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» To strive, to seek, to find, and not to yield, “- from “Ulysses” of Alfred, Lord Tennyson

“Anything that arranges the nature itself is good at any intention.
The whole nature in general is really nothing more than a connection of phenomena

according to rules; and there is no randomness everywhere, “- Immanuel Kant

“In the living nature nothing happening that is not in the connection with the whole, -

Johann Wolfgang von Goethe

“... the loveliest and saddest landscape in the world ...” -

from “The Little Prince” of Antoine de Saint Exupéry



Abstract

Hydrological conditions in a catchment depend on many factors such as climatic, geological,
geomorphological, biological and human, which interact with each other and influence water balance in
a catchment. This interaction leads to the subordination in the landscape structure, namely the weak
elements subordinate to the powerful elements. Thereby, geological and geomorphological factors play
an essential role in catchment development and organization, because the main lithological features keep
their properties in the landscape structure during a long time. We consequently can allocate a hillslope
to one class of the representative units because the important flow processes run at the hillslope.
Moreover, we can subdivide a hillslope into stratigraphic subsurface units and significant hillslope areas
based on the lithological change of contrasting interfaces. The knowledge of subsurface structures is
necessary to understand and predicate complex hydrological processes in a catchment. Geophysical
techniques provide a good opportunity to explore the subsurface.

It is impossible to achieve a complete geophysical investigation of subsurface in a catchment
with difficult environmental conditions because of large time effort in the field, equipment logistic, and
ambiguity in the data interpretation. The research study demonstrates how we can investigate a catchment
using geophysical methods in an effective manner in terms of characterization across representative units
with respect to a functional role in the catchment. This research study aims to develop combined
resistivity and seismic velocity hillslope subsurface models for the distinction of representative
functional units.

In order to identify the contrasting interfaces of the hillslope, to localize significant hillslope
areas, and to address the ambiguity in the geophysical data interpretation, the research study combined
resistivity surveys (vertical electrical soundings and electrical resistivity tomography) with refraction
seismic method, and conducted these measurements at one single profile along the hillslope transect and
perpendicular to this transect. The measurements along the hillslope transect deliver the two-dimensional
hillslope section of resistivity and seismic velocity distribution with contrasting stratigraphic interfaces,
whereas the measurements perpendicular to the hillslope transect obtained from vertical electrical
soundings survey localize significant hillslope areas indicating existence of two-dimensional features in
the subsurface.

To demonstrate the suitability of the suggested approach, we carried out resistivity and refraction
seismic measurements at two hillslopes with different environmental conditions (geology,
geomorphology, slope inclination, land use). The first hillslope is locating in the forested Weierbach
catchment in the Ardennes massif, the mid-western part of the Grand Duchy of Luxembourg. The second
hillslope is placing in the grassland Schaefertal catchment in the Lower Harz, the Central Germany.
Besides, both hillslopes are characterized by Pleistocene periglacial slope deposits, which plays an

important role in the ecosystem functioning.



The obtained resistivity and seismic hillslope models for each study site complement well one
another. The hillslope models identify significant hillslope areas along the hillslope called as elementary
functional units, and electrical vertical stratigraphic units and seismic vertical stratigraphic units that
agree with lithological stratigraphy of these study sites.

Therefore, the suggested geophysical approach is suitable to characterise a hillslope as the
representative unit only at a single transect in the efficient manner in contrast to the expensive 3D-
measurements.

In conclusions, to amplify the suitability of this approach, we constructed the geophysical
hillslope model in the three-dimensional image using an additional cross profile. This three-dimensional
image proofs the correctness of our approach. Based on the obtained results, we can provide a conceptual

hydrogeological model of the representative hillslope.



Zusammenfassung

Die hydrologische Gegebenheiten in einem Flusseinzugsgebiet hdngen von verschiedenen
Faktoren ab wie klimatischen, geologischen, geomorphologischen, biologischen und menschlich
verursachten. Diese Faktoren wirken wechselseitig aufeinander und beeinflussen die komplette
Wasserbalance in einem Flusseinzugsgebiet. Diese Wechselwirkungen flihren zu einer Unterordnung
schwacher Elemente unter energetisch starkere Elemente in der Struktur einer Landschaft. Geologische
und geomorphologische Faktoren spielen dabei eine wesentliche Rolle in der Entstehung, Entwicklung
und Organisation eines Flusseinzugsgebiets, weil lithologische Strukturen ihre Eigenschaften in der
Landschaft-Struktur (ber einen ldngeren Zeitraum erhalten kdnnen. Da am Hang wichtige
Abflussprozesse ablaufen, kann einen Hang zu einer Klasse der reprasentativen Einheiten zugeordnet
werden. Zudem kann ein Hang aufgrund der lithologischen Anderung der Kontrastgrenzen im
Untergrund in lithotratigraphische Untergrundeinheiten und spezifische Hangflachen aufgegliedert
werden. Die Kenntnisse lber Untergrundstrukturen sind bedeutsam flir das Verstandnis und eine
Vorhersage von hydrologischen Prozessen in einem Flusseinzugsgebiet. Geophysikalische Methoden
bieten eine gute Mdglichkeit, den Untergrund zu erkunden.

Eine komplette geophysikalische Erkundung des Untergrundes in einem Flusseinzugsgebiet mit
schwierigen Umweltbedingungen kann aufgrund eines langeren Zeitaufwands im Feld, der Logistik der
Ausristung und der Mehrdeutigkeit in der Interpretation geophysikalischer Daten niemals vollstandig
erreicht werden. Die Forschungsarbeit demonstriert, wie ein Flusseinzugsgebiet auf eine effiziente Art
und Weise mit geophysikalischen Methoden im Sinne von einer Charakterisierung Uber typische
Landschafteinheiten in Hinsicht auf eine funktionale Rolle in dem Flusseinzugsgebiet erkundet werden
kann. Das Ziel dieser Forschungsarbeit ist, ein geophysikalisches Hangmodell durch die kombinierte
Interpretation geoelektrischer und seismischer Daten zur Unterscheidung typischer funktionaler
Einheiten zu entwickeln.

Zur ldentifizierung der Kontrastgrenzen im Untergrund eines Hanges, zur Lokalisierung der
signifikanten Hangflachen und zum Befassen der Mehrdeutigkeit in der Interpretation geophysikalischer
Daten wurden geoelektrische Methoden (vertikale elektrische Sondierung und elektrische
Widerstandtomographie) mit Refraktionsseismik kombiniert. Die Messungen erfolgten lediglich auf
einem Profil entlang des Hangs und quer zum Hang. Die Messung entlang des Hangprofils liefert eine
zwei-dimensionale Hangsektion der Verteilung des elektrischen spezifischen Widerstands und der
seismischen Geschwindigkeiten. Die Messung quer zum Hangprofil lokalisiert signifikante
Hangflachen, die auf die Anwesenheit der zwei-dimensionalen Kdrper hindeuten.

Zur Demonstration der Eignung des vorgeschlagenen Ansatzes werden geoelektrische und
refraktionsseismische Messungen auf zwei H&ngen mit unterschiedlichen Umweltbedingungen
(Geologie, Geomorphologie, Hangneigung, Landnutzung) durchgefihrt. Der erste Hang befindet sich im

bewaldeten Weierbach-Flusseinzugsgebiet in den Ardennen im Westen des Grol3herzogtums



Luxemburg. Der zweite Hang liegt in einer Grass-Landschaft im Schéfertal-Flusseinzugsgebiet im
Unteren Harz in Deutschland. Beide Héange sind durch pleistozdnen periglazialen Hangschutt
charakterisiert, der eine wichtige Rolle im Funktionieren eines Okosystems spielt.

Die erhaltenen geoelektrischen und seismischen Hangmodelle fiir jeden Standort ergénzen sich
einander gut. Geophysikalische Hangmodelle identifizieren sowohl signifikante Flache entlang des
Hangs, als auch elektrische und seismische vertikale stratigraphische Einheiten, die mit der
lithologischen Stratigraphie beider Standorte Gbereinstimmen.

Somit ist der vorgeschlagene geophysikalische Ansatz zur Hangcharakterisierung als eine
reprasentative Einheit auf nur einem Profil auf eine effiziente Art gut geeignet im Vergleich zu
aufwendigen drei-dimensionalen Messungen.

Zum Schluss wird das geophysikalische Hangmodell in der drei-dimensionalen Darstellung mit
Hilfe eines zusétzlichen Querprofils erstellt. Somit wird die Zuverlassigkeit des angewendeten Ansatzes
gepruft. Die konzeptuellen hydrogeologischen Modelle konnen basierend auf den erstellten

geophysikalischen Modellen aufgebaut werden.
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AHHOTANMSA

I'maponoruyueckne ycnoBusl peyHOro OacceifHa 3aBUCAT OT CAMBIX PAa3JIMYHBIX MOMEHTOB. Peup
UIeT O KJINMAaTHYECKNX, TEOJOTHYECKHX, TIeOMOp(OIIOrHIecKnX, OMOIOTHYECKHX, a Takke 00
AHTPOIIOTEHHBIX (PaKTOPax, KOTOPbIE B3aUMOACHCTBYIOT MEXAY COOOH M BIUSIOT HAa BOAHBIN OalaHC B
peuyHoM Bojopasziene. Takoe B3aMMOACHCTBHE IMPHBENO K CIEAYIOIIEH HepapXuu B CTPYKType
nangmagTa: crnabble KOMIOHEHTHl JaHAmadTa NOAYMHSIOTCS Haubonee CHIBHBIM. Ilpu 3TOM
TeoJIOTHYeCKU ¥ reoMopdoiorudeckuid (akTopbl BBICTYHNAIOT Kak OJHM W3 BEAYIIMX MpHU
(GbopMHUPOBaHNH, PA3BUTUU M OPraHU3alMM JaHAAa]Ta, TOCKOIBKO OJaroaps UM, JaHAMA(PT MOXKET
COXpaHATh CBOM TJIaBHBIC CBOMCTBA Ha MPOTSDKEHHM JUIMTENBLHOTO BpemeHH. Ilo mpuymue Toro, 4ro
OCHOBHBIEC BOJHBIC MACCHI CTEKAIOT 0 CKIIOHAM PEYHBIX J0JIMH, Mbl pacCMaTpUBAEM CKJIOH KaK OJMH U3
KJlaccoB JIaHAMAa(THOH uepapxuu. B moBepiieHne Bcero, Ha OCHOBaHUH JIUTOJIOTUYECKUX U3MEHEHUH,
MBI MOXEM TaKXK€ MMOAPA3ACIUTE CKJIIOH Ha BEPTHUKAJIBHBIC U HA JIATCPAJIbHBIC CTPYKTYPHBIC CIMHUIIBI.
Jabpl ny4mie TOHATH M TPEACKa3aTh THIPOJOTMYECKHE IPOIECCHl, IMPOTEKAIONIHe B PEYHOM
BOJIOpasziese, HeoOXoAnMa McUepIbIBaroIas HHGOPMAIHS O €ro MOA3EMHBIX HelIpax ¢ MPUMEHEHUEM
reopmsuuecknx uccinenoBanuii. [logo0HBIE HCCIEMOBaHUS METOTO0 PEYHOTOo OaccelHa penko OyneT
UMETh 11010020 Pe3yabTaT, IOTOMY KaK HalPSIMYIO CBSI3aHBI C BDEMEHHBIMU 3aTpaTaMu B ITpoIIecce
JUTUTENBHBIX TOJIEBBIX padoT, ¢ TPYAHOPEATH3yEeMOH JIOTHCTHKON reo(pr3uIecKoro 000pyI0BaHus, a
TaKKe C YaCTOM MHOTO3HAYHOCTHIO TOJIKOBAHUS reo(u3nyuecKux MaHHBIX. JlaHHas HaydHas paboTa
nperaraeT S(QQEKTUBHBIA TOAXOA JUIS HCCIENOBAaHHWSA NOI3EMHBIX HEIp pedyHoro OacceiiHa
reoGpU3nIeCKUMU METOIaMHU C TOYKH 3pEHUS TI0Ipa3/IeIeH s ero Ha JaHAIIa(THBIC e IMHUIIBI, HECYIIUe
BaXHOEe (DYHKIMOHAJIbHOE 3HAuYeHHe. 3ajaueil HaCTOSIEH HCCIel0BaTENbCKOM padOThHl SBISETCS
HOCTPOCHNE KOMOMHUPOBAHHOM reo(n3nUecKoil CKIOHOBOH MOJENH, C HCIOIb30BAHUEM METOJIOB
QJICKTPUYCCKOr'0 CONPATUBIICHUA U TCXHUKU MPEITOMIICHHBIX CEMCMUYECKNX BOJIH JJIsL OGHapy)KeHI/ISI
THUITUYHBIX HaHIIIHa(l)THBIX (I)YHKHI/IOHELHBHBIX CAUHMUIIL.

C uenpio ONMo3HATh KOHTPACTHBIE TPAHHUIBI B BEPTUKAJIBHONW CTPYKTYpE CKJIOHA M BBIJEIUTH
0c00ble 30HBI C yYETOM MHOTO3HAUYHOCTH Te0(PU3HMIECKHUX JaHHBIX, B HACTOSIIEH HaydHOU paboTe ObLIH
BBIIIOJTHCHBI KOM6I/IHI/IpOBaHHI)Ie FeO(bI/ISI/I‘ICCKI/Ie nuccjacaoBaHud C TPHUMEHCHHUEM BCPTHKAJILHOI'O
3JIEKTPUYECKOTO 30HAMPOBAHUS, IEKTPOTOMOrpadurd U CEHCMUKH TMPEIOMJICHHBIX BOJIH Ha OJIHOM
npoduiie BIOJIb CKIOHA W TMOMEpeK CKiIoHa. ['eodusndeckne ucciienoBanus (dIeKTpoToMorpagus u
celiCMMKa) BJIOJIb CKJIIOHA IIPE/ICTABIICHBI B BU/IE IBYXMEPHOTO CKIIOHOBOTO Pa3pesa, HLTIOCTPUPYIOLIET0
pacripenesieHue 3JCKTPUYECKHX W CEHCMHYECKHX CBOWCTB Heap. BepTukanbHOe 3JeKTpHUUYECcKOoe
30H/IMPOBAHMS MOMNEPEK CKIOHA JajJ0 BO3MOXKHOCTH JIOKAIHM30BaTh OCOOBIC 30HBI, yKa3bIBAIOIINE HA
HaJIM4Ke JIByXMEPHBIX CTPYKTYP B BEPTHKAJILHOM pa3pese.

Jns  ycTaHOBIEHHMs HAIEKHOCTH IpeylaraéMoro MeToja, HaMu ObUIM  [POBEIEHBI
reo(pU3MUECKUEe HCCIENOBAHUS Ha JBYX CKIIOHAX, XapaKTEPU3YIOIIMXCS Pa3HBIMH IPUPOAHBIMU

YCIOBUAMHA (FCOJ'IOFI/UI, I‘eOMOp(bOJ'IOFI/IH, HaKJIOH, 3CM.]'ICHOJ'IB3OB3_HI/IC). HepBBIﬁ CKJIOH PAacCIIOJIOKCH B



JecHOM pedHoM OacceiiHe Baiiepbax B ApaenHax, Benukoe I'epriorctso JltokcemOypr. Bropoii ckion
HaXOJUTCA B IyroBoM peuHoM Oacceiine [ladeprans B Huxuem [apue, B 'epmannu. CnegyeT OTMETUTD
HaJIM4re y 000UX OOBEKTOB IIEHCTOLEHOBBIX MEPUTIISIHATIBHBIX CKIIOHOBBIX OTJIOKEHHUN, UTPAIOIIUX
HEMaJIOBXHYIO POJIb B (PYHKIMOHUPOBAHUH SKOJIOTHUECKUX CHCTEM.

ITomyueHHBIE 2TEKTPUUYECKUE U CEMCMHUYECKUE MOJETIH CKIIOHA AJIS KXJOro Ciydas XOpOLIO
JOIUTHSIOT ApYT npyra. ['eodusnueckue CKIOHOBBIE MOCTH ONPENLSIAIOT 0COObIE 30HBI BAOJb CKIOHA,
a TaKKe BEPTHKAJIbHBIE DIICKTPUYECKUE U CEHCMUYECKHe EeIUHUIBI CTPaTUrpaduvecKoil CTPYKTYpHI,
COIJIACOBAHHBIE C JINTOIOTUYECKUM CTPOCHHUEM.

Takum 00pa3oM, TpPEUIOKEHHBI B JaHHOW HAyYHOH paboTe Teo(pU3NIECKTH MEeTOo.
HCCIICIOBAHNUS B LIEJSIX U3yUCHUS CKIIOHOBOM CTPYKTYpPBI B KAU€CTBE TUIIMYHOM JIaHAIA()THON € AMHULIBI
Ha OJHOM mnpoduie, naer HaAeKHbIE M JOCTOBEpHBIE pe3ynbTaThl. Cleayer MOAYEpKHYTh:
BBILIECTIPUBEICHHOE YTBEPXKACHUE MO3BOJIAET CUMTATh MOJOOHBIM MeTox Oojiee palMOHAIBHBIM II0
CPaBHEHMIO C TPEXMEPHBIMH UCCIICIOBAHUSIMH.

B 3akmrodueHue 1aHHOM pabOThI, MBI IIOCTPOWIIM TPEXMEPHYIO CTPYKTYPHYIO T€OpHU3NUECKYIO
MOJIEJIb CKJIOHA, C MCPOJIb30BAaHUEM JIOMOJIHUTEIBHOrO nomepednoro npoduisi. Ha ocHoBanuu storo,
HaMmu ObL1a Takke cOpMUpOBaHA KOHLENTyajbHas THAPO-Teojoruyeckas mozeb. CienoBaTenbHo,
MOJKHO C JOCTaTOYHOM TOYHOCTHIO C/IE€TIaTh BBIBOJ, YTO TaKas MOJAEIb KaK HeNb3s JTy4Ille MOATBEPIKIaeT

HaAC)KHOCTb MPEAJIOKCHHOI'O METOJA.
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1 Introduction

It is the recognized fact that our environmental house known as the Earth planet represents a
hierarchical system (Bloschl, Thybo and Savenije 2015), where all elements from micro-levels to macro-
levels interact with each other and develop the whole earth landscape structure. Each element has a
particular role and function in the landscape structure and developing at the local and regional as well as
global scale. The act and the interaction between all these elements occur in compliance with the physical
rules. Moreover, the hierarchical principle operates on spatial as well as chronological scales. The
citations of Immanuel Kant and Johann Wolfgang von Goethe introducing this monograph also confirm
the fact on the nature organisation.

Consequently, we can consider a catchment as a hierarchical system, where climatic, geological,
geomorphological, hydrological, biological and human factors interact with each other and create the
catchment form and structure. This interaction influences the total water balance in the catchment.
Thereby, the lithology-geological and geomorphological factors play a fundamental role in the catchment
developing and functioning because of the keeping the main geological features during the long time.
The topography and the subsurface structures also control the complex interaction between surface and
the subsurface flows (Freeze 1972; Shahedi 2008). Geophysical techniques provide a good opportunity,
to explore the underground structures for the understanding of the complex flow processes.

A complete geophysical investigation of the subsurface structures in a catchment with the
difficult environmental conditions never will be economical feasible because of large time effort in the
field, equipment logistic, and ambiguity in the data interpretation. However, to characterize the
catchment in terms of the functional geophysical units with the respect to hydrological functions using
geophysical techniques in the efficient manner, we propose a system-oriented geophysical approach
based on the combination of electrical resistivity and refraction seismic techniques.

Therefore, let us start with the introduction to the background of the landscape organisation and
the existing landscape schools. Afterwards, we will introduce some interesting scientific literature, which
used the geophysical techniques (especial, resistivity and seismic surveys) for the hillslope
characterisation. Finally, we will clarify the objectives of this research study and overview the
monograph structure.

—

We begin our research study with the first question: “Why is our environment an organized
system?” To answer this question in a simple way, we have to look from a window outside. We will find
many simple examples indicating on the given organisation in the nature. The simple examples for the
nature organisation at the temporal scale are the seasonal change and the change of day and night. We
also can consider the turbulence in the atmosphere as a complex organised system. Moreover, a river
system represents other example for the complex organised environmental system at the spatial as well

as temporal scale. The water in the form of precipitation reaches the stream channel through hillslopes
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in the terms of surface and subsurface flows. These flow processes indicate spatial as well as temporal
change. If we destroy the geo-system between the hillslope and the stream channel (for example, by
constructing a dam), it follows to the change of the total water balance in this system influencing also
the state of other geo-elements in this system. Therefore, the nature itself couples all environmental
elements in an array system that functions with the respect to the physical rules. If we take away one
element from this system, we destroy it. This destroyed system needs a given relaxation time for the
reconstruction.

To understand the earth landscape systems (especial, the catchment system), we need to apply
multi-discipline methodology. Here, we have to answer the next question: “How can we study the
complex nature systems like a catchment in the efficient way?” Multiple studies worldwide attempted
successful to categorize a landscape as an organized system, and to develop appropriate concepts and
models based on observations, physical laws and conceptual models. With respect to the different
research manner, we differ landscape schools in two groups, which developed their research strategies
independent of each other for the understanding of the environmental processes in the nature system.
Therefore, we will introduce the Russian landscape concepts and the West landscape concepts. The
introduction of these landscape concepts makes an interesting contrast to understand the landscape

structure from the different perspective.
1.1 The Russian landscape school

The knowledge of the Russian landscape school is not famous in the West scientific world
because of the political ideology in the 20th century and the language barrier. However, we will bridge
this gap and start our introduction with some scientific works from Russia (former USSR). The Russian
landscape school established a landscape research based on observation and application of different
methods to characterize a landscape system as hierarchy of small elements (Solncev 1948;
Preobrazhensky 1966; Isachenko 1980; and Mamaj 2013).

The Russian landscape science began to develop from different subjects studying different
processes through the observation, comparison, and testing of experiments. The main principle of the
landscape science is to describe the state, the developing and the functioning of the nature system (Mamaj
2013). The functioning of the landscape system is the results of landscape developing (Mamaj 2013).
The main factors creating the form and the structure of the earth landscapes are the gravity and the solar
energy (Mamaj 2013). The solar energy is the source for all processes running at the Earth. The gravity
sorts out all earth elements and develops the hierarchy in the landscape structure. Moreover, due to the
interaction between electro-magnetically and gravitational fields we can split the landscape in micro-
and macro-elements. Micro-elements are presented for example by some rock bodies, water mass, etc.,
whereas macro-elements are represented the mass flows (such as air flow, surface and subsurface flows)
and therefore play a crucial role in the landscape organization because they are formed and transformed

by gravitational force, which is presented as an energetically factor in the landscape developing (Mamaj
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2013). Therefore, Solncev considered the landscape as a complex of the macro-elements arranging in the
sequence with decreased gravity force (B. Solncev 1981). Thereby, lithology plays an essential role in
landscape developing and organization. The Solncev’s concept considers the subordination of macro-
elements under the gravity force known as the concept “gravitational paradigm” (Mamaj 2013). As far
as, Nikolaev 2006 analysed and summarized the landscape concepts of (Solncev 1948, Solncev 1981) in
appropriate manner. He proves that: “the main factor of the landscape organization is the geologic-
geomorphological factor. Relief and subsurface structures present a special matrix, which develops a
landscape pattern. Due to stable lithological base, the spatial organization of regional ecosystem can
keep the main features of landscape during a long time” (Mamaj 2013). Moreover, the weak landscape
elements subordinate to the powerful elements (such as lithological base). Such subordination develops
a hierarchy in the landscape structure. Each singular hillslope also should have a hillslope gravity centre,
which depends on the distribution of lithological mass, surface and subsurface flow (Nikolaev, 2006).

The Russian landscape concept classifies the nature system into three large hierarchical levels
that summarize in the Table 1-1 shown the examples for each level. The first level is the landscape level
assumed an earth area with the exact geographical coordinates at the global scale. Inside of the landscape
level, we designate the local topological landscape units called as landscape subunits and take the places
at the regional scale. This second level, we can subdivide into the smallest elementary landscape units
known as a facie. The facie is characterised by the homogeneous lithological base, relief, microclimate,
soil, flora and fauna at the local scale.

Table 1-1: Landscape classification according to the Russian landscape school (Mamaj

2013)
Hierarchy level Description Example
A natural terrestrial complex with
Landscape A catchment

exact geographical identification and

coordinates

Locale topological landscape unit A forest massif, a hill,

Landscape subunit (LTLU) hillslopes, wetlands,

oxbow lake

The smallest elementary landscape unit

Facie foot slope, upslope

with homogeneous lithological base,

relief, microclimate, soil, flora, fauna

Moreover, (Nikolaev 2006) classified the earth landscape more detailed based on the taxon
classification system. We will introduce his landscape classification in the chapter 2, in the Table 2-3 in

order to introduce the research philosophy of this work.
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Nowadays, many Russian landscape scientists consider the concept of the landscape poly-
structure (Mamaj 2013). The concept of Solncev is the special case of the landscape poly-structure
concept. The landscape poly-structure concept considers the landscape as the superposition of the
independent spatial structures (Mamaj 2013). Geo-systems represent a statistical complex and have to
interpret as the poly-systems. The landscape interpretation has to consider the interaction between
elements and the influence of the neighbour-landscapes. (Cherkashin, 2007) believes that we cannot
study the nature landscape using only a system theory. We have to interpret it in a multi-disciplinary

analysis as an object of poly-systems.
1.2 The West landscape school

In this subchapter, we will introduce some famous scientific work representing the West
landscape school. The landscape studies of the West landscape school differ in two kind of studies
(Reggiani, Sivapalan and Hassanizadeh 1998). One school uses the physical-mathematical principle.
Other landscape school describes the landscape system in the conceptual way. Imbeaux presents the
earliest study (1897) recognizing the complexity of catchment responses due to spatial structure
(Kulasova, Beven, Blazkova, Rezacova, & Cajthaml 2014). The other early example (1933), we can find
in the works by Horton (Beven 2004). Additional example is a mathematical model of (Freeze & Kirckby
1978). The conceptual semi-distributed TOPMODEL described by Beven and Kirkby in 1979 (Beven &
Freer 2001) is other example for hydrological similarity of points in a catchment. Furthermore, the case
study discussed by (Dooge 1986) proves that it is necessary to develop a novel framework to structure
an instrumental data for the calibration of existing methods using hydrological laws. Another example
of a conceptual model presented by Fliigel is HRU’s (hydrological response units) concept describing a
system through GIS-analysis and reflecting different dominant subsystems (atmosphere, vegetation, soil,
groundwater and river) of the basins hydrological cycle (Flugel 1996). Additionally, we mention the
physical-based CATFLOW model of (Maurer 1997; Zehe, Maurer, lhringer, & Plate 2001) and REW’s
(representative elementary watersheds) model of (Reggiani, Sivapalan, & Hassanizadeh 1998) based on
global balance laws for mass, momentum, energy and entropy and formulated for representative
hydrological control volumes. The authors discretized a watershed into a series of discrete spatial units
(REW’s). Moreover, the concept classifies each REW into five sub-regions in the terms of field
observations, geometry and hydrodynamic regime. Nowadays, (Wienhdfer & Zehe 2014) propose a
hydrological predicting model for a forested hillslope based on a concept of representative elementary
volume (REV) that reflects an averaged sum of the representative spatial pore-space structure. Another
recent model suggesting by (Zehe et al. 2014) is CAOS (Catchment As Organized Systems) model,
which reinterprets the HRU concept of (Fligel 1996) from the thermodynamic perspective to link spatial
organisation and functioning at the intermediate catchment scale. The CAOS model classifies a
catchment in a given geological setting into a hierarchy of elementary functional units (EFU’s) at the

field scale, lateral topological units (LTU’s) at the hillslope scale and hydro-geomorphic units (HGU’s)
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at the sub-catchment scale. Following (Zehe et al. 2014), we can understand an EFU as a set of control
volumes/landscape elements which react statistical homogeneous controlling the radiation balance, the
Bowen ratio, evapotranspiration and root water uptake, and upward flows of capillary water in the soil
matrix. In contrast to EFU’s, LTU’s control runoff formation during rainfall-driven conditions, whereas
HGU’s regulate the hydrogeological and geomorphic setting of sub-catchments (Zehe, et al. 2014). After
identifying these functional units in a catchment, the CAOS authors can characterize class members of
the different unit types in more detail. The CAOS team (Zehe, et al. 2014) believes that the definition of
these functional units is consistent with HRU concept as well as with the REW concept of (Reggiani,
Sivapalan and Hassanizadeh 1998). Finally, to conclude our discussion on the West landscape school,
we mention an example of a geophysical landscape classification identifying the geophysical signatures
based on resistivity data and lithology-stratigraphy (Mele, Bersezio, & Giudici 2012; Mele, Bersezio,
Giudici, Gavalli, & Zaja 2013).
—

Moreover, if we compare the Russian landscape school with the West landscape school, we can
see that both schools have any similar techniques and concepts to describe the landscape system. Both
schools consider the hierarchical principle to describe the landscape as a system. In contrast to the
Russian school, the West school does not give a clear classification of the landscape, for example in
terms of taxon or facie illustrating by concrete nature examples. If we combine the Russian landscape
classification based on the concept “gravitational paradigm” with the mathematical-physical basis
describing by (Reggiani, Sivapalan and Hassanizadeh 1998) as REW concept or by (Zehe, et al. 2014)
as CAOS model, we can obtain a good starting concept to describe the landscape in the efficient way.

Therefore, taking into account the different concepts of the landscape classification, we will
apply the hierarchical principle for the design of the system-oriented geophysical approach, in order to
develop a dialogue between geophysics, hydrology and landscape science.

