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Summary 

 

Marine microalgae are key primary producers responsible for more than 45% of 

global net primary production, fixing billions of tons of inorganic carbon each year. 

Diatoms constitute one of the most diverse and ecologically important group of 

microalgae. While diatom productivity and health are likely to be strongly governed by 

the structure and function of the diatom microbiome, we have little understanding which 

factors contribute to the microbiome assembly. In order to investigate the microbiome 

establishment on diatoms, an in vitro model system for reproducible laboratory studies 

was developed with the marine diatom Thalassiosira rotula. Thus, this thesis describes 

the isolation of diatoms and bacteria from the environment and the development of an in 

vitro model system for reproducible laboratory studies followed by the investigation of 

the microbiome assembling on the diatom T. rotula using co-culture experiments. 

 

 In Chapter 2 diatoms and bacteria were co-isolated from a spring bloom in the 

German Bight of the North Sea. The isolation resulted in four different diatom species 

and 200 morphological different bacteria in culture. The marine diatom Thalassiosira 

rotula was selected as the model organism for the in vitro studies with diatoms and 

bacteria. Chapter 3 focused on the development of a co-culture to study mutualistic 

interactions between the diatom T. rotula and bacteria as well as the generation of an 

axenic (bacteria-free) culture of the diatom T. rotula. The experiments revealed that the 

diatom T. rotula is auxotroph for B-vitamins and that the bacterial community of T. rotula 

is able to maintain the growth of the vitamin-free diatom with the provision of vitamins. 

In Chapter 4 and 5 the microbiome assembling was investigated by exposing the 

vitamin-free and axenic diatom T. rotula to several bacterial source communities obtained 

from different diatom species. The co-culture experiments revealed that each of the newly 

established microbiomes on the T. rotula acceptor supports the growth of the diatom 

under vitamin absence, indicating that all microbiomes comprise bacteria capable for B-

vitamin synthesis. To investigate the factors that contribute to the microbiome 

assembling, the bacterial community compositions of the different inoculated bacterial 

source communities and newly assembled acceptor microbiomes were analysed. The 
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analysis revealed that the different inoculated bacterial source communities were highly 

different in their bacterial community composition and contained up to 4406 different 

operational taxonomic units (OTUs). On the contrary, the analysis of the newly 

established acceptor microbiomes revealed that all acceptor microbiomes were similar to 

each other in respect to their bacterial community composition and that they were more 

similar to the original T. rotula bacterial source community than to the donor cultures 

where the bacterial source communities were obtained from. The similarity of the 

acceptor microbiomes was most likely caused by 10 OTUs, which constituted for more 

than 80% of the total relative abundance of all acceptor microbiomes. Furthermore, these 

10 OTUs were shown to be most responsible for the differences between acceptor 

microbiomes and bacterial source communities and were thus described as the core 

microbiome of the diatom T. rotula. Consequently, it was shown for the first time that the 

ecologically relevant diatom T. rotula establishes a robust and reproducible bacterial core 

microbiome of 10 OTUs if it is offered highly diverse and compositionally different 

bacterial source communities with up to 4406 OTUs. The results of the robust and 

reproducible microbiome composition on the diatom T. rotula suggest that host factors 

contribute more than the bacterial diversity in the environment to the shaping of the 

microbiome composition. 
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Zusammenfassung 

 

Marine Mikroalgen sind wichtige Primärproduzenten, die jährlich Milliarden 

Tonnen anorganischen Kohlenstoff binden und für mehr als 45% der weltweiten 

Nettoprimärproduktion verantwortlich sind. Kieselalgen stellen eine der vielfältigsten 

und ökologisch wichtigsten Gruppe von Mikroalgen dar. Während die Produktivität und 

Gesundheit der Kieselalgen wahrscheinlich stark von der Struktur und Funktion des 

Kieselalgenmikrobioms beeinflusst wird, haben wir wenig Verständnis davon welche 

Faktoren zur Bildung des Mikrobioms beitragen. Um die Etablierung von Mikrobiomen 

an Kieselalgen zu untersuchen, wurde ein in vitro Modellsystem für reproduzierbare 

Laboruntersuchungen an der marinen Kieselalge Thalassiosira rotula entwickelt. Diese 

Arbeit beschreibt die Isolierung von Kieselalgen und Bakterien aus der Umwelt und die 

Entwicklung eines in vitro Modellsystems für reproduzierbare Laboruntersuchungen, 

gefolgt von der Untersuchung der Mikrobiom-Zusammenstellung auf der Kieselalge T. 

rotula mittels Co-Kultur-Experimenten. 

 

In Kapitel 2 wurden gleichzeitig Kieselalgen und Bakterien aus einer 

Frühjahrsblüte in der Deutschen Bucht der Nordsee isoliert. Die Isolation führte zu vier 

verschiedenen Kieselalgenarten und 200 morphologisch unterschiedlichen Bakterien in 

Kultur. Die marine Kieselalge Thalassiosira rotula wurde als Modellorganismus für die 

in vitro Untersuchungen mit Kieselalgen und Bakterien ausgewählt. Kapitel 3 

konzentrierte sich auf die Entwicklung einer Co-Kultur zur Untersuchung mutualistischer 

Wechselwirkungen zwischen der Kieselalge T. rotula und Bakterien sowie die Erzeugung 

einer axenischen (bakterienfreien) Kultur der Kieselalge T. rotula. Die Experimente 

ergaben, dass die Kieselalge T. rotula auxotroph für B-Vitamine ist und dass die 

Bakteriengemeinschaft von T. rotula in der Lage ist, das Wachstum der vitaminfreien 

Kieselalge durch die Zufuhr von Vitaminen aufrechtzuerhalten. In den Kapiteln 4 und 5 

wurde die Zusammensetzung des Mikrobioms untersucht, indem die vitaminfreie und 

axenische Kieselalge T. rotula mehreren Bakterienquellgemeinschaften ausgesetzt 

wurde, die von verschiedenen Kieselalgenarten gewonnen wurden. Die Co-Kultur 

Experimente zeigten, dass jedes der neu etablierten Mikrobiome auf dem T. rotula 
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Akzeptor das Wachstum der Kieselalge unter Vitaminmangel unterstützt, was darauf 

hindeutet, dass alle Mikrobiome Bakterien umfassten, die zur B-Vitaminsynthese fähig 

sind. Um die Faktoren zu untersuchen, die zum Aufbau des Mikrobioms beitragen, 

wurden die bakteriellen Gemeinschaftszusammensetzungen der verschiedenen geimpften 

bakteriellen Quellgemeinschaften und neu zusammengesetzten Akzeptormikrobiome 

analysiert. Die Analyse ergab, dass die verschiedenen geimpften bakteriellen 

Quellengemeinschaften in ihrer bakteriellen Gemeinschaftszusammensetzung sehr 

unterschiedlich waren und bis zu 4406 verschiedene operative taxonomische Einheiten 

(OTUs) enthielten. Im Gegensatz dazu ergab die Analyse der neu etablierten 

Akzeptormikrobiome, dass alle Akzeptormikrobiome in ihrer bakteriellen 

Gemeinschaftszusammensetzung einander ähnlich waren und dass sie der ursprünglichen 

T. rotula Bakterienquellgemeinschaft ähnlicher waren als denen der Spenderkulturen, aus 

denen die Bakterienquellgemeinschaften gewonnen wurden. Die Ähnlichkeit der 

Akzeptormikrobiome wurde höchstwahrscheinlich durch 10 OTUs verursacht, die mehr 

als 80% der gesamten relativen Häufigkeit aller Akzeptormikrobiome ausmachten. Diese 

10 OTUs trugen auch am stärksten zu den Unterschieden zwischen 

Akzeptormikrobiomen und bakteriellen Quellgemeinschaften bei und wurden deshalb als 

Kernmikrobiom der Kieselalge T. rotula beschrieben. So konnte erstmals gezeigt werden, 

dass die ökologisch relevante Kieselalge T. rotula ein robustes und reproduzierbares 

bakterielles Kernmikrobiom von 10 OTUs etabliert, wenn ihr sehr unterschiedlich 

zusammengesetzte Bakterienquellgemeinschaften mit bis zu 4406 OTUs angeboten 

werden. Die Ergebnisse der robusten und reproduzierbaren Mikrobiomzusammensetzung 

auf der Kieselalge T. rotula deuten darauf hin, dass Wirtsfaktoren mehr als die bakterielle 

Vielfalt in der Umgebung zur Gestaltung der Mikrobiomzusammensetzung beitragen. 
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Chapter 1 

1 General Introduction 

Marine microalgae such as coccolithophores, dinoflagellates, and diatoms are key 

primary producers (Field et al., 1998) responsible for more than 45% of global net 

primary production, fixing billions of tons of inorganic carbon each year (Falkowski and 

Raven, 2007; Simon et al., 2009). They are highly ecologically relevant because of their 

basal position in the marine food web (Fenchel, 1988). 

 

Microalgae and bacteria coexist in the ocean since billions of years and their co-

occurrence in a common habitat has encouraged interactions (Azam and Malfatti, 2007; 

Amin et al., 2012; Seymour et al., 2017). The long history of their interaction is evidenced 

from the large number of genes found in microalgae which presumably have their origin 

in bacteria, promoting the adaptation of algae to the conditions in the ocean (Armbrust et 

al., 2004; Bowler et al., 2008; Mackiewicz et al., 2013; Foflonker et al., 2018). 

 

Recent research has shown that microalgae-bacteria interactions are complex, 

involving the exchange of micronutrients, cofactors, macronutrients, proteins, and 

signalling molecules. Bacteria are essentially dependent on autotrophic microalgae for 

organic carbon for their growth (Field et al., 1998; Falkowski et al., 2008), while 

microalgae need bacteria capable of remineralizing organic matter to inorganic 

compounds supporting algal growth (Worden et al., 2015). The diverse functions of 

microalgae-bacteria interactions highlight their relationship, covering obligate 

mutualism, commensalism, competition, and antagonism (Figure 1.1) (Kazamia et al., 

2016; Seymour et al., 2017). 
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1.1 Microalgae-bacteria interactions 

1.1.1 Parasitic interactions and defense 

Microalgae-bacteria interactions have been frequently studied in the context of 

antagonistic or competitive relationships for nutrients (Bratbak and Thingstad, 1985), 

algicidal effects of bacteria (Mayali and Azam, 2004), and antimicrobial activity of 

microalgae (Findlay and Patil, 1984). For example, the Flavobacterium Croceibacter 

atlanticus infects the diatom Thalassiosira pseudonana by attachment to its surface and 

inhibition of cell division (Figure 1.1) (van Tol et al., 2017). This infection leads to cell 

elongation and plastid accumulation. Another example of the infection to diatoms by a 

member of the Bacteroidetes is the production of extracellular proteases by the bacterium 

Kordia algicidal, which causes algal cell lysis (Paul and Pohnert, 2011). The diatom 

Chaetoceros didymus responds to this attack of the bacterium with the production of algal 

proteases to defend itself against the bacterium. Moreover, the bacterial infection of 

microalgae is influenced by environmental parameters, for example Mayers et al. (2016) 

revealed that a representative of the genus Ruegeria sp. displays temperature-enhanced 

virulence to the microalgae Emiliania huxleyi. 

 

1.1.2 Mutualistic interactions 

In the last two decades, strong evidence of prevalent mutualistic interactions has 

changed the view that antagonism and competition are the most common associations 

between microalgae and bacteria (Croft et al., 2006; Cruz-López et al., 2018). 

Underlining support comes from frequent observations that microalgal growth declines 

in the absence of bacteria (axenic) under limiting or non-limiting nutrient conditions 

(Croft et al., 2005; Bolch et al., 2011; Windler et al., 2014; Bolch et al., 2017). This strong 

correlation of bacterial presence and microalgal growth suggests that bacteria contribute 

crucial compounds for microalgal growth. A well-recognized bacterial contribution to 

many microalgae species is the mutualistic interaction between B-vitamin-producing 

bacteria and auxotrophic microalgae that require these vitamins for growth and 

performance (Cole, 1982; Karl, 2002; Tang et al., 2010; Wagner-Dobler et al., 2010; 
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Kazamia et al., 2012; Grant et al., 2014; Cruz-López et al., 2018). Support for the B-

vitamin dependency of microalgae comes from field work that revealed a substantial 

connection between vitamin exhaustion in seawater and microalgae bloom termination 

(Ohwada et al., 1972; Ohwada and Taga, 1972). Most microalgal species do not produce 

several essential vitamins. Croft et al. (2005) found that among 326 investigated 

microalgal species, more than 50% required cobalamin (vitamin B12), 22% required 

thiamine (vitamin B1) and 5% required biotin (vitamin B7). Vitamin B1 plays a central 

role in the general carbon metabolism and is a cofactor for several enzymes involved in 

branched-chain amino acid and primary carbohydrate metabolism. Vitamin B7 is a 

cofactor for numerous fundamental carboxylase enzymes, involving acetyl coenzyme A 

carboxylase, which is in turn involved in fatty acid synthesis (Croft et al., 2006). Vitamin 

B12 is required for the synthesis of amino acids, monosaccharides, and the reduction and 

transport of single carbon fragments in many biochemical pathways. For example, the 

corrinoid cofactor vitamin B12 is only synthesized de novo by certain bacteria and archaea 

(Roth et al., 1996; Martens et al., 2002). Therefore, prokaryotes seem to be the ultimate 

source to sustain microalgal growth, since the ambient picomolar vitamin B12 

concentration in the marine environment is insufficient to sustain maximum microalgal 

growth (Bertrand et al., 2007; Koch et al., 2011). 

 

Experimental evidence for the interaction between vitamin B12-producing bacteria 

and auxotrophic microalgae has been shown by inoculating a bacterial culture of the 

genus Halomonas with a commercially available algal extract, whereby the bacterium 

increased the production of vitamin B12 (Croft et al., 2005). Another example of this 

widespread interaction is between the cosmopolitan diatom T. pseudonana and the 

bacterium Ruegeria pomeroyi, a member of the genus Roseobacter (Durham et al., 2015). 

R. pomeroyi provides vitamin B12 to T. pseudonana in exchange for a suite of microalgae-

derived molecules, such as nitrogen compounds, sugar derivatives, and the  

2,3-dihydroxypropane-1-sulfonate (DHPS) (Figure 1.1). A recent study revealed that the 

microalga Ostreococcus tauri interacts with the bacterium Dinoroseobacter shibae, a 

member of the Rhodobacteraceae, to obtain vitamins B1 and B12 (Cooper et al., 2018). In 

return, the microalga provides the bacterium with other B-vitamins, namely niacin (B3), 

B7, and p-aminobenzoic acid, which acts as a precursor for folate (B9). The number of 
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microalgae-bacteria interactions focusing, among others, on the exchange of vitamins 

illustrates the importance of these micronutrients in the marine environment for 

auxotroph microalgae as well as bacteria. 

 

Analogous to the well-known interaction between nitrogen-fixing bacteria and 

legumes in the terrestrial environment (Richardson et al., 2000) is the mutualistic 

interaction in the marine environment between nitrogen-fixing cyanobacteria and 

microalgae. The microalgae provide amino acids and a carbon source in return for 

nitrogen (Foster et al., 2011; Thompson et al., 2012; Hilton et al., 2013). A further 

example of a mutualistic interaction is the bacterial production of the plant hormone 

indole-3 acetic acid (IAA), which is a well-known plant growth promotor in the terrestrial 

ecosystem (Won et al., 2011; Fu et al., 2015). Amin et al. (2015) found that the diatom 

Pseudo-nitzschia multiseries secretes the amino acid tryptophan, which is converted by 

the bacterium of the Sulfitobacter species into IAA, which in turn is transferred back to 

the alga to stimulate its cell division and hence increase carbon production. The 

importance of this mutualistic interaction was underlined by the ubiquitous production of 

IAA in the ocean by members of the bacterial family Rhodobacteraceae (Amin et al., 

2015; Simon et al., 2017) and by widespread growth responses of microalgae to IAA (Lau 

et al., 2009; Labeeuw et al., 2016; Segev et al., 2016). 

 

Iron is an essential micronutrient for respiration and photosynthesis, and it limits 

bacterial growth and primary production because the bioavailable concentrations are 

insufficient to support algal growth in the ocean, thus making it a limiting resource (Coale 

et al., 1996). To increase the bioavailability of this key trace metal, many heterotrophic 

bacteria and cyanobacteria secrete siderophores, small organic molecules with 

exceptional high affinity for iron(III) (Vraspir and Butler, 2009). Bacteria transport the 

siderophores across the bacterial outer-membrane with carriers that are specific for 

various groups of siderophores (Moeck and Coulton, 1998; Hopkinson and Barbeau, 

2012). In contrast, microalgae are not known to produce siderophores or to directly take 

up iron(III)-siderophore complexes of bacterial origin. However, genomic evidence 

suggests that numerous microalgae such as diatoms are capable to access iron from 

siderophores via ferrireductases and other iron(II) transporters on their outer cell 
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membranes (Kustka et al., 2007). Therefore, the bioavailability of iron for many 

microalgae species possibly depends on their association with bacteria. For example, 

bacterial siderophores are used by the microalga Scrippsiella trochoidea when produced 

in its environment (Amin et al., 2009). Bacteria from the Marinobacter species, which 

are often known to be associated with microalgae, produce the iron(III) complexing 

siderophore vibrioferrin. Vibrioferrin increases the availability of iron for Marinobacter 

during the night, but during the day when exposed to light the complex of vibrioferrin 

and iron degrades rapidly, releasing inorganic soluble iron to the water column. This 

unstable form of iron is then available for both bacteria and microalgae, and, in return, 

microalgae release dissolved organic carbon to support bacterial growth (Amin et al., 

2009).  

 

However, not only microalgae take an advantage from the association with 

bacteria, also bacteria benefit from dissolved organic carbon (DOC) compounds released 

by microalgae. Microalgae release excess carbon in form of polysaccharides, which 

constitute among other for a large fraction of microalgae-derived DOC (Underwood et 

al., 2010; Decho and Gutierrez, 2017). Diatoms, for example, secrete about 5% of their 

primary production as DOC, although photosynthesis spends a high demand of their 

energy (Wetz and Wheeler, 2007). Half of the DOC released by microalgae is consumed 

by bacteria (Azam et al., 1983) and consequently influences the community of 

heterotrophic bacteria which use these microalgae exudates (Grossart et al., 2005). The 

monomer composition of the microalgae exudates depends on the microalgae growth 

phase and species (Urbani et al., 2005). Correspondingly, it was shown that a nutrient 

shortage and thus a shift from exponential to the stationary growth phase stimulates the 

extracellular release of exudates (Grossart, 1999). Thus, nutrient limitation increases the 

release of polysaccharides in microalgae (Wetz and Wheeler, 2007). The increased 

exudation might serve to attract bacteria that are able to produce the limiting nutrient such 

as ammonium (Amin et al., 2015), vitamin (Croft et al., 2005; Croft et al., 2006) and iron 

(Amin et al., 2009). But not only microalgae actively control the exudation, also bacteria 

seem to impact on the quantity and the quality of microalgae exudates (Bruckner et al., 

2011; Gärdes et al., 2012). Gärdes et al. (2012) showed, for example, that the 

Gammaproteobacterium Marinobacter adhaerens in co-culture stimulates the production 
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of transparent exopolymer particles (TEP) of the diatom Thalassiosira weissflogii, which 

in return can be used by the bacterium as a carbon source. 

 

1.1.3 Other interactions 

In addition to distinct parasitic and mutualistic interactions, the interactions 

between microalgae and bacteria have been shown to vary during different growth phases 

of algae. For instance, Phaeobacter gallaeciensis, a member of the class 

Alphaproteobacteria, forms a possibly mutualistic association with healthy cells of the 

coccolithophore E. huxleyi by supporting the microalgae with the hormone phenylacetic 

acid and the antibiotic tropodithietic acid, potentially against antagonistic bacteria, in 

return for a carbon source (Seyedsayamdost et al., 2011). Upon the release of p-coumaric 

acid by the microalga, a product of senescence, the bacterium changes into an antagonistic 

lifestyle and releases algicidal molecules that lyse E. huxleyi. A similar interaction has 

been described between D. shibae and the microalgae Prorocentrum minimum (Wang et 

al., 2015). This “Jekyll and Hyde” phenomenon allows the bacterium to maximize the 

output of microalgal organic matter for its benefit, independent of the physiological state 

of the host. The prevalent observations of the “Jekyll and Hyde” strategies with 

Alphaproteobacteria suggest that this type of interaction is widespread in this bacterial 

class. 
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Figure 1.1. Mutualistic (left) and algicidal (right) microalgae-bacteria interactions in the algal phycosphere 

(adopted from Seymour et al. (2017)). Bacteria are colour-coded according to their phylogenetic 

classification: Rhodobacteraceae in orange, Alteromonadaceae in green and Flavobacteriaceae in purple. 

A general microalgal cell is shown and symbolize multiple species. A shadow around microalgae or 

bacteria represents the gradient of molecules diffusing out of the algal cells. Mutualistic interactions (left) 

occur between microalgae and Sulfitobacter, Ruegeria and Marinobacter. Sulfitobacter increases the 

growth of the diatom P. multiseries by converting diatom-derived tryptophan (Trp) to the growth-

promoting hormone indole-3-acetic acid (IAA), which is released and subsequently taken up by the diatom 

to increase its cell division. Sulfitobacter also provides ammonium (NH4
+) to P. multiseries in exchange 

for the diatom-secreted carbon source taurine. R. pomeroyi provides the diatom T. pseudonana with vitamin 

B12, which is used in biosynthesis of the amino acid methionine in exchange for several carbon sources, 

including N-acetyltaurine and 2,3-dihydroxypropane-1-sulfonate (DHPS). Marinobacter secretes the 

siderophore vibrioferrin to acquire iron in the dark; in sunlight, the iron–vibrioferrin complex is highly 

photolabile and degrades, releasing bioavailable iron that is taken up by microalgae in exchange for DOM. 

Algicidal interactions (right) take place between microalgae and Croceibacter, Phaeobacter and Kordia. 

C. atlanticus attaches to diatom cell surfaces and releases an unidentified molecule that blocks diatom cell 

division and increases diatom secretion of organic carbon, including amino acids. P. gallaeciensis senses 

secretion of p-coumaric acid from the coccolithophore E. huxleyi during senescence, which activates the 

bacterial production and release of the algicidal molecules roseobacticides A and B, which lyse E. huxleyi 

and release DOM. K. algicida produces extracellular proteases that lyse diatom cells in order to acquire 

DOM.  
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1.1.4 The phycosphere 

Microalgae-bacteria interactions are suggested to occur in a region surrounding 

individual microalgal cells. This microenvironment, termed the phycosphere, extends 

outwards from the microalgal cell to some distance where algal exudates are still available 

(Bell and Mitchell, 1972; Seymour et al., 2017). The phycosphere is therefore the marine 

counterpart to the rhizosphere in soil ecosystems and has direct influence on nutrient 

exchange of microalgal cells (Figure 1.2). The phycosphere occurs because all aquatic 

cells are enclosed by a coat of fluid known as the boundary layer. In the case of a 

microalgal cell, the boundary layer is not mixed with the bulk water because turbulence 

does not happen at a scale less than ~100 µm (Lazier and Mann, 1989). Microalgae enrich 

the phycosphere by the active exudation of photosynthetically fixed carbon compounds. 

These exudates consist to a large extent of high molecular weight (HMW) carbon 

compounds (Hansell, 2013) like polysaccharides and to a lesser extent to other carbon 

compounds with differing molecular weights. The reason for that is the diffusion rate of 

compounds in the phycosphere largely depends on the molecule size and HMW 

compounds have therefore a longer duration of stay (Seymour et al., 2017). The 

microalgae-derived polysaccharides are fundamental in the attraction and maintenance of 

bacteria in the phycosphere (Bell and Mitchell, 1972; Seymour et al., 2010; Sonnenschein 

et al., 2012). Inside the phycosphere, bacteria are recruited by the high concentration of 

alimentary compounds (Stocker, 2012) and may perform several advantageous roles for 

microalgae, such as the remineralization of the released carbon compounds to make them 

available again for primary production (Amin et al., 2012; Seymour et al., 2017).  
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Figure 1.2. The rhizosphere and the phycosphere are analogous microenvironments. The phycosphere, 

defined as the region immediately surrounding a microalgal cell that is enriched in organic molecules 

exuded by the cell, is a key microenvironment for planktonic aquatic bacteria. It is the aquatic equivalent 

of the rhizosphere, which is an essential region for plant-microorganism interactions in terrestrial habitats. 

