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Zusammenfassung

Da sich die Fähigkeiten autonomer Systemen stetig verbessern, können sie in zunehmend
komplexeren Umgebungen immer vielseitigere Aufgaben lösen. Häufig ist es dabei nötig
das autonome System an die spezifische Aufgabe oder die jeweilige Umwelt anzupassen,
was typischerweise eine umfangreiche Forschung und Entwicklung voraussetzt. Um die
Akzeptanz solcher Systeme zu erhöhen, ist es erforderlich deren Einsatz für verschiede-
ne Aufgaben schnell und einfach anhand von Anpassungen der Verhaltensweisen und
Ziele durch Nicht-Experten zu ermöglichen. Eine intuitive Art und Weise Aufgaben zu
beschreiben ist das Bereitstellen von Demonstrationen erwünschten Verhaltens. Diese
Demonstrationen können verwendet werden, um eine Repräsentation der Motivation und
des Ziels des Experten zu lernen.

Das Lernen aus Demonstrationen beschreibt eine Klasse von Ansätzen, anhand de-
rer neue Verhaltensweisen trainiert werden können, indem Funktionen und Aufgaben
vorgeführt werden, anstatt diese zu programmieren. Zwei Teilbereiche des Lernens aus De-
monstrationen sind das Klonen von Verhalten und inverses bestärkendes Lernen. Ansätze
aus dem Bereich des Klonens von Verhalten schätzen die Strategie des Experten aus
dessen Demonstrationen und lernen somit diesen zu imitieren. Allerdings sind die er-
lernten Strategien nur geeignet, wenn sich die Umwelt, ihre Dynamik sowie die Auf-
gabe nicht ändern. Ein populärer Ansatz, der generalisierbarere Repräsentationen lernt,
ist das inverse bestärkende Lernen beziehungsweise Inverse Reinforcement Learning
(IRL). Dabei wird die Belohnungsfunktion eines Markow-Entscheidungsprozesses aus
Demonstrationen eines Experten geschätzt, wobei die Belohnungsfunktion als Motivation
oder Ziel interpretiert werden kann. Es existiert eine Vielzahl an Ansätzen des inversen
bestärkenden Lernens, die das Problem unter unterschiedlichen Annahmen lösen. Die
meisten dieser Ansätze nehmen an, dass ein akkurates Dynamikmodell vorhanden ist,
dass das Modell aus Expertendemonstrationen geschätzt werden kann, dass zusätzliche
Demonstrationen suboptimalen Verhaltens abgefragt werden können oder dass Heuris-
tiken verwendet werden, um ein nicht vorhandenes Transitionsmodel zu kompensieren.
Allerdings werden viele dieser Annahmen häufig verletzt, weil das Dynamikmodel einer
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Umwelt sehr komplex sein kann, weil akkurate Modelle häufig nicht vorhanden sind, weil
zusätzliche Demonstrationen zu teuer sein können und weil Heuristiken die Schätzung
der Belohnungsfunktion verzerren können.

Um Probleme des inversen bestärkenden Lernens unter unbekannten Dynamikmodellen
zu lösen, stellen wir einen Ansatz vor, der simultan die Belohnungsfunktion und das
Dynamikmodell aus Expertendemonstrationen schätzt. Dies ist möglich, da sowohl die
Belohnungsfunktion als auch das Transitionsmodell die Strategie des Experten beeinflus-
sen und daher beide aus Expertendemonstrationen inferiert werden können. Demzufolge
enthalten nicht nur die beobachteten Transitionen sondern auch die beobachteten Ak-
tionen Informationen über das Transitionsmodell der Umwelt. Mit dieser Arbeit wird
eine neue Problemklasse einer simultanen Schätzung der Belohnungsfunktion und der
Dynamik eingeführt. Zudem werden mehrere Lösungen des Problems hergeleitet, die
unterschiedliche Annahmen an die Generierung der Strategie des Experten stellen. Die
vorgestellten Ansätze werden anhand eines Anschauungsbeispiels, der Navigation auf
Basis eines Satellitenbildes, sowie der Navigation eines simulierten Roboters in einem
Gangszenario mit Menschen evaluiert. Hierbei zeigen die Ergebnisse, dass das Mitein-
beziehen der Schätzung des Transitionsmodells in das inverse bestärkende Lernen zu
exakteren Modellen der Dynamik und der Belohnungsfunktion führen.



Abstract

As the capabilities of autonomous systems improve, they can solve more and more tasks
in increasingly complex environments. Often, the autonomous system needs adjustments
to the specific task or environment, which typically requires extensive research and
engineering. By allowing non-experts to adjust the systems to new behaviors and goals,
they are faster and easier to deploy for various tasks and environments, which increases
their acceptability. An intuitive way to describe a task is to provide demonstrations of
desired behavior. These demonstrations can be used to learn a representation of the
expert’s motivation and goal.

Learning from Demonstration is a class of approaches offering the possibility to teach
new behaviors by demonstrating the task instead of programming it directly. Two subfields
of Learning from Demonstration are Behavioral Cloning and Inverse Reinforcement
Learning (IRL). Approaches from Behavioral Cloning estimate the expert’s policy directly
from demonstrations and therefore learn to mimic the expert. However, the learned policies
are typically only appropriate if the environment, the dynamics, and the task remain
unchanged. A popular approach that learns more generalizable representations is Inverse
Reinforcement Learning, which estimates the unknown reward function of a Markov
Decision Process (MDP) from demonstrations of an expert. Many Inverse Reinforcement
Learning approaches exist that solve the problem under various assumptions. Most of
them assume the environment’s dynamics to be known, that they can be learned from
expert demonstrations, that additional samples from suboptimal behavior can be queried,
or that appropriate heuristics account for unknown transition models. However, these
assumptions are often not satisfied, since transition models of environments can be
complex, accurate models may be unknown, querying samples may be too expensive, and
heuristics may tamper with the reward estimate.

To solve IRL problems under unknown dynamics, we propose a framework that simulta-
neously estimates both the reward function and the dynamics from expert demonstrations.
This is possible, as both influence the expert’s policy and thus the long-term behavior.
Therefore, not only the observed transitions of the expert’s demonstrations but also the
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observed actions contain information about the dynamics of the environment. The con-
tribution of this thesis is the formulation of a new problem class, called Simultaneous
Estimation of Rewards and Dynamics (SERD). Furthermore, we derive several solutions
to this problem under different assumptions on how experts compute their policy. The eval-
uation on a minimum example, a grid world navigation task, and a high-level navigation
task of a simulated robot in a populated hallway shows that incorporating the estimation
of the transition model into Inverse Reinforcement Learning yields more accurate models
of the dynamics and the reward function.
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Chapter 1

Introduction

The capabilities of autonomous systems are constantly improving, which allows deploying
them in more and more complex environments for an increasing number of tasks. Early
examples of autonomous robots that operate in populated areas are the museum tour-
guide robots MINERVA [100] and RHINO [20] as well as the conference-attending
robot GRACE [94]. Recently, the robot Obelix [60] has been successfully navigating
autonomously in urban, populated areas and cars are improving in autonomous driving
[67]. Besides these problems, robots improve in performing manipulation tasks and are
able to tie knots [91], solve pouring tasks [113], grasp various objects [66], and fold
towels [71]. A recent work by Levine et al.[65] has solved manipulation tasks solely
based on images.

Even though these examples show that the abilities of autonomous systems improve,
end customers and the industry mainly apply them to highly specific tasks. For example,
industrial robots are used for repetitive tasks in assembly lines of manufacturing plants,
while domestic robots are typically used for vacuum cleaning or mowing the lawn. The
reason for this is that extensive research and development is necessary to enable them
solving these tasks. In order to use autonomous systems for more versatile tasks and
thereby utilize all their capabilities, it is necessary to provide simple and fast mechanisms
to adapt them to new tasks, environments, and behaviors.

An intuitive way to provide a description of a task are demonstrations of the desired
behavior. In contrast to directly programming the system behavior, non-experts are often
able to demonstrate optimal or close to optimal behavior. Then, these demonstrations can
be used to learn a representation of the goal. However, interpreting demonstrations can be
difficult, if the environment and its dynamics are (partially) unknown. This is often the
case, as dynamics might be complex and environments can change.

Assume that an end consumer buys a mobile robot, that is supposed to solve transporta-
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(a) Demonstrations (b) Wrong transition model

Figure 1.1: Example of misinterpretations of observed behavior due to inaccurate models: Imagine
deploying a robot in an unknown environment. (a) A human provides demonstrations of moving to the
couch while omitting the carpet, as the human knows that moving over the carpet is slower. If the robot
knows that the dynamics differ on the carpet, it can correctly interpret the desired behavior to move fast
to the couch. (b) Typically, the environment’s dynamics are unknown, if a robot is deployed in a new
environment. Since it did not observe any demonstration on the carpet, it cannot naively estimate the
dynamics from transitions. If it assumes that the dynamics are equal everywhere, it will wrongly interpret
the demonstrations by assuming that it is desirable to walk close to the wall or the windows.

tion tasks in a domestic environment, such as illustrated in Fig. 1.1. After the robot’s
deployment in the household, the user should program it to transport items to the couch
in the back. Since this domestic environment is new to the robot, it can hardly make
assumptions about the environment and its dynamics. However, the user knows that
the carpet in the middle of the room is reducing the velocity of the robot. Therefore,
he provides several demonstrations of navigating on a longer path around the carpet,
which results in a faster execution of the transportation task (see Fig. 1.1 (a)). The robot
should use these demonstrations in order to learn solving the desired task. If the robot has
never observed any demonstration on the carpet, it is not able to estimate the dynamics
on the carpet by traditional naive approaches such as supervised learning based ones.
However, assumptions about these dynamics influence the interpretation of the expert’s
demonstrations. If the robot assumes that the dynamics are identical everywhere, it will
wrongly interpret the demonstrations by assuming that it is desired to move close to
walls or windows (depicted in Fig. 1.1 (b)). It can only find the correct interpretation,
if an appropriate model of the environment’s dynamics is available (depicted in Fig. 1.1
(a)). This example illustrates the influence of inaccurate models of the dynamics on the
interpretability of observed behavior in terms of motivations and goals.

The goal of this thesis is to contribute to the field of learning from demonstrations
by examining the influence of (partially) unknown dynamics, uncovering the limitations
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of state-of-the-art approaches, and proposing solutions to learn from demonstrations
if transition models are unknown. We present a new problem class based on Inverse
Reinforcement Learning, which extends it by simultaneously estimating a model of
the environment’s dynamics. By considering that the expert’s policy is a result of his
knowledge about the environment’s dynamics as well as his motivations and goals, we
enable the robot to improve transition models from observed behavior of an expert. This
even allows drawing conclusions about parts of the transition model that were never
observed. An evaluation on a minimum example and a navigation task on discretized
satellite images shows improved performance over traditional approaches, by better
explaining the expert’s behavior and more accurately modeling the dynamics of the
environment. Based on a realistic learning scenario of high-level navigation strategies in a
simulated, crowded environment we further show that the proposed approach generalizes
well from human demonstrations and that the resulting models allow predicting real
human behavior more accurately.

1.1 Problem Statement

In many real world applications, accurate models of the environment’s dynamics are not
available. Nevertheless, methods are necessary for adjusting autonomous systems to new
tasks and behaviors. Therefore, one is interested in learning the expert’s motivation as
well as the environment’s dynamics solely from expert demonstrations. We assume full
observability of the behavior, which causes the real state and action to be measured without
noise. However, the expert’s goal and the transition model of the environment may be
partially or fully unknown. Furthermore, humans are sub-optimal decision makers, which
often yields noisy demonstrations. Hence, it is required to account for these uncertainties,
by learning behavioral models that are stochastic.

Learning the expert’s motivation and the environment’s dynamics allows to make
predictions about the expert’s decision making. Therefore, they allow for inferring future
behavior as well as statistics on time requirements of solving a task. Often, the estimated
dynamics and reward functions should transfer to differing initial situations or changing
environments. For this reason, generalizable results are important, such that the resulting
optimal strategies are able to predict the expert’s behavior accurately even in unobserved
states.
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Therefore, this thesis tries to answer the following questions:

• What are the goals and the motivations of the expert solving a task?

• What are the dynamics of an environment?

• What are the limitations of current Inverse Reinforcement Learning approaches that
solve these problems?

• How can we learn motivations, goals, and environment’s dynamics from expert
demonstrations, if the dynamics of the environment are fully or partially unknown
and only expert demonstrations are available?

• Is it possible to estimate the dynamics of an environment from expert demonstrations
even for unobserved states and actions?

• How to use additional knowledge for achieving generalizable results that are even
applicable in new environments?

We answer these questions by examining current approaches, by revealing their drawbacks,
by introducing a new problem class that formalizes these questions, and by deriving a
new theoretically founded approach.

1.2 Thesis Statement

The thesis statement is:

”It is possible to estimate an expert’s motivation and goals as well as the

dynamics of the environment solely from expert demonstrations and the

estimates can be used to make accurate predictions of future behavior.”

To support this statement, we present a new problem class together with approaches that
solve it by learning from goal-directed expert demonstrations. In addition, we provide
evaluations, showing that both simulated and real human behavior can be explained by
the learned models.
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1.3 Concept Overview

Throughout this thesis, we develop a learning algorithm for estimating the motivations and
goals of experts as well as the dynamics of the environment solely from expert demonstra-
tions. We build on Markov Decision Processes (Sec. 2.4), which are models for sequential
decision making that are parameterized by a reward function, specifying the desirability
of states and actions. Therefore, estimating the expert’s reward function corresponds to
estimating his motivation, which is commonly known as Inverse Reinforcement Learning
(Sec. 3). In this thesis, we extend classical IRL by simultaneously estimating the dynamics
of the environment.

Fig. 1.2 illustrates an overview of the proposed concept. The bottom level shows the
generation of expert demonstrations. Typically, they have some type of prior knowledge
about the environment. Therefore, they consider both the environment’s dynamics and
their motivation, when searching for an optimal strategy to solve a specific problem.
Consequently, their policy is a result of both rewards and dynamics. If they apply their
policy in a real or simulated environment, demonstrations consist of samples of the
expert’s policy and samples of the environment’s transition model. The second level of
Fig. 1.2 indicates the estimation of the unknown parameters of the MDP based on these
samples. The problem definition assumes both rewards and dynamics to be unknown
beforehand. In contrast to IRL approaches, the approach developed in this thesis considers
the bilateral influence of rewards and dynamics on the expert’s policy. This allows to
learn models of the dynamics that are more accurate then naively estimating them directly
from observed transitions. Hence, the proposed method is useful for learning behavioral
models of the expert together with the transition model of the environment. Consequently,
the approach allows for teaching autonomous systems to behave according to the desired
behavior of the expert. Furthermore, the resulting estimates can be used for predicting
expert behavior.

This can be advantageous in a variety of applications. For example, it enables to train
an autonomous system to solve new tasks in unknown environments solely from expert
behavior. By learning succinct representations of the expert’s motivation, the resulting
estimates are applicable in new or changing environments to compute optimal policies
that solve the problem. Furthermore, the approach allows us to learn user models, which
enable tracking deviations from typical behavior. For example, a driver assistance system
could warn a driver, if the driver’s behavior is differing to typical ones.
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Figure 1.2: Overview of the proposed approach
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1.4 Contributions

This thesis contributes to the fields of Learning from Demonstration, Inverse Reinforce-
ment Learning, Machine Learning, and Robotics by proposing a new framework for
estimating reward functions and dynamics in Inverse Reinforcement Learning problems if
the environment’s dynamics are unknown and only expert demonstrations are available.
This framework enables to teach robots new behaviors, if the environment is unknown
beforehand. This is often the case when end customers deploy a system. In particular the
key contributions of this thesis are:

• An examination of state of the art approaches with a discussion about their typical
limitations.

• The definition of a new problem class of a simultaneous estimation of rewards and
dynamics to overcome those limitations.

• A unified solution to this problem class of which traditional IRL and model estima-
tion in MDPs are special cases.

• The derivations of specific solutions for two different expert policy models with
theoretical proofs of the derived approaches.

• Applications of the proposed approaches to the problems of learning to navigate
on discretized satellite images and learning high-level navigation strategies in
populated environments.

1.5 Publications

This thesis is based on our previous work presented in the following conference proceed-
ings and journals:

• M. Herman, T. Gindele, J. Wagner, F. Schmitt, and W. Burgard. Simultaneous
estimation of rewards and dynamics from noisy expert demonstrations. In 24th

European Symposium on Artificial Neural Networks, Computational Intelligence

and Machine Learning (ESANN), pages 677–682, April 2016.

• M. Herman, T. Gindele, J. Wagner, F. Schmitt, and W. Burgard. Inverse reinforce-
ment learning with simultaneous estimation of rewards and dynamics. In Artificial

Intelligence and Statistics (AISTATS), 2016.
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• M. Herman, T. Gindele, J. Wagner, F. Schmitt, C. Quignon, and W. Burgard. Learn-
ing high-level navigation strategies via inverse reinforcement learning: A compar-
ative analysis. In Australasian Joint Conference on Artificial Intelligence, pages
525–534. Springer, 2016.

The following publications that are not included in this thesis also originate from the
author’s work:

• M. Herman, V. Fischer, T. Gindele, and W. Burgard. Inverse reinforcement learning
of behavioral models for online-adapting navigation strategies. In Proc. of the IEEE

International Conference on Robotics and Automation (ICRA), pages 3215–3222.
IEEE, 2015.

• J. Wagner, V. Fischer, M. Herman, and S. Behnke. Multispectral pedestrian detection
using deep fusion convolutional neural networks. In 24th European Symposium

on Artificial Neural Networks, Computational Intelligence and Machine Learning

(ESANN), pages 509–514, April 2016.

• F. Schmitt, H.-J. Bieg, D. Manstetten, M. Herman, and R. Stiefelhagen. Predicting
lane keeping behavior of visually distracted drivers using inverse suboptimal control.
In Proc. of the IEEE Intelligent Vehicles Symposium (IV), June 2016.

• F. Schmitt, H.-J. Bieg, D. Manstetten, M. Herman, and R. Stiefelhagen. Exact
maximum entropy inverse optimal control for modelling human attention switching
and control. In Proc. of the IEEE Conference on Systems, Man and Cybernetics

(SMC), October 2016.

• F. Schmitt, H.-J. Bieg, M. Herman, and C. Rothkopf. I see what you see: Inferring
sensor and policy models of human real-world motor behavior. In AAAI Conference

on Artificial Intelligence, 2017.

• J. Wagner, V. Fischer, M. Herman, and S. Behnke. Learning semantic prediction
using pretrained deep feedforward networks. In 25th European Symposium on

Artificial Neural Networks, Computational Intelligence and Machine Learning

(ESANN), April 2017.

• J. Wagner, V. Fischer, M. Herman, and S. Behnke. Functionally modular and
interpretable temporal filtering for robust segmentation. In 29th British Machine

Vision Conference (BMVC), September 2018.
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• U. Baumann, C. Gläser, M. Herman, and J. M. Zöllner. Predicting ego-vehicle paths
from environmental observations with a deep neural network. In Proc. of the IEEE

International Conference on Robotics and Automation (ICRA), pages 1–9, 2018.

• U. Baumann, Y.-Y. Huang, C. Gläser, M. Herman, H. Banzhaf, and J. M. Zöllner.
Classifying road intersections using transfer-learning on a deep neural network.
In Proc. of the IEEE 21th International Conference on Intelligent Transportation

Systems (ITSC), 2018.

1.6 Outline

This thesis is structured as follows: In Chap. 2, the basic mathematical notation and
fundamentals are introduced. Chap. 3 gives an overview about related work and state of
the art approaches in the field of Learning from Demonstration and Inverse Reinforcement
Learning. The following Chap. 4 examines limitations of state-of-the-art approaches
based on a minimum example and introduces the new problem class of a simultaneous
estimation of rewards and dynamics. Furthermore, it derives a unified solution based on a
maximum a-posteriori formulation of the problem, discusses various priors, and evaluates
them on two examples to highlight their differences. Subsequently, Chap. 5 analyzes
the proposed approach by applying it to the problem of learning high-level navigation
strategies in a densely populated hallway from real human demonstrations. Finally,
Chap. 6 concludes the thesis by discussing the proposed approaches and mentioning fields
for future research.





Chapter 2

Preliminaries

This thesis proposes an approach for learning behavioral models from demonstrations.
Noisy measurements and the stochastic nature of human behavior necessitate the use
of probabilistic models, while measures from information theory allow for evaluating
random variables. Therefore, this chapter introduces the mathematical notation together
with concepts from probability theory [14, 15], information theory [70, 92], and a model
for sequential decision making [13, 80].

2.1 Basic Mathematical Notation

Throughout this thesis, we use the following mathematical terminology unless otherwise
stated. If functions are defined, the notation indicates their type of output.