1.3 Ground geophysical application for hillslope characterization

The application of the ground geophysics techniques in hydrology is important to understand the relevant
hydrological processes running in the subsurface (Robinson, et al. 2008). Today, there are many studies,
which use different geophysical techniques for the understanding of the flow processes. (Robinson, et
al., 2008) lists some examples of such studies. The most famous applied geophysical technique in
hydrology is the resistivity survey or direct current (DC) because of simple application and it predicates
directly from electrical resistivity water conductive zones in the subsurface (Telford, Geldart and Sheriff
1990). To detect the ground water level and the interface between the weathered layer and the bedrock,
the refraction seismic (RS) is mostly helpful (Telford, Geldart and Sheriff 1990). The next two
subchapter introduce several case studies applying the geo-electrical, refraction seismic techniques and

the combined interpretation of both methods.
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1.3.1 The application of geo-electric

Many hydrological scientific studies (for exapmles, Graeff et al., 2009; Koch, Wenninger,
Uhlenbrook, & Bonell, 2009; Hubner, Heller, Giinther, & Kleber, 2015) apply resistivity method to
characterize hillslopes in a catchment. Thereby, the most applicable resistivity survey is electrical
resistivity tomography or ERT (Kirsch, 2006) because it provides a detailed spatial 2D-section of
subsurface. We start with the case study of (Panek, Hradecky, & Silhan, 2008), which characterized slope
deformations on the four ERT profiles. The next example for the hillslope characterization is illustrated
by (Koch, Wenninger, Uhlenbrook, & Bonell, 2009) where the 111 ERT-transects were measured
parallel and perpendicular to the hillslope in the Black Forest Mountains (Germany) and interpreted in
the context of process hydrological understanding. Another case study from Schaefertal catchment
combined top-down thinking, field work and process modelling (Graeff, et al., 2009), and subdivides the
catchment into 15 representative hillslopes whereas ERT-measurements were conducted only at one
representative hillslope and could not detect bedrock interface. The case study of (Travelletti, Sailhac,
Malet, Grandjean, & Ponton, 2011) used time-lapse electrical resistivity tomography in clay-shale slope
to study landslide. Moreover, the recent example for hillslope characterization provided by (Hubner,
Heller, Ginther, & Kleber, 2015) conducted ERT measurements on the 7 transects parallel and
perpendicular to the hillslope in order to map the spatial heterogeneities of periglacial cover beds and
monitor long-term soil moisture dynamics. In contrast to ERT, Vertical electrical sounding or VES
survey is more applicable for aquifer characterization (several recent examples presented by Mele,
Bersezio, Giudici, Gavalli, & Zaja, 2013; Niwas & Celik, 2012) than for hillslope characterization. We
also mention an example from Greece presenting by (Atzemoglou & Tsourlos, 2012), which constructed
2D sections from 1D VES measurements in the Sarantaporon basin. Besides, we refer some examples of
combining ERT with VES: the first case study presents the investigation for landslide characterization
(Godio & Bottino, 2001), whereas the second example demonstrates identification, mapping and
monitoring of different saline domains in a coastal plain region (Zarroca, Bach, Linares, & Pellicer,
2011). However, our case study using the combined interpretation of ERT and VES bridges a gap in the
poor application of these techniques for hillslope characterization, especial to show advantages and

limitations of each method.
1.3.2 The application of refraction seismic

Several hydrological studies used the refraction seismic to predict the groundwater level, the
bottom boundary of weathered layer, to characterize the shallow critical zone in the catchment and to
investigate hillslope characterising by the earth mass moving (landslides). We mention some interesting
studies used refraction seismic for the hydrological and geomorphological tasks. The study of (Glade,
Stark and Dikau 2005) analysed the regionally characteristics of landslides using refraction seismic
survey. The other case study of (Clarke and Burbank 2010) applied the refraction seismic method for the

interpretation of the differences in the fractured bedrock. The case study of (Befus, Sheehan, et al. 2011)
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measured many refraction seismic profile lines parallel as well as cross to the hillslope to characterize
the shallow structures of the critical zone from the surface to the bedrock in two eroded catchments. The
study of (Rumpf, Boniger and Tronicke 2012) characterized a creeping hillslope in the Austrian Alp at
six refraction seismic profiles using layer-based inversion strategy to develop refraction seismic velocity

model from first arrival times.
1.3.3 The combined application of resistivity and refraction seismic surveys

Due to the ambiguity in the data interpretation, the use of joint interpretation of geophysical data
is popular in the hydrological exploration, especial for the investigation of the slope stability, the
landslides, the critical zone, the permafrost zones and the aquifer properties. Such interpretation allows
a more precise understanding of geophysical data and models. We will introduce several studies applied
the multiple geophysical methods (especial, refraction seismic and resistivity survey) to characterize the
hillslope subsurface structures. We start with the early case study of (McCann and Forster 1990) using
seismic and electrical resistivity surveys for the investigation of the landslides. The other early case study
described by (Caris and Van Asch 1991) illustrated an example of the geophysical, geotechnical and
hydrological investigations for the studying of a small landslide in the French Alp. Moreover, the case
study investigating large landslides in Austria using the combination of refraction seismic, geo-electric
and electro-magnetic techniques has been shown by (Mauritsch, et al. 2000). The other case study
illustrated by (Hack 2000) combines multiple geophysical techniques to study the slope stability.
Furthermore, the case study of (van Overmeeren 2001) combines refraction seismic with vertical
electrical soundings to characterize the aquifers and salinity of the water in the coastal plain of Wadi
Surdud in Yemen. This case study interprets the refraction seismic data using the Hagedoorn’s plus-
minus method. The additional research example investigated hillslope subsurface structures in the Swiss
Alp using the combination of refraction seismic, resistivity survey and ground penetration radar, we can
see by (Otto and Sass 2006). The master thesis of (Befus 2008) combines refraction seismic with
electrical resistivity tomography to investigate the shallow subsurface of the critical zone from the
surface to the bedrock in three small catchment. Additionally, the case study of (Leopold, et al. 2011)
characterizes the subsurface structures of rock glaciers using refraction seismic, electrical resistivity
tomography and ground penetration radar. The other case study investigates groundwater flow paths
using multiple geophysical methods such as refraction seismic, electrical resistivity tomography and
ground penetration radar (McClymont, et al. 2011). We also refer the other interesting case study
illustrated by (Coulouma, et al. 2012), which predicts the bedrock along the Mediterranean hillslope
using combined interpretation of seismic (Refraction seismic, the Spectral Analysis of the Surface
Waves) and electrical (ERT) methods. Finally, we introduce a recent interesting example of (Francés, et
al. 2014) developing a multi-technique methodology to design a hydrological conceptual model in hard

rock aquifers. The authors combined the remote sensing with such geophysical methods as ground-
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penetration radar, electrical resistivity tomography, frequency domain electromagnetic and magnetic-
resonance sounding as well as borehole and slug test data.
* x *

Summarized the literature review introduced in this subchapter, many geophysical studies
characterizing the hillslope provided quite expensive investigations measuring multi profile lines to
obtain the wanted subsurface models. Such factors as a high resolved date density, the geometry of
geophysical sensors, measurement conditions, logistic of equipment and measurement errors increase
significantly the time effort in the field as well as in date processing. Following (Hennig 2006), the total
measurement time increases proportional the financially effort. Additionally, we have to carry out all
geophysical measurements in the limited frame time because the flow processes in a catchment depend
on the time. However, we need an efficient geophysical approach to characterize the subsurface

structures in the catchment.
1.4 Research objectives and structure of this monograph

Based on the literature review, we will define the aim of this research study. The research
question of this study is how can we investigate subsurface structures in a catchment effective and cost-
efficient using multiple geophysical methods and assuming a catchment as a hierarchical system? At the
same time, we would like to develop a dialogue between geophysicists, hydrologists and other scientists
(Robinson, et al. 2008) because the catchment is the complex, coupled system, which needs multi-
disciplinary knowledge to understand all interacted complex processes.

To find an optimum between the effort, the advantages and the limitations of geophysical
methods assuming the catchment as organised systems, we developed a system-oriented geophysical
approach applying the combined interpretation of the electrical resistivity and refraction seismic
techniques. To develop this approach, we hypothesised:

(1) Subordination in the landscape structure between weak elements and powerful elements due

to the gravity force and the interaction of the geo-factors;

(2) Hillslope as fundamental landscape units requires the characterization of the typical class

members;

(3) Hillslope has to be representative and typical for an investigated catchment;

(4) Hillslope has to be homogeneous (lateral invariable, horizontal stratified);

(5) The geological knowledge are known;

(6) Coupling between electrical and seismic parameters.

The key objectives of this research work is to provide detailed information on hillslope
subsurface structures with minimal effort in the field taking the ambiguity in the data interpretation into
the account. Based on the obtained geophysical models, we want to develop a hydrogeological
conceptual model of the hillslope system, which represents hydro-stratigraphic units and system

boundaries (Anderson and Woessner 1992). Moreover, the suggested approach can be helpful to select
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and to prove the idea on homogeneous representative hillslopes, especial for areas, which did not
investigate, or poor investigated, or characterized by the problematic environmental conditions (as
forested areas). In addition, the approach should distinguish functional hydrological units with respect to
the physical rules as well as to the definition of CAOS model (Zehe, et al. 2014). Finally, the obtained
geophysical structural subsurface models have to improve the conceptual understanding of the
subsurface hydrology by the integration of the geophysical models into hydrological modelling.

Until now, we organised this scientific monograph into seven chapters.

The first chapter introduced the readers in the research objective of this thesis and provided the
outline of the fundamental literature relevant to the landscape organisation and the hillslope
characterisation using geophysical techniques such as resistivity survey, refraction seismic and their
combination.

The chapter 2 contributes an outline of the landscape complexity for its description as well as
the research philosophy for a multi-disciplinary project including the landscape classification in terms of
taxon according to the Nikolaev’s classification. The chapter concludes by the discussing the catchment
characterization from geophysical perspectives.

The chapter 3 describes the location and hydrogeological background of two catchments, where
we performed intensive fieldwork to characterise a hillslope as representative landscape subunit.

The chapter 4 describes the methodology of the system-oriented geophysical approach, which
applies the combination of electrical resistivity and refraction seismic techniques. The chapter introduces
the measuring layout of the approach and the principle of each technique as well as experimental
composition. We also discussed the advantages and limitations of the individual as well as joint
interpretation and how can we improve geophysical models using the different interpretation techniques.
The chapter concludes by the discussing the application of the three-dimensional image of the
investigated hillslope, in order to prove the suitability of the system-oriented geophysical approach.

The chapter 5 describes and interprets the obtained geophysical hillslope models at each study
site and discusses the advantages and limitations of each methods. We consider the geophysical hillslope
models individual as well as combined. We also discuss how we can distinguish geophysical functional
units, which can control the hydrological processes with respect to the CAOS model (Zehe, et al. 2014).
The chapter concludes by the discussing the imaging of the three-dimensional hillslope subsurface
model, which verifies the correctness of the applied approach.

The chapter 6 discusses the obtained geophysical hillslope models in the light of hydrogeological
conditions, in order to integrate these models into hydrological modelling for the improving the
understanding of the conceptual hydrological models and to develop a dialogues between geophysicists
and hydrologists. The chapter also demonstrates why the conceptual hydrogeological model is necessary,
and what the model needs to assume, in order to represent a meaningful conceptual model. Besides, we

discuss the advantages of the system-oriented geophysical approach for each study site. The chapter
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concludes by the presenting and the description of the conceptual hydrogeological models developed for
each representative hillslope.
The chapter 7 presents the conclusion of this scientific work.

This monograph was prepared in the framework of the multi-disciplinary CAOS project —
Catchment As Organised Systems* supported by the National Research Fund of Luxembourg - FNR -
and the National Research Fund of Germany - DFG (FOR 1598, ZE 533/9 - 1). Helmholtz Impulse and
Networking Fund through Helmholtz Interdisciplinary Graduate School (HIGRADE) for Environmental
Research also kindly supported this work (Bissinger & Kolditz, 2008).

1 www.caos-project.de
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2 Research philosophy of the landscape system and the research

“... It is a question of discipline ...” - from

“The Little Prince” of Antoine de Saint Exupéry
2.1 State of the art and understanding landscape as complex system

Landscape is a complex but organised system (Basu, et al. 2010; Bléschl, Thybo and Savenije
2015), which consists of the different geo-elements reflecting the state and behaviour. To understand this
system, we have to know how the nature system works, what key units define this system, and what
processes act in the system. The Figure 2-1 illustrates the conceptual model for understanding the
landscape as an open interactive system in the terms of a triangle and landscape evolution cycles. The
triangle peaks represent the terms of state, functioning and developing, whereas the landscape itself takes
a central place in the triangle. In order to illustrate the landscape dynamic, we linked all three terms
together starting from the position of “state” and moving clockwise. The intervals between two terms
represent a functional role in the landscape dynamic in terms of act, results and change. With the respect
to the time scale, we can differ the two groups of processes characterizing the past and the present, which
define the state, the type and the behaviour of a landscape in the given event intervals (Mamaj 2013). It
is important to recognize that “time” in the landscape evolution and measurement is characterized by the
event duration and the interval between them. We also can consider the present only as instant between
the past and the future. Therefore, to understand the processes and the landscape characteristics in the
present and to predict them in the future, we can use data registered the landscape state and behaviour in
the past. Moreover, the processes occurred in the past create a primary landscape, whereas the current
processes change the original landscape system through the action and the interaction between different
morphological landscape units as well as atmosphere, hydrosphere and lithosphere. The current
processes develop the primary landscape to the secondary landscape, which we can consider as the
primary landscape for the next landscape cycle. The differences between different cycles imply the
landscape dynamic. Therefore, the triangle concept illustrates the complexity of the landscape structure
and dynamic in the simple way. Now, the question is how we can describe and predicate the landscape
system using suitable concepts and paradigms based on the triangle conceptual model.

The properties and processes of the landscape system characterize the state and quality of the
nature system. However, we can describe the landscape system in terms of its states resulted over time.
The number of the states depends on the sets of the processes as well as on the landscape level. This
relation is based on the numerous field works studied the landscapes of Siberia, European Russia,
Georgia and Ukraine in the 60s — 80s of the 20" century (Mamaj 2013). The number of the states
increases with the increased sets of the processes and the higher landscape level. For example, a small
and simple facie belongs to the lower landscape level (see the Table 1-1) characterizing by minimal set

of the processes. Consequently, the minimal number of states characterizes the facie. Moreover, the
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landscape studies conducted in the 60s — 80s of 20" century investigated and interpreted only the several
processes separately at the facie level. They did not interpret the processes as a set at the landscape level
(Mamaj 2013). If we look back on the West landscape concepts, we also will see many study cases (see
the chapter 1.2 and several examples introduced by (Castillo, Castelli and Entekhabi 2015)) investigated
several processes and interpreted it at small scale. Nevertheless, (Reggiani, Sivapalan and Hassanizadeh
1998) and (Zehe, et al. 2014) suggested the REW concept and CAOS model, respectively, based on the
thermodynamic approach and interpreted the landscape system at the intermediate scale (REW concept
at the watershed scale, and CAOS model at the sub-catchment scale). Besides, (Ehret, et al. 2014)
examined the potential paradigms and theories, which could improve the understanding the complex
hydrological systems under change based on the fundamental literature. The Table 2-1 summarizes the
several perspective on catchments under change described by (Ehret, et al. 2014). The best way to
understand and to predict the catchment dynamic under the change is the combination of these
perspectives in the sequence of historical exploration and interpretation, which implies the causal
explanation of processes. The theory of dynamical systems helps to recognize the system structure in
terms of states over time, whereas the principle of hierarchy, co-evolution and similarity consider the
landscape system at various scales and across many components assuming non-random behaviour of the
system. The knowledge of thermodynamic support the system understanding from physical perspective
and optimisation technique. Therefore, the introduced fundamental literature shows that it exists the
fundamental theoretical background from different viewpoints for the description and the predication of
the state of the nature system. Nevertheless, it exists still a gap in the practical application how the sets
of processes operate in the complete landscape jointly, and why the several different catchments can be

similar.
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Figure 2-1: Conceptual diagram representing the landscape as an open interactive system
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Table 2-1: Perspectives on catchments under change described by (Ehret, et al. 2014)

Viewpoints

Main principles

Outcome research and
science application

Catchments as
complex dynamic

system

The theory of dynamical systems based on the
degrees of freedom and the nature of dynamic to
identify the system structure (border, components,
and state variables), the laws controlling the
dynamic, in order to evaluate system state over

time and to predict it.

(Forrester 1968);
weather prediction,
ecology, hydrology,
geomorphology and
coupled human-

ecological systems

Catchments as self-

organising systems

The system is a hierarchy: developed from micro-
scale to macro-scale; the dependence of the unit
value / state on the state / value of another;

comparable with Darwin’s evolution concept

(Ashby 1962);
hydrology, soil

science

Catchments as co-

evolving systems

Darwinian approach: Detailed analysis of the
signatures and functional patterns in the
individual catchments; comparative analysis of
many catchments based on the functional
similarity; funding of generalizable mechanisms
of the landscape change, in order to parameterize

hydrological models

(Ghiselin 1969)
geomorphology,
pedology and ecology

Catchment similarity

To find similarities and their organizing principles
by estimating the distance between two
catchments using suitable metric space, in order to
estimate the future behaviour of the catchment
under changed boundary conditions and to
understand the potential impacts of environmental

change

(Budyko 1974),
(Wagener, et al. 2007)
Hydrology

Catchments as open
dissipative systems far

from equilibrium

The application from thermodynamic perspective
based on the second law of thermodynamics: the

gradient and fluxes describe a form of energy

(E. Zehe, U. Ehret, et
al. 2013), (Kleidon
and Renner 2013a)

Catchments as sources
and flow paths of

information

Based on the information theory (Shannon
entropy), to analyse and optimize the way

information feeds into predication

(Shannon 1948)
cryptography,

communication
engineering and

signal processing
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To start describing the states of the landscape system, we have to know what forces and
processes act and change the landscape state? We can differ two groups of forces, which influence the
state of the earth landscapes. On the one hand, the cosmic forces can change the landscape state due to
the Earth moving around the Sun and the interaction between these objects. On the other hand, the
terrestrial forces triggered by the Earth form, rotation, axis inclination, circulation of air / water mass and
tectonic processes form and develop the landscape structure considerable. Moreover, the landscape state
depends on the location, time, geomorphological forms, sedimentary depositions as well as the
distribution of the warm and moisture, and plant cover. The other force, which we have to refer, is the
human factor, which can change the landscape state and structure significant positive as well as negative.

The next questions that we have to answer are how we can describe the landscape states, and
what fundamental physical units can describe the landscape states from the original state to the current
state, in order to predict it in the future. The classical equations of the mass and energy conservation are
too general to describe the nature landscape because they characterize each component in any fluvial
system and cannot describe the surface form of the landscape (Leopold and Langbein 1962). The
equations must explain the particle tracks or the relation between neighbour parts in time. (Leopold and
Langbein 1962) applied the second law of thermodynamics to describe the energy distributions and their
relation to changes of landforms in space and time. Later, (Reggiani, Sivapalan and Hassanizadeh 1998)
and (Zehe, et al. 2014) interpreted the catchment system from thermodynamics perspectives in the terms
of entropy and fluxes. The recent example of (Castillo, Castelli and Entekhabi 2015) examined the
hydrologic complexity measured the distance of a given distribution of soil moisture from a Dirac delta
and uniform distribution based on the Shannon entropy information concept and discretization-invariant
dimensionless index. However, the use of the entropy (H) is a good idea, to describe the nature system

because it is a fundamental thermodynamic value describing the physical state of the system

AH = e [J/K] (2-1)
as well as the uncertainty measure: H= —kgYpilnp; [IK] (2-2)

where Qe is the reversible transfer of the heat [J/K] into the system, T is the absolute temperature of
the system measured in Kelvin [K], ks = 1.3806488(13) - 102 [J/K] is the Boltzmann constant and pi is
the probability of the system in the i-microstate. The sum over all probabilities describes all possible
microstate of the system. The equation (2-2) known as Shannon entropy or an information bit implies
the rate information and quantifies the uncertainty of measure (Shannon 1948). For example, the most
uncertain situation occurs by the maximum entropy when all probabilities are equal (Shannon 1948).
This is the case of the isolated system implying the thermodynamic equilibrium. Moreover, the entropy
describing by the equation (2-1) characterizes an isolated system in classical thermodynamic equilibrium
characterizing by uniform values of pressure, density and temperature over time and implies the change
(A) in entropies of two different equilibrium states (H; and H,). Therefore, entropy describes the degree
of order-disorder in the system in terms of probability or improbability of the observed states. In addition,

the physical chemistry formulates the entropy in the abstract form as “the ratio of the probability of a

-14 -



2 Research philosophy of the landscape system and the research

given physical state to the probability of all other possible alternative states” (Leopold and Langbein
1962).

We know that a nature landscape system represents an open dissipative thermodynamic system
because it exchanges the mass, energy and entropy with the neighbour systems (Zehe, et al. 2014). The
open thermodynamic systems also imply the dissipation of the free energy and produce entropy because
of irreversible change in the system caused by the dissipative losses of the soil hydraulic conductivity
and the drag forces in the porous medium (E. Zehe, U. Ehret, et al. 2013). Moreover, the entropy
production in the nature systems is dominant by the evapotranspiration due to the large energy
conversions and the large specific heat of vaporization (E. Zehe, U. Ehret, et al. 2013).

To link the different landscape states and components based on the entropy concept, we need to
develop the landscape model, which can identify, evaluate and validate systems components implying
the landscape change in space and time. The landscape model must provide a monitoring program
describing important aspects of the ecosystems, management effective strategies and the used
framework. The main difficulty of the landscape research is to embrace the complete field investigations
at the whole landscape scale due to personal costs, logistic of the equipment and the financial costs. We
would like to suggest the rational program for the landscape exploration. This landscape model for the
case “catchment” aims to integrate all relevant data, improve deeper understanding of the catchment
system and should predict all relevant processes and phenomena. The Table 2-2 summarizes the research
program to study a catchment as open thermodynamic system in terms of representative landscape units
and their dynamic states. Moreover, we assume that a landscape system includes various alternative
states (Hiwhere i =0, 1, 2, 3, ... n) with individual probabilities and the sets of the physical parameters
and processes (Leopold, et al. 2011), which represent the episodes of the landscape life. Therefore, we
can define the sequence of history matrixes: from the initial state Ho to the i-microstate Hi where we
define a “state” by some measurable properties representing the initial static values and the changed
values. We also believe a catchment system is an open system consisting of water and debris / sediments
(Leopold and Langbein 1962). Then, we can specify the most probable distributions of the energy in the
system because the different forms of energy exist in the catchment system. Precipitation brings the
potential energy in the system due to elevation differences and gravity force. The kinetic energy exists
in the system in terms of the flowing water. Other form of energy is the thermal energy, which is
responsible for the temperature of the landscape system. The change in the thermal energy results to the
heat transfer done without work. Additionally, some energy is being lost due to convection, conduction
and radiation (Leopold and Langbein 1962). With the respect to the gravity potential, the energy in the
catchment takes different level in the sequence of landscape evolution shown a longitudinal profile and
moving downhill toward a stream channel. However, the nature system represents the dynamic
equilibrium state with the increased entropy. (Leopold and Langbein 1962) characterize the dynamic
equilibrium state as rate of internal entropy generation that implies the energy gradient between two

points. Additionally, the rate of internal entropy generation equals the rate of the outflow of the entropy
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characterizing by the dissipation of the energy as heat. Each system can reach a stationary state. If an

open system implies the minimal rate of the entropy production per volume unit done by the minimal

work, the stationary state characterizes the open system (Leopold and Langbein 1962). We can

characterize such stationary open system as stabile. There is the equivalence between the principle of the

least work and maximum entropy (Leopold and Langbein 1962).

The nature itself tends to the minimum work. One example from optics known Fermat’s

principle is the principle of least time implied that a ray takes a path between two points in the least time.

Moreover, the equivalence between the principle of the least work and maximum entropy is useful in the

Table 2-2: The suggested research program to develop landscape model for the case “catchment”

Steps

Parameters

Description

Conceptualization

The functional
principle

The action and the interaction between all entities in
the catchment; data integration; deeper understanding

and predication of the processes and phenomena

The landscape units

Hillslopes, stream channel, wetlands, plateaus

Processes

Transpiration, evaporation, latent heat flux, soil heat
flux, surface and subsurface flow, infiltration, root

water uptake, photosynthesis

Formalization

State variable

Temperature (air, water, soil), precipitation, surface
and subsurface topography, groundwater level,
vegetation cover, LAI, soil moisture, subsurface

physical parameters (resistivity, seismic velocity)

Assumptions
and

Criteria

An open thermodynamic system with consistent
distribution of physical values;
Complexity, functional homogeneity, thresholds and

dominance (Basu, et al. 2010)

Implementation

Field observations
Field measurements

Data processing

Visual
Installation of measuring equipment

Analysis and interpretation jointly

Parameterization

Collected data

Definition of states in space and time, assigning to

measuring variables

Verification

Modelling and simulation of alternative scenarios

Sensitivity / Un-

certainty analysis

The importance of each input parameter in terms of its impact on the results

Model analysis and validation
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statics, and it means, “the distribution of stresses is most probable, and the total strain energy in the
several members is minimum” (Leopold and Langbein 1962). If we transform this principle on the
catchment system, we will find similarity in the statics. The set of the physical processes and properties
includes many variables (several example see in the Table 2-2), which characterize various states. Many
variables can be indeterminate. However, the catchment system can regulate many possibilities of
indeterminate variables to find wanted hydrological conditions for maximum probability by minimum
work (s + Sz + Sz +...+ Sp = minimum).

So, the energy distribution in the catchment tends to the maximum probabilities by minimum
work and the equal rate of entropy gain in each interval of length along a selected unit. Hence, (Leopold

and Langbein 1962) describes the statement for the river system in the following way
aH1 _ dh1
dt Q@ dxh

o logp (2-3)
The left site of the equation (2-3) represents entropy per unit of mass volume rate (discharge), whereas
the right site implies the loss of potential per unit of distance (dx) and base level (h). The extent dh/dx
represents the rate of energy lost for a given state, whereas the amount h symbolizes the range of choice
of the rate of energy lost at any level. The probability p denotes the proportion of the total elevation lost.
However, we can consider the catchment system in terms of selected length units characterizing by a
loss of potential and a given probability (pi). The joint probability of all units is greatest when all unit
probabilities are equal and constant. Consequently, the sequence of several unit intervals follows to a
uniform increase of entropy in each unit length, whereas the ratio between a known state to the number
of the alternative states implies the rate of energy loss at any point related to the elevation above the base
level. Hence, the selected length units represent the members of the landscape system. According to the
rule of the least work, we can phrase that the total energy in the several landscape members or units has
to be minimum, and the distribution of the various landscape states can be most probable. Therefore, the
choice of the appropriate length unit corresponds to one of a hillslope, a point to which we refer in the
next section where we will discuss about the landscape classification in terms of units as a taxon, and a
hillslope as representative landscape unit, which permits the catchment characterization in an efficient

manner.
2.2 Hillslope as a functional unit to understand processes in catchment

In the catchment, the unit under the consideration is a unit of length along a hillslope profile.
So, why is a hillslope? The hillslope is a fundamental landscape unit (Bachmair, Weiler and Troch 2012;
Hibner, et al. 2015), which represents a complex coupled geomorphic system where many processes
(hydrological, meteorological, geochemical and biological) are active and interact with each other (Basu,
et al. 2010). Such factors as uniform geological base, homogeneous relief, clime (the balance of warm
and moisture), character and intensity of surface water and groundwater, the typical set of soil type,
typical pattern of vegetation create the form of the hillslope as well as the whole catchment. There is also

the direct connection between the hillslope and the stream. The interaction between all elements lead to
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the hierarchy (see the chapter 2.1). In the chapter 1.1, we showed the landscape classification after the
Solncev’s concept where we can subdivide the landscape into three level: landscape, landscape subunit,
facie (see the Table 1-1). The Solncev’s successor, (Nikolaev 2006), classified the landscape using the
structural genetic principle based on the taxon landscape hierarchy shown in Table 2-3, which represents
some examples of these taxon units. A taxon joints all landscape elements with similar properties and
characteristics in the groups and class, which assume the functional of the landscape system, developing
and the estimation of the behaviour of several landscape units and subunits. The functional of the
landscape structure is associated with the landscape developing as the change of the nature events
according to the physical laws (see the Figure 2-1). However, the principle of the landscape classification
described by (N. Solncev 1948), (B. Solncev 1981) and (Nikolaev 2006) can be used for the catchment
characterisation in order to link different disciplines. Landscape hierarchy also can identify the processes

at different scales and develop the rules to translate information across the scales.

Table 2-3: Landscape classification according to the Nikolaev s concept (Nikolaev 2006)

Taxon Allocation principle Example
Section The interaction type in the landscape Aguatic and terrestrial
structure environment
System Energetic base of the landscape, belt-zonal Polar area, tropical
difference because of climatic zones area
Subsystem | Climatic differences between climatic zones | Moderate continental,
oceanic clime
Class Morphological structures of the higher order, | pjains highlands
type of nature zonal pattern
Subclass Landscape hierarchy subdivision at the plains Low-lying, high-lying
and highlands
Group Type of river regime, moisture degree Hydromorphic soil,
eluvial soil
Type Soil, biological, climatic characteristic based | Forest steppe, steppe,
on the soil type and the plant formation class | grassland
Subtype Soil, biological, climatic characteristic based | Grassland forested,
on the soil subtype and the plant formation forest-grassland
Form Genetic relief type Plane plains, archaic-
Sub-form | Genetic type of near surface substratum Loess-loamy
Kind Similarity of dominant landscape subunits Plane wavy archaic-
alluvial plains

Therefore, the hillslope is a universal unit that can provide the description of all processes in a

catchment in the efficient manner, because it couples subsurface and land surface processes. (Rihani,
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Maxwell and Chow 2010) investigated the role of terrain and heterogeneous subsurface based on the
interactions between groundwater dynamics and land surface energy fluxes. The authors developed the
Common Land Model, which examines various effects such as effects of subsurface formations, effects
of terrain and formation thickness, effects of terrain slope, effects of subsurface properties, effects of
land cover, and effects of atmospheric conditions. Hence, to understand the processes at the hillslope
scale, it is necessary to consider an interdisciplinary data set (McDonnell, et al. 2007). The Figure 2-2
illustrates the flow chart for multidisciplinary investigation in the catchment. To reach successful
multidisciplinary investigation, at the beginning we have to select a hillslope with respect to such
parameters as geomorphology, soil properties, density and type of vegetation, uniform climatic and
hydraulic conditions, which essentially influence the flow processes. However, the need of the diagnostic
selection tool is necessary to provide a link between physics of the subsurface flow processes, hillslope

geometry, and hydraulic properties.
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In order to develop the diagnostic selection tool, it is necessary to consider such criteria as
complexity, functional homogeneity, thresholds and dominance. (Basu, et al. 2010) described these terms
in the details. Interaction of different geo-factors as well as interconnected subsystems and processes
characterizing by various states describe the complexity of the system. From hydrological perspective
(Basu, et al. 2010), functional homogeneity associates with the similarity of hydrological responses,
whereas structural heterogeneity link to the spatial patterns of specific landscape attributes (soil and land
use). Hence, in order to define functional heterogeneity, we must respect the specific hydrological
response (hydrographs) and the spatial scale of observation (Basu, et al. 2010). The next criterion
“thresholds” play an essential role in the hydrological response for a given rainfall event. It controls the
partitioning of the rainfall, the change of soil water storage and the loss of water from landscape system.
Due to the different flow paths of water (overland flow, fast subsurface flow and groundwater flow), it
exists the different runoff mechanisms that characterize hydrological regime in terms of a single,
dominant and persistent flow pathway.