This figure was adopted from Seymour et al. (2017). 

 

The availability of microalgal products inside the phycosphere is not only steered 

by mass diffusivity of the compounds, but also by the capability of bacteria to detect and 

recruit this zone. Bacteria reach the phycosphere either by chemotaxis, motility, vertical 

transmission, or by random encounter (Seymour et al., 2017). The differences in 

availability of extracellular products by bacteria can be underlined by two different 

proposed modes of exchange of nutrients between microalgae and bacteria (Karl, 2002). 

One suggested method is that bacteria may attach to the phycosphere and exchange 

nutrients directly with microalgae without losing nutrients to the surrounding water. The 

other method proposed for the exchange is indirect: microalgae excrete the nutrients into 

the surrounding water and free-living bacteria access the nutrients indirectly from the 

water column. Both direct (Croft et al., 2005) and indirect (Kazamia et al., 2012) 

exchange of nutrients between microalgae and bacteria are described in the literature. 

However, it might be more advantageous for bacteria to colonize the phycosphere 

immediately, because a non-motile bacterium will only encounter ~0.0035 microalgae 

cells per day, whereas a motile bacterium will hit on ~9 microalgae cells per day 

(Seymour et al., 2017). Therefore, the preferred method of exchange between microalgae 

Microalga 
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and bacteria possibly depends on the ability and opportunity of bacteria to recruit the 

phycosphere. 

 

The function of microalgae in shaping the bacterial recruitment of their 

phycosphere is not yet fully understood just like the way bacteria influence their 

colonization into the phycosphere. Until now, it has only been demonstrated that 

microalgal-associated bacteria are mostly limited to specific phyla of the Proteobacteria 

(Sulfitobacter, Roseobacter, and Alteromonas) and, to a lesser extent, Bacteroidetes 

(Flavobacterium) (Schafer et al., 2002; Croft et al., 2005; Grossart et al., 2005; Sapp et 

al., 2007; Amin et al., 2015). These studies provided initial indications that microalgae 

and / or bacteria might influence the recruitment since the different examined microalgae 

species harboured similar bacterial taxa in their communities. Hence, more research is 

required to investigate if microalgae harbour a specific bacterial community shaped by 

the algal host and / or the bacteria. 

 

1.2 Microalgae microbiome 

So far, most investigated interactions between algae and bacteria have been 

studied with in vitro co-culture experiments using single bacterial species and microalgae. 

Modern next generation sequencing (NGS) tools like amplicon-based sequencing, 

metagenomic, and metatranscriptomic studies instead focus on the entire bacterial 

community associated with microalgae. The analysis of bacterial communities has the 

advantage that it is not limited by the cultivation of bacteria. Research with focus on the 

microalgae-associated bacterial communities can be divided into mechanistic studies, 

investigating their function, and descriptive studies, investigating who is present in a 

community. Cruz-Lopez and Maske (2016) sequenced a newly established associated 

bacterial community on an axenic and vitamin-depleted Lingulodinium polyedrum 

culture. The inoculated bacterial community was obtained from natural seawater and 

supported the growth of the dinoflagellate by producing vitamin B1 and B12. Similar to 

many other studies performed before with single bacterial isolates (reviewed in Croft et 

al., 2006), they revealed that microalgae receive B-vitamins from their associated 

bacteria. However, they did not investigate which bacteria in the community synthesized 
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the vitamins. Krohn-Molt et al. (2017) provided strong evidence by metagenomics and 

transcriptomics that the B-vitamin supply is carried out by a rather small group of bacteria 

in the microalgae-associated bacterial community. Furthermore, they showed that 

different bacterial species produced the B-vitamins in the three investigated freshwater 

microalgal species, including Chlorella saccharophila, Scenedesmus quadricauda and 

Micrasterias crux-melitensis (Krohn-Molt et al., 2017). Recent research increasingly 

concentrates on descriptive investigations of microalgae-associated bacterial 

communities to better understand the bacterial composition in the phycosphere. Thus, 

these studies reveal that different microalgae harbour a unique and specific bacterial 

community (Grossart et al., 2005; Krohn-Molt et al., 2017; Behringer et al., 2018; Crenn 

et al., 2018). 

 

Cultivation of microalgae is essential to study microalgae-bacteria interactions. 

To perform such experiments, cultures are often obtained from culture collections or kept 

in cultivation in the laboratory for months or years. However, culturing under nutrient-

rich laboratory conditions is problematic as it provides essential nutrients in exceeding 

natural conditions thus potentially leading to changes in the microalgae microbiome. 

Behringer et al. (2018) demonstrated the opposite, supporting many investigations 

performed with long-term cultivated microalgal species and their associated bacterial 

communities. They showed that the bacterial communities associated with various strains 

from the diatoms Asterionellopsis glacialis and Nitzschia longissima showed high 

conservation across strains at the genus level, and that long-term cultivation (>1 year) 

resulted only in small changes in the microbiomes. Moreover, a recent study revealed that 

the sampling location and sampling season of microalgae have a more significant 

influence on the microalgae-associated bacterial community than phylogenetic affiliation 

(Ajani et al., 2018). However, except for a few studies (e.g. Ajani et al., 2018), it appears 

that microalgae harbour a unique and distinct microbiome. Despite the identified 

specificity of microalgae microbiomes, information on how they get shaped are still 

scarce. Until now, it is only described in the literature how abiotic factor shape the 

microbiome, but little is known about how biotic factors like microalgae and bacteria 

influence the composition and specificity of microalgae microbiomes. The elucidation 



 

12 

 Chapter 1 

how these interactions are mediated in the phycosphere is of global significance, because 

their interactions drive the carbon cycling and the productivity of the ocean. 

 

1.3 Aims and scientific objectives 

This thesis aimed to study the associations of diatoms and bacteria in relation to 

their mutualistic interactions. The experimental design involved the isolation of 

microalgae and bacteria samples from the environment with the goal to develop an in 

vitro model system for reproducible laboratory studies to study the core microbiome on 

selected microalgae. The work for this thesis was carried out in two different laboratories. 

The main part was done in the working group ‘Marine Chemistry’ of Prof. Dr. Tilmann 

Harder at the University of Bremen. The other part was done in the lab of Associate 

Professor Dr. Rebecca Case at the University of Alberta during a 3-month research stay 

in Canada. Specific methods were trained in the lab of Dr. Case like the pulsed-amplitude-

modulation fluorometry and imaging flow cytometry to determine microalgae and 

bacteria abundance and concurrently algal physiology.  

 

The specific objectives of this thesis were as follows: 

 

The first objective was to co-isolate bacteria and microalgae and to establish 

permanent cultures in the laboratory. The co-isolation of microalgae and bacteria of the 

same spatial and temporal context is important because the place of origin and time of 

isolation of microalgae play an important role in shaping the microbiome. To be able to 

compare the microbiome of different microalgal species, the samples of microalgae have 

to be isolated altogether from the same location and time. 

 

The second objective was to develop a co-culture system to study mutualistic 

associations between microalgae and bacteria. A co-culture set-up is essential to run 

experiments under reproducible conditions while individual parameters (e.g., B-vitamins) 

can be manipulated. Such targeted manipulations allow to study the interactions of both 

organisms based on particular micronutrients. The co-culture system can be used for a 

range of different experiments, such as investigating the mutual exchange of siderophores 
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or B-vitamins in return for DOC. The following hypotheses were addressed within the 

second objective: (A) It is possible to establish axenic cultures of the diatoms 

Thalassiosira rotula, Ditylum brightwellii, Cylindrotheca closterium and Chaetoceros 

socialis. (B) The diatom T. rotula is auxotroph for B-vitamins. (C) The bacterial 

community of T. rotula supports the growth of vitamin depleted T. rotula cells by the 

provision of B-vitamins. 

 

The final objective was to describe the core bacterial community associated with 

the diatom T. rotula and the role of microalgae and bacteria in shaping the specific 

microbiome. To investigate the formation of a core microbiome, axenic microalgae are 

inoculated with different diatom bacterial source communities and the phylogeny of the 

donor and acceptor cultures of the inoculation are analysed. Together with the final 

objective the following hypotheses were addressed: (A) The associated bacterial 

communities of the acceptor cultures share certain bacterial taxa. (B) The diatom T. rotula 

harbours a core microbiome.  
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Chapter 2 

2 Isolation and culturing techniques for microalgae and 

bacteria 

2.1 Introduction  

The objective of this chapter was to isolate microalgae and bacteria from the same 

environment to develop an in vitro model system for reproducible laboratory studies to 

explore the core microbiome of selected microalgae. The sampling site was the island of 

Helgoland in the German Bight. Water samples were collected at 5 - 7 consecutive 

timepoints between March and May during the spring bloom 2016, depending on whether 

microalgae or bacteria were isolated.  

 

This chapter describes the method development to run co-culture experiments of 

microalgae with bacteria. 

 

2.2 Methods 

2.2.1 Sample collection 

5 L seawater was collected at seven timepoints between March and May 2016 at 

the island of Helgoland in the German Bight (54° 11’03” N, 7°54’00” E) (Figure 2.1). 

Sampling was carried out with the research vessels Diker or Aade of the “Biological 

Institute Helgoland (BAH) / Alfred Wegener Institute, Helmholtz-Centre for Polar- and 

Marine Research (AWI)”. The samples were taken in upwind direction with an acid rinsed 

Niskin-Type Plastic Water sampler PWL (5 L model) at 1 m depth while the boat was 

drifting in the current. Samples were taken according to GEOTRACES protocols 

(http://www.geotraces.org/images/Cookbook.pdf, last time opened 14.07.2019, 

12:01 pm). Environmental conditions at the sampling site ranged from 5.9 to 10.6°C and 

32.1 to 33.6 PSU during the 3-month sampling period (Figure 2.2). 
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Figure 2.1. Map of the German Bight. The inlay shows a complete map of Helgoland and the asterisk 

indicates the sampling site in spring 2016. Google Maps 

 

 
Figure 2.2. Temperature and salinity progression during the seawater sampling from March till May 2016 

at the island of Helgoland in the German Bight.  

 

 

* 
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2.2.2 Isolation, identification and cultivation of microalgae 

An aliquot of 50 mL seawater was taken from the 5 L samples on the dates 

17.03.2016, 31.03.2016, 12.05.2016 and 19.05.2016 (Figure 2.2). To isolate microalgae, 

1 mL seawater was diluted in 4 mL sterile enrichment medium of artificial water (ESAW) 

(Harrison et al., 1980) (Supplementary information) in 12-well plates. Single cells or 

chains were picked under the light microscope (Primovert, Zeiss) with a micropipette and 

transferred to a new well containing sterile ESAW medium. The cells were grown for  

2 d at 15°C (MIR 254 PE, Panasonic) under a 12 h light/12 h dark diurnal cycle  

(30 - 70 µmol photons m-2 s-1) (Sun Strip “daylight”, Solar Stinger LED) and checked 

under the microscope for purity. The purity of the microalgal cultures was assessed by 

screening 1 mL per culture 3 times for contamination with morphologically different 

cells. The screening was conducted 3 d after single cell isolation and again after 2 and  

3 weeks. In case of impurity, the steps were repeated until a unicellular culture was 

obtained. Microalgae were examined by light microscopy (Primovert, Zeiss) and 

referenced to phytoplankton identification literature from the North Sea (Kraberg et al., 

2010). 

 

On 03.09.2017 another microalga was isolated from a 100 µm plankton net haul 

collected around Helgoland. The isolation was performed as described above, however 

this time the alga was grown in both ESAW replete and deplete of the vitamin stock. Post 

isolation, these cultures were maintained under the respective conditions.  

 

The culture conditions for microalgae were adopted from the literature (Schone, 

1972). The broad-spectrum artificial seawater medium ESAW was selected to culture the 

microalgae in a reproducible manner and under defined nutrient conditions.  

 

The culture conditions such as temperature, light and the culture medium 

described in the section 2.2.2 are referred to as regular growth conditions in the following 

or indicated if different. 
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2.2.3 Isolation and classification of bacteria 

Polycarbonate filters (Whatman, Nucleopore, 46 mm) with pore sizes of 0.2,  

5 and 10 µm were placed for 72 h in 6 N HCl and subsequently stored in ddH2O at pH 2 

(slightly acidified with HCl) until use. The filtration units were rinsed with 200 mL 

ddH2O and 200 mL HCl 0.01 N. The filtration units with inlayed filters were rinsed again 

with 100 mL ddH2O. Approximately 500 - 1000 mL seawater was filtered through the 

filters depending on particle concentration of the samples. Clogged filters were replaced 

until the final volume was processed. Each filter was transferred to sterile Eppendorf 

tubes containing 1 mL of 0.2 µm pre-filtered artificial seawater (35 g/L Instant Ocean 

Sea salt) and vortexed to suspend bacteria and phytoplankton. The suspensions were first 

diluted serially up to 10-4 and 100 µL of each dilution was spread plated on solid growth 

media (Table 2.1). The following solid media were used: 1/10 marine broth 

(Supplementary information), minimal iron (Supplementary information) and minimal-

iron-EDTA (Supplementary information). CAS medium (Supplementary information) 

was used to isolate bacteria that are capable to produce siderophores. CAS agar is a 

marine agar that additionally contains a stain that can be used for detection and 

determination of siderophores (Schwyn and Neilands, 1987). 

 

Table 2.1. Solid growth media used to isolate bacteria from seawater. The plus (+) indicates which medium 

was used on the specific date. 

Date 
Solid growth medium 

1/10 marine 
broth Minimal iron  Minimal-iron-EDTA  CAS  

17.03.2016 + +     

05.04.2016 + +     

12.04.2016 + + +   

28.04.2016 + + +   

12.05.2016 + + +   

19.05.2016 + +     

03.07.2016       + 
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Single bacterial colonies were picked with sterile pipette tips under the binocular 

microscope (Stemi, Zeiss) and quadrant streaked on the different solid growth media until 

a pure culture was obtained. A culture was considered pure if a colony was twice quadrant 

streaked and if both times all colonies appeared the same (e.g. colour and colony shape). 

A single colony was grown overnight in the liquid medium corresponding to the isolation 

medium and bacterial glycerol stocks were created from the overnight culture with a 

mixture of 500 µL bacteria culture and 500 µL sterile 50% glycerol. All stocks were 

stored at -80°C until further experiments. Bacteria obtained from glycerol stocks were 

typically grown either on marine agar plates incubated at room temperature in the dark or 

in marine broth for 12 - 36 h (room temperature, 150 rpm), unless stated otherwise. 

 

To isolate genomic bacterial DNA, single bacterial colonies were taken from agar 

plates and transferred to 50 µL TRIS-EDTA buffer. Samples were boiled in the buffer for 

4 min by 95°C and subsequently cooled down to 4°C until further use. After 

centrifugation for 1 min at 3000x g, the supernatant was collected and the DNA extract 

was stored at -20°C. Amplification of 16S rRNA genes was performed using the universal 

bacterial primer 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-

GGTTACCTTGTTACGACTT-3′) (Weisburg et al., 1991). The PCR reactions (25 µL) 

contained 2 - 10 ng of the extracted genomic DNA, 200 µM of each primer, 0.2 mM of 

each dNTP, 2.5 µL 10x DreamTaq reaction buffer and 0.75 µL DreamTaq DNA 

polymerase (Thermo Fisher Scientific EP0701, 5U/µL). The PCR was performed (Perkin 

Elmer, GeneAmp PCR System 2400) with an initial denaturing cycle at 95°C for 3 min, 

followed by 30 cycles at 95°C for 30 s, 58°C for 30 s and 72°C for 1 min and a final 

extension cycle at 72°C for 10 min. The DNA quality was verified by agarose gel 

electrophoresis (Life technologies Inc., Horizon 58). The 1.5% agarose gel was stained 

with DNA Stain G (SERVA) and DNA was stained with DNA gel loading dye (6X) 

(Thermo Fisher Scientific). The size of the DNA fragments in the samples were compared 

to GeneRuler 1 kb DNA ladder (Thermo Fisher Scientific). Amplified products were 

cleaned using the Wizard gel and PCR clean up system (Promega). Purified PCR products 

were sequenced with the 27F primer using Sanger technology (GATC Biotech). 
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Sequences were quality-trimmed using Sequencher 5.6 (Gene Codes) and 

pairwise aligned using CLUSTALW (www.genome.jb/tools-bin/clustalw). Two 

unrooted pairwise aligned phylogenetic trees were created in R (R Core Team, 2018) 

using the packages APE (Paradis et al., 2004) and GEIGER (Harmon et al., 2008).  

 

2.2.4 Measuring microalgal and bacterial growth  

To perform co-culturing experiments with microalgae and bacteria, methods for 

the determination of the growth of microalgae and bacteria were adopted or modified 

from published protocols. 

 

A Sedgwick-rafter counting chamber (spi Supplies) was used to count microalgae. 

Microalgae were counted under 100x magnification with an inverted microscope 

(Primovert, Zeiss). Samples were fixed and stained with Lugols iodine solution 

(Supplementary information) and a minimum of 400 cells/mL were counted. In case of 

fewer than 400 cells/mL, the complete area of the counting chamber  

(50 mm long x 20 mm wide and 1 mm deep, volume 1 mL) was enumerated. 

 

However, this technique was unsuitable to count many replicated experiments  

(n > 18), since microscope-based cell counting is time consuming and many of the assays 

required daily measurements to estimate when to apply the next dilution steps or to 

replenish micronutrients. Therefore, different strategies were tested to correlate algal cell 

densities with other experimental proxies of cell abundance.  

 

2.2.4.1 Determining the chlorophyll fluorescence of microalgae by 

fluorescence 

To measure the total chlorophyll fluorescence in a small volume, microalgae 

cultures were measured in a fluorescence plate reader. Microalgal growth was monitored 

using a filter-based fluorescence plate reader (FLUOstar Omega, BMG). Relative 

fluorescence units (RFU) were measured in black 96-well polystyrene microplates with 

clear bottom using optical filters at 440-80 nm for excitation and 640-80 nm for emission. 
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A volume of 150 µL was used to measure the RFUs. Prior to the first fluorescence 

measurement, the gain was set to 10% and was used for all upcoming measurements. To 

ensure the same function of the plate reader over time, a chlorophyll standard was 

measured in parallel. RFUs of samples were measured in top and bottom mode and 

averaged across both values. The measurement was done in the well scan mode with 5x5 

matrix and a scan mode of a 6 mm diameter. Using this method, it was possible to 

determine the RFUs in a 96-well plate in about 20 min. 

 

To validate the fluorescence measurement with a plate reader, the microalgae 

abundance was measured in five 1:2 serial dilution steps of a Thalassiosira rotula culture 

with a plate reader and in parallel counted under the microscope. The linear relationship 

between RFUs and cell counts was determined by Pearson’s correlation. 

 

The determination of the microalgal biomass was done either by counting the cells 

under the microscope or by measuring the RFUs with a fluorescence-based plate reader. 

However, only the biomass change over time could be detected, whereas the physiology 

of algal cells was inaccessible by these methods. Therefore, a method to determine the 

microalgae cell density as well as the physiological state of the cells using fluorescence 

measurements was used.  

 

Samples were taken 5 - 7 h into the light cycle and diluted in ESAW medium to 

be within the detection range and measured using a pulsed-amplitude-modulation (PAM) 

fluorometer (Water-PAM, Walz). A dark adaptation period of 20 min with the lowest 

stirring adjustment was used, after which a saturating pulse was applied, and fluorescence 

readings were taken to measure the minimal dark fluorescence (F0) that is directly 

correlated to the chlorophyll content as well as the maximum dark fluorescence (Fm). The 

photosystem II (PSII) potential quantum yield is a normalized ratio and is created from 

the minimal and maximal dark fluorescence (Fv/Fm = (Fm-F0)/Fm). Fv/Fm is a measurement 

ratio that represents the maximum potential quantum efficiency of PSII if all capable 

reaction centres were open and reveals with it information about the physiological status 

of the cells (Schreiber et al., 1986; Vankooten and Snel, 1990). 
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To validate the fluorescence measurement with a PAM fluorometer, the 

abundance of the diatom T. rotula was measured in a growing culture every 24 - 48 h for 

6 d with a PAM fluorometer and in parallel counted under the microscope. The linear 

relationship between F0 and cell counts was determined by Pearson’s correlation. 

 

2.2.4.2 Determining bacterial cell densities 

To quantify the cell density of bacteria, the optical density (OD) of a bacterial 

suspension was measured in a spectrophotometer (DU 640, Beckman) at 600 nm. Marine 

broth was used for the dilutions and as a blank. A disadvantage, however, is that the OD 

measurement cannot be compared between different strains of bacteria as each strain may 

cause a different light scattering. For co-culture experiments with microalgae and 

bacteria, it was required to adjust exact bacterial cell numbers/densities in microalgal 

cultures. Therefore, DAPI stained bacterial cells were counted under the fluorescence 

microscope. 

 

1 mL of a bacterial suspension was vacuum filtered over a black 0.2 µm pore-size 

polycarbonate membrane filter (Whatman Nucleopore Track-Etched Membranes). 

Subsequently, this filter was stained with DAPI (4’, 6-diamino-2-phenylindole) 

(VECTASHIELD Antifade Mounting Medium) and bacteria were counted under the 

epifluorescence microscope (Axioskop 2, Zeiss) with filters (λex 350 nm, λem 460 nm) 

and 630x or 1000x magnification using an eyepiece with an integrated counting grid  

(10 x 10, 1.25 mm2). A minimum of 10 counting grids were enumerated in each sample 

and cell counts were extrapolated to obtain the number of cells per mL. 

 

To validate the OD measurement of bacteria, the bacterial cell density was 

determined in parallel by photometry and epifluorescence microscopy of DNA-stained 

cells. The strain Marinobacter sp. (Mar1 74DC42, phylogenetic tree, Figure 2.5B) was 

grown in marine broth at the regular growth conditions for 24 h (Section 2.2.3) and 

determined in one 1:4 and five 1:10 serial dilution steps respectively. The linear 

relationship between OD and cell counts was determined by Pearson’s correlation. 
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2.2.4.3 Determining cell densities of bacteria and microalgae using 

image flow cytometry 

The photometric and fluorometric methods correlated bacterial and microalgal 

cell numbers only with quantitative reference data. A direct assignment to cell numbers 

was not possible because each species might have a different light absorbance or a 

different amount of chlorophyll. Flow cytometry allows simultaneous cell counting of 

bacteria and microalgae in the same sample, thus saving time and sample volume. 

 

Microalgae were fixed with 0.15% glutaraldehyde (Sigma-Aldrich) by incubating 

cells in the dark for 10 min, then flash-frozen in liquid nitrogen and stored at -80°C until 

flow cytometry was performed using an ImageStreamX Mark II Imaging Flow 

Cytometer (Amnis Corporation). Samples were stained with SYBR Green (Sigma-

Aldrich) 15 min prior to measurement. A 488 nm laser was used for excitation. Another 

measurement was done simultaneously using chlorophyll fluorescence (642 nm) and 

FITC fluorescence (560 nm) for detection of microalgae and bacteria, respectively. 

Microalgae were gated based on present chlorophyll fluorescence and images in 20x 

magnification to distinguish the chain length of the microalgae. Bacteria were gated based 

on a high SYBR Green staining and low side scatter. 

 

To validate microalgae cell counts in the imaging flow cytometer, T. rotula 

cultures were grown under regular growth conditions (Section 2.2.2) for 6 d in 6-well 

plates. Samples were enumerated in parallel via flow cytometry and microscopy. The 

linear relationship between cytometric and microscopic cells counts was determined by 

Pearson’s correlation. 