Notation Meaning
x, y Scalar values
x,y Vectors
xᵀ,yᵀ Transposed vectors
X,Y Matrices
Xᵀ,Y ᵀ Transposed matrices
X , {x1, x2, . . . , xn} Set
X , [x1, x2) Space
X, Y Random variables
x̄, ȳ Initial guesses of x,y
x̂,y∗ Optimum values of x,y
P (X=x) = P (x) Discrete probability distribution
p(X=x) = p(x) Probability density function

Table 2.1: Basic mathematical notation
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2.2 Probability Theory

Many real world processes are stochastic, which means that they are random and precise
predictions are not possible. However, stochastic models can often describe such processes
and enable statistical analysis. A probability space is defined by Ξ = 〈Ω, S, P 〉 with the
set of possible outcomes Ω, the σ-algebra S which is a collection of considered events,
and the probability measure P which assigns probabilities to the events in S. Based on
this definition, a random variableX is a measurable functionX : Ω→ X from the sample
space Ω to a measurable space X [5]. If the measurable space X is discrete, samples from
this random variable are distributed according to the probability distribution P (X = x).
Hence, the probabilities of this distribution sum up to one:∑

x∈X

P (X=x) = 1. (2.1)

In case of a continuous measurable space (e.g. X = R), the probability density function
p(X=x) specifies the relative likelihood for a random variable to take a given value x.
Thus, integrating p(X=x) over the space X results in one:∫

x∈X
p(X=x)dx = 1. (2.2)

A joint probability distribution is denoted by P (X=x, Y=y). If two random variables X
and Y are independent, their joint probability distribution decomposes into

P (X=x, Y=y) = P (X=x)P (Y=y). (2.3)

In contrast, if two random variables are conditionally dependent, knowledge about either
of them provides information about the other:

P (X=x, Y=y) = P (X=x | Y=y)P (Y=y) (2.4)

with P (X=x | Y=y) being the probability of x given that y has occurred. Finally, the
Bayes theorem relates the conditional probability distributions:

P (X=x | Y=y) =
P (Y=y | X=x)P (X=x)

P (Y=y)
(2.5)

A causally conditioned probability P (X=x � Y =y) specifies a conditional probability
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where each xt is only conditioned on a portion of y1:t:

P (X=x � Y =y) =
T∏
t=1

P (X t=xt | Y 1:t=y1:t,X1:t−1=x1:t−1). (2.6)

The expectation of a random variable is the value to which the arithmetic mean converges if
the number of samples approaches infinity. For discrete random variables the expectation
is given by

E [X] =
∑
x∈X

p(X=x)x. (2.7)

Sometimes the expectation of a function f(X) of a random variable X is of interest. This
corresponds to the expected value of f(x) under the probability distribution p(X=x):

E [f(X)] =
∑
x∈X

p(X=x)f(x). (2.8)

Respectively, the expectation of a continuous random variable X with probability density
function p(X=x) is given by

E [X] =

∫
x∈X

p(X=x)x dx (2.9)

and the expected value of function f(X) is

E [f(X)] =

∫
x∈X

p(X=x)f(x) dx. (2.10)

2.3 Information Theory

The information theory by Shannon [92] studies how to quantify, store, and communicate
information. He introduced a famous measure, called entropy H [X], which quantifies the
amount of uncertainty of a random variable:

H [X] = EP (x) [− log(P (x))] (2.11)

= −
∑
x∈X

P (x) logP (x). (2.12)

Accordingly, the entropy is zero, if the probability distribution is deterministic, because
no information needs to be encoded. In all other cases, the entropy is a positive value.
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The higher it is, the less informative is a probability distribution. Hence, the entropy
of the random variable of a coin flip is lower than of rolling a dice. Since the entropy
quantifies uncertainty, an outcome of a random variable with higher entropy contains more
information. This definition of the entropy can be extended to continuous probability
distributions:

H [X] = −
∫
x∈X

p(x) log p(x) dx. (2.13)

Furthermore, the joint entropy measures the entropy of pairs of random variables X, Y :

H [X, Y ] = EP (x,y) [− log(P (x, y))] . (2.14)

The conditional entropy [23] measures the average amount of required information to
recover X if Y is known and thus extends information theory to conditional probability
distributions:

H [X|Y ] = EP (x,y) [− log(P (x|y))] (2.15)

= H [X, Y ]−H [Y ] . (2.16)

This measure can also be applied to causally conditioned probability distributions:

H [X � Y ] = EP (x,y) [− log(P (x � y))] (2.17)

=
T∑
t=1

H [X t|Y 1:t,X1:t−1] . (2.18)

The relative entropy (Kullback-Leibler divergence) [59] measures the additional amount
of required information to compress data from a probability distribution P (X) if the
encoding Q(X) is used:

H [P ||Q] = DKL (P (x)||Q(x)) (2.19)

= EP (x)

[
log

(
P (x)

Q(x)

)]
. (2.20)

This measure often serves as a distance metric between probability distributions. However,
it is not symmetric and it does not satisfy the triangle inequality, which makes the relative
entropy a semi-quasimetric.
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2.4 Markov Decision Process

Since the dynamics of real world environments are typically partly random, models for
sequential decision making need to take this randomness into account. Therefore, it
is often not sufficient to compute an optimal plan that solves a problem, because the
stochastic environment may cause to result in a state for which the plan does not provide
any advice how to solve the problem. A mathematical framework for modeling decision-
making under partly random outcomes is the Markov Decision Process [80]. A discounted,
infinite horizon MDP is a discrete-time stochastic process, which is defined by a tuple
M = 〈S,A, P (s′|s, a), γ, R, P (s0)〉 with the variables defined as given by Tab. 2.2.

Fig. 2.1 illustrates an exemplary MDP with two states and three actions. In the first
state, an agent can choose from two actions, while in the second state, only action c is
available. As soon as an agent reaches the second state, he is never able to transition back
to the first one. We will use this example throughout the thesis to discuss properties of the
proposed approach.

Solving an MDP corresponds to finding a strategy for the decision-maker. Typically,
this strategy should maximize the expected, cumulated, discounted reward yielding
optimal behavior. Policies are the mathematical formulation of strategies, which are
conditional probability distributions π (a|s) = P (a|s), specifying the probability that
an agent chooses action a in state s. The policy defines an action for every state of
the state space. As a consequence, it is suitable for stochastic environments, since the
policy provides optimal actions for all possible outcomes. The optimal policy π∗ (a|s)

Notation Definition

S State space with states s ∈ S.

A Action space with states a ∈ A.

P (s′|s, a) Dynamics, which specify the probability to transition to s′ if action
a is applied in state s.

γ ∈ [0, 1) Discount factor.

R : S × A→ R Reward function assigning a scalar reward to state-action tuples.

P (s0) Initial state probability distribution.

Table 2.2: Definition of a Markov Decision Process
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1 2

a

b

c

R(1, a)

R(1, b)

R(2, c)
P 2

1,aP 1
1,a

P 2
1,bP 1

1,b

P 2
2,c

Figure 2.1: Exemplary Markov Decision Process with two states s ∈ S = {1, 2} that are indicated in green,
three actions a ∈ A = {a, b, c} that are indicated in gray, transition probabilities P s

′

s,a = P (s′|s, a) that are
colored in blue, and rewards R(s, a) that are illustrated in red. In state 1, an agent can choose from two
available actions a and b, while transitions can occur to all states from the environment. As soon as the
agent is in state 2, only action c is available and the agent will never be able to transition to state 1 again.

according to a reward function R(s, a) maximizes the expected, cumulated, discounted
reward (return). These optimal policies are often deterministic and can be expressed by a
map πd : S → A, as all non-deterministic policies can only achieve a similar or a lower
expected return. The value function specifies the expected, cumulated, and discounted
reward for starting in a certain state s and executing actions according to the policy π:

V π(s) = E

[
∞∑
t=0

γtR (st, at) |s0 = s, π

]
. (2.21)

It is equally possible to define a state-action-value function (Q-function), specifying
the expected, discounted, cumulated reward for starting in state s, picking action a and
afterwards acting according to the policy π:

Qπ(s, a) = E

[
∞∑
t=0

γtR (st, at) |s0 = s, a0 = a, π

]
. (2.22)

If a policy is known, the following fixed point equation computes the corresponding value-
and Q-function, by solving:

V π
i (s) = Eπ(a|s)

[
R (s, a) + γ

∑
s′∈S

P (s′|s, a)V π
i−1(s′)

]
∀s ∈ S. (2.23)

Often the optimum policy π∗ (a|s) as well as the optimum value function are of interest.
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Then, the Bellman equation [13] allows for finding a solution to the infinite horizon
optimum control problem:

Qi(s, a) =

[
R (s, a) + γ

∑
s′∈S

P (s′|s, a)Vi−1(s′)

]
∀s ∈ S, a ∈ A, (2.24)

Vi (s) = max
a

[Qi(s, a)] ∀s ∈ S. (2.25)

By repeatedly applying Eq. (2.24) and Eq. (2.25), both Q- and value-function converge
Q∗(s, a) = Q∞(s, a) and V ∗(s, a) = V∞(s), since it is a fixed point equation. From
the optimal Q-function Q∗(s, a) Eq. (2.24), it is possible to derive the optimal policy, by
greedily choosing the action that promises the highest expected, cumulated, discounted
reward:

π∗(s) = argmax
a

Q∗(s, a). (2.26)





Chapter 3

Inverse Reinforcement Learning

The following chapter introduces the field of Learning from Demon-
stration, gives a general overview about Inverse Reinforcement
Learning, and presents exemplary problems that these methods can
solve more efficiently. It reviews existing approaches, discusses their
differences, and points out open problems. Subsequently, several
of these approaches are explained in more detail to provide the
theoretical foundation of this thesis.

Due to the increasing capabilities of autonomous systems, there is an emerging necessity
for programming techniques that allow for efficient adjustment of the system’s behavior.
By enabling an autonomous system to be reparameterized to new behaviors, tasks, and
environments, its application possibilities are highly increased. An intuitive and easy way
to describe a task is to provide demonstrations of desired behavior. These demonstrations
can then be used to learn strategies that solve the desired problem. A famous class of
approaches offering such possibilities is Learning from Demonstration (LfD) [4, 7, 24, 35],
which summarizes methods for teaching new behaviors and tasks by demonstration

(a) Autonomous Driving [56] (b) Manipulation tasks [3] (c) Activity forecasting [48]

Figure 3.1: Examples for different tasks and applications that have to some extent been solved by Learning
from Demonstration.
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instead of programming them directly. Famous examples of systems that have been
successfully taught by human demonstrations are for example cars that drive and change
lanes autonomously (Fig. 3.1a), robots that solve manipulation tasks (Fig. 3.1b), and
prediction systems that forecast human behavior (Fig. 3.1c).

3.1 Survey on Inverse Reinforcement Learning

Common LfD methods belong to the fields of Behavioral Cloning (BC) [7] and Inverse
Reinforcement Learning (IRL) [85, 93]. The goal of BC is to mimic the expert’s behavior
by estimating his policy directly from demonstrations (illustrated in Fig. 3.3a). This is
possible, since expert demonstrations consist of both samples of the expert’s policy and
samples of the environment’s dynamics, as illustrated in Fig. 3.2. Most BC approaches
use supervised learning [10] to train a policy, which predicts the expert’s action in a
certain state, by matching the model to the observed behavior. By applying the predicted
actions from the learned policies, the model should result in a similar behavior to the one
of the expert when being deployed in a similar environment. For example, prior work uses
BC for learning to drive [17, 79] or to fly [87]. However, a good parameterization and
learning of policies is often not obvious, as it should generalize with high accuracy even
to unobserved states, which differ to the states in the training set. Hence, the resulting
policies are often only appropriate in states that are similar to the ones demonstrated by
the expert.

Expert
π(at|st)

Environment
P (st+1|at, st)

Action a
Samples 〈st, at〉

State s
Samples 〈st, at, st+1〉

Figure 3.2: Expert demonstrations are often generated by applying the expert’s policy in the real or
simulated environment. Typically, the expert provides demonstrations, by constantly taking decisions in an
environment that reacts by changing the state according to the underlying environment’s dynamics. Hence,
an expert demonstration consists of sequential samples from the expert’s policy and samples from the
environment’s dynamics.
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Demonstrations BC
Estimated

Policy

(a) Behavioral Cloning

Demonstrations IRL Estimated
Reward function RL

Estimated
Policy

Environment’s
Dynamics

Environment’s
Dynamics

(b) Apprenticeship Learning via Inverse Reinforcement Learning

Figure 3.3: Learning from Demonstration through Behavioral Cloning or Inverse Reinforcement Learning.
(a) Approaches from the field of Behavioral Cloning mimic the expert by learning a policy that behaves
according to the observed behavior. (b) Inverse Reinforcement Learning based imitation learning approaches
estimate the expert’s reward function and use it as a representation of the expert’s motivation. This reward
function can then be used to recover a policy.

Imagine a human expert, who is training a car to drive autonomously. Since the human
driver only provides examples of optimal or nearly-optimal behavior, it is unlikely to
observe undesirable scenarios, such as hazardous situations that could result in accidents,
as drivers anticipate them. However, the strategies that are necessary for successfully
solving these problems can include complex strategies, such as evasive maneuvers and
full braking. Generalizing to these strategies can be hard as real world observations rarely
include them. Thus, BC often requires a massive amount of demonstrations that cover
all parts of the state space that can occur. Furthermore, if the environment, the transition
model, or the task changes, the estimated policies may not be optimal any more or even
become unsuitable at all.

Therefore, another line of work proposes a class of approaches to obtain results that are
more generalizable. In contrast to BC, IRL [76] estimates the underlying motivation and
goals of an expert instead of copying its behavior directly. Those motivations and goals
allow inferring optimal actions for unobserved states, new environments, or differing
dynamics (illustrated in Fig. 3.3b). IRL has been successfully applied to several problems,
such as learning to predict mouse pointing targets [120], cooperative human navigation
strategies [52, 54, 55], lane keeping behavior [88, 89], parking lot navigation [2], or
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Problem: Inverse Reinforcement Learning

Given:

• MDP M \R without the reward function

• Demonstrations D

Determine:

• Reward function R

Table 3.1: Definition of the Inverse Reinforcement Learning problem class.

driving styles [1, 38, 56, 62, 98].

In many of those problems, an intelligent agent [86] needs to make sequential decisions
under partly random outcomes, which can be modeled as MDPs [13]. Given an environ-
ment and a reward function, solving an MDP corresponds to deriving optimal policies,
e.g., by Reinforcement Learning (RL) [97]. However, if the environments or the problems
are complex, specifying reward functions that yield a desired behavior can be difficult.
Therefore, Russell [85] proposed IRL, which describes the problem of recovering the
unknown reward function of an MDP from the fully known policy or from observed
behavior of an agent acting according to some policy. Many publications [81] interpret the
reward function as the most succinct representation of the expert’s objective describing his
motivations or goals. Tab. 3.1 characterizes the IRL problem class as defined in [76, 85],
while the set of expert demonstrations D is given by

D = {τ1, τ2, . . . , τN} (3.1)

with trajectories τ being defined as

τ =
{
〈sτ0, aτ0〉 , 〈sτ1, aτ1〉 , . . . ,

〈
sτTτ , a

τ
Tτ

〉}
. (3.2)

Such demonstrations consist of samples 〈sτt , aτt 〉 of the expert’s policy π(a|s) as well as
samples

〈
sτt , a

τ
t , s

τ
t+1

〉
from the environment’s dynamics P (sτt+1|st, at). The goal of IRL

is to estimate the agent’s reward function R(s, a), which explains the observed behavior
in the demonstrations. Typically, this results in an optimization problem, minimizing
some loss R∗ = argminR L(πE, πθ) between the expert’s πE and the learner’s policy πθ.
If the agent always acts optimally, the solution set of reward functions [76], that might
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have caused the expert’s behavior, is given by

E

[
∞∑
t=0

γtRE (st, at) | πE

]
≥ E

[
∞∑
t=0

γtRE (st, at) | π

]
∀π. (3.3)

With other words, this indicates that under the unknown, optimal expert’s reward function
RE no other policy π results in a higher expected reward than the optimal expert’s policy
πE . However, this problem formulation has several drawbacks: the whole expert’s policy
must be known, the expert must be indeed optimal, and there exist many reward functions
that solve the problem, resulting in reward function ambiguities including degenerate
solutions such as

R(s, a) = 0 ∀s, a. (3.4)

Especially, if the state- and action-space is large or infinite, many approaches reduce
the reward function space by expressing the reward as a linear function of weighted
features R(s, a) = θᵀf(s, a) with state- and action-dependent features f : S × A→ Rd

(see [76]). In addition, this representation allows us to generalize reward functions to
unobserved states and actions or new environments, if it is possible to compute the features
for them. One might argue that linear reward functions might be too unexpressive to
model complex motivations and goals. However, it is possible to add a large number of
arbitrary features, which allows to adapt the reward function complexity. In this case,
estimating the reward function corresponds to learning the optimal feature weights θ∗.
Using this parameterization, Eq. (3.3) can be reduced to

E

[
∞∑
t=0

γtθE
ᵀf (st, at) | πE

]
≥ E

[
∞∑
t=0

γtθE
ᵀf (st, at) | π

]
∀π (3.5)

θE
ᵀE

[
∞∑
t=0

γtf (st, at) | πE

]
≥ θEᵀE

[
∞∑
t=0

γtf (st, at) | π

]
∀π (3.6)

θE
ᵀφ (πE) ≥ θEᵀφ (π) ∀π (3.7)

withφ (π) = E [
∑∞

t=0 γ
tf (st, at) | π] being the expected, cumulated, discounted features

(feature expectation) values under policy π. Furthermore, this overcomes the necessity of
knowing the whole expert’s policy, since it suffices to estimate the expert’s feature expec-
tation by approximating it from a set of demonstrations φ̃ = 1

|D|
∑

τ∈D
∑Tτ

t=0 γ
tf (sτt , a

τ
t ).

Most IRL approaches have in common that they search for a reward function for which the
resulting policy matches the one of the expert. Abbeel and Ng [1] have shown that under
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the linear parameterization of the reward function it is sufficient to match the models
expected cumulated features to the ones of the expert. Then, Eq. (3.7) guarantees that
both, expert and model, perform similar in terms of the expected cumulated rewards.

Many approaches propose solutions to the IRL problem. Ng and Russel [76] point
out that many reward functions including degenerate solutions may exist. They suggest
adding penalty terms to overcome the impact of the ambiguities and formulate a linear
program to find a feasible reward function. Abbeel and Ng [1] introduced apprenticeship
learning to estimate a reward function under which the demonstrated behavior of the
expert is optimal. They propose an approach of matching feature expectations between
the observed policy and the learner’s one. A similar idea by Ratliff et al.[83] formulates a
solution as a Maximum Margin Planning (MMP) approach. The approach by Syed and
Schapire [98] uses a game-theoretic framework to find a policy that can even outperform
the expert’s one. The LPAL algorithm by Syed et al.[99] extends the previous approach
by proposing a linear programming formulation of the problem.

Another class of approaches uses Bayesian methods to infer the reward function of
the expert from observed behavior. Baker et al.[8] propose a Bayesian approach that
models the expert’s policy as a Boltzmann distribution over state-action values. Babes-
Vroman et al.[6, 107] propose to maximize the likelihood of the observed trajectories
with respect to the reward function parameters and show that by using an expectation
maximization (EM) based approach it is possible to learn from demonstrations with
varying goals or objectives. Neu and Szepesvári [74] use a similar policy and suggest a
natural gradient approach to minimize the squared loss between the estimated expert’s
and the learner’s policy. Therefore, they derive the gradient of the converged Q-function
with respect to the reward function parameters. Ramachandran and Amir [81] introduce a
Bayesian model of the IRL problem, which allows incorporating prior knowledge and
evidence from the expert to derive a posterior distribution over rewards. Their approach
has been further generalized by Rothkopf and Dimitrakakis [84]. Neu and Szepesvári
[75] derive a unified framework for IRL algorithms, which illustrates similarities and
differences between various approaches, and Choi and Kim [21] show that a large set of
IRL approaches solve a maximum a posteriori (MAP) estimation problem for identifying
reward function. Furthermore, Choi and Kim [22] propose an IRL approach for partially
observable MDPs (POMDPs) that allows to learn from experts that are not able to measure
the true environmental state but rather a noisy estimate of it.

Usually humans generate expert demonstrations. Since they are rarely able to provide
entirely optimal demonstrations, recent work derives approaches that can learn from
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noisy or sub-optimal demonstrations. Ziebart et al.[116, 119] propose a probabilistic
model of maximum (causal) entropy (ME / MCE) to capture stochastic behavior while
matching feature expectations in finite horizon problems. Bloem and Bambos [16] extend
the approach to infinite time horizons. The class of maximum (causal) entropy IRL
algorithms has been applied to a variety of different problems, such as inferring decisions
of taxi drivers [117], predicting human trajectories by learning their motion behavior
[54], probabilistic mouse pointing target prediction [120], learning to navigate in human
crowds [37], or teaching an autonomous car adaptive driving behavior [38].

Many IRL approaches require expensive iterative computations that are often intractable,
when applied to infinite spaces. Therefore, several approximate IRL methods have been
proposed to allow them to be used in continuous state- and action-spaces. Ziebart [116]
has shown that in the case of linear dynamics with Gaussian noise and a quadratic cost
function, the Maximum Causal Entropy (MCE) Inverse Optimal Control (IOC) problem
yields a closed-form solution. The approach by Boularias et al.[18] estimates the models
feature expectation by approximating a high dimensional distribution over trajectories.
However, this requires computing an intractable integral over the continuous space of
trajectories, which they approximate via importance sampling. The guided cost learning
approach by Finn et al.[30] extends the previous importance sampling based approach,
by using policy optimization to slowly adapt the proposal distribution over trajectories
towards the modeled one. In contrast, Kretzschmar et al.[51] use Hamiltonian Markov
Chain Monte Carlo sampling to approximate the feature expectation of the model. The
continuous IOC approach by Levine et al.[62] uses a Laplace approximation around
trajectories, which locally models the distribution as a Gaussian. Thus, their approach
learns local reward functions, which may not be suitable for globally optimal decision
making. Huang et al.[44] propose a Maximum Entropy IOC variant, which estimates the
models policy based on a soft value function approximation. Afterwards, their approach
approximates the models feature expectation by Monte Carlo rollouts with the resulting
policy.

