that three Metarhizium brunneum PETCH 

(Ascomycota: Hypocreales: Clavicipitaceae) strains, BIPESCO 5, V1002 and ART 

2825, were able to infect and kill the three most abundant and destructive wireworm 

species Agriotes lineatus (Coleoptera: Elateridae), A. obscurus and A. sputator (Ritter 

and Richter 2013). Under laboratory conditions, the M. brunneum strain ART 2825 

showed LT50 values between 14 ± 5.4 (A. obscurus) and 21 ± 4.5 days (A. lineatus), 

A. sputator LT50 values could not be defined in this study because of a mortality less 

than 50 % (Eckard et al. 2014). Brandl et al. (2017) revealed that the M. brunneum 

strain ART2825 is capable to reduce tuber damage induced by wireworms under field 

conditions, when applied in the sowing furrow as formulated capsules. These results 

indicate that EPF are generally capable of infecting a wide range of insects, but each 

strain can be closely associated with its specific hosts. However, it seems possible that 

one EPF strain can also infect other arthropod species such as ticks, for although the 

M. brunneum strain F52  is virulent against wireworms it can also infect Asian 

longhorned beetle, Anoplophora glabripennis, as well as Ixodes scapularis nymphs 

(Bharadwaj and Stafford 2011; Behle et al. 2013; Goble et al. 2015). The knowledge 

that one M. brunneum strain can infect various arthropod families could be exploited 

to manage various pests of the same crop. It is reported that wireworms as well as 

CPB are susceptible to an infection with EPF but there is no study showing that one 

strain is able to infect both pests on a sufficient level (Kabaluk and Ericsson 2007; 

Tyurin et al. 2016). It would be highly beneficial for organic farmers to have one single 

agent protecting potato crops from pest infestation.  

 

Therefore, this study aims to demonstrate the possibility of isolating EPF from local 

habitats and exploit their virulence against wireworms and CPB. Furthermore, the EPF 

is tested for its ability to endophytically colonize potato plants. Results will allow the 

evaluation of a combined management of above and belowground pests with an 

entomopathogenic, endophytic fungus.  
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Material and Method 

Isolation and identification of Metarhizium strains 

Metarhizium spp. strains used in the following experiments were isolated from soil 

samples taken in south Lower Saxony near the village Boesinghausen (N 51° 34‘ 00“; 

O 10° 3‘ 36“). Sampling was conducted following the protocol of Schneider et al. 

(2012). The first sample site was arable land (labeled as C) with a field size of 

20,000 m2. It was cultivated with winter wheat, barley or oilseed rape as part of a crop 

rotation and was managed according to conventional farming standards. The second 

sample site was a semi-natural, permanent grassland (labeled as G) with a size of 

5,000 m2. Soil was not cultivated for at least seven years and grassland was harvested 

twice a year. In each sample site four transects (a, b, c and d) were defined with a 

distance of 10 m to each other and a length of 100 m. Twenty soil cores of 1.8 cm 

diameter and 15 cm depth were collect within each transect (1 – 20) with a spacing of 

5 m from each other. Plant debris was removed and samples were collected in plastic 

bags. Samples were stored in the laboratory over night at room temperature to avoid 

condensation. 

Metarhizium spp. propagules were isolated following the protocol of Brandl et al. 

(2017). Soil samples were homogenized and sieved though a mesh (ø 5 mm, RETSCH 

GmbH, Haan, Germany). Subsamples of 5 g were transferred to a 50 ml centrifugation 

tube (Carl Roth GmbH & Co. KG, Karlsruhe, Germany) and suspended with 25 ml 

sterile 0.1% (w/v) Tween® 80 solution (Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany). Tubes were inverted every 30 min over a time span of 3.5 h to release 

fungal propagules from the soil matrix in the suspension (Goettel and Douglas Inglis 

1997). 100 µl of the 100, 10-1 or 10-2 dilutions of the supernatant were spread on semi-

selective media (Strasser et al. 1996), respectively. Plates were incubated in the dark 

at 25° C for 7 days. Separately grown, fungal colonies from the highest dilution were 

transferred to fresh semi-selective media with a cork borer. If colonies established on 

media with the highest dilution, colonies from the next higher dilution were taken. After 

14 days incubation, colonies were identified as Metarhizium spp. based on 

morphological criteria ((i) conidiogenesis in dense hymenia, (ii) branching 

conidiophores, (iii) clavate/cylindrical conidia, (iiii) conidia chains) relevant for the 

genus level (Humber 2012).  
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Identification down to species level was conducted at the workgroup of Dr. Jürg Enkerli 

(ISS Agroscope, Zürich, Switzerland) with multiplex microsatellite markers (Mayerhofer 

et al. 2015). All further tested strains revealed to be strains of Metarhizium brunneum 

(Jürg Enkerli, personal communication).  

 

Fungal preparation 

All strains were cultured on potato-extract-dextrose-agar (PDA) (Carl Roth GmbH & 

Co. KG, Karlsruhe, Germany) in the dark in a climatic cabinet (Biologischer 

Klimaschrank WB 750, mytron Bio- und Solartechnik GmbH, Heilbad Heiligenstadt, 

Germany) at 25° C and 70% relative humidity (RH). Conidia suspensions were freshly 

prepared for each experiment with 2 - 3 weeks old M. brunneum cultures. Aero conidia 

for suspensions were harvested by flooding cultures with 0.1% (v/v) Tween® 80 and 

gently scratching of mycelia (including spores) from the PDA media surface. 

Conidia/mycelium suspension was transferred to a 400 ml glass beaker and stirred at 

700 rpm on a magnetic stirred in a total volume of 200 ml to detach conidia from 

mycelia. Mycelium debris was removed by filtering the suspension through a sterile 

metal sieve (mesh opening: 1 mm). Conidia were determined via counting using a 

hemocytometer (Thoma chamber, Paul Marienfeld GmbH & Co. KG, Lauda-

Königshofen, Germany) (Goettel and Douglas Inglis 1997). Spore vitality was 

evaluated in Petri plates on PDA incubated for 36 h at 25° C, with vitality rates always 

above 92%. Conidia concentration was adjusted to 1 x 107 by adding 0.1% Tween® 80 

solution before using in experiments. 

 

General Metarhizium brunneum pathogenicity test 

Tenebrio molitor L. (Coleoptera: Tenebrionidae)  larvae were used to conduct the 

general pathogenicity test because of their known sensitivity against 

entomopathogenic fungi such as M. brunneum (Lee et al. 2014). Six Metarhizium 

brunneum strains from soil probes were used for the experiment, three from grassland 

samples (Gb5I, Gc2II and Gb9II) and three from crop field samples (Ca8II, Ca16 and 

Cb15). Additionally, the M. brunneum strain ART 2825 was used as a reference due 

to its known pathogenicity against the larvae of Agriotes spp. (Eckard et al. 2014; 

Brandl et al. 2017). 
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For each treatment, five plastic trays (10 cm x 7.5 cm x 5 cm, Nette Papier GmbH, 

Göttingen, Germany) were filled with 150 ml of a soil (Fruhstorfer Einheitserde Typ P, 

HAWITA Gruppe GmbH, Vechta, Germany) vermiculite (2 – 8 mm) mixture in a ratio 

of 5 : 1 and watered with 15 ml autoclaved tap water. Five ml spore suspension 

(1 x 107 aerial conidia/ ml) was pipetted on soils surface of each plastic tray. The 

control was treated with 5 ml 0.1 % (v/v) Tween® 80 (Carl Roth GmbH + Co. KG, 

Karlsruhe, Germany). Plastic trays were sealed with an appropriate lid (10 cm x 7.5 cm, 

Nette Papier GmbH, Göttingen, Germany) and manually shaken to for 30 seconds. 

Four, 20 mm long T. molitor larvae (Zoo-Busch GmbH, Göttingen, Germany) were add 

to each plastic tray and afterwards manually shaken again for 5 seconds. The lid was 

perforated with a needle (Ø 1 mm) to allow air exchange. Treatments were stored in a 

climatic cabinet (Biologischer Klimaschrank WB 750, mytron Bio- und Solartechnik 

GmbH, Heilbad Heiligenstadt, Germany) at 22° C ± 1 and 70 % ± 5 relative humidity 

and randomly distributed at one rack level. The number of vital larvae was examined 

after 5, 8, 11, 14, 17 and 20 days after inoculation (dpi). Dead larvae were immersed 

in 2 % (v/v) sodium hypochlorite and 70 % (v/v) ethanol for 2 minutes, respectively and 

then rinsed three times in autoclaved tap water. 100 µl of the last watering step was 

plated on PDA-Media and incubated for 4 days at 25° C to prove the success of the 

surface sterilization. Surface sterilized larvae were individually transferred to sterile 

Petri dishes (Ø 60 mm, with vents, Sarstedt AG & Co. KG, Nümbrecht, Germany) lined 

with autoclaved filter paper (Ø 50 mm, Munktell & Filtrak GmbH, Bärenstein, Germany) 

and moistened with 200 µl autoclaved tap water. Petri dishes were sealed with 

laboratory film (Parafilm® M, Bemis Company Inc., Neenah, USA) and incubated at 

25° C for 14 days or until a characteristic M. brunneum mycosis became visible. 

Additionally, mycelium and spores were examined under a light microscope (200 x 

magnification, BH2-HLSH, Olympus Corporation, Tokyo, Japan) to prove M. brunneum 

outgrow from the cadaver. 

 

Pathogenicity test against wireworms 

The strains Gc2II and Cb15III revealed to be the most aggressive from each habitat, 

permanent grassland and field. Consequently, these strains were tested against larvae 

of the Agriotes species A. lineatus, A. obscurus and A. sputator from a wireworm 

rearing. The pathogenicity test was conducted in 50 ml centrifuge tubes (115 x 28 mm, 
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Sarstedt AG & Co. KG, Nümbrecht, Germany) filled with soil (Fruhstorfer Einheitserde 

Typ P, HAWITA Gruppe GmbH, Vechta, Germany) as described by Brandl et al. 

(2017). Centrifuge tubes were filled with 40 ml soil and mixed with 5 ml spore 

suspension (1 x 107 aero conidia / ml) of the M. brunneum strains Cb15III or Gc2II. A 

control was conducted with 5 ml 0.1 % (v/v) Tween® 80. One wireworm (length 

1.2 – 1.7 cm) was placed in each tube and a carrot slice (ca. 2 x 2 x 0.7 cm) was 

served as a food source. Each treatment was replicated ten times per wireworm 

species. Tubes were stored in the climatic cabinet at 22° C ± 1 and 70 % ± 5 RH and 

randomly distributed across rack levels. Wireworms were monitored weekly over a 

period of 12 weeks. Dead larvae were removed, surface sterilized and transferred to 

sterile Petri dishes as described for T. molitor larvae. Soil moisture was kept between 

20 – 25 % and moistened with sterile tap water if needed. Carrot slices were replaced, 

if heavy feeding damage or mold was observed. 

 

Pathogenicity test against Leptinotarsa decemlineata 

The M. brunneum strain Cb15III was tested in a pathogenicity test against Leptinotarsa 

decemlineata larvae and adults was conducted in sterile Petri dishes (ø 60 mm). 

Second instar larvae and newly hatched adults were individually placed in a Petri dish 

lined with autoclaved filter paper (ø 50 mm). Larvae and adults were doused with 

400 µl of a spore suspension (1 x 107 aero conidia / ml) or 400 µl 0.1 % (v/v) Tween® 

80 as a control. A potato leave (var. Belana, ca. 40 x 40 mm) was added as food 

source to each Petri dish. All treatments were stored randomly distributed in a climatic 

cabinet at 22° C ± 1, 70 % ± 5 RH and 16 h light/ 8 h dark. Petri dishes were monitored 

daily over a period of 4 weeks. Every second day, potato leaves were replaced and 

filter papers were moistened with 200 µl sterile tap water. Dead larvae and adult beetle 

were removed from Petri dishes, surface sterilized and placed in new sterile Petri 

dishes to observe mycelium outgrowth as described T. molitor larvae. 

 

Endophyte test in potato tuber 

To prove the ability of the M. brunneum strain Cb15II to grow endophytically in potato 

plants, tubers form 20 potato varieties (Bioland Hof Jeebel Biogartenversand OHG, 

Salzwedel, Germany) were inoculated with a spore suspensions and re-isolated from 

newly developed shoots  (Table 1). Equal sized tubers (ca. 40 g) from all varieties were 
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washed with tap water and surface sterilized. Therefore, tubers were immersed in 7 % 

(v/v) sodium hypochlorite and 70 % (v/v) ethanol for 2 minutes, respectively and then 

rinsed three times in autoclaved tap water. 100 µl of the last watering step was plated 

on PDA-Media and incubated for four days at 25° C to prove the success of the surface 

sterilization. Ten tubers of each variety were inoculated with 10 µl of a spore 

suspension (1 x 107 aero conidia / ml) or 0.1 % (v/v) Tween® 80 using a microliter 

syringe (Hamilton Company, Reno, USA). The spore suspension as well as 0.1 % 

Tween® 80 was injected into the middle of tubers. The injection wound was cleaned 

and sterilized with a 70 % (v/v) ethanol soaked, sterile paper tissue to avoid unwanted 

vital M. brunneum spores on the surface. Tubers were placed in plastic boxes 

(6.5 x 17.5 x 11.5 cm, Nette Papier GmbH, Göttingen, Germany) cleaned with 70 % 

ethanol and sealed with an appropriate plastic lid. Boxes were stored in the dark in a 

climate cabinet at 22° C ± 1 and 70 % ± 5 RH until new developed potato shoots 

reached a length of 40 mm. Three shoots of each tuber were cut off with a sterile 

scalpel and sectioned in three equal parts in a sterile laminar flow cabinet. Sectioned 

shoots were placed on semi-selective media and in incubated in the dark at 25° C for 

four weeks. Growing mycelium and spores were examined under a microscope to 

verify M. brunneum outgrowth. 

 
Table 1 Potato varieties used in the experiment 

Potato varieties 
(Bioland Hof Jeebel Biogartenversand OHG, Salzwedel, Germany) 

Adretta Augusta Cassablanca Marabel 

Agila Belana Ditta Nicola 

Agria Bellinda Gala Quarta 

Annabelle Bintje Granola Orla 

Annalena Campina Linda Solist 

 

Statistical analysis 

All values are given as means ± standard errors (SE), unless otherwise stated. 

T. molitor larval vitality was calculated by comparing the number of vital larvae with the 

number of attached larvae in each treatment.  
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% vitality = (1 −
no. dead larvae

no. attached larvae
) ∗ 100 

 

Mycosis was estimated for each treatment by comparing the number of mycosed 

T. molitor larvae compared to the total number of dead larvae. 

 

% mycosis =
no. mycosed larvae

no.  dead larvae
∗ 100 

 

Vitality was analyzed by nonparametric Kruskal-Wallis ANOVA followed by a Dunnett-

test (M. brunneum treatments compared to “Control”) (α = 0.05). Differences in 

mycosis rates were statistically compared with a  2 x 2 table Fisher’s exact test 

(α = 0.05) (Fisher 1922). 

Agriotes spp. as well as CPB survival was analyzed with Kaplan-Meier survival 

analysis (log-rank test) (Kaplan and Meier 1958). Dead larvae were referred to an 

“event”, whereas vital larvae were “censored” within the log-rank test procedure. 

Significant differences between treatments were detected with the Holm-Sidak 

pairwise test (α = 0.05). 

Tuber germination was analyzed for each potato variation with Mann-Whitney-U test 

(α = 0.05) by comparing the bygone time until shoots reached a size of 40 mm. 