 

2.2.5 Monitoring the growth of algal cultures 

To conduct culture experiments with microalgae, the growth characteristics in the 

different culture containers such as 20 mL culture flask, 96-well plates, 12-well plates as 

well as 1 L glass bottles were compared. 
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The ESAW medium was prepared at the normal and the 10x concentration of all 

ingredients except for sodium chloride, magnesium chloride, potassium chloride, calcium 

chloride and sodium sulphate. The rationale behind increasing the nutrients in the ESAW 

medium was to delay the exhaustion of nutrients in small volumetric 96-well plates. It is 

hypothesized that the increase of nutrients in the medium delays the nutrient shortage in 

96-well plates and 20 mL culture flasks.  

 

To compare diatom growth characteristics in 96-well plates (n = 4) and 20 mL 

culture flasks (n = 3), Cylindrotheca closterium, Chaetoceros socialis, Ditylum 

brightwellii and T. rotula cultures were inoculated from a mid-exponential phase into 

fresh medium (1x & 10x concentration) to an initial cell density of ~1500 - 2500 cells/mL 

in both culture containers. The cultures were grown under the above described growth 

conditions (Section 2.2.2). The outmost rows of the 96-well plate were left empty in order 

to avoid evaporation according to Sher et al. (2011). Samples were transferred from the 

flask to the plate for the measurement or directly measured in the plate. 

 

To compare diatom growth characteristics in 12-well plates and 20 mL culture 

flasks, T. rotula cultures were inoculated from a mid-exponential phase culture in fresh 

medium to an initial diatom cell density of ~2000 cells/mL in both culture container  

(n = 3). The cultures were grown at the above described growth conditions (Section 2.2.2). 

The flask was re-sampled and the wells in the microplate were only once sampled for the 

fluorescence measurements.  

 

The used microplate protocol is an established and published method to perform 

microalgae growth experiments without re-sampling of the same microplate well 

(Bramucci et al., 2015). Data points obtained by this method were connected by lines to 

a growth curve, although the data were not obtained by re-sampling. 

 

To be able to culture algae in larger volumes, 1 L glass bottles were tested for 

cultivation. The cultivation was performed on a roller table to avoid shading of the 

microalgal cells at the bottom of the bottle and to simulate turbulence. T. rotula was 

grown in triplicate in a 1 L glass bottles (DURAN® laboratory bottle with DIN thread, 
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GL 45) and rotated with 6.2 rpm on a roller table (Figure 2.3). In the 1 L glass bottle 

method the microalgae were grown in a culture volume of 700 mL and for each cell 

counting 100 - 1000 µL culture were repeatedly removed from the same bottle. T. rotula 

cultures were inoculated from a mid-exponential phase growing culture into fresh 

medium to an initial diatom cell density of ~2000 cells/mL. The culture volume was kept 

at 700 mL to enable water movement in the bottle. The cultures were grown under the 

regular light conditions (Section 2.2.2) with an ambient temperature of 18°C. 

 

 

2.3. Custom-made roller table from the workshop of the Alfred Wegener Institute, Helmholtz-Centre for 

Polar- und Marine Research. 

 

2.2.6 Defining the culture temperature for C. closterium and 

T. rotula. 

Microalgae were cultured at 15°C, because this temperature is in the optimal 

growth temperature range of the investigated microalgal species (Boyd et al., 2013). 

However, a temperature-controlled room at 18°C was available and facilitated large and 

rolling culture experiments.  
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Both temperatures, 15°C and 18°C were compared in a growth experiment. The 

diatoms C. closterium and T. rotula were inoculated with cells from mid-exponential 

phase in fresh medium to an initial diatom cell density of ~2000 cells/mL. The cultures 

were grown at 15°C and 18°C in 20 mL culture flasks (n = 4) under the regular growth 

conditions (Section 2.2.2).  

 

2.2.7 Classification of growth phases 

For all culture experiments, it was necessary to start experiments with microalgae 

cultures originating from the same growth phase. It is crucial that microalgae originate 

from the same growth phase as otherwise result are not reproducible due to different 

physiological performance of the microalgae.  

 

To classify the different growth phases of the diatom T. rotula, T. rotula cells were 

grown in fresh medium starting with an initial cell density of ~2000 cells/mL. The 

cultures were grown at regular growth conditions (Section 2.2.2) in 20 mL culture flasks 

for 8 d. 

 

2.2.8 Statistical analyses 

Relationships among data obtained by different growth determination methods 

were analysed by Pearson’s product-moment correlation. Differences in algal abundance 

at the last measurement timepoint between the various treatments were analysed by One-

way Analyses of Variance (ANOVA) followed by Tukey HSD (normally distributed 

data) or Kruskal Wallis One-way Analyses of Variance on Ranks followed by Dunn’s 

test (non-normally distributed). Data were tested for normality and homogeneity of 

variance (Shapiro-Wilk test and Levene’s-test, respectively). All statistical tests were 

performed at a significance level of 0.05. The analyses and plots were done using R (R 

Core Team, 2018) with the packages dplyr (Hadley et al., 2018), ggpubr (Kassambara, 

2018), cowplot (Wilke, 2017), car (Fox and Weisberg, 2011) and ggplot2 (Wickham, 

2009). 

 



 

26 

 Chapter 2 

2.3 Results and Discussion 

2.3.1 Microalgae: isolation, identification and cultivation 

During the sampling period four diatom species belonging to four different orders 

were isolated (Figure 2.4). Thalassiosira rotula (Figure 2.4A) was isolated on 

17.03.2016. T. rotula is a centric diatom, coin-shaped and is forming long chains, 

connecting single cells with a thick bundle of organic threads. T. rotula is a cosmopolitan 

species, without flagellum and is abundant during spring and fall. Ditylum brightwellii 

(Figure 2.4B) was isolated on 31.03.2016. D. brightwellii is a centric diatom, triangular-

prism-shaped and is a mostly solitary species, sometimes forming very short chains.  

D. brightwellii is a cosmopolitan species, absent in the polar regions, without flagellum 

and abundant during spring. Chaetoceros socialis (Figure 2.4C) was isolated on 

17.03.2016, 12.05.2016 and 19.05.2016. C. socialis is a centric diatom, elliptic-cylinder-

shaped and is forming large chains with crossing adjacent spines and bundles of long 

spines. C. socialis is a cosmopolitan species with its centre of distribution in colder 

waters, without flagellum and is abundant from spring to autumn able to form blooms. 

Cylindrotheca closterium (Figure 2.4D) was isolated on 12.05.2016. C. closterium is a 

pennate diatom, lanceolate-shaped with long thin ends. C. closterium is a cosmopolitan, 

solitary and motile species without flagellum. Thalassiosira pseudonana (Figure 2.4E) 

and Thalassiosira weissflogii (Figure 2.4F) were obtained from the MARUM MPG 

Bridge Group Marine Glycobiology. Both are centric diatoms with a global distribution. 

In addition, a new T. rotula (A17) culture (Figure 2.4G) was isolated and cultivated in 

vitamin-free and vitamin containing ESAW medium on 03.09.2017 from a fresh 100 µm 

plankton net catch around Helgoland. 

 



 

27 

 Chapter 2 

 

 

A 

B 



 

28 

 Chapter 2 

 

 

C 

D 



 

29 

 Chapter 2 

 

 

 

E 

F 



 

30 

 Chapter 2 

 

Figure 2.4. Micrographs of diatoms isolated at Helgoland or obtained from the MARUM MPG Bridge 

Group Marine Glycobiology. A: Thalassiosira rotula; B: Ditylum brightwellii; C: Chaetoceros socialis;  

D: Cylindrotheca closterium; E: Thalassiosira pseudonana; F: Thalassiosira weissflogii; G: Thalassiosira 

rotula (A17) isolated and cultivated vitamin-free. The black scale bars describe the size of the diatoms. 

 

2.3.2 Bacteria: growth, isolation, and classification 

200 morphologically distinguishable bacteria were isolated, of which 103 were 

sequenced and characterized using the Silva database (https://www.arb-silva.de). The 

identified bacteria belonged to the phyla Proteobacteria, Bacteriodetes, Actinobacteria 

and Firmicutes. Within these phyla, five different classes (Gammaproteobacteria, 

Alphaproteobacteria, Flavobacteriia, Actinobacteria and Bacilli) and ten different orders 

(Alteromonadales, Xanthomonadales, Vibrionales, Flavobacteriales, Rhodospirillales, 

Rhizobiales, Sphingomonadales, Actinomycedales, Bacillales and Oceanospiralles) were 

observed. Most of the isolated bacteria belonged to the genus Pseudoalteromonas, 

followed by the genus Vibrio and some other typically marine genera like Halomonas, 

Marinobacter and Cobetia (Figure 2.5). 

 

G 
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The isolated bacteria were similar to typical taxa present in diatom blooms or in 

co-occurrence with diatoms (Amin et al., 2012). Many studies using culture-independent 

methods revealed that the bacterial communities of diatom cultures are mainly associated 

with bacterial phyla of Proteobacteria and Bacteroidetes (Schafer et al., 2002; Croft et al., 

2005; Grossart et al., 2005; Sapp et al., 2007; Amin et al., 2015). Additional field 

observations showed that distinct bacterial clades of the Proteobacteria and Bacteroidetes 

are commonly present during phytoplankton blooms in the German Bight (Teeling et al., 

2016). These observations indicate that diatoms consistently co-occur with two 

heterotrophic phyla Proteobacteria and Bacteroidetes. 
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Figure 2.5. Pairwise alignment phylogenetic tree based on 16S rRNA gene sequences. A: Isolates identified 

as the genus Pseudoalteromonas; B: Isolates identified as diverse genera. Abbreviations: Pseudo: 

Pseudoalteromonas sp.; Shewa: Shewanella sp; Leeuwen: Leeuwenhoekiella sp; Mart: Martelella sp; All 

sequences are identified on genus level. Isolates from different sampling timepoints are shown in different 

colours: 17.03.16: blue; 03.09.17: grey; 05.04.16: black; 12.04.16: red; 28.04.16: green. The scale bar 

indicates the number of substitutions per nucleotide position. The brackets show the classification in phyla. 

The number behind the name describes the sequencing accession number for each sequence.  

 

γ-Proteobacteria 

α-Proteobacteria 

Flavobacteriia 

Actinobacteria 

Bacilli 

γ-Proteobacteria 

B 



 
34 Chapter 2 

2.3.3 Correlation of data obtained by different growth 

determination methods 

2.3.3.1 Correlation of data acquired by a fluorescence plate reader and 

microalgal cell counts 

To correlate growth of microalgae as determined by relative chlorophyll 

fluorescence and microscopic cell counts of microalgae, these data were tested by 

Pearson’s correlation. Relative chlorophyll fluorescence was significantly correlated with 

microscopic cell counts (Pearson’s correlation: R = 1; p < 0.001) (Figure 2.6). Therefore, 

relative chlorophyll fluorescence was a suitable proxy to estimate microalgal cell 

abundance. 

 

 

Figure 2.6 Pearson’s correlation between microscopic cell counts and relative fluorescence units of 

Thalassiosira rotula. The black line represents the line of best fit. R and p-value show the calculated 

significance values determined by Pearson’s correlation. 
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2.3.3.2 Correlation of data acquired by pulsed-amplitude-modulation 

fluorometry and microalgal cell counts  

To correlate growth of microalgae as determined by minimal chlorophyll 

fluorescence and microscopic cell counts of microalgae, these data were tested by 

Pearson’s correlation. Minimal chlorophyll fluorescence was significantly correlated with 

microscopic cell counts (Pearson’s correlation: R = 0.75; p = 0.013) (Figure 2.7A). 

 

The potential quantum yield ranged between 0.64 and 0.68 during the growth 

experiment (Figure 2.7B). This is in accordance with reported Fv/Fm values of actively 

growing diatom cultures reported to range from 0.35 to 0.75 (Buchel and Wilhelm, 1993; 

Geel et al., 1997; Koblizek et al., 2001). Based on the literature, Fv/Fm values above 0.6 

are considered to reflect healthy and actively growing T. rotula cells. Determined by the 

significant correlation of F0 and microalgae cells counts the PAM fluorometry proved to 

be suitable to monitor the growth of microalgae via the chlorophyll fluorescence and 

concurrently measure the fitness of the cells. 

 

 

Figure 2.7. Pearson’s correlation between microscopic cell counts and minimal fluorescence (F0) of 

Thalassiosira rotula (A) and the corresponding potential quantum yields (B). The grey coloured area 

represents the 95% confidence interval and the black line shows the line of best fit. R and p-value show the 

calculated significance values determined by Pearson’s correlation. Error bars depict ± 1 SD (n = 2). 
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2.3.3.3 Correlation of optical density data and cell counts of bacteria 

To correlate abundance of bacteria as determined by OD and microscopic cell 

counts of bacteria, these data were tested by Pearson’s correlation. OD was significantly 

correlated with microscopic cell counts (Pearson’s correlation: R = 0.98; p < 0.001) 

(Figure 2.8). Therefore, OD was a suitable proxy to estimate bacterial cell abundance. 

 

 

Figure 2.8. Pearson’s correlation between microscopic cell counts and optical density (OD) of bacteria. The 

grey coloured area represents the 95% confidence interval and the black line shows the line of best fit. R 

and p-value show the calculated significance values determined by Pearson’s correlation. 

 

2.3.3.4 Correlation of cytometric and microscopic cell counts of 

microalgae 

To correlate growth of microalgae as determined by cytometric- and microscopic 

cell counts of microalgae, these data were tested by Pearson’s correlation. Cytometric cell 

counts were significantly correlated with microscopic cell counts (Pearson’s correlation: 

R = 1; p < 0.001) (Figure 2.9). Therefore, cytometric cell counts were a suitable method 

to determine microalgal cell abundance. 
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One challenge of counting microalgae in the flow cytometer is the ability of 

microalgae to form chains. A conventual flow cytometer detects a chain consisting of 

more than one cell always as one cell. The inability to distinguish between chains and 

single cells restricts the function of flow cytometry to count chain-forming microalgae 

such as T. rotula. However, the established method allowed to count chain forming 

microalgae using the imaging function of the flow cytometer. Different chain lengths of 

microalgae were gated by their side scatter and chlorophyll fluorescence. The gating was 

verified by evaluating the images arranged in each gate and has been adjusted if 

necessary. 

 

 

Figure 2.9. Pearson’s correlation between cytometric and microscopic cell counts of the diatom 

Thalassiosira rotula. The grey coloured area represents the 95% confidence interval and the black line 

shows the line of best fit. R and p-value show the calculated significance values determined by Pearson’s 

correlation. 
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2.3.4 Monitoring growth of algal cultures 

2.3.4.1 Comparison of media concentrations and culture 

volumes/vessels 

To test the cultivation in 96-well plates, diatoms were cultured in 96-well plates 

and 20 mL cultures flasks in different media concentrations. The four diatom species 

grew significantly better in 96-well plates in the simply concentrated ESAW medium than 

in the 10x concentrated medium after 146 h (Dunn’s test: T. rotula: p = 0.02; C. socialis: 

p = 0.002; D. brightwellii: p = 0.02; C. closterium: p < 0.001) (Figure 2.10A-D).  

In 20 mL culture flasks only the diatom species D. brightwellii grew significantly better 

in the simply concentrated ESAW medium than in the 10x concentrated medium after 

146 h (Dunn’s test: p = 0.04) (Figure 2.10C). The diatoms of C. closterium, T. rotula and 

C. socialis grew not significantly different in both concentrated media in 20 mL culture 

flasks after 146 h (Dunn’s test: p > 0.05) (Figure 2.10A, B & D). The hypothesis that 

increasing the nutrient concentration would delay nutrient shortage in 96-well plates and 

culture flasks was rejected. 

 

The growth of the diatoms was not significantly different in the 96-well plates and 

the 20 mL culture flasks after 146 h (Dunn’s test: p = 0.23 - 0.27) (Figure 2.10A-D), 

indicating that both culture containers are suitable to cultivate the investigated diatom 

species.  
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Figure 2.10. Growth of Thalassiosira rotula (A), Chaetoceros socialis (B), Ditylum brightwellii (C) and 

Cylindrotheca closterium (D) cultures in 1x and 10x concentrated ESAW media determined by relative 

fluorescence units. Culturing was conducted in black 96-well plates with clear bottom (n = 6) and 20 mL 

culture flasks (n = 3). Error bars depict ± 1 SD. 

 

To verify the successful cultivation in 12-well plates, diatoms were cultured in 

12-well plates and 20 mL culture flasks. The growth of the diatom T. rotula was not 

significantly different in 12-well plates and 20 mL culture flasks after 168 h (Tukey HSD: 

p = 0.2) (Figure 2.11), indicating that both 20 mL culture flasks and 12-well plates are 

suitable to cultivate T. rotula.  

 

10x ESAW medium 96-well plate  10x ESAW medium 20 mL culture flask  
1x ESAW medium 96-well plate  1x ESAW medium 20 mL culture flask 

 

Thalassiosira rotula Chaetoceros socialis 

Ditylum brightwellii Cylindrotheca closterium 
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Figure 2.11. Growth of Thalassiosira rotula in different culturing vessels determined by the minimal 

fluorescence yield. T. rotula was cultured in 12-well plates (black) and 20 mL culture flask (blue). Error 

bars depict ± 1 SD (n = 3). 

 

2.3.4.2 Comparison of the cultivation temperature of the diatoms  

C. closterium and T. rotula. 

To compare the cultivation of diatoms at the temperatures 15°C and 18°C, diatoms 

were grown at both temperatures. The growth of the diatom C. closterium was 

significantly better at 18°C than at 15°C after 196 h (Dunn’s test: p = 0.021) (Figure 

2.12A). While the growth of T. rotula was same at both 15°C and 18°C after 196 h 

(Dunn’s test: p = 0.7728) (Figure 2.12B) indicating that both temperatures are suitable to 

cultivate T. rotula. The increased growth of C. closterium due to a temperature rise is in 

line with the literature and was already shown for other diatoms (Montagnes and Franklin, 

2001). The small temperature change from 15°C to 18°C potentially caused no change in 

growth for T. rotula, because both temperatures are in the optimal temperature range of 

the diatom (Boyd et al., 2013). 
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Figure 2.12. Growth of Cylindrotheca closterium (A) and Thalassiosira rotula (B) at 15°C (black square) 

and 18°C (blue diamond) in ESAW medium determined by relative fluorescence units. C. closterium and 

T. rotula were cultured in 20 mL culture flasks. Error bars depict ± 1 SD (n = 4). 

 

2.3.4.3 Cultivation of T. rotula in 1 L glass bottles on a roller table 

To test cultivation in larger volumes, diatoms were cultured in 1 L glass bottles 

while being rotated. The growth of T. rotula in 1 L glass bottles (Figure 2.13) showed 

comparable maxima as observed in 20 mL culture flasks at 18°C (Figure 2.12B), 

indicating that cultivation of T. rotula in 1 L glass bottles is possible. 

 

 

Cylindrotheca closterium 

Thalassiosira rotula 
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Figure 2.13. Growth of Thalassiosira rotula in 1 L glass bottle under regular light conditions at 18°C while 

being rotated on a roller table determined by microscopic cell counts. Error bars depict ± 1 SD (n = 3). 

 

2.3.4.4 Classification of growth phases 

To have reproducible start conditions for cultivation, it is crucial to begin with 

microalgae cultures origins from the same growth phase. Therefore, the growth phases of 

T. rotula were read and classified as follows (Figure 2.14): Exponential phase 0 - 96 h; 

stationary phase 96 - 192 h. 

 

The measurement of Fv/Fm confirmed the growth phases, because Fv/Fm of the 

diatoms decreases after changing into the stationary phase (Figure 2.14B). The decrease 

of Fv/Fm is a typical sign for microalgae to switch from the exponential into the stationary 

phase (Wang et al., 2011; Qiu et al., 2013) and might be explained by exhaustion of some 

of the nutrients or accumulation of metabolic products due to the exponential growth 

(Sigaud-Kutner et al., 2002). To work reproducible in this thesis, all experiments were 

started with a culture that was between 72 and 96 h old. 
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Grossart et al. (2005) showed that the diatom T. rotula which originates from the 

exponential growth phase, starts to regrow again exponentially after the transfer into fresh 

medium, whereas the same culture originate from the stationary phase does not regrow 

exponentially again. Indicating that it is important to start each experiment in the same 

growth phase of the microalgae to obtain reproducible results.  

 

 

Figure 2.14. Growth of Thalassiosira rotula in 20 mL culture flasks determined by pulsed-amplitude-

modulation fluorometry. The dotted lines indicate the exponential and stationary growth phase, 

respectively. A: Minimal fluorescence yield; B: Potential quantum yield. Error bars depict ± 1 SD (n = 3). 

 

 

 

 

 

Exponential phase Stationary phase 
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2.4 Supplementary information 

 
2.4.1 Recipe lugol’s iodine solution 

 
- Dissolve 10 g KI in 20 mL ddH2O 

- Add 5 g I2 (double sublimated)  

- After complete solution add 50 mL ddH2O and 5 g sodium acetate  

 

2.4.2 ESAW medium 

 

Artificial seawater:  

 

NaCl   20,8 g 

MgCl2 * 6H2O  9,6 g 

Na2SO4  3,5 g 

1M CaCl2  9 mL 

KCl   0,6 g 

 

- Adjust the pH to 8.0 – 8.2 with 1 M HCl 

 

Enrichment stocks: 

 

1-5   1 mL/L 

6  100 µL/L 

 

Supplements: 

 

I; II; III each 1 mL/L 

 

- When everything is dissolved, fill up to 1 L 

- Sterile filtrate the medium 
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2.4.2.1 Enrichment stocks 

 

1. NaNO3  47 g/L 

2. SrCl2 * 6H2O  21 g/L  

3. Na2SiO3 * 9H2O 30 g/L  

4. Na2EDTA * 2H2O 1.86 g 

ZnCl2   32.7 mg 

CoCl2 * 6H2O  20.2 mg 

Na2MoO4 * 2H2O 126 mg 

MnCl2 * 4H2O 475 mg 

- Dissolve in 800 mL ddH2O 

- Adjust pH to 6 with 1 M NaOH 

- Fill up to 1 L 

5. H3BO3   25 g/L 

6. Na2SeO3 * 5H2O 1.73 g/L 

 

2.4.2.2 Supplement solutions 

 

Supplement I 

 

A. Na2EDTA * 2H2O 3.72 g 

- Dissolve in 450 mL ddH2O 

FeCl3    1.76 g 

- Slowly add FeCl3  

- Adjust the pH to 6 and let the solution stir until it is clear 

 

B. NaF   3 g 

 KBr   85 g 

- Dissolve in 450 mL ddH2O 

- Combine solution A + B 

- Fill up to 1 L with ddH2O 
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Supplement II 

 

- Dissolve NaHCO3 in a saturated solution (approximately 100 g/L) 

- Add 6 g Na2-Glycerophosphate 

 

Supplement III 

 

Thiamin HCl  200 mg/L 

Vitamin B12  4 mg/L 

Biotin   2 mg/L 

 

2.4.3 Recipe marine broth / agar (1 L) 

 

Sea salt   35 g 

Peptone   5 g 

Yeast    1 g 

For 1/10 marine broth / agar divide amount by 10 

- Fill up to 1 L with ddH2O 

- For agar plates add 20 g/L agar 

- Autoclave the solution 

 

2.4.4 Minimal iron agar (1 L) 

 

A. NaCl  22.79 g 

Na2SO4 3.98 g 

NaHCO3 0.031 g 

NaF  2.6 mg 

NH4Cl  0.27 g 

H3BO4  27 mg 

 KBr  83 mg 

 KCl  0.72 g 
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 Yeast  0.5 g 

  

- Fill up to 900 mL with ddH2O 

- Divide into 2 x 450 ml in a 1 L bottle and add 10g Agar 

- Autoclave the solution 

 

B. MgCl2  11.8 g 

CaCl2  1.46 g 

 SrCl2  24 mg 

 Glucose 3 g 

 Ferric citrate 0.1 g 

- Fill up to 50 mL ddH2O 

- Sterile filtration 

- Combine 450 ml solution A with 25 ml solution B 

 

2.4.5 Minimal iron EDTA agar (1 L) 

 

A. Ferric citrate 0.1 g 

EDTA  0.102 g 

- Fill up to 50 mL ddH2O 

- Sterile filtration 

 

B. MgCl2  11.8 g 

CaCl2  1.46 g 

 SrCl2  24 mg 

 Glucose 3 g 

- Fill up to 50 mL ddH2O 

- Sterile filtration 

 

C. NaCl  22.79 g 

Na2SO4 3.98 g 

NaHCO3 0.031 g 
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NaF  2.6 mg 

NH4Cl  0.27 g 

H3BO4  27 mg 

KBr  83 mg 

KCl  0.72 g 

Yeast  0.5 g 

 

- Fill up to 900 mL ddH2O 

- Divide into 2 x 450 mL in a 1 L-bottle and add 10 g Agar 

- Autoclave the solution 

- Combine 25 mL of solution A and B with 450 mL of solution C 

 

2.4.6 CAS agar (200 mL) 

 

Recipe 

 

172 mL growth medium 

1.8 g LE Agarose Biozym 

- Autoclave the solution 

- Add after autoclave 

6 mL Casamino acids 10% (sterile filtrated) 

2 mL Glucose 20% (sterile filtrated) 

20 mL CAS-Fe-HDTMA Dye  

 

Growth medium (1 L) 

 

PIPES  30.24 g 

NH4Cl  1 g 

KH2PO4 3 g 

NaCl  20 g 

-  Adjust the pH to 6.8 with 10 M NaOH 

- Autoclave the solution 
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CAS-Fe-HDTMA dye (100 mL) 

 

A. Chromazurol S (CAS) 60.5 mg 

- Dissolve in 50 mL ddH2O 

 

B. 10 mL 1 mM FeCl3 

- Dissolve in 100 mM HCl 

 

C. HDTMA   72.9 mg 

- Dissolve in 40 mL in ddH2O 

 

- Combine solution A and B and then with solution C 

- Autoclave the solution 

 

2.4.7 Lysogeny broth (LB) (1L) 

 

Yeast  5 g 

Tryptone 10 g 

NaCl  10 g 

- Fill up to 1000 mL with ddH2O 

- Autoclave the solution 
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Chapter 3 

3 Development of a co-culture system to investigate 

interactions between microalgae and bacteria 

3.1 Introduction 

The objective of this chapter was to develop a co-culture of microalgae and 

bacteria to study mutualistic interactions between these organisms. 