So far, the selected hillslope with one set of dimensions should be as a reference hillslope, which
we can transfer to other hillslopes with similar dimensions. In order to compare different reference of
hillslopes with each other and to describe the their characteristic subsurface flow response, one similarity
parameter is sufficient. This parameter called as the hillslope Péclet number (Pe) depends only on the
geometric characteristics of the hillslope and requires the diffusion and advection terms (Berne,
Uijlenhoet, & Troch 2005). The ratio of the characteristic diffusive timescale (tk) and the characteristic
advective timescale (tu) defines the dimensionless hillslope Péclet number (Pe) (Lyon and Troch 2007):

Ty = L (2-4)

2k(sina — acpDcosa)

= (5) (35) () @)
Pe = (2%13) tana — (aTCL) (2-6)

where f is the drainable porosity, L is the hillslope length, k is the hydraulic conductivity, o is the hillslope

angle, pD is the averaged saturated depth, D is the soil depth, p is a linearization parameter in the range
from 0 to 1, and a is the hillslope convergence rate. Advection and diffusion interpret only the water
transport due to the total head gradient (Berne, Uijlenhoet and Troch 2005). The dimensionless hillslope
Péclet number implies the hydrological similarity between hillslopes with respect to their characteristics
response function and predicts subsurface flow response dynamics. The use of the characteristic diffusive
term needs for the normalization of time dimension due to the infinite approach by Pe = 0 (Berne,
Uijlenhoet and Troch 2005). Moreover, the similarity index Pe is always positive because of the positive
advective term by the positive geometric constraint sina > a;pD (Berne, Uijlenhoet and Troch 2005).
Besides, the decrease of the similarity index implies the increased role of the diffusion. Moreover, in
order to provide the similarity analysis in the term of the hillslope number Pe, it needs to make numerous
simple assumptions. Shallow soils, impermeable bedrock characterizing by the constant slope angle,

streamlines parallel to the bedrock, the absence of the overland flow, negligible storage in the unsaturated
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zone, uniform hydraulic parameters, zero head boundary conditions near outlet and no-flow boundary at
divides require the similarity analysis of the hillslope number Pe (Lyon and Troch 2007). The nature
does not provide any hillslopes that meet all these assumptions. The most difficulty and uncertainty, to
estimate the similarity index, remains for the assumption of uniform hydraulic parameters due to the
heterogeneous nature of the subsurface (Lyon and Troch 2007). Nevertheless, the contribution of the
hillslope Péclet number permits to separate the effects of the hillslope properties, boundary and initial
conditions, and implies the importance of advection and diffusion, in order to estimate normalized and
dimensionless response functions for each hillslope in the simple way. This similarity index does not
depend on the scale. Therefore, it is necessary to provide the future tests of the similarity hillslope index
Pe for capturing complex hillslope geometries in different climatic regions (Lyon and Troch 2007). Such
analysis can prove the effects of the spatial heterogeneity on the similarity index Pe. Hence, it can solve
the famous upscaling problem in the hydrology (Lyon and Troch 2007).

However, the knowledge on the soil depth and saturated depth as well as hydrological
parameters require the similarity analysis. The knowledge on the subsurface can deliver geophysics. An
efficient investigation from geophysical perspective is a point to which we refer in the next section where
we will discuss what efficient geophysical investigation needs, in order to provide detailed results on the

subsurface.
2.3 Catchment investigation from geophysical perspectives

Geophysical techniques provide a good opportunity to explore the complex subsurface structure
at various surface scale, in order to develop a hydrogeological conceptual model (Binley, et al. 2015).
Besides, geophysical measurements suffer from large time consume. Every geophysicist who is
employing in applied geophysics knows how expensive can be geophysical investigation. The effort of
the geophysical investigation depends on the environmental conditions of the investigated area,
equipment logistic, and on the choice of suitable measurement scale and resolution. However, this
research work focuses on the developing of a system-oriented geophysical approach, which can
investigate the subsurface structures of the catchment in the efficient routine with the respect to the
hydrological functions.

In order to minimise the time effort in the geophysical investigation, we have to consider a
catchment in terms of representative functional hillslopes. It is also impossible to cover all representative
hillslopes in the catchment. However, we should answer one question asking: “How representative is
the selected hillslope in the investigated catchment?” From geophysical perspective, we associate the
representative hillslope with subsequent questions: (1) “is the hillslope typical for the investigated
catchment in terms of hydrogeological and climatic conditions?” and (2) “how homogeneous is the
hillslope? ” Geophysicists associate the hillslope homogeneity with the horizontal stratified and lateral
invariable subsurface. In contrast to geophysical association of homogeneity, the hydrologists (Basu, et

al. 2010) associate functional homogeneity with the similarity of hydrological responses. Moreover, the
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high spatial variability of water table response reflected by trench flow characterizes a representative
hillslope from hydrological perspective (Bachmair and Weiler 2013). Hence, the spatial variability
depends on topography and wetness (Woods, Sivapalan and Robinson 1997). According to (Woods,
Sivapalan and Robinson 1997), many studies confirm that the downslope characterizes the increase of
the subsurface flow per unit catchment. Furthermore, the increase in the subsurface flow per unit area
links to the topographic convergence. Besides, the change of the spatial variability due to catchment
wetness is observable at the timescale from days to months and longer by the recharge measurements
(Woods, Sivapalan and Robinson 1997). The interpretation of the wetness is relatively complex, to
describe the total wetness in the catchment (Woods, Sivapalan and Robinson 1997). The increase of the
storm runoff generated at all points in the catchment tends to wetter soil moisture conditions (Woods,
Sivapalan and Robinson 1997). In addition, the hillslope indicates a strong dependence on the weather
conditions confirmed by the case study of (Bachmair and Weiler 2013). Therefore, the use of the
electrical resistivity tomography can help to localize the saturation zones before the installation of long-
term monitoring network (Bachmair and Weiler 2013).

To conclude the problem of the hillslope selection as representative functional response units,

we summarize the following key words such as uniform stratified subsurface, topography, wetness, the

specific hydrological response (hydrographs), and the spatial scale of the observation, which should

help to identify a hillslope as representative functional unit in the catchment and link geophysics and
hydrology. In our opinion, the last key word “the spatial observation scale” is most important to connect
geophysics and hydrology and to translate the estimated geophysical parameters into hydrological
parameters. The Table 2-4 illustrates the link between geophysics and hydrology using the fundamental
relations. Geophysics can measure at the various scales from the small plot-scale to the large catchment-
scale. The effort of the geophysical exploration depends on the measured scale. It increases with the large
landscape level. Moreover, the translation from the geophysical measurements into the wanted
hydrological properties that provides hydro-geophysical relations as Archie’s equation, Gassmann’s
equation (Telford, Geldart and Sheriff 1990) also suffers from the limitations of measurement scale and
resolution. Such translation is an important hydrological interpretation of geophysical data and needs
profoundly knowledge. The Table 2-4 demonstrates several famous geophysical and hydrological
relations, which connect geophysical data with hydrological parameters. The joint terms that can connect
geophysical (Gassmann’s equation, Biot’s theorie and Archie’s equation) and hydrological (the Darcy’s
law) relations are porosity and fluid saturation. Seismic relations imply more complex transformation
into the hydrological parameters than the geo-electrical relationship. Hence, the Gassmann’s equation
are easier for the practical transformation than the Biot’s theory. Gassmann’s equation estimates the
elastic bulk moduli of the mineral grain from the elastic bulk moduli of fluid, dry rock and saturated rock
frame, and porosity. The elastic moduli depend on the seismic velocity and the density. Hence, the most
difficulty by the Archie’s equation is the estimation of the resistivity of the water. Nevertheless, there

are many studies, which tried to transform geophysical data into hydrological parameters (Binley, et al.
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Table 2-4: Link between Geophysics and Hydrology focused on geo-electrical and seismic surveys

elastic properties (seismic velocity, slowness)

Item Geophysics Hydrology
] ] o o Porosity, permeability, water
) Electrical properties (resistivity, conductivity), )
Variables content, hydraulic

conductivity

Spatial

observation scale

Field plot - hillslope - catchment

Observed static
data

1D-, 2D-, 3D-distribution of the subsurface in

terms of electrical and elastic properties

Data observed
temporal changes

in the states

Time-lapse observations in terms of resistivity;

micro-seismic monitoring

Precipitation, evaporation,
discharge measurements,
hydraulic head, dissolved

matter

Relations

Gassmann’s equation (low frequency):

Ko(1- Kgq/Ko)?
1- 0— Kq/Ko+ OKo /K’

where Ko, Ky, Kp, and Ks are the bulk moduli of

KS: KD+

the mineral grain, fluid, dry rock and saturated
rock frame, respectively; ¢ is porosity;

Biot’s theory (high freguencies): see (Biot 1956-
1; Biot 1956-2);

Archie’s equation expressed in resistivity:

m

Pw = Paq %, where pw is resistivity of the water,

Paq IS resistivity of the saturated aquifer, a and m
are material empirical factors, and ¢ is porosity
(Vouillamoz, et al. 2007)

Darcy’s law:

Q — AK (h1+Zl)_(h2+ZZ)
= —L ,

where Q is the volume flow
rate, A is the rate of porous
media normal to the flow, K
is hydraulic conductivity, h
is the pressure head, z is
elevation, and L is the length
of the flow path (Brown
2002)

Description to the

relations

Gassmann’s equation estimates the fluid-

saturation effect on bulk modulus that depend on
seismic velocity (Han and Batzle 2004);

Biot’s theory describes the propagation of
acoustical wave in porous elastic solid containing
a compressible viscous fluid (Biot 1956-1; Biot
1956-2);

Archie equation describes the relation between
electrical conductivity / resistivity of sedimentary

rock, its porosity and fluid saturation

The Darcy law describes the
flow of fluid through a

porous medium
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2015). Furthermore, the geophysical applications in hydrology focuses more on the structural
characterization using static data. Besides, the geophysical monitoring in terms of the time-lapse
observations and micro-seismic monitoring takes a central place in the hydrological exploration due to
the temporal change of the hydrological processes in the states (Binley, et al. 2015). It also is possible to
combine several techniques in the various configurations, in order to optimize the sensitivity, to
understand the nature and ambiguity of measured data and to improve the subsurface images. It exists
many studies providing geophysical exploration at the local scale. The largest interests of hydrology is
the mapping subsurface patterns over large areas (Binley, et al. 2015). However, the need of an efficient
geophysical investigation is necessary, to understand, predict and manage shallow subsurface systems
characterizing by complex and multi-scale interactions at the large catchment scale (Binley, et al. 2015).

After the definition of the representability and the homogeneity from geophysical and
hydrological perspectives, we can start the geophysical exploration, in order to select the potential
functional hillslope units for future intensive long-term investigations. To recognize the representative,
homogeneous hillslopes in the catchment structure from geophysical perspective assuming all
hydrological criteria, we recommend performing a test-measurement cross to a selected hillslope unit.
We call this test-measurement as a pre-investigation which can been done by the electrical resistivity
tomography (ERT) or ground penetration radar (GPR) because these geophysical techniques involve a
rapid visualisation of the subsurface directly in the field. In the case “representability and homogeneity”,
we can perform the system-oriented geophysical approach, which we will explain and discuss in the
chapter 4. In the case of the hillslope untypically and heterogeneity, we have to re-select the hillslope
because (Bachmair and Weiler 2013) do not consider such hillslopes with the high spatial variability as
homogeneous responding functional units. On other hand, the performing of the expensive three-
dimensional measurements is necessary.

Finally, the interpreted geophysical models can be analysed with the results obtained from other
disciplines, in order to improve the conceptual understanding the role of the subsurface in determining

the hillslope functionality in the catchment.
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3 Study sites

To illustrate the suitability of the suggested approach, we conducted measurements in two
catchments. The first catchment called the Weierbach catchment takes a place in the hydrological
observatory Attert Basin (Martinez-Carreras et al. 2010) that lies in the mid-western part of the Grand
Duchy of Luxembourg (Figure 3-1) and is an intensive research site of the Centre de Recherche Public
— Gabriel Lippmann? as well as CAOS® project. The second catchment called the Schaefertal catchment
is an intensive research site of TERENO* (Martini, et al., 2014) in the Central Germany and belongs to
the Elbe Basin (Figure 3-3). Besides, the Pleistocene periglacial slope deposits (PPSDs) characterize
both catchments. The presence of the PPSDs plays an important role in the ecosystem functioning,
especially for the formation of soil type, the distribution of soil, the flow paths, and reflecting ecological
and climates conditions of landscape in the past (Semmel & Terhorst 2010; Juilleret, Iffly, Pfister, &
Hissler 2011). According to the concept of the periglacial cover beds (Semmel & Terhorst 2010), we can
describe the PPSDs in Europa in terms of three stratigraphic units:

(1) the basal periglacial layer (BPL) lies on the top of the bedrock and consists of periglacial

debris and debris of bedrock oriented usually parallel to the slope;

(2) the intermediate or middle periglacial layer (IPL) is generally located on the top of BPL and

occurred in dell accumulated with loess, or also can be absent;

(3) the upper periglacial layer (UPL) reflects the depth of the former active layer, and contains

loess and rock fragments oriented usually parallel to the slope.

Hence, the selected catchments differ in topography, hydrological conditions, land use and basic
geological formation. Therefore, it makes an interesting contrast to apply the system-oriented
geophysical approach, in order to receive an impression how good can the approach work for hillslope
characterization in diverse environmental conditions taking advantages and limitations of geophysical

techniques into account.
3.1 Weierbach catchment

The Attert Basin (Figure 3-1) lies in the contact zone between the schistous Ardennes massif
(Oesling) and the sedimentary Paris Basin (Gutland). We can characterize the Attert Basin by
homogeneous and mixed geological setting from schist to marl, sandstone and limestone, different land
use and semi-oceanic climate (Zehe, et al. 2014).

The Weierbach catchment takes a place in the north-west part of the Attert Basin, in the Oesling
part (Figure 3-1) that represents the Luxembourg part of the Rhenish Massif (Juilleret, Iffly, Pfister, &

Hissler 2011). We describe the climate by high precipitation (ca. 800 mm/a), particularly in late summer

2 www.lippmann.lu
3 www.caos-project.de
4 www.tereno.net/

-25-



3 Study sites

(Martinez-Carreras et al. 2010). The hydrological regime is pluvial oceanic with low flows from July to
September, and with high flows from December to February (Martinez-Carreras et al. 2010). The
dominant runoff mechanisms is the lateral subsurface flow at the contact zone between soil and

underlying bedrock due to permeable forested soil (Fenicia et al. 2014).

Weierbacy, Creck

[ representative hillslope

coniferous forest
deciduous forest
agriculture

— country road
------- unmade road

Figure 3-1: Location of a representative hillslope (the orange line) at the Weierbach catchment study
site in the hydrological observatory Attert Basin (the red line in the north-west graph), the mid-western

part of Grand Duchy of Luxembourg

The Weierbach catchment is the first order catchment and covers an area of 0.7 km? (Martinez-
Carreras, et al., 2010). We describe the catchment form as a deep V-shaped valley caused by uplifting
processes (Juilleret, Iffly, Pfister, & Hissler 2011). The valley slopes are mainly forested (ca. 84%) with
coniferous and deciduous, whereas the plateau surface represents agriculture landscape (ca. 13%).
Grassland (3%) covers only the valley bottom. The Devonian schist presents the lithological base of this
study site, which differs in two parts: the fractured schist underlain by the compact schist. On the top of
the bedrock exists the Pleistocene periglacial slope deposits (PPSDs) reported by (Juilleret, Iffly, Pfister,
& Hissler 2011 and Wrede, et al., 2014). The forsted soil surficail horizon covers the PPSDs. According
to the concept of PPSDs in Luxembourg describing by (Juilleret, Iffly, Pfister, & Hissler 2011), the
PPSDs recognize only the Upper layer and the Basal layer. The intermediate layer is absent. (Wrede, et
al., 2014) reports that this PPSDs may store significant amounts of water. Moreover, the authors believe
that the soils are homogeneous, and classify into Distric Cambisol. The thickness of soil from the surface

to the saprock is ca. (79 £ 17) cm characterising by loamy soils with lower bulk density (0.96 £ 0.14)
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g/cm? (Wrede, et al. 2014). The significant macro-porosity causing by the tree roots and scattered schist
stones characterize this loamy soil (Wrede, et al. 2014). Silt texture, root networks reaching to the saprock
and higher water infiltration rate (2832 £ 936 cm/d) cause the fast drainage in the upper soil and require
the preferential subsurface flow (Wrede, et al. 2014).

The north exposed representative hillslope (Figure 3-1) takes a place at the forested valley slope
with moderate inclination of ca. 12° characterized by the strong variability of the micro-topography. The
Figure 3-2 illustrates the digital elevation model of the investigated representative hillslope. The hillslope
length is ca. 110 m. The investigated hillslope wide range is ca. 80 m. The height difference between the
upslope and the downslope is ca. 30 m. The coniferous forest (mainly spruce) covers the West site of the

hillslope, whereas the deciduous forest (dominant beech) characterizes the east site of the hillslope.
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Figure 3-2: Digital elevation model of the representative hillslope at the Weierbach

catchment study site

Moreover, the Weierbach creek flows directly at the outcropped bedrock presenting by
Devonian schist. Hydrological and meteorological measurement stations with soil moisture sensors have
been installed on the investigated hillslope in the frame work of CAOS (Catchment As Organized
System) project since January 2012 and conduct the intensive investigations (Zehe, et al., 2014).

3.2 Schaefertal catchment

The Schaefertal catchment takes a place in the Lower Harz Mountains, Central Germany
(Graeff, et al., 2009), ca. 150 km southwest of Berlin. The Figure 3-3 shows the location of the catchment
and a representative hillslope. We characterize the climate of Harz by regular precipitation from Atlantic
throughout the year. The most precipitation occurs at west exposed Upper Harz (1600 mm). In contrast
to it, the East Lower Harz receives ca. 600 mm of precipitation per annum (Kistner 2007). The variations

in evapotranspiration and snowmelt events in winter cause the seasonal change in discharge (Ollesch,
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Kistner, Meissner, & Lindenschmidt, 2006). Additionally, the mining industry in the vicinity caused the
change of a local groundwater level, which influences the runoff mechanisms of the Schaefertal
catchment (Kistner, 2007; Graeff, et al., 2009). Due to the change of the groundwater level the
Schaeferbach creek can dry out during the low rainfall period from July until autumn (Ollesch, Kistner,
Meissner, & Lindenschmidt, 2006; Kistner 2007). Moreover, the most important factors of runoff
generation are initial soil moisture and occurrence of soil frost in combination with snowmelt or rain-on-
snow events (Ollesch, Kistner, Meissner, & Lindenschmidt, 2006). However, the dominant runoff
mechanism is surface flow, which causes higher erosion rates in winter (Ollesch, Sukhanovski, Kistner,
Rode, & Meissner, 2005).

[ representative hillslope

] TERENO Soilnet
and piczometers
agriculture

74" | grassland
forest

country road
unmade road

Siptenfelde

Figure 3-3 Location of a representative hillslope (the orange line) at the Schaefertal catchment study
site in the Lower Harz, the Central Germany (the north-west graph)

This low-mountain catchment with the Selke catchment covers an area of 1.44 km? and is the
first order catchment in the form of a typical U-valley (Kistner 2007). The plateau surface and valley
slope represent mainly agriculture landscape (ca 80%), whereas the grassland covers the valley bottom
(ca. 16%). The small areas (ca. 3%) in the west part of catchment represent the forested landscape
(Kistner 2007). Moreover, following (Altermann 1989) and (Becker & Mcdonnell 1998), the Devonian
greywacke and schist of the so-called Tanner zone characterize the lithological base of the investigated
catchment differing in two parts: the fissured upper bedrock underlain by the compact bedrock. On the
top of the bedrock exists the Pleistocene periglacial slope deposits (PPSDs) reported by (Altermann
1989) and (Becker and Mcdonnell 1998). The soil surficail horizon covers the PPSDs. The structure of
PPSDs depends on the relief form (Kistner 2007). The typical European PPSDs structure described by
(Semmel & Terhorst 2010) in terms of three layer units (UPL, IPL and BPL) characterizes the plateaus,

whereas the slope structure consists of two layers (UPL and BPL). The intermediate layer can be absent
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(Altermann 1989). The less permeable fine soil with rock waste and fragments by mountain loam
describes the upper periglacial layer. The Luvisols covered mainly the south-facing slope and Cambisols
shielded mostly the north-facing slope are the dominant soil type in the catchment (Ollesch, et al. 2006).

The north exposed representative hillslope with slope inclination of ca. 7° is located in the valley
bottom covered completely with pasture without agricultural practices at the intensively investigated
TERENO hillslope area (Figure 3-3). Hybrid wireless sensor network (SoilNet) and geophysical methods
such as electro-magnetic induction (EMI) and gamma ray spectrometry monitored TERENO hillslope
area from September 2012 to November 2013, to study temporal and spatial soil-moisture dynamic with
high temporal resolution (Martini, et al., 2014). The authors identified four soil-topographic units (STUs)
with respect to relevance of hydrological processes, soil morphological characteristics and topographic
position. Moreover, the soil moisture dynamic indicates two states: the wet state and the dry state
(Martini, et al., 2014). The wet state presents in the winter period and at the beginning of the spring with
stable soil water content required by strong rainfall events, snow melting (if snow coverage presents)
and decreasing evapotranspiration, and by the dominance of the overland flow. Besides, the valley
bottom are more water saturated than back slope areas (Martini, et al., 2014). The dry state begins after
the end of intensively precipitation and characterized by the increasing evapotranspiration due to plant
activity, solar radiation and high air temperature, and by dominance of vertical water flow without the
lateral connection between different areas of the slope (Martini, et al., 2014).

Groundwater level (TERENO data, Soil-Network)
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Figure 3-4: Groundwater level (in absolute height) at the TERENO Soil-Network hillslope at the

Schaefertal catchment study site

Furthermore, to monitor the ground water level at the north-facing TERENO hillslope in the
wetlands, the TERENO staff installed a network of seven water level loggers illustrated on the map in
the Figure 3-4. The loggers organize two transect along the hillslope three loggers at the west site and

four loggers at the east site. The distance between transects is ca. 100 m. We used water level data of
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five loggers. The logger data® observed from 24" February 2014 to 26" February 2014 and shown in the
left graph of the Figure 3-4 demonstrate the ground water level in the absolute height (the upper graph)
and the ground water level difference between two loggers (the below graph). The ground water level is
higher at the west site investigated hillslope. The difference between the water level logger transects is
ca. 0.8 m. Therefore, the direction of ground water flow is from the west to the east, and we can assume
that the rate of the ground water change from the west to the east is ca. 0.8 m at 100 m distance. This
rate is only valid for this hillslope part.

The investigated representative hillslope is remote ca. 200 m from the SoilNet and the ground
water level network hillslope. The Figure 3-5 illustrates the digital elevation model of the investigated
representative hillslope. The hillslope length is ca. 96 m. The investigated hillslope wide range is ca. 80
m. The height difference between the upslope and the downslope is ca. 10 m. We characterize the
hillslope topography as relatively invariable. We can classify the hillslope into two parts: slope and
wetlands separating by the visual jump observed in the field as well as in aerial imaging (see in the
Appendix E the Figure E - 1). The water level in the Schaeferbach creek was high during the fieldwork

that happened in end of February. The wetlands were more water saturated than back slope area.

North slope

i {,l"'IWctlands
W

r o

]
S

Relative height [m]
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Figure 3-5: Digital elevation model of the representative hillslope at the Schaefertal

catchment study site

> See the chapter Contribution
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4 Methodology

In order to characterize a representative hillslope as a functional unit with respect to hydrological
function in a catchment, we will apply two geophysical surveys that provide the content on the
hydrogeological situation from the ground surface to the deeper subsurface structures based on physical
and geometrical parameters. There are electrical resistivity techniques and refraction seismic survey. On
the one hand, we will investigate the hillslope in terms of electrical properties illustrated the contrast
between saturated and no saturated media. On the other hand, we will obtain the knowledge on the
subsurface structure in the light of elastically properties linked directly to geotechnical parameters. Such
combined investigation has to offer a detailed outlook on the subsurface structure of the investigated
representative hillslope. In this chapter, we therefore will introduce the theoretical background of applied
geophysical techniques and describe experimental composition at investigated study sites.

We can subdivide the working process into three parts: (1) definition of measuring design, (2)
data collection in the field and (3) data processing in the office. Following, we will introduce each
processing step.

In order to improve the quality in the geophysical data interpretation and to decrease the costs
in the field as well as in the office, we find reasonable to conduct geophysical investigations at one profile
along the representative hillslope. In this case, we assume that the investigated hillslope is typical for
investigated study site and homogeneous. These two points have to discuss together with hydro-
geologists. To understand hydrological processes at the hillslope scale, we have to know why this
hillslope is typical for the investigated catchment and how homogeneous. If we will know clear that it is

typical, representative and homogeneous, we can provide the detailed investigation only at single profile.

Hillslope

—i primary profile: ERT, RS
Creek  ___ secondary profiles: VES

Figure 4-1: Measuring layout to combine geo-electrical and refraction

seismic techniques for the characterization of a representative hillslope

The Figure 4-1 shows the measuring design at the representative hillslope where we will conduct
sounding and profiling measurements. The idea is that profiling measurements are along the hillslope

called as the primary profile, whereas the sounding spreads are perpendicular to the hillslope profile
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named as secondary profiles. The analysis of profiling will inform on the distribution of electrical and
seismic parameters in the subsurface along the hillslope. The examination of soundings provides contents
of the presence of the two-dimensional structures at each site from the hillslope profile.

The geophysical literature provides several scientific studies using measured layout illustrated
in the Figure 4-1 and recommends it as efficiently (Gyulai & Ormos, 1999). The authors describe
boundary surfaces and physical parameters using vertical electrical sounding (VES) data collected
separately in a set of arrays along the profile with perpendicular oriented VES spreads. The other example
presenting by (Nardis, Cardarelli and Dobroka 2005) interprets separately VES data measured in a set of
array perpendicular to the profile and refraction seismic (RS) data measured along the profile, in order
to provide the joint inversion of coupling electrical and seismic models. Both literature examples assume
the slight lateral change in the layer thickness and resistivity, and reference other literature examples
applied the suggested measuring layout. The use of the local 1D-approximation by the application of the
function based on the priori information (known geological setting) reduce the equivalence in the data
interpretation (Gyulai and Ormos 1999). In contrast to these scientific works, we therefore propose to
interpret the joint geophysical data set in terms of VES, RS and electrical resistivity tomography (ERT)

qualitative.

Geophysical data acquisition

Y \4 Y

RS ERT VES

Y \4 Y
Data processing and interpretation

Y Y

2D model 1D models

Y
Structural comparison of models

Y

Geophysical description of
the hillslope model in terms of
electrical and seismic units

Figure 4-2: Flow chart for geophysical investigation of a

representative hillslope in a catchment in an effective manner

After we established the measuring layout, we can introduce the main steps of the geophysical

exploration at the single hillslope profile. We illustrate the working steps in the Figure 4-2. At the
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beginning, we will process and interpret the collected geophysical data (resistivity and seismic data)
individual in terms of one-dimensional models as well as two-dimensional models in order to analyse
the advantages of each technique. The one-dimensional models predicate the distribution of physical
parameters as a function with the exact depth interpreting quantitative, whereas the two-dimensional
model describe detailed lateral distribution of the subsurface parameters explaining qualitative or semi-
quantitative. Then, we will compare the single obtained subsurface models with each other in the light
of physical and geometrical parameters. The combined geophysical interpretation will provide the
description of the investigated hillslope in terms of electrical and seismic units. This joint analysis also
will consider the ambiguity in the data interpretation. Finally, we will discuss the interpreted resistivity
and seismic subsurface models in the light of hydrological conditions.

Well, let us introduce the principle of resistivity and seismic techniques as well as the

experimental composition of each method at the selected hillslope.
4.1 Geo-electrical survey

The application of geo-electrical technique as part of hydrogeological investigation, we explain
by identification of electrical homogeneous and heterogeneous patterns of the subsurface structures at
the hillslope scale because the subsurface structure can control subsurface flow processes (Freeze R. ,
1972; Shahedi, 2008). We therefore can recognise these electrical patterns by resistivity variations in the
subsurface causing through porosity, fracture, texture, water content, temperature and concentration of
ions (Telford, Geldart, & Sheriff, 1990). As expressed by (Koch, Wenninger, Uhlenbrook, & Bonell,
2009), the adoption of resistivity method along hillslope profile provides spatial electrical patterns of the
subsurface structures and can identify subsurface flow paths. To obtain a detailed subsurface image of
the hillslope in terms of 3D, many scientific studies such as Koch, Wenninger, Uhlenbrook, & Bonell,
2009; Hubner, Heller, Giinther, & Kleber, 2014 conducted quite expensive measurements with many
profile lines along the hillslope as well as perpendicular to the hillslope. The main principle of geo-
electrical investigation is to describe the subsurface in terms of resistivity and thickness values. Using
four-electrode system, a pair electrode known current electrodes create an electrical field in subsurface
by the sending of current (Iag) where two other electrodes measure a potential difference or voltage
(Vwmn). The following function known as the Ohm’s law describes the relation between measured

resistivity or apparent resistivity (pa), measured voltage (Vmn) and current (1ag)

Pa = k7 [Qm] (4-1)
Iap
-1
with the geometric factor k=2mn (ﬁ - ﬁ + ﬁ - ﬁ) [1/m]. (4-2)

This factor describes the geometric configuration of four-electrode system. There are many electrode
configurations. Their application depends on the investigation aim and wanted predicated depth.
The inversion from the measured resistivity data set into section of true resistivity happens by

using forward modelling based on mathematical algorithms. Such inversion suffer from ambiguity in the
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data interpretation. Moreover, the image of inverted resistivity data subjects to non-uniqueness
(Hoffmann & Dietrich, 2004) caused by finite number of electrodes and comprises measurements of
limited precision (Friedel, 2003). However, the interpretation of geo-electrical data without considering
ambiguity can lead to misinterpretation (Hoffmann & Dietrich, 2004).

In order to investigate the resistivity distribution in the subsurface, to address the ambiguity in
the interpretation of geo-electrical data and to provide an efficient survey tool for hydrological research,
we suggest applying two geo-electrical techniques along the representative hillslope in terms of profiling
and perpendicular to this hillslope within the meaning of sounding only at a single profile. We illustrated
the measuring design in the Figure 4-1. The vertical electrical soundings (VES) perpendicular to the
hillslope profile predicate the resistivity distribution as a function of the depth and interpret the measuring
data quantitative, whereas the profiling by using electrical resistivity tomography (ERT) performs the
qualitative or semi-quantitative data interpretation.