The linear formulation of the reward function requires to define a set of features. While
this allows incorporating knowledge into learning, it requires domain experts to hand-
engineer appropriate features that are able to capture all possible goals and objectives.
Several approaches try to mitigate the assumption of a linear reward function. Ratliff
et al.[82] suggest to use boosting for learning a nonlinear function from a set of base
features. Levine et al.[63] propose an approach that constructs reward features as logical
conjunctions from a base feature set and simultaneously learns a reward function that
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explains the expert’s behavior. For learning arbitrary nonlinear reward functions over
features, Levine et al.[64] derive an approach based on Gaussian Processes and Wulfmeier
et al.[112] propose to use fully convolutional neural networks. In [30], Finn et al.show how
to learn nonlinear reward functions with deep neural network as function approximators
from visual features trained via unsupervised learning. In contrast to previous approaches,
this overcomes specifying hand-engineered features at all.

Most IRL approaches are computationally expensive and return a reward function
as a solution, which cannot be directly applied for imitating the expert, since a policy
would be needed. To overcome this burden, Ho and Ermon [42] propose Generative
Adversarial Imitation Learning (GAIL), an approach that is derived from Maximum
Causal Entropy IRL, but which directly trains a policy and overcomes learning the reward
function. They show that for a specific type of regularization their approach reduces to a
training procedure that is similar to the one of Generative Adversarial Networks (GAN).
Furthermore, Finn et al.[29] show that sampling-based Maximum Entropy IRL approaches
are mathematically equivalent to GANs with a specific choice of a discriminator. Since
the GAN-based training needs to make rollouts in the environment, a massive amount
of demonstrations is necessary to train both previous approaches. To reduce the number
of system interactions Baram et al.[9] propose a model-based variant of GAIL, which
initially trains a model of the dynamics based on the available samples of the transition
model and subsequently learns an imitation policy, while optimizing full trajectories by
differentiating through the fixed model of the dynamics. Recently, these GAN-based
imitation learning approaches have been applied to several problems such as learning to
drive on highways [57] or for third person imitation learning [95].

Except for the new GAN-based approaches, which no longer train a reward function,
many of the traditional IRL approaches repeatedly apply a Reinforcement Learning (RL)
algorithm to find optimal policies as part of the IRL algorithm. Solving the RL problem
typically requires a known model of the system dynamics. Therefore, most of the IRL
approaches assume that the dynamics are either given or can be estimated well enough
from the given expert demonstrations in advance. However, estimating the transition
model from goal-oriented expert demonstrations can be inaccurate, as rational decisions
bias observed behavior towards desired states and actions. Therefore, large parts of
the state- and action-space are rarely or never observed. For example, a human expert
navigating a robot in a populated hallway will omit approaching humans too close or
crashing into them. Consequently, estimating the dynamics of these situations is not
possible without incorporating prior knowledge.
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To enable IRL under unknown transition models, several approaches propose model-
free methods. Tossou and Dimitrakakis [103] derive an approach based on a least squares
approximation of the Q-function. It omits the need of solving the forward problem, and
is applicable under unknown dynamics. Klein et al.[49] use similar assumptions and
reformulate IRL to a problem of structured classification. The approach of Boularias
et al.[18] minimizes the relative entropy between the probability distribution of trajec-
tories following a baseline policy and the distribution under the learned policy, while
matching expected feature counts. These model-free IRL variants either require expert
demonstrations that are rich of observed transitions or additional samples from an arbi-
trary policy. However, coming back to the hallway navigation example, gathering robot
demonstrations might bother humans or harm the environment. Therefore, it is often not
feasible to obtain additional informative observations.

To account for this drawback we propose an approach called Simultaneous Estimation
of Rewards and Dynamics (SERD) [40], which simultaneously optimizes the experts
reward function and the environment’s dynamics from expert demonstrations. This is
possible as the expert’s policy is a result of his reward function and his belief about the
environment’s dynamics.

3.2 Fundamentals

In the following, we explain Policy Matching IRL [74], Maximum (Causal) Entropy IRL
[116, 119], and Relative Entropy (REIRL) [18] in more details, since we use them for the
derivation of the proposed SERD approach and for comparison in the evaluation.

3.2.1 Policy Matching IRL

Neu and Szepesvári [74] propose a gradient based approach for apprenticeship learning
using IRL, by assuming that the expert behaves optimally according to some unknown
reward function. In contrast to classical approaches, where the goal was to find the
reward function that the expert was optimizing, Policy Matching IRL (PM IRL) uses the
reward function as a parameterization of the policy. Then, their algorithm aims to find
a reward function, such that the resulting policy matches the observed behavior of the
expert. Therefore, they propose to minimize the expectation of the squared loss between
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the learner’s πθ and the expert’s policy πE

L(πθ) =
1

2

∑
s∈S,a∈A

µE(s) (πθ(a | s)− πE(a | s))2 (3.8)

with respect to the empirical estimate of the probability distribution of states µE(s) and
πE(a | s) being the full known expert’s policy or an empirical estimate of it. Neu and
Szepesvári propose to use a gradient-based method for minimizing the loss function in
Eq. (3.8). By applying the chain rule, this results in the following gradient:

∂

∂θ
L(πθ) =

∂L(πθ)

∂πθ

∂πθ
∂θ

(3.9)

=
∑

s∈S,a∈A

µE(s) (πθ(a | s)− πE(a | s)) ∂πθ(a | s)
∂θ

(3.10)

The computation of the policy’s gradient ∂πθ(a|s)
∂θ

requires specifying a parametric function
for the modeled policy. Since the expert is assumed to be optimal, a natural choice would
be the optimal policy from Eq. (2.26), which is greedy and thus always chooses the action
with maximum expected, cumulated, discounted reward Q∗(s, a). However, the derivative
of the argmax function is either zero or not differentiable and therefore can hardly be
used for a gradient-based optimization. Instead, Neu and Szepesvári suggest using a
Boltzmann distribution over actions to model the policy

πθ(a | s) =
exp {βQ∗θ(s, a)}∑

a′∈A exp {βQ∗θ(s, a′)}
(3.11)

with the optimal, converged action-value function Q∗θ(s, a
′) and the inverse “temperature”

β, which specifies how close πθ(a | s) is to the optimal policy. The corresponding
gradient of this policy parameterization is given by:

∂

∂θk
πθ(a | s) = πθ(a | s)

∂ ln {πθ(a | s)}
∂θk

(3.12)

= πθ(a | s)β

(
∂Q∗θ(s, a)

∂θk
−
∑
a′∈A

πθ(a
′ | s)∂Q

∗
θ(s, a

′)

∂θk

)
. (3.13)

The derivative of the policy in Eq. (3.13) depends on the partial derivative of the optimal
Q-function Q∗θ(s, a

′), since it is also a function of the parameters θ. Neu and Szepesvári
[74] show that the gradient of the converged Q-function exists and that it can be calculated
almost everywhere, if the reward function is differentiable with respect to θ with uniformly
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bounded derivatives. Furthermore, they derive a fixed-point equation whose solution is the
gradient of the optimal Q-function ∂Q∗θ(s,a)

∂θk
except on a set of measure zero. Therefore, they

define the following operator Sπ, which acts over the space of functions φ : |S| × |A| →
R|Θ| with the numbers of parameters |Θ|, by

(Sπ∗φθ) (s, a) =

(
∂rθ(s, a)

∂θ

)ᵀ

+ γ
∑
s′∈S

P (s′ | s, a)
∑
a′∈A

π∗θ(a
′ | s)φθ(s′, a′). (3.14)

where π∗θ is the greedy policy with respect to the optimal Q-function Q∗θ(s, a). They
show, that by repeatedly applying this operator to some initial gradient, it will converge
to the true gradient of the optimal Q-function. However, it should be noted that this is a
subgradient, since the optimal Q-function from Eq. (2.24) and Eq. (2.25) incorporates the
max-function, which may not be differentiable everywhere.

3.2.2 Maximum Entropy IRL

Since humans are rarely able to demonstrate entirely optimal behavior, approaches are
necessary that can cope with stochastic or noisy demonstrations. The PM IRL approach
allows learning from stochastic demonstrations, by minimizing an error between observed
behavior and a stochastic model. However, due to the policy structure and the training
method, it might be unsuitable to model real human behavior, since it is often unknown
how humans behave. Consequently, the specified policy models might underfit, resulting
in reward functions that are not solving the task. In contrast, if the model overfits,
the learned reward function might not generalize and would only be accurate, if the
environment and the observed states do not change.

Revisiting Eq. (3.7), every reward function yielding feature expectations that are
identical to the ones of the expert will always have similar performance to him under
this reward. At the same time, many different stochastic policies and thus probability
distributions over trajectories are able to match feature expectations.

To solve the ambiguities of learning a reward function and choosing an appropriate
distribution, Ziebart et al.[118] propose the Maximum Entropy IRL (ME IRL) approach.
By employing the principle of maximum entropy [45], they search for a maximally
uninformative probability distribution over trajectories under the constraint to match
expected feature counts. This yields a distribution that is no more committed to any
trajectory than the feature matching constraint requires.
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Therefore, Ziebart et al.[118] formulate the following optimization problem:

argmax
P (τ)

H [P (τ)] (3.15)

s.t. EP (τ) [φi(τ)] = φ̃i ∀i (3.16)∑
τ∈T

P (τ) = 1 (3.17)

P (τ) ≥ 0 ∀τ (3.18)

with T being the set of all valid trajectories, φi(τ) being the i-th cumulated, discounted
feature along trajectory τ , and φ̃i being the empirical expectation of the i-th feature under
the expert’s policy. The solution to this optimization problem is a probability distribution
over trajectories that fulfills all mentioned criteria. Since the objective and the constraint
space are both convex, optimization techniques [19] exist to solve the problem. The
method of Lagrangian multipliers [25] results in the following Lagrangian:

λ (P,θ, η) =−
∑
τ∈T

P (τ) logP (τ)−
∑
i

θi

(∑
τ∈T

P (τ)φi(τ)− φ̃i

)
(3.19)

+ η

(∑
τ∈T

P (τ)− 1

)

Due to the Karush-Kuhn-Tucker conditions, the Lagrangian λ (P,θ, η) is differentiable
with respect to the unknown probability distribution P (τ), which can be set equal to zero:

∂λ (P,θ, η)

∂P (τ)
= log (P (τ))−

∑
i

θiφi(τ) + η + 1 = 0 (3.20)

By solving the equation for P (τ) and making use of
∑

τ∈T P (τ) = 1, the distribution
over trajectories according to the optimization problem in Eq. (3.27) results in:

Pθ(τ) =
1

Z(θ)
exp (θᵀφ(τ)) (3.21)

with the partition function Z(θ) =
∑

τ∈T exp (θᵀφ(τ)). Eq. (3.21) specifies a Boltz-
mann distribution over trajectories and implies that trajectories with a higher cumulated,
discounted reward Rθ(τ) = θᵀφ(τ) are more likely. Interestingly, the reward function
naturally became a linear combination of weights and features even though this has
not been particularly specified. This is rather a direct consequence of the optimization
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problem, where the parameters θ are the Lagrangian multipliers of the feature matching
constraints.

Ziebart et al.[118] derive a gradient-based method from the dual problem, which
optimizes the parameters θ to ensure that the constraints are satisfied. Therefore, the
Lagrangian λ (P,θ, η) is differentiated with respect to the parameters θ, yielding

∂λ (P,θ, η)

∂θ
= φ̃−

∑
τ∈T

Pθ(τ)φ(τ). (3.22)

This gradient is the difference between the expert’s empirical feature expectation and
the expected, cumulated, discounted feature counts of the model. Hence, optimizing the
parameters of the reward function according to the gradient causes the feature expectations
of the expert and the model to match at the maxima. Furthermore, Ziebart et al.[118]
show that the parameters can also be learned by maximizing the log likelihood of the
demonstrations with respect to the feature weights θ under the probability distribution over
trajectories Pθ(τ). Then, the resulting gradient is identical to the one of the Maximum
Entropy optimization problem in Eq. (3.22).

The ME IRL approach has been applied to a variety of reward learning problems and dif-
ferent variants have shown to outperform traditional approaches, especially, when learning
from human demonstrations. In addition, Ziebart [116] provides worst-case guarantees,
yielding a robust approach for learning reward functions from expert demonstrations.

3.2.3 Maximum Discounted Causal Entropy IRL

The statistical model of the ME IRL approach assumes the a priori availability of all
necessary side information. However, the properties of many real world problems do
not satisfy this assumption, as they include elements of interaction and feedback. For
example, an agent acting in an environment with stochastic dynamics, cannot foresee
how the state will change until it actually happened. In such cases, it is necessary to
model the causal relationship between available information and decisions appropriately.
Therefore, Ziebart et al.propose an extension to the ME IRL approach, called Maximum
Causal Entropy IRL (MCE IRL) [119], in which they model sequentially revealed side
information by causally conditioned probabilities. For solving infinite horizon problems
Bloem and Bambos [16] as well as Zhou et al.[115] introduce Maximum Discounted
Causal Entropy IRL. Since the causal entropy from Eq. (2.18) can be infinite in the infinite
horizon case, they propose a finite variant with an exponentially discounted contribution



32 CHAPTER 3. INVERSE REINFORCEMENT LEARNING

of future causal entropy:

Hβ [A � S] = EP (s0)P (st+1|st,at),π

[
∞∑
t=0

−βt log π (at | st)

]
. (3.23)

Based on this definition, Bloem and Bambos define the Maximum Discounted Causal
Entropy IRL (MDCE IRL) problem in a similar way as the ME IRL problem. The goal
of the following optimization problem is to find a maximum discounted causal entropy
policy under the constraint to match the model’s feature expectation to the empirical one
of the expert:

argmax
π

Hβ [A � S] (3.24)

s.t. EP (s0)P (s′|s,a),π

[
∞∑
t=0

γtfi(st, at)

]
= φ̃i ∀i (3.25)∑

a∈A

π(a | s) = 1 ∀s (3.26)

P (τ) ≥ 0 ∀a, s (3.27)

The general formulation in [16] allows different discount factors for the discounted causal
entropy and the reward. However, since differing discount factors would result in non-
stationary policies, they assume that β = γ. The formulation in Zhou et al.[115] directly
applies the same type of discounting to the causal entropy and feature expectations. Again,
it can be shown that the general problem is convex [16, 116] and can be solved with
standard convex optimization methods. To solve the MDCE IRL problem, they derive a
stationary soft value iteration, which shares similarities with Eq. (2.24) and Eq. (2.25).
This results in the following soft state-action value function

Qs
θ(s, a) = θTf(s, a) + γ

∑
s′∈S

P (s′ | s, a)Vθ(s
′) (3.28)

and soft value function

V s
θ (s) = log

(∑
a∈A

exp (Qs
θ(s, a))

)
. (3.29)

Similar to the Bellman equation, the soft value iteration is a fixed point equation, which
is proven by Bloem and Bambos [16]. It should be noted that this softened version
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is differentiable and uses a smooth approximation of the maximum function, which
guarantees that the soft value will always be higher or equal than the maximum of its
individual Q-values V s

i (s) ≥ maxaQ
s
i (s, a). The resulting soft value function yields a

stochastic policy, which is a Boltzmann distribution over soft Q-values:

πθ(s, a) = exp(Qs
θ(s, a)− V s

θ (s))

=
exp(Qs

θ(s, a))∑
a′∈A exp (Qs

θ(s, a
′))
. (3.30)

A notable property of this type of policy is that it chooses actions with a higher soft
value more frequently. Estimating the expert’s reward function corresponds to finding
the feature weights under which the stochastic policy Eq. (3.30) explains the observed
behavior. Hence, one can factorize the probability of a single trajectory τ given the start
state distribution, the stochastic policy and the probability of transitions:

P (τ |M,θ) = P (sτ0)
Tτ−1∏
t=0

[
πθ (sτt , a

τ
t )P

(
sτt+1 | sτt , aτt

)]
. (3.31)

Based on this definition and assuming independent trajectories, the likelihood of the
demonstrations in D results in

P (D |M,θ) =
∏
τ∈D

P (τ |M,θ). (3.32)

Then, appropriate feature weights can be learned by maximizing the log likelihood of the
demonstrations with respect to the feature weights θ under the maximum causal entropy
policy distribution πθ(s, a) from Eq. (3.30):

θ∗ = argmax
θ

Jθ (D) = argmax
θ

logP (D |M,θ). (3.33)

According to [16], the gradient-based optimization of the maximum entropy and the
maximum likelihood estimate of the feature weights yields gradients that are the difference
between empirical feature counts of the expert φ̃ and the expected feature counts of the
model φ(πθ):

∇θJθ (D) = φ̃− φ(πθ). (3.34)

The guarantee of the consistency between maximum entropy and maximum likelihood
estimates only holds true, if the empirical expert’s policy matches the true one and
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inference uses the real underlying transition model. However, this is typically only true
if the number of expert demonstrations approaches infinity. Otherwise, the result of the
maximum likelihood estimation from Eq. (3.33) can differ from the estimate, produced
by following the maximum entropy gradient from Eq. (3.34). Ziebart et al.[121] derive
probabilistic bounds on the approximation error of the feature expectation, which enable
allowing a small amount of slack by relaxing the constraints of the maximum causal
entropy problem. This results in a regularized maximum causal likelihood estimation
problem.

3.2.4 Relative Entropy IRL

Many problems exist for which accurate models of the environment are not available and
it is not feasible to provide a large amount of expert demonstrations from the whole state
space. Since most IRL approaches assume a model of the dynamics to be known, they
cannot be applied to those types of problems. Furthermore, it is often not possible to
estimate the environment’s transition model directly from the observed demonstrations, as
they only cover a small part of the state space. To overcome those drawbacks, Boularias
et al.[18] propose a model-free IRL approach, called Relative Entropy IRL (REIRL). It
extends ME IRL [118] to problems where expert demonstrations are not covering the
whole state space and a model of the environment’s dynamics is not available. Instead,
system interaction is required for querying an additional set of demonstration from an
arbitrary, known policy from the environment.

For this purpose, they propose to minimize the relative entropy between the agent’s
probability distribution over trajectories P (τ) and some baseline distribution Q(τ) under
the feature matching constraints:

argmin
P (τ)

H [P (τ)||Q(τ)] (3.35)

s.t.

∣∣∣∣∣∑
τ∈T

P (τ)φi(τ)− φ̃i

∣∣∣∣∣ ≤ εi ∀i (3.36)∑
τ∈T

P (τ) = 1 (3.37)

P (τ) ≥ 0 ∀τ (3.38)

with the set of all possible trajectories T and Q(τ) being the probability distribution over
trajectories if some baseline policy πQ is applied in the environment. Hoeffding’s bound
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[43] allows for computing the thresholds εi for the i-th feature dimension, as suggested in
[18]. This problem formulation differs from ME IRL by exchanging the entropy in the
primal problem by the Kullback-Leibler divergence [58]. Furthermore, it is required to
specify a baseline policy πQ, which causes the probability distribution over trajectories
Q(τ). Therefore, the optimization problem searches for a probability distribution P (τ)

that is as close as possible to Q(τ) under the relative entropy measure while satisfying the
feature matching constraints.

If a uniform baseline distribution Q(τ) = C is used, the REIRL optimization problem
equals to ME IRL, since the uniform distribution is the one with maximum entropy
among all distribution. Then, minimizing the relative entropy between H [P (τ)||Q(τ)]

corresponds to maximizing the entropy of P (τ):

H [P (τ)||Q(τ)] (3.39)

=
∑
τ∈T

P (τ) log
P (τ)

C
(3.40)

=
∑
τ∈T

P (τ) logP (τ)− logC (3.41)

=−H(P (τ))− logC. (3.42)

Hence, the primal problem of both optimization problems would be equal up to a constant.
As a consequence, REIRL is similar to ME IRL when using maximum entropy baseline
policies for the baseline distribution Q(τ). However, in general REIRL allows to use
arbitrary baseline distributions and thus allows to incorporate prior information into
learning by either assuming the baseline policy πQ or the corresponding probability
distribution over trajectories Q(τ) to be known.

Boularias et al.[18] derive a solution to the optimization problem by using the calculus
of variations [31]. It shares similarities to the solutions of ME IRL and MDCE IRL and is
given by:

P (τ | θ) =
1

Z(θ)
Q(τ) exp

(
θTφ(τ)

)
(3.43)

with the partition function Z(θ) and the cumulated, discounted feature counts φ(τ) of
trajectory τ . Again, it is possible to include the constant term into the partition function
Z(θ), if the baseline distribution is uniform Q(τ) = C. Then, the resulting probability
distribution over trajectories P (τ | θ) in Eq. (3.43) is identical to the one of ME IRL in
Eq. (3.21).

Boularias et al.show that the following gradient estimates the parameters θ by subgra-
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dient ascent:
∂g

∂θ
= φ̃−

∑
τ∈T

P (τ | θ)φ(τ)−α ◦ ε (3.44)

with ∀αi = sign θi, thresholds ε, and ◦ indicating the Hadamard product. As in the
previous approaches, at the optimum this gradient yields feature matching. However, in
contrast to ME IRL or MDCE IRL the last term incorporates some slack for matching
features. The exact computation of this gradient is only practical in small or discrete
state- and action-spaces. If the set of possible trajectories T becomes large or infinite,
estimating the partition function Z(θ) can be computationally expensive or unfeasible at
all. Furthermore, its direct computation typically requires the dynamics of the system to
be known to perform exact inference.