 

A key criterion to study microalgae-bacteria interactions are axenic microalgae. 

Axenic cultures are free of bacteria and therefore suitable to study the interactions of 

inoculated bacteria with the microalgal host. In nature, microalgae usually exist as 

consortia with bacteria or other microbes (Waksman, 1937; Cole, 1982). The removal of 

bacteria from microalgae is a multistep procedure. Several approaches have been 

proposed for the generation of axenic microalgae cultures, such as subcultures 

(Wiedeman et al., 1964), micropipette isolation (Hoshaw and Rosowski, 1973), 

ultrasonication (Gasulla et al., 2010), chemical treatments (Carmichael Wayne and 

Gorham Paul, 1974), ultraviolet radiation (Bowyer and Skerman, 1968), physical removal 

(Bruckner and Kroth, 2009), and antibiotic treatments (Bruckner and Kroth, 2009; 

Shishlyannikov et al., 2011). The application of antibiotics is the most common method 

for the generation and maintenance of axenic microalgae cultures. As starting an axenic 

cultivation with a single antibiotic has low chances to succeed, due to possible resistances 

of bacteria against a particular acting substance, it is recommended to use a mixture of 

antibiotics with different acting mechanisms. Typically, antibiotics such as Ampicillin, 

Gentamycin, Streptomycin, Chloramphenicol and Ciprofloxacin are used to establish 

axenic microalgae cultures (Shishlyannikov et al., 2011; Amin et al., 2015). Gentamycin 

and Streptomycin inhibit protein biosynthesis by irreversibly binding the 30S subunit of 

the bacterial ribosome (Vakulenko and Mobashery, 2003), while Chloramphenicol 

inhibits protein biosynthesis by irreversibly binding the 50S subunit of the bacterial 

ribosome (Kirschmann and Davis, 1969). Ampicillin inhibits cell wall synthesis of 

bacteria and Ciprofloxacin inhibits bacterial cell division (Rodgers et al., 1990). 
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To study the interactions of microalgae and bacteria, a co-culture set-up is 

required where all growth conditions can be adjusted in a reproducible manner. This 

chapter describes the preparation of axenic microalgae cultures and the development of 

such a co-culture system. Co-culture experiments were performed to either investigate 

the effect of bacterial metabolites on microalgal growth or to study the B-vitamin 

auxotrophy of diatoms. 

 

3.2 Material and Methods  

3.2.1 Preparation of axenic microalgae 

The following materials were used unless stated otherwise: Polycarbonate 

membrane filters (Whatman Nucleopore Track-Etched Membranes); a glass vacuum 

filter device (Sartorius); a bottle top filter holder (Thermo Scientific Nalgene). 

 

Different experimental configurations were trialled to generate axenic diatoms 

(isolated and identified in Chapter 2). Three days after each exposure to antibiotics, the 

cultures were checked for the presence of bacteria with growth tests in liquid MB and LB 

and with epifluorescence microscopy after DAPI staining (Section 2.2.4.3). 

 

3.2.1.1 Antibiotics treatment and subsequent filtration (M1) 

M1 was adopted from a personal communication (N. Kühne, June 7, 2016) and 

modified by changing the cultivation medium from K/2 to ESAW medium. 

 

Approximately 10 mL of a diatom culture was harvested at mid-exponential phase 

and incubated for 120 h under regular growth conditions (Section 2.2.2) in 20 mL sterile 

ESAW medium containing a mixture of antibiotics (25 µg/mL Streptomycin, 33 µg/mL 

Gentamycin, 10 µg/mL Ciprofloxacin, 34 µg/mL Chloramphenicol, and 165 µg/mL 

Ampicillin) (Table 3.1). Subsequently, cells were gravity filtered onto a 0.6 µm pore-size 

polycarbonate membrane filter and the filter was subsequently transferred into 20 mL 

antibiotic-free ESAW medium. 
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3.2.1.2 Filtration and subsequent antibiotics treatment (M2) 

The application of M1 resulted in a depletion of bacteria, but did not produce 

axenic cultures. To improve M1, the filter pore-size was increased from 0.6 to 3 µm and 

the culture was filtrated and rinsed with sterile ESAW medium prior to the antibiotic 

treatment (Table 3.1). 

 

3.2.1.3 M2 plus detergent treatment (M3) 

Applying the procedure of M2 did not lead to axenic cultures even though it 

resulted in a further depletion of bacteria. In order to improve M2, a detergent treatment 

and new concentrations of antibiotics were adopted from Shishlyannikov et al. (2011) 

and added to the protocol. The modifications are as follows (Table 3.1): The filter was 

carefully removed from the filtration device after the pre-filtration using sterile tweezers 

and washed for 1 min in sterile ESAW medium containing 20 µg/mL Triton-X 100 

(Sigma Aldrich) detergent to remove surface-attached bacteria. Cells were re-suspended 

by gently shaking in sterile detergent-free ESAW medium after which the filter was 

discarded. Cells were again gravity filtered onto a new 3 µm pore-size polycarbonate 

membrane filter and rinsed with sterile ESAW medium. Afterwards, cells were washed 

off the filter and resuspended in sterile ESAW medium containing a similar mixture of 

antibiotics as above (50 µg/mL Streptomycin, 67 µg/mL Gentamycin, 20 µg/mL 

Ciprofloxacin, 2.2 µg/mL Chloramphenicol, and 100 µg/mL Ampicillin). After 48 h 

antibiotics exposure, 1 mL of the culture was transferred to antibiotic-free ESAW 

medium. 
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3.2.1.4 M3 with detergent treatment inside filtration unit (M4) 

The application of M3 resulted in a loss of the diatom cells during the detergent 

treatment. To prevent loss of cells, the detergent treatment in M4 was done inside the 

filtration unit. 

 

3.2.1.5 Repetition of M4 (M5) 

The application of M4 removed the free-living bacteria, but some associated 

bacteria persisted the treatment. To achieve axenic diatom cultures, the method M4 was 

repeated once (Table 3.1). 
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Table 3.1. Methods used to prepare axenic diatom cultures described in the method sections 3.2.1.1 to 3.2.1.5. The abbreviations for the antibiotics are:  

A: Ampicillin; G: Gentamycin; S: Streptomycin; Ch: Chloramphenicol; Ci: Ciprofloxacin. The number describe how often the treatment was applied in the 

corresponding method. 

Treatment parameter 

Methods  

M1 M2 M3 M4 M5 

Antibiotics 

treatment 

& 

subsequent 

filtration 

Filtration 

& 

subsequent 

antibiotics 

treatment  

M2 plus 

detergent 

treatment  

M3 with 

detergent 

treatment 

(inside) 

Repetition 

of M4 

Antibiotics 

(µg/mL) 

Mixture 1 (S: 25; G: 33; Ci: 10;  

Ch: 34; A: 165) 
1 1       

Mixture 2 (S: 50; G: 67; Ci: 20; 

Ch: 2.2; A: 100) 
  1 1 2 

Filtration 
Pre-Antibiotics 

 1 1 1 2 

Post-Antibiotics 1     

Antibiotics 

exposure (h) 
48 

   1 1 2 

120 1 1      

Filter pore-

size (µm) 
0.6 1         

3 
 1 1 1 2 

Detergent 

(Triton-X 100) 
Outside filtration unit     1   

Inside filtration unit      1 2 
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3.2.2 Preparation of the bacterial source community as 

inoculum for microalgae-bacteria co-culture 

experiments 

Non-axenic diatoms were grown in ESAW medium under regular growth 

conditions for 72 - 96 h (Section 2.2.2). The bacterial source communities were separated 

from the diatoms by gravity filtration with 0.6 or 3 µm pore-size polycarbonate membrane 

filters using a bottle top filter holder. The filter pore-size 0.6 µm was selected for  

T. pseudonana as the cells are < 3 µm (Hasle and Heimdal, 1970), while the pore-size  

3 µm was selected for the other diatoms T. rotula, T. weissflogii, D. brightwellii and  

C. closterium due to the larger cells size of > 3 µm (Fryxell and Hasle, 1977; Kraberg et 

al., 2010). The filtrate was verified for algae contaminations (Section 2.2.4) and used for 

the experiments when algal-free. The bacterial source communities separated from 

different diatoms by filtration were used as bacterial inoculum for co-culture experiments 

with axenic diatoms. 

 

3.2.3 Determination of the microalgae:bacteria ratio for co-

culture experiments 

Different ratios of microalgae and bacteria were tested to identify the ratio where 

growth stimulating effects for the diatom host occurred. 

 

An axenic T. rotula culture was prepared according to method M5 (Section 

3.2.1.5). The bacterial source community was prepared from a non-axenic T. rotula 

culture as described in section 3.2.2. Axenic diatoms from mid-exponential growing 

phase were inoculated with the bacterial source community in fresh ESAW medium with 

an initial diatom cell density of ~2000 cells/mL to achieve diatom:bacteria ratios of ~1:10, 

~1:100 and ~1:1000. The co-cultures were grown for 8 d at regular growth conditions 

(Section 2.2.2) in 20 mL culture flasks (n = 4) (Section 2.2.5). Diatom growth was 

monitored by the measurement of the minimal fluorescence (F0) (Section 2.2.4.1). 
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3.2.4 Examination of B-vitamin auxotrophy of the diatom  

T. rotula and vitamin synthesis from bacterial 

communities 

As bacteria are potential producers of the vitamins B1, B7 and B12, it was necessary 

to test for vitamin auxotrophy in axenic cultures. To test the vitamin auxotrophy status of 

T. rotula, axenic diatoms were grown in vitamin-free ESAW medium to deplete vitamins. 

It is hypothesized that the diatom T. rotula is auxotroph showing reduced growth when 

intra- and extracellular B-vitamins are depleted due to the absence of bacteria. 

 

Axenic and non-axenic cultures were depleted of B-vitamins as follows. Axenic 

and non-axenic cultures were gravity filtered onto 3 µm pore-size polycarbonate 

membrane filter using a sterile glass vacuum filter device. The algal cells were rinsed 3 

times with 100 mL vitamin-free ESAW medium and reduced by gravity filtration to  

10 mL, transferred to 20 mL vitamin-free ESAW medium, and grown for 4 d under 

regular growth conditions (Section 2.2.2). The procedure was repeated twice to ensure 

exhaustion of intracellularly stored vitamins. Diatom growth and performance were 

monitored by the measurement of the minimal fluorescence (F0) and potential quantum 

yield (Fv/Fm) in each growth cycle (Section 2.2.4.1). 

 

The second objective of the repeated exhaustion of vitamins in non-axenic 

cultures was to increase the number of microalgae-associated bacteria in the surrounding 

medium that are capable to synthesize B-vitamins. The bacteria were removed repeatedly 

from the medium by filtration, allowing remaining algal-associated bacteria to migrate 

into the medium (Figure 3.1). 
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Figure 3.1. Scheme to separate free-living from associated bacteria in the surrounding medium for inoculation experiments. (A) A microalgal cell with its associated-

bacterial community in red and the free-living bacterial community in blue; (B) 3 µm filtration step to reduce the number of free-living bacteria above the filter; (C) 

The newly created microalgae-bacteria system shortly after filtration; (D) The newly created microalgae-bacteria system after growing for 4 d; (E) Separation of the 

newly established bacterial source community from the microalgal cells; (F) Inoculation of the newly established bacterial source community to an axenic microalgae 

culture. 

A CB D

EF
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3.2.5 Effects of bacterial metabolites on diatom growth 

Indole-3-acetic acid (IAA) is a plant hormone synthesized by bacteria, which is 

well-known to benefit growth of terrestrial plants (Won et al., 2011; Fu et al., 2015) and 

microalgae (Amin et al., 2015; Labeeuw et al., 2016; Segev et al., 2016). Inspired by 

recent findings about microalgae-bacteria interactions and IAA (Amin et al., 2015; 

Labeeuw et al., 2016), it was proposed to verify if IAA affected the growth of axenic and 

non-axenic T. rotula cells.  

 

Axenic and non-axenic diatoms were inoculated from mid-exponential phase 

growing culture in fresh ESAW medium to an initial diatom cell density of 

~2000 cells/mL (Section 2.2.4). IAA was added at four different concentrations (0.1, 1, 

10 and 100 nM) to axenic and non-axenic cultures. The cultures were grown for 10 d in 

20 mL culture flasks (n = 3) at regular growth conditions (Section 2.2.2). Diatom growth 

was monitored by the measurement of relative fluorescence (RFU) (Section 2.2.4.1). 

 

Microalgae-bacteria interactions are suggested to either occur in the phycosphere 

of microalgae or in the surrounding water column (reviewed in Seymour et al. 2017). 

Based on the different concepts of either direct contact to the phycosphere or vertical 

transmission from the surrounding water, the following hypothesis was developed. It is 

hypothesized that bacteria have to interact with diatoms in the phycosphere to exchange 

nutrients (Seymour et al., 2017). To test this hypothesis, axenic T. rotula cells were either 

inoculated with a filtrate containing bacterial exudates plus bacteria (3 µm) or simply 

with bacterial exudates (0.2 µm). With this experimental setup it was furthermore tested 

whether bacteria only support microalgae growth when attached to the diatom 

phycosphere or also via dissolved exudates by vertical transmission from the surrounding 

water column. 

 

Axenic (Section 3.2.1.5) and non-axenic cultures of T. rotula were inoculated 

from mid-exponential phase growing culture in fresh medium to an initial diatom cell 

density of ~2000 cells/mL (Section 2.2.4). The bacterial source community was prepared 

as described in section 3.2.2. Bacterial exudates were prepared as follows: A mid 
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exponential phase growing diatom culture was vacuum filtrated onto 0.2 µm pore-size 

polycarbonate membrane filter using a bottle top filter holder. The filtrate was added to 

the culture in the same ratio as it was prepared for the bacterial source community. Both 

inocula were added to the axenic T. rotula cultures in a quantity to achieve a ~1:100 

diatom:bacteria ratio (Section 3.2.3). The co-cultures were grown for 7 d in 20 mL culture 

flasks (n = 3) under regular growth conditions (Section 2.2.2). Diatom growth was 

monitored by the measurement of relative fluorescence (RFU) (Section 2.2.4.1). 

 

3.2.6 Statistical analysis 

Differences in algal abundance at the last measurement timepoint between the 

various treatments were analysed by One-way Analyses of Variance (ANOVA) followed 

by Tukey HSD (normally distributed data) or Kruskal Wallis One-way Analyses of 

Variance on Ranks followed by Dunn’s test (non-normally distributed). Data were tested 

for normality (Shapiro-Wilk test) and homogeneity (Levene’s-test) of variance. All 

statistical tests were performed at a significance level of 0.05. The analyses and plots 

were done using R (R Core Team, 2018) with the packages dplyr (Hadley et al., 2018), 

ggpubr (Kassambara, 2018), cowplot (Wilke, 2017), car (Fox and Weisberg, 2011) and 

ggplot2 (Wickham, 2009). 

 

3.3 Results and Discussion  

3.3.1 Preparation of axenic diatom cultures  

Axenicity of microalgae cultures was verified once no bacteria were detected in 

the culture under the fluorescence microscope after DAPI staining and no bacteria grew 

in liquid MB and LB media after inoculation with the microalgal culture. 

 

The final treatment to prepare axenic microalgae consisted of a 3 µm filtration and 

a detergent treatment to remove free-living and associated bacteria prior to the antibiotics 

treatment (Table 3.2). The antibiotics treatment was performed with the second described 
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mixture for 48 h (Table 3.2). The complete procedure was repeated once to achieve 

axenicity (Table 3.2). 

 

The first hypothesis under investigation was that the diatoms T. rotula,  

D. brightwellii, C. closterium and C. socialis can be rendered axenic. Based on the results 

of the preparation of axenic diatom cultures, the hypothesis was accepted for T. rotula 

and rejected for D. brightwellii, C. closterium and C. socialis (Table 3.2).  

 

 

Figure 3.2. Antibiotic treated Thalassiosira rotula cells after the treatment according to method 1 (Section 

3.2.1.1). The picture was taken after growing for 72 h in antibiotic-free ESAW medium. The white arrow 

points to associated and the red arrow to free-living bacteria. Scale bar: 20 µm. 
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B A 

A B 

 

Figure 3.3. Antibiotic treated Thalassiosira rotula (A) and Cylindrotheca closterium (B) cells after the 

treatment according to method 2 (Section 3.2.1.2). The pictures were taken after growing for 72 h in 

antibiotic-free ESAW medium. Scale bar: 20 µm. 

 

 

Figure 3.4. Antibiotic treated Thalassiosira rotula (A) and Cylindrotheca closterium (B) cells after the 

treatment according to method 4 (Section 3.2.1.4). The pictures were taken after growing for 72 h in 

antibiotic-free ESAW medium. Scale bar: 20 µm. 

 

A B 

A B 
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Figure 3.5. Antibiotic treated Thalassiosira rotula (A) and Cylindrotheca closterium (B) cells after the 

treatment according to method 5 (Section 3.2.1.5). The pictures were taken after growing for 72 h in 

antibiotic-free ESAW medium. Scale bar: 20 µm. 

 

A B 
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Table 3.2. Results of the preparation of axenic diatom cultures. The plus (+) denotes a reduction while a minus (-) indicates no reduction of bacterial numbers 

or a damage of the cells. A double plus (++) denotes an axenic microalgae culture. 

Method Adopted from Treatment parameter 

Decreased number of bacteria in diatom culture 
Results of 

axenicity Thalassiosira 

rotula 

Ditylum 

brightwellii 

Cylindrotheca 

closterium 

Chaetoceros 

socialis 

M1 
N. Kühne, personal 
communication 2016 

Antibiotics mixture 1 
+ - + + Figure 3.2 

0.6 µm post-filtration 

M2 
N. Kühne, personal 
communication 2016 

3 µm pre-filtration 
+ - + - Figure 3.3 

Antibiotics mixture 1 

M3 
Shishlyannikov et al., 
2011 

3 µm pre-filtration 

+   +     Antibiotics mixture 2 
Triton-X 100  
(Outside filtration unit) 

M4 
Shishlyannikov et al., 
2011 

3 µm pre-filtration 

+   +   Figure 3.4 Antibiotics mixture 2 

Triton-X 100  
(Inside filtration unit) 

M5 
Shishlyannikov et al., 
2011 

Twice M4 ++   +   Figure 3.5 
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3.3.2 Growth comparison of axenic cultures 

The growth of the T. rotula cultures before and after the application of method 

M4 and M5 were compared. The T. rotula culture before (Dunn’s test: p = 0.002) and 

after application of method M4 (Dunn’s test: p = 0.041) grew significantly better than the 

culture treated with method M5 after 196 h (Figure 3.6). The growth decline of the axenic 

culture originated from method M5 (Section 3.2.1.5) suggests that the algal cells lack 

essential nutrients, which were produced by bacteria under non-axenic conditions. This 

pattern is supported by frequent observations that microalgal growth declines in the 

absence of bacteria under limiting or non-limiting nutrient conditions (Bolch et al., 2011; 

Windler et al., 2014; Bolch et al., 2017). The results confirm that the treatment performed 

in method M4 did not eradicate all bacteria, because the growth was not significantly 

different compared to the non-treated culture after 196 h (Dunn’s test: p > 0.05) and 

indicated that the essential nutrients are still present. The fluorescence microscopy of the 

T. rotula culture derived from method M4 showed that associated-bacteria persisted the 

treatment according to method M4 (Figure 3.4A). Therefore, the essential nutrients were 

most likely supplied from the few remaining bacteria in the phycosphere of the T. rotula 

culture derived from method M4. The strong resistance of the attached bacteria in this 

culture suggests that the microalga protects these bacteria by the production of large 

amounts of extracellular polymeric substances (Bruckner et al., 2008; Debenest et al., 

2009). The microalgae host protects the associated bacteria because of the essential 

support function for microalgae growth and performance, like the production of B-

vitamins (Croft et al., 2006; Cruz-Lopez and Maske, 2016).  

 

The second hypothesis under investigation was that diatoms cannot grow 

axenically over multiple generations in ASW medium. The second hypothesis was 

accepted for T. rotula, as the axenic culture did not grow without bacteria in ASW 

medium (Figure 3.6). 
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Figure 3.6. Growth of Thalassiosira rotula cultures treated with methods M4 and M5 to prepare axenic 

diatom cultures. Growth of T. rotula cells originated from M4 (Blue diamond) and M5 (Grey triangle) with 

the corresponding T. rotula culture before the treatments (Black square) The growth of the axenic culture 

derived from method M5 was significantly different to the origin culture before the method M4 and to the 

culture after method M4. Growth was monitored by relative fluorescence units (RFU) (n = 3). Error bars 

depict ± 1 SD. 

 

3.3.3 Preparation of the bacterial source communities as 

inoculum for microalgae–bacteria co-culture 

experiments 

To verify whether the separation of the bacterial source community from the 

diatom cultures was successful, the bacterial source communities were investigated by 

microscopy of DAPI-stained cells. The inspection of present cells in the filtrates revealed 

no contaminations with diatoms (Figure 3.7 red arrow indicates bacteria). The proved 

separation of bacteria and diatoms (Figure 3.7) showed that the used filter pore-sizes were 

suitable for the different diatom species. Therefore, the separated bacterial source 

communities of the five investigated diatom species were suitable as bacterial inocula. 