The suggested geo-electrical approach for the hillslope characterization can become an efficient
survey for the hillslope subsurface characterization in hydrological science. However, according to the
measuring layout in the Figure 4-1, we carried out ERT and VES surveys at a single profile along the
hillslope in February 2014 in the Schaefertal catchment and in April 2014 in the Weierbach catchment.
The measured resistivity data will provide 2D-images of subsurface structures of the investigated
hillslope. The Table 4-1 summarizes the applied geo-electrical field parameters at each study site. In the
below following subchapters, we will introduce the background of VES and ERT and explain the choice
of applied field parameters.

4.1.1 Vertical electrical soundings

The sounding technique uses a symmetrical electrode configuration with the closely, fixed
potential electrodes (MN) to the array centre and the stepwise increased current electrodes (AB)
outwards. Such configuration provides a good signal-to-noise ratio in the depth. The sounding survey
assumes constant resistivity, horizontal homogeneous layering and good vertical contacts (Telford,
Geldart, & Sheriff 1990; Pous, Queralt, & Chavez, 1996; Kirsch, 2006).

We therefore performed VES measurements perpendicular to the hillslope profile with respect
to the measuring layout illustrated in the Figure 4-1. We measured with the classical Schlumberger (SC)
array by stepwise increase the current electrode distance (AB/2 = 2, 3, 5, 7, 10, 15, 20, 30, 40 m) and
keeping the potential electrode distance (MN/2 = 1 m) constant using the 4point-light-hp-Lippmann®
device (Germany). We summarize the VES field parameters for each study site in the Table 4-1.

We know that it is better to start a measurement at small electrode distances (from 0.5 m for
AB/2 and 0.10 m for MN/2) for the gathering of soil surficial horizons. In this study, we decided to start

our measurements at the relatively large electrode distance (AB/2 = 2 m and MN/2 = 1 m) because we

® http://www.l-gm.de/de/de_resistivity.html
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want to provide a rather fast geo-electrical survey for hydrological investigation. This investigation aims
to image contrasting interfaces by constant homogeneous resistivity values at the geological scale and to
identify electrical homogeneous units. We also know that the soil surficial horizon can be heterogeneous

Table 4-1: The acquisition field parameters of geo-electrical investigations at two study sites
(explanation see in the chapters 4.1.1 and 4.1.2)

Study site Field parameters VES ERT
Profile length in m 100 143
1
o AB/2: min = 2; max = 40
Electrode spacing in m ABpin = 3,
MN/2 =1
ABimax = 33
) Electrode number 4 144
Weierbach catchment
Electrode array SC & HSC SC
(forest)
Field staff 3 men
Time effort in the field:
- preparation 5 minutes 1 hour
- execution 30 minutes per a point 1.5 hour
- completion 5 minutes 1 hour
Profile length in m 95 95
) 1
o AB/2: min = 2; max = 40
Electrode spacing in m ABmin = 3,
MN/2 =1
ABmax = 45
Electrode number 4 96
Schaefertal catchment
Electrode array SC & HSC SC
(grassland)
Field staff 3 men
Time effort in the field: Per one VES point:
- preparation 5 minutes 40 minutes
- execution 25 minutes per a point 1 hour
- completion 5 minutes 40 minutes

at local spots along a hillslope, especial in the forest. Therefore, the gathering of soil surficial horizon
needs more detailed investigation and can be conducted for designated electrical homogeneous patterns
in the future. The other point that we had to decide is the required length of the current electrode spread
because the maximal penetration depth depends on the length of the maximal electrode spread. There is
a rule of thumb for the estimation of wanted investigated depth (ID) for the case of the Schlumberger

array: AB ~ 5*ID (Kirsch 2006). The penetration depth also depends on the geology and terrain

-35-



4 Methodology

conditions. On the other hand, the large electrode spread can take more time and can be impractical in
the forested terrain. Hence, we can predicate for our approach the investigated depth by ca. 16 m by the
maximal electrode spread (AB) of 80 m. We find that the penetration depth of ca. 16 m is quite enough
for the hydrological prospection to characterize the hillslope and to detect possible subsurface flows.

Moreover, to obtain the hillslope 2D resistivity model, we achieved the VES measurements from
the upslope to the downslope with the distance between sounding location of 5 m. We therefore collected
21 VES-measurements in the Weierbach catchment and 20 VES-measurements in the Schaefertal
catchment. Additionally, to prove the lateral horizontal layering over the width of the hillslope, we
modified the classical VES survey to Half-Schlumberger (HSC) array or pol-dipole array by keeping one
current electrode at an infinite distance approx.250 — 300 m on the hillslope plateau. Here, we should
accent that the location of the removal electrode at a relatively short distance can affect significant on
the measurement and misinterpret data (Yadav, Singh, & Strivastava, 1997; Robain, et al., 1999). We
also took into account the two relations characterising homogeneous horizontal subsurface and are useful
for the data analysis of HSC technique

AMNB _ pAMN+ ngN

pi R [Qm] (4-3)

pAMN ~ pBMN ~ pAMNE — [Om)] (4-4)
The relations (4-3) and (4-4) mean that (1) the apparent resistivity of the full Schlumberger array is equal
to the arithmetic average of Half-Schlumberger array values; and (2) all three apparent resistivity values
must be approximately equal in the homogeneous medium (Telford, Geldart, & Sheriff, 1990).

At the beginning the data processing, we assessed the quality of measured data. The lower level
of the standard deviation error (STD) characterizes the measured data: in the range of 1 - 6% for the
Weierbach data sets and 1 - 2.5% for the Schaefertal data sets. The lower level of STD for each
measurement we could reach by the controlling of phase and by increasing/decreasing of the injected
current during the field measurement.

We plotted the collected VES data in a diagram with logarithmic axes in the terms of so-called
sounding curves: apparent resistivity versus current electrode spacing (AB/2), separately for each VES
location. These sounding curves illustrate the behaviour of the measured electrical field in the subsurface.
Then, we evaluated the sounding curves of Schlumberger and Half-Schlumberger arrays in order to prove
the assumption on horizontal layering and to reveal the validity of relation (4-4). We note that the
discrepancy between Schlumberger and Half-Schlumberger sounding curves indicates the presence of
the lateral variability over the width of the hillslope. In the case of the lateral variability, the assumptions
on the stratified homogeneous subsurface are not valid more, and we cannot invert measured resistivity
data into a depth model and should interpret these data careful because of the data misinterpretation.

After data evaluation, we selected VES data accepting the relation (4-4) and processed these
data using conventional inversion technique of 1D forward modelling. The most forwards modelling

programs match iterative measured and modelled data based on the root-mean-square deviation (RMSD).
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Such inversion offers the one-dimensional subsurface model with exact predicated depths. To interpret
sounding curves, we have to look their behaviour because the change of the sounding curves indicates
the change of the apparent resistivity. We therefore can formulate the main steps of the interpretation of
measured resistivity data. In the first step, we define a starting model with appropriate layer number,
resistivity and thickness values. The knowledge on geology of the investigated area, the behaviour of the
sounding curves (the extreme values) establish the number of layers. Moreover, we can classify the
character of the sounding curves with the respect to the statement describing by (Telford, Geldart and
Sheriff 1990). As soon as the starting model is prepared, we can start the inversion of measured data.
The iterative matching of calculated and measured data, we did using the software Interpex IX1D’. To
control the quality of the data interpretation and to win the best fitting between calculated and measured
data, we also can change the staring model and repeat inversion many times. Finally, we found the correct
solution if the measured and calculated data are consistent with each other and the model reflects the
geological setting of the investigated study site.

For now, we discuss the data fitting for each case study. The most inversion models of the
Schaefertal catchment are well fitted with the RMSD-range from 0.96 to 2.58%. In contrast to it, the
fitting of 1D models of the Weierbach catchment ranges RMSD from 1.03% to 8.22%. Besides, we
remark that several VES measured data, which do not accept the relation (4-4), we also inverted into the
depth models. As starting model for these data, we used already obtained 1D-models of the valid VES
data.

Moreover, we assembled all obtained 1D depth models and corrected these models with
topography, in order to construct the two-dimensional hillslope subsurface model. For it, we considered

following steps:

(1) Definition of the resistivity consistent stratigraphic units along the hillslope profile
characterizing the hillslope subsurface according to VES models and the geological structure;

(2) Correlation of the resistivity consistent interface between VES locations along the
hillslope profile in order to bound the subsurface areas with approximately constant and equal
electrical resistivity;

(3) Definition of layer depths and calculation of their confidence interval. We associated the
depth confidence interval with variability of resistivity and depth caused by equivalence in the
interpretation of resistivity data.

Final analysis of the interpreted VES hillslope subsurface model distinguishes the homogeneous
and heterogeneous hillslope areas called in this study as elementary functional units (EFU’s), and splits
the vertical underground structure in consistent electrical stratigraphic units (ESU’s) with exact

predicated depths.

" http://www.interpex.com/ix1d/ix1d.htm
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4.1.2 Electrical resistivity tomography

In this subchapter, we introduce the background of electrical resistivity tomography (ERT) and
the experimental setup of ERT at each investigated area. ERT also utilizes the symmetrical four-electrode
system, which moves array laterally along the geo-electrical profile by fixed electrode spacing and
measures apparent electrical resistivity as a function of a pseudo-depth. This profiling measurement
provides a two-dimensional section of lateral variations in electrical resistivity. In contrast to VES, ERT
does not inform on the vertical distribution of electrical resistivity and interprets the data only qualitative.

We conducted ERT measurements on the profile along the investigated hillslope from upslope
to downslope with respect to measuring layout shown in the Figure 4-1. We used for this survey the
RESECS® multi-electrode device (GeoServe, Germany) and united the ERT field parameters for each
study site in the Table 4-1. At the beginning of the ERT measurements, we have to consider the two
important points. The first point is the use of an appropriate electrode spacing. Geology and topography
of the study site, investigation aim and economic costs influence the suitable choice of electrode spacing.
We know that the penetration depth depends on the spacing between the two active current electrodes
and the profile length. There is a rule of thumb for estimation of the investigated depth (ID). It ranges
from AB/6 to AB/4 (Kirsch 2006). The interest of our study is to explore the shallow structures, which
are relevant for hydrological processes, in the efficient manner with minimal effort. The use of small
electrode spacing images near surface structures but it needs more time for preparation and measuring.
In contrast to it, the use of large electrode spacing is efficient but it loses the information on the near
subsurface structures. We therefore think that the optimal electrode spacing of one meter is quite efficient
to explore shallow subsurface structures controlling hydrological processes. Consequently, we can
estimate the predicated investigated depth (ID) for fixed electrode spacing of 1 m using the rule of thumb.
We summarized the predicated investigated depths for different current electrode spacing (AB) in Table

4-2. Hence, we expect the maximal investigated depth for our measurements by ca. 10 m.

Table 4-2: Estimation of the investigated depth (ID)
according to the rule of the thumb (Kirsch 2006)

AB [m] ID [m]
15 0.25-0.38
3 0.5-0.75
33 55-8.25
45 7.5-11.25

Other important point is a choice of array electrode. In order to find a suitable electrode array

for investigated study sites characterizing with different environment conditions, we measured with

8 http://www.geoserve.de
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different electrode arrays such as Wenner-Alpha (WN), Schlumberger (SC), Dipole-Dipole (DD), Pol-
Dipole (PD) and Pol-Pol (PP) with variable configuration parameters. These arrays are characterizing by
different signal-to-noise ratios, vertical and lateral resolution, sensitivity of electrode configurations, and
the noise contamination levels (Dahlin & Zhou, 2004). The accurate choice of the electrode array reflects
the time effort in the field and the quality of subsurface image, which should offer ideally the maximum
anomaly information, reasonable data coverage and a high signal-to-noise ratio (Dahlin & Zhou, 2004).
WN is mostly popular applying electrode array due to lower sensitivity to the noise in the subsurface
compared to the other arrays. Nevertheless, the spatial resolution of WN with the increased depth is
poorer, whereas SC, PD and DD can resolve better (Dahlin & Zhou, 2004). On other hand, SC can cause
more edge effects (Dahlin & Zhou, 2004). Moreover, DD indicates high anomaly effects and can resolve
better the location of vertical and dipping structures but can produce at the same time lower signal-to-
noise ratios and cannot exact detect the depth (Dahlin & Zhou, 2004). The other limitation factor of DD
is that this array is more sensitive to the electrode spacing errors and 3D subsurface features (Dahlin &
Zhou, 2004). PD and PP also demonstrate well anomaly effects and lower signal-to-noise ratios but
cannot produce well spatial resolution (Dahlin & Zhou, 2004). The another limitation factor of PD and
PP is the use of remote electrodes that limits the measurement only on one site and confuses data quality
checks because of the higher noise level at the remote electrodes (Dahlin & Zhou, 2004). However,
following (Dahlin & Zhou, 2004) the recommended electrode arrays for multichannel-recording
configurations are PD, DD and SC. Finally, aiming to produce a high-resolution subsurface model of the
investigated hillslope, we decided to use the Schlumberger array because this array indicates lesser
limitation factors and can be more applicable for steeper slopes without effects causing by 3D subsurface
features than DD and PD. Besides, we denote that ERT measured data present a 2D pseudo-section in
terms of apparent resistivity versus electrode separation along the profile.

Moreover, we can reach a realistic geophysical subsurface model by understanding of the nature
of the measured data (Meju 1995). The quality of inversion images also depend on the model and the
noise level (Szalai, Koppan, Szokoli, & Szarka, 2013). We however started the interpretation of
measurement data with the evaluation of data quality. The data quality in each study case is characterized
by the relatively lower STD error in the shallow subsurface (by ca. 6 % for the Weierbach catchment and
by ca. 8 % for the Schaefertal catchment) with the increased STD error in the depth (between 10 and 30
%). Besides, we denote that the apparent resistivity data of the Weierbach catchment demonstrate
extremely strong resistivity contrast in the subsurface in contrast to the Schaefertal catchment.

In order to provide a high-resolution depth model with the true electrical resistivity values, we
inverted the measured data. The inversion of ERT data is happened using standard iterative procedure
starting with an initial model from the first data part (Muiuane & Pedersen 1999) and repeating many
times in order to find an optimal final model with an appropriate fitting between measured and calculated
pseudo-sections with respect to root-mean-square deviation (RMSD) and noise. Additionally, we have

to remark that the main problem of ERT data inversion is the model quality in respect to its RMSD

-39-



4 Methodology

(Muiuane & Pedersen 1999). Another problem is the appropriate error criterion or the best fitting between
measured and calculated forwards models (Muiuane & Pedersen 1999). Moreover, measurement error
increases the ambiguity of inversion models and decreases the matching of calculated and measured
models (Hoffmann & Dietrich, 2004). Besides, the model misfit can increase with the iteration number,
especially where the resistivity contrast extremely high (Olayinka & Yaramanci, 2000).

So far, we computed down the ERT resistivity model to a maximum depth of 10 m in each study
case using the software DC2DInvRes® of (Guinther, 2004) based on the sensitivity analysis. Before the
starting of the inversion, we discretized the starting model. We have to respect that the time of inversion
increases with a fine discretization. However, we discretized the starting model into 15 layers with a
linear horizontal increment (Ax) of 1 m, and a logarithmic vertical increment (Az) from 0.3 m to 1.8 m.
The fitting of calculated and measured data indicates the moderate RMSD: by 7.75 % for the hillslope
model of the Schaefertal catchment, and by 9.58 % for the hillslope model of the Weierbach catchment.
Moreover, the inversion model of the Weierbach catchment describes an anti-ideal behaviour with strong
resistivity contrast and the increased RMS-misfit with respect to the classification of behaviour of the
model RMS-misfit (Olayinka & Yaramanci, 2000), whereas the Schaefertal inversion model shows a
behaviour with lower resistivity contrast and relatively small RMS-misfit.

The final ERT inversion model describes the lateral distribution in electrical resistivity. We can
compare this model with the resulting VES subsurface model.

4.1.3 VES versus ERT, and versus Combination

After detailed description of applied geo-electrical techniques, we summarized the advantages
and limitations of both techniques in the Table 4-3. This subchapter also shows how we can reconstruct
a realistic resistivity subsurface model of the investigated hillslope taking the advantages of both geo-
electrical techniques into account. We know that geo-electrical models suffer from the ambiguity in the
interpretation. To solve the equivalence problem in data interpretation, we can combine both geo-
electrical techniques and interpret the results together with geological information. Such interpretation
eliminates mistakes and provides an accurate geo-model of the subsurface.

So far, the comparative analysis ERT with VES surveys indicates that data acquisition in case
of VES is easier and faster in contrast to ERT. The logistic of VES equipment is also easier and more
practical in the regions with difficult environment conditions (especial at a steep slope, with dense
vegetation cover) because the use of only four electrodes instead of multi-electrode system make easy to
bring it into terrains with hard environment settings. On the other hand, to conduct ERT measurements
it is needed maximal two persons for the preparation and the completion and long time for one
measurement in contrast to VES, whereas it needs three persons and conducts three measurements (SC

and HSC in both directions) at the same time on one VES location. Moreover, the depth in the VES case

® http://resistivity.net/
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can be resolved better and deeper because of the geometrical factor (AB >> MN) and larger current
electrode spacing than in the ERT case because the penetration depth of ERT depends strong on the
electrode configuration, electrode spacing, and the length of a geo-electrical line. Furthermore, both
surveys can provide modified measurements with remote electrodes (the case of PD, PP arrays), but the
data interpretation in the ERT case is more confused because of one-sided measurement (see subchapter
3.2, (Dahlin & Zhou, 2004)) in compared to VES. The VES measurements with the remote electrode can
easy prove the correctness of homogeneous stratified subsurface. Furthermore, the both surveys suffer
from non-uniqueness (Hoffmann & Dietrich, 2004), but the problem of ambiguity in ERT interpretation

is presented stronger than in VES, whereas 1D interpretation with equivalence models is clearer.

Table 4-3: Comparison of ERT and VES techniques (explanation see in the chapters 4.1.1 and 4.1.2)

Method Advantage Limitation

— equipment is heavyweight, especial

electrode cable

— automatic measurement — high time costs in the field for
ERT — lateral resolution preparation, execution of measurements
— low personnel costs (1-2 men) and completion
— ambiguity of models (Hoffmann &
Dietrich, 2004)
— equipment is lightweight and not
expensive!
— vertical resolution non-unigqueness
VES — deep penetration depth compared to manual measurements

ERT high personnel costs (3 men)

141l

— information on lateral heterogeneities
(Half-Schlumberger)

manual processing of data

— clear equivalent models

We therefore compared the resulting ERT and VES models in terms of investigation depths and
resistivity change. In order to qualify how similar are the obtained subsurface models, we considered the
following criteria. The first and main criterion is the exact detectability of an anomaly, which addresses
the correctness of location and resistivity (Szalai, Koppan, Szokoli, & Szarka, 2013). Other points are
resolution of an inversion model and uncertainty in the depth detection, and specific geometry. Then, in

order to demonstrate, how well both models are matching, we overlay these models transparent.
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We interpreted the resulting resistivity hillslope models in the light of data quality, differences
in resistivity and thickness distribution and the hydrogeological functions. From the analysis of Half-
Schlumberger data, we classified the geo-electrical subsurface models into homogeneous lateral
subsurface hillslope areas. We called these areas as elementary functional units (EFU’s). We also can
distinguish in the vertical structure of the hillslope the resistivity consistent stratigraphic divisions called
as the electric-stratigraphic units (ESU’s).

4.2 Refraction seismic

The application of the refraction seismic in the framework of hydrogeological exploration, we
motivate to determine the structural and lithological setting of the investigated hillslope subsurface
structures and to predict the basement of the Pleistocene periglacial slope deposits or the interface of

bedrock in terms of seismic velocity.
4.2.1 The theoretical background of refraction seismic (RS)

The seismic investigation focuses on the analysis and the interpretation of the propagation of
elastic waves (Telford, Geldart und Sheriff 1990) in the subsurface triggering by different sources
(sledgehammer, vibration and explosion) at the ground surface. In seismic we identify two types of
elastic waves. The first type is the body wave, and the second type is surface wave. In this research work,
we will consider body wave. Body wave differ in longitudinal or compressional or P-wave'?, and shear
or transverse or S-wave (Telford, Geldart und Sheriff 1990). Moreover, the triggered body wave takes
different paths in the subsurface (see Figure 4-3). One part of this wave propagates from the source along
the ground surface direct to receivers and is characterised by lower seismic velocity values (V;). This
seismic wave, we know as a direct wave. The other part of the triggered seismic body wave transmits
inside of the subsurface, where it reflects or breaks under an appropriated angel. If the seismic wave

breaks abrupt at the contrasting interface under the critical angel

sin6, R
sin(6,=90°) ¥,

sinf, = , (4-5)

it travels along this interface in the below medium with higher seismic velocity values (V,) than the
overlaying layer, and radiate its energy back to the ground surface. Such broken wave has the name a
refracted wave or head wave, or Mintrop wave. Receivers (black triangles in the Figure 4-3) called as
geophones and placed usually at the ground surface record the first arrivals of the direct wave and the
head wave in a digital signal that can be analysed. The direct wave, we observe at the short distance by
first geophones (Figure 4-3). The head wave, we can distinguish at the given critical distance shown in
the Figure 4-3 (Telford, Geldart und Sheriff 1990):

10 In this study, we focuses on the analysis and the interpretation of the longitudinal wave or P-wave.
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2 -1/2
X, =2z tanb, = 2z {(?) - 1} (4-6)

1

where z is the depth. The equation (4-6) demonstrates that the critical distance decreases by the increased

velocity ratio. We also can see that the refraction occurs at the distance by doubly depth to the refractor

Time, t
thcad w]::vc = ti + X/\/2
ti :
tdirecl wﬂveéz X/V1
S X, Xeo Offset, x
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—_——> 4 r
* direct wave,’ )
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\

Q ysy P
Figure 4-3': Refraction ray paths and travel time
curves modified from (Telford, Geldart und Sheriff
1990)

(Telford, Geldart und Sheriff 1990). Note that the refracted wave cannot exist at the offsets less than
critical distance. The refracted wave overtakes the direct wave at the distance larger than the critical
distance. This overtake distance we known as the crossover distance and can calculate using the

following equation:
2z

Xco = T (4'7)

Vo+V1q

The objective of RS is to find structural parameters (the thickness or the depths) and velocities
of the subsurface from recorded first arrival times presenting in a travel time diagram. Division of the
horizontal distance (x) and the seismic velocity of the upper layer represents the travel time of the directed

wave:

x
tdirect wave = V_1 . (4'8)

111 created this figure by myself based on the Figure 4.31 Relation between reflection and refraction raypaths and
traveltime curves in the chapter 4.3.3 Geometry of Refraction Paths from (Telford, Geldart und Sheriff 1990).
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The travel time of the refracted wave (SQPR, see Figure 4-3) can be calculated (Telford, Geldart und
Sheriff 1990) as

— oSQ, QP _ 2zcosbc  x _ . . X _ . -
theadwave =2 v, + v, - v, + v, - tl + v, - tl +px (4 9)
p = constant = sinby_ 1 if ©,=90° (4-10)
Vi V2

Therefore, from linear equation (4-9) we can find the seismic velocity of the head wave by
determination from the slopes of the time-distance curve in terms of the slowness or ray path parameter
(p) as reciprocal (see equation (4-10)). If we project the refracted slope line back to the time axis (Figure
4-3), we find the intercept time t; of the refracted wave. From velocity, intercept time and calculated
critical angel (equation 4-5) we can calculate the thickness or the depth of the contrasting interface:

Vit

z= 24 (4-11)

2 cos,

We therefore can obtain the wanted thickness (or depth) of the refractor, using two methods via
the crossover distance (equation (4-7)) as well as intercept time (equation (4-9)). Nevertheless, the
intercept time method determinates the depth more precise than relation between the velocities and the
crossover distance because we can determinate the intercept time from linear relation (4-9) better than
the crossover distance.

Due to the complex mathematical description of the propagated elastic wave in the rock based
on the elasticity concepts (Telford, Geldart und Sheriff 1990), the seismic technique assumes many
conditions that show the validity of seismic technique and the quality in seismic interpretation. In
following, we list the making assumptions in the refraction seismic:

(1) Homogeneous isotropic horizontally stratified medium with consequent lithological change;

(2) Ray parameter or slowness p is constant along all rays (incident, refracted and reflected);

(3) Description of seismic wave front through straight rays;

(4) Boundary conditions (the normal and tangential components of stress and displacements)
have to be continuous;

(5) The seismic velocity depends on the elastic constants (bulk modulus and shear modulus),
the density, porosity, and granular structure of the rock, and increases with the increasing
depth because of the increased pressure and density with the depth;

(6) The change in first arrival time caused by the refractor dip can influence the quantity in
seismic interpretation drastically. The utilised equations for the calculation of the refractor
dip assume small dip (less than 10°), and has limited value in the practice, especial for a
case with more than two refracting interfaces;

(7) The zone of low velocity layer (LVL) or the weathered zone in the near ground surface
space is characterised by lower velocity values, rapid change in velocity, high absorption of
seismic energy and high impedance contrast at the base of LVL. This zone can content of

gas as well as water. Because of high absorption of seismic energy, recorded travel time
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date in the LVL are characterised by lowly quality and it requires locating the shot below
the zone of LVL (Telford, Geldart und Sheriff 1990);

(8) RS determines the ray paths and travel time, but it does not analyse the amplitudes of
reflected and transmitted waves;

(9) Results of RS also like geo-electric results suffer from ambiguity because of complex
environmental conditions of an investigated study site (a steep hillslope, lateral velocity
change, elastic anisotropy).

The other important point that we have to consider is the quality of seismic data. The quality of
seismic interpretation depends strongly on the quality of recorded data. The quality of recorded seismic
data depends on the environmental conditions of an investigated area and on the applied acquisition
techniques. If we record a wanted seismic event, we denote it as “signal”. Unwanted events we represent
as “noise”, which differ in coherent noise and incoherent noise. If we observe unwelcome events at a
few traces and can predict it, we characterize as coherent noise (seismic events from near-surface
structures, caused by vehicular traffic and farm transport, multiples). Unpredictable seismic events called
as incoherent noise (wind shaking, reflexion from roots of trees, distant earthquakes, and a person
walking near a geophone), we characterize by spatially random. The incoherent noise we can consider
as coherent noise by placing of geophones at a small spacing (Telford, Geldart und Sheriff 1990). To
improve the quality of recorded seismic data (the appropriated signal-to-noise ratio or S/N), we have to
take coherence, travel direction, and repeatability into account (Telford, Geldart und Sheriff 1990). There
are some techniques to improve the signal-to-noise ratio (S/N) and to reduce the coherent noise. The S/N
can be estimated as the square root of the sum of n coherent in-phase signals S/N = +/n. The coherent
noise we can greatly reduce by the close geophone spacing. We also can decrease the noise level by the
summing (stacking) together tracers of several shots in subsequent processing at different time or
different places or both (Telford, Geldart und Sheriff 1990). There are different techniques of stacking:
vertical stacking, common-midpoint stacking, uphole stacking and many other complicated stacking.
The fundamental literature (Telford, Geldart and Sheriff 1990) therefore recommends applying the

stacking techniques in difficult areas.
4.2.2 Experimental composition

The experimental section of the refraction seismic investigation, we subdivided into three
working packages: data acquisition in the field, data processing of the collected data and the
interpretation of the processed data using different interpretation techniques.

Data acquisition, we performed at two study sites (see the chapter 3) along the hillslope profile
according to the measuring layout shown in the Figure 4-1 where we also conducted resistivity
measurements (see the subchapter 4.1). The applied seismic acquisition field parameters, we summarized

in the Table 4-4. Before beginning a RS survey, we formulated a seismic measuring design. For it, we

- 45 -



4 Methodology

had to answer several questions: (1) how many active channels should register for the covering of the

refractions, and (2) how large geophone spacing and shoot point distance have to be.

Table 4-4: The acquisition field parameters of refraction seismic at two study sites

Field parameters

Weierbach catchment

Schaefertal catchment

(forest) (grassland)
Length of profile inm 95 95
Geophone spacing in m 1 1
Source point distance in m 5 5
Number of active channels 96 48

Recording instrumentation

Geometrics ES-3000, Geode, Seismic-Module

Control System MGOS

Number of active geodes

4

Natural frequency of geophones

14 Hz

Type of geophone P-wave, vertical

Source type Metal hammer 5 kg Plastic hammer 5 kg
Sampling rate in msec 0.25 0.25
Recording time in msec 125 125

Filter

Without filter

Low-pass filter 10 Hz

Number of stacks at a shot

o 3 1
position
Data format SEG2 SEGY
Number of assistants
Total number of shoots: 26 20
Inside of geophone spread 20 20
Outside of geophone spread 6 -

To predict the whole path of refractions in the underground, it is better to use a long linear profile
with many geophone groups. At the same time, the use of over long profile is not practical to record all
geophone groups and leads to communication and logistic problems, especial for forested hillslopes. It
is sometimes recommendable to spread the profile in segments. We also know that the length of
refraction seismic profile can depend on wanted penetration depth and environmental conditions. In our
study, we therefore applied two schemas of seismic measuring layout, in order to exam which schema is
more suitable for an efficient investigation. The first schema records along the whole hillslope with all
96 active channels, and the second schema spread the hillslope profile in two segments and registers with

48 active channels. Note to reach a consistent coverage of recorded data along the profile by using of
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small active spreads, we have to overlay both segments measuring in roll-along technique. Moreover,
we decided for the relative close geophone spacing of one meter. The choice of this spacing we find as
optimal to register direct wave as well as refractions because the using of the larger geophone spacing
can lead to the missing of the direct wave in the seismogram. On the other hand, we know that the use
of the closest geophone spacing is not appropriately for refraction data because of low frequency and
longer travel paths of the head wave. Furthermore, to reconstruct continued refractors along the whole
hillslope, we performed the series of reversed refraction profiles starting at the top hillslope and moving
to the foot slope in a constant source point distance of five meter. Note we completed the shooting
refraction profiles inside of geophone spread as well as outside of geophone spread. The shooting outside
of geophone spread offers only the information about refracted waves.

After we formulated the seismic measuring design, we placed the geophones at regular,
equidistant spacing of one meter along the hillslope profile with a length of 95 m. In the Weierbach
catchment, we applied the first schema with 96 active channels for registration of seismic wave, whereas
in the Schaefertal catchment, we spread the refraction seismic profile in two segments and registered the
seismic wave with 48 active channels. The splitting of hillslope refraction profile in the Schaefertal, we
argue that surface topography in the middle part of the hillslope profile make evident a jump causing
probably by presence of a two-dimensional geological-geomorphological feature. The feature we can
identify in a satellite image (see Appendix the Figure E - 1). This jump in topography separates the
hillslope into two part: the upslope and the foot slope with wetlands. We also have to note that we did
not do the overlay of these two segments. This mistake we will take into account in the data interpretation.
Anymore, we recorded all seismograms using Geometrics? ES-3000 with Geodes and Seismic-Module
Control for Multi-Geodes Operation System (MGOS). We triggered the seismic wave with a hammer at
ground surface in terms of P-waves recorded by vertical geophones with natural frequency of 14 Hz. To
the point of data quality, we mention that we had stack the traces (especial at the forested study site -
Weierbach catchment) for the elimination of incoherent noise causing mostly by the wind shaking and
the reflexion from roots of trees. In case study of Schaefertal, we did not stack the traces, but we applied
the low-pass filter of 10 Hz. Thus, we filtered the lowest frequented noise.

