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Abstract. When designing digital systems, the Design Space is explored well in advance to
rule out as many infeasible design options as possible, as a complete enumeration would be
infeasible. Still, in the end, the designer is mostly left with several similar design options, i.e.
actual choice of adder, Floating Point Unit etc. In such cases, a direct comparison cannot be
avoided - at least in simulation. Even though the designer might have somemodule descriptions
to be examined at hand, it might take a while to put them to work because of differing ports
and control signals.

But why should a system designer make the effort to adapt many modules to his design if he is
only interested in a few aspects for a quick survey: overall power consumption, area occupation,
timing, and correctness of results? This is the reason why we need a hardware description
solely based on parameters. Such a description requires Metaprogramming Techniques be-
cause said parameters need to be translated to hardware behaviours. Hence, in this work we
propose a parameter based hardware design paradigm based on SystemC and C++: Hardware
Metadescription.

1. Introduction

More and more, metaprogramming techniques, e.g. Template Metaprogramming (TMP) in C++1,
establish themselves as great assets in Software development since they provide a more generic
nature and better maintainability than "traditional" code. Furthermore, the compiled programs tend
to run faster, since the compiler can utilize more sophisticated optimizations [1]. SystemC [5] as
a C++ library can obviously exploit TMP. In doing so, the TMP advantages can be transferred to
hardware descriptions. This results in better reusability of the modules and a quicker Design Space
Exploration (DSE). In this work in progress2, we research how to describe hardware modules with
TMP in SystemC. We will demonstrate the design methodology of an Execution Unit and focus on
the TMP techniques which are necessary to abstract the module descriptions. In the remainder of
the document this description is called Hardware Metadescription (HMD).

We will proceed as follows: In Section 2, we give an overview over the related work which
deals with metaprogramming in the context of hardware design. Then, in Section 3, we suggest
parameters to model hardware components and give a few examples. After this, we give examples
on how Metaprogramming can be used with SystemC in Section 4. In Section 5, we present a
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few basic concepts of Template Metaprogramming which are frequently needed. And finally, we
outline our future work in Section 6.

2. Related Work

The underlying idea to abstract hardware modeling in conjunction with metaprogramming tech-
niques is already well known. Because Verilog and VHDL have never featured inherent metapro-
gramming, heterogeneous metaprogramming is mostly used, i.e. metalanguage and target language
differ. In contrast, our approach employs homogeneous metaprogramming and only aims at sim-
ulation. Since C++11 and C++14 have been released, many new features were introduced which
were adapted in part by SystemC [6].

In [4], a systematic design flow from UML to the actual hardware description is presented. Their
work is broadly applicable due to the UML front-end and draws parallels to software design patterns
but aims at actual hardware specification. PragScript serves as their metalanguage. As proof of
concept, they implement a triple-redundant system using UML class diagrams. In the terms of
Damasevicius et al. [4], our proposed description is a Metaspecification.
A more abstract approach is shown in [8]: They propose a basic Hardware library similar to

the C++ Standard Template Library (STL) which handles different hardware implementations in a
general way through metaprogramming. By this, well-known software design patterns are intended
to become available for hardware design. An Iterator equivalent serves as an example. In the
evaluation section, they find that pattern-based hardware implementations affect the structure of
the model but not necessarily induce additional logic. Unfortunately, they do not reveal their
metalanguage.

Zhou et al. use Perl as the metalanguage in [9]. They synthesize a pattern-oriented generator for
a Viterbi decoder on an Altera Stratix II FPGA and compare it with Altera’s corresponding IP core.
On the one hand, their logic utilization is higher and clock frequency is lower, but on the other hand
the power consumption and RAM occupation are lower. The evaluation of the lines of code shows
that the pattern-oriented generator needed slightly less lines of code while offering more flexibility
than the hard-coded one.

3. Metamodeling of Hardware Components

Metamodeling of hardware means to describe hardware only in terms of a few parameters which
entirely define the behaviour of a hardware module. For demonstration purposes, we will illustrate
the HMD concept by the example of an Execution Unit. Of course, Control Units can be imple-
mented with this methodology, too. Yet, an Execution Unit is a bit more challenging as we also
show how to assign the functionality with a Template Parameter in Section 4 which turns out to be
non-trivial.