Before treatment  After treatment 
T. rotula    T. rotula (M4) 

T. rotula (M5) 
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Figure 3.7. Epifluorescence micrographs of DAPI stained bacterial source communities obtained from 

different diatom hosts via 0.6 or 3 µm pore-size gravity filtration. The diatom culture of Thalassiosira 

pseudonana (A) was filtered through a 0.6 µm membrane filter. The diatoms Thalassiosira weissflogii (B), 

Cylindrotheca closterium (C), Thalassiosira rotula (D) and Ditylum brightwellii (E) were filtered through 

3 µm membrane filters. The red arrows show bacteria stained with DAPI. 

 

A B 

C D 

E 
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3.3.4 Effect of microalgae:bacteria ratio on the growth of  

T. rotula 

The potential growth effect on the axenic diatom T. rotula was examined by the 

inoculation of different ratios of diatoms to bacteria. The growth of the axenic T. rotula 

was not significantly affected by the inoculation of a bacteria to diatoms ratio of 1000:1 

after 196 h (Dunn’s test: p > 0.05) (Figure 3.8). However, the inoculation of bacteria to 

diatoms ratios of 10:1 (KW: p = 0.0018) and 100:1 (Dunn’s test: p = 0.0444) affected the 

growth of the axenic T. rotula significantly after 196 h (Figure 3.8). Based on the positive 

growth effect of the inoculation of a ratio of bacteria to diatoms 100:1 and the regularly 

observed ratio of bacteria to diatoms 100:1 in non-axenic T. rotula cultures in the 

laboratory, the ratio of bacteria to diatoms 100:1 was selected for further experiments. 

Furthermore, the chosen ratio is supported by similar observations of bacteria and 

microalgae densities in the ocean (Whitman et al., 1998; Seymour et al., 2017). 

 

The third hypothesis under investigation was that diatoms and bacteria exchange 

nutrients. The hypothesis was accepted, because the culture started to regrow after the 

axenic culture was inoculated with bacteria (Figure 3.8).  
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Figure 3.8. Growth of axenic Thalassiosira rotula co-cultures with the original bacterial source community 

in different ratios of diatoms to bacteria. Growth of T. rotula axenic, axenic + T. rotula bacterial source 

community (1:10), axenic + T. rotula bacterial source community (1:100), axenic + T. rotula bacterial 

source community (1:1000). The growth of an axenic T. rotula culture was significantly affected by the 

inoculation of its own bacterial source community in the diatom:bacteria ratio 1:10 and 1:100 after 196 h. 

Algal growth was monitored by minimal fluorescence (F0) (n = 3). Error bars depict ± 1 SD. 

 

3.3.5 Examination of B-vitamin auxotrophy of the diatom  

T. rotula and vitamin synthesis from bacterial 

communities 

In section 3.3.4 it was described that the axenic culture of T. rotula did not grow 

after removal of bacteria (Figure 3.8). Therefore, a new axenic culture needed to be 

generated before each experiment, because the culture could not be cultivated over 

several generations in ASW medium. New axenic cultures were prepared for the 

experiments described in the sections 3.3.2, 3.3.4 and 3.3.6.  

 

 

    T. rotula axenic T. rotula axenic + T. rotula bacterial source community (1:10) 
   T. rotula axenic + T. rotula bacterial source community (1:100) 
   T. rotula axenic + T. rotula bacterial source community (1:1000) 
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At some point of this thesis, the newly established axenic culture grew although 

the bacteria were removed successfully, caused by a relocation of the diatom cultures to 

the lab in Canada. To confirm the axenicity, the culture was verified several times with 

the described methods in section 3.2.1 and additionally with flow cytometry  

(Section 2.2.4.4). The axenicity was confirmed multiple times and the culture was used 

for experiments. Since then, the axenic T. rotula was cultivated in vitamin containing 

ESAW medium over several generations. Thus, it was possible to use the same culture in 

all subsequent experiments. 

 

The B-vitamin auxotrophy of the diatom T. rotula was examined by depleting 

vitamins across repeated growth cycles. The growth of the axenic T. rotula culture 

declined after two consecutively growth cycles of 72 - 96 h in vitamin-free ESAW 

medium (Figure 3.9A). After 264 h (11 d) the growth of the axenic T. rotula culture was 

significantly different to the non-axenic control (Dunn’s test: p = 0.0072) (Figure 3.9A). 

Similar to F0, Fv/Fm of the axenic culture decreased at the end of the second growth cycle, 

while Fv/Fm of the non-axenic culture did not change. Within the last growth cycle  

(168 - 264 h), Fv/Fm decreased to 0.2 (Figure 3.9B). Fv/Fm below the threshold of 0.35 is 

a sign for perishing or resting stage cells (Buchel and Wilhelm, 1993; Geel et al., 1997; 

Koblizek et al., 2001), here indicating that the axenic T. rotula cells were scarce of 

vitamins for growth. 

 

Consequently, the decrease in F0 and Fv/Fm showed that the axenic T. rotula 

culture was depleted of B-vitamins during the last growth cycle. Because only the  

B-vitamins biotin (B7), cobalamin (B12) and thiamine (B1) were removed from the ESAW 

medium, T. rotula is auxotroph for these three B-vitamins (Figure 3.9). 

 

The hypothesis under investigation was that the diatom T. rotula was B-vitamin 

auxotroph and declined in growth when intra- and extracellular vitamins were depleted. 

The axenic T. rotula culture declined in growth after 144 h cultivation in vitamin-free 

ESAW medium and did not regrow afterwards (Figure 3.9). Hence, the fourth hypothesis 

was accepted. 
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Figure 3.9. Growth of an axenic Thalassiosira rotula culture transferred into vitamin-free ESAW medium 

at 2000 cells/mL and filtrated between each growth cycle to deplete the intracellular vitamins. Blue circles 

depict the non-axenic T. rotula culture and black triangles the axenic T. rotula culture. After the third 

transfer into vitamin-free ESAW medium the axenic culture did no longer grow (A, 168 h) and its 

performance dropped below that of the vitamin non-axenic control (B, 168 h). Growth was monitored by 

minimal fluorescence (F0) (A) and potential quantum yield (Fv/Fm) (B) with a PAM fluorometer (n = 3). 

Error bars depict ± 1 SD. 

 

 The non-axenic cultures of T. weissflogii, T. pseudonana, C. closterium 

and D. brightwellii were also depleted in repeated growth cycles of vitamins as performed 

for T. rotula above. The exhaustion of the B-vitamins decreased the growth of all four 

diatom species during the three consecutively growth cycles of 96 h in vitamin-free 

ESAW medium (Figure 3.10). However, all four diatom species started to grow in 

vitamin-free medium within two weeks and showed a similar growth pattern compared 

to the growth pattern in vitamin-containing medium (results not shown). 
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Figure 3.10. Growth of non-axenic cultures of Cylindrotheca closterium, Ditylum brightwellii, 

Thalassiosira pseudonana and Thalassiosira weissflogii after three consecutive filtration steps. Non-axenic 

cultures were 0.6 or 3 µm filtrated and cultured for 96 h. Subsequently, this filtration procedure was 

repeated twice. The growth of the diatoms C. closterium, D. brightwellii, T. pseudonana and T. weissflogii 

was flattened after the three consecutive growth cycles in vitamin-free ESAW medium. Growth was 

monitored by minimal fluorescence (F0) (n = 3). Error bars depict ± 1 SD. 

 

3.3.6 Effects of bacterial metabolites on diatom growth 

The potential impact of IAA on the growth of the diatom T. rotula was examined. 

The growth of non-axenic and axenic T. rotula cultures was not significantly affected by 

the addition of IAA at concentrations of 0.1, 1, 10 and 100 nM after 240 h (Dunn’s test: 

p > 0.05) (Figure 3.11). Therefore, IAA did not affect the growth of axenic and non-

axenic T. rotula cultures. 

 

 

 

 

 

 

 

C. closterium 

 

T. pseudonana 

 

D. brightwellii 

 

T. weissflogii 
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Figure 3.11 Growth of non-axenic and axenic Thalassiosira rotula cultures with different added 

concentrations of indole-3-acetic acid (IAA). IAA in the concentrations 0.1, 1, 10 and 100 nM was added 

to non-axenic and axenic cultures of T. rotula. All cultures were grown at regular growth conditions in  

20 mL culture flasks (n = 3). Growth of an axenic and non-axenic T. rotula was not significantly affected 

by adding IAA in different concentrations after 240 h. Growth was monitored by relative fluorescence 

(RFU). Error bars depict ± 1 SD. 

 

 The potential effect of microalgal and bacterial exudates on the growth of 

the diatom T. rotula was investigated. The growth of the axenic T. rotula culture was not 

significantly affected by the inoculation of the exudates after 168 h (Tukey HSD:  

p = 0.2639) (Figure 3.12). However, the growth of the axenic T. rotula culture was 

significantly affected by the inoculation of the bacterial source community taken from  

T. rotula after 168 h (Tukey HSD: p = 0.001) (Figure 3.12). Therefore, the growth of 

axenic T. rotula cultures was only restored by the inoculation of bacteria (3 µm filtrate), 

but not by the addition of exudates (0.2µm filtrate) although both inocula were obtained 

from the same culture. 

    T. rotula   T. rotula + 0.1 nM IAA 
   T. rotula + 1 nM IAA 
   T. rotula + 10 nM IAA 
   T. rotula + 100 nM IAA 
 

Non-axenic 

Axenic 
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The hypothesis was that bacteria interacted with diatoms in the phycosphere to 

exchange nutrients. As the growth of the axenic T. rotula culture was only restored with 

the inoculation of bacteria but not with bacterial exudates (Figure 3.12), the fifth 

hypothesis was accepted. 

 

 

Figure 3.12. Growth of axenic Thalassiosira rotula co-cultured with the original bacterial source 

community or the exudates of the bacteria and microalgal host. Axenic cultures were inoculated with its 

own bacterial source community or the exudates (0.2 µm filtrate) in the diatom: bacteria ratio 1:100 and 

grown at regular growth conditions (n = 3). The growth of the axenic T. rotula culture was not significantly 

affected by the inoculation of bacterial exudates in the same ratio as the bacterial source community was 

inoculated after 168 h. Growth was monitored by relative fluorescence (RFU). Error bars depict ± 1 SD. 

 

 

 

 

 

 

 

  T. rotula  T. rotula axenic + T. rotula bacterial source community 

  T. rotula axenic T. rotula axenic + T. rotula exudates 
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Chapter 4 

4 The marine diatom Thalassiosira rotula harbours a 

host-specific associated bacterial community under 

vitamin depletion 

4.1 Introduction 

The objective of this chapter was to investigate the establishment of associated 

bacterial communities on the diatom Thalassiosira rotula under vitamin absence. 

 

Microalgae are of high relevance for the global carbon cycling (Falkowski and 

Raven, 2007) and it is well-known that they live in association with bacteria (Seymour et 

al., 2017). These bacteria can have an significant influence on the function of their 

microalgae host (e.g. by supply with B-vitamins; Cruz-Lopez and Maske, 2016). 

However, how microalgae-associated bacterial communities are shaped, and which 

factors influence the bacterial community establishment is not well understood. 

Therefore, the composition of newly shaped diatom-associated bacterial communities 

was investigated in these experiments to identify if the assembly of associated bacterial 

communities is determined by host factors, is therefore host-specific, or more generalized 

and determined by external factors such as bacterial source communities. For this, the 

experiments were conducted with the diatom T. rotula, which belongs to one of the most 

abundant and diverse genera of marine planktonic diatoms (Malviya et al., 2016). In the 

previous chapter, T. rotula was shown to be essentially dependent of B-vitamins and that 

the bacterial community supports diatom growth with B-vitamins under vitamin-free 

conditions (Chapter 3). Due to the evidenced auxotrophy of T. rotula, the experiments 

were conducted under absence of vitamins to investigate whether the growth of the 

diatom is affected by the recently shaped different bacterial communities. 

 

To study which factors, contribute to the establishment of bacterial communities 

associated with the diatom T. rotula under vitamin depletion, different bacterial source 
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communities were dissociated from several vitamin-depleted diatom donor species and 

inoculated to the axenic acceptor culture of the diatom T. rotula. The associated bacterial 

community composition was evaluated in both, donor and acceptor cultures, using 

Illumina-MiSeq sequencing targeting the 16S rRNA V4 region. Based on the species-

specificity of microalgae-associated bacterial communities that have been shown in many 

studies (Grossart et al., 2005; Amin et al., 2012; Behringer et al., 2018; Crenn et al., 

2018), it is hypothesized that all newly shaped acceptor cultures harbour similar 

associated bacterial communities whereas that the donor cultures harbour unique and 

specific associated bacterial communities. 

 

 Furthermore, the study aimed to test if: (A) the associated bacterial community 

composition of T. rotula and D. brightwellii cultures (origin) is changing due to long-

term cultivation (donor) (Section 4.3.2), (B) the associated bacterial community of the 

acceptor cultures share a certain bacterial core community (Section 4.3.2), (C) the shared 

bacterial taxa in the associated bacterial core community of the acceptor cultures belong 

to bacterial groups capable of B-vitamin biosynthesis (Section 4.3.2), and (D) the 

amounts of B-vitamins produced by the different newly shaped associated bacterial 

communities can be quantified (Section 4.3.3). 

 

4.2 Material and Methods 

4.2.1 Microalgae growth and axenic culture generation 

Non-axenic microalgae cultures of T. rotula, T. pseudonana, T. weissflogii,  

D. brightwellii and C. closterium were depleted of B-vitamins (Section 3.2.4). An axenic 

microalga culture of T. rotula was generated (Section 3.2.1.5) and the intracellular stored 

vitamins were depleted (Section 3.2.4). The non-axenic and axenic cultures were grown 

in vitamin-free ESAW medium under regular growth conditions (Section 2.2.2). 
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4.2.2 Microalgae-bacteria co-culture 

4.2.2.1 Growth of T. rotula with different bacterial source 

communities of diatom cultures 

Bacterial source communities were separated from the above described vitamin-

free non-axenic diatoms by 0.6 / 3 µm gravity filtration and the density of DAPI-stained 

bacteria was counted under the fluorescence microscope (Section 3.2.2). Each filter was 

stored in 1 mL SL1 lysis buffer (NucleoSpin Soil, MACHEREY-NAGEL) at -20°C until 

the donor samples were processed for Illumina amplicon sequencing. The bacterial source 

communities from the diatom filtrate were used to inoculate the freshly prepared axenic 

and vitamin-free diatom cultures to an initial diatom cell density of ~2000 cells/mL. 

Bacterial source communities were inoculated in a quantity to yield a ~1:100 cell ratio of 

diatoms to bacteria (Section 3.2.3). The following treatments were prepared: The axenic 

and vitamin-free T. rotula culture was inoculated with the bacterial source community of 

T. pseudonana, T. weissflogii, D. brightwellii, C. closterium and T. rotula, respectively. 

Additionally, an axenic and non-axenic T. rotula culture was used as control. The co-

cultures were grown for 96 h (4 d) in 12-well plates (n = 3) (Section 2.2.5) under regular 

growth conditions (Section 2.2.2). Samples were taken every 24 h and diatom growth was 

monitored by the measurement of the minimal fluorescence (F0) (Section 2.2.4.1). At the 

last timepoint (96 h), three wells (15 mL) of each treatment were 3 µm filtrated on a 

polycarbonate filter membrane. Subsequently, the filter was stored in 1 mL SL1 lysis 

buffer (NucleoSpin Soil, MACHEREY-NAGEL) at -20°C until the acceptor samples 

were processed for Illumina amplicon sequencing. 

 

4.2.2.2 Identification and quantification of the essential B-vitamins 

The axenic and vitamin-free T. rotula acceptor culture was inoculated with the 

bacterial source community of T. rotula as described in section 4.2.2.1. A sterile vitamin 

B12 solution was prepared and added in the quantities of 1 and 10 pM vitamin B12 to an 

axenic T. rotula culture of 2000 cells/mL. Additionally, an axenic and non-axenic  

T. rotula cultures were prepared in the same cell density as the control treatment. The 

cultures were grown in 1 L glass bottles with a culture volume of 700 mL (n = 3) (Section 
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2.2.5) and were rotated on a roller table with 6.2 rpm under regular light conditions with 

an ambient temperature of 18°C (Section 2.2.5). Samples were taken every 24 h over a 

period of 120 h (5 d). The growth of the diatoms was monitored by microscopic cell 

counting (Section 2.2.4). At the last timepoint 500 mL were taken of each culture for the 

vitamin quantification (Section 4.2.5). 

 

4.2.3 Total bacterial DNA extraction and 16S rRNA 

sequencing 

 Samples were taken from five different donor and acceptor microalgal cultures as 

well as 2 freshly isolated microalgal origin cultures of T. rotula and D. brightwellii  

(< 1 month after isolation). Additionally, the axenic acceptor culture was used as sterile 

control. At the sampling timepoint, all samples except of the axenic control were in the 

end exponential growth phase. The alga-associated microbial community DNA was 

extracted from polycarbonate filters (Section 4.2.2.1) by using the “NucleoSpin Soil” 

kit (MACHEREY-NAGEL). Concentration and purity of the DNA was analysed using a 

Nanodrop ND-1000 instrument (Thermo Fisher Scientific). Additionally, the DNA 

quality was verified by electrophoresis on an 1% agarose gel using DNA gel loading dye 

(6X) (Thermo Fisher Scientific) and GeneRuler 1 kb DNA ladder (Thermo Fisher 

Scientific). 

 

For the phylogenetic characterization of the microalgae associated microbial 

community, genes were amplified using an amplicon barcoded sequencing protocol for 

MiSeq platforms. The V4 hypervariable region of the bacterial genes were amplified 

using the modified universal bacterial primer set 515F/806R (515F: 5´-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG 

GTGCCAGCMGCCGCGGTAA- 3´ and 806R: 5´-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGAC 

AGGGACTACHVGGGTWTCTAAT- 3´ Each forward and reverse primer contains 

different barcode sequences) with Illumina adaptor overhang sequences as previously 

published (Caporaso et al., 2012; Klindworth et al., 2013). The library preparation was 

conducted as described in the 16S metagenomic sequencing library preparation script 
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(https://support.illumina.com/downloads/16s_metagenomic_sequencing_library_prepar

ation.html, last time opened 15.07.2019, 07:12 am). The modifications from the library 

preparation script were as follows: The amplicon PCR was performed in triplicate for 

each sample to reduce the bias of the PCR. After the amplicon PCR, the replicates were 

pooled again for further processing. The two PCR clean-ups steps were placed on the 

magnetic stand until the supernatant had cleared (> 2 min).  

 

4.2.4 Sequence data processing and bacterial community 

analysis 

The amplified genes were sequenced and analysed on a MiSeq system (Illumina) 

following the manufacturer’s instructions. Sequencing was performed in 2x 300 bps 

paired-end-mode using the MiSeq Reagent Kit v3. For the analysis, the trimmomatic 

package (Bolger et al., 2014) was used to crop the 300 bps to 275 bps and a sliding 

window of length 3 which allowed an average Phred quality core of 8 to filter from  

5’ – 3’ and cut when quality dropped below 8. The paired-ends were merged with Vsearch 

(Rognes et al., 2016) with a minimum overlap of 40 bps and a maximum number of four 

mismatches. Sequences were reverse complemented, and both directions merged into one 

file. The combined files were then filtered (allowing 10% mismatch and a minimum 

overlap of 17 bps for forward and 13 bps for reverse) for the existence of the primer 

sequences (forward -> reverse complemented) and primer sequences were removed. This 

filtration step was followed by feature filtering which allowed a maximum expected error 

per sequence of 1, minimum length of 275 bps, maximum length of 475 bps and 

maximum number of ambiguities of 0. In the same step the headers were renamed by a 

shal digest of the sequence itself. Each sample was dereplicated independently 

(abundance of each amplicon added to the header) and chimera checked de novo. All 

samples were pooled and dereplicated in total to produce a combined dataset. The 

combined dataset served as input for the swarm operational taxonomic unit (OTU) 

clustering with a distance of 1 (Mahe et al., 2014). The most abundant amplicon of an 

OTU cluster was used as representative.  
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The swarm output was run on the NGS analysis pipeline of the SILVA rRNA gene 

database project (SILVAngs 1.3) (Quast et al., 2013). Every read was aligned operating 

the SILVA Incremental Aligner (SINA v1.2.10 for ARB SVN (revision 21008)) (Pruesse 

et al., 2012) against the SILVA SSU rRNA SEED and quality controlled (Quast et al., 

2013). Reads shorter than 50 aligned nucleotides and exceeding 2% of ambiguities or 

homopolymers, respectively, were excluded from further processing. Putative 

contaminations and artefacts read with a low alignment quality (50 alignment identity,  

40 alignment score reported by SINA), were identified and excluded from downstream 

processing.  

 

Following the initial quality control steps, identical reads were identified 

(dereplication) on a per sample basis and the reference read of each OTU was classified. 

Dereplication was done using cd-hit-est (version 3.1.2; 

http://www.bioinformatics.org/cd-hit, last time opened 15.07.2019, 07:19 am) (Li and 

Godzik, 2006) operating in accurate mode, ignoring overhangs, and applying identity 

criteria of 1.00 and 0.1, respectively. The classification was performed by local nucleotide 

BLAST search against the non-redundant version of the SILVA SSU Ref dataset (release 

132; http://www.arb-silva.de, last time opened 15.07.2019, 07:20 am) using blastn 

(version 2.2.30+; http://blast.ncbi.nlm.nih.gov/Blast.cgi, last time opened 15.07.2019, 

07:21 am) with standard settings (Camacho et al., 2009). 

 

The classification of each OTU reference read was mapped onto all reads that 

were assigned to the respective OTU. Delivering quantitative information (number of 

individual reads per taxonomic path), within the limitations of PCR and sequencing 

techniques biases, as well as multiple rRNA operons. Reads without any BLAST hits or 

reads with weak BLAST hits, where the function “(% sequence identity + % alignment 

coverage) / 2” did not exceed the value of 93, remained unclassified. These reads were 

assigned to the meta group “No Relative” in the SILVAngs fingerprint and Krona charts 

(Ondov et al., 2011).  

 

Bacterial community patterns were examined for differences among donor and 

acceptor cultures and within donor and acceptor cultures and of short-term (< 1 month) 
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and long-term (> 1 year) cultivation in the laboratory. Non-parametric (multivariate) 

analyses were undertaken using the standardized abundance data normalized to the 

median sequencing depth. Multidimensional scaling was applied to provide an ordination 

of the data using Bray-Curtis dissimilarities. Principal coordination analysis (PCoA) was 

then used to investigate differences between the diverse cultures. To identify the OTUs 

which were present across the acceptor cultures, a Venn diagram was generated 

(http://bioinformatics.psb.ugent.be/webtools/Venn/, last time opened 15.07.2019, 07:11 

pm). The community structure was analysed in R (R Core Team, 2018) with Phyloseq 

(McMurdie and Holmes, 2013), vegan (Oksanen et al., 2018) and plotted with ggplot2 

(Wickham, 2009). 

 

4.2.5 Determination of B-vitamin concentrations in 

microalgae cultures 

4.2.5.1 Preconcentration of samples 

500 mL of each diatom culture (Section 4.2.2.2) were immediately vacuum 

filtered over a 0.2 µm pore-size polycarbonate membrane filter (Nucleopore Track-

Etched Membranes, Whatman) and the filtrate was stored in the dark at 4°C until further 

processing. The preconcentration took place within 24 h after the filtration using a 

modification of a previously published method (Heal et al., 2014). A glass 

chromatography column (Diameter: 20, Length: 400 mm) was packed with 10 g Diaion 

HP-20 (Sigma-Aldrich). The HP-20 was conditioned for 10 min in 60 mL of HPLC grade 

(VWR) methanol and subsequently washed with at least 60 mL of Milli-Q water.  