In contrast, Boularias et al.[18] propose to approximate the probability distribution
of demonstrations under the learner’s model P (τ | θ) by importance sampling from an
arbitrary policy πa. Furthermore, they omit the need of a model of the dynamics, since
the arbitrary demonstrations τπaN consist of samples of the environment’s dynamics. Thus,
the approximate sample-based gradient of REIRL is

∂g

∂θ
= φ̃−

∑
τ∈T

Q(τ) exp
(
θTφ(τ)

)∑
η∈T Q(η) exp

(
θTφ(η)

)φ(τ)−α ◦ ε (3.45)

= φ̃−
∑

τ∈τπaN

UπQ (τ)

Uπa (τ)
exp (θᵀφ(τ))φ(τ)∑

τ∈τπaN

UπQ (τ)

Uπa (τ)
exp (θᵀφ(τ))

−α ◦ ε. (3.46)

with the joint probability of actions under the baseline policy UπQ(τ), the joint proba-
bility of actions under the arbitrary policy Uπa(τ), and Uπ(τ) =

∏Tτ−1
t=0 π (aτt | sτt ). The

proposed approach uses Monte Carlo integration to compute the partition function of
P (τ | θ). Consequently, a reliable estimate in the high dimensional space of trajecto-
ries often requires a large number of demonstrations. REIRL requires to sample these
demonstrations from the real underlying dynamics of the environment.

Often, only expert demonstrations are available and system interaction is not possible.
Then, additional demonstrations can only be generated artificially. By estimating a model
of the environment’s dynamics directly from the observed transitions, it can serve as a
surrogate of the real environment. Afterwards, the learned transition model allows for
inference or for sampling. However, since expert demonstrations often only cover a small
part of the state space, the learned model might be inaccurate for unobserved states or
actions.
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3.3 Summary

This chapter gave an overview on Learning from Demonstration and especially Inverse
Reinforcement Learning. It outlined the history of IRL approaches and pointed out their
differences and similarities. As a basis for the approaches presented in this thesis, we
presented some methods in more detail. Many IRL approaches assume that the stochastic
system dynamics are known, can be estimated from expert demonstrations, or additional
samples from the transition model can be queried in states and actions that have been
rarely observed. However, these assumptions are often not satisfied, as in many real
world problems accurate transition models are not accessible and querying samples is too
expensive. In those cases, algorithms are necessary that either can cope with inaccurate
transition models or are able to improve the wrong model.





Chapter 4

Simultaneous Estimation of Rewards
and Dynamics

Many IRL approaches assume the environment’s dynamics to be
known or additional samples to be available for learning. This is
often not the case, but expert demonstrations consist of samples
from the real or simulated dynamics of the environment as well as
samples from the expert’s policy. Since expert policies depend on
the stochastic system dynamics and the reward function, demon-
strated behavior of an expert allows estimating both. In this chapter,
we outline limitations of current IRL approaches under unknown
dynamics based on a minimum example, we introduce a new prob-
lem class that is able to overcome those limitations to a certain
degree, and we provide a solution to this problem class based on
maximum a-posteriori (MAP) estimation of rewards and dynamics.
Furthermore, we derive solutions for two different policy models,
discuss priors than can be used for incorporating knowledge into
learning, and evaluate the approach based on two examples.

As the capabilities of intelligent systems (e.g. robots) improve, they can solve more and
more complex problems. Consequently, the number of such systems performing tasks in
populated areas is constantly increasing. However, to ensure a fast and easy deployment
in various environments, it is necessary to provide simple programming approaches for
non-experts to parameterize new behaviors, goals or tasks. A promising approach for
teaching systems a certain behavior is Inverse Reinforcement Learning (IRL), which
estimates the underlying reward function of a Markov Decision Process (MDP) from



40 CHAPTER 4. SIMULTANEOUS ESTIMATION OF REWARDS AND DYNAMICS

Rewards
Expert’s
Policy

Environment’s
Dynamics

Querying Expert
Demonstrations

Environment’s
Dynamics

Expert
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(a) Generation of demonstrations

Rewards
Inverse

Reinforcement
Learning

Environment’s
Dynamics

Demonstrations

(b) Inverse Reinforcement Learning

Figure 4.1: (a) An expert computes his policy by considering his reward function as well as the environ-
ment’s dynamics. When applying this policy in a real or a simulated environment, generated demonstrations
consist of samples of the expert’s policy and samples of the environment’s dynamics. (b) Most of the IRL
approaches assume that besides expert demonstrations a transition model of the environment is available to
estimate the expert’s reward function. Approaches that avoid the need of a model of the dynamics typically
require additional samples from a non-optimal policy or apply heuristics.

observed behavior of an expert.

In the previous chapter, we have outlined the state of the art of IRL. However, current
approaches have a couple of limitations. Fig. 4.1 illustrates the generation of expert
demonstrations and IRL as block diagrams. Most of the model-based approaches need
to solve the RL problem repeatedly as part of solving the IRL problem, which usually
requires an accurate model of the environment’s dynamics. Typically, they assume that
this model is known or that it can be accurately estimated from observed transitions
directly. However, these approaches often ignore that the provided demonstrations are
the result of an expert’s policy, which biases them towards high expected cumulated
rewards, while many states and actions are rarely or never observed. When naively
estimating a model of the dynamics from these demonstrations, it is likely to be inaccurate
for rare states and actions. While the model-free approaches omit the need of a model
of the dynamics, they have stronger requirements on the provided demonstrations, by
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using them directly as a proxy of the transition model. For example, some approaches
require that the observed demonstrations consist of enough samples of the environment’s
dynamics to accurately estimate the reward function. Other approaches need access to
the environment to generate additional demonstrations or introduce heuristics to account
for unobserved transitions. However, sampling demonstrations from the environment
can be costly, realistic simulators often do not exist, and defining appropriate heuristics
is difficult for many environments. Consequently, model-free approaches may tend to
estimate wrong reward functions.

Only little research has been conducted on the robustness of IRL against wrong transi-
tion models, even though Ramachandran and Amir pointed it out already in [81]. Since
most IRL approaches assume the given transition model to be true, they might draw wrong
conclusions. However, both the reward function and the dynamics of the environment
influence the expert’s policy. Therefore, the frequency of state-action pairs carries in-
formation about both. To the best of our knowledge, the first publication that exploits
one side of this influence was by Phatak et al.[78], which estimates the system dynamics
from expert demonstrations under a known reward function. Recently, Golub et al.[33]
proposed an approach that estimates the human’s belief about the system dynamics from
expert demonstrations under a known reward function.

In this chapter, we integrate the estimation of the environment’s dynamics into IRL.
We call this problem class Simultaneous Estimation of Rewards and Dynamics (SERD)
[39, 40] and exploit the fact that a policy has generated the expert’s demonstrations,
which is the result of both rewards and dynamics. To solve it, we propose a unified
framework of maximum a-posteriori inference of rewards and dynamics, which includes
IRL and MDP model estimation as special problem cases. We provide a general gradient-
based solution and show derivations of this gradient from the unified framework under
different assumptions about the expert’s policy generation. Furthermore, we introduce
and discuss different priors to avoid overfitting. To clarify characteristics and properties
of IRL and SERD, we present a minimum example showing the problem of interpreting
demonstrations in light of the bilateral influence of rewards and dynamics onto the policy.
We use this example as well as a grid-world navigation task based on satellite images
for evaluation, showing that the proposed approach outperforms other classical ones, by
improving the estimate of the dynamics, the estimate of the reward function, as well as
the sample efficiency of learning.
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4.1 Limitations of IRL approaches

To clarify properties of current IRL approaches, we present a minimum example that
illustrates the problem of interpreting demonstrations in light of the bilateral influence of
rewards and dynamics onto the policy, if the dynamics of the environment are unknown
to the learner. The minimum example is depicted in Fig. 4.2 and consists of two states
S ∈ {1, 2} and three actions A ∈ {a, b, c}. An agent is allowed to choose between action
a or b in state 1, while only action c is available in state 2. As soon as the agent reaches
state 2, he is not able to transit back to state 1, since only action c is available with the
single successor state 2. Consider that an expert chooses actions from an optimal policy,
providing the two demonstrations from Fig. 4.2:

τb = {〈s0=1, a0=a〉 , 〈s1=1, a1=a〉 , 〈s2=2, a2=c〉} , (4.1)

τr = {〈s0=1, a0=a〉 , 〈s1=2, a1=c〉 , 〈s2=2, a2=c〉} , (4.2)

colored in blue and red. Both demonstrations are three steps long and start in state 1, where
always action a is executed. Most IRL approaches assume prior knowledge about the
dynamics of the environment. If this is not the case, many of them propose to estimate a
model from the observed transitions in the demonstrations. A naive transition model of the
environment can be estimated by computing the frequency of transitions conditioned on
the previous state and action. Such a naive estimate is depicted in blue in Fig. 4.3 (b) and
(c). However, the demonstrations only cover action a and tell nothing about the transition

1 2

a

b

c

Figure 4.2: Minimum example of IRL with two different expert demonstrations (colored in blue and red).
Both demonstrations always start in state 1, where the expert prefers action a, while action b is never chosen.
As soon as an agent is in the second state, he cannot transition back to state 1. The goal of IRL is to recover
the unknown reward function that caused the demonstrations. However, unknown transition models might
complicate interpreting the observed behavior.
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Figure 4.3: Minimum example of IRL based on the previously introduced MDP. Traditional IRL approaches
require the dynamics to be known. Therefore, a naive estimate of the dynamics from the given demonstra-
tions is illustrated in (a), and (b) (depicted in blue) . Since action b has never been observed, the transition
probability to the successor states cannot be computed. To reduce the complexity of this example, only
state-dependent reward functions (depicted in red) are considered ∀a ∈ A, s ∈ S : R(s, a) = R(s). Which
of the two options for the reward functions (a) or (b) is more likely?

probabilities of action b. Hence, it is not possible to specify the transition probabilities to
successor states after executing action b in state 1. Estimating the expert’s reward function
corresponds to specifying which of the two states has the higher immediate reward, since
the actual value has no influence on the optimal, deterministic policy. To reduce the
complexity of the IRL example, only state-dependent reward functions are considered
∀a ∈ A, a′ ∈ A, s ∈ S : R(s, a) = R(s, a′) in this minimum example, which are depicted
in red. Fig. 4.3 (a) and (b) show two options for the reward function. Is option 1 or 2

more likely to be the true reward function of the expert, who provided the demonstrations
shown in Fig. 4.2?

Assuming that the expert chooses his actions to maximize the expected, cumulated,
discounted reward, interpreting his motivation is equivalent to arguing about both his
reward function and the environment’s dynamics:

• Option 1: Since the first state has a higher reward, the expert chooses the action
that has the higher likelihood of staying in state 1. Hence, action a is chosen, if the
transition probability to stay in state 1 of action a is higher than that of action b:
P (1 | 1, b) < P (1 | 1, a) ≈ 1

3
. Otherwise, the expert would have chosen action b.

• Option 2: If the second state is more preferable due to a higher reward, the expert
chose action a, because its likelihood to transition to state 2 is higher than that of
action b: P (2 | 1, b) < P (2 | 1, a) ≈ 2

3
.

Interestingly, in an informal survey most humans assume that option 2 is the expert’s
reward function. However, as we have shown, both options can explain the expert’s
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behavior equally well and wrong assumptions about the unknown dynamics would result
in possibly wrong interpretations. Only by considering that the policy is the result of the
reward function and the dynamics one can find both options. If unknown or inaccurate
dynamics are used for IRL, this has to be taken into account. This example illustrates
several aspects of IRL that most available approaches do not address:

Expert demonstration bias:

• Models of the dynamics that are estimated naively from observed transitions of an
expert are likely to be inaccurate or partially unknown, since expert demonstra-
tions are biased towards high values.

• The state-action tuples in the demonstrations are samples from the expert’s policy.
Therefore, they incorporate information about the dynamics, which influenced the
policy.

Ambiguities:

• (Partially) unknown dynamics can introduce ambiguities.

• The additional ambiguities can only be found by estimating the rewards as well as
the dynamics and considering their bilateral influence on the policy.

• Prior information can resolve ambiguities.

• Inaccurate transition models may tamper with the reward estimates.

In summary, if an agent acts according to some (sub-) optimal policy in an MDP, it
is possible to infer better dynamics models to a certain degree, by exploiting the fact
that policies consider the rewards and the transition model. In previous work, we have
introduced this new problem class and proposed first approaches for solving the SERD
problem [39, 40]. This can be advantageous, because a simultaneous estimation captures
the bilateral influence of the transition model and the reward function on the policy. We
propose a unified approach based on a maximum a-posteriori formulation to resolve
ambiguities and to prevent overfitting, due to training a large amount of parameters from
a possibly small number of demonstrations. Furthermore, we derive models for different
problem classes and discuss several priors.



4.2. PROBLEM FORMULATION 45

4.2 Problem Formulation

We define an extension to the classical IRL problem, where neither the reward function, nor
the dynamics are known and both should be estimated from demonstrations. Furthermore,
we consider an aspect that many available approaches neglect: the expert may have
imperfect knowledge about the environment. If this is the case, IRL approaches might
wrongly interpret the expert’s behavior yielding inaccurate or unfeasible reward functions.

Fig. 4.4 illustrates the process of generating demonstrations and indicates the encoded
information. If an expert provides demonstrations in a real or simulated environment, the
individual samples

〈
sτt , a

τ
t , s

τ
t+1

〉
allow for estimating the dynamics of the environment. In

addition, the tuples 〈sτt , aτt 〉 are samples of the expert’s policy. Since his reward function
and his internal model of the environment’s dynamics influenced his policy, these samples
give information about both.

By considering this influence, it is even possible to estimate the expert’s internal model
of the environment’s dynamics, covering the agent’s belief about how the world behaves
[33]. In addition, this allows to argue about reasons for suboptimal expert behavior.
Furthermore, for some problems we can make assumptions on the similarity between the
expert’s model of the environment’s dynamics and the real transition model. They could
be completely identical, they could be identical in certain areas of the state- and action-
space, or it could be possible to constrain their difference in terms of some measure (e.g.
Kullback-Leibler divergence). Then, it is possible to estimate more accurate transition
models, by considering both sources of information: the transitions in the demonstrations
and the influence of the environment’s dynamics onto the expert’s policy.

Rewards
Expert’s
Policy

Expert’s Model of
the Environment’s

Dynamics

Querying Expert
Demonstrations

Environment’s
Dynamics

Expert
Demonstrations

Figure 4.4: The expert generates his policy by considering his reward function and his model of the
environment’s dynamics. However, this model can be inaccurate and might tamper with the expert’s
policy such that it is suboptimal in the real environment. If this policy is applied in a real or a simulated
environment, demonstrations consist of samples of the expert’s policy and samples of the environment’s
dynamics. Hence, samples are influence by the expert’s reward function, his model of the environment’s
dynamics and its real transition model.
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Problem: Simultaneous Estimation of Rewards and Dynamics

Given:

• MDP without the reward function and dynamics:

M \ {R,P (s′ | s, a) , PE (s′ | s, a)}

• Demonstrations D = {τ1, τ2, . . . , τN} with trajectories

τ =
{

(sτ0, a
τ
0) , (sτ1, a

τ
1) , . . . ,

(
sτTτ , a

τ
Tτ

)}
of an expert acting in M based on a

policy that depends on R(s, a), PE (s′ | s, a), and g(Q)

Determine:

• Expert’s reward function R(s, a)

• Expert’s estimate of the dynamics PE (s′ | s, a)

• Real dynamics P (s′ | s, a)

• Stochastic policy model π = g(Q)

Table 4.1: Definition of the Simultaneous Estimation of Rewards and Dynamics problem class.

In order to consider a possibly inaccurate belief on the environment’s dynamics, our
problem definition differentiates between the expert’s estimate of the system’s dynamics
PE (s′ | s, a) and the true transition model of the environment P (s′ | s, a). Typically,
the stochastic policy π = g(Q) is a function of the state-action values Q∗ and possible
additional, unknown parameters. This allows incorporating the expected, cumulated,
discounted future reward into the policy, by modeling stochasticity that depends on the
difference between the Q-values of different actions. Altogether, Tab. 4.1 characterizes
the SERD problem class, which specifies the problem of estimating the expert’s reward
function, his belief about the environment’s dynamics, the real dynamics of the environ-
ment, as well as his stochastic policy model solely from expert demonstrations, while
assuming that the expert computed his policy based on his reward function and his belief
about the environment’s dynamics.

To solve this problem, we assume to learn parameters of the problem statement’s
parameterizable functions, distributions, or mappings simultaneously from expert demon-
strations D. Therefore, we introduce the following parameters:
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θR Feature weights of the reward function R(s, a),
θTE Parameters of the expert’s transition model PθTE ,
θT Parameters of the real transition model PθT ,
θP Parameters of the expert’s policy π = g(θP , Qθ).

4.3 Unified SERD approach

We propose to solve the SERD problem by formulating a maximum a-posteriori optimiza-
tion problem. This allows to incorporate prior information to resolve ambiguities and to
prevent overfitting. The MAP estimate of the parameters θ =

(
θᵀR θᵀTE θᵀT θᵀP

)ᵀ
is

given by

θ̂ = argmax
θ

logP (θ | D,M) (4.3)

= argmax
θ

log
P (D |M,θ)P (θ)

P (D |M)
(4.4)

= argmax
θ

logP (D |M,θ)︸ ︷︷ ︸
likelihood

+ logP (θ)︸ ︷︷ ︸
prior

(4.5)

= argmax
θ

Jθ (D) . (4.6)

If the observed trajectories are independent and identically distributed, the likelihood of
the demonstrations D decomposes to

P (D |M,θ) =
∏
τ∈D

P (sτ0)
Tτ−1∏
t=0

[
πθ (aτt | sτt )PθT

(
sτt+1 | sτt , aτt

)]
. (4.7)

Then, the gradient of the objective Jθ (D) allows solving the optimization problem via
gradient-ascent:

∂

∂θi
Jθ (D) =

∑
τ∈D

Tτ−1∑
t=0

[
∂

∂θi
log πθ (aτt | sτt ) +

∂

∂θi
logPθT

(
sτt+1 | sτt , aτt

)]
(4.8)

+
∂

∂θi
logP (θ). (4.9)

Here, the policy πθ (a | s) depends on all parameters except θT , because the expert derived
his policy based on his reward function and his estimate of the environment’s dynamics.
In contrast, the observed transitions occur in the real or simulated environment. Therefore,
the transition model PθT (s′ | s, a) only depends on θT . If PθTE and PθT do not share any
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parameters, the gradient simplifies to:

∂

∂θi
Jθ (D) =


∑
τ∈D

Tτ−1∑
t=0

∂
∂θi

log πθ (aτt | sτt ) + ∂
∂θi

logP (θ) if i ∈ Ψ¬T∑
τ∈D

Tτ−1∑
t=0

∂
∂θi

logPθT
(
sτt+1 | sτt , aτt

)
+ ∂

∂θi
logP (θ) if i ∈ ΨT

(4.10)

with ΨX being the set of all parameter indices belonging to parameter type X ∈
{R, TE, T, P} and the negation Ψ¬X being the set of all parameter indices except the ones
of parameter type X . By modeling the expert’s belief about the environment’s dynamics
and the true dynamics with individual sets of parameters, the only coupling between
them might exist via the log prior term. Hence, one can introduce a prior that penalizes
differences between the expert’s transition model and the true dynamics. Sec. 4.5 gives an
overview about various priors for regularization purposes or for incorporating knowledge
into learning.

We remain with deriving the gradient of the log likelihood of the policy and the
dynamics. Since the model of the environment’s dynamics is a design choice and problem-
dependent, we exemplarily derive its gradient in the evaluation section of SERD and in
the following chapter based on an application example. Therefore, we now provide the
gradient of the log policy ∂

∂θi
log πθ (aτt | sτt ), which is given by

∂

∂θi
log πθ (aτt | sτt ) =

∂
∂θi
πθ (a | s)
πθ (a | s)

. (4.11)

Finally, it is necessary to compute the partial derivative of the policy ∂
∂θi
πθ (a | s)

with respect to the parameters of the stochastic policy model as well as to all other
parameters. Again, we express the gradient as partial derivatives with respect to the
individual parameter types

∂

∂θi
πθ (a | s) =



∂
∂θi
g(θP , Qθ) if i ∈ ΨP∑

s′∈S
a′∈A

∂g(θP ,Qθ)(s,a)
∂Qθ(s′,a′)

∂
∂θi
Qθ(s

′, a′) if i ∈ ΨR ∪ΨTE

0 if i ∈ ΨT .

(4.12)

However, to compute the a-posteriori log likelihood and its gradient, it is necessary to
specify a model of the policy as well as the Q-function that it is based on. Furthermore,
it requires both a differentiable policy model and Q-function. In general, various policy
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models could be applied depending on the problem that is solved. Sec. 4.4 provides
derivations of some common policy models used in IRL problems. In addition, it shows
the computation of the corresponding gradients, provides proofs for the derivations and
compares the policy models with respect to their differences and their computation time
when using SERD.

Finally, Alg. 1 summarizes the proposed gradient-based solution of the SERD problem.
It assumes that an MDP is given without known parameters of the rewards, the real
environment’s dynamics, the expert’s belief about it, or the policy model. Furthermore, it
requires a set of expert demonstrations, a step size for gradient ascent, and an initial pa-
rameter vector. The SERD algorithm estimates the optimal parameters that maximize the
log likelihood of the expert demonstrations. Since it is beneficial to start with reasonable
parameter guesses, we propose to use an InitialDynamicsEstimator, which estimates an
initial model of the environments dynamics directly from the observed transitions. After-
wards, the iterative gradient-based optimization starts with this initial parameterization.
The first step solves the forward problem by applying QIteration, which computes the
state-action value function. This allows extracting the Policy according to the chosen
policy model. To perform an update step, it is necessary to compute the gradient of the
objective, which is the log likelihood of the demonstrations. This requires deriving the
gradient of the Q-function via QGradient. After that, it uses ObjGradient to calculate the
gradient of the objective for updating the parameters.