Percentages of germinated tubers as well as fungal re-isolation rates per treatment 

and variation were analyzed with a 2 x 2 table Fisher’s exact test (α = 0.05), 

respectively. Re-isolation rates of M. brunneum as well as for other fungi from potato 

shoots were calculated by comparing the number of shoots with fungal outgrowth to 

the germinated, plated shoots. 

 

% re − isolated =
no. fungi growing from shoots 

no. plated shoots
∗ 100 

 

All statistical analyses were carried out with the software STATISTICA, version 13 

(StatSoft Inc., Tulsa, OK, USA). Kaplan-Meier survival analysis was done with 

SigmaPlot, version 11.0 (Analytical Software, Tallahasee, Fl, USA). 
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Results 

Identification of Metarhizium strains 

Microsatellite analysis identified all soil-isolated colonies as Metarhizium brunneum 

and the number of base pairs within microsatellites indicated that most of the isolated 

colonies originated from different strains (data not shown). Hierarchical clusterization 

of strains revealed a close relationship of the strains Cb15III, Ca16 and Gc5I to the 

known M. brunneum strains BIPESCO 5, ARSEF 5198 and Ma714 (Figure 1). 

 

 
Figure 1 Hierarchical clustering of soil-isolated Metarhizum strains from Göttingen including 
the in this study tested strains Gc2II, Cb15III, Ca16I and Gc5I) (Jürg Enkerli, Personal 
communication) 
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General Metarhizium brunneum pathogenicity test 

Dead Tenebrio molitor larvae were found five days past inoculation (dpi). After seven 

days, Metarhizium brunneum treatments affected the number of vital larvae 

significantly (Kruskal-Wallis ANOVA: H7, 40 = 29.96, p < 0.0001). All strains from arable 

land, Ca16 (30.00% ± 9.35) (p < 0.001), Ca8II (10.00% ± 6.12) (p < 0.0001) and 

Cb15III (0.00% ± 0.00) (p < 0.00001), and one strain from grassland, Gc5I 

(25.00% ± 19.36) (p < 0.001) significantly reduced the number of vital larvae compared 

to the “Control” (85.00% ± 6.12) within the first week after inoculation (Figure 2). Strain 

Gc2II (35.00% ± 12.75) significantly reduced the number of vital larvae within 11 dpi 

(p < 0.01). The well-studied M. brunneum strain ART 2825 (14.00% ± 10.00) reduced 

the number of vital T. molitor larvae significantly at 18 dpi (p < 0.5). The Strain Gb9II 

was not able to show significant effects on the larval vitality till experiment terminated. 

Mycosis rates were always above 60% for all M. brunneum treatments but did not 

exceed 90 %. No statistically significant differences were found in-between treatments 

(2 x 2 table Fisher’s exact test (α = 0.05)) (Figure 3). Most larvae showed symptoms 

of mycosis when treated with Gc2II (16 out of 20 dead larvae) and fewest when treated 

with Gb9II (8 out of 11 dead larvae). 

 
Figure 2 Larval mortality in % (mean ± standard error (SE)) in day past inoculation (dpi) after 
treated with the M. brunneum strains Gb5I, Gc2II, Gb9II, Ca8II, Ca16, Cb15III and ART 2825. 
Asterisks (*) indicate significant differences between M. brunneum treatments and the 
“Control” (Kruskal-Wallis ANOVA followed by Dunnett-test (α = 0.05)).  
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Figure 3 Larval mycosis rates (%) after treated with the M. brunneum strains Gb5I, Gc2II, 
Gb9II, Ca8II, Ca16, Cb15III and ART 2825. “n“ indicates the number of dead larvae. “No 
significant differences revealed within the M. brunneum treatments (2 x 2 table Fisher’s exact 
test (α = 0.05)). 

 

Pathogenicity against wireworms 

Survival rates were significantly affected when treated with the M. brunneum strains 

Gc2 and Cb15II for the three tested Agriotes species A. lineatus (χ2 = 6.79; DF = 2, 

p < 0.05), A. obscurus (χ2 = 17.81; DF = 2, p < 0.001) and A. sputator (χ2 = 10.10; DF = 

2, p < 0.01). The strain Cb15III was able to significantly shorten the survival of A. 

obscurus (p < 0.001) and A. sputator (p < 0.001) larvae compared to control larvae. 

However, A. lineatus larvae treated with Cb15III did not show a significant different 

survival curve than control larvae (p = 0.051), even though survival time was halved. 

Cb15III was able to reduce the number of all species larvae by more than 50% with a 

LT50 (median ± SE) of 21 ± 7.75 (A. lineatus), 16 ± 1.55 (A. obscurus) and 18 ± 15.02 

(A. sputator). The M. brunneum strain Gc2II reduced larval survival merely for 

A. sputator larvae significantly (p < 0.05) with a LT50 of 50 ± 17.39 (Table 2). 
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Table 2 LT50 in days (Median ± standard error (SE) and 95 % upper and lower confidence 
intervals (CI)), mortality and mycosis rates (both in %) of Agriotes lineatus, A. obscurus and A. 
sputator after inoculation with M. brunneum (strain: Cb15III and Gc2II) (Kaplan-Meier survival 
analysis (log-rank test)); small letter indicates significant differences between treatments of 
Agriotes species (Holm-Sidak pairwise tests (α = 0.05)). 

Treatment  A. lineatus          
  LT50  95 % CI     
    Median ± SE  Lower Upper  Mortality  Mycosis rate 

Cb15III   a 21 ± 7.74  5.82 36.05  70.00%  42.86% 
Gc2II      ab n.a.     30.00%  33.33% 
Control   b n.a.     20.00%  0.00% 
          
  A. obscurus          
  LT50  95 % CI     
    Median ± SE  Lower Upper  Mortality  Mycosis rate 

Cb15III   a 16 ± 1.55  11.85 46.95  90.00%  87.50% 
Gc2II      b n.a.     30.00%  50.00% 
Control   b n.a.     20.00%  0.00% 
          
  A. sputator          
  LT50  95 % CI     
    Median ± SE  Lower Upper  Mortality  Mycosis rate 

Cb15III   a 18 ± 15.02  19.51 56.09  90.00%  100.00% 
Gc2II      a 50 ± 17.39  22.01 67.39  70.00%  60.00% 
Control   b n.a.     20.00%  0.00% 
 n.a. not available   

 

Pathogenicity against Colorado potato beetle 

CPB larvae treated with the M. brunneum strain Cb15III had a significantly shortened 

survival (χ2 = 8.65; DF = 1, p < 0.01). All Cb15III treated larvae died within 21 dpi with 

a LT50 value (median ± SE) of 10 days ± 0.78 (Figure 4). After 21 dpi, 70% of control 

larvae were still alive and started pupation. All pupae developed into adult beetles 10 

to 14 days later. All but one CPB larvae did develop a mycosis within seven days after 

death. 

When adult beetles treated with Cb15III or 0.1% Tween® 80 neither symptoms of 

fungus infestation nor effects on vitality were observed within the 60 days of the 

experiment. 
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Figure 4 Survival curves of CPB larvae and treated with M. brunneum Cb15III or 0.1 Tween® 
80. Survival of inoculated larvae was significantly reduced compared to the control (Log-
Rank test: (χ2 = 8.65; DF = 1, p < 0.01). 

Endophyte test in potato tuber 

Potato tubers developed shoots (4 mm) with a germination rate between 70% and 100 

% throughout all varieties and treatments. However, treatments of the varieties 

“Belana” and “Marabel” as well as the control treatments of “Annabelle” and 

“Cassablance” had a lower germination rate of 60% or fewer. An inoculation with 

M. brunneum Cb15III had a statistically significant positive effect only on the 

germination rate of the variety “Cassablanca” (2 x 2 table Fisher’s exact test, p < 0.05). 

Germination time was significantly negative affected by Cb15III inoculation within the 

varieties “Orla” (Mann-Whitney U test, z = -1.84, p < 0.05) and “Cassablanca” (Mann-

Whitney U test, z = -1.96, p < 0.05). M. brunneum re-isolation rates on semi selective 

media were poor and for most potato varieties no M. brunneum outgrow was proven. 

M. brunneum was successfully re-isolated from one shoot of the varieties “Linda”, 

“Gala”, “Ditta” and “Marabel”, respectively. In most cases other fungi, predominantly 

Penicillium spp. and Gliocladium spp., were isolated from potato shoots. The outgrowth 

of “unwanted” fungi reached up to 100 % in several treatments (Table 3). The variety 

“Belana” was the only variety without any fungal outgrowth, neither M. brunneum nor 

Penicillium spp., Gliocladium spp. or other fungi evolved from plated shoots.  
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Table 3 Tuber germination (%) and time in days (mean ± standard error (SE)) bygone until 
shoots reached a size of 40 mm. Re-isolation rate (%) of M. brunneum and other fungi from 
shoots on semi-selective media. Asterisks (*) indicate significant differences between 
treatments within potato varieties (Mann-Whitney-U test α = 0.05). Small letters indicate 
significant differences between treatments within varieties (2 x 2 table Fisher’s exact test α = 
0.05). 

Variety Treatment   Germination     Fungal re-isolation (%) 

      Mean (%)   Mean (dpi) ± SE   M. brunneum   Other 

Nicola Control  100  22.8 ± 1.3  0  10 
 Cb15III  100  22.2 ± 1.2  0  30           
Annabelle Control  60  38.5 ± 4.3  0  100 
 Cb15III  70  37.3 ± 4.0  0  71           
Orla Control  80  24.0 ± 2.0 *  0  50 
 Cb15III  80  32.5 ± 3.2 *  0  88 
          
Quarta Control  80  32.3 ± 0.5  0  100 
 Cb15III  90  31.7 ± 1.0  0  67 
          
Cassablanca Control  20 a  26.0 ± 0.0 *  0  50 
 Cb15III  80 b  33.8 ± 0.8 *  0  88           
Granola Control  100  32.3 ± 2.4  0  30 
 Cb15III  100  28.1 ± 1.5  0  60 
          
Agria Control  100  32.2 ± 3.2  0  20 
 Cb15III  100  31.3 ± 3.4  0  10 
          
Agila Control  100  43.4 ± 3.2  0  60 
 Cb15III  100  47.9 ± 1.4  0  60           
Campina Control  100  45.1 ± 2.2  0  70 
 Cb15III  80  41.5 ± 3.1  0  88 
          
Annalena Control  50  49.6 ± 0.2  0  60 
 Cb15III  50  46.6 ± 2.9  0  80 
          
Adretta Control  100  26.3 ± 0.7  0  60 
 Cb15III  90  27.2 ± 2.2  0  100           
Bintje Control  100  25.7 ± 2.3  0  40 
 Cb15III  100  20.9 ± 1.4  0  50 
          
Linda Control  100  25.2 ± 1.3  0  10 
 Cb15III  100  22.8 ± 0.8  10  50 
          
Gala Control  100  28.6 ± 2.0  0  20 
 Cb15III  90  27.1 ± 1.7  11  22           
Ditta Control  100  24.4 ± 1.2  0  40 
 Cb15III  90  25.6 ± 1.4  11  11 
          
Bellinda Control  90  34.7 ± 0.9  0  22 
 Cb15III  60  36.0 ± 0.0  0  33 
          
Belana Control  40  36.0 ± 0.0  0  0 
 Cb15III  50  36.0 ± 0.0  0  0           
Solist Control  70  29.3 ± 2.4  0  43 
 Cb15III  60  28.3 ± 2.6  0  67 
          
Augusta Control  100  30.4 ± 1.8  0  80 
 Cb15III  70  28.4 ± 2.2  0  71 
          
Marabel Control  60  28.3 ± 2.6  0  83 
  Cb15III   40   28.0 ± 4.0   25   75 
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Discussion 

All tested Metarhizium brunneum strains, isolated from soil samples, were able to infect 

and kill T. molitor larvae. However, differences between strains were tremendous, 

particular in regard to sample location. All strains isolated from arable land were able 

to kill 100% of the larvae within a maximum of eleven days, whereas larvae treated 

with grassland strains showed mortality rates between 55 and 95% after 20 days. It is 

likely that the sample location have effects on certain fungal features affecting the 

virulence to insects. Bidochka et al. (2001), for instance, revealed that M. anisopliae 

strains isolated from forested or agricultural habitats differ in their cold and heat activity. 

Accordingly, strains from agricultural habitats are more active at high temperatures 

(growth activity at 37° C) and more tolerant to UV-radiation compared to isolated 

strains from forested habitats, which are more likely to grow at low temperatures (grow 

activity at 8° C). Furthermore, Bidochka et al. (1998) found M. anisopliae more 

frequently in agricultural habitats than in natural habitats contrary to B. bassiana, 

regardless of soil type or pH. This indicates that M. anisopliae is well adapted to 

agricultural used land, thus it seems logical that also the closely related fungus M. 

brunneum developed similar adaptations to these habitats and the predominant insect 

fauna (Driver et al. 2000). 

Within grassland habitats the soil matrix, plant and microbial community as well as the 

presence of hosts can be stable over years or decades. Bruck (2009) reviewed that 

within particular habitats plant communities can drive a selection pressure on EPF to 

select for those capable persisting within the rhizosphere in the time gap between two 

insect hosts. This leads to an interaction between insect hosts, EPF and plants. Within 

this system EPF are among others able to transfer nitrogen to plants and receive 

carbohydrates instead (Behie et al. 2012, 2017; Behie and Bidochka 2014).  The 

specificity of this system could lead to a reduced virulence of EPF isolated from 

grassland (Humber 2008). On the other hand, M. brunneum strains from agricultural 

habitats could have developed higher virulence due to a constantly changing 

environment. Tillage and crop rotation is changing the soil environment several times 

a year thus conidia of EPF are relocated and dispersed within the soil matrix. The 

insect fauna is not as diverse as in other habitats (Schneider et al. 2012) and natural 

selection could pressure EPF to select those able to generally infecting insects rapidly 

when available. Additionally, higher UV-light exposure could lead to mutations creating 
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more virulent strains (Zhao et al. 2016). These habitat influenced factors could explain 

differences in virulence against T. molitor larvae, which were also observed for 

wireworms. The coincidentally high virulence of the strain Cb15III and the lower 

virulence of the strain Gc2II against T. molitor larvae and wireworms also confirms 

results of Bharadwaj and Stafford (2011) who have utilized T. molitor larvae as a 

functional bioassay to test the pathogenicity against pests. This makes T. molitor 

larvae an easily available and manageable insect for fast acting bioassays to test a 

great number of EPF strains for their potential to kill wireworms or other pests. In this 

study, the M. brunneum strain Cb15III was able to kill all three tested wireworm species 

with LT50 values between 21 (A. lineatus) and 18 dpi (A. obscurus). These findings are 

in accordance with LT50 values quoted by Eckard et al. (2014) for the Agriotes lineatus 

(21 dpi) and obscurus (14 dpi) dipped in a M. brunneum strain ART2825 spore 

suspension. However, strain Cb15III seems to be more virulent to A. sputator than 

strain ART2825. This is especially true in regard to the larval inoculation method 

indicating that dipped larvae could get more likely in contact to a higher, more 

homogenous number of spores than larvae placed in inoculated soil. This was also 

discussed by Brandl et al. (2017), who pointed out higher LT50 values for Agriotes 

species exposed to M. brunneum inoculated field soil. This makes strain Cb15III one 

of the most virulent strain tested against the three economically most important and 

destructive wireworm species (Ritter and Richter 2013). The hierarchical clustering of 

the in this study isolated strains revealed a close relation between the M. brunneum 

strains Cb15III and BIPESCO5 (Figure 1). However, the M. brunneum strain 

BIPESCO5 was unable to kill more than 50% of the tested wireworms (Eckard et al. 