The 500 mL samples were adjusted to pH 5.5 - 6.5 with formic acid and gravity loaded 

onto the column at 7 mL/min. The column was then washed with 60 mL Milli-Q adjusted 

to a pH of 6.0 - 6.5. Samples were eluted from the column with 60 mL methanol and dried 

in the speed vac (Savant, Thermo Fisher Scientific). Finally, samples were reconstituted 

in 500 µL of Milli-Q water (95%) and LC-MS grade methanol (5%). To minimize 

photodegradation of the vitamins, the filtration and preconcentration was performed in a 

shaded room and bottles and vials were covered with aluminium foil. 
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4.2.5.2 Recovery of vitamins during solid phase extraction 

 To determine the percentage recovery of cyanocobalamin (vitamin B12) (Table 

4.1) at different concentrations during solid phase extraction (SPE), the 0.2 µm filtrated 

ESAW medium was spiked with known amounts of vitamin B12 before preconcentration 

on SPE. All samples were analysed in the same way. These values of recovery were 

calculated to correct the vitamin concentrations in microalgae-bacteria co-culture 

experiments in ESAW medium. 

 

Table 4.1. Results of recovery analysis (with standard deviation of triplicate analysis) of different 

cyanocobalamin (vitamin B12) concentrations in ESAW medium. 

Analyte Concentration (pM) % Recovery 

Cyanocobalamin 

1 37 ± 21 

10 86 ± 29 

100 82 ± 4 

10000 83 ± 3 

 

4.2.5.3 UPLC/MS conditions 

 The UPLC/electrospray ionization (ESI)-MS method was adapted from a 

previously published method (Heal et al., 2014). All samples and standards were analysed 

on a LC-MS / MS system (UPLC: I-Class, MS /MS: Xevo; Waters). A UPLC BEH C18 

reverse phase column (Acquity 50 mm x 2.1 mm, 1.7 µm, Waters) was used with a flow-

rate of 0.5 mL/min for the first 5 min and 0.6 mL/min for the last 1.5 min at 40°C. The 

gradient elution was performed with the two eluents water (eluent A) and methanol 

(eluent B), both containing 10 mM ammonium formate and 0.1% formic acid. Initial 

conditions were 2 min column equilibration with 99% A and 1% B, followed by a linear 

gradient to 45% A and 55% B in 2 min, followed by a linear gradient to 100% B in  

0.5 min, and isocratic elution for 0.5 min with 100% B, followed by linear gradient to 

99% A and 1% B in 0.2 min, and isocratic elution for 1.3 min at 99% A and 1% B. All 

analyses were performed in positive ion mode using multiple reaction monitoring 

(MRM). The ESI source temperature was 55°C with a desolvation temperature of 600°C.  
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Collision energies, cone voltages, and retention times of cobalamin are listed in Table 

4.2. Peak areas of the listed transitions (see Table 4.2) were used for identification and 

quantification.  

 

Table 4.2. Conditions of mass spectrometry (MS) and retention times (RT) for each analyte. Multiple 

reaction monitoring (MRM) was used to identify and quantify each precursor and product pair at the 

indicated collision energy (CE) and cone voltage (CV). The listed product ion was used to quantify the 

analyte and the second listed product (second row of the same analyte) used to confirm the identity of the 

analyte. 

 

Analyte MRM CE (V) CV (V)  RT (min) 

Hydroxocobalamin 676.25 -> 147.10 36 30 0.49 - 5.00 

Adenosylcobalamin 790.10 -> 147.10 36 30 0.49 - 5.00 

Adenosylcobalamin 790.10 -> 665.60 36 30 0.49 - 5.00 

Methylcobalamin 673.10 -> 147.10 36 30 0.49 - 5.00 

Methylcobalamin 673.10 -> 685.60 36 30 0.49 - 5.00 

Cyanocobalamin 678.25 -> 147.10 36 30 0.49 - 5.00 

Cyanocobalamin 678.25 -> 359.20 24 30 0.49 - 5.00 

Cyanocobalamin 678.25 -> 912.30 36 30 0.49 - 5.00 

Cyanocobalamin 678.25 -> 997.35 24 30 0.49 - 5.00 

 

4.2.6 Statistical analysis 

 Differences in algal abundance at the last measurement timepoint between the 

axenic acceptor culture, the various acceptor cultures inoculated with different bacterial 

source communities and the different vitamin B12 levels (Section 4.3.1 & 4.3.2) were 

analysed by One-way Analyses of Variance (ANOVA) followed by Tukey HSD 

(normally distributed data). Data were tested for normality (Shapiro-Wilk test) and 

homogeneity of variance (Levene’s-test). All statistical tests were performed at a 

significance level of 0.05. The analyses and plots were done using R (R Core Team, 2018) 

with the packages dplyr (Hadley et al., 2018), ggpubr (Kassambara, 2018), cowplot 

(Wilke, 2017), car (Fox and Weisberg, 2011) and ggplot2 (Wickham, 2009). 
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4.3 Results and Discussion 

4.3.1 Microalgae-bacteria co-culture 

 The T. rotula acceptor culture inoculated with its own bacterial source community 

grew less than the non-axenic vitamin deplete control after 96 h (Tukey HSD, p < 0.001) 

(Figure 4.1). In contrast, the axenic acceptor culture revealed stagnant growth during the 

entire experiment duration. The axenic T. rotula acceptor cultures inoculated with the 

bacterial source communities obtained from different diatom species reached higher F0 

values than the T. rotula acceptor culture inoculated with the original T. rotula bacterial 

source community after 96 h (Figure 4.1, Table 4.3). This ubiquitous growth restoration 

of the vitamin-free axenic T. rotula culture by the inoculation of different bacterial source 

communities suggested that all five newly established bacterial communities on the 

acceptor cultures harboured bacteria capable of B-vitamin biosynthesis (Figure 4.1). 

Cruz-Lopez and Maske (2016) showed that the bacterial community obtained from 

natural seawater supplied an axenic and vitamin-depleted dinoflagellate culture with 

vitamin B1 and B12. Thus, the demand for B-vitamins of diverse microalgal species can 

be fulfilled by different microalgal microbiomes and bacterial communities from natural 

seawater. 
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Figure 4.1. Growth of axenic Thalassiosira rotula acceptor cultures under absence of vitamins in co-culture 

with different inoculated bacterial source communities obtained from T. rotula, Ditylum brightwellii, 

Cylindrotheca closterium, Thalassiosira pseudonana and Thalassiosira weissflogii. Algal growth was 

determined by minimal chlorophyll fluorescence (F0) (n = 3). The letters indicate significant differences 

between treatments assigned with another letter: Tukey HSD p < 0.01. Error bars depict ± 1 SD. 

 

Table 4.3. Pairwise comparison of growth of Thalassiosira rotula acceptor cultures after 96 h (4 d) with 

the original versus bacterial source communities obtained from different diatom species (Tukey HSD). 

Pairwise comparison after 96 h of growth of  

T. rotula acceptor cultures inoculated with 

bacterial source communities of: 

p-value (Tukey HSD) 

T. rotula vs Cylindrotheca closterium  < 0.001 

T. rotula vs Thalassiosira weissflogii < 0.001 

T. rotula vs Thalassiosira pseudonana < 0.001 

T. rotula vs Ditylum brightwellii < 0.001 

 

 

     T. rotula non-axenic 

     T. rotula axenic 

     T. rotula axenic + T. rotula bacterial source community 

     T. rotula axenic + C. closterium bacterial source community 

     T. rotula axenic + T. pseudonana bacterial source community 

     T. rotula axenic + T. weissflogii bacterial source community 

     T. rotula axenic + D. brightwellii bacterial source community 

 

a 

b 

c 
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To investigate the vitamin B requirements of the axenic T. rotula acceptor culture, 

the above-described experiment was repeated to identify and quantify the essential B-

vitamins for the diatom growth. The axenic acceptor culture inoculated with the original 

T. rotula bacterial source community and the vitamin-free non-axenic control grew 

significantly better than the axenic vitamin-free control after 120 h (Figure 4.2; Tukey 

HSD, p < 0.02), confirming the above described vitamin supply by the T. rotula bacterial 

community. Similarly, the axenic acceptor culture inoculated with 1 pM and 10 pM 

vitamin B12 grew significantly better than the axenic vitamin-free control after 120 h 

(Figure 4.2; Tukey HSD, p < 0.02) and the growth was equal to the non-axenic control 

after 120 h (Figure 4.2; Tukey HSD, p = 1). However, the growth of the axenic T. rotula 

was the same between both added vitamin B12 quantities after 120 h (Figure 4.2; Tukey 

HSD, p = 1). The experiment demonstrated that the B-vitamin auxotroph diatom T. rotula 

(Chapter 3) requires only 1 pM vitamin B12 for growth (Figure 4.2). Thus, the growth of 

the diatom T. rotula is essentially dependent on extracellular vitamin B12, but not on 

extracellular vitamin B1 and B7 (Figure 4.2). The tested quantities of vitamin B12 did not 

significantly affect the growth of T. rotula, but both quantities restored the growth of the 

axenic and vitamin-free acceptor culture of T. rotula. The raise of the vitamin B12 

concentration in the medium did not further enhanced algal growth is a contrary result to 

the outcomes of another study that showed that the abundance of the green alga 

Lobomonas rostrata increased due to enhanced concentrations of vitamin B12 (Kazamia 

et al., 2012). 
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Figure 4.2. Growth of axenic Thalassiosira rotula acceptor cultures under absence of vitamins in co-culture 

inoculated with the T. rotula bacterial source community and with 1 pM and 10 pM vitamin B12. Algal 

abundance was determined by microscopic cell counts (n = 3). The letters indicate significant differences 

between treatments assigned with another letter: Tukey HSD p < 0.02. Error bars depict ± 1 SD. 

 

4.3.2 Community composition of microalgae-associated 

bacterial communities 

In this chapter, it was shown that the growth of the axenic and vitamin-free 

acceptor culture could be restored by the inoculation of bacterial source communities 

obtained from different donor diatom cultures. To analyse the associated microbial 

communities of the donor and acceptor cultures as well as of the two freshly isolated 

microalgal strains, 16S rRNA gene amplicon sequencing was performed. The clustering 

of bacterial 16S rRNA gene amplicons was done at a 98% similarity level. Overall, 

462090 raw reads were generated in this study, whereof 162489 reads were affiliated to 

the domain of bacteria. The following analysis resulted in the identification of 27 - 117 

OTUs per acceptor, donor or origin culture (Figure 4.3) and a total of 372 OTUs were 

identified. Rarefaction analysis showed a variable sequencing depth (Figure 4.3). 

Therefore, all samples were normalized to the median sequencing depth to reduce the 

     T. rotula non-axenic 

     T. rotula axenic 

     T. rotula axenic + T. rotula bacterial source community 

     T. rotula + 1 pM B12 

     T. rotula + 10 pM B12 

a 

b 
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variability between samples caused by the bias of NGS sequencing. The axenic control 

of T. rotula shows a flatter curve in the rarefaction curve compared to all other treatments 

(Figure 4.3, black dotted line) as only chloroplast and mitochondrial sequences and some 

negligible bacterial sequences were read during sequencing. However, no bacteria were 

detectable by epifluorescence microscopy after DAPI staining before and after the 

experiment, indicating sterile conditions throughout the whole experiment. 

 

 

Figure 4.3. Rarefaction curves for each of the sequenced bacterial community samples (with OTUs assigned 

at a 98% similarity cut-off). The grouping into donor, acceptor, origin, control samples is depicted by the 

different line types: solid: donor; long dash: acceptor; dot dash: origin; dotted: control. 

 

The phylogenetic analysis of bacteria attached to the donor and origin cultures of 

T. rotula and D. brightwellii revealed variations in the associated bacterial community 

composition among short-term (< 1 month) and long-term cultivation (> 1 year) (Figure 

4.4). Interestingly, the diversity of bacterial taxa increased due to longer cultivation under 

laboratory conditions in both microalgal species (Figure 4.4). Although both microalgal 

species were isolated at the same sampling location and sampling season, the associated 
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bacterial community composition in the origin algal cultures were distinct from each 

other.  

 

 

Figure 4.4. Phylogenetic composition of associated bacterial communities on the family level attached to 

Thalassiosira rotula (TR) and Ditylum brightwellii (DB). The term in brackets describes the source of the 

samples: donor: > 1 year of lab cultivation, origin: < 1 month of lab cultivation. The normalized abundance 

of OTUs was analysed with R using the Phyloseq package. 

 

The comparison of the associated bacterial community composition of the donor 

algal cultures revealed that all donor communities were different from each other at the 

resolution of family and genus (Figure 4.5 & 4.6). The only exceptions were the donor 

cultures of T. pseudonana and T. weissflogii which were similar to each other except for 

the presence of Parvibaculaceae in the donor culture of T. weissflogii (Figure 4.5). 
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Figure 4.5. Phylogenetic composition of associated bacterial communities on the family level attached to 

Thalassiosira rotula (TR), Ditylum brightwellii (DB), Cylindrotheca closterium (CC), Thalassiosira 

pseudonana (TP), and Thalassiosira weissflogii (TW). The term in brackets describes if this is the bacterial 

source community (donor) or the newly established associated bacterial community on T. rotula (acceptor). 

The normalized abundance of OTUs was analysed with R using the Phyloseq package.  

 

The genera Alteromonas and Sulfitobacter constituted more than 50% of all OTUs 

in the associated bacterial communities of the acceptor cultures, while these two genera 

were less abundant in most of the associated bacterial communities in the donor cultures 

(Figure 4.6). Thus, the acceptor cultures harboured mainly Gammaproteobacteria and 

Alphaproteobacteria in their associated bacterial community, which are described to be 

important vitamin B12 producers in the ocean (Sanudo-Wilhelmy et al., 2014; Doxey et 

al., 2015). Within the Alphaproteobacteria class, the most commonly abundant order in 

the acceptor and donor associated bacterial communities were the Rhodobacterales. The 

order of Rhodobacterales has been identified as a potential algal symbiont that provides 

microalgae with vitamin B12 in exchange for DOC (Wagner-Dobler et al., 2010). It is 

remarkable that 86% of the Rhodobacterales possess the de novo pathway for vitamin B12 

synthesis (Sanudo-Wilhelmy et al., 2014), which might explain the high percentage of 

these bacteria in the vitamin depleted donor and acceptor cultures. The potential 
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significance of the Rhodobacterales to the donor and acceptor algae can be supported by 

the absence of chemoautotrophic Thaumarchaeota and photoautotrophic cyanobacteria in 

all analysed algal cultures. Both prokaryotes are known as important vitamin B producers 

in the ocean besides selected Proteobacteria (Heal et al., 2017).  

 

 

Figure 4.6. Phylogenetic composition of associated bacterial communities on the genus level attached to 

Thalassiosira rotula (TR), Ditylum brightwellii (DB), Cylindrotheca closterium (CC), Thalassiosira 

pseudonana (TP), and Thalassiosira weissflogii (TW). The term in brackets describes if this is the bacterial 

source community (donor) or the newly established associated bacterial community on T. rotula (acceptor). 

The normalized abundance of OTUs was analysed with R using the Phyloseq package.  

 

In this chapter, the question was addressed if microalgal species influenced the 

bacterial composition of the associated bacterial communities and if long-term cultivation 

resulted in changes in the microbiome. The PCoA, based on Bray-Curtis dissimilarities 

matrix, showed that the bacterial communities associated with D. brightwellii and  

T. rotula in the origin and donor culture differed between both diatom species (Figure 

4.7A). The PCoA also slightly separated the donor and origin associated bacterial 

communities of the diatoms T. rotula and D. brightwellii (Figure 4.7A), indicating that 

the bacterial composition of the microbiomes did not undergo major changes due to long-
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term cultivation. Thus, the observation of Behringer et al. (2018) that long-term 

cultivation only resulted in small changes in the associated bacterial community 

composition can be underpinned with two more diatom species from this thesis. 

 

The PCoA did not separate the different acceptor associated bacterial 

communities except of T. pseudonana and D. brightwellii (Figure 4.7B & 4.7D). In 

contrast, most of the donor associated bacterial communities were separated from each 

other in the PCoA (Figure 4.7B & 4.7C). Only the donor bacterial communities associated 

with T. pseudonana and T. weissflogii clustered together in the PCoA, two diatom species 

which were already cultivated in the laboratory for many years (Figure 4.7C). The 

differences in the associated bacterial community compositions of the donor cultures 

indicate that the different diatoms harbour a unique and specific bacterial community. 

The results complemented, however, previous studies suggesting that microalgal cultures 

harbour specific bacterial communities (Grossart et al., 2005; Krohn-Molt et al., 2017; 

Behringer et al., 2018; Crenn et al., 2018). This distinction of bacterial communities 

associated with microalgae may be due to differences in the DOC composition produced 

by different microalgal species that in turn can support different groups of bacteria. 

Consequently, the similarity of the newly established acceptor associated bacterial 

communities resulted most likely from a specific DOC release of the diatom T. rotula 

(Figure 4.7C & 4.7D). Especially the similarity of the newly established acceptor 

associated bacterial communities with the donor associated bacterial community of the 

original T. rotula in the PCoA indicates that the similarity was caused by a specific DOC 

release of T. rotula. These results suggest that the associated bacterial community of  

T. rotula is host-specific.  
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Figure 4.7. Principal coordinate analysis (PCoA) plot with Bray-Curtis dissimilarity. The PCoA revealed 

that the origin and donor associated bacterial communities were separated and that the acceptor associated 

bacterial communities were not separated. (A) Bray-Curtis PCoA ordination of pooled origin and donor 

associated bacterial communities. (B) Bray-Curtis PCoA ordination of pooled donor and acceptor 

associated bacterial communities. (C) Bray-Curtis PCoA ordination of donor associated bacterial 

communities. (D) Bray-Curtis PCoA of acceptor associated bacterial communities.  

A 

D C 

B 

Donor Acceptor 

C. closterium 

D. brightwellii 

T. pseudonana 

T. rotula 

T. weissflogii 
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To identify the bacterial taxa that were commonly present in the acceptor 

associated bacterial communities, a Venn diagram was generated. The results of the Venn 

analysis of the acceptor cultures revealed that all five-acceptor associated bacterial 

communities commonly shared 17 bacterial taxa (Figure 4.8), which belong to 

Rhodobacteraceae, Alteromonadaceae, Flavobacteriaceae and Colwelliaceae. The 

investigation of the contribution of the 17 shared bacteria in the acceptor associated 

bacterial communities revealed that the bacteria belong exclusively to the three bacterial 

orders of Alteromonadales (47%), Rhodobacterales (29%) and Flavobacteriales (24%). 

The observed ubiquitous bacteria in the acceptor microbiomes are supported by several 

studies that showed that Alteromonadales, Rhodobacterales and Flavobacteriales are 

strongly associated with diatoms (Grossart et al., 2005; Kaczmarska et al., 2005; Sapp et 

al., 2007; Cruz-Lopez and Maske, 2016; Behringer et al., 2018). Consequently, T. rotula 

harbours a putative associated bacterial core community of 17 bacterial taxa of four 

different bacterial families. 
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Figure 4.8. Venn diagram showing the number of bacterial taxa uniquely present in one or commonly 

present in two, three, four or five of the algae associated bacterial communities in the acceptor cultures. 

Meaning of colour is Thalassiosira. rotula axenic (TR ax) inoculated with the bacterial source 

communities: T. rotula (TR): blue, Ditylum brightwellii (DB): red, Thalassiosira pseudonana (TP): green, 

Thalassiosira weissflogii (TW): yellow, Cylindrotheca closterium (CC): brown. 

 

4.3.3 Determination of B-vitamin concentrations in 

microalgae cultures 

The crucial vitamin B12 concentration for growth of T. rotula was determined to 

be ~ 1 pM. The adopted method achieved a detection limit of 1 pM for vitamin B12 with 

a recovery rate of 37 - 86 % (Table 4.1). Although the accomplished detection limit was 

in the range of the required vitamin B12 for growth of T. rotula, it was not possible to 

detect any extracellular vitamin B12 in the acceptor cultures. Furthermore, even if 1 or  

10 pM B12 were added to the axenic acceptor culture instead of the inoculation of the 

bacterial source community, no extracellular vitamins were detected in the vitamin-

supplemented cultures.  
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In the ocean, vitamin B12 occurs in low concentrations and is only produced by 

selected bacteria and archaea (Croft et al., 2005; Sanudo-Wilhelmy et al., 2014). Hence, 

it could be the case that microalgae rapidly ingest the newly synthesized vitamins to fulfil 

their essential requirements as long as the vitamins are available. This response of 

microalgae to nutrient shortage is a well-known strategy to scope with variable nutrient 

regimes and is described as luxury consumption (Sommer, 1985). In chapter 3 it was 

shown that the axenic T. rotula culture was able to store enough vitamins to grow for at 

least 5 to 7 d without an exogenous B-vitamin source. Consequently, T. rotula is able to 

store vitamins for shorter periods when vitamins become scarce. The capability of  

T. rotula to intracellular store vitamins could be a reason why it was not possible to 

quantify any vitamin B12 in the cultures. Another reason why no vitamin B12 could be 

quantified in the diatom cultures might be the reduction of cyanocobalamin (vitamin B12) 

to hydroxocobalamin. The cobalamins have different bio-and photochemistries, but all 

forms of cobalamins are light sensitive (Juzeniene and Nizauskaite, 2013). However, for 

the calibration of the LC-MS only a standard solution of cyanocobalamin was available. 

Thus, the potential degradation product of the active forms, the hydroxocobalamin, was 

measured, but could not be calibrated to identify and decrease the detection limit. 

 

To prevent photodegradation of vitamins during preconcentration, all steps were 

conducted in the dark when possible. However, some light was necessary to be able to 

operate the SPE and avoid the column to fall dry during extraction. Therefore, 

photodegradation of vitamins during the preconcentration cannot be completely 

excluded. To test how quickly dissolved vitamin B12 is photodegraded, cyanocobalamin 

was dissolved in ESAW medium and illuminated with ca. 30 – 70 µmol photons m-2 s-1 

in the same culturing container in which the quantification experiment was performed. 

The light intensity of 30 - 70 µmol photons m-2 s-1 was the same as during the co-culturing 

experiment and clearly in excess of the light intensity that the samples were exposed to 

during vitamin B12 preconcentration. The vitamin B12 concentration was measured in 

triplicate before and after fully lighted for 5 d and resulted to be similar in both samples 

from before and after illumination (results not shown). Consequently, photodegradation 

of vitamin B12 was unlikely during the co-culturing experiment and the preconcentration, 

because the vitamin concentration did not change during illumination with  
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ca. 30 - 70 µmol photons m-2 s-1. In conclusion, the vitamin B12 measurement failed, 

because the extracellular vitamins in the microalgal cultures were too low for detection 

and quantification due to a rapid uptake by the microalgal cells. 
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Chapter 5 

5 The marine diatom Thalassiosira rotula assembles a 

stable and reproducible microbiome 

5.1 Introduction 

The objective of this chapter was to investigate the establishment of microbiomes 

on the diatom T. rotula. 

 

Diatoms are eukaryotic microalgae that are responsible for about 20% of the 

global photosynthesis (Malviya et al., 2016) and thus largely contribute to the oceanic 

biogeochemical cycle (Falkowski et al., 2008). However, the health and performance of 

these environmentally important photosynthetic organisms (Armbrust, 2009) depend on 

the association with bacteria (Amin et al., 2012). It is therefore important that microalgae 

are colonized by appropriate bacteria, because these bacteria may perform several 

advantageous tasks for the microalgal host, such as the remineralization of the released 

carbon compounds to make them available again for primary production (Seymour et al., 

2017). Furthermore, bacteria provide a variety of growth-enhancing micronutrients to the 

algal host such as B-vitamins (Croft et al., 2005; Cruz-López et al., 2018), phytohormones 

(Amin et al., 2015) and increase the bio-availability of iron for the microalgal host (Amin 

et al., 2009). Therefore, the assembling of the microbiome can have a strong impact on 

the host fitness and performance. 