4.4 Policies

The previous chapter introduced a unified solution to the SERD problem. However, the
computation of the gradient of the policy in Eq. (4.12) requires to define a model for
the stochastic policy g(θP , Qθ) as well as the type of Q-function Qθ. In Chap. 3, we
gave an overview about learning from demonstration together with detailed reviews of
several famous IRL approaches. Typically, these approaches make different assumptions
on the expert’s behavior and thus model different types of policies. Furthermore, their
policies model behavior from different Q-functions. For example, PM IRL uses the
optimal Q-function Q∗θ(s, a) according to Eq. (2.24), while MDCE IRL uses a softened
one Qs

θ(s, a) which is specified in Eq. (3.28). This section derives the gradients of the
MDCE and PM policy models, which have been successfully applied to various IRL
problems. In both cases, we assume that the reward function is a linear combination of
parameters and features R(s, a) = θR

ᵀf(s, a).
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Algorithm 1 Unified SERD algorithm
Require: MDP without known parameters of rewards, dynamics, or policy model

M \ {R,PT , PTE , g(θP , Qθ)}, expert demonstrations D, initial parameter set θ̄, step

size α : N+ → R+

Ensure: Approximately optimal parameters θ

1: t← 0

2: θ0 ← θ̄

3: θ0 ← InitialDynamicsEstimator(M , D, θ0)

4: while not converged do

5: Qθ ← QIteration(M , θt) . Eq. (2.24) or Eq. (3.28)

6: πθ ← Policy(M ,Qθ, g(θP , Qθ)) . Eq. (2.26) or Eq. (3.30)

7: ∇Qθ ← QGradient(M ,Qθ, πθ, θt) . Eq. (4.21) or Eq. (4.66)

8: ∇Jθ ← ObjGradient(M , D,Qθ, πθ, dQθ) . Eq. (4.9)

9: θt+1 ← θt + α(t)∇Lθ
10: t← t+ 1

11: end while

4.4.1 Maximum Discounted Causal Entropy SERD (MDCE SERD)

Since humans are rarely able to demonstrate entirely optimal behavior, approaches are
necessary that can cope with stochastic or noisy demonstrations. However, it is often un-
known how humans behave and how their policy can be appropriately modeled. Therefore,
IRL and SERD require robust solutions that learn generalizable representations that do
not overestimate individual trajectories, especially if the expert demonstration set is small.
In Sec. 3.2.3, we gave an overview on MDCE IRL, which is an infinite horizon variant
of MCE IRL. The approaches by Ziebart et al.[119] as well as Bloem and Bambos [16]
achieve robustness by learning policies with maximum causal entropy under constraints
to match features between the model and the expert behavior. This yields a distribution
that is as uninformative as possible, while guaranteeing to satisfy the desired constraints.
Consequently, it decouples the learned model from the demonstrations by only matching
certain aspects and not trying to copy the observed trajectories. Hence, the solutions
to their maximum causal entropy problems are gradient-based methods with a gradient
that is the difference between the expert’s empirical feature expectation and the expected
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features of the model ∂λ(P,θ,η)
∂θ

= φ̃−
∑

τ∈T Pθ(τ)φ(τ). It should be noticed that these
solutions only require the expert’s empirical feature expectation to be known, while it
does not further use the expert demonstrations for optimization. However, they also show
that the maximum likelihood solution, which directly optimizes the log likelihood of
the observed demonstrations, is identical to the MDCE solution with a feature matching
gradient, if the transition model is available and the number of expert demonstrations
approaches infinity. This indicates that in the limit the ML solution may be as robust as
the MDCE solution. As the unified SERD approach formulates a MAP problem, which
incorporates the likelihood of the demonstrations, the question arises whether it still learns
robust and accurate models, when modeling behavior with an MDCE policy. In this
section, we derive a SERD solution based on the MDCE policy, which we call MDCE
SERD. It extends the MDCE IRL problem, by simultaneously learning the parameters of
a model of the environment’s dynamics and the expert’s belief about it. In the following,
we derive a solution for the MDCE SERD problem, analyze this solution, and provide
proofs for the differentiability and convergence.

In MDCE IRL, the policy model π = g(Qs
θ) takes the form of a Boltzmann distribution

over soft Q-values from Eq. (3.28) with no additional policy parameters:

πθ(a | s) = g(Qs
θ)(s, a) =

exp(Qs
θ(s, a))∑

a′∈A exp (Qs
θ(s, a

′))
. (4.13)

Deriving the SERD gradient Eq. (4.12) of the MDCE policy model [40] requires to
compute the partial derivative of g(Qs

θ)(s, a) with respect to Qs
θ(s, a):

∂g(Qs
θ)(s, a)

∂Qs
θ(s
′, a′)

=


exp(Qsθ(s,a))(

∑
α∈A\a exp(Qsθ(s,α)))

(
∑
α∈A exp(Qsθ(s,α)))

2 if s = s′, a = a′

− exp(Qsθ(s,a)) exp(Qsθ(s,a′))
(
∑
α∈A exp(Qsθ(s,α)))

2 if s = s′, a 6= a′

0 otherwise.

(4.14)

When substituting the partial derivative of g(Qθ)(s, a) with respect to Qθ(s, a) into
Eq. (4.12), the partial derivative of the policy ∂

∂θi
πθ (a | s) further simplifies to the
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weighted and expected gradient of the Q-function:

∂

∂θi
πθ (a | s) (4.15)

=
∑
s′∈S
a′∈A

∂g(θP , Qθ)(s, a)

∂Qθ(s′, a′)

∂

∂θi
Qθ(s

′, a′) (4.16)

= πθ(a | s)

 ∑
a′∈A\a

πθ(a
′ | s) ∂

∂θi
Qθ(s, a)−

∑
a′∈A\a

πθ(a
′ | s) ∂

∂θi
Qθ(s, a

′)

 (4.17)

= πθ(a | s)
[
∂

∂θi
Qs
θ(s, a)− Eπθ(a′|s)

[
∂

∂θi
Qs
θ(s, a

′)

]]
. (4.18)

It follows that the gradient of the policy depends on the gradient of the state-action value
function ∂

∂θi
Qs
θ(s, a). Furthermore, it requires to derive the converged soft Q- and soft

value-function for extracting the stochastic policy, which is necessary for computing the
expected gradient Eπθ(a′|s)

[
∂
∂θi
Qs
θ(s, a

′)
]
.

Finally, the partial derivative of the soft Q-function from Eq. (3.28) with respect to θi
results in:

∂

∂θi
Qs
θ(s, a) =

∂

∂θi
θᵀRf(s, a) (4.19)

+ γ
∑
s′∈S

[(
∂

∂θi
PθTE (s′ | s, a)

)
Vθ (s′)

]
(4.20)

+ γ
∑
s′∈S

[
PθTE (s′ | s, a)Eπθ(a′|s′)

[
∂

∂θi
Qs
θ(s
′, a′)

]]
. (4.21)

As the MDCE policy does not introduce additional policy parameters, we take the partial
derivative with respect to the three remaining individual parameter types (the feature
weights, the expert’s dynamics parameters, and the parameters of the true environment’s
dynamic) yields a more simple solution that is easier to interpret:

∂

∂θi
Qs
θ(s, a) =



fi(s, a) + γ
∑

s′∈S

[
PθTA (s′ | s, a) if i ∈ ΨR

·Eπθ(a′|s′)

[
∂
∂θi
Qθ(s

′, a′)
]]

γ
∑

s′∈S

[(
∂
∂θi
PθTA (s′ | s, a)

)
Vθ(s

′) if i ∈ ΨTE

+ PθTA (s′ | s, a)Eπθ(a′|s′)

[
∂
∂θi
Qθ(s

′, a′)
]]

0 if i ∈ ΨT .

(4.22)
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This soft Q-gradient can be solved exactly, as it is a linear equation system. However,
solving large linear equation systems exactly (e.g. via LU decomposition [32]) can be
computationally expensive. Instead, it is often beneficial to choose an iterative approach
[96] (see Section 4.4.3). When interpreting Eq. (4.21) as an operator and recursively
applying it to an arbitrary initial gradient, it will converge to the true gradient, as it is a
fixed point equation. If such an approximate solution is sufficient, it can highly increase
the computational efficiency. Furthermore, Alg. 1 requires computing the Q-gradient
iteratively with slightly changed parameters in every pass of the inner loop. If the new
Q-gradient computation is initialized with the result from the preceding run, it might
further reduce the required number of Q-gradient iterations to convergence to a good
solution.

In the following, we will prove the correctness and convergence of the proposed algo-
rithm. The gradient-based optimization method requires the policy to be differentiable.
However, it depends on the converged soft Q-function. Therefore, we will show that the
soft Q-iteration is a fixed point equation and that the converged soft Q-function is differ-
entiable with respect to all parameters. Afterwards, we will show that the provided soft
Q-gradient iteration is a contraction mapping with only one fixed point. Consequently, the
proposed gradient-based method yields valid gradients for optimizing the log likelihood
of the demonstrations.

Soft Q-iteration is a Contraction Mapping

We need to show that the soft Q-iteration is a fixed point iteration with only one fixed
point, since this is a requirement of our algorithm. Bloem et al.[16] have shown that the
soft value iteration operator is a contraction mapping. Hence, we need to prove that the
same holds for the soft Q-iteration operator T soft

θ (Q). Therefore, we adjust their proof to
be valid for the Q-iteration.

The soft Q-iteration operator is defined as

T soft
θ (Q)(s, a) = θᵀRf(s, a) + γ

∑
s′∈S

[
PθTA (s′ | s, a) softmax

a′∈A
(Q (s′, a′))

]
(4.23)

with the function

softmax
xi∈x

(xi) = log

(
N∑
i=1

exp (xi)

)
. (4.24)

We will begin with deriving proofs for necessary auxiliary definitions and lemmata. In
order to argue about the monotonicity of multidimensional functions, we introduce a
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partial order on RA×B. Then, we derive a required property of the softmax function first
and prove the monotonicity of the operator T soft

θ (Q)(s, a) : R|S|×|A| → R|S|×|A| with
respect to the partial order afterwards.

Definition 4.4.1. For x,y ∈ RA×B with A,B ∈ N+, the partial order � is defined as

x � y ⇔ ∀a ∈ A, b ∈ B : xa,b ≤ ya,b.

Lemma 4.4.2. The softmax function has the property that for any x ∈ RN and d ∈ R it

holds that softmax
xi∈x

(xi + d) = softmax
xi∈x

(xi) + d.

Proof. It is easy to show that the softmax function allows to extract additive constants d
from all elements xi:

softmax
xi∈x

(xi + d) = log

(
N∑
i=1

exp (xi + d)

)
(4.25)

= log

(
exp (d)

N∑
i=1

exp (xi)

)
(4.26)

= log

(
N∑
i=1

exp (xi)

)
+ log (exp (d)) (4.27)

= log

(
N∑
i=1

exp (xi)

)
+ d (4.28)

= softmax
xi∈x

(xi) + d (4.29)

Lemma 4.4.3. The soft Q-iteration operator T soft
θ (Q)(s, a) is monotone, satisfying

∀Qm,Qn ∈ R|S|×|A| : Qm � Qn → T soft
θ (Qm) � T soft

θ (Qn).

Proof. The partial derivative of the T soft
θ (Q)(s, a) with respect to a single value Q(si, ai)

is

∂

∂Q(si, ai)
T soft
θ (Q)(s, a) = γPθTA (si | s, a)

exp (Q (si, ai))∑
aj∈A exp (Q (si, aj))

. (4.30)

From the definition of the MDP it follows that γ ∈ [0, 1) and the probability distri-
bution PθTA (si | s, a) ∈ [0, 1]. As ∀xi ∈ R : exp(xi) ∈ (0,+∞), all terms of the
partial derivative ∂

∂Q(si,ai)
T soft
θ (Q)(s, a) are positive or zero, which finishes the proof that

∂
∂Q(si,ai)

T soft
θ (Q)(s, a) ≥ 0.
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Based on Lemma 4.4.2 and 4.4.3, we can derive the proof that the soft Q-iteration
is a contraction mapping with only one fixed point. Therefore, we adopt the proof of
Bloem and Bambos [16] for the value iteration and adjust it, such that it applies for the
Q-iteration.

Theorem 4.4.4. The soft Q-iteration operator T soft
θ (Q)(s, a) is a contraction map-

ping with only one fixed point. Therefore, it is Lipschitz continuous ||T soft
θ (Qm) −

T soft
θ (Qn)||∞ ≤ L||Qm − Qn||∞ for all Qm,Qn ∈ R|S|×|A| with a Lipschitz constant

L ∈ [0, 1).

Proof. ConsiderQm,Qn ∈ R|S|×|A|. There exists a distance d under the supremum norm,
for which ∃d ∈ R+

0 : ||Qm −Qn||∞ = d holds and therefore

− d1 � Qm −Qn � d1 (4.31)

with 1 = (1)k,l, where 1 ≤ k ≤ |S|, 1 ≤ l ≤ |A|. Since d bounds the components
of the vector difference Qm −Qn, Qm � Qn + d1 and Qn � Qm + d1 hold due to
the symmetric definition. In both cases, the monotonicity condition of Lemma 4.4.3 is
satisfied, which allows for the following inequality: T soft

θ (Qm) � T soft
θ (Qn + d1). By

applying Lemma 4.4.2, it follows that ∀s ∈ S, a ∈ A

T soft
θ (Qm)(s, a) (4.32)

≤ T soft
θ (Qn + d1)(s, a) (4.33)

= θᵀRf(s, a) + γ
∑
s′∈S

[
PθTA (s′ | s, a) softmax

a′∈A
(Q (s′, a′) + d)

]
(4.34)

= θᵀRf(s, a) + γ
∑
s′∈S

[
PθTA (s′ | s, a) softmax

a′∈A
(Q (s′, a′)) + d

]
(4.35)

= θᵀRf(s, a) + γ
∑
s′∈S

[
PθTA (s′ | s, a) softmax

a′∈A
(Q (s′, a′))

]
+ γd (4.36)

= T soft
θ (Qn)(s, a) + γd (4.37)

In matrix notation, this results in T soft
θ (Qm) � T soft

θ (Qn)+γd1. The symmetric definition
of −d1 � Qm − Qn � d1, implies that Qn � Qm + d and consequently it follows
that T soft

θ (Qn) � T soft
θ (Qm) + γd1. To finish the proof, it is required to show that the

soft Q-iteration operator is Lipschitz continuous with L ∈ [0, 1). Combining the related
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inequations of the operator yields

−γd1 � T soft
θ (Qm)− T soft

θ (Qn) � γd1 (4.38)

||T soft
θ (Qm)− T soft

θ (Qn)||∞ ≤ γd (4.39)

||T soft
θ (Qm)− T soft

θ (Qn)||∞ ≤ γ||Qm −Qn||∞. (4.40)

This proves that the soft Q-iteration operator T soft
θ (Q) is Lipschitz continuous with a

Lipschitz constant L = γ and γ ∈ [0, 1), resulting in a contraction mapping. As this holds
for the whole input space of R|S|×|A|, two points would always contract, so there cannot
exist two fixed points.

Differentiability of the converged soft Q-function

Theorem 4.4.5. The converged soft Q-function Q̃s(s, a) is differentiable with respect to

the parameters θ.

Proof. Previously, we have proven that the soft Q-iteration operator T soft
θ (Qs) : RS×A 7→

RS×A is a fixed-point equation with

T soft
θ (Qs(s′, a′))[s, a] = θᵀRf(s, a)+γ

∑
s′∈S

[
PθTE (s′ | s, a) log

(∑
a′∈A

exp(Qs(s′, a′))

)]
.

It converges to a fixed-point Q̃s given γ ∈ [0, 1), by repeatedly applying the operator to
an arbitrary initial Qs

0. If the transition model PθTE is differentiable with respect to θ,
then T soft

θ (Qs) is differentiable with respect to bothQs and θ, since it is a composition
of differentiable functions. Then, we can apply the implicit function theorem [50] to
compute the derivative ∂

∂θ
Q̃
s

θ, which is given by the equation

T soft
θ (Qs)(s, a)−Qs(s, a) = 0. (4.41)

According to the theorem, the derivative ∂
∂θ
Q̃
s

θ exists, if the Jacobian ∂
∂Qs

[T soft
θ (Qs)−Qs]

is invertible at Q̃
s

θ. If this is the case, the derivative is given by

∂

∂θ
Q̃
s

θ =
( ∂

∂Qs [T soft
θ (.)− .]

)−1 ∂

∂θ
T soft
θ (.) (Q̃

s

θ). (4.42)
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The partial derivative of the operator T soft
θ (Qs) is

∂

∂Qs(si, ai)
T soft
θ (Qs)(s, a) = γPθTE (si | s, a)

exp (Qs (si, ai))∑
aj∈A exp (Qs (si, aj))

. (4.43)

Therefore, the Jacobian of T soft
θ (Qs)−Qs is

∂

∂Qs [T soft
θ (Q̃

s

θ)− Q̃
s

θ]([s, a], [s′, a′]) (4.44)

= −δ(a′ = a, s′ = s) + γPθTE (s′ | s, a) (4.45)

· 1∑
a′′∈A exp(Qs(s′, a′′))

exp(Qs(s′, a′)) (4.46)

= −δ(a′ = a, s′ = s) + γ π(a′ | s′)PθTE (s′ | s, a)︸ ︷︷ ︸
M[s,a],[s′,a′]

. (4.47)

It holds 1 > γ ≥ ||γM ||∞ in the L∞ induced matrix-norm defined as ||A||∞ :=

maxx
|Ax|∞
|x|∞ = maxi

∑
j |Ai,j|, as

max
[s,a]

∑
[s′,a′]

|γM[s,a],[s′,a′]| = max
[s,a]

∑
[s′,a′]

|γπ(a′ | s′)PθTE (s′ | s, a)| = γ. (4.48)

It follows that (γM−I)−1 exists and is given by the Neuman operator-series−
∑∞

i=0(γM )i.
[114]. The fact that the Jacobian is invertible proves that the derivative of the converged
soft Q-function ∂

∂θ
Q̃
s

θ with respect to θ exists.

Monotonicity of the soft Q-gradient operator

We define the soft Q-gradient operator U soft
θ (Φ) ∈ R|S|×|A|×|Ψ| as:

U soft
θ (Φ)(s, a, i) =

∂

∂θi
θᵀRf(s, a) (4.49)

+ γ
∑
s′∈S

[(
∂

∂θi
PθTE (s′ | s, a)

)
V soft
θ (s′)

]
(4.50)

+ γ
∑
s′∈S

{
PθTE (s′ | s, a) · Eπθ(a′|s′) [Φ(s′, a′, i)]

}
, (4.51)

for all s ∈ S, a ∈ A, parameter dimensions i ∈ Ψ with Ψ = {1, . . . , dim(θ)} and the
gradient Φ(s, a, i) = ∂

∂θi
Qs
θ(s, a). In order to argue about the monotonicity of multidi-

mensional functions, we introduce a partial order on RA×B×C .
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Definition 4.4.6. For x,y ∈ RA×B×C with A,B,C ∈ N+, the partial order � is defined

as x � y ⇔ ∀a ∈ A, b ∈ B, c ∈ C : xa,b,c ≤ ya,b,c.

Lemma 4.4.7. The soft Q-gradient iteration operator U soft
θ (Φ)(s, a, i) is monotone,

satisfying ∀Φm,Φn ∈ R|S|×|A|×|Ψ| : Φm � Φn → U soft
θ (Φm) � U soft

θ (Φn).

Proof. The partial derivative of U soft
θ (Φ)(s, a, i) with respect to a single value Φ(sk, ak, k)

is

∂

∂Φ(sk, ak, k)
U soft
θ (Φ)(s, a, i) (4.52)

=
∂

∂Φ(sk, ak, k)
γ
∑
s′∈S

{
PθTE (s′ | s, a)Eπθ(a′|s′) [Φ(s′, a′, i)]

}
(4.53)

= γPθTE (sk | s, a) πθ (ak | sk) δ(i = k). (4.54)

Since the definition of the MDP ensures that γ ∈ [0, 1), the probability distributions
πθ (ak | sk) ∈ [0, 1], as well as PθTE (si | s, a) ∈ [0, 1], and δ(·) ∈ {0, 1}, all terms of the
partial derivative ∂

∂Φ(sk,ak,k)
U soft
θ (Φ)(s, a, i) are positive or zero. Hence, it follows that

∂
∂Φ(sk,ak,k)

U soft
θ (Φ) (s, a, i) ≥ 0.

Soft Q-gradient operator is a fixed point equation

Theorem 4.4.8. The soft Q-gradient iteration operator U soft
θ (Φ)(s, a, i) is a contraction

mapping with only one fixed point. Therefore, it is Lipschitz continuous ||U soft
θ (Φm)−

U soft
θ (Φn)||∞ ≤ L||Φm −Φn||∞ for all Φm,Φn ∈ R|S|×|A|×|Ψ| with a Lipschitz constant

L ∈ [0, 1).

Proof. Consider Φm,Φn ∈ R|S|×|A|×|Ψ|. There exists a distance d for which ∃d ∈ R+
0 :

||Φm −Φn||∞ = d holds and therefore −d1 � Φm −Φn � d1 with 1 = (1)k,l,m, where
1 ≤ k ≤ |S|, 1 ≤ l ≤ |A|, 1 ≤ m ≤ |Ψ|. If d is added to every element of Φn, it is
guaranteed that Φm � Φn + d1. This satisfies the monotonicity condition of Lemma
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4.4.7: U soft
θ (Φm) � U soft

θ (Φn + d1). Then, it follows ∀s ∈ S, a ∈ A, i ∈ Ψ :

U soft
θ (Φm)(s, a, i) (4.55)

≤ U soft
θ (Φn + d1)(s, a, i) (4.56)

=
∂

∂θi
θᵀRf(s, a) + γ

∑
s′∈S

[(
∂

∂θi
PθTE (s′ | s, a)

)
Vθ (s′)

]
(4.57)

+ γ
∑
s′∈S

[
PθTE (s′ | s, a)Eπθ(a′|s′) [Φ(s′, a′, i) + d]

]
(4.58)

=
∂

∂θi
θᵀRf(s, a) + γ

∑
s′∈S

[(
∂

∂θi
PθTE (s′ | s, a)

)
Vθ (s′)

]
(4.59)

+ γ
∑
s′∈S

[
PθTE (s′ | s, a)Eπθ(a′|s′) [Φ(s′, a′, i)]

]
+ γd (4.60)

= U soft
θ (Φn)(s, a, i) + γd (4.61)

In the previous notation, this yields U soft
θ (Φm) � U soft

θ (Φn) + γd1. Since d is defined
symmetrically, it equally holds that Φn � Φm + d and U soft

θ (Φn) � U soft
θ (Φm) + γd1.