2014), suggesting that a close genetic relationship is not appropriate to predict fungal 

virulence. This is also true for the strains Cb15III and Gc5I, latter less aggressive 

against T. molitor larvae (Figure 2).  

In addition, the virulence against T. molitor larvae and wireworms, strain Cb15III was 

found to be additionally virulent against CPB larvae. This is the first study showing 

evidences that a M. brunneum strain is virulent against two of the most important potato 

pests. The high susceptibility of CBP larvae against the M. brunneum strain Cb15III 

observed in the experiments is supporting this thesis. 

The observed virulence of the strain Cb15III against CBP larvae is in accordance with 

data from Tyurin et al.(2016) showing up to 100% fourth instar larval mortality 13 dpi. 

Strain Cb15III was only effective against the larval stage of CPB but not against adults, 
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indicating that early CPB stages are more susceptible than later stages. Tolerance of 

adult CPB against M. brunneum strain Cb15III could result from different cuticle 

textures between adults and larvae. St.Leger et al. (1989) revealed that M. anisopliae 

conidia germinates when in contact with a hard surface (e.g. cuticle), thereof 

appressoria can only develop under specific conditions, influenced among other by 

cuticle lipids composition. As a consequence, treatments against CPB with M. 

brunneum strain Cb15III should focus on the management of larval stages. 

The tuber inoculation method, evaluated in this study, is a novel way of introducing 

M. brunneum conidia inside plant tissue. This technique allows conclusions about the 

endophytic qualities of a fungus regardless of its plant penetration abilities. Cross-

contamination of the re-isolation process by inoculum can be excluded because of the 

surface cleaning step after inoculation. The re-isolation rate of M. brunneum strain 

Cb15III from newly developed potato shoots was very low and an outgrowth was only 

observed in four samples. More often other fungi, such as Penicillium spp. or 

Gliocladium spp., developed mycelium outgrowth from plant tissue. These fungi are 

known for their fast development and could have overgrown the previously inoculated 

strain Cb15III (Goettel and Douglas Inglis 1997). Furthermore, potato tubers have a 

rich and divers microbial and fungal community which can be antagonistic to newly 

inoculated fungi (Fiers et al. 2010; Pageni et al. 2013, 2014). Explaining that in most 

cases M. brunneum strain Cb15III was not re-isolated. Nevertheless, strain Cb15III 

proved its general ability to establish within potato tuber tissue which was also shown 

by Krell et al. (2018). 
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Conclusion 

This study demonstrated that entomopathogenic M. brunneum strains can be isolated 

from any agricultural used land and exploit as potential biological control agents. M. 

brunneum strains isolated from arable soil were more virulent under the conducted 

conditions. T. molitor larvae revealed to be a potent bioassay probe to test M. 

brunneum strains in regard to their ability to infect other insect pests, in particular 

wireworms and CPB. It was shown that the M. brunneum strain Cb15III is not only 

virulent against the most devastating pests in potato production but also able to 

colonize potato plants and tubers.  However, further studies must be conducted to 

reveal the potential of the M. brunneum strain Cb15III as an systemically acting 

biological control agent. 
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Abstract 

The Colorado potato beetle (CPB), Leptinotarsa decemlineata SAY (Coleoptera: 

Chrysomelidae), is among the most important foliage pest in potato. In years with mass 

emergence, beetles and larvae can fully defoliate potato plants and cause tremendous 

yield losses. Throughout the last decades CPB were managed with chemically 

synthetic insecticides, such as carbamates, organophosphates or pyrethroids. The 

extensive use of insecticides combined with a high adaptability of CPB led to evolved 

resistances to nearly all applied insecticidal agents. Novel protection agents and 

strategies are needed to overcome insecticide resistances and expand the range of 

biological control agents. Entomopathogenic fungi are known to be virulent to several 

important agricultural pests and the occurrence of resistances against fungal 

antagonists is unlikely. In this study, the endophytic, entomopathogenic fungus 

Metarhizium brunneum PETCH (Ascomycota: Hypocreales: Clavicipitaceae) Cb15III 

was tested in laboratory (choice test), greenhouse (non-choice test) and field 

experiments to evaluate the potential to manage CPB. In the greenhouse experiment, 

adult emergence was reduced by 33% when larvae fed on M. brunneum inoculated 

plants. Furthermore, adult tibia length was slightly shortened in M. brunneum 

treatments compared to control beetles. In field, CPB oviposition was significantly 

reduced when seed tubers inoculated with M. brunneum Cb15III compared to 

untreated seed tubers. Due to the reduced oviposition also L1 – L3 larvae were 

significantly reduced by the treatment. However, assumed deterrent effects of 

M. brunneum Cb15III colonized plants could not be verified in the laboratory choice 

experiment. This study revealed that an endophytic M. brunneum Cb15III has the 

potential to protect potato plant, though the complex interaction between plant, 

entomopathogen and pest is still not understood. 

 

Keywords: Metarhizium brunneum, Colorado potato beetle, potato, endophyte  
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Introduction 

The Colorado potato beetle (CPB), Leptinotarsa decemlineata SAY (Coleoptera: 

Chrysomelidae), is a serious pest in potato crops throughout the northern hemisphere 

(Hare 1990; Grapputo et al. 2005; Kapsa 2008). Larvae and adults are foliar pests and 

predominately feeding in potato plants, Solanum tuberosum L., but are also capable to 

feed on other Solanacea (Hare 1990). Adult beetles overwinter in soil and can stay 

there for up to two years, which makes the prediction of CPB emergence difficult (Hare 

1990). During their lifetime, the larval stages and adult beetles can eat more than 

100 cm² of leaf surface (Ferro et al. 1985). Full defoliation of potato crops with an huge 

impact on tuber yield can occur in years with two or more CPB generations (Zehnder 

and Evanylo 1988). Over the past decades larvae and adult beetles has been mainly 

managed with chemically synthetic insecticides, thus CPB developed resistances 

against nearly all available insecticidal classes (Roush et al. 1990; Mota-Sanchez et 

al. 2006; Alyokhin et al. 2008). Alternatively, CPB have been managed with natural 

products based on the bacterium Bacillus thuringiensis (Kryukov et al. 2009; 

Yaroslavtseva et al. 2017). The active ingredient of these products are proteins 

produced by B. thuringiensis, toxic to the digested system of CPB (Schnepf et al. 

1998). A combined application of Bt and the botanical extract neem can increase the 

efficacy against CPB larvae (Trisyono and Whalon 1999). However, efficacy in field is 

limited. Neem extracts are mainly effective against the first larval stages and loss of 

sensitivity against Bt-products is lowering efficacy of neem and Bt-products in field. As 

a consequence, CPB adults and their late instars impair an efficient pest management 

in field (Whalon et al. 1993; Trisyono and Whalon 1999; Crowder et al. 2005; 

Premachandra et al. 2005). In years with a high infestation, CPB are hardly 

manageable with biological control agents. Full defoliation and yield losses can be a 

consequence (Zehnder and Evanylo 1988; Kapsa 2008; Ertürk 2017). Therefore, new 

management strategies in organic farming systems are required.  

Entomopathogenic fungi (EPF) can have the potential to close the gap in biological 

CPB management. Several studies revealed that CPB were susceptible to several EPF 

such as: Metarhizium anisopliae, Metarhizium robertsii, Cordyceps militaris and 

Beauveria bassiana (KRYUKOV ET AL. 2009, 2014; AKBARIAN 2012; TYURIN ET AL. 2016; 

YAROSLAVTSEVA ET AL. 2017). Foliar application on field scale seems to be difficult due 

to an high sensitivity of EPF to humidity, temperature and UV-radiation (Hywel-Jones 
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and Gillespie 1990; Hallsworth and Magan 1999; Lovett and St. Leger 2014). However, 

studies have shown effects of the EPF B. bassiana on the emergence of first 

generation adult beetles (Wraight and Ramos 2002). A promising way of controlling 

CPB with EPF without direct expose of EPF to environmental influence, is to establish 

EPF in the plant as an endophyte (Ownley et al. 2010). Barelli et al. (2016) reviewed 

that species of the genera Metarhizium and Beauveria, known as entomopathogens, 

are pathogenic to insects and endophytically colonize plant tissue. Several studies 

revealed that plants colonized with EPF affecting insect pests (Batta 2013; Contreras 

et al. 2014; Muvea et al. 2014; Mantzoukas et al. 2015). Furthermore, EPF can have 

multiple beneficial effects such as plant growth promotion (Khan et al. 2012), increased 

nutrient uptake (Behie et al. 2012), salt stress mitigation (Khan et al. 2012) and 

protection against plant pathogens (Sasan and Bidochka 2012). 

Ríos-Moreno et al. (2016) showed that Metarhizium brunneum PETCH (Ascomycota: 

Hypocreales: Clavicipitaceae) is able to colonize all parts of potato plants, which makes 

this species a promising candidate for further studies. M. brunneum was described as 

antagonist of CPB larvae by Tyurin et al. (2016) and own data suggest a high virulence 

of the M. brunneum strain Cb15III against CPB larvae (Hettlage, unpublished). It was 

also shown that mycelium of this strain is able to colonize potato tubers (Krell et al. 

2018).  

This makes strain Cb15III a promising candidate to protect potato plants systemically 

from CPB infestation. However, the mode of action in this complex plant – 

entomopathogen – insect – system is unclear and needs to be studied.  

 

The aim of this study is to figure out the potential of an endophytically applied 

M. brunneum strain Cb15III to control the CPB.  Therefore, a non-choice greenhouse 

experiment, a choice experiment and a field trial at two locations in Lower Saxony were 

conducted.  
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Material and Method 

Source and preparation of Metarhizium brunneum 

In all experiments, M. brunneum isolate Cb15III was used. It was cultured on potato-

extract-dextrose-agar (PDA) (Carl Roth GmbH & Co. KG, Karlsruhe, Germany) in the 

dark in a climatic cabinet (Biologischer Klimaschrank WB 750, mytron Bio- und 

Solartechnik GmbH, Heilbad Heiligenstadt, Germany) at 25° C and 70% relative 

humidity (RH). Conidia suspensions were freshly prepared for each experiment from  

2 – 3 weeks old M brunneum cultures. Aero conidia for suspensions were harvested 

by flooding cultures with 0.1% (v/v) Tween® 80 and gently scratching of mycelia 

(including spores) from the PDA media surface. Conidia/ mycelium suspension was 

transferred to a 400 ml glass beaker and stirred at 700 rpm on a magnetic stirred in a 

total volume of 200 ml to detach conidia from mycelia. Mycelium debris was removed 

by filtering the suspension through a sterile metal sieve (mesh opening: 1 mm). Conidia 

were determined via counting using a hemocytometer (Thoma chamber, Paul 

Marienfeld GmbH & Co. KG, Lauda-Königshofen, Germany) (Goettel and Douglas 

Inglis 1997). Spore vitality was evaluated in Petri dishes on PDA incubated for 36 h at 

25° C, with vitality rates always above 92%. Conidia concentration was adjusted to 

1 x 107 aero conidia/ml suspension by adding 0.1% Tween® 80 solution before using 

in experiments. 

 

Source and handling of Colorado potato beetle 

A Colorado potato beetle rearing was built up from collected adults from a nearby 

potato field. Larvae and adults were fed weekly with 14 weeks old potato plants. 

Depending on the following experiment the potato variety Bintje or Belana was used 

for the rearing to allow CPB accustom to the food source used in experiments. 

 

Greenhouse experiment 

Potato tubers (var. Bintje, Ellenberg's Kartoffelvielfalt GbR, Barum, Germany) with an 

average size of 7 x 4 cm and a germinal shoot size of 10 ± 2 mm were immersed in 

200 ml aero conidia suspension (“Cb15III”) or 0.1% Tween® 80 (“Tween”) for 5 s. 

Moist tubers were singly placed in plant pots (13 x 13 x 13 cm) half filled with a soil-

substrate (Einheitserde T25, HAWITA Gruppe GmbH, Vechta, Germany) sand mix 
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with a ratio of 3 : 2. Pots were filled up with the soil mix, gently compressed with a 

wooden soil-squeezing-device (12.5 x 12.5 cm) and watered until soil was water-

soaked. In an untreated control, tubers were directly placed in the soil mix without 

previous dipping (“control”). Each treatment was replicated twelve times and pots 

placed randomly distributed in a greenhouse (23° C ± 2, 65% RH). After germination, 

BBCH stages were evaluated daily until BBCH 19 (Hack et al. 1993). All but the highest 

shoots were removed at BBCH 13 to allow equal plant growth throughout plants/ 

treatments. Removed shoots were collected in plastic bags and stored at 5° C for a 

later M. brunneum re-isolation and molecular analysis. After all plants reached BBCH 

19, four neonate CPB larvae were transferred to a rolled-up filter paper (Ø 70 mm, 

Macherey-Nagel GmbH & Co. KG, Düren, Germany) with a brush and placed on each 

potato plant. Plants were covered with a perforated plastic bag (25 x 50 cm 

polypropylene, Nette Papier GmbH, Göttingen, Germany) to prevent larvae from 

escaping. After all larvae buried themselves for pupation the aboveground plant 

material was cut off and dried for dry matter determination. Pots with plastic bags kept 

in the greenhouse until all adults hatched. Hatched CPB adults were removed daily 

and tibia length of the most posterior left leg was measured under a stereo microscope 

(10 x magnifications, Stemi 305 trino, Carl Zeiss Microscopy GmbH, Jena, Germany). 

 

M. brunneum re-isolation and molecular detection (nested-PCR) 

All cut off potato plants were surface sterilized by successive immersion in 2% (v/v) 

sodium hypochlorite solution (2 min), 70% (v/v) ethanol (2 min) and three rinses in 

sterile water. 100 µl of the last watering step was plated on PDA-Media and incubated 

for 4 days at 25° C to prove the success of the surface sterilization. The first and third 

true leaves of each plant were detached with a scalpel, sterilized by immersing in 70% 

(v/v) ethanol and scorching in a flame. Three leave disc (Ø 10 mm) from each leave 

were removed with a sterile cork borer and placed on semi-selective media (Strasser 

et al. 1996) in a 9 cm Petri dish and incubated at 25° C for 14 days 

Five surface sterilized shoots from each treatment were lyophilized (VaCo 5, Zirbus – 

technology GmbH, Bad Grund (Harz), Germany) for 72 h. DNA was extracted 

according to the cetyltrimethylammonium bromide (CTAB) protocol described by 

Brandfass and Karlovsky (2008). Extraction performance was tested via gel 

electrophoresis in a 0.8% (w/v) agarose gel (Biozym Scientific GmbH, Hessisch 

Oldendorf,Germany) running at 60 V for 60 min. Double-stranded DNA was stained in 
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ethidium bromide solution (2 mg/L) for 15 min finally rinsed with demineralized water 

for 10 min. Gel was documented with a digital imaging system. 

The primers used for amplification were ‘Ma 1763’ (forward primer: 5'-CCAACTCCC-

AACCCCTGTGAAT) and ‘Ma 2079’ (reverse primer: 5'-AAAACCAGCCTCGCCGAT) 

specific for Metarhizium clade 1 (Schneider et al. 2012). A volume of 14 µl was used 

for PCR amplification consisting of 0.3 µl ‘Ma 1763’ (10 µM, Thermo Fisher Scientific 

Inc., Waltham, USA), 0.3 µl ‘Ma 2079’ (10 µM, Thermo Fisher Scientific Inc., USA), 

0.09 µl BIOTaq DNA polymerase (5 U/ µl, Bioline GmbH, Luckenwalde, Germany), 

1.2 µl dNTP (Bioline GmbH, Luckenwalde, Germany), 0.3 µl MgCl2 (50mM), 1.5 µl 

reaction buffer (10 x, Bioline GmbH, Luckenwalde, Germany), 10.31 µl sterile purified 

water and 1 µl of the DNA extract. The PCR was performed in PCR cycler (PEQLAB 

Biotechnologie GmbH, Erlangen, Germany) according to the following protocol: Initial 

denaturation for 1 min at 94° C followed by 35 cycles with 30s at 94°C, 30 s at  63° C 

and 30 s at 68° C. The final elongation was performed for 5 min at 68°C. 