 

The host microbiome can be governed by both the physiology of the host and 

external environmental factors (Marzinelli et al., 2015). Processes guiding the 

microbiome establishment seem to be highly regulated in some species, decreasing inter-

individual variation (Berg et al., 2016), while in other species, numerous factors 

contribute to inter-individual differences in the microbiome composition (Boissiere et al., 

2012). The surrounding water column will be the first defining factor for the potential 

settlement of the bacteria on the algal host. These bacteria will then be selectively 

attracted by the interactions with the host and primary settled bacteria (Smith et al., 2015). 
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However, not only the interactions between host and primary settled bacteria can 

determine the shape of the microbiome, but also the biotic interactions between bacteria 

can influence the assembling of the microbiome (Robinson et al., 2010). Although the 

impact of distinctions in environmental bacterial community composition on the 

establishment of microbiomes has already been investigated in some terrestrial and 

aquatic studies (Berg et al., 2016; Callens et al., 2018), there are yet only few data 

available on the assembly of microbiomes on microalgae. 

 

To fill the gap in knowledge about microbiome assembling on microalgae, the 

assembly of microbiomes was addressed on the marine diatom T. rotula, which belongs 

to the ubiquitous and ecological important genus Thalassiosira (Malviya et al., 2016). 

The establishment of microbiomes was investigated by co-culturing an axenic T. rotula 

strain together with compositionally different bacterial source communities that have 

been detached from various diatom species. To study the assembling of microbiomes, the 

experiment described in chapter 4 was repeated. Therewith, the associated bacterial 

community composition of the donor diatom species (hereafter bacterial source 

communities) and of the acceptor diatom T. rotula (hereafter microbiomes) were analysed 

in two independent experiments. The co-cultivation of the first experiment (Experiment 

I) was performed in triplicates while the triplicates of each treatment were pooled to one 

sample before 16S rRNA sequencing. In contrast, the co-cultivation as well as the 16S 

rRNA sequencing of the second experiment (Experiment II) were performed with each 

replicate individually. The repetition of experiments was done to investigate whether the 

assembly of the microbiomes associated with the diatom T. rotula were reproducible and 

stable in both independent experiments. Additionally, the bacterial source communities 

of a seawater sample and of another T. rotula (A17) culture were used as inoculum to 

study the assembly of the microbiome with a bacterial source community with a high 

diversity of bacteria and from another T. rotula strain isolated in the same sampling 

location but different season. 

 

The first aim of this chapter was to confirm the results of Experiment I. In 

Experiment I (Chapter 4) it was shown that the bacterial community compositions of the 

acceptor microbiomes resemble each other while the bacterial community compositions 
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of the bacterial source communities were distinct to each other. Based on the previous 

results of chapter 4, it was hypothesized that all newly assembled acceptor cultures 

harbour similar microbiomes whereas that the donor cultures harbour unique and specific 

bacterial source communities. In addition, the study aimed to test whether: (A) The newly 

formed microbiomes on the T. rotula acceptor resemble the original T. rotula acceptor 

microbiomes even when inoculated with high diverse seawater bacterial source 

communities. (B) The T. rotula acceptor assembles a core microbiome that has high 

overlap of OTUs across the newly shaped acceptor microbiomes.  

 

5.2 Results and Discussion 

5.2.1 Co-culture of the axenic T. rotula with distinct donor 

bacterial communities 

The co-cultures of the axenic and vitamin-free T. rotula acceptor cultures together 

with the different inoculated bacterial source communities revealed that the growth of the 

diatom could be restored with each of the bacterial source communities (Figure 5.1). 

However, the axenic T. rotula acceptor diatoms in co-cultures with bacterial source 

communities obtained from different diatoms or seawater reached significantly higher 

RFU values after 96 h than with the original T. rotula bacterial source communities 

(Figure 5.1, Table 5.1). In contrast, the axenic acceptor cultures showed stagnant growth 

during the entire experiment duration (Figure 5.1). Therefore, the growth restoration of 

the axenic and vitamin-free T. rotula acceptor cultures was independently demonstrated 

in two co-culture experiments (Experiment II: Figure 5.1; Experiment I: Figure 4.1). The 

growth restoration of the axenic T. rotula axenic acceptor cultures revealed that all newly 

assembled microbiomes on the T. rotula acceptor diatoms host bacteria, which are able 

to provide the algal partner with sufficient amounts of vitamins to maintain the growth 

and fitness of the alga within 96 h in vitamin-free artificial seawater medium. 
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Table 5.1. Pairwise comparison of growth of Thalassiosira rotula acceptor cultures after 96 h (4 d) 

inoculated with the original T. rotula versus bacterial source communities obtained from different diatom 

species and seawater (Tukey HSD). Bold numbers indicate significant results (< 0.05). 

 

Pairwise comparison after 96 h of growth of T. rotula 

acceptor cultures inoculated with bacterial source 

communities of: 

p-value (Tukey HSD) 

T. rotula vs C. closterium  0.992 

T. rotula vs D. brightwellii  0.446 

T. rotula vs T. pseudonana  0.464 

T. rotula vs T. rotula (A17) < 0.001 

T. rotula vs T. weissflogii 0.068 

T. rotula vs Seawater < 0.001 
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Figure 5.1. Growth of axenic Thalassiosira rotula acceptor cultures under absence of vitamins (black 

diamond, solid line) in co-culture with different inoculated bacterial source communities obtained from 

Ditylum brightwellii (green diamond, dotted line), T. pseudonana (brown triangle, solid line), T. weissflogii 

(plum triangle, dotted line), Cylindrotheca closterium (grey circle, solid line), T. rotula (deeppink triangle, 

solid line), T. rotula (A17) (orange square, dotted line) and seawater (blue circle, solid line). Algal growth 

was determined by relative fluorescence units (RFU) (n = 3). Error bars depict ± 1 SD. 
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5.2.2 Composition of the donor bacterial communities and 

the microbiomes on the T. rotula acceptor 

The bacterial community composition and diversity were investigated in six 

different donor bacterial source communities and newly assembled microbiomes on the 

T. rotula acceptor by 16S rRNA gene amplicon sequencing. The sequencing was done 

separately for the samples from Experiment I (Figure 4.1) with one replicate and 

Experiment II (Figure 5.1) with three replicates (four samples per treatment in total). To 

investigate the bacterial community composition of both experiments together, the results 

were pooled prior to sequence data processing and bacterial community analysis. The 

clustering of pooled bacterial 16S rRNA gene amplicons was done using a bootstrap cut-

off of 80% in RDP. Overall, more than 5 million raw reads were generated in both 

sequencing runs together, whereof roughly 1.6 million were affiliated to the domain of 

Bacteria. The following analysis resulted in the identification of 27 - 4406 OTUs in the 

microbiomes on the T. rotula acceptor and donor bacterial source communities (Figure 

5.2) and a total of 6296 OTUs were identified. Rarefaction analysis of the samples of the 

bacterial source communities as well of the microbiomes on the T. rotula acceptor 

diatoms showed a variable sequencing depth (Figure 5.2). Therefore, all samples of both 

experiments were normalized on the median sequencing depth to reduce the variability 

between samples caused by the bias of NGS sequencing. The axenic controls of the  

T. rotula acceptor showed flatter curves in the rarefaction curve diagram compared to all 

other treatments (Figure 5.2, black line) as only chloroplast and mitochondrial sequences 

and some negligible bacterial sequences were read during sequencing. However, no 

bacteria were detectable by epifluorescence microscopy after DAPI staining before and 

after the experiment, indicating sterile conditions throughout the whole experiment. 
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Figure 5.2. Rarefaction curves for each of the sequenced bacterial community samples of the Experiment I 

(Chapter 4) and Experiment II (with bacterial OTUs assigned at an 80% confidence cut-off). The bacterial 

source community samples are denoted as (A) and the T. rotula acceptor samples as (B). Inset: Rarefaction 

curve of the two seawater bacterial source communities. 

 

T. rotula axenic 

T. weissflogii 

T. rotula 

T. rotula (A17) 

T. pseudonana 

Seawater 

D. brightwellii 

C. closterium 



 
104 Chapter 5 

 

 

Figure 5.3. Phylogenetic composition of bacterial source communities obtained from different donor diatoms and seawater (top row) and the microbiomes of the 

Thalassiosira rotula acceptor culture inoculated with the corresponding diatom or seawater bacterial source communities (bottom row). The normalized abundance of 

OTUs at the family level was analysed with R using the Phyloseq package (McMurdie and Holmes, 2013). The pooled samples of Experiment I (described in Chapter 

4) are indicated as (I). The individual samples from Experiment II are indicated as (IIa-c). n.d.: not determined. 
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The phylogenetic composition of the bacterial source communities on the donor 

diatoms and the newly assembled microbiomes on the T. rotula acceptor were visualized 

in stacked bar plots showing the normalized abundance at the family level (Fig. 5.3). The 

most abundant OTUs in the donor bacterial source communities and the microbiomes on 

the T. rotula acceptor belong to the bacterial families Alteromonadaceae and 

Rhodobacteraceae (Fig. 5.3). Significant differences in the bacterial community 

structures were apparent between the donor bacterial source communities and 

microbiomes on the T. rotula acceptor (ANOSIM: R = 0.154, p = 0.001) (Fig. 5.4). 

Subsequently, the donor bacterial source communities were analysed individually, 

revealing significant differences between the donor cultures (ANOSIM: R = 0.751,  

p = 0.001) (Fig. 5.4). The significant differences between all donor bacterial source 

communities imply that the donor diatoms harboured a stable, unique and specific 

bacterial community in both experiments. However, no significant differences were 

observed between the different microbiomes on the T. rotula acceptor (ANOSIM:  

R = 0.133, p = 0.084) (Fig. 5.4), indicating that the microbiomes had become more similar 

to each other regarding the bacterial community composition even though they had been 

obtained from significantly different bacterial source communities. Thus, Experiment II 

confirmed the results from Experiment I and consequently the hypothesis was accepted 

that all newly assembled microbiomes on the T. rotula acceptor are composed of similar 

bacterial taxa whereas the bacterial source communities are more composed of unique 

and specific bacterial taxa. In particular, also the co-culture with the bacterial source 

community obtained from seawater led statistically to the same bacterial community 

compositions as observed for all other newly assembled microbiomes on the T. rotula 

acceptor. The fact that the inoculation of the seawater bacterial source communities also 

led statistically to the same microbiomes on the T. rotula acceptor is remarkable, because 

the seawater bacterial source communities contained a vast diversity of bacteria with up 

to 4406 OTUs compared to all other donor bacterial source communities (Fig. 5.2). 

Overall, these results showed that the newly assembled microbiomes were no longer 

significantly different from each other when the axenic T. rotula acceptor was inoculated 

with significantly different bacterial source communities from diatoms or seawater. 

Furthermore, it was observed that all newly assembled microbiomes on the T. rotula 

acceptor are more similar to the original T. rotula bacterial source communities than to 
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the inoculated bacterial source communities (Fig. 5.4). Therefore, the second hypothesis 

was accepted, because the newly assembled microbiomes on the T. rotula acceptor were 

also T. rotula-specific when inoculated with the highly diverse seawater bacterial source 

community.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Principal coordinate analysis (PCoA) plot with Bray-Curtis dissimilarity of the pooled samples 

of Experiment I (Chapter 4) and Experiment II. The bacterial source communities are denoted as squares 

and the newly established microbiomes on the T. rotula acceptor as triangle. The different colours describe 

the origin of the bacterial source communities or the newly established microbiomes on the T. rotula 

acceptor. 
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5.2.3 The Thalassiosira rotula core microbiome 

The similarity and T. rotula-specificity of the newly assembled microbiomes 

suggests the existence of OTUs with a high degree of overlap across all acceptor 

microbiomes. To explore the similarity and T. rotula-specificity of the newly assembled 

microbiomes more directly, the presence of core microbiome members within the newly 

assembled microbiomes on the T. rotula acceptor was determined. For this purpose,  

10 OTUs were selected out of 6296 OTUs, as the similarity percentage analysis 

(SIMPER) found that these OTUs contributed most to the differences between the 

acceptor microbiomes and the bacterial source communities (Table 5.2 & 5.3). 

Furthermore, these 10 OTUs accounted for 82 ± 6% of the total relative abundance of the 

bacterial community composition in the different acceptor microbiomes and original  

T. rotula bacterial source communities. 

 

Overall, three different scenarios were identified how the 10 OTUs were present 

in the acceptor microbiomes and how they differed in the presence and frequency in the 

corresponding bacterial source communities. The first scenario is that an OTU was 

abundant in the bacterial source communities and hence also settled abundantly in the 

acceptor microbiomes (Table 5.2 & 5.3). Thus, the first scenario might imply that the 

OTU was equally important for the donor species of the bacterial source community and 

the acceptor diatom species. In the second scenario, an OTU was scarcely present in the 

bacterial source communities and was nonetheless abundantly found in the acceptor 

microbiomes (Table 5.2 & 5.3). Therefore, the second scenario might indicate that the 

OTU was more important for the acceptor than for the donor diatom. The third scenario 

is that an OTU was abundant in the bacterial source communities and nonetheless settled 

scarcely in the acceptor microbiomes (Table 5.2 & 5.3). Hence, the third scenario might 

denote that the OTU was more important for the donor than for the acceptor diatom 

species.  

 

The T. rotula acceptor microbiomes resulting from co-cultivation of the axenic  

T. rotula acceptor diatoms and the original T. rotula bacterial source communities 

resembled the original bacterial source communities of T. rotula based on the 10 OTUs 

(Table 5.2). The reassembling of the original T. rotula bacterial source communities can 
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be supported by the results of two-sample t-tests, which revealed that all 10 OTUs were 

present in the same abundance in the T. rotula bacterial source communities and the  

T. rotula acceptor microbiomes (Two sample t-test: p > 0.2). The mirroring of the 

inoculated T. rotula bacterial source communities and the T. rotula acceptor microbiomes 

confirms the success of the method as it was possible to dissociate the bacterial source 

community from the diatom T. rotula and to re-establish this community in the T. rotula 

acceptor microbiomes. The T. rotula (A17) acceptor microbiomes resulting from co-

cultivation of the axenic T. rotula acceptor diatoms and the bacterial source communities 

of T. rotula (A17) resembled also the original T. rotula acceptor microbiomes based on 

the 10 representative OTUs (Table 5.2). The only major difference was observed for OTU 

13 (Marinomonas sp.), which was significantly more present in the T. rotula (A17) 

acceptor microbiomes compared to the original T. rotula acceptor microbiomes (Table 

5.4). Thus, OTU 13 can be categorized in the above described second scenario and the 

results suggest that OTU 13 (Marinomonas sp.) settles on the diatom host if available and 

consequently might indicate the significance of this OTU for the original T. rotula host. 

 

Based on the 10 OTUs, the acceptor microbiomes, resulting from co-cultures with 

bacterial source communities obtained from diatoms of the same genus (T. pseudonana 

& T. weissflogii) or different genera (D. brightwellii & C. closterium), shaped a similar 

bacterial community composition as present in the original T. rotula acceptor 

microbiomes (Table 5.2 & 5.3). Only the relative abundances of OTU 7 and 29 differed 

significantly when comparing the acceptor microbiomes resulting from co-cultures with 

bacterial source communities of distinct diatom species and the original T. rotula acceptor 

microbiomes (Table 5.4). Notably, also the seawater acceptor microbiomes resulting from 

co-cultivation of the axenic T. rotula acceptor diatoms and the seawater bacterial source 

communities established a similar bacterial community composition as the original  

T. rotula acceptor microbiomes (Table 5.3). The only exceptions were the OTU 7 and 13 

which were significantly less or more present on the seawater acceptor microbiomes than 

the original T. rotula acceptor microbiomes. 

 

Overall, the results revealed similar allocations of the 10 OTUs in the different 

acceptor microbiomes. The only significant distinctions between the original T. rotula 
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acceptor microbiomes and the microbiomes assembled of different bacterial source 

communities were caused by the OTUs 7, 13 and 29. Therefore, the repeated co-culture 

experiments with the axenic T. rotula acceptor diatoms and the compositionally different 

bacterial source communities resulted in a stable and reproducible assembling of the  

10 OTUs in the acceptor microbiomes, most similar to the bacterial community 

composition of the original T. rotula microbiomes. Furthermore, the 10 OTUs contributed 

more than 80% to the relative abundance of the acceptor microbiomes and are therefore 

designated as the core microbiome of the diatom T. rotula. However, even if not all  

10 OTUs were present in each of the acceptor microbiomes, these 10 OTUs can be 

described as the core microbiome due to their high abundance in the acceptor 

microbiomes and their responsibility for the differentiation between bacterial source 

communities and acceptor microbiomes. 

 

A core microbiome is typically defined to have a high degree of overlapping 

members in different microbiomes of the same species (Turnbaugh et al., 2009). Here, it 

was shown that the diatom species T. rotula maintains a core microbiome with 10 OTUs 

that have a high degree of overlap in 25 assembled microbiomes resulting from different 

inoculated bacterial source communities and generated in two different experiments. The 

method used in this chapter to define the core microbiome members has the advantage 

that not only the presence and absence of OTUs is considered, but also the abundance of 

existing OTUs in the microbiomes. In contrast, the Venn analysis, typically used to 

determine core microbiomes (Shade and Handelsman, 2012), weighs all observed OTUs 

equally, regardless of their representation in the community. Based on the large overlap 

of the 10 OTUs in the different assembled microbiomes in two independent experiments, 

the third hypothesis that T. rotula assembles a stable and reproducible core microbiome 

with a high overlap across the newly shaped acceptor microbiomes can be accepted. 

 

Using the co-culture system of the axenic T. rotula acceptor diatoms and the 

different inoculated bacterial source communities, the assembling of the microbiome of 

the diatom T. rotula was investigated. The bacterial composition of the different newly 

established acceptor microbiomes was reproducibly similar, but distinct from their 

respective bacterial source communities except for the original T. rotula bacterial source 
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community. The reproducible similarity of the acceptor microbiomes suggested 

deterministic shaping of the T. rotula microbiome that was largely independent of the 

diversity of the inoculated bacterial communities. The results also showed that the 

similarity of all newly established acceptor microbiomes with the original T. rotula 

bacterial source communities indicates a contribution of the host niche to the shape of the 

T. rotula microbiome. A possible explanation for the niche separation might be the 

colonization of some bacteria that were more attracted and supported by the T. rotula 

surface for metabolic and nutritional reasons than of the surfaces of the other diatom 

species from the same and different genera. An example for the preference of a bacterial 

species towards a diatom’s surface over another could be the OTU 13, Marinomonas sp., 

which was significantly more abundant in the acceptor microbiomes than in the 

corresponding bacterial source communities. Furthermore, diatom exudates such as 

polysaccharides and DMSP attract heterotrophic bacteria (Bell and Mitchell, 1972; 

Seymour et al., 2010) and are described to be diatom species-specific (Hahnke et al., 

2013; Becker et al., 2014). Hence, the nature of the diatoms and their released 

polysaccharides might strongly determine the bacterial microbiome assembling (Grossart 

et al., 2005; Sapp et al., 2007). Besides the response to nutritional factors, another possible 

factor that might determine the specificity of the acceptor microbiomes could be that 

specific traits of the diatom T. rotula direct the intrinsic microbiome assembling. For 

instance, inhibitory compounds associated with living surfaces (Saha et al., 2011; Lachnit 

et al., 2013) can selectively influence the microbiome assembly on a host. Diatoms have 

also been shown to produce antimicrobial compounds such as fatty acids, esters (Lebeau 

and Robert, 2003) and polyunsaturated aldehydes (Wichard et al., 2007) that can have an 

effect on the bacterial community composition and structure and aim to defend 

themselves against unwanted and/or harmful bacteria (Amin et al., 2012). 

 

In conclusion, all newly shaped microbiomes on the diatom T. rotula harbour a 

similar bacterial community composition, which was dominated by the 10 identified 

bacterial core members (OTUs) that account for a total relative abundance of more than 

80%. The similarity of the newly established microbiomes in all treatments during both 

experiments is suggesting a stable and reproducible microbiome assembling on the 

diatom T. rotula. The processes that guide the microbiome establishment on the diatom 
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T. rotula seem to be highly regulated, decreasing inter-individual variation between the 

different treatments, replicates and experiments. The results of the microbiome assembly 

on T. rotula lend support to host factors, more than the environmental bacterial diversity, 

as dominant contributors in shaping the microbiome composition. Although the results 

do not reveal which factors are at play, this study showed the host-specific microbiome 

assembly on an environmentally important diatom species for the first time. 
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Table 5.2. Relative abundances of the 10 OTUs most responsible for the differences between the acceptor microbiomes and the bacterial source communities of  

T. rotula (Original), T. rotula (A17), T. pseudonana and T. weissflogii. The OTUs are ordered according to their percentage cumulative contribution (SIMPER, Cumsum) 

for the differences between the acceptor microbiomes and the bacterial source communities. The green or rather blue bars indicate individually the relative abundance 

of the 10 OTUs in all replicates of the different bacterial source communities or rather acceptor microbiomes. 

 

 

I I I  a I I  c I I  a I I  b I I  c I  I I  a I I  b I I  c I  I I  a I I  b I I  c

7 0.1356 Alteromonas sp. 51.14 24.06 36.16 14.18 14.67 11.92 0.00 0.01 0.03 0.03 2.96 4.46 4.87 4.22
8 0.2564 unclassified 15.83 46.26 35.88 6.80 10.39 12.91 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00
12 0.3448 Alteromonas sp. 2.24 0.06 0.03 3.73 3.88 1.66 16.42 14.73 8.63 22.11 16.39 17.85 19.73 21.36
13 0.4162 Marinomonas sp. 0.00 0.00 0.03 9.31 11.48 8.87 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.03
11 0.471 Sulfitobacter  sp. 9.60 4.00 5.58 0.00 0.05 0.00 0.09 5.50 4.25 4.69 0.05 0.04 0.04 0.05
17 0.5247 unclassified 0.00 0.00 0.00 0.00 0.00 0.01 31.54 40.79 55.31 46.40 0.00 0.00 0.01 0.03
27 0.5773 unclassified 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 18.17 57.95 55.06 54.63
29 0.6227 Sulfitobacter  sp. 2.56 0.26 0.13 0.00 0.00 0.00 13.93 0.58 0.43 0.52 17.55 1.66 2.18 1.90
33 0.6645 Croceibacter  sp. 5.64 1.81 3.44 0.00 0.00 0.00 9.47 9.75 11.14 7.44 10.54 0.00 0.01 0.00
2 0.7041 Pseudoalteromonas sp. 0.04 1.02 0.25 0.00 0.01 0.00 9.43 13.11 8.22 6.62 14.45 1.30 1.26 1.11

7941 7950 7899 7886 7962 7933 7921 7907 7903 7888 7915 7946 7932 7941

7 0.1356 Alteromonas sp. 28.56 31.58 29.44 5.01 5.38 23.89 26.03 14.92 2.76 1.12 42.48 5.18 23.59 21.71
8 0.2564 unclassified 12.12 46.70 26.07 10.24 4.92 14.50 9.30 21.69 14.40 16.56 11.88 6.90 19.37 16.15
12 0.3448 Alteromonas sp. 3.32 0.00 0.03 1.39 1.76 3.68 4.30 2.80 4.66 6.85 0.18 2.36 4.46 5.27
13 0.4162 Marinomonas sp. 0.00 0.05 0.00 51.04 49.01 23.57 0.00 0.00 0.03 0.00 0.00 51.03 37.50 28.76
11 0.471 Sulfitobacter  sp. 7.93 13.22 38.70 0.03 0.01 1.24 0.21 14.06 23.21 25.15 6.60 0.01 0.50 0.95
17 0.5247 unclassified 0.00 0.00 0.00 0.01 0.00 0.44 0.01 0.00 15.77 20.84 0.00 0.00 0.11 0.05
27 0.5773 unclassified 0.00 0.00 0.00 0.00 0.00 6.90 0.54 0.00 0.00 0.00 0.00 0.00 0.73 7.59
29 0.6227 Sulfitobacter  sp. 2.61 0.54 1.10 0.00 0.00 8.59 7.41 4.11 14.52 7.38 7.10 0.00 5.39 10.31
33 0.6645 Croceibacter  sp. 13.80 0.14 0.34 0.00 0.01 0.05 9.29 0.62 0.38 0.52 8.27 0.00 0.01 0.00
2 0.7041 Pseudoalteromonas sp. 0.00 0.00 0.00 0.01 0.01 0.70 0.62 35.28 8.61 6.10 0.73 0.11 0.19 0.11

7919 7933 7910 7961 7911 7908 7924 7929 7935 7912 7898 7896 7936 7918Total reads

Relative abundance (%)

Total reads
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Table 5.3. Relative abundances of the 10 OTUs most responsible for the differences between the acceptor microbiomes and the bacterial source communities of  

T. rotula (Original), D. brightwellii, C. closterium and seawater. The OTUs are ordered according to their percentage cumulative contribution (SIMPER, Cumsum) for 

the differences between the acceptor microbiomes and the bacterial source communities. The green or rather blue bars indicate individually the relative abundance of 

the 10 OTUs in all replicates of the different bacterial source communities or rather acceptor microbiomes. 