Then, the Lipschitz continuity of the soft Q-gradient iteration follows from combining
these inequations:

−γd1 � U soft
θ (Φm)− U soft

θ (Φn) � γd1

||U soft
θ (Φm)− U soft

θ (Φn)||∞ ≤ γd

||U soft
θ (Φm)− U soft

θ (Φn)||∞ ≤ γ||Φm −Φn||∞

This proves that the soft Q-gradient iteration operator U soft
θ (Φ)(s, a, i) is Lipschitz contin-

uous with a Lipschitz constant L = γ with γ ∈ [0, 1), resulting in a contraction mapping.
As this holds for the whole input space R|S|×|A|×|Ψ|, two points will always contract. As a
consequence, there cannot exist two fixed points.

4.4.2 Policy Matching SERD (PM SERD)

In the previous section, we have derived the MDCE SERD approach, which models
a maximum entropy policy that matches feature expectations, yielding a maximally
uninformative distribution. This is reasonable, since the real expert’s policy model is
often unknown and more informative models would more likely overfit. However, if it is
possible to make assumptions about the expert’s decision making, the expert’s behavior
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could be explained more accurately. In general, many different types of policies are
applicable. Since PM IRL has proven successful in several applications, this section
introduces Policy Matching SERD (PM SERD) [39], which is based on Apprenticeship
Learning using IRL and Gradient Methods by Neu and Szepesvári [74] (see Sec. 3.2.1).
Similar to the previous approach, we model behavior by a Boltzmann distribution over
optimal Q-values from Eq. (2.24). This implies that the expert is able to compute the
optimum Q-values of the available actions, but he is not able to execute them accurately.
In addition, we preserve the temperature θP as a parameter of the policy, which scales its
randomness. This result in the following policy model of PM SERD:

πθ(a | s) = g(Q)(s, a) =
exp( 1

θP
Qθ(s, a))∑

a′∈A exp
(

1
θP
Qθ(s, a′)

) . (4.62)

It should be noted that other policy models could be introduced here. For example, the
Boltzmann distribution produces nonzero probabilities for all actions, that have a Q-value
Qθ(s, a) > −∞. However, this model assumption may be inappropriate, if experts never
choose useless or bad actions. The partial derivative of this policy ∂

∂θi
πθ (aτt | sτt ) is

∂

∂θi
πθ (a | s) =

πθ (a | s) 1
θP

[
∂
∂θi
Qθ(s, a)− Eπθ(a′|s)

[
∂
∂θi
Qθ(s, a

′)
]]

if i ∈ Ψ¬P

πθ (a | s) 1
θP

2

[
Eπθ(a′|s) [Qθ(s, a

′)]−Qθ(s, a)
]

if i ∈ ΨP

(4.63)
with the set of policy parameter indices ΨP . It is very similar to the solution of MDCE
SERD, but it differs by the additional parameter θP , by the corresponding partial derivative,
and by depending on the optimal Q-function. Exactly as in the previous approach, the
gradient of the policy depends on the gradient of the converged state-action value function
∂
∂θi
Qθ(s, a). However, the max-function is not differentiable everywhere. Therefore, the

resulting gradient can be a sub-derivative. In the following, we will provide the partial
derivative of the Q-function with respect to θi, which we call Q-gradient.

∂

∂θi
Qθ(s, a) =

∂

∂θi
θᵀRf(s, a) (4.64)

+ γ
∑
s′∈S

[(
∂

∂θi
PθTE (s′ | s, a)

)
Vθ (s′)

]
(4.65)

+ γ
∑
s′∈S

[
PθTE (s′ | s, a)

∂

∂θi
Qθ(s

′, π∗θ (s′))

]
(4.66)
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This gradient shares similarities with the gradient of the approach from Neu and Szepesvári
[74] and extends it by the partial derivative ofQθ(s, a) with respect to the transition model
parameters. The Q-gradient is identical to the soft Q-gradient of MDCE SERD, when
using a deterministic, optimal policy to compute the expectation of Eq. (4.21). This is
especially interesting, since the formulation of the traditional Q-function differs from the
softened one. In the following, we will provide proofs for the correctness and convergence
of PM SERD.

Subdifferentiability of the converged Q-function

Bellman [13] has shown that the value iteration [97] is a fixed point equation. Hence, the
Q-iteration operator Tθ(Q) : RS×A 7→ RS×A is a fixed-point equation, too, with

Tθ(Q(s′, a′))[s, a] = θᵀRf(s, a) + γ
∑
s′∈S

[
PθTE (s′ | s, a) max

a′∈A
Q(s′, a′)

]
.

It converges to a fixed-pointQ∗ given γ ∈ [0, 1), by repeatedly applying the operator to an
arbitrary initialQ0. However, the mapping from parameters θ to the fixed-pointQ∗ is non-
differentiable, as the operator assumes a greedy strategy for choosing actions Eq. (2.26).
For computing derivatives of the converged Q-function Q̃∗, Neu and Szepesvári [74]
show that the ’derivatives can be calculated almost everywhere’. Therefore, they use the
concept of subdifferentials:

Definition 4.4.9 (Fréchet Subdifferentials). Let W be a Banach space, W ∗ be its topolog-

ical dual. The Fréchet subdifferential of f : W → R at w ∈ W , denoted by ∂−f(w) is

the set of w∗ ∈ W ∗ such that

lim inf
h→0,h6=0

‖h‖−1 [f(w + h)− f(w)− 〈w∗, h〉] ≥ 0. (4.67)

Consequently, the Fréchet subdifferential is the set of all subgradients that fulfill the
criterion in Eq. (4.67). In addition, Neu and Szepesvári [74] derive some properties of
functions f(w) that involve a maximum or a linear combination, such as in the operator
Tθ(Q), based on the analysis of Kruger [53].

Proposition 4.4.10. Let {fi}i∈I be a family of real-valued functions defined over W

and let f(w) = maxi∈I fi(w). Then, if w∗ ∈ ∂−fi(w) and fi(w) = max f(w), then

w∗ ∈ ∂−f(w). If f1, f2 : W → R, α1, α2 ≥ 0, then α1∂
−f1+α2∂

−f2 ⊂ ∂−(α1f1+α2f2).
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This proposition shows that the Fréchet subdifferential contains all subgradients w∗ ∈
∂−fi(w) of the individual components fi(w) as long as they fulfill fi(w) = max f(w). As
Tθ(Q) contains a maximum, this also holds for the operator itself as well as its fixed-point
Q∗. For proving that a subdifferential exists for the fixed point, Neu and Szepesvári [74]
extract a proof by Penot [77].

Proposition 4.4.11. Assume that {fn}n is a sequence of real-valued functions over W

which converge to some function f pointwise. Let w ∈ W,w∗n ∈ ∂−fn(w) and assume that

{w∗n} is weak∗-convergent to w∗ and is bounded. Then, w∗ ∈ ∂−f(w), if the following

holds at w: For any ε > 0, there exists some index N > 0 and a real number δ > 0 such

that for any n ≥ N, h ∈ BW (0, δ),

fn(w + h) ≥ fn(w) + 〈w∗n, h〉 − ε‖h‖. (4.68)

This solution by Pernot [77] summarizes conditions under which ’taking a derivative
and a limit is interchangeable’. Hence, it is required that the Q-function is a contraction
mapping, that the partial derivative is weak∗-convergent, and that it is bounded.

Lipschitz continuity of the converged Q-function

As Lipschitz continuity allows to deduce differentiability properties, we will prove that
the converged Q-functionQ∗ is Lipschitz continuous in the parameters θ similar to the
proof by Neu and Szepesvári [74]. In order to do this, we need to make assumptions on
the reward function and the model of the dynamics.

Theorem 4.4.12. Assume that the reward features are uniformly bounded with 〈s, a〉 ∈ S×
A, ‖f(s, a)‖ < +∞, that the parameters are bounded ‖θ‖ < +∞, and that the transition

model PθTE (s′ | s, a) is Lipschitz continuous as a function of θTE with some Lipschitz

constant K. Then, the fixed-pointQ∗θ is Lipschitz continuous as a function of θ such that

for any state-action tuple 〈s, a〉, it holds that θ,θ′ ∈ RΨ, ‖Q∗θ −Q∗θ′‖ ≤ L′‖θ − θ′‖
with some L′ > 0.

Proof. Similar to Neu and Szepesvári [74], consider R to be a Lipschitz constant for
θ,θ′ ∈ RΨ, 〈s, a〉 ∈ S × A, ‖θᵀf(s, a) − θ′ᵀf(s, a)‖ ≤ R‖θ − θ′‖ with some R > 0.
Due to bounded reward features, this can be easily shown, as Lipschitz continuity holds
for R ≥ max〈s,a〉∈ S×A‖f(s, a)‖.
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As parameters are uniformly bounded, it follows that n ∈ N+, ‖T nθQ0‖ ≤ Qmax <

+∞, and thus both the converged fixed-point as well as intermediate iterates of the Q-
iteration operator are bounded, too. In addition, the transition model 0 ≤ PθTE (s′ |
s, a) ≤ 1 is bounded as being a discrete probability distribution.

Analogous to Neu and Szepesvári [74], we assume that Q is L-Lipschitz in θ. Thus,
the value function Vθ(s′) = maxa′∈AQθ(s

′, a′) is L-Lipschitz in θ, too. The latter part
of the Q-iteration operator Tθ(Q) is an expectation of the value function under the
system dynamics PθTE (s′ | s, a). Consequently, both the value function and the system
dynamics depend on the parameters θ. For showing Lipschitz continuity of the converged
Q-function, it is required to derive Lipschitz bounds for this expectation. The previous
assumptions on the dynamics and the Q-function allow to derive an upper bound on the
subgradient of this expectation:

= ‖ ∂
∂θ

∑
s′∈S

[
PθTE (s′ | s, a)Vθ(s

′)
]
‖ (4.69)

= ‖
∑
s′∈S

[
PθTE (s′ | s, a)

∂

∂θ
Vθ(s

′)

]
+
∑
s′∈S

[(
∂

∂θ
PθTE (s′ | s, a)

)
Vθ(s

′)

]
‖ (4.70)

≤ ‖
∑
s′∈S

[
PθTE (s′ | s, a)

∂

∂θ
Vθ(s

′)

]
‖+ ‖

∑
s′∈S

[(
∂

∂θ
PθTE (s′ | s, a)

)
Vθ(s

′)

]
‖ (4.71)

≤ L+ |S|KQmax, (4.72)

by making use of product rule in Eq. (4.70) and triangle inequality in Eq. (4.71). Then,
the first term of Eq. (4.72) can be upper bounded by L as it is an expectation of an
L-Lipschitz function. Finally, we make use of Lipschitz-properties of linear combinations
and products of bounded Lipschitz-continuous functions on bounded spaces for the second
term of Eq. (4.72), which allow to derive global Lipschitz constants according to Eriksson
et al. [27]. Consequently, this part is a sum of |S| products of the transition model with
Lipschitz constant K, which is scaled by the value function that is bounded by Qmax.
From this it follows that the Q-iteration operator TθQ isR+γ (L+ |S|KQmax)-Lipschitz.

As Qn = T nθQ0 converges to Q∗ for n → ∞ [80], Q∗ is R + γ (|S|KQmax +R) +

γ2 (|S|KQmax +R) + γ3 (|S|KQmax +R) + ... =
(
|S|KQmax+R

1−γ − |S|KQmax

)
=

γ|S|KQmax+R
1−γ -Lipschitz as being a geometric series if 0 ≤ γ < 1, which is satisfied

due to the definition of the MDP. Consequently, the fixed-pointQ∗θ is Lipschitz continu-
ous as a function of θ for arbitrary discount values γ, if the transition model is Lipschitz
continuous with some Lipschitz constant K and the reward function is bounded.



64 CHAPTER 4. SIMULTANEOUS ESTIMATION OF REWARDS AND DYNAMICS

Monotonicity of the Q-gradient iteration operator

In the following, we will prove that the Q-gradient iteration operator is a fixed-point
equation and that it’s solution is a sub-derivative ofQ∗θ. Therefore, it is required to show
that the Q-gradient iteration operator is monotone. We define the Q-gradient operator
Uθ(Φ) ∈ R|S|×|A|×|Ψ| as:

Uθ(Φ)(s, a, i) =
∂

∂θi
θᵀRf(s, a) (4.73)

+ γ
∑
s′∈S

[(
∂

∂θi
PθTE (s′ | s, a)

)
Vθ (s′)

]
(4.74)

+ γ
∑
s′∈S

[
PθTE (s′ | s, a) · Φ(s′, π∗θ (s′) , i)

]
, (4.75)

for all s ∈ S, a ∈ A, parameter dimensions i ∈ Ψ with Ψ = {1, . . . , dim(θ)}, the
gradient Φ(s, a, i) = ∂

∂θi
Qθ(s, a), and the optimal policy π∗θ (s′). The Definition 4.4.6 on

the partial ordering allows to argue about the monotonicity of the Q-gradient iteration
operator.

Lemma 4.4.13. The Q-gradient iteration operator Uθ(Φ)(s, a, i) is monotone, satisfying

∀Φm,Φn ∈ R|S|×|A|×|Ψ| : Φm � Φn → Uθ(Φm) � Uθ(Φn).

Proof. The partial derivative of Uθ(Φ)(s, a, i) with respect to a single value Φ(sk, ak, k)

is

∂

∂Φ(sk, ak, k)
Uθ(Φ)(s, a, i) (4.76)

=
∂

∂Φ(sk, ak, k)
γ
∑
s′∈S

[
PθTE (s′ | s, a) Φ(s′, π∗θ (s′) , i)

]
(4.77)

= γPθTE (sk | s, a) δ (a′ = π∗θ (s′) , k = i) . (4.78)

As the definition of the MDP ensures γ ∈ [0, 1), the probability distribution PθTE (si | s, a)

∈ [0, 1], and δ(·) ∈ {0, 1}, all terms of the partial derivative ∂
∂Φ(sk,ak,k)

Uθ(Φ)(s, a, i) are
positive or zero. Hence, it follows that ∂

∂Φ(sk,ak,k)
Uθ(Φ) (s, a, i) ≥ 0.

Q-gradient operator is a fixed point equation

Theorem 4.4.14. The Q-gradient iteration operator Uθ(Φ)(s, a, i) is a contraction

mapping with only one fixed point. Therefore, it is Lipschitz continuous ||Uθ(Φm) −
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Uθ(Φn)||∞ ≤ L||Φm −Φn||∞ for all Φm,Φn ∈ R|S|×|A|×|Ψ| with a Lipschitz constant

L ∈ [0, 1).

Proof. Consider Φm,Φn ∈ R|S|×|A|×|Ψ|. There exists a distance d for which ∃d ∈ R+
0 :

||Φm −Φn||∞ = d holds and therefore −d1 � Φm −Φn � d1 with 1 = (1)k,l,m, where
1 ≤ k ≤ |S|, 1 ≤ l ≤ |A|, 1 ≤ m ≤ |Ψ|. If d is added to every element of Φn, it
is guaranteed that Φm � Φn + d1. In addition, Uθ(Φm) � Uθ(Φn + d1) satisfies the
monotonicity condition of Lemma 4.4.13. Then, it follows ∀s ∈ S, a ∈ A, i ∈ Ψ :

Uθ(Φm)(s, a, i) (4.79)

≤ Uθ(Φn + d1)(s, a, i) (4.80)

=
∂

∂θi
θᵀRf(s, a) + γ

∑
s′∈S

[(
∂

∂θi
PθTE (s′ | s, a)

)
Vθ (s′)

]
(4.81)

+ γ
∑
s′∈S

[
PθTE (s′ | s, a) [Φ(s′, π∗θ (s′) , i) + d]

]
(4.82)

=
∂

∂θi
θᵀRf(s, a) + γ

∑
s′∈S

[(
∂

∂θi
PθTE (s′ | s, a)

)
Vθ (s′)

]
(4.83)

+ γ
∑
s′∈S

[
PθTE (s′ | s, a) Φ(s′, π∗θ (s′) , i)

]
+ γd (4.84)

= Uθ(Φn)(s, a, i) + γd. (4.85)

This yields Uθ(Φm) � Uθ(Φn) + γd1. Since d is defined symmetrically, it equally holds
that Φn � Φm + d and Uθ(Φn) � Uθ(Φm) + γd1. We can show the Lipschitz continuity
of the Q-gradient iteration by combining these inequations:

−γd1 � Uθ(Φm)− Uθ(Φn) � γd1

||Uθ(Φm)− Uθ(Φn)||∞ ≤ γd

||Uθ(Φm)− Uθ(Φn)||∞ ≤ γ||Φm −Φn||∞.

This proves that the Q-gradient iteration operator Uθ(Φ)(s, a, i) is Lipschitz continuous
with a Lipschitz constant L = γ with γ ∈ [0, 1), resulting in a contraction mapping. As
this holds for the whole input space R|S|×|A|×|Ψ|, two points will always contract. As a
consequence, there cannot exist two fixed points.
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Fixed-point of the Q-gradient iteration is a derivative ofQ∗θ

Finally, we need to show that the resulting fixed-point of the Q-gradient iteration is a valid
sub-derivative of the converged Q-function.

Theorem 4.4.15. Except on a set of measure zero, the gradient ∇θQ∗θ(s, a) of the Q-

function, is given by the solution of the fixed-point equation Φn(s, a, i) = ∂
∂θi
θᵀRf(s, a)

+γ
∑

s′∈S

[(
∂
∂θi
PθTE (s′ | s, a)

)
Vθ (s′)

]
+γ
∑

s′∈S

[
PθTE (s′ | s, a) Φn−1(s, π∗θ (s′) , i)

]
,

where the policy π∗θ is any greedy policy with respect to the converged Q-function.

Proof. We derive our proof analogous to Neu and Szepesvári [74]. Bellman [13]
has shown that the value iteration converges to a fixed point. By Theorem 4.4.14,
Φn+1(s, a, i) = UθΦn+1(s, a, i) converges to a fixed-point Φ(s, a, i)∗ for large n. Propo-
sition 4.4.10 says that the subdifferential Φ(s, a, i)∗ ∈ ∂−θiQ

∗
θ. exists. Furthermore, by

Proposition 4.4.11, the limit is a subdifferential ofQ∗θ, as the Q-function is a contraction
mapping, the subdifferential is convergent, and it is bounded. Since Theorem 4.4.12
proves that the converged Q-function Q∗θ is Lipschitz continuous as a function of the
parameters θ, Rademacher’s theorem says that it is differentiable almost everywhere. If a
function is differentiable, it’s subderivative coincides with its derivative, which finishes
the proof [53].

Hence, we have shown that the converged Q-function is subdifferentiable, that it is
Lipschitz continuous, that the Q-gradient operator is a fixed point equation, and that
the fixed-point is a derivative (or sub-derivative) of Q∗θ. Consequently, by optimizing
parameters with the converged Q-gradient, both the environments dynamics and the
reward function of the expert can be learned.

4.4.3 Discussion of policy models

Analyzing the Q-gradient of Eq. (4.66) and the soft Q-gradient of Eq. (4.21) indicates
that the first two terms are constants, which specify the gradient of the reward function
and the partial derivative of the transition model, which is weighted by the corresponding
value. The last term adds the expected gradient and propagates it through the space of
states S, actions A, and parameter dimensions θ. Fig. 4.5 visualizes this propagation
and, thus, gives insights how the gradients are constructed. The main difference between
the Q-gradients of the two approaches is that PM SERD propagates the gradients only
along the optimum action, while MDCE SERD updates them along the stochastic policy.
Since following a stochastic policy will result in a higher variance in the expected state
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Table 4.2: Complexity of the Q-gradient computation

Soft Q-gradient Q-gradient

LU decomposition O
(
Nθ · (|S| · |A|)3) O

(
Nθ · (|S| · |A|)3)

1-step iteration O
(
Nθ · (|S| · |A|)2) O (Nθ · |A| · |S|2)

probability, the MDCE SERD solution considers a broader range of states and actions.
Therefore, it can be expected that MDCE SERD is more stable and generalizes better than
PM SERD.

Table 4.2 illustrates the computational complexity of solving the linear equation systems
of the Q-gradients with |S| states, |A| actions, and Nθ parameters. The computational
cost of a direct computation via LU decomposition requires a number of computations
that is proportional to (|S| · |A|)3. Especially if the state- and action-space is large, its
computation can be very expensive. In such cases, an iterative approach can drastically
reduce the computational cost. The complexity of PM SERD is lower than that of MDCE
SERD, since it omits to compute the expected gradient. Furthermore, Alg. 1 requires
to compute the gradient in an inner loop repeatedly with slightly changed parameters.
Typically, this little change has only small effects on the gradient. Therefore, initializing
the gradient with the solution of the last iteration offers the possibility of a reduction of
the number of iterations.

4.5 Priors

The specification of the SERD problem introduces additional parameters compared to
IRL, as it extends reward learning by a simultaneous estimation of the transition model.