A second nested-PCR amplification was performed under the same conditions as in 

the initial PCR but with the nested-primers MetarhL1 (forward primer: 5'-ATCTCTTG-

GTTCTGGCATCG) and MetarhR1 (reverse primer: 5'-CCCAACACCAAGTCCACAG) 

(Thermo Fisher Scientific Inc., Waltham, USA). Nested PCR performance was tested 

via gel electrophoresis in a 2.0% (w/v) agarose gel (Biozym Scientific GmbH, Hessisch 

Oldendorf,Germany) running at 60 V for 60 min. Gel was documented with a digital 

imaging system. 
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Choice test 

To test the choice behavior of adult CPB, an ‘arena’ was constructed, which allowed 

testing the attractiveness of two differently treated potato plants (Schütz et al. 1997). 

The ‘arena’ is made of two TC dish bottom parts (Ø 150 mm, Sarstedt AG & Co. KG, 

Nürnbrecht, Germany) and two screwed self-turned polytetrafluoroethylene (PTFE) 

rings with a gauze net in-between. The TC dishes perfectly fit on the PTFE ring, 

whereas one dish has two opposing cauterized notches through which leaves can be 

placed in the ‘arena’ without cutting them of the plant (Figure 5). 

 
Figure 5 Front and side view of the self-made ‘arena’ made of two TC dish bottom parts and 
two screwed self-turned PTFE rings with a gauze net in-between. The gauze prevents insects 
from feeding on leaves placed in the bottom part of the ‘arena’. However, this part can be 
removed to extend the volatiles-choice test by a food-choice test. 

Three treatments were set up and pairwise tested against each other with a total of ten 

replications. Pre-germinated potato tubers (var. Belana) (BBCH 03) were either 

inoculated with 10 µl of a M. brunneum strain Cb15III spore suspension (1 x 107 aero 

conidia/ ml suspension) (‘Cb15III), a 0.1% (v/v) Tween® 80 solution (‘Tween Control’) 

or not treated at all (‘Control’). Spore suspension and Tween® 80 solution were injected 

into tubers with a microliter syringe (10 μl, # 701, Hamilton Company, Reno, USA). All 

tubers were washed with tap water and injection wounds were cleaned and sterilized 

with 70% (v/v) ethanol. Tubers were singly placed in plant pots (13 x 13 x 13 cm) half 

filled with a soil-substrate (Einheitserde T25, HAWITA Gruppe GmbH, Vechta, 

Germany) sand mix with a ratio of 3 : 2. Pots were filled up with the soil mix, gently 
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compressed with a wooden soil-squeezing-device (12.5 x 12.5 cm), watered until soil 

was water-soaked and randomly distributed stored in a greenhouse cabin (23° C ± 2, 

65 % RH). The choice experiment was conducted after all plants reached stage BBCH 

17. Plants were randomly selected and pairwise arranged in a darkened room (20° C 

± 1, 65 % RH) to avoid beetles get distracted from bright light. Two equal sized potato 

leaves from two differently treated plants were inserted in the bottom part of the height 

leveled ‘arena’ and fixed with cotton wool. The PTFE ring was attached to the bottom 

part and a 24 h starving adult CPB is placed in the middle of the gauze. ‘arena’ was 

sealed with the top dish. Photos from the ‘arena’ (top view) were taken after 1 h, 2 h, 

3 h and 15 h to detect CPB preference, which was determined by measuring the 

distances between beetle’s scutellum and the set centers of the two leaves. Leaf 

centers were defined as the points, 

40 mm left and right from the intersection 

point of the two centerlines (Figure 6). 

After 15 h, the gauze was removed and 

the CPB were placed in-between the two 

potato leaves. Leaf damage was 

evaluated after five hours feeding time. 

Damaged leaf area was determined by 

comparing images taken before and after 

beetle attachment (Figure 7). 

 

 
Figure 7 Procedure to determine CPB damaged leaf area. Undamaged leaves a) were 
compared with damaged leaves b) and the missing area was colored and measured c) with 
ImageJ software. 

  

Figure 6 Distance [mm] from leaf centers of the 
leaf A and B to the CPB scutellum. 
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Field trial 

Field sites 

Trials were conducted in 2017 within two organic cultivated potato fields in south Lower 

Saxony. Field 1 was surrounded by bushes, vegetable fields and allotment gardens. 

Field 2 was situated within wheat fields with punctual arranged bushes. Both locations 

were chosen because of a predicted high pest pressure due to the fact that potato 

cultivation is a fixed part in crop rotation in this specific landscape and CPBs can 

immigrate from surrounded areas. Fields were cultivated according to the requirements 

of the organic field associations and good agricultural practice. Weather data was 

recorded by the weather station Göttingen (Station 1691, Deutscher Wetterdienst, 

DWD, Offenbach, Germany). 

 
Table 4 Characteristics of two field sites in Lower Saxony, Germany in 2017 and details of 
potato field sites including cultivar and treatments (Control: untreated potato rows; Cb15III: 
M. brunneum (strain: Cb15III) injected into potato tubers) 

Study year  2017 

Field code  1 2 

Location  Etzenborn Bischhausen 
Coordinates  N 51° 27' 29.591" N 51° 26' 8.803" 
  E 10° 9' 42.947" E 10° 5' 42.201" 
Elevation (m)  237 328 
Temperature (°C)    
Mean year  9.9 9.9 
April/ May  7.3/ 14.4 7.3/ 14.4 
July/ Aug./ Sep.  18.1/17.6/ 13.0 18.1/17.6/ 13.0 
Rainfall (mm)    
Sum year  776.6 776.6 
April/ May  27.3/ 28.8 27.3/ 28.8 
July/ Aug./ Sep.  202.1/ 87.2/ 40.5 202.1/ 87.2/ 40.5 
Trial size (ha)  0.034 0.034 
Field size (ha)  3.89 0.54 
Soil type  Sandy loam Sandy loam 
Cultivar  Belana Belana 
Tuber pre-
treatment 

 Warming Warming 

Previous crop  Cereal Cereal 
Irrigation  No No 
Row-spacing (m)   0,75 0,75 
Tuber-spacing (m)    0.30 0.30 
Planting (BBCH 
01) 

 10. Apr. 10. Apr. 

Harvest (BBCH 
99) 

 4. Sep. 4. Sep. 

Plot size (m2)  21 21 
Blocks  8 8 
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Experimental design 

To test the effects of an endophytic, entomopathogenic M. brunneum isolate Cb15III 

on field scale, two treatments were set up at two locations with eight replications, 

respectively. Plots were set up in a complete randomized block design. Individual plots 

had a length of 7 m and a width of 3 m (equivalent to 4 potato dams à 0,75 m), 

respectively. Treatments were applied one day after surrounded potatoes planted by 

the farmer. CPB eggs, 1. – 3. instar larvae, 4. instar larvae, adult beetles and plant 

damage were evaluated following the EPPO guideline PP 1/12 (4) for the evaluation 

of insecticides against Leptinotarsa decemlineata (EPPO 2008). Evaluation started 

when beetles started to lay eggs. Ten randomly selected potato plants from the two 

center rows of each plot were labeled with a red ribbon and consequently evaluated 

every week until potatoes were harvested. 

 

Treatment preparation and application 

Pre-germinated seed potatoes (var. Belana) (BBCH 03) (Hack et al. 1993) were either 

treated with M. brunneum strain Cb15III aero conidia (‘Cb15III’) or not treated at all 

(‘Control’). Tubers in the ‘Cb15III’ treatment were inoculated with a 10 µl spore 

suspension (1 x 107 aero conidia / ml) using a microliter syringe (10 μl, # 701, Hamilton 

Company, Reno, USA) and applying the spore suspension into tuber center. The 

inoculation area was cleaned from sand and dirt with a paper tissue. Unwanted 

attached conidia spurting out from the injection point were removed with 70 % (v/v) 

ethanol. In the middle of April, the farmer planted seed potatoes at both locations, 

potatoes were not planted in the experimental plots but rows were preform for a latter 

hand application. Preformed dams were opened the next day with a two-wheel tractor 

combined with plowshare (Honda F560 & F220, Honda Motor Europe Ltd., Berkshire, 

England) and treated tubers were placed in the dams with a distance of 30 cm to each 

other. Dams were covered with soil again by the use of the two-wheel tractor. 

 

Destruxins and solanine determination 

Tubers were harvested at the beginning of July (ca. BBCH 45) for a destruxins and 

α – Solanine extraction and determination. Four randomly chosen plants from each 

plot were dug up, bagged plant by plant and stored in the dark at 5° C in a cooled 

storage room. Four tubers from each plot, one from each plant, were poled to one 
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sample. Destruxins and solanine were extracted from tubers following the protocol of 

Carpio et al. (2016) step by step. Identification and quantification of destruxins and 

solanine was implemented by the workgroup of Prof. Karlsovsky (Molecular 

Phytopathology and Mycotoxin Research, Georg-August University, Göttingen, 

Germany). 

 

Yield 

In August, potato tubers were manually harvested (BBCH 99, Hack et al. 1993) from 

each plot. Therefore, the two central potato dams were opened with the two-wheel 

tractor on a length of 3 m. All tubers in an area of 1.5 m (= two rows at a length of 1 m) 

were harvested from plots center in order to determine the potato yield. 

 

Statistical analysis 

Values are given as mean ± standard error (SE), unless otherwise stated. All statistical 

analyses were carried out with the software STATISTICA, version 13 (StatSoft Inc., 

Tulsa, OK, USA). 

 

Greenhouse experiment 

Data was tested for normal distribution and variances homogeneity using Shapiro-Wilk 

test and Levene’s-test, respectively. Where appropriate, data was square-root (0.5+x) 

transformed and compared with one-way ANOVA. Adult emergence was calculated by 

comparing the number of emerged adults and the number of prior attached neonate 

larvae per plant. The emergence over time was analyzed with an RM-ANOVA 

 

% emerged adults =
no. emerged adults

no. attached neonate larvae
∗ 100 

 

Choice experiment 

Distances between adults and leaves measured, 1 h, 2 h, 3 h or 15 h after adult 

attachment, were analyzed with a paired sample t-test. Previously, data was tested for 

normal distribution and variances homogeneity. Non-normal distributed data have 

been analyzed with Wilcoxon-test for paired samples (α = 0.05). 
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Field trial 

Eggs and L1 - L3 larvae counted per plant within plots were combined to number of 

Eggs or L1 - L3 larvae per plot (= ten plants). Data was square root (0.5 + x) transformed 

to reach normal distribution and variances homogeneity. RM-ANOVA followed by 

Student’s t-test (α = 0.05) was used to analyze data over time and for each evaluation 

date. L4 larvae and adults were not analyzed due to low counts in the fields. Potato 

yield in tons per hectare was calculated by extrapolating the actually harvested yield 

in kilograms per 1.5 m² (per plot). 

 

�
t

ha
� potato yield =

x kg * (10,000/1.5 m²)
1000

 

 

Yield and solanine concentrations were tested for normal distribution and variances 

homogeneity using Shapiro-Wilk test and Levene’s-test, respectively and compared 

with Student’s t-test (α = 0.05).  
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Results 

Greenhouse experiment 

Treatments did not have a statistically significant effect on adult emergence (RM-

ANOVA F(26,42) = 1,273, p = 0,238), however emergence in M. brunneum strain Cb15III 

treated plants was slightly delayed and reduced. Highest adult emergence was 

observed in the ‘Untreated Control’ (91.67% ± 3.56) 54 days after neonate larvae were 

attached to plants. Fewest adults emerged in the ‘Cb15III’ treatment (68.75% ± 9.79) 

(Figure 8). In the ‘Untreated Control’ 50% adults emerged after 33 to 34 days, in the 

‘Cb15III’ treatment after 35 to 36 days. 

Tibia length of CPB adults was slightly shortened when larvae fed on ‘Cb15III’ plants 

(2.90 mm ± 0.06) compared to the ‘Untreated Control’ (3.03 mm ± 0.03) but statistical 

analysis did not reveal significant effects of the treatments to tibia length (ANOVA 

F(2, 32) = 2.104, p = 0.139) (Figure 8). 

 

 
Figure 8 Adult CPB emergence [%] (means ± standard errors (SE)) in days after neonate 
larvae were attached to potato plants. RM-ANOVA F(26,42) = 1,273, p = 0,238; n = 12.  
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Treatments with 0.1% Tween® 80 or 

M. brunneum strain Cb15III did 

neither shown statically significant 

effects on tuber fresh weight (FW)  

(ANOVA F(2,33) = 2.193, p = 0,128) or 

quantity (ANOVA F(2,33) = 0.112, 

p = 0,894) nor on plant dry matter 

(DM) (ANOVA F(2,33) = 0.069, 

p = 0,934) or damage (ANOVA 

F(2,33) = 1.406, p = 0,259). Highest 

plant damage was observerd for 

‘Control‘ plants (34.63% ± 1.57) but 

also the highest tuber FW (102.96 

g ± 0.70). Plants with fewest damage 

were observerd in ‘Cb15III‘ treatment 

(26.95% ± 4.27) (Table 5). Fungal re-

isolation was not successful and no 

fungal outgrowth from leaf discs was 

observed. Nested-PCR DNA amplificants were found in all treatments. 

Metarhizium spp. was detected in two out of five samples in the ‘Untreated Control’ 

and in three out of five samples in the treatments ‘Tween Control’ and ‘Cb15II’, 

respectively. 
Table 5 Above (plant damage [%] and plants dry matter [g] (DM)) and below ground ( tuber 
fresh weight [g] (FW) and tuber quantitiy) plant parameters (means ± standard errors (SE)) 
treated plants treated M. brunneum strain Cb15III (Cb15III), 0.1 % Tween® 80 (Tween Control) 
or not treated at all (Untreated Control). No statistical significant differences were found within 
treatments for above ground plant damage [%] (ANOVA F(2,33) = 1.406, p = 0,259) and DM [g] 
(ANOVA F(2,33) = 0.069, p = 0,934) or tuber FW [g] (ANOVA F(2,33) = 2.193, p = 0,128) and 
quantity (ANOVA F(2,33) = 0.112, p = 0,894).  

Treatment   Plant parameters (means ± SE) 
  Above ground  Tuber 

    Damage [%]   DM [g]   Total FW [g]   Quantity 

Untreated Control  34.63 ± 1.57  2.12 ± 0.07  102.96 ± 2.98  9.33 ± 0.70 

Tween Control  34.09 ± 4.30  2.19 ± 0.19  93.11 ± 1.97  9.50 ± 1.04 

Cb15III   26.95 ± 4.27   2.12 ± 0.16   97.36 ± 4.54   8.92 ± 0.92 
 

Figure 9 Adult CPB’s tibia length [mm] (means ± 
standard errors (SE)) of the most posterior left leg.  
ANOVA F(2, 32) = 2.104, p = 0.139. n varies due to 
varying beetle emergence in-between treatments. 
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Choice test 

 

 

 
Figure 10 Distances [mm] between CPB adults and the two leaves from treated potato plants 
within ‘‘arenas’ (means ± standard errors (SE)), after 1 h, 2 h, 3 h and 15 h. No statistical 
significant differences were found within pairs and time (paired sample t-test: α = 0.05). 
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There are no statistically significant indications that adult CPB preferred one or more 

treatments within the ‘arena’-choice test (paired sample t-test: α = 0.05) (Figure 10). 