We therefore collected refraction seismic data at each study site: 26 shooting refraction profile
in the Weierbach and 20 shooting refraction profile in the Schaefertal. We thereby have to note that we
could not shoot outside of the geophone spreading in the Schaefertal because of an agriculture field at
the upper part of hillslope slope and the Schaeferbach creek at the bottom of the hillslope. In the below
following passages, we will describe the steps of data processing and applied interpretation techniques.

Due to the elevation correction of refraction seismic data, we also measured the hillslope surface
topography with the Leica-Tacheometer of type TPS1200+ in a local Cartesian coordinate system with

the fixed zero-point at the top of the hillslope profile. The zero-point is the position of the first geophone.

12 http://www.geometrics.com/

-47 -



4 Methodology

The flow chart of data processing called in this study from collected data to travel time

diagram®

M)

)

@)

contains following steps:

Data reduction includes the correction of the measured refraction data for elevation and
weathering variations. This step is crucial because this correction respect the influence of
hillslope topography and near surface zone. The negligence of this correction can provide the
misinterpretation of the seismic velocity model. The elimination of the effects of near
weathering layer we can do using the so-called static correction. This correction assumes that
(1) the shot points and the geophones have to be at the planar interface; (2) the material below
this interface is homogeneous and does not content the material of LVL; and (3) the medium
between the surface elevation and the planar homogeneous medium is characterised by
velocity changes. The static correction (At) is computed as the sum of the source correction
(Ats) and the receiver correction (At;). To estimate the static correction, we need to know the
surface topography, the source depth (shot-hole depth) and information about the near surface
layer (Al-Sadi 1980). One way to win the information about LVL, is results obtained from
Plus-Minus methods (the explanation see below in the passage From travel time to the
structural subsurface model).

Seismogram analysis and identification of the first arrivals: From recorded digital signals and

elevation corrected data, we analysed the seismograms for each shots and defined the first
arrivals of seismic wave. Before beginning the identification of first arrivals of the P-wave,
we filtered the data to remove the noise that we could not eliminate by stacking in the field.
After filtering, we analysed the first arrivals of the seismic events. To recognise the first
arrivals of the direct wave and the refracted wave in a seismogram, it is necessary to consider
such factors as (1) coherence, (2) amplitude standout, (3) character, and (4) dip and normal
moveout (Telford, Geldart und Sheriff 1990). We found the similarity in appearance of signal
from trace to trace for each shot, and identified the shape of the envelope and the amplitude
standout from trace to trace. We also diagnosed the systematic difference in the trace-to-trace
travel time of an event.

Travel time analysis and definition of slope velocities: We examined the data in terms of the

first arrivals in a travel time diagram in order to define seismic velocities of P-waves.
Recognition and identification of the direct wave and the refracted wave in the travel time
diagram based on the slopes of time-distance curve. We also proofed that (a) the reciprocal
time is the same for reversed profiles; (b) the intercept time for profile shot in different

directions at the same shot point is equal; and (c) travel time curves of series shooting profiles

13 We processed and analysed the collected refraction seismic field data at each study site using software
REFLEXW Version 6.0.9 (Sandmeier 1998-2009) from http://www.sandmeier-geo.de
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have to be parallel. From travel time analysis, we also can recognize the refractor dip by

different apparent velocity and different intercept time.

We note that the main problem of RS is to recognize the different head waves. We should decide:
when did the several refractors occur; how many refractors can we identify; how strong is the effect of
the earth surface topography and the near surface layer.

From travel time to the structural subsurface model

The main task of RS is to reconstruct the path of seismic wave and to develop a structural
subsurface model with the physical properties of the lithology and the predicated depths of the
contrasting interfaces in the underground. However, we used different interpretation techniques of
refraction seismic. The use of different interpretation techniques can avoid the misinterpretation of the
refraction seismic data, and can control correctness of obtained results. The fundamental literature
(Telford, Geldart und Sheriff 1990) refers that there are three classical options to interpret refraction
seismic data: (1) the application of equation (4-6), (4-7), (4-9) and (4-11); (2) Delay-time method; and
(3) Wave front reconstruction method. There also are other useful interpretation techniques for the
subsurface reconstruction, for example (4) refraction seismic tomography and (5) ray tracing modelling.

The use of equations (4-7), (4-9) and (4-11) assumes that refractor is planar and it does not
consider the topography of the refractor. This technique is successful for the case for two-layer model,
but it can fail for multi-layers because it solves the deeper refractors by locating the shot point and
geophones at the first refractor.

The delay-time technique introduced by Gardner in 1939 is quite famous in the interpretation of
refracted data (Telford, Geldart und Sheriff 1990). Nowadays, there are many interpretation schemes
using delay time such as Barry’s method and Wyrobek’s methods (Telford, Geldart und Sheriff 1990).
The delay-time technique assumes that (1) refraction travel time has to correct for elevation and
weathering, and (2) the predicted depth from source / receiver to the refractor is a perpendicular

projection (Telford, Geldart und Sheriff 1990). We therefore can determine the delay time as
§= 8+ 6 ~ t;— =, (4-12)

V2
where Js and or are called as the delay time at the shot point and the geophone, and tg is the observed
refraction time at the geophone. This technique offers the relief of the refractor and the certain errors,
but it does not consider the velocity variation in the near surface zone (NSZ).

In this study, we will interpret refraction seismic data using wave front reconstruction technique
(plus-minus method), refraction seismic tomography and ray tracing modelling. In the next passages, we
will introduce and describe the principle of these techniques.

The wave front reconstruction technique provides an elegant method (Telford, Geldart und
Sheriff 1990) to map the refractors using two wave front systems from symmetrical shot points: forward
and reversed. Thornburgh applied the technique of the wave front reconstruction in 1930 (Militzer und

Weber 1987). (Hagedoorn, 1959) mentioned that the attractive Thornburg’s technique was not famous

- 49 -



4 Methodology

during the long time. In 1946, the Russians developed and published (Riznichenko 1946) the same
method in more complete form than Thornburgh (Hagedoorn 1959). The concept of the wave front
reconstruction considers the wave motion in a three dimensional space and bases on the Huygens’s
principle. The advantage of this concept is that it requires only the knowledge about seismic velocity in
the subsurface, and not the refractor. The refractor we can draw from observed travel time at the
geophones as tangent of envelope of the intersecting wave fronts for the equal time interval. Using this
principle, we can consider the multi-layer system. Nowadays, there are many interpretation techniques
based on the wave front methods. In the next passage, we will describe one of the classical interpretation
techniques published by (Hagedoorn 1959) known as the plus-minus method.

Plus-Minus method (PMM) can reconstruct the refractor with irregular topography and gather
the lateral velocity variation in a simple and rapid manner. This technique can investigate the subsurface
structure of LVL in order to apply the obtained result for the static correction in reflexion seismic. This
technique also admits the controlling of data quality and the optimisation of the shot configuration (van
Overmeeren 2001). The principle of PMM developed by (Hagedoorn 1959) shown in the Figure 4-4.
Two symmetrical shot points (A and B) placing far enough from each other draw a diamond pattern of

wave fronts at regular time intervals. The horizontal diagonals of diamonds shape an envelope where

Minus lines
: T-:tA_tB-tAB
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Figure 4-4: The principle of the “Plus-Minus” method developed by
(Hagedoorn 1959)
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the sum of travel time from both shot point is equal. These lines describe Plus-lines, which determine
location of the refractor in the subsurface. The following equation (4-13) calculates the time plus values
(T)

T =ty + tg — tup (4-13)
where ta and tg are the observed travel time at the geophones from the shot point A and from the shot
point B, respectively, and tag is the total travel time from the shot point A to the shot point B. These
Plus-values also represent intercept times of the refractors when we project the time-distance slope from
the refractor back to the shot point.

The vertical diagonals of diamonds represent the difference between the travel times from the
shot points A and B. This difference must be constant because of increased equal travel time interval of
overlapped wave fronts. Hagedoorn titled these time difference lines as Minus-lines and calculated the
time minus values (T) in the following way

T~ =ty — tg — tup. (4-14)

These vertical lines characterise the constant velocity from surface to the refractor. The upper
graph in the Figure 4-4 shows the slope of plotted time units versus distance. This slope describes the
measured velocity of the wanted refractor.

PMM therefore assumes that (1) the parallel plus lines to the refractor; (2) the minus lines do
not converge or diverge; (3) constant velocity values and (4) the range of detected refractor bounded by
the two crossover (Xco) points of symmetrical spreads. PMM interpretation finally results the exact depth
of refractor.

Plus-minus technique can calculate from first arrivals the location of refractor using
conventional software such as Microsoft Office Excel, MATLAB. For example, (van Overmeeren 2001)
demonstrates the plus-minus program developing in MATLAB to investigate an aquifer in Yemen.

Our case study will illustrate the determination of refractor with plus-minus technique using
software Microsoft Office Excel installing on each laptop or PC with relatively lower costs and needing
simple knowledge of programming. The processing steps based on the processing of (van Overmeeren
2001) include the interpretation of single symmetrical spreads and integration of these spreads into the
investigated hillslope profile. We therefore subdivided the RS data interpretation processing into
following steps:

a) Selection of single symmetrical spreads from collected RS data and preparation into a single

matrix, which we plotted in a travel time-distance diagram;

b) Definition of velocity slope segments in terms of direct wave and refracted wave, and

calculation of velocity values;

¢) Determination of the total travel time between the two symmetrical shot points;

d) Calculation of plus and minus times values using the equations (4-13) and (4-14);

e) Definition of the refractor velocity from the minus time values based on the time difference-

distance slope;
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f) Calculation of the refractor depth from plus times (the intercept times) values and the
measured velocity values of the overlying layer and underlying layer with equation (4-11);

g) The visual demonstration of the resulting interpretation.

The obtained interpretation results using Plus-Minus technique, we future will compare with
interpretation results obtained by seismic tomography and ray tracing. We can integrate PMM subsurface
model as starting model by FD ray tracing modelling or for the static correction in order to reprocess the
field data. Due to the study aim to suggest an efficient and fast technique, we will not reprocess the data
in the terms of static corrected data. In our study case, we will compare different RS interpretation
techniques and decide what kind of technique is more efficient for the hillslope characterization.

After introduction of Plus-Minus technique, we will describe the principle of seismic
tomography and ray tracing modelling as well as applied software.

Refraction seismic tomography (RST) is quite a popular interpretation technique by
geophysicists as well as by no geophysicists for interpretation of refraction seismic data in many
scientific studies (Hausmann, et al. 2013) because of easy application and it does not require the
advantage knowledge for the deeper understanding of seismic principle.

The principle of seismic tomography is that the first arrivals of series of refraction seismic
spreads will inverted to the two-dimensional section. Todays, there are various refraction seismic
inversion programs to invert refraction seismic data. The principle of mostly seismic tomography
programs is to solve forward problem based on the tomographic algorithms. These programs adapt
iterative and automatically synthetic travel time data to real data to obtain the two-dimensional section
describing the seismic velocity field in the subsurface, but it does not predict exact refractor depths.
Nevertheless, we applied refraction seismic tomography in the data processing in order to receive the
first information about the distribution of seismic velocity field in the subsurface.

In our study case, we processed measured RS data with Ra/TT2dTomo* software (Gunther,
Bentley and Hirsch 2006). This inversion program calculates the subsurface model using the algorithm
of Shortest Path (Dijkstra 1959) and unstructured triangle meshes and can integrate surface topography.
The algorithm also can provide robust modelling. After loading of travel time data in the program, we
specified a starting model with respect to geometry (model discretization) and velocity values. Then, it
calculates theoretical travel time and compares with real data to find an appropriate subsurface model.
The process is iterative repeated by model changing, and it is breaks if a good matching of theoretical
and real travel time data fulfil the stop criterions. The final inversion model describes the distribution of
seismic velocity in the underground. At the same time, we can consider the inversion results in terms of
the ray parameter. The image in view of the ray parameter can provide precise information about
contrasting interface because of the uniformity of the ray parameter and its abrupt change at contrasting

interfaces.

14 http:/fwww.resistivity.net
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The ray tracing modelling is other technique to interpret seismic data. This technique simulates
the travel time of propagated seismic wave based on the wave front inversion and finite-difference (FD)

approximation of the Eikonal equation (Weber, Riimpker and Gajewski 2007)
1

B(@)

where T (7) is the Eiconal or travel time from source to the point, and 8 () is medium velocity depending

VT ()| = (4-15)

on the position vector 7 at the point with the coordinates (x, y, z). The Eiconal equation means that a
wave front propagates perpendicular to themselves with local velocity (Weber, Riumpker and Gajewski
2007).

We performed the ray tracing modelling using software REFLEXW? Version 6.0.9 (Sandmeier
1998-2009). With respect to the software introduction given by (Sandmeier 1998-2009), we executed
iterative developing of subsurface model trough assign and combine of travel time based on the wave
front inversion and FD-approximation of the Eiconal equation. We subdivided the modelling process
into the following steps:

a) Loading of first arrivals from spread series with respect to forward and reverse spread

because wave front inversion requires the application of symmetrical wave fronts;

b) Assign of measured travel time to layers;

¢) Travel time combine for the upper layer and deeper layers. In this step, we also included the
surface topography by processing of the upper layer. Therefore, the obtained inversion
subsurface model considers the effect of surface topography;

d) The application of the wave front inversion for each assigned layer individually based on a
linear regression for all forward and reverse spreads (Sandmeier 1998-2009). We note that
the difference of the total travel time between forward and reverse spreads must be small.

This developed subsurface model based on the wave front inversion, we used as a starting model
for the ray tracing modelling. The principle of the ray tracing modelling is to compare calculated travel
time data to the measured data. We executed iterative and manual changes of model parameters
(geometry of refractors and velocity values) and repeated the ray tracing process many times until we
found a wanted subsurface model reflecting measured travel time and matching calculated and real data.

Finally, to control the results of applied interpretation techniques, we used vertical seismic
profiling (VSP) at several shot positions based on CMP® (1D) velocity analysis. We realized VSP
technique using software REFLEXW?" Version 6.0.9 (Sandmeier 1998-2009). CMP analysis results a
one-dimensional velocity-depth profile trough iterative velocity adaptions.

As a final point, we will compare and discuss results obtained from different RS interpretation

techniques in the light of refractor depths and velocity values.

15 http://www.sandmeier-geo.de
16 CMP is meaning common midpoint
7 http://lwww.sandmeier-geo.de
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4.3 Geo-electric versus refraction seismic, and versus Combination

After the individual representation of resistivity and refraction seismic techniques, we will
interpret jointly resulting geo-electrical and refraction seismic subsurface models. We also will discuss
the advantages and limitations of each technique. On the one hand, geo-electrical models provide the
information on the saturated subsurface zones, whereas refraction seismic links directly to geotechnical
parameters (Cardarelli, Cercato and Donno 2014). On the other hand, we known that the geophysical
interpretation of geo-electrical data as well as seismic data suffer from ambiguity. The joint interpretation
of resistivity and seismic techniques therefore can complement our understanding about the nature of
geophysical data interpretation in order to improve the geo-image of the investigated area. The Table 4-5
summarizes the advantages of each technique. The one-dimensional geo-electrical modelling predicts
exact the depths of contrasted electrical boundaries, whereas the two-dimensional geo-electrical
tomography images only the patterns of saturated and dry subsurface zones. The application of RS is
useful to predict the weathered bedrock interface and link to the geotechnical parameters.

The discussion questions in this chapter is how we can understand the geophysical models
obtained from resistivity and seismic data sets using 1D- and 2D-techniques, in order to estimate the
structural similarity between resistivity and seismic velocity models. Hence, to interpret the geo-models
jointly, we make the assumptions that there are the coupling between geo-electrical and seismic models
and the slight lateral change of petro-physical parameters.

Table 4-5: Summarization of applied geophysical methods

Method Effectiveness Interpretation technique
VES The exact depth predication of Four-electrode system to develop
contrasted electrical interfaces the 1D-models
ERT The illustration of the patterns of Multi-switch system for the imaging
saturated and dry subsurface zones | of the 2D-section
The predication of the weathered Seismic tomography, wave front
RS bed rock boundary and linking to reconstruction using PMM and ray

the geotechnical parameters tracing to illustrate the 2D-section

Nowadays, it does not exist a universal relation between electrical resistivity and seismic
velocity values (Bedrosian, et al. 2007). One way to couple electrical and seismic models is to perform
the joint inversion based on the mathematical algorithms using the common boundaries between the
neighbouring layers obtained through the VES local 1D-approximation (Nardis, Cardarelli and Dobroka
2005). Other example described by (Bedrosian, et al. 2007) provide a quantitative, statistical approach

based on the magneto-telluric seismic models to link electrical and seismic parameters. Many
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geophysical investigations also implement qualitative correlation between electrical and elastically
properties based on the joint interpretation of resistivity and seismic data.

This research study focuses on the qualitative interpretation of resistivity and seismic velocity
models through the structural comparison between geophysical models. The best and fast way to compare
qualitative the individual models with each other is a transparent overlay of models, in order to localize
seismic and electrical patterns to respect with the geological-lithological knowledge. Moreover, the more
precise comparison is through the subordination of the exact layer boundaries of seismic and electrical
interfaces with the uniform petro-physical values. The seismic and electrical tomography offers the
qualitative comparison by the funding of the localized similar patterns. Whereas the structural boundaries
obtained from the one-dimensional analyse and wave front reconstruction provide a better compiling of
the models. We will join both techniques, in order to develop a realistic hydro-geophysical conceptual

model, which has to be representative for the investigated catchment.
4.4 Joint three-dimensional interpretation of the investigated hillslope

The three-dimensional geophysical interpretation of measured geophysical data provides the
visualisation of the investigated area in terms of 3D and the understanding of the relevant hydrological
processes. The construction of a detailed three-dimensional image involves the large effort in the field
as well as during the data processing (Hoyer , et al. 2015). Many scientific studies conduct many profile
measurements along and cross to the investigated area. We introduced the several examples of these
studies in the chapter 1.3.

We motivate to create a three-dimensional section using two profiles with minimal effort, in
order to prove the suitability of the suggested system-oriented approach. One profile is along the
investigated study site, whereas the second profile is cross to the first profile. We believe that such design
can provide enough information on the subsurface structure to understand the relevant hydrological
processes.

To create the three-dimensional hillslope subsurface model, we considered the following three
steps:

(1) Structural comparison of geo-models of two profiles. The first profile along the hillslope,

and the second profile is cross to the hillslope;
(2) Proving of the correctness of the stratified subsurface of the investigated hillslope using
VES data along the hillslope profile and ERT data cross to the hillslope profile;

(3) The creation of the 3D-hillslope subsurface model in terms of seismic velocity units using
Golden software Grapher.

Therefore, the obtained three-dimensional subsurface model has to demonstrate the validity and

the correctness of the developed system-oriented geophysical approach.
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5 Results and discussions

This chapter will present the results at the two study sites (the Weierbach and Schaefertal
catchments) and discuss in the light of the successful of the suggested system-oriented geophysical
approach. At the beginning, we will show the geo-models obtained individual and independent from each
other using the different interpretation techniques. Then, we will compare the geophysical models in
order to demonstrate the similarities and discrepancies between VES-, ERT- and RF-models. To
conclude this chapter, we will show the three-dimensional subsurface model for each study case.

5.1 Geo-electrical investigation

5.1.1 Application in the Weierbach catchment

We begin to demonstrate and to discuss the result of ERT survey shown in the Figure 5-3 in the
upper diagram. Also included are slope topography, geographic direction, slope exposition and the
geomorphologic features (the Weierbach creek, wetlands, and forested road) that can help to interpret
the inversion model. We calculated the ERT model to the maximum depth of 10 m. The ERT images
recognizes three lateral continuous electrical resistivity patterns. The thin upper layer with relatively high
resistivity values in the range of 1000 - 1900 Qm reaches the depth of ca. one meter and continues almost
whole slope. We can observe that this layer is absent in the bottom slope and the wetlands contenting of
lower resistivity values (300 - 1000 Qm). The relatively high resistivity upper layer, we can associate
with the loamy soil, whereas the low resistivity in the bottom slope and the wetlands we can associate
with the conductive-outcropped fractured bedrock. Beneath the middle layer with the high resistivity
values (more than 3000 Qm) occurs the whole slope and reaches the depth of ca. five meter. The middle
part of this layer in the depth of ca. 2.5 m demonstrates an extremal significant resistivity variability
(more than 5000 Qm). We can assume that this high resistant layer associating also with loamy soils
indicates a good possibility for the drainage system causing by the tree root networks and scattered schist
stones. Moreover, if we follow this high resistant layer in the direction of the downslope and the wetlands,
we will observe that this layer does not exist here because this profile part demonstrates the low resistivity
values ranging from 300 Qm to 1000 Qm. As in the case of the upper layer, we associate this hillslope
part with the conductive-outcropped fractured bedrock. The low resistivity layer (300 - 400 Qm) exists
below the high resistant layer. This layer outcrops in the foot slope and wetlands. Maybe, we can
subordinate this low resistant unit with the fractured bedrock. Moreover, if we observe the subsurface
area framing between the two isolines from 1000 Qm to 375 Qm, we can mark this subsurface part as a
transition zone associating with the possible subsurface flow path.

As we can see, the ERT image represents only the several patterns of the localized conducted
areas without precise boundaries. Therefore, the main difficulty in the interpretation of the ERT results
is that ERT model cannot detect the precise depth interface between layers. We can only determine by

the bounding of significant resistivity areas using the contour lines or isolines. Therefore, we cannot
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determine precise the interface between the upper layer and the middle layer because it is resolved
unclear. In contrast to it, the interface between the high resistant middle layer and the low resistant down
layer, we determined by the isoline of 1000 Qm in the depth of 4 - 5 m or with respect to topography
(the relative height) from -5 m to -25 m.

At that point, let us demonstrate and discuss the results of the VES survey shown in the Figure
5-3 in the below diagram. Before we start describing the VES image, we will demonstrate and analyse
the VES measured and inverted data. The analysing of the sounding curves with respect to the sounding
curves classification presented by (Telford, Geldart, & Sheriff, 1990) informs us that the most sounding
curves indicate the type K (for example the Figure 5-1, the left graph) and Q (for example the Figure 5-2,

the left graph). Furthermore, we proved the correctness on homogeneous stratified subsurface. The left
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Figure 5-1: The case study of the Weierbach catchment: Sounding curves of Schlumberger
and Half-Schlumberger measurements (the left diagram) at the ERT profile O meter presenting
an example for lateral homogeneity perpendicular to the ERT profile, and their inversion

result with equivalent models (the right graph)

graph in the Figure 5-1 representing one example for the lateral homogeneous medium confirms the
agreement of the equation (4-4). The 16 from 21 VES profile points describe the hillslope profile as the
homogeneous stratified subsurface. In contrast to it, the five VES profile points in the middle slope
(between 65 and 85 profile meter) does not agree the equation (4-4) and indicate the shallow
heterogeneity in the hillslope subsurface structure representing the presence of the two-dimensional
features. The left graph in the Figure 5-2 illustrates an example for lateral shallow heterogeneous
medium. Actually, we cannot invert these measured VES data to a 1D-depth model because it can lead
to the misinterpretation of the obtained VES model (Hoffmann and Dietrich 2004).

After analysing the sounding curves and the proof of the correctness the equation (4-4), we
inverted the valid sounding curves to the 1D-depth models with quite good fitting shown in the Appendix

A - 1. Theright graph in the Figure 5-1 shows an example of 1D-inversion results with equivalent models.
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The obtained 1D-models content of the four layers because we can identify in the behaviour of the
sounding curves four parts (decreasing-increasing-decreasing-increasing). We want to stress that the
presence of the deepest layer is not sharp due to the poor contrast in the depth. Nevertheless, we believe
that the deepest layer exists in the underground because the apparent resistivity values increase gradually
at the large current electrode spacing. Besides, we have to note that we also inverted the invalid measured
VES data taking as a starting model from the inversion of the VES valid models into account. The middle
graph on the right site in the Figure 5-2 illustrates an example of 1D-inversion results for invalid VES
data with equivalent models. The Table in the Appendix A - 1 as well as the lower graph of the Figure

5-3 also demonstrates the homogeneous marked as bold letters or lines and heterogeneous hillslope areas.
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Figure 5-2: The case study of the Weierbach catchment: Sounding curves of Schlumberger and Half-
Schlumberger measurements (the left diagram) at the ERT profile 75 meter indicating significate shallow
heterogeneity perpendicular to the ERT profile, and their inversion results with equivalent models (three
graphs at the right site). The central graph of the inversion results presents Schlumberger measurement,
whereas the left graph from the central graph is HSB for WNW-site, and the right graph from the central
graph is HSB for ESE-site

As soon as we prepared the 1D-depth models from measured data, we collected all models joint
and constructed the VES hillslope model shown in the Figure 5-3 in the below diagram. In order better
to interpret the constructed VES model, the figure also contents of slope topography, geographic
direction, slope exposition, the geomorphologic features (the creek channel, wetlands), layer boundaries
with confidence interval of £ 95 %, and the localized homogeneous hillslope areas drawn with the bold
lines. In contrast to the ERT model, the VES hillslope model demonstrates a deeper 2D-section, which
reaches the averaged depth of ca. 18.5 m. The predicated depth describing in the chapter 4.1.1 according
to the rule of thumb (Kirsch 2006) is 16 m for the current electrode spacing AB = 80 m. Moreover, the
two-dimensional VVES-image recognizes four lateral continuous electrical subsurface units. The relative

high resistant upper layer with the averaged resistivity values of 1730 Qm reaches
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Figure 5-3: The case study of the Weierbach catchment: Geo-electrical investigation using ERT slope
profile (the upper diagram) perpendicular to the Weierbach creek, and VES-spreading (the below
diagram) parallel oriented to the creek. The VES results for locations with lateral homogeneity

perpendicular to the ERT profile are drawn with bold line

a depth of approx. 0.8 m along whole hillslope, after which the resistivity values increase rapidly. The
high resistivity values of ca. 8940 Qm characterize the second layer along upslope and middle slope,
which reaches a depth of ca. 1.7 — 1.8 m, after which the resistivity values decrease rapidly (330 Qm).
The intermediate resistivity values of 2020 Qm characterize the second layer along the bottom slope. We

can associate the high resistant layer with well subsurface drainage. The underlying low resistivity layer
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(330 Qm) range a depth of 18.7 — 18.8 m, after which the resistivity values increase gradually. We can
associate the low resistivity layer with the fractured bedrock, whereas the deeper layer with gradual
increased resistivity values subordinates into the compact bedrock. The high resistant bedrock (850 Q)
characterize the upslope and middle slope, whereas the slightly increased resistivity values of ca. 350
Qm characterize the bedrock in the bottom slope.

As we can see, the VES image delivers the deeper insights of the underground and predicates
precise the contrasting interfaces in contrast to the ERT image. Besides, we can estimate and illustrate
the uncertainty in the depth detection and in the determination of the resistivity values through the
equivalent models. We determinate the confidence interval where the resistivity vales can be
approximately constant. Moreover, the examining the measured resistivity VES data categorizes the
investigated hillslope into the significant hillslope areas differing in the two homogeneous areas and one
heterogeneous area. We called these significant hillslope areas as the elementary functional units (EFU’s)
and marked with the number (EFU 1, EFU 2 and EFU 3) in the below diagram in the Figure 5-3. We
believe that these hillslope areas can significant control the character of the subsurface flow. EFU 1 and
EFU 3 represent the homogeneous hillslope areas, whereas EFU 2 identified the impact of the varied
shallow subsurface on the down slope at the profile meter from 65 m to 85 m. EFU 1 characterizes the
upslope and the middle slope at the profile meter from 0 m to 65 m. The foot slope in the range of the
profile meter from 85 m t0100 m represents the homogeneous EFU 3. We also marked the significant
hillslope areas in Table presenting in the Appendix A - 1.

Moreover, in order to compile the distinguished EFUs with the identified layer units, we plotted
resistivity and thickness values for each layer in terms of EFU’s as a box-whisker diagram illustrated in
the Figure 5-4. This diagram illustrates clearly the resistivity contrast between high resistant upper layers
(the first and second layers) and low resistant bottom layers (the third and fourth layers). The upper layer
of the EFU 1 and EFU 2 demonstrates significant higher resistivity values and a strong contrast between
the first and second layer compared to the EFU 3, which implies intermediate resistivity values and a
poor contrast between these layers. Moreover, if we consider the deeper low resistant layers we can see
that the EFU 2 does not indicate the significant resistivity contrast between the third and fourth layer,
whereas the EFU 1 and EFU 3 reflect the resistivity contrast between these layers, especial the EFU 1.
Furthermore, we can observe the variability in the layer thickness in terms of EFU’s. The little thickness
values of ca. 0.8 - 1.5 m characterize the high resistivity upper layers for all EFU’s. The low resistivity
layers for EFU 1 and EFU 2 imply the massive stratum (ca. 18 m) in contrast to the EFU 3 indicating the
relatively little thickness values of ca. 3.5 m. The total investigated thickness reflecting the boundary of
the bedrock takes the different places in the depth. The deeper bedrock location characterizes the EFU 1
(in the depth of ca. 30 m) and EFU 2 (in the depth of 18 m), whereas the bedrock of EFU 3 reaches the
depth of ca. 4.5 m.