1 2

a

b

c

Figure 4.5: Visualization of the composition of the Q-gradients in the minimum example. PM SERD
(red, dashed) propagates the gradients only along the optimum action. In contrast, MDCE SERD (blue)
propagates them along the Boltzmann policy. Therefore, each partial derivative is influenced by all reachable
states and actions.
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However, the higher number of parameters increases the risk of overfitting the model
to the data. Furthermore, (partially) unknown dynamics may introduce ambiguities. A
possible solution to prevent overfitting and to resolve ambiguities is the use of priors
P (θ). In the following, we discuss different priors. Some of them are applicable to all
parameters and others only to transition model parameters.

4.5.1 Lp-norm

The Lp-norm jointly regularizes a set of parameters with different characteristics. For
example, the L1-regularization enforces sparsity in the parameters. If it is applied to the
feature weights θR, it will learn reward functions that strongly depend on a subset of
features, while other features receive zero weights. The influence of L1-regularization
on the transition model estimate depends on the model of the dynamics. However, if the
parameters directly relate to the probability of a certain state, e.g. logP (s′|s, a) ∝ θk,
deterministic dynamics are learned. In contrast, L2-regularization is jointly shrinking the
parameters and is not directly enforcing sparsity. However, since it decays the parameters,
it prevents the reward function to become very large and Boltzmann policies not to be too
sharp. The same applies to transition models, of which the parameters directly relate to
the probability. The regularization term can be specified as:

logP (θ) = −λ‖θ‖p − Z (4.86)

with the normalization constant Z = log
[∫
ρ

exp (−λ‖ρ‖p) dρ
]
. Since it is constant for

all θ, it can be ignored. The partial derivative of the Lp-norm is

∂

∂θi
logP (θ) = −θi|θi|

p−2

‖ρ‖p−1
p

. (4.87)

4.5.2 Entropy regularization

Entropy regularization is applicable to parameters of probability distributions, such as the
environment’s dynamics. It enforces them to have a high entropy, which relates to flat
probability distributions and thus avoids learning sharp, deterministic dynamics. The log
likelihood of this prior is

logP (θ) = λ
∑
s∈S

∑
a∈A

∑
s′∈S

[
−PθT (s′ | s, a) · logPθT

(
sτt+1 | sτt , aτt

)]
− Z, (4.88)
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with the following gradient:

∂

∂θi
logP (θ) = −λ

∑
s∈S

∑
a∈A

∑
s′∈S

(4.89)(
∂

∂θi
PθT (s′ | s, a)

)(
logPθT

(
sτt+1 | sτt , aτt

)
+ 1

)
. (4.90)

4.5.3 KLD regularization

For some problems, it might be possible to specify a prior distribution Q that the learned
probability distribution PθT should be close to. In these cases, it is possible to apply KLD
regularization, which results in a large loss, if the relative entropy from Q to P is large.
Hence, this regularization penalizes differences between the two distributions. The log
likelihood of this prior is given by

logP (θ) = −λ
∑
s∈S

∑
a∈A

∑
s′∈S

[
Q (s′ | s, a) · log

Q
(
sτt+1 | sτt , aτt

)
PθT

(
sτt+1 | sτt , aτt

)]− Z, (4.91)

with the following gradient:

∂

∂θi
logP (θ) = −λ

∑
s∈S

∑
a∈A

∑
s′∈S

Q (s′ | s, a)
∂
∂θi
PθT (s′ | s, a)

PθT (s′ | s, a)
. (4.92)

4.5.4 Discussion

To clarify the characteristics and properties of different priors on resulting probability
distributions, we present an example in which the parameters of a Boltzmann distribution
Pθ(xi) = exp(θi)∑

j∈{1,2} exp(θj)
are optimized. Fig. 4.6 (a) illustrates this distribution over

parameters θ, which indicates that Pθ(x1) and Pθ(x2) become more different the larger
the difference in the respective parameters θ1 and θ2 is. Fig. 4.6 (b) illustrates a prior
distribution with Q(x1) = 0.9 and Q(x2) = 0.1, which is used for visualizing the
KLD regularization. In typical MAP optimization problems, the objective consists of a
likelihood and a prior term (see the SERD problem formulation Eq. (4.6)). In this example,
the log likelihood of the prior is maximized under the parameter constraint ‖θ‖2 = 1,
which is a substitute for the likelihood term. That way, it is possible to exemplify the
influence of using various priors during optimization. Tab. 4.3 shows the surface of the
log likelihood of the introduced priors together with the resulting optimal Boltzmann
distributions Pθ(xi).
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The surface of the L1-norm prior is not smooth. From all parameters θ the ones that
lie on the edge of the surface maximize the log prior. Hence, there exist four optimal
parameter sets, while two of them result in the same distribution. In contrast, under the
L2-norm prior all parameters that satisfy the constraint have equal log priors. Hence,
there exist infinitely many equally good solutions for the probability distributions, while
two samples of them are illustrated. Comparing the surface of the log Entropy prior

over the parameters in Tab. 4.3 to the plot of the distribution in Fig. 4.6 (a), reveals that
the log prior is high, when P (x1) and P (x2) are close. This is reasonable, since the
Entropy prior penalizes sharp or deterministic probability distributions. Consequently,
optimal parameters lie on the line with equal parameters θ∗ = θ1 = θ2 and thus result in a
distribution P (x) that is uniform. Finally, the KLD prior uses the prior distribution shown
in Fig. 4.6. The negative KLD from Q to Pθ in Tab. 4.3 is skewed to the left side, which
is more similar to the prior (measured by KLD). Hence, optimal parameters result in a
probability distribution P ∗(x) that is as close as possible to Q(x) under the parameter
constraint. In the example, this results in P ∗(x1)� P ∗(x2), while it was not possible to
exactly fit it due to the constraint P ∗(x1) 6= Q(x1).

−2
−1

0
1

2

−2 −1
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0.5

1

θ1
θ2

P

(a) Parametric distribution P (xi) = exp(θi)/Z
over varying parameters θ. Pθ(x1) is indicated
in blue and Pθ(x2) in green.
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0.5
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θ2

P

(b) Prior distribution P (x1) = 0.9 (blue) and
P (x2) = 0.1 (green), which is constant over the
parameters.

Figure 4.6: This figure illustrates an exemplary parametric distribution Pθ(x) that is used for visualizing
and explaining various regularization methods for the parameters θ. (a) plots a Boltzmann distribution
Pθ(xi) = exp(θi)/Z over the parameters θ, while (b) shows the prior distribution (Q(x1) = 0.9 and
Q(x2) = 0.1).
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Reg. Log Prior Surface Optimal distribution(s) P (x)

L1
−2−1

0
1

2

−2 −1 0 1 2

−4

−2

0

θ1θ2 x1 x2
0

1

x1 x2
0

1

L2
−2−1

0
1

2

−2 −1 0 1 2

−2

0

θ1θ2 x1 x2
0

1

infinitely
many

solutions

x1 x2
0

1

Entropy
−2−1

0
1

2

−2 −1 0 1 2

0.5

θ1θ2 x1 x2
0

1

KLD(Q‖P )
−2−1

0
1

2

−2 −1 0 1 2

−2

0

θ1θ2 x1 x2
0

1

Table 4.3: The center column of this table illustrates the log prior surfaces of the parameters of a Boltzmann
distribution with two outcomes for various regularization methods. The Boltzmann distribution correspond-
ing to the different parameters is shown in Fig. 4.6. Furthermore, the right column illustrates the resulting
optimal distributions under the constraint that the L2-norm of the parameters is ‖θ‖2 = 1.
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4.6 Evaluation

In the previous section, we have introduced a toy example with only two states and three
actions (see Fig. 4.2) to give an overview on IRL and common pitfalls. For example,
when the environment’s dynamics are partially or fully unknown, it might not be possible
to deduce the expert’s reward function due to additional ambiguities, which stem from
the ignorance of the model of the environment. While many IRL approaches assume
that the transition model is known or that it can be learned from the observed transitions
prior to reward learning, this might result in estimates that are biased towards suboptimal
solutions. However, rational and (close to optimal) experts typically consider both their
individual reward as well as the transition model of the environment. Therefore, it is
possible to estimate both from demonstrations of expert behavior.

To make use of this additional information and to overcome the IRL pitfalls, the
previous section introduced SERD, which is an approach for a simultaneous estimation
of rewards and dynamics solely from expert demonstrations. The theoretical derivations
indicate that the combined approach can be beneficial, since it allows making use of both
the observed transitions and the observed actions of the expert for learning a model of
the dynamics. In addition, a more accurate model of the dynamics could also improve
the reward estimates. However, it is not clear whether the approach really improves the
estimates, since learning a larger number of parameters might also result in overfitting,
when learning from a small, fixed dataset of observations. Furthermore, the SERD
approach requires to make assumptions about the policy model of the expert. In Sec. 4.4,
we have introduced MDCE and PM SERD motivated by popular policy models used in
IRL. Nevertheless, wrong assumptions about the policy model might tamper with the
estimate of the environment’s dynamics. Since this transition model also influences the
estimate of the expert’s reward function, it could also be falsified.

Therefore, the following section evaluates SERD against classical IRL methods on
several varying examples. First, we revisit the toy example from Fig. 4.3 to check the
claims about pitfalls from Chap. 4 and whether SERD can solve them. Afterwards, we
use a grid world navigation task based on satellite images to examine the capabilities of
SERD in a more complex scenario that allows determining differences in the estimates
exactly by specifying ground truth models.
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Figure 4.7: Toy example based on the previously introduced MDP. It is assumed that a set of expert
demonstrations is available, in which the expert always starts in state 1 and chooses action a. Therefore,
action b is never observed. The Figures (a) and (b) illustrate two possible MDPs that could have caused
these observations: In (a) the expert chooses action a to stay in state 1 since it has a higher reward than state
2 and action a has a higher probability to stay in state 1. In contrast, (b) depicts an MDP where the optimal
expert also chooses action a, but in this case with the ambition to transition to state 2 due to a higher reward.
Hence, the probability to end up in state 2 is higher when applying action a.

4.6.1 Minimum Example

In Sec. 4.1, we have introduced several limitations of IRL by means of a toy example
environment that is depicted in Fig. 4.2. An agent may choose from action a or b in
state 1, while in state 2 only action c is available. As soon as the agent reaches state 2,
he is not able to transit back to state 1, since only action c is available with the single
successor state 2. As illustrated in Fig. 4.7, the ground truth dynamics of the environment
are set to P (2 | 1, a) = 2

3
, P (1 | 1, a) = 1

3
, and P (2 | 2, c) = 1. In this experiment, the

only available information is that the expert always chooses action a. Consequently, the
agent never observes samples from the transition model under action b. According to
the analysis in Sec. 4.1, the behavior could have been caused by the two different sets of
MDPs that are visualized in Fig. 4.7, while in MDP A the agent chooses action a with the
goal to stay in state 1 and in MDP B the agent chooses action a to transition to state 2.

For running IRL and SERD, a parametric model of the environments dynamics is
required that should be learned from demonstrations. Therefore, four transition model
parameters are introduced for P (1 | 1, a), P (2 | 1, a), P (1 | 1, b), and P (2 | 1, b), which
are parameterized by energies of Boltzmann distributions.

According to the problem statement, the dynamics are unknown in advance. However,
MDCE IRL requires a transition model for learning and for MDCE SERD a good initial
guess is probably beneficial. Therefore, we used an M-estimator with a uniform prior to
estimate a transition model directly from expert demonstrations. Since action b is never
observed as the expert always chooses action a, the initial guess of the dynamics for
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action b will be the uniform prior Pθ(1 | 1, b) = 0.5 and Pθ(2 | 1, b) = 0.5.
To reduce the complexity of the learning task, we simplify the reward function R(s) =

θRf(s) to a single weighted state-dependent feature, which is f(s = 1) = −1 and f(s =

2) = 1. Therefore, by flipping the sign of the feature weight, the reward function changes
between Fig. 4.7 (a) and (b). By increasing |θR|, the difference between the rewards
of the two states increases, which also increases differences in Q-values. Consequently,
Boltzmann distribution based policy models such as the MDCE (Eq. (3.30)) or PM
(Eq. (3.11)) will be less random and even become deterministic for θR → ±∞.
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Figure 4.8: Results of the toy example. (a) Estimated probability density function of the transition models
that have been learned by MDCE SERD (blue, A and B) or used by MDCE IRL (red, C). (b) Estimated
probability density function of the learned feature weights θR.

Finally, we sample 5, 000 expert demonstration sets of varying sizes and a horizon of
H = 3 from the deterministic, optimal policy, which always chooses action a in state
1. We use MDCE SERD and MDCE IRL for learning with randomly initialized feature
weights θR ∈ [−10, 10]. Matching Boltzmann distributions to deterministic behavior is
not possible unless the energies become ±∞. To ensure nondegenerate distributions, an
L2-regularization with a small weight of 10−6 is applied to the parameters of the transition
model θT and the reward function θR.

Fig. 4.8 (a) illustrates the density estimate of the resulting transition models with
P (2 | 1, a) and P (2 | 1, b) on the x- and y-axis. The dashed, diagonal line separates the
two options that we have identified in Sec. 4.1 and which mean that either action a or
b has a higher probability to cause a transition to the second state (See Fig. 4.7). This
difference of the dynamics changes the interpretation of the expert’s behavior, by making
either the reward of state 1 or of state 2 higher.
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Figure 4.9: Median and quartiles of the log likelihood of ground truth expert demonstrations under the
learned models of the reward function and the transition model over varying demonstration set sizes.

It can be seen that there exists one red mode (C), which belongs to MDCE IRL. Since
we have specified a uniform prior for the initial estimation of the transition model, this
mode lies at P (2 | 1, b) = P (1 | 1, b) = 0.5, while the probability for a transition to
state 2 roughly matches the ground truth model P (2 | 1, a) = 2

3
. However, MDCE IRL

was only able to find one of the two possible solutions, since the initialization of the
transition model introduces a bias. In contrast, different runs of MDCE SERD end up in
both modes (A and B), that lie in different regions and thus correspond to the two different
explanations of the observed behavior.

Fig. 4.8 (b) also indicates that MDCE SERD finds both explanations for the expert’s
behavior. Furthermore, it even allows arguing that (A) and (B) directly correspond to
Fig. 4.7 (a) and (b). At the same time, MDCE IRL gets stuck in one mode. Indeed, by
using another prior for the M-estimator, MDCE IRL could have found the other mode, too.
However, without training with different transition model initializations, it is not possible
to find different modes. Without further knowledge it is not possible to say, which of the
two modes of MDCE SERD models correspond to the real environment. While MDCE
SERD allows an expert to choose the right one of them, MDCE IRL outputs only one
estimate. Thus, an expert would typically interpret this mode as the correct one. We
believe that this property of MDCE SERD is an advantage, since it allows experts to
find and to resolve ambiguities. Finally, Fig. 4.9 illustrates the median log likelihood
of ground truth demonstrations under the stochastic policy of the learned model. When
splitting the MDCE SERD estimates according to the mode that they belong to, it can
be seen that the estimates of MDCE IRL and the corresponding mode of MDCE SERD
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perform similarly. The second mode of MDCE SERD has a lower log likelihood. Hence,
this measure might indicate, which of the modes the more likely one is.

Altogether, this evaluation has demonstrated some of the claims about the limitations of
IRL. For example, we have shown that naive estimates of the dynamics can be inaccurate
due to the goal-bias of demonstrations. Furthermore, we have illustrated that unknown
transition models can introduce ambiguities, which can often only be found if the problem
is solved simultaneously. Otherwise, IRL ends up with one of the solutions, which could
be the wrong one.

4.6.2 Gridworld Navigation

To evaluate the performance of the proposed approaches on a more complex problem, we
have created an artificial satellite navigation task, which is illustrated in Fig. 4.10 and
4.11. The evaluation consists of two parts: First, we train a model from samples in the
training environment (see Fig. 4.10) and then evaluate it in the transfer environment (see

(a) Environment (b) State space (c) Terrain type

(d) Reward (e) Value (f) State frequency

Figure 4.10: Illustration of properties of the training environment. (a) Environment, Map data: Google.
(b) Discretized state space. The goal state is indicated in green and start states in red. (c) Forest states are
indicated in a dark-gray color and open terrain in light gray. Furthermore, plot (d) shows the reward, (e) the
resulting value function, and (f) the expected state frequency.
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Fig. 4.11) for checking its generalization performance.

This experiment aims for recovering the environment’s dynamics as well as the ground
truth reward function that an expert uses for reaching desired states via navigating on
satellite images. Fig. 4.10 (b) and Fig. 4.11 (b) indicate the goal states in green and initial
states in red. The satellite image is discretized into 20× 20 states and the action space
consists of five different actions, which are moving in one of four directions (north, east,
south, or west) or staying in the state. However, the dynamics restrict potential successor
states such that transitions can only occur to the four neighboring states or the current
one. If the agent is in an open terrain state (Fig. 4.10 (c) and Fig. 4.11 (c): depicted
in light gray) a successful move into the desired direction occurs with probability 0.8.
Otherwise, he moves to the left or to the right of the motion direction with probability
0.1. In contrast, the dynamics in the forest are more noisy with a probability of 0.3 of
successful transitions or otherwise 0.175 for moving into one of the remaining successor
states. Staying in the current state is always successful. Altogether, the agent moves faster
on open terrain than through the forest. Accordingly, he needs to trade off between going
straight through the forest or taking longer paths on open terrain, which are more likely to
be successful.

As defined in Sec. 4.4, the reward function is a linear combination of state-dependent
features. The first feature is the average gray scale value of the image in a certain state
and is normalized to [0, 1]. The second feature indicates the goal state, by being 1 in the
goal area or 0 otherwise. To enable a more substantial evaluation, we do not ask humans
to provide expert demonstrations, but rather sampled them from ground truth models,
which allow for evaluating the resulting estimates. Therefore, we specify the discount as
0.99 and set the ground truth feature weights to θR = (6, 6)ᵀ. Additionally, the policy
parameter of PM SERD, which scales the stochasticity, is set to θP = 2. Fig. 4.10 (d) and
Fig. 4.11 (d) illustrate the resulting reward function. They visualize that the roads and the
goal state have a higher reward than the lawn or the forest. Consequently, an agent needs
to weigh between low rewards and slow progress in the forest, medium rewards and fast
progress on lawn, or higher rewards and fast progress on roads.

Based on this definition, we have computed stochastic policies of MDCE and PM
according to Eq. (4.13) and Eq. (4.62) from the corresponding value and soft-value
functions. Fig. 4.10 (e), (f) and Fig. 4.11 (e), (f) illustrate the soft value function of the
MDCE policy together with the state probability distribution that arises when an agent
applies the MDCE policy in the environment. The optimal value function, the resulting
PM policy, and the corresponding state probability distribution differ only slightly from
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(a) Environment (b) State space (c) Terrain type

(d) Reward (e) Value (f) State frequency

Figure 4.11: Illustration of properties of the transfer environment. (a) Environment, Map data: Google.
(b) Discretized state space. The goal state is indicated in green and start states in red. (c) Forest states are
indicated in a dark-gray color and open terrain in light gray. Furthermore, plot (d) shows the reward, (e) the
resulting value function, and (f) the expected state frequency.

the MDCE one. Therefore, we do not present the corresponding plots.

These stochastic policies as well as the previously specified transition model are the
ground truth models for sampling expert demonstrations. Sec. 4.6.2 uses samples from
the MDCE policy, while Sec. 4.6.2 evaluates learning from samples of the PM policy.
The definition of the unified SERD problem distinguishes between the true environment’s
dynamics PθT and the expert’s belief about them PθTE . In this experiment, we assume that
the expert has full knowledge about the true dynamics of the environment. Therefore, the
parameters θTE and θT are equal and the optimization of the transition model parameters
uses both terms of Eq. (4.9). In general, it is problem dependent whether they can be
assumed to be identical. If the expert has a lot of knowledge about the environment
and is indeed able to provide optimal demonstrations, it is fine to make this assumption.
However, violating this assumption introduces a bias. The usage of differing models
would require introducing an additional regularization term, which relates the two models
to each other and keeps them similar. This is a future field of research, which we do not
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consider in this thesis.

Due to the problem statement, we assume that the dynamics of the environment are
unknown and only a fix set of expert demonstrations is available. Therefore, we estimate
the dynamics by an M-estimator with a uniform prior from expert demonstrations. For
each action and terrain type an independent transition model is trained, except for the
staying action which is identical in both terrains. We have chosen independent models to
increase the complexity of the learning task (larger number of learnable parameters), even
though that the transition models are rotational invariant. Altogether, we have trained 9
transition models with each having 5 possible successor states, resulting in 45 transition
model parameters, which are modeled by energies of Boltzmann distributions.

Finally, the evaluation compares MDCE IRL, REIRL, and either MDCE SERD or
PM SERD in terms of reward function learning from the sampled ground truth expert
demonstrations. For learning, we initialize the feature weights by randomly sampling
them from a uniform distribution ∀i : θi ∈ [−10, 10]. All approaches are trained on
various demonstrations set sizes and use the M-estimated dynamics for learning. However,
the proposed SERD approaches further optimize the estimate of the dynamics, while the
other approaches assume the given transition model to be the real one. REIRL requires an
additional set of samples from an arbitrary known policy. Since the problem assumption
is that only expert demonstrations are available, we sample arbitrary demonstrations
from the M-estimated dynamics and an M-estimated policy trained via imitation learning
from expert demonstrations. In the following, we discuss the results of the two SERD
approaches.