In general, arithmetic units take certain data, process them for a certain amount of time, and
finally output a result. We can identify the following parameters:

• Latency: Clock Cycles which need to pass between issuing an operation and getting the result

• Initiation Interval (II): Clock Cycles which need to pass between issuing two consecutive
operations



• Number Representation: Can be Floating Point, Integer, etc.

• Number of Operands: For supporting unary, binary and ternary operators

• Operand Width: in bits

• Result Width: in bits

• Operators: A set of operators which are supported by the module

• Area: Occupied area on the target technology

• Power Consumption: Estimated Power Consumption on the target technology

The last two parameters do not contritbute to the functionality and, hence, are not required for a
simulation but become interesting when investigating further trade-offs between design choices.
They are optional as this would ultimately require to have the data for all target technologies. A set
of data for one target technolgy might be translated to another using the estimation approach in [3]
if necessary. Yet, they are left out for the models in the next paragraph.

For instance, a simple Arithmetic Logic Unit (ALU) can be modeled with

ALU = { Latency = 0, II = 1, Number Representation = Integer, Number of Operands =
2, Operand Width = 32, Result Width = 32, Operators = { +,−, <,¬,∪,∩ } } .

The resulting hardwaremodule can be seen as a black boxwhich provides the ports and behaviour
implied by the parameters. Assuming we would like to have a model of a Floating Point Divider we
could choose either a blocking one ({ Latency=24, II=25, Number Representation=Float, Number
of Operands=2, Operand Width=32, Result Width=32, Operators={ / } } or a pipelined one ({
Latency=24, II=1, Number Representation=Float, Number of Operands=2, Operators={ / } } just
by changing II. A simple shift operation which is only cheap wiring could be modeled with {
Latency=0, II=0, Number Representation=Integer, Number of Operands=1, Operand Width=32,
Result Width=32, Operators={ Leftshift } }. HMD modules cover multiple different traditionally
described modules with one description, while being less verbose and, hence, less error-prone.

4. Hardware Metadescription

In Section 3, we identified a set of parameterswhich describe the behaviour of an arbitrary Execution
Unit. When we want to simulate the model, we have to derive a working SystemC module from
these parameters. First, we need a template class:
template <size_t LATENCY, size_t II, typename SCALAR, size_t OPERAND_NUMBER ,
typename... OPERATORS >

class fu_module : public sc_module{ /* Ports, Processes , ... */};

where LATENCY denotes latency, II denotes Initiaion Interval, SCALAR denotes the Number Rep-
resentation, and OPERAND_NUMBER is the number of operands. The set of operators is given as
a Variadic Template named OPERATORS.... In this case, the Variadic Template is supposed to
comprise function objects such as std::plus<int> or even new ones:



#include <cmath>
template <typename T> struct fma_t{ //Fused-Multiply-Add Function Object
constexpr T operator()(const T &arg1, const T &arg2, const T &arg3) const {
return std::fma(arg1,arg2,arg3);

}
};

For clarification, for the way the module is defined here, the OPERATORS are required to be of the
same kind, i.e. latency etc. are the same for each operator in an instance of fu_module. In case a
designer desires to implement two functions with differing parameters, he will have to instantiate
two distinct units.

In summary, all parameters from Section 3 are provided (the width of the operands and result
are omitted for now) and a hardware designer could, for instance, specialize this module to recreate
the behaviour of an existing module. The realization of such a generic module is explained in
the remainder of this Section. Essentially, we have to derive an architecture of an HMD module
from said parameters. The presented challenges might not be easy to recognize as such but a
detailed explanation is out of the scope of this document. Thus, we will focus on the proposals for
overcoming them. For our implementation, we wrote C++/SystemC2.3.1 code compiled by the
GNUCompiler Chain 6.3.0.