Until now, we can see the good correlation between the interpreted resistivity layers and the

significant hillslope areas (EFU’s). However, we classified the interpreted resistivity layers more detailed
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into the so-called electro-stratigraphic units (ESUs) with respect to the resistivity distribution and
variability in each stratum. We demonstrated this classification in the Figure 5-5 und in the Table 5-1.
The classification assumes that a stratigraphic unit implies a uniform resistivity distribution and reflects
the geological-geomorhological background. The Figure 5-5 illustrates four ESUs (ESU 1, ESU 2, ESU
3and ESU 4). The ESU 1 and ESU 3 represent the first and the third layer, respectively, and imply the
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Figure 5-4: The case study of the Weierbach catchment: Box-whisker plots of resistivity (the left
diagrams) and thickness (the right diagrams) distribution downhill as well as over the width of the
hillslope in terms of EFU’s

uniform resistivity distribution without significantly discrepancies inside of these layers. In contrast to
it, the ESU 2 and ESU 4 recognise two patterns inside of each layer. We subordinated these patterns the
in subunits (ESU 2a and ESU 2b; ESU 4a and ESU 4b). The high resistivity values characterize ESU 2a
(more than 5000 Qm) and ESU 4a (ca. 1000 Qm) along the upslope and middle slope, whereas ESU 2b
and ESU 4b characterize the below slope and imply the relatively lower resistivity values of ca. 2000
Qm for ESU 2b and ca. 500 Qm for ESU 4b. The Table 5-1 describes the electro-stratigraphic units with
the respect to the obtained results and the lithological knowledge. How we can see from the Table 5-1

that the ESU 2 represents the good drainage stratum. We believe that the tree root networks and the
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Figure 5-5: The case study of the Weierbach catchment: Interpretation of VES results in terms of ESU’s

Table 5-1: The case study of the Weierbach catchment: The interpreted ESU’s

ESU Electrical resistivity , Qm Unit description Depth, m
Uniform resistivity distribution;
ESU 1 ca. 1730 £ 620 )
Loamy soils
Loamy soils with scattered schist ca.-0.83+0.5
ESU 2a ca. 8940 + 4500 stones and the massive tree root
networks
Loamy soils with scattered schist
ESU 2b ca. 2020 + 1530 stones and the little tree root
networks
Uniform resistivity distribution; ca.-1.81+0.6
ESU 3 ca. 330+ 74
Fractured bedrock
ESU 4a ca. 855 £ 440 Compact or less fractured bedrock ca.-18.71+8.4
ESU 4b ca. 403 + 162 Fractured bedrock

scattered schist stones as well as the slope topography require the resistivity differences between the two
subunits (ESU 2a and ESU 2b). In contrast to ESU 2, the ESU 3 represents a reservoir for the water store.
Moreover, we associate the bedrock subunits with the geologic-geomorphological developing of the

hillslope and the study site.
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Finally, to demonstrate how similar the ERT and VES hillslope models, we compared both
models trough the transparent overlay. We can compare only the first and the second layers, because the
ERT image does not deliver the deeper insights. The Figure 5-6 demonstrates a good matching of both
models. The interface of first layer indicates approximately the same depths in each case, whereas the
discrepancy of second layer between two models is ca. 0.7 m. Such discrepancy in the depth detection,
we can associate with the resistivity change in the model developing.
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Figure 5-6: The case study of the Weierbach catchment: Comparison of ERT and VES results of the first

and second interfaces

5.1.2 Application in the Schaefertal catchment

Here we start presenting and discussing the result of ERT survey illustrated in the Figure 5-9 in
the upper diagram. In order better to understand the inverted ERT model, we also included slope
topography, geographic direction, slope exposition and the geomorphologic features (the Schaeferbach
creek, wetlands). We calculated the ERT hillslope model to the maximum depth of 10 m. The ERT image
implies the two lateral continuous electrical resistivity layers. The upper layer with relatively high
resistivity values in the range of 250 - 350 Qm continues almost whole slope and reaches the depth of
4.5 meter at the upslope and 2 meter at the down slope. We can observe that this layer is absent in the
wetlands contenting of lower resistivity values (less than 150 Qm). Moreover, the significant high
resistant (450 - 600 Qm) small features characterize the first 1.5 meters of the upper layer. The relatively
high resistivity upper layer, we can associate with the fine loamy soil, whereas the significant high

resistivity anomalies we can associate with the rock waste and fragments of mountain loam. The low
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resistivity layer (less than 150 Qm) exists below the high resistant layer. This layer outcrops in the
wetlands. Maybe, we can subordinate this low resistant unit with the well water saturated fissured upper
bedrock. Moreover, the wetlands imply a well-conducted homogeneous zone (less than 150 Qm) and
does not indicate the structure. Furthermore, if we observe the subsurface area framing between the two
isolines from 250 Qm to 150 Qm, we can mark this subsurface part as a transition zone associating with
the possible subsurface flow path or a connection zone between the hillslope fissured upper bedrock and
the wetlands.

The ERT image of the Schaefertal hillslope also delivers the spatial patterns of localized
resistivity areas without precise boundaries. As in the case of the Weierbach hillslope, we predicted the
interface between the high resistant upper layer and the low resistant bottom layer by the resistivity
isoline of 250 Qm, which continues in the depth from 4.5 m to 2 m or with respect to topography (the
relative height) from -5 m to -10 m.

Up to now, we will demonstrate and discuss the results of the VES survey shown in the Figure
5-9 in the below diagram. As in the case of the Weierbach hillslope, we will begin with the analysis of
the measured and inverted data. The analysing of the sounding curves with respect to the sounding curves

classification presented by (Telford, Geldart, & Sheriff, 1990) informs us that the most sounding curves

1000 - 0.1
T ]
G, ]
2 i ® A 13 pee i
.z ® g e © =
Z 100 - ' 8 E
= ] =
o J o
= . Sm A
5 B @ Schlumberger 10 ]
g i + HSH East
& A HSH West
<<
].O T T T T 71T T T T T 71T
1 'lOAB 100100.1 '
Spacine 2 [ ¢ 10°
pacing - 3 Resistivity [Qm]

Figure 5-7: The case study of the Schaefertal catchment: Sounding curves of Schlumberger
and Half-Schlumberger measurements (the left diagram) at the ERT profile 75 meter
presenting an example for lateral homogeneity perpendicular to the ERT profile, and their

inversion result with equivalent models (the right graph)

measured at the upslope indicate the type Q (for example the Figure 5-8, the left graph). Whereas the
type H describes the most sounding curves of the down slope and wetlands (for example the Figure 5-7,
the left graph). Additionally, the sounding curves of middle slope (between 45 and 55 profile meters)

draw the type K. Furthermore, we proved the correctness on homogeneous stratified subsurface. The left
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graph in the Figure 5-7 representing one example for the lateral homogeneous medium confirms the
agreement of the equation (4-4). The six from 20 VES profile points describe the hillslope profile mostly
in the well-saturated wetlands as the homogeneous stratified subsurface. In contrast to it, the 14 VES
profile points at the slope (between 0 and 65 profile meter) does not agree the equation (4-4) and indicate
the shallow heterogeneity in the hillslope subsurface structure representing the presence of the two-
dimensional features. The left graph in the Figure 5-8 illustrates an example for lateral shallow
heterogeneous medium with the minor discrepancies of sounding curves (ca. 60 Qm) at the small
electrode distance. Actually, we cannot invert these measured VES data to a 1D-depth model because it
can lead to the misinterpretation of the obtained VES model (Hoffmann and Dietrich 2004).

Nevertheless, we will invert these data because of the slight discrepancies (ca. 60 Qm).
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Figure 5-8: The case study of the Schaefertal catchment: Sounding curves of Schlumberger and Half-
Schlumberger measurements (the left diagram) at the ERT profile 15 meter illustrating a light shallow
heterogeneity perpendicular to the ERT profile, and their inversion results with equivalent models (three
graphs at the right site). The central graph of the inversion results presents Schlumberger measurement,
whereas the left graph from the central graph is HSB for West-site, and the right graph from the central

graph is HSB for East-site

After analysing the sounding curves and the proof of the correctness the equation (4-4), we
inverted the valid sounding curves to the 1D-depth models with quite good fitting shown in the Appendix
A -2. Theright graph in the Figure 5-7 shows an example of 1D-inversion results with equivalent models.
The obtained 1D-models content of the different number of the layers. The layer number depend on the
behaviour of the sounding curves. We can observe that the behaviour of the sounding curves is connected
with the position of the hillslope profile. The hillslope himself imply the four- and three-layer model,
whereas the two-layer model characterizes the wetlands. The Table in the Appendix A - 2 illustrates the
layer number along the hillslope profile. We want to stress that the presence of the deepest layer is not
sharp due to the poor contrast in the depth. Nevertheless, we believe that the deepest layer exists in the

underground because the apparent resistivity values increase gradually at the large current electrode
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spacing. Besides, we have to note that we also inverted the invalid measured VES data because we
believe that the discrepancies of sounding curves (ca. 60 Qm) are too small and we can consider the
measured data as nearly homogeneous data sets. The middle graph on the right site in the Figure
5-8illustrates an example of 1D-inversion results for invalid VES data with equivalent models. The Table
in the Appendix A - 2 as well as the lower graph of the Figure 5-9 also demonstrates the homogeneous
marked as bold letters or lines and heterogeneous hillslope areas.

After we prepared the 1D-depth models from measured data, we collected all models joint and
constructed the VES hillslope model shown in the Figure 5-9 in the below diagram. In order better to
understand the VES hillslope model, we also included in the graph slope topography, geographic
direction, slope exposition, the geomorphologic features (the Schaeferbach creek, wetlands), layer
boundaries with confidence interval of = 95 %, and the localized homogeneous hillslope area drawn with
bold lines). In contrast to the ERT model, the VES hillslope model demonstrates a deeper 2D-section,
which reaches the averaged depth of ca. 23 m. The predicated depth describing in the chapter 4.1.1
according to the rule of thumb (Kirsch 2006) is 16 m for the current electrode spacing AB = 80 m.
Moreover, the two-dimensional VES-image splits the profile in two part. The first part (the hillslope
himself) recognizes the four and three lateral continuous electrical subsurface units. Whereas, the other
part (the wetlands) imply the two lateral continuous electrical subsurface units. The relatively high
resistant upper layer with the averaged resistivity values of 460 Qm has a form of a wedge and reaches
a depth from 3 m to 0.2 m decreasing in the downslope direction, after which the resistivity values
decrease gradually. The relatively low resistivity values of ca. 300 Qm characterize the second layer,
which continues almost the whole slope in the form of a wedge with the variable depths decreasing in
the downslope direction and ranging from 15 m (at upslope) to 1 m (at down slope) and is absent in the
wetlands. The underlying low resistivity layer (130 Qm) range an averaged depth of 30 m, after which
the resistivity values increase gradually (ca. 270 Qm). We can associate the low resistivity layer with the
fissured bedrock, whereas we subordinate the deeper layer with gradual increased resistivity values into
the fresh bedrock.

As we can see, the VES image delivers the deeper insights of the underground and predicates
precise the contrasting interfaces in contrast to the ERT image, but the determination of depth was a bit
difficult in contrast to the Weierbach hillslope because of the a diffuse contrast of medium parameters.
Besides, we can estimate and illustrate the uncertainty in the depth detection and in the determination of
the resistivity values through the equivalent models. We determinate the confidence interval where the
resistivity vales can be approximately constant. Moreover, the examining the measured resistivity VES
data categorizes the investigated hillslope into the significant hillslope areas differing in one
homogeneous area and one heterogeneous area. We called these significant hillslope areas as the
elementary functional units (EFU’s) and marked with the number (EFU 1 and EFU 2) in the below
diagram in the Figure 5-9. We believe that these hillslope areas can significant control the character of

the subsurface flow. EFU 2 represents the homogeneous hillslope area at the profile meter from 65 m to

- 66 -



5 Results and discussions

95 m and connects directly to the Schaefertal creek, whereas EFU 1 identified the impact of the varied
shallow subsurface at the profile meter from 0 m to 65 m (e.g. rock fragments). We also marked the
significant hillslope areas in Table presenting in the Appendix A - 2.
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Figure 5-9: The case study of the Schaefertal catchment: Resistivity results of ERT slope profile (the

upper diagram) perpendicular to the Schaeferbach creek, and VES-spreading (the below diagram)
parallel oriented to the creek. The VES results for locations with lateral homogeneity perpendicular to

the ERT profile are drawn with bold line

Moreover, in order to compile the distinguished EFUs with the identified layer units, we plotted
resistivity and thickness values for each layer in terms of EFU’s as a box-whisker diagram illustrated in
the Figure 5-10. This diagram illustrates clearly the resistivity contrast between high resistant upper
layers (the first and second layers) and low resistant bottom layers (the third and fourth layers). The

Figure 5-10 also demonstrates the absence of the high resistivity upper layer in the space of the uniform
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EFU 2. The upper layer of the EFU 1 and EFU 2 demonstrates intermediate high resistivity values of ca.
300 Q@m. How can we see that the covered first upper layer of EFU 1 demonstrates a strong variability
of the resistivity values from 100 Qm to 900 Qm. The low resistivity layer with the values of ca. 130
Qm represents a relatively uniform layer for both EFU’s. The deepest high resistivity layer indicates the
averages resistivity values of ca. 270 Qm for all EFU’s, but EFU 1 is more resistivity variable ranging
from 200 Qm to 900 Qm than EFU 2 representing relatively uniform stratus with the resistivity values
of ca. 200 Qm. In generally, we can observe the diffuse contrast of the investigated hillslope.
Furthermore, we can observe the variability in the layer thickness in terms of these two EFU’s. The little
thickness values of ca. 1.0 - 4.5 m characterize the high resistivity upper layers for all EFU’s. The low
resistivity layers of EFU 1 imply the massive stratum (ca. 26 m) in contrast to the EFU 2 indicating the
relatively little thickness values of ca. 20 m. The total investigated thickness reflecting the boundary of
the bedrock takes the different places in the depth. The deeper bedrock location characterizes the EFU 1
(in the depth of ca. 30 m), whereas the bedrock of EFU 2 reaches the depth of ca. 20 m.
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Figure 5-10: The case study of the Schaefertal catchment: Box-whisker plots of resistivity (the left
diagrams) and thickness (the right diagrams) distribution downhill as well as over the width of the
hillslope in terms of EFU’s

Up to now, we can see the good correlation between the interpreted resistivity layers and the
significant hillslope areas (EFU’s). However, we classified the interpreted resistivity layers more detailed
into the so-called electro-stratigraphic units (ESUs) with respect to the resistivity distribution and

variability in each stratum. We demonstrated this classification in the Figure 5-11 und in the Table 5-2.
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The classification assumes that a stratigraphic unit implies a uniform resistivity distribution and reflects

the geological-geomorphological background.
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Figure 5-11: The case study of the Schaefertal catchment: Interpretation of VES results in terms of

ESU’s

Table 5-2: The case study of the Schaefertal catchment: The interpreted ESU’s

ESU |[Electrical resistivity , Qm Unit description Depth, m
ESU 1 ca.460 + 201 Variable resistivity distribution;
Fine soil with rock waste, fragments of | ca.-1.19+0.9
ESU 2 ca.300 £ 72 ) )
mountain loam; good drainage
ESU 3 ca.130 £ 15 Fissured upper bedrock (greywacke) ca.-5.23+45
ESU 4 ca.270 + 165 Fresh bedrock (greywacke) ca.-30.67+£7.1

The Figure 5-11 illustrates four ESUs (ESU 1, ESU 2, ESU 3 and ESU 4) implying the uniform
resistivity distribution without significantly discrepancies inside of these layers. The Table 5-2 describes
the electro-stratigraphic units with the respect to the obtained results and the lithological knowledge.
How we can see from the Table 5-2 the ESU 1 and ESU 2 can represent the drainage stratum. In contrast
to it, the ESU 3 can represent a reservoir for the water store. Moreover, the EFUs and ESUs are in good

agreement with each other. The shallow heterogeneous high resistant upper layers of EFU 1 reflect the
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presence of irregular distributed 2D features of the periglacial substance (e.g. rock fragments), whereas
the relatively homogeneous layers of EFU 2 mirrors the consistent saturated subsurface.

Finally, to demonstrate how similar obtained ERT and VES hillslope models are, we compared
both models trough the transparent overlay. We can compare only the first and the second layers, because
the ERT image does not deliver the deeper insights. The Figure 5-12 demonstrates considerably
discrepancies between two models. The interface of first layer indicates the depth discrepancy of 1 m -
1.5 m, whereas the discrepancy of second layer between two models is ca. 4.7 — 12 m, but the fitting of
both models at the down slope is quite close to each other. Such discrepancy in the depth detection, we
can associate with the defuse contrast of medium parameters in the Schaefertal and the assumption on

the uniform stratified subsurface, especial for the upslope.
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5.2 Refraction seismic investigation

5.2.1 Application in the Weierbach catchment

Here we will present and discuss the refraction seismic models obtained at the study site the
Weierbach catchment using the different seismic interpretation techniques such as Plus-Minus method,
seismic tomography, ray tracing FD modelling and vertical seismic profiling. Before we demonstrate the
obtained results, we will introduce the reader to the data quality. In order better to identify the first
arrivals, we had to filter several seismograms. We observed one phenomena that the seismograms
shooting from the top to down are less noisy than the seismograms shooting from the down to the top,
especial for the last 24 traces. We demonstrated the unfiltered seismograms for the shot position 0 meter
(the upper diagram) and 95 meter (the middle diagram) in the Appendix B in the Figure B - 1. The upper
diagram of the Figure B - 1 illustrates a relatively clear seismogram, whereas the middle diagram of this

Figure demonstrates noisy traces of the last 24 traces. To eliminate the unwanted noise, we applied the
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band-pass filter with the lower cut-off of 10 Hz and the upper cut-off of 75 Hz. The bottom diagram of
the Figure B - 1 illustrates the filtered seismograms.

As soon as we corrected the collected data in the elevation and filtered to remove the unwanted
noise, we identified the first arrivals of the P-wave and plotted it in the travel time diagram, in order to
analyse and to develop the structural subsurface model of the investigated hillslope.

Plus-Minus Method

We plotted the two pair of selected symmetrical wave fronts (WF’s) in the travel time diagram
illustrated in the Figure 5-13a. One pair interprets the shot position at -5 m and 100 m, whereas other
pair analyses the shot positions at 0 m and 95 m. The travel time diagram recognises the first arrivals of
the direct wave and the first refractor. We believe that we can consider the subsurface model of the
investigated hillslope as the two-layer model. Moreover, we interpret the variability in the travel time as
the effect of the surface topography. Other effect causing by the surface topography is the delay between
the wave fronts at the shot position -5 m and 0 m. Then, we calculated the time plus values and time
minus values using the equations (4-13) and (4-14) with the total travel time of 45 ms. The diagrams (b)
and (c) of the Figure 5-13 illustrate the calculated time plus and minus values, respectively. The time
plus values or the intercept times reflect the location of the refractor, whereas the time minus values
reveal the seismic velocity of the second layer (1513 m/s for shots 0 m and 95 m; 1715 m/s for shots -5
m and 100 m). The intercept times imply the relatively homogeneous distribution indicating a nearby
horizontal layering with a slightly topography refractor. To develop structural subsurface models, we
considered the three models summarized in the Table 5-3. The seismic veloci-

Table 5-3: The case study of the Weierbach catchment: Ray parameters and seismic velocities to develop

subsurface models using PMM

Subsurface Ray parameter, ms/m Seismic velocity, m/s
model WF:-5mand 100 m | WF:0mand 95m | WF: -5 mand 100m WF: 0mand 95 m
DW: 2.73 DW: 2.73 DW: 366.55 DW: 366.55
Model A
HW: 0,5698 HW: 0.6607 HW: 1755 HW: 1513
DW: 1.92 DW: 1.92 DW: 520 DW: 520
Model B
HW: 0.29 HW: 0.3042 HW: 3449 HW:3290
DW: 1.56 DW: 638
Model C
HW: 0.33 HW: 3028

ties obtained from the time minus values characterize the Model A, whereas the Model B uses the seismic
velocities calculated from the slope of the time-distance curve (3290 m/s for shots 0 m and 95 m; 3449
m/s for shots -5 m and 100 m). Moreover, the Model A applies the seismic velocity for the direct wave
obtained from the slope of the time-distance curve (366.55 m/s) for the shot position 95 m, whereas the

Model B uses the seismic velocity obtained for the shot position 0 m (520 m/s). Furthermore, we
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considered the third Model C with the seismic velocities (638 m/s and 3028 m/s) obtained by the ray

tracing interpretation, in order to compare the structural subsurface model with each other. Then, we

calculated the refractor depth for the considered models shown in the Table 5-3

a) Travel time diagram

Wave fronts: -5m and 100m

Wave fronts: Om and 95m

Linear (Wave fronts: -5m and 100m)
Linear (Wave fronts: Om and 95m)

Profile meter
¢) Minus Time values (T-)

b) Plus Time values (T+)
Profile meter

Wave fronts: -5m and 100m

Intercept time [ms]

» Wave fronts: Om and 95m

ot sef Wave fronts: -5m and 100m

Reduced time
;]

» Wave fronts: Om and 95m

© Profle meter
d) Plus values: Depth Profile meter ¢) Plus values: Depth topography corrected

Depth [m]

Relative height [m]

--Modd C

Modd A ----- Model B

Modd A ----- Modd B ----

Profile meter

Modd C

Figure 5-13: The case study of the Weierbach catchment: Refraction seismic travel-time data

interpretation using Plus-Minus technique of two symmetrical wave fronts. (a) the travel time diagram

with slowness slopes; (b) the diagram of calculated Plus-time values; (c) the diagram of calculated

Minus-time values with seismic velocity slope. Structural subsurface models for assumed seismic velocity

models (d) without topography and (e) with topography

without the surface topography and with the surface topography using the calculated time plus values

and the equation (4-11). The Figure 5-13 visualizes the subsurface models without the surface

topography (d) and with the surface topography (e). The different RS subsurface models reflect the
different refractors in the underground. The difference between model A and model C is ca. 2.36 m. We

describe the zone between these two models as a transition zone including the periglacial debris and
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debris of bedrock. The shallow layer with the seismic velocity of 366.55 m/s and the averaged depths of
ca. 3.23 m represents the loamy soils, whereas the deepest refractor (Model C) with the seismic velocity
of 3028 m/s and the averaged depths of 5.59 m characterizes the boundary of the fractured bedrock
(schist).

Refraction seismic tomography

The Figure 5-14 demonstrates the inversion results obtained from the refraction seismic
tomography. The inverted seismic subsurface model characterizes a good matching of the theoretical and
real travel time by the 0.9% rms. The RS tomography image illustrated in the upper diagram of the Figure
5-14 describes the seismic velocity field in the subsurface without the exact predication of the refractor

depth. The below diagram of the Figure 5-14 demonstrates the distribution of the seismic ray parameter
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Figure 5-14: The case study of the Weierbach catchment: The refraction seismic
tomography results of the slope profile perpendicular to the Weierbach creek in terms

of seismic velocity (the upper diagram) and slowness (the below diagram)

-73 -



5 Results and discussions

in the subsurface. The use of the ray parameter can help to recognize the refractors because of the
uniformity of ray parameter and its abrupt change at the contrasting interfaces. The seismic velocity
image recognizes the two seismic velocity fields. The shallow seismic velocity field with values of ca.
600 - 700 m/s reaches the depth of ca. 3 - 4 m. The refracting layer with the seismic velocity values of
ca. 2800 m/s follows the depth boundary at the 6 - 7 m. The diffuse transition zone demonstrating the
seismic velocity values of 1500 - 2500 m/s exists between the shallow layer and the refractor. Moreover,
the ray parameter image tells us clear that the subsurface reveals the two contrasting stratums: the shallow
layer and the deeper layer. The boundary between these two layers reaches the depth of ca. 3 - 4 m with
the slowness values of 0.6 ms/m (or 1600 m/s). We can recognize the structures in the depth, but it is not
sharp for the refraction seismic. Therefore, if we compare the RS tomography model with the models
obtained from PMM (especial, the Model A), we can see several similarity (the refractor velocity of 1500
- 1600 m/s and nearby the same depth) of both models. Furthermore, we can apply the obtained
information from the previous seismic interpretation techniques as a starting model for the ray tracing
FD modelling.

Ray tracing FD modelling

To develop a seismic subsurface model based on the wave front inversion and the ray tracing
FD modelling, we considered the two cases. One case develops a seismic subsurface model using the
two pairs of the symmetrical wave fronts. Other case applies all shot seismic spreading along the
investigated hillslope to create a seismic subsurface model. Moreover, the seismic model obtained from
the first case, we integrated as a starting model for the second case. We executed iterative and manual
changes of model parameters (geometry of refractors and velocity values) and repeated the ray tracing
process many times until we found a wanted subsurface model reflecting measured travel time and
matching calculated and real data.

The Figure 5-15 illustrates the results of the ray tracing FD modelling for the first case where
we considered the two pairs of symmetrical wave fronts. One pair of WF analyses the profile shot
positions at 0 m and 50 m, and other WF pair characterizes the profile shot positions at 50 m and 95 m.
After the visual analysing of theses WEF’s, we can observe a relatively short critical distance (less than 5
m) indicating on the increased the velocity ratio (the equation (4-6)) and a good contrast. From the
knowledge of the previously seismic results obtained by PMM and seismic tomography, we created as a
starting model contenting of the two layers, and processed the ray tracing modelling by manual change
of the model parameters (the refractor geometry). The upper diagram of the Figure 5-15 illustrates the
matching between the theoretical and measured travel time as well as the calculated ray paths in the
underground. The bellow diagram of the Figure 5-15 demonstrates the final subsurface model as well as
the travel time diagram of the considered symmetrical wave fronts. How we can see from the results, the
relatively variable seismic velocity values ranging from 209 m/s to 587 m/s characterize the shallow
upper layer. Whereas the refracting layer implies the nearby uniform velocity value of 3010 m/s. We can

observe a good matching of the theoretical and real travel time of the head wave. The ray paths of the

-74 -



5 Results and discussions
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Figure 5-15: The case study of the Weierbach catchment: The refraction seismic results of the slope

profile perpendicular to the Weierbach creek based on the ray tracing FD modelling using four shots

measured (black lines) and

calculated (coloured crosses) travel time of the direct wave and the head wave (the upper diagram);

(2) the constructed two-layer subsurface model and measured travel time with seismic velocity
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WEF’s illustrate quite the consistent image in the underground. We believe that the surface topography as
well as the scattered material of the PPSD’s cause the variable seismic velocity field in the upper shallow
layer. The subsurface model reveals the nearby horizontal layering with the minor variety of the refractor
topography in the below part of the investigated hillslope. The refractor reaches the depth of ca. 4.24 m.
Therefore, we will integrate the obtained seismic structural subsurface model for the future ray tracing
modelling using all shots recorded along the whole hillslope, in order to develop a final seismic structural
model.

The Figure 5-16 illustrates the results of the ray tracing FD modelling for the second case where we
considered all symmetrical wave fronts including the near shots as well as the far shots. Using the
obtained subsurface model illustrated in the below diagram in the Figure 5-15 as a starting model, we
created the final subsurface model changing the refractor geometry and the seismic velocity values, in
order to find the best matching between the calculated and real travel time. The upper diagram of the
Figure 5-16 illustrates the good matching between the theoretical and measured travel time as well as the
calculated ray paths in the underground. The bellow diagram of the Figure 5-16 demonstrates the final
subsurface model as well as the travel time diagram of all first arrivals. To develop the final seismic
subsurface model, we decided for the constant seismic velocity of 638 m/s for the shallow upper layer,
in order to eliminate the velocity variations causing by the surface topography and the scattered material
of the PPSD’s. We also changed the seismic velocity of the refracted layer characterising this layer by
the velocity value of 3028 m/s. Therefore, we reached the good matching of the theoretical and real travel
time for the refracted wave, but we had to ignore the travel time fitting for the direct wave due to the
strong velocity variability and the irregular surface topography. The ray paths of the symmetrical wave
fronts illustrate quite the consistent image in the underground. The obtained seismic structural subsurface
model describes the relatively horizontal layering with the stepped refractor topography. We believe that
the debris of the fractured schist could create such refractor form. The refractor reaches the depth of ca.
4.92 m. We also calculated and drawn (broken line in the below diagram of the Figure 5-16) the depth
uncertainty amounting ca = 2.3 m.

Furthermore, the Table 5-4 summarizes the results obtained with the ray tracing FD modelling
for both cases. Both cases imply nearby the same refractor depth and refractor velocity values, but they
differ in the refractor topography and the seismic velocity of the shallow upper layer. We will compare
the final subsurface model of the ray tracing modelling with the other seismic models obtained with the
Plus-Minus method and the refraction seismic tomography.

Up to now, we will compare quantitative the seismic structural subsurface models obtained with
the Plus-Minus method (Model C) and the ray tracing FD modelling. The Figure 5-17 illustrates the
comparison of both models. The difference between these models is ca. 0.95 m. The models differ in the

refractor topography.
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Figure 5-16: The case study of the Weierbach catchment: The refraction seismic results of the slope
profile perpendicular to the Weierbach creek based on the ray tracing FD modelling using all shots
as case of two layer model: (1) the ray paths (coloured lines) with measured (black lines) and
calculated (coloured crosses) travel time of the direct wave and the head wave (the upper diagram);

(2) the constructed subsurface two-layer model and measured travel time with seismic velocity

seismic velocity
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Table 5-4: The case study of the Weierbach catchment: Seismic subsurface parameters

obtained with the ray tracing FD modelling for both cases

L Seismic velocity [m/s] Depth [m]
ayer
Y Model with Model with all Model with Model with all
Number
four shots shots four shots shots
Layer la ca. 448 £ 15
Layer 1b ca. 587.4 + 37 ca. 638 £ 246
ca.-4.24+1.19 ca.-4.92+2.3
Layer 1c ca. 209.5 £ 22
Layer 2 ca. 3010.5+30 | ca.3028 =735
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Figure 5-17: The case study of the Weierbach catchment: The hillslope refraction seismic

subsurface model in terms of SVU’s compares results obtained with ray tracing and plus-minus

methods

Finally, to control the results of the applied seismic interpretation techniques, we realized
vertical seismic profiling (VSP) at several shot positions (0 m, 50 m and 95 m) based on the CMP
analysis and resulted one-dimensional velocity-depth profiles trough iterative velocity adaptions. The
Figure C - 1 in the Appendix illustrates the VSP models as the two layer models at the profile shot
positions 0 m (the upper diagram), 50 m (the middle diagram) and 95 m (the below diagram). All VSP
models imply approximately the same seismic velocity values of 450 m/s for the upper layer and 3100
m/s for the refracted layer. The VVSP models indicate the slightly variations in the refractor depth ranging
from ca. 2.5 m (for the profile meter 95) to ca. 3.8 m (for the profile meter 0). The surface topography

and the scattered material of the PPSD’s can cause these variations in the depth.
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All resulted refraction seismic subsurface models complement well one another. Therefore, we
can discuss the seismic models in the light of the hydrogeological conditions as well as for the joint
interpretation with geo-electrical subsurface models.