 

 

I I I  a I I  c I  I I  a I I  b I I  c I I I  a I I  b I I  c I I  a I I  b I I  c

7 0.1356 Alteromonas sp. 51.14 24.06 36.16 8.91 19.08 18.52 16.48 35.70 46.47 53.95 61.33 0.21 0.14
8 0.2564 unclassified 15.83 46.26 35.88 0.00 0.00 0.11 0.04 0.04 0.00 0.04 0.01 0.00 0.00
12 0.3448 Alteromonas sp. 2.24 0.06 0.03 14.98 51.11 38.24 43.27 10.31 20.60 19.20 19.17 0.01 0.01
13 0.4162 Marinomonas sp. 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.26 0.12
11 0.471 Sulfitobacter  sp. 9.60 4.00 5.58 0.10 1.32 0.54 1.34 21.58 15.20 15.13 8.26 0.05 0.30
17 0.5247 unclassified 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.00 0.00 0.03 0.00 0.00
27 0.5773 unclassified 0.00 0.00 0.00 0.19 0.09 0.11 0.08 0.00 0.00 0.00 0.00 0.00 0.00
29 0.6227 Sulfitobacter  sp. 2.56 0.26 0.13 15.90 1.16 3.81 2.45 5.60 4.50 2.67 2.31 0.00 0.03
33 0.6645 Croceibacter  sp. 5.64 1.81 3.44 32.46 8.29 15.04 14.11 5.67 6.23 3.93 4.13 0.01 0.00
2 0.7041 Pseudoalteromonas sp. 0.04 1.02 0.25 4.84 3.82 2.07 1.70 0.24 0.42 0.04 0.01 22.88 19.74

7941 7950 7899 7932 7934 7932 7930 7916 7917 7933 7914 7784 7710

7 0.1356 Alteromonas sp. 28.56 31.58 29.44 11.15 40.38 41.13 47.24 38.61 44.56 35.97 43.43 3.30 5.15 1.99
8 0.2564 unclassified 12.12 46.70 26.07 10.24 35.68 27.70 20.08 9.88 33.79 49.91 16.58 15.25 30.98 11.23
12 0.3448 Alteromonas sp. 3.32 0.00 0.03 6.72 1.57 4.20 3.76 1.59 0.57 0.21 1.32 1.13 3.80 2.76
13 0.4162 Marinomonas sp. 0.00 0.05 0.00 0.00 0.05 0.00 0.01 0.00 0.03 0.00 0.01 4.86 5.92 3.37
11 0.471 Sulfitobacter  sp. 7.93 13.22 38.70 1.37 1.23 2.01 1.55 8.22 0.21 2.77 32.07 0.06 0.09 0.13
17 0.5247 unclassified 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00
27 0.5773 unclassified 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00
29 0.6227 Sulfitobacter  sp. 2.61 0.54 1.10 39.93 8.45 14.73 12.88 16.12 0.03 1.06 2.73 0.15 0.32 0.18
33 0.6645 Croceibacter  sp. 13.80 0.14 0.34 13.13 0.49 0.45 0.39 8.14 0.00 0.10 0.04 0.00 0.00 0.00
2 0.7041 Pseudoalteromonas sp. 0.00 0.00 0.00 0.03 0.67 0.04 0.15 0.04 0.03 0.96 0.18 6.92 6.11 2.71

7919 7933 7910 7907 7940 7927 7932 7916 7949 7910 7939 7963 7902 7944
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Total reads
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Table 5.4. Pairwise comparison of the original T. rotula acceptor microbiomes compared with the acceptor microbiomes assembled of the bacterial source communities 

of C. closterium, T. rotula (A17), T. weissflogii, T. pseudonana, D. brightwellii and seawater (Two sample t-test). Bold numbers indicate significant results (< 0.05). 

NA: not analysed. 

 

Pairwise comparison of:  

p-value two sample t-test 

OTU 

7 

OTU 

8 

OTU 

12 

OTU 

13 

OTU 

11 

OTU 

17 

OTU 

27 

OTU 

29 

OTU 

33 

OTU 

2 

T. rotula acceptor microbiomes vs C. closterium 

acceptor microbiomes  
0.007 0.957 0.879 0.016 0.486 0.391 0.391 0.414 0.627 0.266 

T. rotula acceptor microbiomes vs T. rotula (A17) 

acceptor microbiomes  
0.0949 0.202 0.434 0.043 0.175 0.409 0.422 0.666 0.404 0.406 

T. rotula acceptor microbiomes vs T. weissflogii 

acceptor microbiomes  
0.45 0.277 0.274 0.072 0.197 0.223 0.341 0.139 0.627 0.152 

T. rotula acceptor microbiomes vs T. pseudonana 

acceptor microbiomes  
0.047 0.329 0.061 0.652 0.721 0.187 0.391 0.046 0.71 0.2 

T. rotula acceptor microbiomes vs D. brightwellii 

acceptor microbiomes  
0.573 0.697 0.115 0.939 0.192 0.391 0.181 0.089 0.846 0.238 

T. rotula acceptor microbiomes vs Seawater 

acceptor microbiomes  
0.001 0.487 0.349 0.023 0.171 NA NA 0.19 0.402 0.055 
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Abstract 

With each cell division, phytoplankton create new space for primary colonization by 

marine bacteria. Although this surface microenvironment is available to all planktonic 

bacterial colonizers, we show microbiome assembly on a cosmopolitan marine diatom to 

be highly specific and reproducible. While phytoplankton-bacteria interactions play 

fundamental roles in marine ecosystems, namely primary production and the carbon 

cycle, the ecological paradigm behind epiphytic microbiome assembly remains poorly 

understood. In a replicated and repeated primary colonization experiment, we exposed 

the axenic diatom Thalassiosira rotula to several complex and compositionally different 

bacterial inocula derived from phytoplankton species of varying degrees of relatedness to 

the axenic Thalassiosira host or natural seawater. This revealed a convergent assembly of 

diverse and compositionally different bacterial inocula, containing up to 2071 operational 

taxonomic units (OTUs), towards a stable and reproducible core microbiome. Only 4 of 

these OTUs already accounted for a total abundance of 60%. The microbiome was 

dominated by Rhodobacteraceae (30.5%), Alteromonadaceae (27.7%), 

Oceanospirillales (18.5%) which was qualitatively and quantitatively most similar to its 

conspecific original. These findings reject a lottery assembly model of bacterial 

colonization and suggest selective microhabitat filtering. This is likely due to diatom host 

traits such as surface properties and different levels of specialization resulting in 

reciprocal stable-state associations. 
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Chapter 6 

6 General discussion 

 

The identification of key bacteria associated with ecological important diatoms 

(Malviya et al., 2016) is a central step towards an understanding of the complex 

relationship between these two groups of microbes in the ocean. Most of our present 

knowledge of the interactions between diatoms and bacteria is derived from the 

investigations of cultured model systems, usually sourced from long-term culture 

collections (Amin et al., 2015; Moejes et al., 2017). The relevance of bacteria obtained 

long-term cultivated diatom cultures in comparison to bacterial communities associated 

with diatoms in the ocean is largely unknown, because it is assumed that cultivation under 

nutrient-rich conditions may change the composition of the microbiomes. However, not 

only the cultivation itself influences the microbiomes, but also the sampling location and 

season of microalgae can have a significant impact on microalgae-associated bacterial 

communities of the same species or even strain (Ajani et al., 2018). It is therefore crucial 

to isolate diatoms and bacteria from the field to be able to exclude changes in the diatom-

associated bacterial community composition that have been caused by nutrient-rich 

laboratory cultivation or by different sampling locations or sampling seasons. 

 

Based on the largely unknown effects of long-term laboratory cultivation and 

influences of sampling location and season on diatom-associated bacterial communities, 

the first aim of this thesis was to co-isolate diatoms and bacteria from a spring bloom in 

the German Bight of the North Sea to have recent microalgae and bacteria from the same 

location available for experiments (Chapter 2). Therefore, four different diatom species 

and 200 morphological different bacteria were isolated. The isolation of diatoms and 

bacteria was followed by a methodical development to identify the optimal culture 

conditions and to determine growth and performance of the isolated diatoms and bacteria 

(Chapter 2). The four isolated diatom species served as donor and acceptor of bacterial 

source communities in this thesis, which implies that the bacterial communities were 

dissociated from the different donor diatoms and were used as bacterial inoculum for  
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in vitro studies with axenic acceptor diatoms. The marine diatom Thalassiosira rotula 

was selected as the model organism for the in vitro studies with diatoms and bacteria, 

because it belongs to the ubiquitous and ecological important genus Thalassiosira. The 

importance of the genus Thalassiosira for the global ocean was indicated recently by the 

Tara Ocean expeditions, reporting this genus to be globally one of the two most abundant 

diatom genera globally (Malviya et al., 2016). 

 

Two hypotheses were derived from these initial results of Chapter 3. The first 

hypothesis is that the diatom T. rotula is auxotroph for B-vitamins. The second hypothesis 

is that the bacterial community of T. rotula supports the growth of vitamin depleted  

T. rotula cells by provision of B-vitamins. Both hypotheses are related to the well-

recognized mutualistic interactions between microalgae and bacteria, in which bacteria 

supply microalgae with B-vitamins in exchange for carbon compounds (Cole, 1982; Karl, 

2002; Tang et al., 2010; Wagner-Dobler et al., 2010; Kazamia et al., 2012; Grant et al., 

2014; Cruz-López et al., 2018). To test these hypotheses, a medium without B-vitamins 

was prepared and the intracellular stored vitamins in the diatoms were depleted to 

investigate growth and performance of axenic and non-axenic diatoms under absence of 

vitamins. Growth experiments aiming to deplete intra- and extracellular stored vitamins 

from the medium and diatoms revealed that the growth of the axenic T. rotula culture 

completely stagnated after growing for 120 h in vitamin-free medium. At the same time, 

the non-axenic culture of T. rotula maintained its growth, indicating that the diatom  

T. rotula is auxotroph for B-vitamins and that the bacterial community is able to maintain 

growth of the diatom with the provision of vitamins. Hence, both hypotheses were 

accepted (Chapter 3).  

 

The third aim of this thesis was to describe the microbiome assembling on the 

diatom T. rotula under absence of vitamins (Chapter 4 & 5). Earlier studies revealed that 

microalgae harbour a unique and species-specific bacterial community (Grossart et al., 

2005; Amin et al., 2012; Behringer et al., 2018; Crenn et al., 2018), whereas another study 

showed that the sampling location and season during which microalgae were isolated had 

a more significant influence on the microalgae microbiome than phylogenetic affiliation 

(Ajani et al., 2018). Therefore, it remains unclear if the microbiome assembling of 
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microalgae is host-specific (Grossart et al., 2005; Crenn et al., 2018) or specified by the 

available environmental bacterial community (Sapp et al., 2007; Ajani et al., 2018). In 

order to increase the knowledge of host-specificity of the assembling of microalgae 

microbiomes, vitamin-free axenic cultures of the T. rotula acceptor were inoculated with 

bacterial source communities sourced from different donor diatom species in two 

independent experiments. Bacterial source communities of different diatom species were 

used, because it was shown in many previous studies that microalgae harbour unique and 

specific bacterial communities (Grossart et al., 2005; Amin et al., 2012; Behringer et al., 

2018; Crenn et al., 2018). The aim of the inoculation of unique and specific bacterial 

source communities taken from different diatoms was to investigate if the diatom  

T. rotula harbours a unique and specific microbiome independent of the diversity of the 

inoculated bacterial source communities. It is hypothesized that all newly shaped acceptor 

cultures harbour similar microbiomes whereas that the donor cultures harbour unique and 

specific bacterial source communities as previously described for other microalgae 

species. Furthermore, it is hypothesised that the similarity of the newly shaped 

microbiomes on the diatom T. rotula to each other is caused by core microbiome 

members, which are abundantly present in the majority of the newly shaped microbiomes. 

 

However, before the microbiome assembling was investigated, it was examined 

on two different diatom species whether the bacterial source communities of the donor 

diatoms undergo major changes in their composition during cultivation in the lab over 

one year (Chapter 4). The comparison of the bacterial source communities of two 

isolated diatom species, shortly after isolation (< 1 month, origin) and after culturing in 

the lab for more than year (> 1 year, donor), revealed only slight differences in bacterial 

community composition between origin and donor bacterial communities (Chapter 4). 

Consequently, the observation of Behringer et al. (2018) that long-term cultivation only 

resulted in small changes in the associated bacterial community composition can be 

supported with the observation on the diatoms T. rotula (original) and D. brightwellii. 

Thus, changes in the microbiomes of the investigated diatom species caused by long-term 

cultivation under nutrient-rich conditions may be excluded here due to the minor changes 

observed in the bacterial community composition between origin and donor bacterial 

communities. 
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After changes in the bacterial community compositions caused by long-term 

cultivation could be excluded, the composition of the bacterial source communities and 

newly established microbiomes on the T. rotula acceptor diatoms were analysed in two 

independent experiments. The first experiment was performed without replicates during 

sequencing, which is why the observed patterns in the composition of the bacterial source 

communities and acceptor microbiomes could not be statistically verified. Thus, the 

second experiment was done in triplicate to investigate the compositional variability of 

the bacterial source communities and acceptor microbiomes within the same experiment. 

Both experiments together did allow to investigate if the bacterial source communities 

and acceptor microbiomes were stable in their composition during both experiments and 

thus strengthening the outcomes through repeatability and reproducibility of the analysed 

bacterial communities. Chapter 4 comprises the results from Experiment I while in 

Chapter 5 the results from Experiment I and II were pooled and jointly analysed. To 

evaluate the specificity of the newly shaped microbiomes of the diatom T. rotula, the 

composition of the bacterial source communities and acceptor microbiomes was 

evaluated (Chapters 4 & 5). The comparison of the bacterial source communities and 

acceptor microbiomes revealed that the bacterial source communities of the donor 

cultures were significantly different from each other, whereas the newly shaped acceptor 

microbiomes were statistically the same. These patterns were observed in the two 

independent experiments and within the replication in Experiment II, indicating 

reproducibility and repeatability of the experiments and the analysed associated bacterial 

communities (Chapter 4 & 5).  

 

Consequently, both experiments together revealed significant different bacterial 

community compositions of the analysed bacterial source communities and indicated 

with it that the bacterial source communities of the investigated diatom donor cultures are 

species-specific and thus support findings of previous studies suggesting that microalgae 

harbour specific bacterial communities (Grossart et al., 2005; Krohn-Molt et al., 2017; 

Behringer et al., 2018; Crenn et al., 2018). The observed species-specificity of the 

bacterial source communities of the diatoms in this thesis was probably triggered by 

differences in the DOC composition released by the various donor diatoms, which in turn 

may attract different bacteria. Indeed, Urbani et al. (2005) revealed that the monomer 
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composition of dissolved polysaccharides, which form that the largest fraction of DOC, 

depends on microalgae species. However, the quality and quantity of exudates are not 

only influenced by the microalgae species, but are also strongly influenced by nutrient 

availability during growth (reviewed in Mühlenbruch et al., 2018). The donor cultures 

investigated in this thesis were cultured for at least two months under vitamin-free 

conditions prior to the experiment. The cultivation under vitamin-free conditions might 

have influenced the bacterial community composition, because nutrient-limited 

microalgae release large amounts of polysaccharides (Wetz and Wheeler, 2007) which 

may serve to attract bacteria that will provide important nutrients such as iron, ammonium 

and vitamins (Amin et al., 2009; Sanudo-Wilhelmy et al., 2014; Amin et al., 2015). The 

axenic T. rotula culture that served as the acceptor for the different bacterial source 

communities in this study was also depleted of vitamins when the bacterial source 

communities were inoculated. The aim of the inoculation under vitamin-depletion was to 

attract especially bacteria that are able to provide the essential B-vitamins for T. rotula. 

Indeed, it was shown that all newly established acceptor microbiomes provided the  

B-vitamin auxotroph diatom T. rotula with the vitamins (Chapter 3). However, besides 

the impact of abiotic factors, both the quantity and the quality of microalgae exudates 

also seem to be actively controlled by both bacteria (Gärdes et al., 2012) and microalgae 

(Amin et al., 2012).  

 

In Chapter 4 and 5 it was shown that all newly shaped acceptor microbiomes are 

more similar to the original T. rotula bacterial source community than to the donor 

cultures where the bacterial source community were obtained from. Additionally, this 

selection of a T. rotula specific microbiome was also observed with the inoculation of the 

bacterial source community obtained from a natural seawater sample. The bacterial 

diversity in the seawater bacterial source communities was much higher than in all other 

bacterial source communities obtained from the donor diatoms. Nonetheless, if the 

seawater bacterial source community was inoculated on the axenic acceptor culture, the 

newly established acceptor microbiome was also similar to all other acceptor 

microbiomes and to the original T. rotula bacterial source community. Consequently, the 

exciting similarity of the newly established acceptor microbiomes to each other and to 

the original T. rotula bacterial source community resulted most likely from a specific 



 
124 Chapter 6 

DOC release of the diatom T. rotula. It can be suggested that T. rotula selectively attracts 

certain bacteria, likely by a release of specific DOC, because all newly established 

microbiomes on the diatom T. rotula were host-specific in two independent and replicated 

experiments. The results of the host-specificity of the acceptor microbiomes on the 

diatom T. rotula demonstrate that algal-associated bacterial communities are more 

controlled by the algal host than by the initial inoculum composition of the bacterial 

source community. The suggestion that microalgae modulate the concentration and 

quality of their polysaccharides to attract specific heterotrophic bacteria is not new. Amin 

et al. (2012) showed that diatoms react to the presence of heterotrophic bacteria by 

selectively changing the quantity of polysaccharides in their exudates depending on the 

bacterial strain they were co-cultured with. However, whether the bacteria stimulate the 

algae to produce specific exudates or whether the algae produce exactly these 

polysaccharides to attract certain bacteria capable for B-vitamin biosynthesis for 

example, cannot be answered in this thesis. Nevertheless, the results of the microbiome 

assembly on T. rotula lend support to host factors more than the environmental bacterial 

diversity as dominant contributors in shaping the microbiome composition. Although the 

results do not reveal which factors are at play, this investigation revealed for the first time 

the host-specific microbiome assembly on the environmentally important diatom genus 

Thalassiosira. 

 

Due to the demonstrated similarity of the newly established acceptor microbiomes 

on the diatom T. rotula which were inoculated with the diverse bacterial source 

communities of the donor cultures, the hypothesis was generated that the diatom T. rotula 

harbours a core microbiome. A core microbiome is typically defined to have a high degree 

of overlapping members in different microbiomes of the same species (Turnbaugh et al., 

2009). Identifying the core species or OTUs is important to understand the ecology of 

interactions between microalgae and its bacterial microbiome because it has been 

proposed that these commonly occurring bacteria that appear in almost all microbiomes 

of the same host are likely critical for the function of the microbiome. 
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The co-culture experiments described in Chapter 4 and 5 together revealed a core 

microbiome of 10 OTUs that had a high degree of overlap in the 25 newly assembled 

microbiomes on the T. rotula acceptor and contributed also most influential to the 

differences between the bacterial source communities and the acceptor microbiomes. 

Interestingly, these 10 OTUs also accounted for more than 80% to the total relative 

abundance of all OTUs in the acceptor microbiomes, possibly indicating the significance 

of these bacteria to the diatom T. rotula and / or the good adaptation of these bacteria to 

metabolise the exudates of T. rotula (Chapter 5). Consequently, the high abundance and 

occurrence of these 10 OTUs in the acceptor microbiomes suggested that these bacteria 

comprise the core microbiome of the diatom T. rotula. Therefore, the core microbiome 

of the diatom T. rotula consisted to large part of the bacterial genera Alteromonas and 

Sulfitobacter, which are often observed in association with microalgae (Schafer et al., 

2002; Croft et al., 2005; Grossart et al., 2005; Sapp et al., 2007; Amin et al., 2015). Many 

studies have investigated the microbiome of specific marine microalgae (Ajani et al., 

2018; Behringer et al., 2018; Majzoub et al., 2019), because microalgae-associated 

bacterial communities could be crucial to maintain the interactions between the 

microalgae and their environment. However, this is the first study that showed in repeated 

and replicated experiments that the environmentally relevant diatom T. rotula establishes 

a robust and reproducible bacterial core microbiome of 10 OTUs if it is offered a highly 

diverse and compositionally different bacterial source communities with up to  

4406 OTUs. Additionally, the abundance of the 10 core bacterial OTUs in the 

microbiome of T. rotula evidences that these bacteria are likely crucial for the growth and 

performance of the diatom. 

 

In summary, this thesis described the isolation of diatoms and bacteria from the 

environment and the development of an in vitro model system for reproducible laboratory 

studies to investigate the core microbiome of the isolated diatom species T. rotula. 

Identifying the core bacteria is essential to unraveling the ecology of host-microbe 

interactions, because it has been proposed that these commonly occurring bacteria that 

have a high overlap in all microbiomes with a particular species are likely critical to the 

function of that type of community. The description of the core microbiome of the diatom 

T. rotula takes the first step to better understand the principles that shape the microbiomes 
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on diatoms and a central step towards an understanding of the key bacteria associated 

with this ecological important diatom. The interactions between T. rotula and its stable 

and reproducible core bacterial members might be an interaction with global significance 

as T. rotula belongs to one of the most abundant genera of diatoms in the worldwide 

oceans (Malviya et al., 2016). It was shown (Chapter 3) that its growth is dependent on 

bacteria under vitamin scarce conditions in culture which are similar to the prevailing 

conditions in the ocean. Consequently, such interactions can have crucial effects on the 

marine food web and the global climate, because diatoms and marine microalgae in 

general are key primary producers (Field et al., 1998) responsible for more than 45% of 

the global net primary production, fixing billions of tons of inorganic carbon each year 

(Falkowski and Raven, 2007; Simon et al., 2009).  

 

6.1 Outlook 

The 10 OTUs that are described as the core microbiome of the diatom T. rotula 

in this thesis open new exciting possibilities for future research. A next step towards a 

deeper understanding of the function of these key bacteria associated with T. rotula could 

be the isolation of the 10 suggested core bacteria and the performance of co-culture 

experiments with each of these bacterial species on its own, in pairs and in multiple other 

combinations. Such experiments have the potential to reveal which of the 10 bacterial 

core OTUs are crucial for the growth and performance of the diatom T. rotula and which 

micronutrients are provided to the diatoms by the bacteria. Furthermore, it is now possible 

to perform co-culture experiments with the bacteria isolated in this thesis together with 

the axenic T. rotula acceptor culture. Such co-culture experiments have the potential to 

find out which bacteria are capable to provide important nutrients such as iron,  

vitamin B12 or ammonium to the diatom T. rotula in return for DOC. The bacterial isolates 

might also allow to study the growth dependence of the 10 core bacterial OTUs to the 

secretion products of the diatom T. rotula and to elucidate the composition of the exudates 

of T. rotula. Moreover, it would be interesting to repeat the experiments described in 

Chapter 5 and combine the used methods with metabolomics to unravel the factors which 
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shape the stable and reproducible microbiome of the diatom T. rotula.  

To sum up, the fact that the diatom T. rotula harbours a stable and reproducible core 

microbiome together with the availability of non-axenic and axenic T. rotula cultures 

represents an excellent model system to continue research with this ecological significant 

microalga.  
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