4.1. Floating Point Operations in SystemC

Since SystemC2.3.1 does not provide a floating point data type, we came up with the idea of a
simple float_cast union which consists of one field that can be either interpreted as an int or
float data type.
typedef union{ float f; int i; } float_cast;

Then the float value can be "encoded" as an int value, transmitted via the SystemC signals and
"decoded" at the desired function unit which harnesses the simulation platform’s FPUs.

Regarding the special treatment of float values, naively, we could try to implement a member
function which handles the input data only depending on the class template SCALAR. Unfortunately,
this would require partial template specialization of this member function which is not supported by
C++. The only option left would be to partially specialize the class for each case and implement the
according member function multiple times. But then the same problem arises later when handling
unary, binary, and ternary operators which would lead to an enormous overhead due to the different
combinations of template specializations.

C++11 introduced the concept of Substitution Failure Is Not An Error (SFINAE) which can be
exploited to achieve a similar behaviour as partial specialization of member functions: By using
the std::enable_if<> statement, different implementations of the same function can be written.
As long as the premisses of each std::enable_if<> statement mutually exclude each other, the
actually compiled function is unambiguous, for instance, using the following description for the
otherwise identical member function signature:
template <typename T=SCALAR>
typename std::enable_if_t <std::is_integral <T>::value,void> process_data();

template <typename T=SCALAR>
typename std::enable_if_t <!std::is_integral <T>::value,void> process_data();



Note the negation in the second premiss.

4.2. Pseudo-Dynamic Dispatch of templated functions

Another challenge is the dynamic selection of a template parameter out of a static parameter set
because, technically, they need to be statically indexed.

The workaround to this is a switch statement. The switch variable is the dynamic part and the
case statement contains the static indexing part. But being required to write one case statement
for each case lacks of generality, especially since the number of case statements has to be adapted
to the size of the parameter set. To introduce more generality, the preprocessor in conjunction
with the Boost Library3 is employed. Firstly, the adaption to the different parameter set sizes
can be achieved again with SFINAE. Secondly, for each possible parameter set size a specialized
function is created which, thirdly, unrolls the according case statements. In the end, two nested
BOOST_PP_REPEATS unroll the possible implementations which are later enabled or disabled by
SFINAE. This procedure guarantees easily maintainable code. In the following an example is given
for the dynamic selection of an operator:
#define MAX_SUPPORTED_NUMBER_OF_OPERATORS 10
...

std::tuple<OPERATORS...> tuple_operators;
int datum1, datum2, result;
...

template <size_t index>
void process_data(){
auto private_operator = std::get<index>(tuple_operators);
result = private_operator(datum1, datum2);

}

#define OPERATOR_SELECT_CASE(rep,n,_) case n: \
process_data <n>(); \
break;

#define OPERATOR_SELECT(rep,n,_) template <unsigned MAX=sizeof...(OPERATORS)>\
typename std::enable_if_t <(MAX==n),void> operator_select(size_t i){ \
switch(i){ \
BOOST_PP_REPEAT(n,OPERATOR_SELECT_CASE ,_) \
} \

}

BOOST_PP_REPEAT(MAX_SUPPORTED_NUMBER_OF_OPERATORS , OPERATOR_SELECT ,_)

The MAX_SUPPORTED_NUMBER_OF_OPERATORS parameter is the only restriction to this approach.
But a designer can simply increase it if he needs to provide more operators in a module. In the end,
for processing datum1 and datum2 into result with the first operator in the variadic template
OPERATORS..., simply the method operator_select(0) has to be called, for instance.