5.2.2 Application in the Schaefertal catchment

At this point, we will describe and discuss the refraction seismic models obtained at the study
site the Schaefertal catchment using the different seismic interpretation techniques such as Plus-Minus
method, seismic tomography, ray tracing FD modelling and vertical seismic profiling. At the beginning,
we will introduce the reader to the data quality. In order better to identify the first arrivals, we had to
filter several seismograms. We observed the same phenomena with the noisy traces by the shooting from
the down to the top as in the Weierbach catchment. We demonstrated the unfiltered seismograms for the
shot position 1 meter (the upper diagram) and 96 meter (the middle diagram) in the Appendix B in the
Figure B - 2. The upper diagram of the Figure B - 2 illustrates a relatively clear seismogram, whereas
the middle diagram of this Figure demonstrates noisy traces of the last six traces. To eliminate the
unwanted noise, we applied the band-pass filter with the lower cut-off of 15 Hz and the upper cut-off of
120 Hz. The bottom diagram of the Figure B - 2 illustrates the filtered seismograms.

As soon as we corrected the collected data in the elevation and filtered to remove the unwanted
noise, we identified the first arrivals of the P-wave and plotted it in the travel time diagram, in order to
analyse and to develop the structural subsurface model of the investigated hillslope.

Plus-Minus method

We plotted the two pair of selected symmetrical wave fronts (WF’s) in the travel time diagram
illustrated in the Figure 5-18a. One pair interprets the shot position at 1 m and 48 m, whereas other pair
analyses the shot positions at 49 m and 96 m. The travel time diagram recognises the first arrivals of the
direct wave and the first refractor. We believe that we can consider the subsurface model of the
investigated hillslope as the two-layer model. Moreover, we observe that the upper and middle hillslope
profile recognizes the lower seismic velocity values (the steeper time-distance slope) than the below
hillslope and the wetlands characterizing by the increased seismic velocities. We also observe the
relatively large critical distance (ca. 10 m) implying the decreased velocity ratio and a poor medium
contrast. After recognizing the refractor time-distance slope, we calculated the time plus values and time
minus values using the equations (4-13) and (4-14) with the total travel time of 53.5 ms (for the upper
and the middle hillslope profile) and 44 ms (for the below hillslope and the wetlands). The diagrams (b)
and (c) of the Figure 5-18 illustrate the calculated time plus and minus values, respectively. The time
plus values or the intercept times reflect the location of the refractor, whereas the time minus values
reveal the seismic velocity of the second layer (603 m/s for shots 1 m and 48 m; 818 m/s for shots 49 m
and 96 m). The intercept times imply the relatively homogeneous distribution indicating a nearby
horizontal layering with a slightly topography refractor at the shot distance. To develop structural

subsurface models, we considered the two models summarized in the Table 5-5. The seismic velocities
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obtained from the time minus values characterize the Model A, whereas the Model B uses the averaged
seismic velocities calculated from the slope of the time-distance curve (1299 m/s for shots 1 m and 48
m; 1741 m/s for shots 49 m and 96 m). Moreover, the Model A applies the seismic velocity for the direct
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Figure 5-18: The case study of the Schaefertal catchment: Refraction seismic travel time data
interpretation using Plus-Minus technique of two symmetrical wave fronts. (a) the travel time diagram
with slowness slopes; (b) the diagram of calculated Plus-time values; (c) the diagram of calculated
Minus-time values with seismic velocity slope. The structural subsurface models for assumed seismic

velocity models (d) without topography and (e) with topography
wave obtained from the slope of the time-distance curve (380 m/s and 611 m/s). The Model B uses the

seismic velocity values of the upper layer of 500 m/s and 611 m/s. Then, we calculated the refractor

depth for the considered models shown in the Table 5-5 without the surface topography and with the
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surface topography using the calculated time plus values and the equation (4-11). The Figure 5-18
visualizes the subsurface models without the surface topography (d) and with the surface topography (e).
Unfortunately, we could not describe the whole refractor due to the short analysed travel time. The
refractor reaches the depth of ca. 5 - 6 m at the profile meter 21 - 36 m and 61 - 81 m. Both subsurface
models characterize proximate the horizontal layering with the slightly topography refractor. The
different RS subsurface models reflect the different refractors in the underground. The difference
between model A and model B is ca. 0.5 m.

Table 5-5: The case study of the Schaefertal catchment: Ray parameters and seismic velocities to develop

subsurface models using PMM

Subsurface Ray parameter, ms/m Seismic velocity, m/s
model WF:1mand48m | WF: 49 mand 96m WF: 1 mand 48 m WF: 49 mand 96 m
DW: 2.63 DW: 1.64 DW: 380 DW: 611
Model A
HW: 1.66 HW: 1.22 HW: 603 HW: 818
DW: 1.99 DW: 1.64 DW: 500 DW: 611
Model B
HW: 0.78 HW: 0.57 HW: 1299 HW: 1741

Refraction seismic tomography

The Figure 5-19 demonstrates the inversion results obtained from the refraction seismic
tomography. The inverted seismic subsurface model characterizes a good matching of the theoretical and
real travel time by the 0.83% rms. The RS tomography image illustrated in the upper diagram of the
Figure 5-19 describes the seismic velocity field in the subsurface without the exact predication of the
refractor depth. The below diagram of the Figure 5-19 demonstrates the distribution of the seismic ray
parameter in the subsurface. The use of the ray parameter can help to recognize the refractors because of
the uniformity of ray parameter and its abrupt change at the contrasting interfaces. The seismic velocity
image recognizes the two seismic velocity fields along the hillslope profile. The shallow seismic velocity
field with values of ca. 600 - 800 m/s reaches the depth from 5 m to 2 m decreasing in the creek direction.
The refracting layer with the seismic velocity values of ca. 1500 m/s follows the depth boundary at the
8 m between profile meters 1 - 55 m. In the below part of the profile, we observe the increased velocity
values of ca. 1700 m/s reaching the depth of ca. 3 - 4 m. The diffuse transition zone demonstrating the
seismic velocity values of 1000 - 1300 m/s exists between the shallow layer and the refractor at the
profile distance 1 - 60 m. Moreover, the ray parameter image tells us clear that the subsurface reveals the
two contrasting stratums: the shallow layer and the deeper layer. The shallow upper layers reaches the
depth of ca. 1 m with the slowness values of 2 ms/m (or 500 m/s). The deeper refractor with the slowness
values of 0.8 ms/s (or 1250 m/s) reaches the depth from 6 m to 3 m decreasing in the Schaeferbach creek
direction. In the wetlands, we can recognize the deepest refractor with the slowness values of 0.6 ms/s

(or 1670 m/s) reaching the depth of ca. 5 m. We have to note that the refraction seismic tomography
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illustrates the diffuse contrast in the depth and a thin shallow contrasting layer. The diffuse contrast and
the thin layer make more difficult to interpret the refraction seismic data due to the physical-mathematical
validity of this technique.

/< [N ' ' |

B00 800 1000 1200 1400 1600
Seismic velocity

0k 08 1 1.2 1.4 16 1.8 2 22
Slowness

Figure 5-19: The case study of the Schaefertal catchment: The refraction seismic
tomography results of the slope profile perpendicular to the Schaeferbach creek in
terms of seismic velocity (the upper diagram) and slowness (the below diagram)

Ray tracing FD modelling

From the previous interpretation techniques, we know that the relatively poor medium contrast
and thin layering characterize the investigated hillslope. It makes more difficult to recognize a
representative refractor. Moreover, from the travel time, we can observe the scenario of so-called hidden
layer (see the travel time diagram in the Figure 5-20). In generally, we can recognize a two-layer model
for the whole profile. Nevertheless, if we exam the upper profile part, we can recognize the structure of
the three-layer model only for this profile part. Therefore, we decided to consider two scenarios, to
develop a seismic subsurface model based on the wave front inversion and the ray tracing FD modelling.
The first scenario develops a two-layer subsurface model, whereas the second scenario consider the

model with a three-layer for the upper and middle hillslope. Both scenarios develops subsurface models
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Figure 5-20: The case study of the Schaefertal catchment: The refraction seismic results of the slope
profile perpendicular to the Schaeferbach creek based on the ray tracing FD modelling using four
shots as the case of two-layer model: (1) the ray paths (coloured lines) with measured (black lines)
and calculated (coloured crosses) travel time of the direct wave and the head wave (the upper
diagram); (2) the constructed two-layer subsurface model and measured travel time with seismic

velocity slopes(the below diagram)
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using the two pairs of the symmetrical wave fronts as well as all shot seismic spreading along the
investigated hillslope. Moreover, the seismic model obtained from the several shots, we integrated as a
starting model for the modelling with all shots. We executed iterative and manual changes of model
parameters (geometry of refractors and velocity values) and repeated the ray tracing process many times
until we found a wanted subsurface model reflecting measured travel time and matching calculated and
real data.

Well, let us start considering the first scenario presenting the two-layer subsurface model. The
Figure 5-20 illustrates the results of the ray tracing FD modelling for the case using the two pairs of
symmetrical wave fronts. One pair of WF’s analyses the profile shot positions at 1 m and 48 m, and other
WF pair characterizes the profile shot positions at 49 m and 96 m. After the visual analysing of theses
WEF’s, we can observe a relatively large critical distance (ca. 10 m) indicating on the decreased the
velocity ratio (the equation (4-6)). Moreover, we have to note that it makes difficult to recognize the
identification of the first arrivals between direct seismic wave and airwave for the first traces due to the
close recording. The below diagram of the Figure 5-20 illustrates the identified airwave (ca. 327 m/s) in
the travel time diagram. The upper diagram of the Figure 5-20 illustrates the matching between the
theoretical and measured travel time as well as the calculated ray paths in the underground. The bellow
diagram of the Figure 5-20 demonstrates the final subsurface model as well as the travel time diagram
of the considered symmetrical wave fronts. How we can see from the results, the relatively variable
seismic velocity values ranging from 615 m/s to 905 m/s characterize the shallow upper layer. The
refracting layer also implies the variable velocity value from 1514 m/s (the upper and middle slope) to
1800 m/s (the below slope and wetlands). We can observe a nearby good matching of the theoretical and
real travel time of the head wave. The ray paths of the WF’s illustrate quite the consistent image in the
underground. The subsurface model reveals the nearby horizontal layering with the jump in the middle
part of the profile. The refractor depth varies from ca. 8 m to 5 m decreasing in the creek direction.
Therefore, we will integrate the obtained seismic structural subsurface model for the future ray tracing
modelling using all shots recorded along the whole hillslope, in order to develop a final seismic structural
model contenting of the two-layers.
The Figure 5-21 lustrates the results of the ray tracing FD modelling using all symmetrical wave fronts.
Using the obtained subsurface model illustrated in the below diagram in the Figure 5-20 as a starting
model, we created the final subsurface model changing the refractor geometry, in order to find the best
matching between the calculated and real travel time. The upper diagram of the Figure 5-21 illustrates a
quite good matching between the theoretical and measured travel time as well as the calculated ray paths
in the underground. The bellow diagram of the Figure 5-21 demonstrates the final subsurface model as
well as the travel time diagram of all first arrivals. The shallow upper layer describes a relatively variable
seismic velocity field from 615 m/s (the upper and middle slope) to 800 m/s (the below slope and the
wetlands). The increased velocity values ranging from 1514 m/s to 1800 m/s characterize the refracting

layer. Therefore, we reached the good matching of the theoretical and real travel time for the refracted
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Figure 5-21: The case study of the Schaefertal catchment: The refraction seismic results of the slope
profile perpendicular to the Schaeferbach creek based on the ray tracing FD modelling using all
shots as case of two-layer model: (1) the ray paths (coloured lines) with measured (black lines) and
calculated (coloured crosses) travel time of the direct wave and the head wave (the upper diagram);
(2) the constructed subsurface two-layer model and measured travel time with seismic velocity

slopes(the below diagram)
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wave, but we had to ignore the travel time fitting for the direct wave due to the strong velocity variability.
The ray paths of the symmetrical wave fronts illustrate quite the consistent image in the underground.
The obtained seismic structural subsurface model describes the relatively horizontal layering with the
jump in the middle part of the profile. The refractor depth of ca. varies from ca. 8 m to 5 m decreasing
in the creek direction. We also calculated and drawn (broken line in the below diagram of the Figure
5-21) the depth uncertainty amounting ca + 3.2 m. Furthermore, the Table 5-6 summarizes the results
obtained with the ray tracing FD modelling for the scenario of the two-layer model using the two pairs
of the symmetrical wave fronts as well as all shot seismic spreading along the investigated hillslope.

Both cases imply nearby the same refractor depth and refractor velocity values.

Table 5-6: The case study of the Schaefertal catchment: Seismic subsurface parameters

obtained with the ray tracing FD modelling for the scenario of the two-layer model

Seismic velocity [m/s] Depth, m
Layer Number Model with Model with Model with Model with all
four shots all shots four shots shots

Layer la ca. 615+ 18
Layer 1b ca. 350 + 15
Layer 1c ca.905+25 |ca.800+20| ca.-594+15 | ca.-551+3.2
Layer 2a ca. 1514+ 30
Layer 2b ca. 1800 + 30

Until now, we will present the second scenario presenting the three-layer subsurface model
for the upper and middle hillslope. The Figure 5-22 illustrates the results of the ray tracing FD modelling
for the case using the pair of symmetrical wave fronts locating at the profile shot positions of 1 m and
48 m. After the visual analysing of theses WF’s, we assigned the first arrivals for the direct wave and the
two refractors, in order to conduct the wave inversion and the ray tracing FD modelling for the
developing of the three-layer subsurface model. The upper diagram of the Figure 5-22 illustrates a good
matching between the theoretical and measured travel time as well as the calculated ray paths in the
underground. The ray paths of the WF’s illustrate quite the consistent image in the underground. The
bellow diagram of the Figure 5-22 demonstrates the final subsurface model as well as the travel time
diagram of the considered symmetrical wave fronts. The subsurface model reveals the nearby horizontal
layering. The upper layer with the lower velocity values of 409 m/s reaches the depth of ca. 1.8 m. The
middle layer with the intermediate velocity values of 750 m/s reaches the depth of ca. 8 m underlying by
the second refracting layer with velocity values of 1762 m/s. We can integrate the obtained seismic
structural subsurface model for the future ray tracing modelling using all shots recorded along the upper

hillslope, in order to develop a final seismic structural model contenting of the three-layers.
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Figure 5-22: The case study of the Schaefertal catchment: The refraction seismic results
of the slope profile perpendicular to the Schaeferbach creek based on the ray tracing FD
modelling using two shots as case of three-layer model for the upper slope: (1) the ray
paths (coloured lines) with measured (black lines) and calculated (coloured crosses)
travel time of the direct wave and the head wave (the upper diagram); (2) the constructed
subsurface two-layer model and measured travel time with seismic velocity slopes(the

below diagram)

The Figure 5-23 illustrates the results of the ray tracing FD modelling using all symmetrical
wave fronts. Using the obtained subsurface model illustrated in the below diagram in the Figure 5-22 as
a starting model, we created the final subsurface model changing the refractor geometry, in order to find
the best matching between the calculated and real travel time. The upper diagram of the Figure 5-23
illustrates a quite good matching between the theoretical and measured travel time as well as the
calculated ray paths in the underground. The ray paths of the WF’s illustrate quite the consistent image

in the underground. The bellow diagram of the Figure 5-23 demonstrates the final subsurface model as
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Figure 5-23: The case study of the Schaefertal catchment: The refraction seismic results of
the slope profile perpendicular to the Schaeferbach creek based on the ray tracing FD
modelling using all shots as case of three-layer model for the upper slope: (1) the ray paths
(coloured lines) with measured (black lines) and calculated (coloured crosses) travel time
of the direct wave and the head wave (the upper diagram); (2) the constructed subsurface

two-layer model and measured travel time with seismic velocity slopes(the below diagram)

well as the travel time diagram of all first arrivals. The subsurface model reveals the nearby horizontal
layering. The upper layer with the lower velocity values of 383 m/s reaches the depth of ca. 1.9 m. The
middle layer with the intermediate velocity values of 750 m/s reaches the depth of ca. 7.5 m underlying
by the second refracting layer with velocity values of 1762 m/s. We also calculated and drawn (broken
line in the below diagram of the Figure 5-23) the depth uncertainty amounting ca £ 1.7 m. Furthermore,
the Table 5-7 summarizes the results obtained with the ray tracing FD modelling for the scenario of the
three-layer model using the one pair of the symmetrical wave fronts as well as all shot seismic spreading

along the investigated hillslope. Both cases imply nearby the same refractor depth and refractor velocity

values.
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Table 5-7: The case study of the Schaefertal catchment: Seismic subsurface
parameters obtained with the ray tracing FD modelling for the scenario of the
three-layer model applied for the upper slope

Seismic velocity [m/s] Depth, m
Layer Number | Model with | Model with | Model with | Model with all

two shots all shots two shots shots
Layer 1 ca. 409+ 16 | ca. 383+ 14
ca.-1.74+0.4 | ca.-1.95+0.6
Layer 2 ca. 750 £ 23
Layer 3 ca. 1762 + 32 ca.-7.82+13 | ca.-7.55+1.7

Up to now, we will compare qualitative the seismic two-layer model with the three-layer model.
The upper and middle diagrams of the Figure 5-24 demonstrate the considered subsurface models. The
below diagram of the Figure 5-24 illustrates the qualitative comparison of two models. The Table 5-8
summarizes these subsurface models. The difference of the deeper refractor between these models is ca.
2 m. The models also differ in the refractor topography. For the future application, we will take the two-

layer subsurface model because it respects the whole hillslope profile.

Table 5-8: The case study of the Schaefertal catchment: Comparison of seismic velocity

values between two-layer model and three-layer model for the upper slope

Two layer model Three layer model
Layer Seismic velocity, Seismic
Depth, m _ Depth, m
m/s velocity, m/s
Layer 1 a | ca.615+18 ca. 383+ 14
b ca. 350 £ 15 ca.-1.95+0.6
Layer 2 ca. 750 £ 23
c ca. 800 + 20
a | ca. 1514+ 30
Layer 3 ca.-551+3.2| ca. 1762+ 32 | ca.-7.55+ 1.7
b | ca. 1800+ 30

Finally, to control the results of the applied seismic interpretation techniques, we realized
vertical seismic profiling (VSP) at several shot positions (1 m, 48 m, 49 m and 96 m) based on the CMP
analysis and resulted one-dimensional velocity-depth profiles trough iterative velocity adaptions. The C
- 2 in the Appendix illustrates the VSP models as the two layer models at the profile shot positions 1 m
(the upper diagram), 48 m, 49 m (the middle diagrams) and 96 m (the below diagram). All VSP models
locating on the upper and middle slope imply approximately the same seismic velocity values of 500 m/s

for the upper layer and 1600 m/s for the refracted layer. Whereas VSP models analysed for the below
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profile and the wetlands indicate the increasing velocity values of 1800 m/s. The VSP models reaches
the averaged depth of 6 m.
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Figure 5-24: The case study of the Schaefertal catchment: The hillslope refraction seismic subsurface
models in terms of SVU’s as two-layer model (the upper diagram) and three-layer model (the central
diagram). The below diagram demonstrates the depth difference between these models for the lower

refractor

All refraction seismic subsurface models complement quite well one another. Therefore, we can
discuss the seismic models in the light of the hydrogeological conditions as well as for the joint

interpretation with geo-electrical subsurface models.
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5.3 Geo-electric versus refraction seismic, and versus combination

How we can see the results of the individual interpretations describing in the chapter 5.4 illustrate quite
good geophysical models of the investigated hillslopes. Now, we want to know how good the individual
geo-models complement one other, in order to develop a conceptual hydro-geophysical model for the

investigated hillslope of the Weierbach as well as Schaefertal.
5.3.1 Application in the Weierbach catchment

The upper diagram of the Figure 5-25 illustrates the transparent comparison of electrical and
seismic models. We compare the results of ERT, VES, ray tracing modelling and PMM. Here we do not
consider the deepest layer unit interpreted by VES because ERT and RS do not imply this layer unit in
the subsurface section. The resistivity of ERT and VES results correlate clear with each other. The rela-
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Figure 5-25: The case of the Weierbach catchment: The transparent comparison of layer interface
between ERT, VES and RS (the upper diagram). The depth difference between VES and RS (the below
diagram)

tively high resistant upper layer (ca. 1750 Qm) reaches a depth of ca. 0.8 - 1 m along the hillslope

underlying by the layer with the highest resistivity values (more than 5000 Qm). The second interface of

VES describing the highest resistivity values correlates well with the highest resistivity values of ERT.
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Moreover, if we observe the refractor characterising the Model A (366.55 m/s for the upper layer and
1755 m/s for the refracting layer), we will find that it describe the interface between the high resistant
(more than 1900 Qm) and low resistant (1000 Qm) values. This refractor characterises nearby the form
of the resistivity iso-line of 1000 Qm. Besides, the refractor calculated with ray tracing and PMM as
Model C (638 m/s for the upper layer and 3028 m/s for the refracting layer) describes well more or less
the form of the resistivity iso-line of 375 Qm. Furthermore, we can quantitative estimate the difference
between RS and VES models. The below diagram of the Figure 5-25 demonstrates the difference between
RS and VES models ranging from ca. 2 m to ca. 4 m. The difference between VES model and RS model
A is relatively small by ca. 2 m in contrast to the deeper electrical (VES) and seismic (ray tracing and
PMM model C) boundaries characterising by the difference of ca. 4 m. We assume the difference
between electrical and seismic models as the geophysical uncertainty, which we can associate with a
giving transition zone between different petro-physical layer units.

Up to now, a good agreement of resulting geo-models permits us to discuss in the light of the
hydro-geological conditions. The Table 5-9 summarizes the electrical and seismic properties in terms of
the representative layer units. We believe that the upper layers characterising by the low seismic velocity
as well as high resistant values describe PPSDs. Electrical unit 1 and 2 characterize UPL and BPL,
respectively. The below layer indicating the high seismic velocity values and low resistivity values, we
can associate with the fractured bedrock representing the Devonian schist. Moreover, we associate the
difference between electrical and seismic models with the transition zone from PPSDs to the fractured
bedrock where may occur the preferential subsurface flow. The refractor calculated by the ray tracing
and PMM (Model C) represents the top boundary of the upper fractured schist.

Table 5-9: The case study of the Weierbach catchment: Comparison of geophysical units

) Sub- Electrical Seismic
Unit ) o Depth, m ) Depth, m Geology
units | resistivity, Qm velocity, m/s
Unit 1 - ca. 1730 + 620
Uniit 2 a ca. 8940 + 4500 | ca.-0.83+0.5 ca. 638 £+ 46 PPSDs
ni
b ca. 2020 + 1530
) ca.-1.81+0.6 | ca. 3028 +35 | ca.-4.92 + 2.3 | Fractured
Unit 3 - ca.330x 74
bedrock
a ca. 855 + 440 ca.-18.71+8.4 Compact
Unit 4
b ca. 403 £ 162 bedrock

The Figure 5-26 complies three geophysical hillslope models together in terms of ERT (the
upper diagram), VES (the middle diagram) and RS (the below diagram) subsurface models. How we can
observe these diagrams, the VES subsurface model implies the deepest layer boundary characterising by

the increased resistivity values (403 - 855 Qm) in contrast to the previous layer. We can associate this
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Figure 5-26: The case study of the Weierbach catchment: The hillslope subsurface models as
joint geophysical interpretation in terms of ESU’s, EFU’s and SVU'’s
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layer with the compact or fresh bedrock. ERT and RS could not resolve this deepest interface due to the
poor medium contrast in the depth and the applied small profile line. Nevertheless, we believe that this
interface exists in the underground because we predicated it using the VSP techniques. The Figure D - 1
in the Appendix illustrates the one-dimensional VSP models for the shot point locating at the profile
meters of 0 m (the upper diagram) and 95 m (the below diagram). Both models predicate three layers.
The upper layer with the seismic velocity values of ca. 490 m/s reaches the depth in the range from 2.5
m to 3.8 m. The below layer with seismic velocity values of ca. 3000 m/s predicates the deepest interface
at the depth of ca. 16 -19 m implying the seismic velocity of ca. 4200 m/s.

Moreover, we could identified the significant hillslope areas (EFU’s) only from geo-electrical
data (especially, VES), which represent three EFU’s along the investigated hillslope. Whereas the results
of the refraction seismic, we can consider as relatively homogeneous stratums with the increased seismic

velocities in the depth.
5.3.2 Application in the Schaefertal catchment

The upper diagram of the Figure 5-27 illustrates the transparent comparison of electrical and seismic
models. We compare the results of ERT, VES and ray tracing modelling. Here we do not consider the
deepest layer unit interpreted by VES because ERT and RS do not imply this layer unit in the subsurface
section. We also cannot compare the results obtained with PMM because the refractor does not imply
the length of the whole profile. Nevertheless, we discuss the scenarios of the two and three layer models.
The resistivity of ERT and VES results correlate clear with each other. If we observe the upper high
resistivity value layer (ca. 460 Qm), we will find that it complements well the high resistivity patterns of
ERT (450 - 550 Qm). Moreover, the upper low velocity layer (383 m/s) predicated by the three-layer
model describes nearby the interface form predicated by VES and ERT. Whereas the below layer
describing the decreasing resistivity values (300 Qm) and variable velocity values (600 - 800 m/s) dos
not match the bottom layer boundary. The below diagram of the Figure 5-27 demonstrates the difference
between RS and VES models ranging from ca. 1 m to ca. 4 m. The difference between VES model and
RS is relatively small by ca. 1 m for the case of the upper layer in contrast to the deeper electrical and
seismic boundaries having the random difference of ca. 4 m. We think that the poor medium contrast and
relatively strong water saturation cause the large differences and ambiguities between geo-models.
Nevertheless, we will try to interpret the obtained geo-models in the light of the hydro-geological
conditions. The Table 5-10 summarizes the electrical and seismic properties in terms of the representative
layer units. We believe that the upper layers characterising by the low seismic velocity as well as high
resistant values describe PPSDs. Electrical unit 1 and 2 characterize UPL and BPL, respectively. The
below layer indicating the high seismic velocity values (1500 - 1800 m/s) and low resistivity values (130
Qm) we can associate with the fissured bedrock representing the Devonian greywacke. Moreover, we
associate the relatively random difference between electrical and seismic models with the diffuse contrast

between PPSDs and the fissured bedrock. We have to remember that we conducted the measurements in

-94 -



5 Results and discussions

the end of February characterizing by the wet state. However, the increased groundwater level and
subsurface flows can cause the homogeneous water saturation in the wetlands. We can associate the
describing diffuse contrast with the possible path of the subsurface flow. It exists a good connection

between the Schaeferbach creek and the hillslope through the relatively large wetlands.
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Figure 5-27: The case of the Schaefertal catchment: The transparent comparison of layer interface
between ERT, VES and RS (the upper diagram). The depth difference between VES and RS (the below

diagram)

Table 5-10: The case study of the Schaefertal catchment: Comparison of geophysical units

) Sub- Electrical Depth, m Seismic Depth, m
Unit ) o ) Geology
units | resistivity, Qm velocity, m/s
Unit 1 a ca. 460 + 201 ca. 615+ 18
b ca.-1.19+0.9 ca. 350+ 15 PPSDs
Unit 2 ca. 300+ 72
C ca. 800 = 20
a ca.-5.23+45 | ca. 1514+ 30 | ca.-5.51 + 3.2 | Fissured
Unit 3 ca. 130+ 15
b ca. 1800 + 30 bedrock
ca.-30.67 7.1 Fresh
Unit 4 ca. 270 £ 165
bedrock
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Figure 5-28: The case study of the Schaefertal catchment: The hillslope subsurface models as

Jjoint geophysical interpretation in terms of ESU’s, EFU’s and SVU’s

The Figure 5-28 complies three geophysical hillslope models together in terms of ERT (the
upper diagram), VES (the middle diagram) and RS (the below diagram) subsurface models. How we can
observe these diagrams, the VES subsurface model implies the deepest layer boundary characterising by
the increased resistivity values (270 Qm) in contrast to the previous layer. We can associate this layer

with the compact or fresh bedrock. ERT and RS could not resolve this deepest interface due to the poor
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medium contrast in the depth, the applied small profile line and the strong water saturated below
subsurface. Nevertheless, we believe that fresh bedrock locates in the relatively large depth. To prove
this assumption, we have to conduct the future measurements during the dry state. Moreover, we want
to prove the model structure representing the three-layers at the upper and middle slope profile, which
we predicated in the Figure 5-24 as the three-layer model with relatively thin upper layer. For it, we used
the VVSP techniques. The Figure D - 2 in the Appendix illustrates the one-dimensional VSP models for
the shot point locating at the profile meters of 1 m (the upper diagram) and 48 m (the below diagram).
Both models predicate three layer. The upper layer with the seismic velocity values of ca. 375 m/s reaches
the depth of ca. 1.5 m. The below layer with seismic velocity values of ca. 775 m/s predicates the next
interface at the depth of ca. 8 m implying the seismic velocity of ca. 1750 m/s. However, these VSP
models confirm the three-layer model resulting by the ray tracing modelling.

Moreover, we could identified the significant hillslope areas (EFU’s) from geo-electrical data
as well as from refraction seismic data. These EFU’s complement well one other. The homogeneous
EFU 2 with low resistivity values (130 Qm) and relatively high velocity values (800 m/s) represents the
wetlands and the below slope. Whereas the relatively heterogeneous EFU 2 with the higher resistivity

values (350 - 450 Qm) and low velocity values (615 m/s) represents the upper and middle slope.
5.4 Joint three-dimensional interpretation of the investigated hillslope

In this chapter, we will demonstrate the investigated hillslope at both study sites in the three-
dimensional image, in order to prove the success of the system-oriented geophysical approach. We
created the three-dimensional view using only two profiles. One profile characterize the hillslope parallel
to the slope inclination, whereas the other profile is perpendicular to the first profile and separates the

first profile approximately in the middle.
5.4.1 Application in the Weierbach catchment

The Figure 5-29 illustrates the combined geophysical model in terms of ERT-, VES- and RS-
models of the profile parallel to the hillslope inclination. The detailed description to this profile
subsurface model, we already presented in the chapters 5.1.1, 5.2.1 and 5.3.1 because this profile is the
representative hillslope profile for the system-oriented geophysical approach according to the measuring
design in the Figure 4-1 and plays the important role for the hydrological modelling. Therefore, we kindly
refer the reader to the scheduled chapters for the detailed description. Moreover, to verify the hillslope
homogeneity perpendicular to the slope inclination, we put the second geophysical profile across the first
profile. The Figure 5-29 also shows the crossing point of the second profile locating at the 50-profile
meter of the representative hillslope profile.