However, data suggests that the ‘Cb15III’ treatment were slightly more attractive to 

beetles than the ‘Control’. Thus the closest distance between a treated leaf and beetles 

was measured for ‘Cb15III’ after 1 h (72.75 mm ± 12.12) and 15 h (70.54 mm ± 14.40) 

when compared to ‘Control’ (Figure 10 c). Similar distances for the 'Cb15III' treated 

plants were measured after 1 h (76.46 mm ± 10.98) and 15 h (72.74 mm ± 10.24) when 

compared to the 'Tween Control' (Figure 10 b).  No beetle preference was observed 

when ‘Control’ was compared to ‘Tween Control’ (Figure 10 a). 

After the gauze had been removed from ‘arenas’, beetles could crawl to potato leaves 

and feed on them. A statistically significant preference of the beetles for one of the 

treatments could not be revealed (Wilcoxon-test for paired samples: α = 0.05). Leaves 

from plants treated with strain Cb15III (38.88 mm² ± 19.42 and 58.15 mm² ± 28.88) 

were slightly more damaged than the respectively compared treatments ‘Control’ 

(31.09 mm² ± 13.39) or ‘Tween Control’ (48.78 mm² ± 22.73) (Figure 11). However, 

variances within treatments were too high to reveal statistically significant differences. 

 
Figure 11 Leaf area [mm²] fed by adult CPB in ‘‘arenas’ after removing gauze (means ± 
standard errors (SE)). Treatments were pairwise tested to each other. No statistical significant 
differences were found within pairs (Wilcoxon-test for paired samples: α = 0.05). 
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Field experiment 

First eggs, L1 – L3 larvae and adult CPB were found in field 1 and field 2 from the 

14.06.17 and 21.06.17 onwards, respectively. CPB infestation was higher in field 1 

than in field 2. During the evaluation period, oviposition in field 1 was significantly 

higher in the ‘Control’ than in ‘Cb15III’ treated plots (RM-ANOVA F(5,10) = 9.233, 

p < 0.01). Equal observations were made for hatched L1 – L3 larvae (RM-ANOVA 

F(5,10) = 11.523, p < 0.001) (Figure 12 a) & b)). Significantly more eggs were found in 

the field 1 ‘Control’ within the first three evaluation dates: 14.6. (t-test t = 4.392, 

DF = 14, p < 0.001), 21.6. (t-test t = 4.734, DF = 14, p < 0.001) and 28.6.17 (t-test 

t = 2.288, DF = 14, p < 0.05) (Figure 12 a)). L1 – L3 larvae were found in field 1 

significantly more often in the ‘Control’ than in ‘Cb15III’ from the 21.6.17 (t-test 

α = 0.05) on but not on 14.6.17 (t-test t = 1.254, DF = 14, p = 0.230).  

 
Figure 12 Average number of counted CPB eggs, L1-L3 and L4 larvae per plant (means ± SE) 
in field 1 (a) control and b) Cb15III treatment) and field 2 (c) control and d) Cb15III treatment) 
Counted eggs (RM-ANOVA F(5,10) = 9.233, p < 0.01) and L1 – L3 larvae (RM-ANOVA 
F(5,10) = 11.523, p < 0.001) differ significantly between treatments in field 1. Statistical 
significant differences were not found between treatments in field 2. 
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Most eggs per plant were found in field 1 ‘Control’ on 14.6.17 (22.73 ± 4.34) and 

decreased over the evaluation period to 0.20 ± 0.18 at the 19.7.17. The number of  

L1 - L3 larvae in the field 1 ‘Control’ increased up to 12.25 ± 1.28 at the 28.6.17 and 

decreased thenceforth again. Similar emergence curves were observed in the field 2 

‘Control’, however overall CPB emergence was lower in field 2 (Figure 12 c). 

Oviposition (RM-AMOVA F(4,11) = 3.006, p = 0.067) and L1 – L3 larval occurrence  

(RM-AMOVA F(4,11) = 3.122, p = 0.061) in field 2 was not significantly different between 

treatments ‘Control’ and Cb15III’ (Figure 12 c & d). In both fields the maximum number 

of counted eggs in the ‘Cb15III’ treatments was below 5 eggs (Figure 12 b & d). Due 

to the very low occurrence of L4 larvae and adults in both fields, no statistical 

differences were evaluated between treatments. No significant differences in tuber 

yield were found between treatments, neither in field 1 (t-test: t = -0.870, DF = 14, p = 

0.399) nor in field 2 (t-test: t = 0.396, DF = 14, p = 0.698).  Potato yield was highest 

with up to 40 t/ha (‘Control’) from field 2, whereas, a maximum of 29 t/ha (‘Cb15III’) 

could be harvested from field 1 (Figure 13). 

 

 
Figure 13 Tuber yield [t/ha] (means ± standard errors (SE)) for field 1 and field 2. Yield was 
not significantly different between treatments (t-test α = o.o5). 
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Destruxins/ Solanine 

Potato tubers from field 1 treated with M. brunneum strain Cb15III revealed a 

statistically significant higher solanine concentration than untreated tubers from the 

same field (t-test: t = -20.986, DF = 43, p < 0.00001). Determined solanine 

concentrations in field 1 ‘Cb15IIl’ tubers were up to three times higher than in ‘Control’ 

tubers. Solanine concentrations in tubers from field 2 were not affected by the 

treatments (t-test: t = -0.021, DF = 46, p < 0.984). These concentrations were higher 

than normally measured in potato tubers (20 to 100 mg/kg tuber FW) but still below the 

recommended limit of 200 mg/kg tuber FW (Bömer and Mattis 1924) (Figure 14). 

Destruxin A or related destruxins were not detected in any sample. 

 
Figure 14 Solanine concentration in tubers [mg/kg fresh weight (FW)] (means ± standard erros 
(SE)) of newly developed tubers from untreated potato plants (‘Control’) or potato plants 
treated with the M. brunneum strain Cb15III (‘Cb15III’). Asterisks (*) indicate statistical 
significant differences between treatments (t-test, α = 0.05). Hatched area illustrates normal 
solanine concentrations and the dashed line indicates the highest recommended concentration 
in fresh potato tuber (Bömer and Mattis 1924).  
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Discussion 

Greenhouse 

Results from the greenhouse experiments revealed an impact of the endophytic 

M. brunneum strain Cb15III on the development of CPB. It was shown that less than 

70% of the attached neonate larvae were able to develop to adult beetles when feeding 

on M. brunneum treated plants. A lower adult emergence was not observed for plants 

treated with a 0.1% Tween® 80 solution indicating that Tween® 80 do not have an effect 

on plants or insects in this experiment. Mycosed larvae, pupae or adults were not found 

throughout the experiments neither on plant nor in the soil. However, a horizontal 

transmission of M. brunneum conidia from soil to aboveground plant parts cannot be 

excluded for the experimental set up (Long et al. 2000). This is especially true for larvae 

burrowed into soil for pupation, though later larval stages are less susceptible against 

infections with M. brunneum (Akbarian 2012). An absence of mycosed larvae could be 

explained by environmental conditions in the greenhouse, which were unfavorable for 

the development of mycosis on infected larvae (Walstad et al. 1970). Direct infection 

of CPB with M. brunneum strain Cb15III seems to be possible but unlikely. The high 

virulence of the strain Cb15III shown in previous experiments should have had led to 

a higher, significant CPB mortality in this experiment in case larvae got in contact to 

conidia (Hettlage, data not published). Furthermore, slightly shortened tibia lengths 

were measured for adults emerged from 'Cb15III' treatments. This can be an indicator 

for a quality change in the food source instead of an infection with M. brunneum 

(Bethke et al. 1991; Urrutia C. et al. 2007). The above ground DM did not differ across 

treatments, though fewer adults emerged from M. brunneum treated plants. This 

indicates that fewer larvae in the ‘Cb15III’ treatment consumed an equal amount of 

plant DM, which would substantiate the theory of a changed food source. However, 

Furlong and Groden (2001) showed that CPB larvae treated with B. bassiana conidia 

consumed more leaf area than untreated larvae. Consequently, it is still unclear 

whether CPB were affected by a change in diet or an infection with M. brunneum. The 

observed effects are too small to presume a direct impact or infection of the endophytic 

fungus.  

Even though is unclear how many potato plants very actually colonized by the M. 

brunneum strain Cb15III. M. brunneum could not be re-isolated from above ground 

plant material. Low Metarhizium re-isolation rates were reported in literature before 
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especially from leaf and stem tissue (Behie et al. 2015). An additional nested-PCR 

analyses was able to detect Metarhizium in the plant tissue, albeit across all treatment. 

The primers Ma 1763 and Ma 2097 used in this study were not designed to be M. 

brunneum specific but to amplify DNA from all Metarhizium species within clade 1. 

(Schneider et al. 2011). Schneider et al. (2012) were able to find Metarhizium species 

from clade 1 in all screened habitats. Therefore, it is likely that the non-washed, organic 

potato tubers used in this study were contaminated or colonized by other Metarhizium 

species. It is not yet possible to detect M. brunneum specifically from plant material 

with a single set of primers, especially not when an untreated control is already 

colonized by Metarhizium clade 1 species. This seems to have been the case for potato 

tubers in this study. 

 

Field trail and choice test 

This is the first study indicating that a tuber treatment with M. brunneum can affect 

female oviposition behavior in field. It was shown that in field 1 the number of counted 

CPB eggs per plant was significantly lower compared to untreated plants. Similar 

observations were made in field 2, though CPB infestation were lower and effects 

between treatments not significantly different. Effects of lowered oviposition continued 

throughout larval stages. Infestation with L2 – L3 larvae was reduced by more than 50 

% in plots treated with M. brunneum (field 1). A tuber treatment with the endophytic M. 

brunneum strain Cb15III seems to alter the chemical composition of potato plants and 

reduced attractiveness for CPB oviposition. A direct incorporation of fungal 

metabolites, such as destruxines (Ríos-Moreno et al. 2016) into the plants seems 

possible but destruxines and other mycotoxines were not detected or determined in 

tested potato tubers in this study. However, endophyte induced changes in oviposition 

behavior was already described by Jallow et al. (2008). They observed an enhanced 

oviposition by Helicoverpa armigera on tomato plants, Solanum lycopersicum, 

colonized by Acremonium strictum. However, development of H. armigera larvae 

feeding on A. strictum colonized plants was negatively affected. (Jaber and Vidal 

2010). Slight negative effects on CPB development were also observed in the 

greenhouse experiment. These effects could be explained by a change in the 

glycoalkaloid profile, especially solanine and chaconine. It was shown that the 

glycoalkaloids solanine and chaconine can have negative effect on insects (Wierenga 
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and Hollingworth 1992). In this study, the solanine content of untreated potato tubers 

from field 1 was significantly lower than in tubers treated with M. brunneum. It is 

possible that the increased solanine concentrations in treated potato plants must have 

influenced female oviposition. This conclusion, however, contradicts the literature 

published so far. Hufnagel et al. (2017) revealed that CPB oviposition and larval 

performance is not related to the overall glycoalkaloid profile and it was shown that 

CPB are not able to detect solanine with their antenna (Harrison and Mitchell 1988; 

Hollister et al. 2001). Furthermore, different solanine concentrations in tubers were 

only observed in field 1. Solanine concentrations were not affected by the treatments 

in field 2. It has been observed that ‘Control’ potato plants in field 1 were already 

severely damaged by CPB when tubers were harvested for solanine determination 

(data not shown). Therefore, it is possible that tubers already started to mature, as it is 

known that glycoalkaloid concentrations in tubers decrease during maturing process 

(Papathanasiou et al. 1998). As a consequence, it is more likely that M. brunneum 

changed the volatiles emitted by potato plants. Schütz et al. (1997) figured out that the 

volatiles benzene methanol, linalool, 2-benzene-ethanol and β-caryophyllene are 

attractive to CPB in laboratory choice tests. However, volatiles were not measured in 

this study. Therefore, it is uncertain which volatiles were emitted by plants and if they 

were deterrent or just less attractive to CPB. Choice tests conducted in this study were 

not able to answer this question, as it was revealed that M. brunneum treated plants 

were slightly more attractive to CPB than control plants. This was also true when adults 

were allowed to feed on treated leaves. It is known that CPB are attracted by odorants 

emitted when potato plants are under herbivore attack (Weißbecker et al. 1997; Schütz 

et al. 1997; Landolt et al. 1999). Consequently, an additional aspect could be that CPB 

are not directly influenced by the changed volatiles bouquet caused by fungal 

colonization, but by other herbivore or sap sucking insects deterred by the M. 

brunneum treated plants. In field, it was observed that control plants were more likely 

to be infested with aphids than treated plants (personal observation). Deterrent effects 

of treated plants on sap sucking insects would be in accordance to findings from 

Menjivar et al. (2012). Therefore, it is conclusive that CPB were attracted to potato 

plants with a strong aphid infestation. Especially the volatiles linalool and 2-benzene-

ethanol were emitted by plants when under herbivore attack (Weißbecker et al. 1997; 

Schütz et al. 1997). Once beetles infested potato plants and start feeding, more beetles 

were attracted by the caused leaf injuries (Bolter et al. 1997; Schütz et al. 1997; Landolt 
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et al. 1999). Furthermore, CPB females were highly attracted by male-produced 

aggregation pheromones (Hitchner et al. 2008). This could explain why oviposition was 

higher in control plants. 

 

Conclusion 

It was shown that potato plants treated with M. brunneum strain Cb15III have an effect 

oviposition behavior and development of CPB. A direct infection of CPB with the fungus 

was not observed throughout the experiments. Therefore, it is more likely that plant 

volatiles bouquet was altered by the fungus. This could be exploited in future “push-

pull” strategies to manage CPB in field (Cook et al. 2007). However, it is unclear which 

metabolic compounds are affected by M. brunneum in potato plants. Further research 

is needed to identify changes in potato plant volatiles, which could be used for “push-

pull” pest management. 
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Abstract 

Wireworms (Agriotes spp., Coleoptera: Elateridae) are an increasing problem in potato 

production in the northern hemisphere. Feeding on tubers is not only causing cosmetic 

wounds but can also lead to a promotion of secondary bacterial or fungal infections. 

Non-marketable tubers and a total yield loss can be a consequence. This study was 

conducted to investigate the potential of the endophytic, entomopathogenic fungus 

Metarhizium brunneum PETCH (Ascomycota: Hypocreales: Clavicipitaceae) strain 

Cb15III to reduce wireworm damage in field. Therefore, M. brunneum Cb15III 

mycelium was encapsulated and applied as a spot application beneath seed tubers. 

Mycelium was either formulated in calcium alginate/starch or calcium pectinate/starch 

beads. Calcium pectinate/starch beads contained additionally cellulose, inactivated 

baker’s yeast and cellulase, latter to enhance fungal endophytism. The performance 

of the capsules was tested on five organic fields in Lower Saxony. Wireworm damage 

varied between 8 – 83% in the untreated control across fields. A reduction of damaged 

tubers was not observed for none of the tested treatments. It was revealed that a 

M. brunneum Cb15III mycelium, encapsulated in beads, is not a suitable approach to 

protect potatoes from wireworm damage. 