3http://www.boost.org/



4.3. Templated modeling

For our implementation, we define an Operator Model Pattern with the previously mentioned
parameters:
template <typename SCALAR, size_t LATENCY, size_t INITIATION_INTERVAL ,
size_t NUMBER_OF_OPERANDS , typename FUNCTOR>
struct operator_model;

An actual model could look like this:
using adder_f_t = operator_model <float, 3, 1, 2,typename std::plus<float>>;

All Models have to be managed by a central structure which we call Operator Model Container:
template <typename SCALAR, size_t LATENCY, size_t INITIATION_INTERVAL ,
size_t NUMBER_OF_OPERANDS , typename FUNCTOR, typename... REST>
struct operator_model_container <operator_model <SCALAR, LATENCY,
INITIATION_INTERVAL , NUMBER_OF_OPERANDS , FUNCTOR>, REST...>
{...};

An example could look like this:
using all_models = operator_model_container <adder_f_t/*...*/>;

This container provides functions to look up parameters of each contained operator model. For
instance:
size_t l = all_models::get_latency <adder_f_t >::value;

These models may be used within an Execution Unit of a microprocessor or in the Processing
Elements of a Reconfigurable Processor. Next, we wish to assign an Opcode to such an operator
model. This can be achieved with the following:
#define ADD_FP 5 //Example Opcode
using opcode2model = static_map < static_map_entry <ADD_FP, adder_f_t >/*...*/>;

Now, we can configure an Execution Stage by simply passing a set of Opcodes as Template
Parameters. The Execution Unit has to take care of the instantiation of the fu_module instances
and the wiring. The behaviour is provided by the models. In particular, for emulating latency, the
fu_module must privately generate an accordingly deep pipeline for delaying the results of the
function object calls. In addition, it has to abide by the Initiation Interval. Ideally, the designer
does not have to care about these implementational details, since they solely rely on the Operator
Models. His responsibility is just assigning the Operator Models to Opcodes, and then configuring
the Execution Units with said Opcodes.

5. Template Metaprogramming

As we have seen in Section 4, it is necessary to look up parameters or types by other parameters or
types. In the following, we give minimal examples on how these look-ups can be achieved during
compile-time. In particular, we will describe four static maps which map a number, i.e. a non-type,
to a type, a type to a non-type, a type to a type, and a non-type to a non-type. First we need
structures which assign the respective key to a value, i.e. static map entries:



//Entry mapping a non-type KEY to a type VALUE
template <size_t KEY, typename VALUE> struct map_entry_nontype_to_type;

//Entry mapping a type KEY to a non-type VALUE
template <typename KEY, size_t VALUE> struct map_entry_type_to_nontype;

//Entry mapping a type KEY to another type VALUE
template <typename KEY, typename VALUE> struct map_entry_type_to_type;

//Entry mapping a non-type KEY to another non-type VALUE
template <size_t KEY, size_t VALUE> struct map_entry_nontype_to_nontype;

Then we define a general case for each kind of static map using a Variadic Template Parameter
REST:
template <typename... REST> struct map_nontype_to_type;

template <typename... REST> struct map_type_to_nontype;

template <typename... REST> struct map_type_to_type;

template <typename... REST> struct map_nontype_to_nontype;

Variadic Templates can represent an arbitrary number of possibly different types. This is useful for
the intended generic character of our static maps.

For the actual maps we partially specialize the respective general definitions which handle the
static map entries. For the actual look-up we need a struct that behaves like a "getter function".
Putting these pieces together so far, this might look like this:
template <size_t KEY, typename VALUE, typename... REST>
struct map_nontype_to_type < map_entry_nontype_to_type < KEY, VALUE>, REST... >{
//"getter"-struct which looks up a value by a key
/*...*/

};

We are also required to cover the case that a key is not contained in the map:
//default implementation
template <typename...>
struct map_nontype_to_type{ /*...*/ };

When we want to set up and use such a static map, e.g.
using static_map = map_nontype_to_type </*(map entries)...,*/

map_entry_nontype_to_type <3,int>/*, (more entries)...*/
>;

and wish to access a map entry in the program, we just have to write:
//...
static_map::get<3>::type a = 5;
//...

which in this case is equivalent to writing:
int a = 5;

Now that we have defined the scope of the examples, let us investigate on how the look-ups can
be done. Depending on the nature of the key and the value, i.e. non-type or type, slightly different
concepts have to be used.