Up to now, let us demonstrate and interpret the results of the second geophysical profile. The
Figure 5-30 shows the RS subsurface model for the second geophysical profile. We also marked the

crossing point of the first profile locating at the 48-profile meter. We developed this RS model using the
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Figure 5-29: The case study of the Weierbach catchment: The transparent comparison of layer

interfaces between ERT, VES and RS of the hillslope profile parallel to the slope inclination
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Figure 5-30: The case study of the Weierbach catchment: The refraction seismic model of the second

geophysical profile perpendicular to the hillslope inclination in terms of SVU'’s

ray tracing FD modelling. The surface topography of this profile implies a slight inclination decreasing
from WNW- to ESE-direction. The profile reveals a two-layer composition with high contrast and nearby
horizontal layering. The relatively variable low seismic velocity values (268 - 526 m/s) characterize the
upper layer, which reaches the depth of ca. 2.5 - 3 m. The below refracting layer implies the seismic
velocity values of 3262 m/s. The slight variable topography characterizes the refracting interface causing
probably through the orientation schist blocs. Moreover, we want to compare the RS subsurface model
with resistivity models resulting from ERT and VES. The upper diagram of the Figure 5-31 illustrates
the combined geophysical model in terms of ERT-, VES- and RS-models of the second geophysical
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profile. The two layers compose the two-dimensional ERT image. The high resistivity values ranging
from 2800 Qm to 5000 Qm characterize the upper layer, which reaches a depth of ca. 3.5 m, after which
the resistivity values decrease rapidly. The bottom layer implies the low resistivity values of ca. 375 Qm.
We can recognize the sharp contrast between high resistivity layer and low resistivity layer illustrating
through the resistivity iso-line of the 1000 Qm. If we compare visual this resistivity iso-line with the

- Profile [m] -

lllll

102 Om 104

-:_ Resistivity <— Maximal VES electrode spacing E‘i

1001000 wnr} 2800 3900 Tm ssoo 6100 [(m] | R|efracti0n| seimic l|ayer b0u1|1dary
| | | \ | | | | |

Relative height [m]
n
I
I
I
I
I

10000 —
.E. 3 50 m
] =+ Schlumberger

g . % ‘ % HSBESE
= B ‘ A HSB WNW
: 3
21000 —
= -
- *$
] 4
S
& i
<

100 T T T T T T T T T T

1 10 100

Spacing”‘z—B[m]
Figure 5-31: The case study of the Weierbach catchment: The transparent comparison of layer
interfaces between ERT, VES and RS of the second geophysical profile perpendicular to the
hillslope inclination (the upper diagram). The sounding curves of Schlumberger and Half-

Schlumberger measurements (the below diagram) at the hillslope profile 50 meter presenting

lateral homogeneity perpendicular to the slope inclination

seismic refractor (the black bold line), we will find that both boundaries correlate well with each other.
The resistivity 1000 Qm-iso-line describes nearby the same form as the refractor. Therefore, ERT
subsurface model also describe the homogeneous and nearby horizontal layers. Furthermore, we want to
analyse the result correctness through the VES measurements collecting at the 50-profile meter parallel
to the hillslope inclination. The below diagram of the Figure 5-31 demonstrates the results of the VES

measurements indicating the correctness of the equation (4-4) and the assumption on the homogeneous
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stratified subsurface. The inversion result of the VES measurement shown one-dimensional model (the
white line) in the upper diagram of the Figure 5-31 confirms the results of ERT and RS. The one-
dimensional model predicates nearby the same depth of the contrasting layer between the upper high
resistivity layer (ca. 4000 Qm) and the bottom low resistivity layer (ca. 350 Qm). Moreover, the one-
dimensional VES model identifies the thin relatively high resistivity layer (ca. 1500 Qm), which reaches
a depth of ca. 0.8 m.

Therefore, the cross profile proves well the success of the system-oriented geophysical approach
at the study site Weierbach catchment. All results confirm that the investigated hillslope we can describe
as homogeneous and representative hillslope for the considered catchment. However, we can create a
three-dimensional subsurface model of the investigated hillslope. The Figure 5-32 demonstrates the
three-dimensional subsurface model of the investigated north-facing hillslope in terms of seismic
velocity units. The seismic velocity subsurface model indicates the slight anisotropy of the subsurface.
The relatively increased velocity values represent the upper layer along the hillslope, whereas relatively
decreased velocity values represent the upper layer perpendicular to the slope inclination. The anisotropy
also characterizes the upper bedrock (the fracturedschist). The increased seismic velocity values

characterize the upper bedrock perpendicular to the slope inclination. The hillslope model also includes
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Figure 5-32: The case study of the Weierbach catchment presents the three-dimensional interpretation

of the representative hillslope in terms of SVU's
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the locations of the installed measurement cluster (marked as SD and SE) at the investigated hillslope.
5.4.2 Application in the Schaefertal catchment

The Figure 5-33 demonstrates the combined geophysical model in terms of ERT-, VES- and
RS-models of the profile parallel to the hillslope inclination. The detailed description to this profile
subsurface model, we already presented in the chapters 5.1.2, 5.2.2 and 5.3.2 because this profile is the
representative hillslope profile for the system-oriented geophysical approach according to the measuring
design in the Figure 4 1 and plays the important role for the hydrological modelling. Therefore, we kindly
refer the reader to the scheduled chapters for the detailed description. Moreover, to verify the hillslope
homogeneity perpendicular to the slope inclination, we put the second geophysical profile across the first
profile. The Figure 5-33 also shows the crossing point of the second profile locating at the 48-profile

meter of the representative hillslope profile.
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Figure 5-33: The case study of the Schaefertal catchment: The transparent comparison of layer

interfaces between ERT, VES and RS of the hillslope profile parallel to the slope inclination

Up to now, we will demonstrate and interpret the results of the second geophysical profile. The
Figure 5-34 shows the RS subsurface model for the second geophysical profile. We also marked the
crossing point of the first profile locating at the 48-profile meter. We developed this RS model using the
ray tracing FD modelling. The surface topography of this profile implies a slight inclination decreasing
from the West to the East. The height difference between the west site and the east site is ca. 2.5 m. The
profile reveals a two-layer composition with the relatively high contrast and nearby horizontal layering.
The low seismic velocity values (270 m/s) characterize the upper layer, which reaches the depth of ca.
2.5 — 3.5 m. The below refracting layer implies the seismic velocity values of 1784 m/s. The slight
variable topography characterizes the refracting layer. Moreover, we want to compare the RS subsurface
model with resistivity models resulting from ERT and VES. The upper diagram of the Figure 5-35

illustrates the combined geophysical model in terms of ERT-, VES- and RS-models of the second
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geophysical profile. The two layers compose the two-dimensional ERT image. The high resistivity values
ranging from 300 Qm to 400 Qm characterize the upper layer, which reaches a depth of ca. 3 m, after
which the resistivity values decrease gradually. The several patterns of the upper layer imply the
relatively high resistivity features (450- 550 Qm) in the depth of ca. 1 - 2 m. Moreover, the low resistivity
values ranging from 150 Qm to 200 Qm characterize the bottom layer. We can recognize the sharp
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Figure 5-34: The case study of the Schaefertal catchment: The refraction seismic model of the second

geophysical profile perpendicular to the hillslope inclination in terms of SVU'’s

contrast between high resistivity layer and low resistivity layer illustrating through the resistivity iso-line
of ca. 250 Qm. If we compare visual this resistivity iso-line with the seismic refractor (the black bold
line), we will find that both boundaries correlate well with each other. The resistivity 250 Qm iso-line
reflects nearby the same form as the refractor. Therefore, ERT subsurface model also describe the
homogeneous and nearby horizontal layers. We can associate the low resistivity bottom layer with the
good conductive layer. The refractor and the resistivity iso-line of 250 Qm represent the same inclination
as the surface topography from the West to the East direction. We can associate this subsurface area with
the possible subsurface flow from the West to the East. The date of the groundwater level presenting in
the Figure 3-4 confirm the flow direction. We suspect that the subsurface flow occurs parallel to the
slope inclination as well as perpendicular to the slope inclination during the wet state. The TERENO soil
moisture hillslope has a giving connection with our investigated representative hillslope. This fact
confirms the interaction between the neighbour landscape units.

Furthermore, we want to analyse the result correctness through the VES measurements
collecting at the 50-profile meter parallel to the hillslope inclination. The below diagram of the Figure
5-35 demonstrates the results of the VES measurements indicating the small differences between
sounding curves at the first 5 meter of electrode half spacing, but at the large electrode spacing it proves
the correctness of the equation (4-4) and the assumption on the homogeneous stratified subsurface.
Therefore, the small differences between sounding curves indicate the shallow heterogeneity at the depth

from 0.8 m to 2 m, whereas the deeper layer seems to be as homogeneous. The inversion result of the
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VES measurement shown one-dimensional model (the white line) in the upper diagram of Figure 5-35
confirms the results of ERT and RS. The one-dimensional model predicates nearby the same depth of
the contrasting layer between the upper high resistivity layer (ca. 350 Qm) and the bottom low resistivity
layer (ca. 130 Qm). Moreover, the one-dimensional VES model identifies the thin relatively low
resistivity layer (ca. 150 Qm), which reaches a depth of ca. 0.5 m. However, the near surface
heterogeneity of VES measurements confirm the resistivity variability of ERT measurements from the
surface to the depth of ca. 0.8 -2 m.
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Figure 5-35: The case study of the Schaefertal catchment: The transparent comparison of
layer interfaces between ERT, VES and RS of the second geophysical profile perpendicular
to the hillslope inclination (the upper diagram). The sounding curves of Schlumberger and
Half-Schlumberger measurements (the below diagram) at the hillslope profile 50 meter

presenting shallow heterogeneity perpendicular to the slope inclination

Therefore, the cross profile proves well the success of the system-oriented geophysical approach
at the study site Schaefertal catchment. All results confirm that the investigated hillslope we can describe
as homogeneous and representative hillslope for the considered catchment. However, we can create a
three-dimensional subsurface model of the investigated hillslope. The Figure 5-36 demonstrates the
three-dimensional subsurface model of the investigated north-facing hillslope in terms of seismic

velocity units. The seismic velocity subsurface model indicates the slight anisotropy of the subsurface in

- 103 -



5 Results and discussions

the upper layer. The relatively increased velocity values represent the upper layer along the hillslope,
whereas relatively decreased velocity values represent the upper layer perpendicular to the slope
inclination. The below layer with increased velocity values seems to be nearby isotropic.
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Figure 5-36: The case study of the Schaefertal catchment presents three-dimensional

interpretation of the representative hillslope in terms of SVU’s
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To conclude this chapter, we note that the using of the different geophysical interpretation
techniques requires the different opinions to develop a true geological subsurface model (Hoyer , et al.
2015). The differences of the different geophysical models provide a given degree of the real geological
model. However, the combination of geophysical interpretation techniques requiring by the minimal
geological background knowledge can provide a true geological situation of the investigated area.
Moreover, the geophysical model ambiguity can help to understand the nature of geophysical data and
to provide additional knowledge on the investigated area. Therefore, in order to obtain detailed

knowledge, we have more to learn from the uncertainty!
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6 Discussions of the design of the hydrogeological conceptual
model

The good results presenting in the chapter 5 at the two-study site permit also to discuss the
advantages of the suggested approach, in order to characterize a catchment as an organized system in
terms of representative units, and to start a dialogue with hydrologists and other scientist dealing with
catchment characterization. To develop this dialogue, we have to provide a conceptual hydro-
geophysical model, which offers detailed knowledge, in order to improve our understanding of the
subsurface processes at the hillslope scale. A conceptual model can help to calculate a numeric model.
Due to the complex hydrogeological systems, the numeric model cannot characterize numerous aspects
without the considering of the conceptual model.

Currently, it exists the various definition of conceptual models. A hydrogeological conceptual
model usually describes a qualitative and pictorial conception of the groundwater systems consisting of
the hydrogeological units, the system boundaries, inputs/outputs, and the description of the lithology and
properties (Meyer and Gee 1999). Moreover, based on the priori information taking from literature, soil
sampling or core drilling, a conceptual hydrogeological model must link field observations with
theoretical model, in order to interpret the site observation and to predict quantitative the future
conditions of the observed site (Meyer and Gee 1999). Besides, the hydrogeological conceptual model
hypothesis the main components and the relation between these components, which characterize the
observed study site. The conceptual model also can improve the preliminary theoretical model by input
of obtained observed data. The conceptual hydrogeological model generally includes such zones as near-
surface zone, unsaturated zone, saturated zone and the upper bedrock. However, in order to develop a
meaningful hydrogeological conceptual model, it needs a good work together between experimenters
and modellers. The joint observations of geologists, geophysicists and hydrologists result the expressive
hydrogeological conceptual model.

So far, the proposed system-oriented geophysical approach investigates a catchment system in
terms of representative landscape units, which link different landscape elements with each other. The
fundamental landscape unit is a hillslope because it manages the water balance in the catchment and
links different units such as plateau, slopes, riparian zone and stream channel with each other. The
geophysical investigations are parallel to the slope inclination using only one profile (see the measuring
design in the Figure 4-1 and the methodology description in the chapter 4), to collect the resistivity (ERT
and VES) and refraction seismic data. Moreover, the geophysical uncertainty provide possibilities better
to understand the nature of geophysical data. The geo-models of the investigated subsurface interpreted
with different techniques construct the conceptual hydro-geological model based on the hydrogeological
knowledge from previous literature sources.

To compile the developed geophysical subsurface models to the representative conceptual

hydrogeological model, we defined the model functionality. This model should interpret the hillslope
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system in terms of the hydro-stratigraphic units and system boundaries describing high and low hydraulic
conductive zones. The starting point for the model construction is the collection of the geophysical model
in terms of system boundaries and geophysical values (electrical resistivity and seismic velocity)
obtained by resistivity and refraction seismic surveys. Besides, we made several assumptions. The model
body should describe the two-dimensional profile with the exact measured surface topography including
micro-topography. Moreover, the subsurface lithological parameters imply the homogeneous stratified
subsurface, the fixed physical layer boundaries, the effective geophysical subsurface values, and the
upper permeable bedrock underlying by impermeable bedrock. In addition, the uniform hydraulic
parameters, the dominance of the subsurface flow, streamlines parallel to the permeable bedrock, and the
connection between the hillslope and the creek should characterize the conceptual hydrogeological
model. After making all assumptions, we considered the collected geophysical models and the available
lithological knowledge from the previous studies of (Martinez-Carreras, et al. 2010, Juilleret, et al. 2011
for the Weierbach catchment; Altermann 1989, Martini, et al. 2014 for the Schaefertal catchment), in
order to define the physical situation and the model design objective.

Therefore, based on the resulted geophysical subsurface models demonstrated in the chapter 5
and on the lithological-geological background introduced in the chapter 3, we created the conceptual
hydrogeological models describing representative hillslope at the study site Weierbach and Schaefertal.
The Figure 6-1 and the Table 6-1 describe the conceptual hydrogeological model for the study case of
the Weierbach. Whereas the Figure 6-2 and the Table 6-2 characterize the conceptual hydrogeological
model for the study case of the Schaefertal. The excellent results of the Weierbach permit to combine
the resistivity models as well as the seismic models, in order to generate the conceptual hydrogeological
model. In contrast to it, we interpreted the conceptual hydrogeological model of the Schaefertal based
on the structure model obtained from VES data, because the seismic models imply many ambiguities in
the data interpretation. Both models describe the lithological discontinuities of PPSD’s and bedrock. The
Figure 6-1 and Figure 6-2 reflect that the fresh bedrock locates in the large depth, where the medium
contrast is significant poor. From this point, we believe that the bedrock influence on the subsurface flow
is negligible. Nevertheless, the structure of PPSD’s impacts on the hydrological processes significant.
Many studies confirm this fact (Juilleret, et al. 2011). However, we delineated the PPSD’s structure in
terms of the upper periglacial layer (UPL) and the basal periglacial layer (BPL) in each study case. The
upper periglacial layer implies relatively high resistivity values, lower seismic velocity values and less
thickness (ca. 1 - 2 m). Whereas, the basal periglacial layer indicates decreased resistivity values and
intermediate seismic velocity values. Moreover, in the case of the Weierbach, we identify the transition
layer between UPL and bottom BPL with significant high resistivity values (more than 5000 Qm). We
called this zone as the upper BPL. We assume that this zone contents the periglacial debris filled by the
air functioned as a dielectric. Besides, the UPL of the Schaefertal hillslope exists only at the upper and
middle slope, and does not present in the wetlands, because the wetlands seem to be consistent water

saturated during the wet state. The relevant subsurface flows occur in the relatively low resistant BPL on
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Figure 6-1: The conceptual hydro-geological model of the representative north-facing

hillslope locating in the Weierbach catchment

Table 6-1: Description of the conceptual hydro-geological model for the case study the Weierbach

catchment (see the Figure 6-1)

Hydro-stratigraphic unit Description

o Relatively high resistivity values (ca. 1730 Qm) and variable lower
Upper periglacial layer

(UPL) seismic velocity values (ca. 450 m/s). Loamy soils with many tree

roots and fragments of schist stones. Good drainage zone.

Transition zone between UPL and bottom BPL characterised by
Upper part of basal ) o . )
o extremal high resistivity values (more than 6000 QQm) and intermediate
periglacial layer (Upper

BPL) seismic velocity values (638 m/s). Probably, it contents of periglacial

debris as well as tree root network. Excellent drainage zone.

Bottom part of basal Transition zone between high resistant upper layer and low resistant
periglacial layer (Bottom (330 Qm) below layer with intermediate seismic velocity values (638

BPL) m/s). Debris of the schist. Subsurface flows may occur.

. Low resistivity values (330 Qm) and high seismic velocity values
Fractured schist S
(3028 m/s). The upper bedrock may store significant amounts of water.

) Increased resistivity values (500 — 1000 Qm) and seismic velocity
Compact schist )
values (ca. 4000 m/s). The poor contrast in the depth.
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Figure 6-2: The conceptual hydro-geological model of the representative north-facing

hillslope locating in the Schaefertal catchment for the wet state

Table 6-2: Description of the conceptual hydro-geological model for the case study the Schaefertal

catchment (see the Figure 6-2)

Hydro-stratigraphic unit Description

High resistivity values (460 Qm) and low seismic velocity values
o (383 m/s/) characterize less permeable fine soil with rock waste
Upper periglacial layer (UPL) ]
and fragments by mountain loam. It also contents of the plant root

network. A good drainage zone during the wet state.

Decreased resistivity values (300 Qm) and intermediate seismic
Basal periglacial layer (BPL) velocity values (750 m/s). It contents of debris of the greywacke.

Subsurface flows may occur.

Low resistivity values (130 Qm) and high seismic velocity values
Fissured greywacke (from 1514 m/s to 1792 m7s) characterize the fissured bedrock. It

can store significant amount of water.

Increased resistivity values (270 Qm) characterize fresh bedrock.
Compact greywacke The deeper location of the fresh bedrock. The poor contrast in the
depth.

the top of fractured bedrock. The fractured upper bedrock may store significant amount of water. Besides,

the distinguished EFU’s can represent the energetic levels in terms of states.
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We also have to note that the conceptual hydrogeological model of the Weierbach hillslope can
be representative for the whole year without considering of the seasonal changes, whereas the obtained
Schaefertal model represents the conceptual hydrogeological model for the wet state. Therefore, to
complete the geophysical interpretation at the Schaefertal hillslope, the additional measurements need to
conduct during the dry state. Probably, we will obtain a clear structure of the near surface in the wetlands.

According to (Anderson and Woessner 1992), our developed conceptual models describe hydro-
stratigraphic units and system boundaries as well as subsurface flow. However, we believe that the
developed hydrogeological models provide a detailed content from geophysical and geological
perspectives, in order to test hydrological models for the making the various scenarios and for the
prediction of hydrological processes. The models also can help to understand the behaviour of the
hydrological systems. The conceptual hydrogeological models represent the results at the local-scale
investigation performed at representative sites. Nevertheless, there is still a need the knowledge from
other disciplines, especial hydrology (data of groundwater level), in order to demonstrate the

groundwater level in the model and its correlation with saturated zone.
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In conclusions, we summarize the points learning during the research in the multi-disciplinary
project CAOS. At the first, such project assumes a good collaboration between different discipline
partners. Then, to study the investigated area in the efficient manner and system-oriented, we recommend
to consider the nature system as a set of the representative functional units assuming the interaction
between the neighbour-units. Moreover, a hillslope represents a fundamental landscape element in the
catchment structure. We can transfer the one set of dimensions from the representative hillslope to other
hillslopes implying a similar set of dimensions using the similarity index or the hillslope Péclet number.

The catchment system is open thermodynamic system characterizing by many possibilities of
indeterminate variables to find wanted hydrological conditions for maximum probability by minimum
work. The entropy concept is a good approach to describe the catchment system in terms of states and
representative functional units. Moreover, we can take into account other perspectives such as catchment
as complex dynamic systems, self-organising systems, co-evolving systems and catchment similarity,
which can help understand the catchment system under change.

To recognize the representative homogeneous hillslopes in the catchment and to link geophysics
and hydrology, we defined the following key words such as uniform stratified subsurface, topography,
wetness, the specific hydrological response (hydrographs), and the spatial scale of the observation from
geophysical perspective assuming hydrological criteria (complexity, functional homogeneity, thresholds
and dominance described by Basu, et al. 2010).

Before starting the installation of the hydrological and meteorological devices at the hillslope,
we recommend to prove the selected hillslope for the homogeneity and the typical features using the
cross test profiling and assuming the introduced key of the representatively and homogeneity. If the
making assumptions are not valid, we have to re-select a reference hillslope or to conduct the three-
dimensional measurements. According to (Bachmair and Weiler 2013), the hillslopes with the high
spatial variability are not the homogeneous responding functional units. Besides, the system-oriented
geophysical approach (SOGA) assumes the homogeneous, horizontal stratified subsurface and the
coupling between the petro-physical parameters (in our case electrical and seismic).

Moreover, the approach designates lateral as well as vertical stratigraphic geophysical units in
terms of EFU’s, ESU’s and SVU’s. We believe that these units can control hydrological processes and
represent energetic levels, which we can consider in a multi-disciplinary integrated analysis. Such
analysis has to improve our understanding of the mechanisms of the complex processes in the subsurface.
The approach is quite efficient for the forested investigated areas. Furthermore, an effective geophysical
investigation on the hillslope scale, we can provide not only by expensive three-dimensional
measurements, but also the use of the one- and two-dimensional measurements can explore in the details

the hillslope as a representative landscape unit. However, the geophysical measurements according to
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the measuring design shown in the Figure 4-1 at only single profile is quite efficient, in order to integrate
the geophysical surveys into multi-disciplinary project.

Therefore, the aim of this work was to suggest an effective and cost-efficient approach for the
investigation of subsurface structures in a catchment using ERT, VES and RS techniques as well as
combined technique. On the other hand, to identify geophysical units that can control hydrological
processes. The Table 7-1 summarizes the effectiveness of the applied geophysical techniques as well as
the investigated depth. The resistivity and refraction seismic tomography illustrate the distribution
patterns of the contrasting lithological units, whereas resistivity sounding and RS wave front
reconstruction predict the boundaries of the hydro-stratigraphic units. Moreover, the Figure 7-1
demonstrates the cost-efficiency of the suggested approach. It compares the applied geophysical
techniques (RS, ERT and VES) on the measure of horizontal and vertical survey scale achievable in 1
day by three-person field team for the complex accessible terrain at a single profile assuming the constant
sensor spacing by 1m. This comparison demonstrates the range achievable during the field works from
different geophysical methods at spatial scale as well as temporal sale, which is important to take into
account for the choice of the appropriate technique (Binley, et al. 2015). ERT can cover larger profile
length by relatively lower time effort, but cannot reach the large depth, in contrast to RS and VES. A bit
large time effort by large depth penetration characterizes RS and VES, in contrast to ERT. VES survey
can do three measurements at the same time characterizing the hillslope over the width compared to
ERT. The penetration depth also depends on the subsurface conditions (medium contrast, especial for
RS). To note, the Figure 7-1 demonstrates our subjective estimation of the effort based on the field

experiences.

Table 7-1: The applied geophysical techniques to develop the system-oriented geophysical approach

Investigated

Method Effectiveness Interpretation technique
depth

The exact depth predication
] Four-electrode system to develop the 1D- | from 0.8 m
VES of contrasted electrical
) models to16 m
interfaces

The illustration of the o o
Multi-switch system for the imaging of from0.3m

ERT patterns of saturated and dry )
the 2D-section to 10 m
subsurface zones
The predication of the o 10 -20 m,
Seismic tomography, wave front
weathered bed rock ] ] the strong
RS o reconstruction using PMM and ray
boundary and linking to the ) ] ) dependence
] tracing to illustrate the 2D-section
geotechnical parameters on contrast
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We tested the suggested approach at the two study sites characterizing by Pleistocene periglacial
slopes deposits and different environmental conditions such as land use, slope inclination. The
investigations at the different hillslopes demonstrate that we can learn many facts from geophysical
ambiguity, in order to develop a hydro-geological conceptual model based on the structural comparison
of the geo-models and the differences in the interpretation techniques. The different geo-models reflect
a given degree of the ambiguity. The combination of different geo-models can eliminate the model
uncertainty and provide more or less realistic subsurface model. We identified for each representative
hillslope the hydro-stratigraphic units and contrasting boundaries. We also could predicate the possible
flow paths in the subsurface. The developed models are consistent with physical laws and lithological-
geological background, and provide physical boundaries and values of the subsurface, in order to

parametrize the hydrological models and to develop the hydrogeological conceptual model.
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Figure 7-1: Comparison of horizontal and vertical survey scales achievable in 1 day by three-person
field team for RS, ERT and VES demonstrates time effort in hours for the complex accessible terrain (like

forest with changeable topography) using a single profile

Hence, the suggested approach systematises the catchment system in terms of representative
landscape units and can provide a robust platform for understanding and modelling hydrological systems
allowing flexible hypothesises and model testing. Our research shows that it is necessary to develop
interdisciplinary and international programs, in order to describe complex nature systems. Besides,

suggested results assume the importance of performing cost effective geophysical investigation, in order
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to explore the nature systems at the large landscape scale. Hence, (Binley, et al. 2015) thinks that the use
of landscape elements at the representative local sites can capture the landscape heterogeneity.
Concluded, (Robinson, et al. 2008) and (Binley, et al. 2015) explain that geophysical investigation has a
growing interest in hydrology now and in the future, in order to investigate subsurface patterns at the
large-landscape scale and to monitor the processes connected with the temporal changes.

In the future, the system-oriented approach considered in this monograph will be improved and
adapted for the studying the dune landscapes and structures locating along the seacoast boundary. The
understanding of the dune landscape has the large importance due to the sensible character of such

system, which suffer from nature actions as well as human activity.
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Appendix A

A - 1: The case study of the Weierbach catchment: RMS-fitting of the VES inversion

VES ID Surface coordinates Layer number | RMS [%] HiIIsIop-e area
X [m] Z[m] unit
VES 0 0 0 4 1.8
VES 5 5 -1.846 4 3.03
VES_10 10 -3.006 4 5.62
VES_15 15 -4.504 4 6.38
VES_20 20 -6.144 4 6.79
VES_25 25 -8.07 4 3.86
VES_30 30 -8.761 4 3.23 Homogeneous
VES_35 35 -10.245 4 1.03
VES_40 40 -11.294 4 1.55
VES_45 45 -12.137 4 3.91
VES_50 50 -12.924 4 5.36
VES_55 55 -13.777 4 4.18
VES_60 60 -14.628 4 8.22
VES_65 65 -15.623 4 3.74
VES 70 70 -16.557 4 1.85
VES_75 75 -17.745 4 4.67 Shallow-
VES_80 80 -19.007 4 451 heterogeneity
VES_85 85 -20.391 4 6.62
VES_90 90 -21.703 4 6.6
VES_95 95 -23.029 4 7.89 Homogeneous
VES_100 100 -23.93 4 1.72
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A - 2: The case study of the Schaefertal catchment: RMS-fitting of the VES inversion

VES ID Surface coordinates Layer number | RMS [%] HiIIsIop-e area
X [m] Z [m] unit

VES_0 0 0 4 1.84

VES_5 5 -0.838 4 2.58

VES_10 10 -1.407 4 1.76

VES_15 15 -2.172 4 1.23

VES_20 20 -2.911 4 1

VES_25 25 -3.506 4 1.07

VES_30 30 -4.083 4 1.75 Shallow'

VES_35 35 -4.603 4 1.84 heterogeneity

VES_40 40 -5.132 4 1.13

VES_45 45 -5.545 4 1.23

VES_50 50 -6.1 4 1.72

VES_55 55 -7.19 4 1.22

VES_60 60 -7.851 3 1.43

VES_65 65 -8.698 3 141

VES_70 70 -9.45 3 1.77

VES_75 75 -9.95 3 0.98

VES 80 80 -10.293 2 2.74 Homogeneous

VES_85 85 -10.276 2 2.62

VES_90 90 -10.15 2 3.27

VES_95 95 -10.245 2 5.06
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B - 1: The case study of the Weierbach catchmentls. Unfiltered seismograms for the shot position

at the profile meter 0 (the upper diagram) and for the shot position at the profile meter 95 (the
middle diagram); and filtered seismogram with band-pass filter: lower cut-off 10 Hz and upper
cut-off 75 Hz for the shot position at the profile meter 95 (the below diagram)

18 Seismograms for the Weierbach catchment were imaged in the program ZONDST2D (http://zond-geo.ru)
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w045} 0= 38 (43 130 H1d30

301 I8 0= 18 (43 130 H1d30

#3204 [500] 1 0= 8 [543 130 H 1430

B - 2: The case study of the Schaefertal catchment: Unfiltered seismograms for the shot position
at the profile meter 1 (the upper diagram) and for the shot position at the profile meter 96 (the
middle diagram); and filtered seismogram with band-pass filter: lower cut-off 15 Hz and upper

cut-off 120 Hz for the shot position at the profile meter 96 (the below diagram)
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C - 1: The case study of the Welerbach catchment19 1D-VSP- modelllng for the shot posmon at

profile meter O (the upper diagram), 50 (the middle diagram) and 95 (the below diagram) in
terms of two layers

19 Seismograms for the Weierbach catchment were imaged in the program ZONDST2D (http://zond-geo.ru). 1D

V'SP models were done in the program REFLEXW?® Version 6.0.9 (Sandmeier 1998-2009, http://www.sandmeier
geo.de)
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C - 2: The case study of the Schaefertal catchment: 1D-VSP-modelling for the shot position at
profile meter 1 (the upper diagram), 48 and 49 (the middle diagrams), and 96 (the below

diagram) in terms of two layers
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D - 1: The case study of the Welerbach catchment20 1D- VSP modelllng for the shot position at

profile meter O (the upper diagram) and 95 (the below diagram) in terms of three layers

20 Seismograms for the Weierbach catchment were imaged in the program ZONDST2D (http://zond-geo.ru). 1D-
VSP models were done in the program REFLEXW?° Version 6.0.9 (Sandmeier 1998-2009, http://www.sandmeier-
geo.de)
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=

E - 1: The satellite image®! presents a possible geological-geomorphological 2D-feature at

the Schaefertal study site

2 http://www.bing.com/maps/
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