 

Keywords: Metarhizium brunneum, wireworm, potato, formulation, endophyte 
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Introduction 

Wireworms, the larvae of click beetles (Agriotes spp., Coleoptera: Elateridae), are 

among the most important group of soil dwelling pests in agriculture and cause 

increasing problems in North America and Europe (Parker and Howard 2001; Vernon 

et al. 2008). In particular cereals, legumes and potatoes (Solanum tuberosum, L.) are 

vulnerable to wireworm infestation. Wireworm feeding causes crop losses due to stand 

and yield reduction and/or a decline in quality. The most abundant and destructive 

wireworm species in Europa are Agriotes lineatus, A. obscurus, A. sputator and in 

some regions A. ustulatus (Ritter and Richter 2013). Until the 1990s, wireworm 

populations were sufficiently managed using long-term, non-specific insecticides such 

as organochlorides, organophosphates and carbamates (Parker and Howard 2001). 

However, wireworms’ importance raised within the last three decades and potato 

farmers are facing severe quality losses due to wireworm tunneling in tubers (Vernon 

and van Herk 2013). Reasons include changes in farmers practice, such as the 

conversion of permanent grassland to arable land or a reduction of tillage to a 

minimum. Consequently natural wireworm habitats decreased, resulting in higher 

population in field (Parker and Howard 2001; Vernon and van Herk 2013). 

Due to potential environmental risks (Gunasekara et al. 2007), the European Food 

Safety Authority (2013) concluded to phase out permission for the phenylpyrazole 

insecticide fipronil, which was effectively controlling wireworms in potato crops (van 

Herk et al. 2008). Consequently, the lack of insecticides permitted on the European 

market in potato production exacerbates situation in wireworm management. Partially 

effective, non-chemical alternatives controlling wireworms are an intense tillage 

desiccating eggs and pupae or an incorporation of cruciferous plants (e.g. 

Brassica juncea) into soil (Furlan et al. 2010). Additionally, recent studies revealed that 

the entomopathogenic fungus Metarhizium brunneum PETCH (Ascomycota: 

Hypocreales: Clavicipitaceae) is a potent antagonist to Agriotes species (Reddy et al. 

2014; Eckard et al. 2014; Rogge et al. 2017; Brandl et al. 2017; Razinger et al. 2018). 

It is reported that an “attract and kill” approach with an attractant (pheromones or CO2 

(Todd Kabaluk et al. 2015; Brandl et al. 2017)) and a kill component (M. brunneum) 

can reduce Agriotes adults and/or larvae in field. The combination of an CO2 emitter 

and M. brunneum encapsulated in beads was able to reduce the abundance of 

wireworm damaged potato tubers in field trials (Brandl et al. 2017). However, reported 
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efficacies were neither consistent nor predictable, as tubers can exert a significant pull 

on wireworms and affect the application. The “attract and kill” could be improved by 

exploiting potential of Metarhizium being a naturally occurring endophyte (Khan et al. 

2012; Sasan and Bidochka 2012; Behie et al. 2015). Fungal endophytes are naturally 

occurring in most plant species and are able to colonize plant tissue without causing 

apparent plant symptoms (Schulz and Boyle 2005). Furthermore, endophytes revealed 

to have multiple beneficial effects such as plant growth promotion (García et al. 2011; 

Khan et al. 2012), increased nutrient uptake (Behie et al. 2012), salt stress mitigation 

(Khan et al. 2012) and protection against plant pathogens (Lahlali and Hijri 2010; 

Sasan and Bidochka 2012; Adame-Álvarez et al. 2014). These findings open new 

options in biological plant protection (Vidal and Jaber 2015). Several studies revealed 

that entomopathogenic, endophytic fungi (EEF) protect plants from pests or alter their 

behavior (Batta 2013; Contreras et al. 2014; Muvea et al. 2014; Mantzoukas et al. 

2015). Ríos-Moreno et al. (2016) reported that M. brunneum, virulent to Agriotes spp., 

is able to establish in potato plant tissue. Furthermore, Krell et al. (2018a) showed that 

a technical formulation and encapsulation of M. brunneum mycelium is possible and 

enhances endophytism in plants. In addition, encapsulated M. brunneum mycelium is 

able to penetrate potato tuber tissue and colonize them (Krell et al. 2018b). The 

capability of M. brunneum to colonize potato plants and its pathogenicity against 

wireworms could be used to develop a systemically acting, biological control of 

wireworms. 

 

In this context we hypothesis that potato tubers, colonized by M. brunneum could be 

either deterrent to wireworms or due to dermal up take of infectious fungal/ tuber tissue 

lethal. In this approach not only seed tubers but also colonized plant roots would affect 

wireworms and consequently reduce wireworm damage on next generation tubers. In 

this study, Metarhizium brunneum (strain Cb15III) mycelium was encapsulated either 

in calcium alginate/starch or calcium pectinate/starch beads and tested under field 

conditions. 
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Material and Method 

Field sites 

Field trails were conducted during the growing seasons in the years 2016 and 2017. 

In 2016, treatments were tested at three locations and 2017 at two. All field sites were 

located in Lower Saxony, Germany and cultivated following the requirements of the 

organic farming association and Good Agricultural practice. Field sites were selected 

based on cropping history and farmers’ previous experience with wireworm damage 

(Table 6). Weather data were recorded by weather stations within 40 km of field sites 

(Deutscher Wetterdienst, DWD, Offenbach, Germany) 

 
Table 6 Characteristics of five field sites in Lower Saxony, Germany in 2016 and 2017 and 
details of potato field sites including cultivar and treatments (Control: untreated potato rows; 
mycelium: M. brunneum (strain: Cb15III) unformulated mycelium; CA(+)M: M. brunneum 
(Cb15III) mycelium in Ca-alginate beads; CP(+)M: M. brunneum (Cb15III) mycelium in Ca-
pectinate bead; CP(-)M: Ca-pectinate bead) and trial dimensions. n.h. not harvested 

Study year  2016  2017 

Field code  1 2 3  4 5 
Location  Aerzen Barnstedt Waake  Aerzen Bösinghausen 
Coordinates  N 52° 4' 15.875" N 53° 7' 13.337" N 51° 33' 0.486"  N 52° 3' 50.382" N 51° 34' 4.337" 
  E 9° 15' 38.102" E 10° 23' 10.606" E 10° 3' 35.857"  E 9° 15' 32.388" E 10° 4' 12.56" 
Elevation (m)  62 70 275  98 284 
Temperature (°C)        
Mean year  10.3 9.5 9.9  10.3 9.9 
April/ May  8.6/ 14.4 7.5/ 14.1 8.1/ 13.8  7.7/ 14.6 7.3/ 14.4 
July/ Aug./ Sep.  19.2/ 18.1/ 17.5 18.3/ 17.1/ 16.6 18.6/ 17.9/ 17.2  18.2/ 17.6/ 13.4 18.1/17.6/ 13.0 
Rainfall (mm)        
Sum year  555.6 589.0 543.6  875.0 776.6 
April/ May  32.7/ 21.0 42.5/ 53.0 28.4/ 41.4  20.1/ 33.9 27.3/ 28.8 
July/ Aug./ Sep.  45.7/ 23.4/ 13.3 44.7/ 43.4/ 14.0 43.0/ 40.5/ 34.7  203.1/ 84.0/ 79.1 202.1/ 87.2/ 40.5 
Trial size (ha)  0,067 0,067 0,067  0,067 0,067 

Field size (ha)  12,57 12,01 5,88  14,82 3,44 

Soil type  Silt loam Loamy sand Sandy loam  Silt loam Sandy loam 

Cultivar  Ditta Ditta Belana  Ditta Bernina 

Tuber pre-treatment  Warming Warming Warming  Warming Warming 

Previous crop  Cereal Cereal Cereal  Cereal Cereal 

Irrigation  No Yes No  No No 

Row-spacing (m)   0,75 0,75 0,75  0,75 0,75 

Tuber-spacing (m)    0.30 0.30 0.30  0.30 0.30 

Planting (BBCH 01)  17. Apr. 11. May 27. Apr.  15. Apr. 07. Apr. 

Harvest (BBCH 99)  06. Sep. 30. Aug. 07. Sep.  10. Sep. n.h. 

Plot size (m2)  21 21 21  21 21 

Blocks  8 8 8  8 8 
Treatments  Control Control Control  Control Control 
  mycelium mycelium mycelium  CA(+)M CA(+)M 
  CA(+)M CA(+)M CA(+)M  CP(+)M CP(+)M 
      CP(-)M CP(-)M 
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Experimental design 

Three treatments were tested in 2016 and four in 2017 to evaluate effects of 

encapsulated M. brunneum mycelium (strain Cb15III) on wireworm damage. 

Treatments were arranged in a randomized complete block design with eight 

replications. Each plot had a length of 7 m and a width of 3 m (equivalent to 4 potato 

rows à 0.75 m). Treatments were applied as a “spot” application underneath seed 

potatoes within three days after surrounded potatoes had been planted by farmers. 

Wireworm damage was evaluated according to the European and Mediterranean Plant 

Protection Organization (EPPO) standards PP1/46(3) (EPPO 2005) by randomly 

sampling 100 tubers per plot (BBCH 99, (Hack et al. 1993)  

 

Treatments 

“mycelium”: an aqueous suspension with 1.5% mycelium fragments (50 – 250 µm 

length) (M. brunneum Cb15III) was prepared one day before treatment application 

(Krell et al. 2018a). 

“CA(+)M”: mycelium fragments (1.5% final concentration) were encapsulated in dried 

spherical calcium alginate/starch beads (diameter 2.0 ± 0.2 mm) based on  

Na-alginate solution, 20% maize starch and demineralized water, according to  

Krell et al. (2018b). 

“CP(+)M”: mycelium fragments (1.5% final concentration) were encapsulated in dried 

spherical calcium pectinate/ starch beads (diameter 2.0 ± 0.2 mm) containing: 2% 

amidated pectin 20%, maize starch, 2% cellulose, 2% autoclaved baker’s yeast and 

1 U/g cellulase in 1 g of moist beads based on the protocol of (Krell et al. 2018b). 

Autoclaved baker’s yeast served as an energy source for rapid M. brunneum conidia 

germination. Cellusase enhanced endophytism in potato tubers.  

 “CP(-)M”: dried spherical calcium pectinate/ starch beads (diameter 2.0 ± 0.2 mm) 

based in formulation of CP(+)M but without mycelium biomass. 

 

Treatment preparation and application 

In 2016, the treatments mycelium and CA(+)M were tested. Seed potatoes were 

planted at all fields between the end of April and beginning of May. Treatments were 

applied to fields within three days after seed potatoes had been planted by farmers. 
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Therefore, potato rows, set up by the farmers before, were opened with a two-wheel 

tractor with plowshare (Honda F560 & F220, Honda Motor Europe Ltd., Berkshire, 

England). Treatments were applied in the furrow with a distance of 30 cm to each other. 

Therefore, 15 ml mycelium suspension and 3 g of CA(+)M were applied in the soil as 

“spot” applications. The mycelium treatment was applied in a 15 ml centrifuge tube 

(Sarstedt AG & Co., Nümbrecht, Germany). For the CA(+)M treatment a 50 ml 

centrifuge tube (Sarstedt AG & Co., Nümbrecht, Germany) was so cut into shape that 

just 3 g of beads fit inside. Potato tubers were subsequently placed on applied 

treatments. Dams were covered with soil after all tubers were placed in the furrow by 

the use of the two-wheel tractor. In 2017, the treatments CA(+)M, CP(+)M and CP(-)M 

were applied into the planting furrows as described for CA(+)M in 2016. In both years 

an additional untreated control was conducted without any tuber treatment. 

 

Metarhizium brunneum quality and persistence 

The quality of treatments beads was assessed with five replicates on water agar 

(CA(+)M, CP(+)M and CP(-)M) or potato dextrose agar (Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany) (mycelium). 100 µl of the mycelium suspension (mycelium) or 5 

beads (CA(+)M, CP(+)M and CP(-)M) were plated on each Petri dish (Ø 9 cm, Sarstedt 

AG & Co., Nümbrecht, Germany) and incubated in the dark at 22° C and 70% relative 

humidity. Fungal growth was assessed with light microscopy (500 x magnifications, 

BH2- HLSH, Olympus Corporation, Tokyo, Japan). Quality of beads and suspension 

was optimal as M. brunneum growth was observed with the suspension and the beads 

(CA(+)M, CP(+)M) in all replications. No fungal growth was observed for CP(-)M beads, 

indicating that beads were free of contaminations. 

 

Metarhizium brunneum persistence in soil 

M. brunneum establishment and persistence was determined based on the protocol of 

Brandl et al. (2017). Four soil samples were taken at four locations diagonally across 

each plot within the core of potato dams in a depth of 15 cm with a cylindrical soil core 

sampler (diameter 5.0 cm). Samples were taken from replicates 1, 3, 5 and 7 of all 

treatments and locations were marked with a colored plastic bar to retrieve sample 

locations later. The four soil samples from one plot were poled to one sample, 
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transferred in a Zip-lock™ plastic bag and stored at 6° C until further processing. Soil 

sampling was conducted at tuber planting (April/May) and harvesting (August). In 

August, soil probes were taken at locations marked previously. Colony forming units 

(CFU) extraction from soil and counting was conducted following the protocol of Brandl 

et al. (2017) step by step. 

 

Assessment of wireworm damage 

In August, 100 randomly chosen potato tubers were manually harvested (BBCH 99, 

Hack et al. 1993) from each plot. Therefore, the two central potato dams were opened 

with the two-wheel tractor on a length of 5 m leaving 1 m unopened to each plot’s end. 

In 2017, all tubers in an area of 1.5 m (= two rows at a length of 1 m) were additionally 

harvested from plots center in order to determine the potato yield. Tuber damage was 

categorized in accordance with EPPO guideline s PP1/46(3) by differentiating 

wireworm damage per tuber by classes (class 1: 1 – 2 holes, class 2: 3 – 5 holes and 

class 3: > 5 holes). Wireworm damage was defined as ≥ 5 mm tunnels burrowed in 

tuber flesh and wireworm damage was only recorded if it was clearly identifiable. 

Beside wireworm damage, Rhizoctonia solani sclerotia and drycore symptoms as well 

as the overall damage (=all but wireworm holes) were determined per tuber (Keiser et 

al. 2012). 

 

Metarhizium brunneum molecular detection (nested-PCR) 

Potato plants from the fields 1, 2 and 5 were excavated (BBCH 13), separately 

transferred to Zip-lock™ plastic bags and cooled down in an icebox until further 

processing in the laboratory. One randomly chosen potato plant was excavated from 

each treatment and replication. In the laboratory, plants were washed with sterile tap 

water and intersected in root, stem and leaves with a sterile scalpel. Samples were 

surface sterilized by successive immersion in 2% (v/v) sodium hypochlorite solution (2 

min), 70% (v/v) ethanol (2 min) and three rinses in sterile water. One hundred µl of the 

last watering step was plated on PDA-Media and incubated for 4 days at 25° C to prove 

the success of the surface sterilization. Surface sterilized roots, stems and leaves of 

each treatment were frozen at -20° C for 24 h and afterwards lyophilized (VaCo 5, 

Zirbus – technology GmbH, Bad Grund (Harz), Germany) for 72 h. Genomic DNA was 
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extracted according to the cetyltrimethylammonium bromide (CTAB) protocol 

described by Brandfass and Karlovsky (2008). Extraction performance was tested via 

gel electrophoresis in a 0.8% (w/v) agarose gel (Biozym Scientific GmbH, Hessisch 

Oldendorf, Germany) running at 60 V for 60 min. Gel was documented with a digital 

imaging system. 