5.1. Look-up of a type by a non-type

For this look-up, we recursively check whether a given argument ARG matches with a KEY by using
the std::conditional<> statement. Basically, it behaves like the ternary operator (?:) but only
for types: If the value of KEY is equal to the value of ARG, the type VALUE will be "returned".
Otherwise, the look-up is continued with the remaining template parameter REST which implicitly
comprises the map entries not yet considered.
template <size_t KEY, typename VALUE, typename... REST>
struct map_nontype_to_type < map_entry_nontype_to_type <KEY, VALUE>, REST... >{
//"getter"-struct which looks up a value by a key
template <size_t ARG> struct get{
using type = typename std::conditional <KEY==ARG, //Premise
VALUE, //if premise is true
typename map_nontype_to_type <REST...>:: //if premise is false
template get<ARG>::type>::type;

};
};

If the above structure fails to find a matching key, void will be returned as a type.
//default implementation
template <typename...>
struct map_nontype_to_type{
template <size_t> struct get{ using type = void; };

};

5.2. Look-up of a non-type by a type

Given a type, the strategy looks similar to the previous one. The std::is_same<> compares the
types of its arguments. If the condition is satisfied, VALUE will be "returned". Otherwise the search
continues. As a default value, −1 is chosen.
template <typename KEY, size_t VALUE, typename... REST>
struct map_type_to_nontype <map_entry_type_to_nontype <KEY,VALUE>, REST...>{
template <typename ARG> struct get{
static const size_t value = (std::is_same<ARG,KEY>::value) ?
VALUE :
map_type_to_nontype <REST...>::template get<ARG>::value;

};
};

template <typename...>
struct map_type_to_nontype{
template <typename > struct get{ static const size_t value = -1; };

};

5.3. Look-up of a type by a type

Combining the previously introduced concepts std::conditional<> and std::is_same<>, we
can look up a type by another type like this:



template <typename KEY, typename VALUE, typename... REST>
struct map_type_to_type <map_entry_type_to_type <KEY,VALUE>, REST...>{
template <typename ARG> struct get{
using type = typename std::conditional <std::is_same<ARG,KEY>::value,
VALUE,
typename map_type_to_type <REST...>::template get<ARG>::type>::type;

};
};

As default, void will be returned.

5.4. Look-up of a non-type by a non-type

This last example looks up a non-type by another non-type. This is straight-forward:
template <size_t KEY, size_t VALUE, typename... REST>
struct map_nontype_to_nontype <map_entry_nontype_to_nontype <KEY,VALUE>,REST...>
{
template <size_t ARG> struct get{
static const size_t value = (ARG==KEY) ? VALUE :
map_nontype_to_nontype <REST...>::template get<ARG>::value;

};
};

Again, −1 is used as default.

6. Conclusion and Future Work

Summarizing, we introduced the HMD design methodology on the basis of an Execution Unit in
Section 3 and Section 4 and gave examples of useful TMP concepts in Section 5. We refrained
from comparing a hard-coded hardware module with a metadescribed one because in the example
in Section 3, the arbitrary number of function objects allows to cover as many hard-coded imple-
mentations as wanted at once. The potential of the HMD proposal is obvious: By changing a few
parameters in the example, different hardware behaviours can be realized. Thus, the design space
can be rapidly explored and design decisions can be swiftly reconsidered without further changes
of the hardware description, even at a later stage of the development process while always having a
rather streamlined behavioural model due to TMP and the associated compiler optimizations at all
times.

In the future, we will use our approach in conjunction with the System Simulator gem5 [2].
We expect to make the choices of the arithmetic units in our accelerator depending on the imple-
mentation of the memory interface for an optimal balance between processing speed and memory
bandwith. Using [7], gem5 and SystemC can be co-simulated. This enables more opportunities for
the fine-tuning of co-processor and memory interface implementations.

One point which has not been covered by our work but begs further investigation is the compati-
bility with the SystemC Synthesis Subset. Metaprogramming has static properties which predestine
it for hardware description. This could be the angle from which synthesis of metadescribed hard-
ware could be approached, if the metainformation are used for an actual implementation and not
only for the behavioural description as in our fu_model example.
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