The primers used for amplification were ‘Ma 1763’ (forward primer: 5'-CCAACTCCC-

AACCCCTGTGAAT) and ‘Ma 2079’ (reverse primer: 5'-AAAACCAGCCTCGCCGAT) 

specific for Metarhizium clade 1 (Schneider et al. 2012). A volume of 14 µl was used 

for PCR amplification consisting of 0.3 µl ‘Ma 1763’ (10 µM, Thermo Fisher Scientific 

Inc., Waltham, USA), 0.3 µl ‘Ma 2079’ (10 µM, Thermo Fisher Scientific Inc., USA), 

0.09 µl BIOTaq DNA polymerase (5 U/µl, Bioline GmbH, Luckenwalde, Germany), 

1.2 µl dNTP (Bioline GmbH, Luckenwalde, Germany), 0.3 µl MgCl2 (50mM), 1.5 µl 

reaction buffer (10 x, Bioline GmbH, Luckenwalde, Germany), 10.3 µl sterile purified 

water and 1 µl of the DNA extract. The PCR was performed an PCR cycler (PEQLAB 

Biotechnologie GmbH, Erlangen, Germany) according to the following protocol: Initial 

denaturation for 1 min at 94° C,  followed by 35 cycles with 30 s at 94°C, 30 s at  63° 

C and 30 s at 68° C. The final elongation was performed for 5 min at 68°C. 

A second, nested-PCR amplification was performed under the same conditions as in 

the initial PCR but with the nested-primers MetarhL1 (forward primer: 5'-ATCTCTTG-

GTTCTGGCATCG) and MetarhR1 (reverse primer: 5'-CCCAACACCAAGTCCACAG) 

(Thermo Fisher Scientific Inc., Waltham, USA). Nested PCR performance was tested 

via gel electrophoresis in a 2.0 % (w/v) agarose gel (Biozym Scientific GmbH, Hessisch 

Oldendorf,Germany) running at 60 V for 60 min. Gel was documented with a digital 

imaging system. 

 

Destruxins extraction and determination 

Tubers were harvested at the beginning of July (ca. BBCH 45) for destruxins extraction 

and determination. Four randomly chosen plants from each plot were dug up, bagged 

plant by plant and stored in an ice box at 5° C for transportation. Samples were finally 

stored in the dark at 5° C in a cooled storage room until further processing. Four tubers 

from each plot, one from each plant, were poled to one sample. Destruxins were 

extracted from tubers following the protocol of Carpio et al. (2016) step by step. 

Identification and quantification of destruxins was implemented by the workgroup of 
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Prof. Karlsovsky (Molecular Phytopathology and Mycotoxin Research, Georg-August 

University, Göttingen, Germany). 

 

Statistical analysis 

Values are given as mean ± standard error (SE), unless otherwise stated. Data was 

tested for normal distribution and variances homogeneity using Shapiro-Wilk test and 

Levene’s-test, respectively. Where appropriate, data was square-root transformed and 

analyzed with one-way ANOVA followed by Tukey HSD post hoc test (α = 0.05). 

Percentage of wireworm damaged tubers was calculated by comparing the number of 

wireworm damaged tubers and the number of all tested tubers.  

 

% wireworm damage =
no. of wireworm damaged tubers

no. of all tubers
∗ 100 

 

Wireworm damage classes distribution (low, medium and high) was calculated by 

comparing tubers low, medium or high wireworm damage to the of overall wireworm 

damaged tubers. 

 

% damage class distr. (low, medium or high) =
no. of tubers in damage class (low, medium or high) 

no. of all wireworm damaged tubers
∗ 100 

 

Percentages of wireworm damage classes (low, medium or high) were analyzed with 

Kruskal-Wallis test (α = 0.05). Formula for calculating wireworm damage was also 

used for the calculation of percentage tubers with drycore symptoms or 

Rhizoctonia solani sclerotia. Multiple regression analysis was used to identify whether 

wireworm damage or Rhizoctonia solani sclerotia having a significant effect on drycore 

symptoms. All statistical analyses were carried out with the software STATISTICA, 

version 13 (StatSoft Inc., Tulsa, OK, USA).  
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Results 

Metarhizium brunneum persistence in soil 

Metarhizium spp. abundance was low in all fields and years when tested April/ May 

(BBCH01). Most CFU were found in soil samples from field 2 with 43.8 ± 31.3 (control 

) to 50.0 ± 33.9 (CA(+)M) CFU/g soil. In this field, an increase of CFU in September 

(BBCH 99) was observed regardless of the treatments (Table 7). The only significant 

increase of CFU during growing season was observed for field 3 (Kruskal-Wallis test: 

H(3,30) = 25.64, p < 0.0001). An application with CA(+)M beads (33375.0 CFU/g) in field 

3 significantly increased Metarhizium spp. abundance to the control (< 1 CFU/g) 

(Dunnett test: p < 0.0001). In most cased, Metarhizium spp. abundance was below 

detection level with less than 1 CFU/g soil. CFU in field 5 could not be determined in 

September (BBCH 99) due to a total field loss caused by a Phytophtora infestans 

infestation. 

 
Table 7 Number of colony forming units (CFU) (mean ± standard error (SE)) of 
Metarhizium spp. field sites (1–5) before (April = BBCH 01) and after (August/September = 
BBCH 99) treatment application of mycelium, CA(+)M, CP(+)M or CP(-)M compared to an 
untreated control (four replicates/ field); <1 CFU/g soil refers to an undetectable level of 
Metarhizium spp.;  asterisk (*) indicates significant differences between treatments and control 
(Dunnet-test, α = 0.05) 

Fiel
d  Date No. CFU/g soil ± SE 
    control mycelium CA(+)M CP(+)M CP(-)M 

1 April/ BBCH 01 < 1 < 1 < 1 n.t. n.t. 
  Sep./ BBCH 99 < 1 12.5 ± 12.5  < 1 n.t. n.t. 
       
2 May/ BBCH 01 43.8 ± 31.3 43.8 ± 31.9 50.0 ± 33.9 n.t. n.t. 

 Sep./ BBCH 99 106.3 ± 63.7  25.0 ± 13.4 183.3 ± 101.4 n.t. n.t. 
       
3 April/ BBCH 01 3.13 ± 3.1 < 1 31.3 ± 31.3 n.t. n.t. 

 Aug./ BBCH 99 < 1 < 1 3375.0 ± 1016.5* n.t. n.t. 

       
4 April/ BBCH 01 < 1 n.t. 6.3 ± 6.3 6.3 ± 6.3 6.3 ± 6.3 

 Sep./ BBCH 99 < 1 n.t. < 1 < 1 < 1 
       
5 April/ BBCH 01 < 1 n.t. < 1 < 1 < 1 
  Sep./ BBCH 99 n.t. n.t. n.t. n.t. n.t. 
n.t. not tested 
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Assessment of wireworm damage 

Wireworm damage varied from 8 to 83% percent across fields in both years (Figure 1). 

Lowest wireworm damage was observed in field 1 and highest in field 2 with 7 – 10% 

and 83 to 86% damaged tubers, respectively. In 2016, tuber damage was neither 

significantly reduced in field 1 (F(2,21) = 0.47, p = 0.63), field 2 (F(2,17) = 0.17, p = 0.84) 

nor in field 3 (F(2,21) = 0.46, p = 0.64). Tuber damage was significantly increased by 

treatments in field 4 (F(3,28) = 4,94, p < 0,01) in 2017. Therefore, wireworm damaged 

tubers were significantly more often found in the field 4 treatments CA(+)M 

(46.8% ± 5.3) and CP(-)M (46.0% ± 3.9) compared to the control (25.9 % ± 2.2) (Tukey 

HSD test: α = 0.05). None of the tested treatments was able to reduce wire worm 

damage below the economical threshold of 5%. 

 

Figure 15 Percentage of wireworm (WW)-
damaged potato tubers (mean ± standard 
error (SE)) at four field sites (2016: fields 
1-3; 2017 field 4) with treatments applied 
as spot application underneath potato 
tubers. Control: untreated potato dams; 
mycelium: M. brunneum (Cb15III) 
mycelium suspension; CA(+)M & CP(+)M: 
M. brunneum mycelium beads; CP(-)M: 
Beads without fungal mycelium. Different 
lower letters indicate significant 
differences between groups (One-way 
ANONVA followed by Tukey HSD test (α = 
0.05). Dashed line indicates economic 
threshold level (= 5 %); n.t. not tested) 
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The proportion of damage classes (low = 1 – 2 wireworm (WW)-holes; medium = 3 –

5 WW-holes; high >  5 WW-holes) on overall wireworm damaged potato tubers was 

not affected by treatments across fields and both year (Kruskal-Wallis test (α = 0.05)). 

The highest proportion of tubers damaged with more than five wireworm holes was 

found in field 2 with percentages between 10 to 15 % on the overall wireworm damage. 

Adittionally, the highest overall wireworm damage (up to 83 % damaged tubers) was 

observed in field 2 (Figure 2). In field 1, the level of wireworm damage was low and 93 

to 97 % of damaged tubers revealed a low damage with 1 – 2 wireworm holes per 

tuber. Treatments mycelium and CA(+)M in field 1 (H(2,23) = 0.19, p = 0.91) and field 2 

Figure 16 Proportion [%] of damage 
classes (low = 1-2 wireworm (WW)-
holes; medium = 3-5 WW-holes; high > 5 
WW-holes) on overall WW-damaged 
potato tubers at four field sites (2016: 
fields 1-3; 2017 field 4) with treatments 
applied as spot application underneath 
potato tubers. Control: untreated potato 
dams; mycelium: M. brunneum (Cb15III) 
mycelium suspension; CA(+)M & 
CP(+)M: M. brunneum mycelium beads; 
CP(-)M: Beads without fungal mycelium. 
Different lower letters indicate significant 
differences between groups (Kruskal-
Wallis test (α = 0.05). n.t. not tested 
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(H(2,23) = 0.09, p = 0.96) slightly increased the proportion of lowly damaged tubers 

compared to the untreated control indicating that severity of wireworm damage was 

reduced. However, the opposite was true in field 3 (H(2,23) = 3.89, p = 0.14) where the 

control revealed the highest proportion of low damage (89.5 % ± 3.4) compared to 

mycelium (70.0 % ± 3.0) and CA(+)M (88.1 % ± 4.0). 

Drycore symptoms were assessed for the years 2016 and 2017 and varied in the 

control treatments between 5 and 28 % across all fields (Table 8). No significant 

differences were found within treatments in 2016 neither in field 1 (F(2,21) = 1.89, 

p = 0.18), field 2 (F(2,17) = 0.06, p = 0.93) nor in field 3 (F(2,21) = 0.82, p = 0.45). 

Treatments had a significant effect on the abundance of drycore symptoms in field 4 

(2017) (F(3,28) = 4.44, p < 0.05). Compared to the control, drycore symptoms in field 4 

were increased in all treatments but significantly by treatment CP(-)M (Tukey HSD test: 

p < 0.01). The highest overall abundance of drycore symptoms was also found in 

tubers harvested from field 4 and varied between 26 (control) and 43 % (CP(-)M). 

Rhizoctonia solani sclerotia were found on harvested tubers throughout years and 

fields and varied between 3 and 90 % (Table 9). 

 
Table 8 Percentage of potato tubers with drycore symptoms (mean ± standard error (SE)) at 
four field sites (2016: fields 1-3; 2017 field 4) with treatments applied as spot application 
underneath potato tubers. Control: untreated potato dams; mycelium: M. brunneum (Cb15III) 
mycelium suspension; CA(+)M & CP(+)M: M. brunneum mycelium beads; CP(-)M: Beads 
without fungal mycelium. Different lower letters indicate significant differences between groups 
(One-way ANONVA followed by Tukey HSD test (α = 0.05)). 

Treatment   Tubers with drycore symptom [%] 

  2016  2017 
    Field 1 Field 2 Field 3   Field 4 

control  5.1 ± 1.4 28.3 ± 10.2 15.0 ± 3.8  26.5 ± 2.1 a 
mycelium  6.6 ± 1.3 30.3 ± 8.0 9.8 ± 2.0  n.t. 
CA(+)M  9.0 ± 1.5 34.5 ± 17.6 16.4 ± 5.1  37.7 ± 3.0 ab 
CP(+)M  n.t. n.t. n.t.  39.5 ± 3.9 ab 
CP(-)M   n.t. n.t. n.t.   43.4 ± 4.3 b 
n.t. not tested  
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Percentages of tubers infested with sclerotia did not revealed significant differences 

neither 2016 in field 1 (F(2,21) = 1.22, p = 0.31), field 2 (F(2,17) = 0.80, p = 0.46) or field 3 

(F(2,21) = 0.42, p = 0.66) nor 2017 in field 4 (F(3,28) = 0.30, p = 0.82). Most sclerotia 

adhesions were found on tubers in field 1 and varied between 81 (CA(+)M) and 90 % 

(control), fewest in field 2 with 3 (control) to 7 % (CA(+)M) sclerotia infestation. Multiple 

regression analysis for field 1 (F(2,21) = 3.99, p < 0.034; drycore/WW-damage R = 0.52, 

p < 0.05; drycore/sclerotia R = 0.16, p = 0.40) and field 4 (F(2.29) = 37.08, p < 0.0001; 

drycore/WW-damage R = 0.85, p < 0.0001; drycore/sclerotia R = 0.01, p = 0.91) 

revealed a significant associations among the abundance of drycore symptoms and 

wireworm damage but not among drycore and sclerotia. In field 2 (F(2.17) = 1.09, 

p = 0.36) and field 3 (F(2.21) = 3.49, p = 0.06) no associations were found neither among 

drycore and wireworm damage nor drycore and sclerotia. 

 
Table 9 Percentage of potato tubers infested with Rhizoctonia solani sclerotia 
(mean ± standard error (SE)) at four field sites (2016: fields 1-3; 2017 field 4) with treatments 
applied as spot application underneath potato tubers. Control: untreated potato dams; 
mycelium: M. brunneum (Cb15III) mycelium suspension; CA(+)M & CP(+)M: M. brunneum 
mycelium beads; CP(-)M: Beads without fungal mycelium. (One-way ANONVA (α = 0.05)). 

Treatment   Tubers with Rhizoctonia solani sclerotia [%]   
  2016  2017 
    Field 1 Field 2 Field 3   Field 4 
control  90.1 ± 2.0 3.3 ± 1.0 31.5 ± 4.2  46.1 ± 3.6 
mycelium  86.9 ± 3.1 5.1 ± 2.3 26.0 ± 6.0  n.t. 
CA(+)M  81.6 ± 5.6 7.5 ± 3.8 25.1 ± 5.7  52.4 ± 8.9 
CP(+)M  n.t. n.t. n.t.  54.0 ± 5.5 
CP(-)M   n.t. n.t. n.t.   54.6 ± 8.9 
n.t. not tested  

      
 

Metarhizium molecular detection (nested-PCR) 

In 2016, Metarhizium spp. was exclusively detected in root, shoot and leaf samples of 

the control treatment with a frequency up to 80 % (Table 10). Detection levels of 

Metarhizium spp. in 2017 varied between 0 and 40 % across fields and analyzed plant 

tissue. Metarhizium DNA was neither found in plant tissue from CP(-)M treatments nor 

in field 4 control. In 2017, most samples with Metarhizium DNA were found in leaf 

tissue from field 5 control (40 %). 
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Table 10 Percentage of positiv Metarhizium spp. DNA amplification after nested-PCR in potato 
plant tissue (root, shoot and stem) at three field sites (2016: field 1; 2017 fields 4 and 5) with 
treatments applied as spot application underneath potato tubers. Control: untreated potato 
dams; mycelium: M. brunneum (Cb15III) mycelium suspension; CA(+)M & CP(+)M: 
M. brunneum mycelium beads; 
CP(-)M: Beads without fungal mycelium. 

Treatmen
t   Metarhizium spp. detection [%] after nested-PCR 
  Field 1  Field 4  Field 5 
    root shoot leaf   root shoot leaf  root shoot leaf 

control  25 % 100 % 75 %  0 % 0 % 0 %  0 % 0 % 50 
% 

mycelium  0 % 0 % 0 %  n.t. n.t. n.t.  n.t. n.t. n.t. 
CA(+)M  0 % 0 % 0 %  13 % 13 % 0 %  0 % 13 % 13 % 

CP(+)M  n.t. n.t. n.t.  13 % 13 % 13 %  0 % 0 % 13 % 

CP(-)M   n.t. n.t. n.t.   0 % 0 % 0 %   0 % 0 % 0 %  
n.t. not tested  

      
 

Destruxins determination 

Destruxin A and related destruxins could not be detected in any tuber sample. 
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Discussion 

This study was conducted to investigate the potential of encapsulated M. brunneum 

Cb15III mycelium to colonize potato and to protect potato tubers from wireworm 

damage in field trials. Formulation and encapsulation of M. brunneum mycelium should 

enhance endophytic colonization of seed tubers and consequently the entire potato 

plants, demonstrated by Krell et al. (2018a, b). Treatments were applied as spot 

application beneath planted tubers to ensure treatments getting in contact with tuber’s 

surface. 

Wireworm damage in controls varied between 8 and 83 % across all harvested fields. 

This kind of variations was also observed by Brandl et al. (2017) and can be explained 

by differences in cropping history, soil type, weed density, geographical features and 

the number of wireworms present within specific field site (Salt and Hollick 1946; 

Parker and Howard 2001; Cherry and Stansly 2008; Hermann et al. 2013) However, 

tested agents were neither able to reduce percentage of wireworm damage on potato 

tubers nor its severity.  

Metarhizium spp. was more frequently detected with nested-PCR in field 1 and field 5 

controls than in M. brunneum Cb15III treated plants. The primers used in this study, 

Ma 1763 and Ma 2097, were designed to detect Metarhizium species from clade 1 but 

not specifically M. brunneum (Schneider et al. 2011). Metarhizium clade 1 species are 

omnipresent in arable soils (Schneider et al. 2012), thus a high natural colonization of 

control plants with Metarhizium spp. is possible. Lower colonization rates in treated 

plants could be explained by a low competitive capacity of the M. brunneum strain 

CB15III to the microbial soil community (St. Leger 2008; Bruck 2009). Nevertheless, 

M. brunneum CB15III was originally isolated from arable land and an application with 

CA(+)M beads in field 3 increased the abundance of Metarhizium CFU in soil at potato 

harvest (BBCH 99). However, the abundance of Metarhizium spp. in soil can naturally 

vary with regard to climate (Bidochka et al. 1998), soil type (Vänninen et al. 2000; 

Scheepmaker and Butt 2010), vegetation (Meyling and Eilenberg 2006) and land use 

(Schneider et al. 2012). CFU were increased in field 3 treatment CA(+)M only but 

showed a high variation between plots. It is unknown if CFU increment is explicable by 

the CA(+)M treatment or natural variation due to an insect infestation event at sampling 

location. In addition, it is reported that the persistence of artificially introduced 

Metarhizium into soil can be low and degrades over time indicating that Metarhizium 
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can be outpaced by antagonistic organisms (Scheepmaker and Butt 2010; Pilz et al. 

2011). This could have been of advantage for Metarhizium antagonists resulting in their 

propagation and consequently suppressing Metarhizium clade 1 species leading to 

lower colonization rates in treatments (Powell 1971; Mayerhofer et al. 2017). 

In laboratory, it was observed that M. brunneum encapsulated in beads and placed on 

field collected soil was grazed by nematodes (personal observation). Therefore, it 

seems plausible that M. brunneum Cb15III was not able to colonize plants under field 

conditions or colonization was not consistent until sampling. Some studies reported 

that Metarhizium spp. persistence in plant tissue over several weeks is possible, once 

plant tissue was colonized (Batta 2013; Greenfield et al. 2016; Jaber and Enkerli 2016). 

On the other hand, there are a large number of competing endophytes colonizing 

potato tubers with a potato-dependent composition (Sturz et al. 1999; Sessitsch et al. 

2002, 2004). It is unclear, if the tested M. brunneum strain Cb15III was able to persist 

within this endophytic community or not (Schulz et al. 2015). As a result, it seemed not 

possible to introduce M. brunneum to a sufficient number of potato plants to establish 

a systemic plant protection against wireworms. 

Moreover, treatments CA(+)M, CP(+)M and CP(-)M intensified wireworm damage in 

2017. It is possible that the applied beads attracted wireworms as they were still intact 

when tubers were harvested in July (BBCH 45) for destruxins determination. Heavy 

rainfall between July and September 2017 could have encouraged bead 

decomposition by microorganism resulting in an increased CO2 production and an 

increased CO2 gradient towards tubers (Rovira 1953; Paul et al. 1999; Godley 2004). 

It is known that wireworms orientate along CO2 gradients to locate food sources 

(Thorpe et al. 1947; Klingler 1957; Doane et al. 1975; Doane and Klingler 1978). As a 

consequence, more wireworms migrated towards treated potatoes causing more 

damage in tubers. A further explanation for higher wireworm infestation in treated plots 

could be that wireworm abundance and distribution within landscape is described as 

patchy (Salt and Hollick 1946). Wireworm distribution in fields can vary in regard to soil 

type, moisture and vegetation (Salt and Hollick 1946; Hermann et al. 2013). It is highly 

improbable but possible that control plot distribution in field 4 coincide with wireworm 

abundance, even though plots were randomly distributed. Data from field 5 could help 

explaining effects in field 4 but complete harvest was lost due to a heavy infestation 

with Phytophthora infestans.  



Chapter 3 Encapsulated M. brunneum mycelium: a novel approach of managing 
wireworms in field with an endophytic M. brunneum strain Cb15III? 

 

 
 

82 

Observations made for the abundance of wireworm damage, drycore symptoms and 

R. solani sclerotia adherence on tubers, revealed a significantly higher correlated 

between wireworm damage and drycore than between R. solani sclerotia and drycore. 

Consequently, the higher abundance of tubers with drycore symptoms in treatments in 

field 4 can be explained by the higher wireworm damage in these treatments. A 

coinciding correlation was also revealed in a 3-yaer field survey by Keiser et al. (2012). 

Differences of R. solani sclerotia adherence on tubers, however, were not found within 

treatments across fields and years. Thus, a correlation between M. brunneum 

applications and sclerotia formation, as described by Brandl et al. (2017), was not 

observed. 

 

Conclusion 

The idea of encapsulating the endophytic M. brunneum strain Cb15III and using it to 

manage wireworms is ambitious and promising. However, this study revealed that the 

tested applications were not a functional approach to manage wireworms on field 

scale. This approach needs to be optimized, especially regarding fungal competitive 

capacity in soil and in plant. Additionally, further molecular approaches needs to be 

done to reliably detection M. brunneum Cb15III with specific primers sets to allow 

insights into fungal growth within plants. An implementation of this approach into 

biological control of wireworms without improvements is not recommended. 
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General discussion 

Potatoes (Solanum tuberosum, L.) are one of the most important but also sensitive 

crops worldwide. They are infested by many pests and diseases, which challenge 

organic potato farmers in particular. Beside of pathogens, wireworms, the larvae of 

click beetles (Agriotes spp., Coleoptera: Elateridae) (French and White 1965), and the 

Colorado potato beetle (CPB), Leptinotarsa decemlineata SAY, are the most prominent 

threads to potato causing tremendous yield and quality losses (French and White 

1965; Hare 1990; Vernon and van Herk 2013). Management of both pests is difficult 

due to a high adaptability of CPB to insecticidal agents and the hidden habitat of 

wireworms. Novel control agents and strategies are urgently needed to prevent crops 

from damage. Studies on entomopathogenic fungi (EFP), in particular 

Metarhizium brunneum,  revealed that they can be a promising candidates to control 

wireworms and CPB (Eckard et al. 2014; Tyurin et al. 2016; Razinger et al. 2018). 

Findings on the endophytic character of M. brunneum in potato plants opened new 

opportunities to control both pests (Ríos-Moreno et al. 2016; Krell et al. 2018b). Thus, 

development of a systemic plant protection with endophytic EPF can help managing 

potato pests and reduce application intervals and rates in field. However, interactions 

between endophytes, plants and pests are still poorly understood or most widely 

unknown. In this study, methodologies were implemented to find endophytic EPF and 

to determine their potential to protect potato plants from pest infestations.  

 

Isolation and identification of Metarhizium spp. strains 

Metarhizium spp. is known to be widely distributed within most agroecosystems 

(Meyling and Eilenberg 2007). Therefore, this study investigated the feasibility of 

controlling insect potato pests with entomopathogenic fungi isolated from regionally 

related habitat. Samples were either taken from permanent grassland or arable land. 

Isolated strains were identified with a microsatellite analysis, which revealed that 

almost all strains can be classified as Metarhizium brunneum. General 

entomopathogenicity was tested with a variation of the insect baiting method (Goettel 

and Douglas Inglis 1997), though soil was artificially enriched with the assayed 

M. brunneum strain. Tenebrio molitor L. (Coleoptera: Tenebrionidae) larvae were 
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exposed to selected strains from permanent grassland and arable land. It was revealed 

that especially strain from arable land showed a higher virulence than strains isolated 

from permanent grassland. This observation was also made when wireworm of the 

species Agriotes lineatus, A. sputator and A. obscurus where exposed to isolates from 

both habitats. The M. brunneum strain Cb15III revealed the highest virulence in the 

conducted trials against T. molitor and wireworms. M. brunneum strain Cb15III was, 

furthermore, successfully tested against larvae of CPB. 

These results substantiate findings of Bharadwaj and Stafford (2011) that T. molitor 

larvae are a suitable bioassay to test many different strains and predict their ability to 

infect further insect species. In addition, the approach of isolating entomopathogens 

from regional habitats and test them against insects from the same or a closely related 

habitat can improve the efficacy of entomopathogenic fungi (EPF) due to a co-

evolutionary adaptation to local pest populations (Lacey et al. 2001; Vega et al. 2009). 

Furthermore, balances of native microbial ecosystems are not or only little disturbed 

when artificially introducing native entomopathogenic control agents (Meyling and 

Eilenberg 2007). 

The tested strain M. brunneum Cb15III is the first report that one EPF strain from 

Central Germany can infect both wireworms and CPB. The ability of this strain not only 

infecting potato pests but also to colonize tubers is promising for the development of 

future biological approaches (Vidal and Jaber 2015; Krell et al. 2018b). 

 

Endophytic M. brunneum against CPB 

The present study is the first, investigating effects of an endophytic M. brunneum strain 

Cb15III on the development and behavior of CPB larvae and adults. Effects on CPB 

were tested laboratory (choice test), greenhouse (non-choice test) and field 

experiments. The greenhouse experiment was conducted to evaluate effects of 

M. brunneum inoculated plants on the development from neonate larvae to emerged 

adults. In the non-choice laboratory trial behavior and plant preference of CPB adults 

were observed in ‘arenas’ (Schütz et al. 1997). In a first set up adults were separated 

from potato leaves with gauze to evaluate the impact of leaf volatiles on adults’ 

behavior. Gauze was removed in second set up to observe, if adults’ leaf preferences 

change when in direct contact to leaves. In both set up, plants were either inoculated 

with M. brunneum Cb15III, 0.1% Tween® 80 or not treated at all. Final field trials were 
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conducted to observed effects of M. brunneum inoculated seed tubers on CPB 

behavior and development under field conditions. 

A treatment with M. brunneum Cb15III revealed partially significant effects in CPB. In 

the conducted greenhouse trial CPB development was slightly depressed when larvae 

fed on M. brunneum inoculated plants, consequently adult emergence was reduce by 

an average of 33% and tibia length was slightly shortened. Mycosed larvae, pupae or 

adults were not found throughout the experiment, thus a direct infection with the 

endophytic EPF was not proven. It is possible that M. brunneum induced changes in 

plant metabolism or introduced own secondary metabolites into plant tissue (Jallow et 

al. 2008; Ríos-Moreno et al. 2016). Fungal induced changes in food source could have 

negatively influenced larval development. However, it unclear if M. brunneum was able 

to colonize potato plants successfully because it could neither been re-isolated from 

plant tissue nor explicitly detected with a nested-PCR. In addition, a direct contact and 

infection of CPB larvae with the EPF cannot be excluded as seed tubers were placed 

soaking wet into planting soil after dipping in spore suspension. 

To improve chances of fungal colonization, tubers in the laboratory and field trials were 

inoculated via injection into tuber tissue. In field, a M. brunneum Cb15III treatment had 

significant effects on CPB oviposition and thus on abundance of L1 – L3 larvae on 

plants. These effects are hardly explainable, in particular because deterrent effects of 

M. brunneum treated plants have not been observed in the laboratory choice 

experiment. Effects of solanine or destruxin contents in plants are unlikely, since 

destruxins were not detected in tuber tissue and solanine is not known to influence 

CBP host plant location or oviposition (Harrison and Mitchell 1988; Hollister et al. 2001; 

Hufnagel et al. 2017). Volatiles were not measured in the experiments, though a 

measurement could help explain effects of M. brunneum on plant metabolism and 

therefor CPB host plant localization (Visser et al. 1979; Bolter et al. 1997; Schütz et al. 

1997). A further determination of volatiles emitted by M. brunneum treated plants could 

also help to evaluate the potential of this approach to be used in a “push pull” strategy 

(Cook et al. 2007). Advantages of such an approach would be a more targeted and 

overall reduced application of insecticidal agents.  
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Encapsulated mycelium against wireworms 

The management of wireworms with an application of encapsulated mycelium of the 

fungus M. brunneum Cb15III in calcium alginate/starch or calcium pectinate/starch 

beads was evaluated in field trials in 2016 and 2017. Treatments were applied as spot 

applications beneath seed tubers during potato planting. Quality samples from each 

treatment were evaluated in laboratory and revealed M. brunneum outgrow from all 

beads containing mycelium (CA(+)M, CP(+)M). Fungal outgrow was not observed from 

beads without formulated fungal biomass (CP(-)M). Under sterile conditions, 

encapsulation of M. brunneum mycelium enhanced endophytism in plants (Krell et al. 

2018a, b). In field, an increased colonization of potato plants treated with mycelium 

capsules could not be detected with a nested-PCR. Furthermore, colonization was 

partially higher in control plants. To date, it is not possible to detect M. brunneum with 

one set of primers, thus primers for detecting Metarhizium clade 1 (‘Ma 1763’ and ‘Ma 

2079’) were used in this study (Schneider et al. 2011). As a consequence, it can be 

assumed that potato plants were colonized by Metarhizium spp. but not exclusively 

M. brunneum. A more frequent colonization of control plants is hardly explainable and 

further research must reveal how competitive M. brunneum Cb15III is within the soil 

and endophytic communities. 

None of the tested treatments was able to reduce wireworm damage compared to the 

control, thus bead performance left behind expectations. An encapsulation formulation 

of M. brunneum mycelium should not just have enhance endophytism but also protect 

the sensitive mycelium from biotic and abiotic influences (Vemmer and Patel 2013). In 

preliminary experiments, beads were solely tested under sterile conditions (Krell et al. 

2018a; Vivien Krell, personal communication). Hence, it is unknown, if M. brunneum 

Cb15III was able to grow from applied beads or outpaced by antagonistic 

microorganisms. Consequently, the tested agents are not a feasible approach to 

protect potatoes from wireworm damage. 
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