MDCE SERD

Fig. 4.12 summarizes the results of MDCE SERD and alternative approaches based on IRL
from expert demonstrations, which stem from applying a ground truth MDCE policy in the
environment. Since no prior knowledge is available, none of the possible solutions to the
problem is more likely than the others. Therefore, we compute MDCE SERD estimates
with a uniform prior for both the reward function parameters as well as the transition
model parameters. The first figure shows a comparison of the median log likelihood of
ground truth demonstrations under the learned models. It indicates that MDCE SERD
outperforms the other approaches, is very sample efficient, and has a low variance already
for small numbers of demonstrations. MDCE IRL has a lower performance than MDCE
SERD. One reason might be that it conditions on a potentially inaccurate model of the
dynamics and cannot correct it. REIRL has the lowest performance in this task among the
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Figure 4.12: Evaluation of MDCE SERD. (a) Median log likelihood with quartiles of demonstrations drawn
from the true model under the estimated model. (b) Average Kullback-Leibler divergence between the true
dynamics of the environment and the estimated one. (c) Average Kullback-Leibler divergence between the
true ground truth policy and the learned one. (d) Median log likelihood with quartiles of demonstrations
drawn from the true model under the estimated model in the transfer task.

evaluated methods. This is probably caused by the model assumptions of REIRL. Since it
is based on MaxEnt IRL, it approximates the probability distribution over trajectories by
inappropriately modeling the influence of the stochastic transition model. To verify that
the differences of the mean log likelihood of the demonstrations under the trained models
is significant, Welch’s t-test [111] has been used. In the training task, the performance
of MDCE SERD against the other approaches is statistically significant for sample set
sizes that are larger than 3, while in the transfer task statistical significance is given at
least for demonstration set sizes larger than 12. Fig. 4.12 (b) illustrates the expected
Kullback-Leibler divergence from the real transition model PR to the estimated one
PT under the joint probability distribution of states and actions from the ground truth
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model. Both REIRL and MDCE IRL use the M-estimated dynamics. Therefore, their
transition models perform similarly. Since MDCE SERD optimizes the transition model
simultaneously with the reward function, it is able to correct transition model errors.
In contrast to the initial hypothesis about overfitting with small dataset, it seems that
SERD is even beneficial, when only a small number of expert demonstrations is available.
In addition, Fig. 4.12 (c) illustrates the expected Kullback-Leibler divergence from the
real ground truth policy to the learned one, which indicates that SERD had the highest
accuracy in learning a model that matches the real expert’s behavior.

The second part of the experiment evaluates the generalizability of the estimates by
transferring them to the environment in Fig. 4.11. Figure 4.12 (d) shows the median of the
log likelihood of ground truth demonstrations under the stochastic policy, which is based
on the estimated reward functions and transition models. Even in the new environment,
MDCE SERD performs better than MDCE IRL or REIRL. In summary, MDCE SERD is
able to learn generalizable rewards and dynamics from an expert executing a stochastic
policy in a noisy environment without using an inductive bias via a prior. SERD has
shown to result in models that explain the observed behavior better, while being sample
efficient and yielding estimates with small variance.

PM SERD

When having knowledge about the model of the expert’s stochastic policy, PM SERD
can be beneficial for learning, since it allows applying SERD to custom policy models
as long as they are differentiable. In this experiment, we use a Boltzmann distribution
as a stochastic policy model, which is introduced in Sec. 4.4.2. Since MDCE SERD
performed well without regularization, we first tried to learn with a uniform prior, which
is an uninformed distribution that does not favor any particular solution. Even though
PM SERD did outperform the other approaches in terms of the log likelihood of the
ground truth demonstrations, its estimate of the dynamics was worse and the transfer
task performance was poor, which indicates overfitting to the training task. By analyzing
the estimates, it was obvious that the transition model in the forest did not match the
real dynamics. Hence, PM SERD uses the parts of the transition model that are rarely
or never observed to better match the policy to the demonstrations of the expert. This
result confirms our belief that MDCE SERD generalizes better than PM SERD due to the
influence of the stochastic policy on the gradient.

Therefore, we rerun experiments with regularization to prevent overfitting. The policy
parameters and the feature weights were regularized by Gaussian priors, while the param-
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eters of the dynamics used an entropy prior, which favors a high entropy of the transition
model and thus causes the conditional distribution PθTE (s′ | s, a) to be flat. Fig. 4.13
summarizes the results. Similarly to the previous experiment of MDCE SERD, PM SERD
outperforms the other approaches. The median log likelihood of demonstrations from
the ground truth model exceeds the results of the other approaches. Furthermore, the
proposed approach is very sample efficient and results in low variance estimates. Fig. 4.13
(b) shows that PM SERD learns models of the dynamics that are more accurate by further
improving the initial transition model estimate. Entropy regularization was sufficient to
achieve these results, even though this regularization type only prevents models of the
environment’s dynamics that become too close to deterministic. In addition, Fig. 4.13
(c) shows the expected Kullback-Leibler divergence of the policy, which indicates that
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Figure 4.13: Evaluation of PM SERD. (a) Median log likelihood with quartiles of demonstrations drawn
from the true model under the estimated model. (b) Average Kullback-Leibler divergence between the
true dynamics of the environment and the estimated one. (d) Median log likelihood with quartiles of
demonstrations drawn from the true model under the estimated model in the transfer task.
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PM SERD matches the experts policy more accurately. This is reasonable since REIRL
and MDCE IRL make wrong model assumptions. The ground truth model computes an
optimal Q-function and plugs a stochastic policy model on top of it. This corresponds to
an agent that is able to predict optimal actions and Q-values, but with a noisy execution
of the policy. In contrast, REIRL and MDCE IRL assume stochastic behavior in all
hierarchies of the model via relaxations. For example, MDCE IRL uses the softened
Q-function instead of the optimal one. Finally, Fig. 4.13 (d) illustrates the median log
likelihood of demonstrations from the ground truth model in the transfer task under the
learned model from the training task. As before, PM SERD has a higher performance
than the other approaches, which shows that with appropriate priors PM SERD is able to
generalize well.

Discussion

Both MDCE SERD and PM SERD are able to model the demonstrated behavior, by
learning appropriate estimates of the environment’s dynamics as well as accurate reward
function that explain the observed behavior. Furthermore, the SERD-based approaches
are more sample efficient and provide estimates with lower variances. This is probably
caused by inaccurate initial estimates of the environment’s dynamics, which are likely to
be wrong if the number of samples is small. In contrast to IRL approaches, SERD is able
to correct these inaccuracies during training.

A comparison of the two SERD approaches shows that PM SERD is more prone to
overfitting. A possible explanation is the difference of the Q-gradient iteration. While the
soft Q-gradient of MDCE SERD propagates expected gradients along the stochastic policy,
PM SERD propagates them only along the optimum policy. Therefore, the converged soft
Q-gradient of MDCE SERD considers a larger area of the state- and action-space. This
fact serves as a regularization and makes the results more stable. However, optimizing
the hyperparameters of the prior can help to overcome the burden of PM SERD. Then,
it has the advantages of more flexibility in the policy model as well as a more efficient
computation of the Q-gradient.





Chapter 5

Learning to Navigate in a Populated
Hallway

With an increasing number of intelligent systems acting in popu-
lated environments, there is an emerging necessity for programming
techniques that allow for efficient adjustment of the robot’s behavior
to new environments or tasks. Programming by demonstration can
be a way to allow non computer scientists for adjusting the behavior
of a system such as intelligent robots. A major burden in learning
from demonstrations is that often both the underlying goal and the
environment’s dynamics are unknown. The proposed approaches
for a Simultaneous Estimation of Rewards and Dynamics provide a
theoretical advantage over the former IRL-based approaches with
naive estimation of transition models and can therefore be ben-
eficial in these cases. In the following, classical IRL algorithms,
such as Maximum Discounted Causal Entropy IRL and Relative
Entropy IRL, are compared with SERD for learning high-level nav-
igation strategies in a realistic hallway navigation scenario solely
from human expert demonstrations. We show that the theoretical
advantage of SERD also pays off in practice by estimating better
models of the environment’s dynamics and explaining the expert’s
demonstrations more accurately.

In the last couple of years, intelligent systems such as mobile robots have been used
in various populated environments. Well-known examples are the museum tour-guide
robots RHINO [20] and MINERVA [100], the conference-attending robot GRACE [94],
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Figure 5.1: Navigating in populated environments requires a robot to weigh between several contradictory
properties, such as being goal directed, complying with social rules, as well as keeping comfort and safety
distances. This picture shows the implemented environment based on the MORSE simulator [26].

and the robot Obelix [60], which navigates through urban city-centers. As being accepted
by humans is desirable for autonomous systems, the importance of their social-awareness
increases. The term “social” typically refers to some type of interaction between individ-
uals. However, different approaches and opinions exist in current research, as the term
allows a scope for discussion.

Kirby [47] points out the need of robots to behave according to social norms and
introduces a path planning approach based on a cost function that depends on social and
task-related conventions. Morales et al.[72] model the side-by-side walking behavior with
a utility function based on social and environment’s parameters. Lichtenthäler et al.[68]
define the legibility as a prerequisite for user acceptance and measure its influence on
the perceived safety or comfort. Since paying attention to the social acceptance is only
necessary if humans are affected, Tipaldi et al.[101, 102] try to minimize the interference
probability with people. This strategy is suitable in environments with a small number of
humans, but navigating in crowdy areas requires different approaches. Therefore, Müller
et al.[73] propose to follow pedestrians that walk into the direction of the goal, while
Lerner et al.[61] suggest a data-driven approach, where trajectories from similar situations
are chosen from a database. In contrast, Luber et al.[69] learn a set of dynamic motion
prototypes from observations to compute cost maps using an any-angle A* algorithm.
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A popular approach for modeling pedestrian motion is the social force model of
Helbing and Molnar [36], which proposes that a human is a particle under the influence
of attracting and repulsive forces. While this approach is widely used for simulating
crowds, it sometimes causes unnatural trajectories when predicting trajectories for single
individuals. Ferrer et al.[28] extend the social force approach by considering interactions
between the robot and pedestrians.

Various approaches originate from the field of crowd simulation as well. Treuille
et al.[105] propose a crowd model based on continuum dynamics. In contrast, Guy
et al.[34] formulate an optimization algorithm to compute paths based on the principle of
least effort. As situations affect human behaviors Kim et al.[46] introduce a method for
simulating dynamic crowd behavior based on the General Adaption Syndrome Theory.
Since uncertainty increases in crowdy environments, many approaches suffer from robots
that are unable to move. To overcome this problem, Trautmann and Krause [104] propose
a cooperative method, which models joint trajectories as dependent Gaussian processes.

Many of these approaches have in common that they require specification of funda-
mental parts of the resulting behavior, such as the controller, utility functions or features,
when designing the system. However, these systems could also be deployed in different
environments with varying tasks, which would require a computer scientist to redesign
behavior, e.g. by specifying features or parameters. Imagine a robot that should solve
transportation tasks in buildings. In Europe, the robot should drive on the right side
and keep proper distances to people, due to cultural characteristics as well as social
rules. In contrast, left-hand traffic could be more appropriate in other countries and social
distances to pedestrians could also differ. To ensure a fast and easy deployment of robots
in various environments, it is necessary to provide simple programming approaches for
non-experts to parameterize new behaviors, goals or tasks. Several approaches have been
proposed that allow teaching new behaviors to systems by demonstrating the task instead
of programming it directly.

For example, Maximum Entropy IRL has been successfully applied to different tasks
such as inferring decisions of taxi drivers by Ziebart et al.[117], learning a priority-
adaptive navigation [38], or learning to navigate through crowded environments by
Henry et al.[37], which shares similarities with the experiment in this work. Vasquez
et al.[106] compare IRL algorithms and features for robot navigation in crowds. Kuderer
et al.[54] predict human trajectories by learning their motion behavior in high-dimensional,
continuous state spaces. This cooperative model is also useful for teaching mobile robots
to navigate in populated environments jointly with arbitrary many pedestrians [55], by
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Figure 5.2: A simulated hallway scenario with humans following a social convention to walk on the right
side implemented based on MORSE [26]. Humans are controlled by the Social Force model [36] and the
robot is either controlled by a human to demonstrate desired behavior or by a controller following the
optimal policy under the estimated reward function and transition model.

learning a probability distribution over the trajectories of all agents. Levine et al.[62]
extend the MaxEnt IRL with a local approximation of the reward function to allow for
locally optimal samples in continuous, high-dimensional state- and action-spaces.

Many of the outlined approaches repeatedly apply a Reinforcement Learning algorithm
to find optimal policies as part of the IRL algorithm. As summarized in Chap. 4, this
has several drawbacks such as the approaches often require the dynamics of the envi-
ronment to be known, a simulator of the environment needs to be available for querying
demonstrations, or appropriate heuristics need to be found that do not tamper with the
results. In contrast, we have introduced approaches for a Simultaneous Estimation of
Rewards and Dynamics (SERD) in Chap. 4, which to some degree overcome the need
of an existing model of the environment’s dynamics or the availability of a simulator.
This is done by exploiting the fact that the expert’s policy has been influenced by the
reward function as well as the environment’s dynamics, which allows to train both solely
from expert demonstrations. The evaluation in Sec. 4.6 has shown that it is possible to
estimate both reward functions and transitions models solely from expert demonstrations
in toy examples. However, instead of learning from human demonstrations, we have used
artificial expert demonstrations that stemmed from a stochastic policy of the same type of
distribution that was modeled by the proposed approach. In contrast, real human behavior
may differ from this type of distribution. Therefore, it is unclear whether learning rewards
and dynamics from real human expert demonstrations is possible or whether traditional
IRL approaches generalize better in such cases.

In this paper, we investigate the performance of IRL approaches for robot programming
tasks from human demonstrations. We compare SERD Chap. 4, Maximum Discounted
Causal Entropy IRL [16] and Relative Entropy IRL [18] for learning high-level navigation
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strategies in a densely populated hallway scenario. Further, we assume that only human
demonstrations are available and the dynamics as well as the reward function are unknown
beforehand. In general, it would be possible to evaluate all of the approaches based on a
real world navigation task. However, the pedestrians are part of the environment and by
changing the number of pedestrians, the individual people or parts of the experimental
configuration, the environment’s dynamics might also change. For example, the preferred
walking speed or comfort distance varies across people. In order to enable reproducibility
and thereby achieve comparable results, we have created a simulation of a populated
hallway. Fig. 5.1 and Fig. 5.2 illustrate the simulation environment, which consists of a
hallway populated by several pedestrians that are walking in circles according to right-
hand traffic. In the following evaluation, we present that SERD outperforms the evaluated
IRL approaches in terms of the modeled behavior as well as the learned dynamics of
the environment in both the training and a transfer task. Furthermore, we show that
more accurate dynamics can itself be beneficial, since they allow making more accurate
predictions of the duration of task execution.

S

G

(a) High-Level navigation strategy

G

(b) Local motion plan

Figure 5.3: Due to the high complexity of planning problems in large, stochastic environments, motion
planning is often decomposed into high-level strategies and local motion planning. This decomposition is
based on the assumption that it is not necessary to plan in trajectory space until the goal as the environment
is too stochastic. Hence, the high-level strategies omits certain available local aspects (e,g, dynamic objects)
and outputs a less complex high-level plan to the goal, while the local motion planner takes into account the
local aspects and the high-level path for creating the motion. In (a), a discrete high-level strategy is depicted
as a blue path from a robots current position S towards a goal G, while omitting aspects such as dynamics
objects or the real continuous position of the robot in the space. In contrast, (b) illustrates a local motion
plan, which takes into account the two humans (indicated in green) and produces a driveable trajectory that
guarantees to not collide with humans, while moving roughly in the direction of the global path from the
high-level strategy.
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5.1 Learning High-Level Navigation Strategies

Robot planning problems in large, populated environments are often highly complex,
since robots suffer from partial observability (e.g. they cannot perceive humans that are
occluded) and the environment’s dynamics are highly stochastic. For example, models of
joint human motion are not available and human behavior by itself is highly stochastic,
which render it difficult to make accurate long-term predictions. Consequently, motion
planning is often decomposed into high-level strategies and local motion planning as
illustrated in Fig. 5.3. This is feasible, since it is not necessary to plan full exact trajectories
that end up in the goal location, since they are going to be outdated after some timesteps
due to stochastic and inaccurate transition models, as well as the unobservability of
occluded dynamic objects. High-level strategies typically provide global directions
without taking into account all aspects of the environment such as dynamic objects. In
contrast, local motion planners consider dynamic objects and their movement and output
low-level control commands.

The following section provides a discrete grid-based model for learning high-level navi-
gation strategies that provide guidance for the local motion planner, which outputs directly
executable actions. The resulting policy serves as a global strategy, which incorporates the
estimated reward function as well as the trained dynamics of the environment including
the influence of the underlying local motion planner. In the evaluation, we use this model
for learning navigation strategies in densely populated hallways. Therefore, the estimated
transition model incorporates the influence of walking humans on the motion planning of
the robot. In the following, we describe the modeling of the environment with detailed
explanations of the state- and action-space, the dynamics, and the reward features.

Table 5.1: Explanation of transitions
Transition Meaning

0 Not moving
D Moving into the preferred direction
R Moving right wrt. the preferred direction
L Moving left wrt. the preferred direction
B Moving backwards
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5.1.1 State- and action-space

The high-level navigation strategy guides the local planner through the environment.
Therefore, we use a coarse discretization of a 2D map as a discrete state space on which
the robot is navigating. Accordingly, the robots position in the map fully defines the state.
In each state, the robot can pick from five different actions, which are moving into one of
the four directions or waiting.

5.1.2 Modeling the dynamics

We assume that the robot is only able to move to adjacent cells. Therefore, the transitions
Ψ = {0, D,R,B, L}, as specified in Tab. 5.1, are restricted to end up in one of the
neighbouring states or the current one. Fig. 5.4 illustrates the available successor states if
the robot is located in state 0. We assume that the dynamics are invariant of the preferred
movement direction and modeled by parameters Θ = {θ0, θD, θR, θB, θL} of a Gibbs
distribution:

P (Ψ = i) =
exp (βθi)∑
j∈Ψ exp (βθj)

(5.1)

with β being a scaling parameter. The gradient of this transition model with respect to its
parameters is:

∂

∂θj
P (Ψ = i) =


β

exp(βθi)
∑
k∈Ψ\i exp(βθk)

(
∑
k∈Ψ exp(βθk))

2 if i = j

−β exp(β(θi+θj))

(
∑
k∈Ψ exp(βθk))

2 if i 6= j
(5.2)

The local dynamics may differ depending on the state or action. Therefore, it may
be necessary to introduce several local transition models, such as one for moving in
the same direction as the humans, for moving into the opposite direction, for moving

B

0

D

L R

Figure 5.4: Visualization of the transition model.
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in the orthogonal direction, or for standing still. Our assumption is that only expert
demonstrations are available and that the transition model is unknown. However, many
IRL approaches require the transition model to learn the reward function. Therefore,
we initially estimate a model of the dynamics from expert demonstrations by using an
M-estimator. However, this model may be inaccurate, since expert demonstrations omit
undesired actions and hence large numbers of states and actions are rarely or never
observed. Consequently, these inaccuracies might tamper with the reward estimate, if
traditional IRL approaches are used.

5.1.3 Features

Previous work, e.g. Vasquez et al.[106], has studied features that are suitable for teaching
robots to navigate. We use a subset of those features to reduce the number of possible
ambiguities, while allowing all IRL algorithms to learn suitable rewards for explaining
the expert demonstrations. The goal identifier fG ∈ {0, 1} is 1 at the goal and 0 otherwise.
The social norm feature fS ∈ {−1, 0, 1} is 1 if the agent waits or if he satisfies the social
norm of walking on the right side of the hallway. If the agent walks into the opposite
direction, the feature is −1 and 0 otherwise. The last feature is the normalized inverse
distance to walls fD ∈ [0, 1], since preferring one side of a hallway can also be explained
by favoring small distances to walls. Fig. 5.5 visualizes these state and action dependent
features in the hallway environment.

(a) Goal (b) Standing (c) Up (d) Right (e) Down (f) Left (g) Distance

Figure 5.5: Visualization of the reward function features that are used in the hallway navigation experiment.
A darker shade of red indicates a higher feature value. The goal feature (a) is 1 at the goal and 0 otherwise.
The social norm features (b), (c), (d), (e), and (f) are 1 if the agent waits or if he satisfies the social norm of
walking on the right side of the hallway. If the agent walks into the opposite direction, the feature is −1
and 0 otherwise. As the feature values are action dependent, a feature plot has been created for each of the
actions (Standing, Up, Right, Down, Left). The last feature is the normalized inverse distance to walls (g),
which can be used to explain an expert’s preference of walking on the side of a hallway or close to walls.
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5.2 Experimental evaluation

In order to evaluate the IRL algorithms in a realistic scenario, we use a simulation of a
densely populated hallway, which is illustrated in Fig. 5.6. We chose this scenario, as the
transition model of the motion planner is stochastic and unknown, the resulting policy
is non-trivial, and the discretized state is fully observable. In the simulation, humans
permanently walk through the hallway, satisfying a social norm to walk on the right side.
To synthesize human motion behavior, the Social Force model of Helbing and Monar [36]
controls the simulated pedestrians. The goal of the evaluation is to analyze the estimates
of the IRL approaches with respect to the resulting policy, the accuracy of the dynamics,
as well as their generalization capabilities by inferring expert trajectories in new starting
states. Consequently, the evaluation consists of two parts. In the training task, the robot
starts randomly in one of the blue grid cells in the lower left of the hallway (Fig. 5.6)
and its goal is to navigate into the green goal area. In the transfer task, the robot starts
in one of the red cells, while the goal area stays the same. We implemented the scenario
in ROS, using the movebase1 as a local motion planner, and the MORSE simulator [26].
Therefore, the learned high-level strategy sends intermediate waypoints to the movebase.
The environment dynamics consist of four different transition models: a transition model
for moving with the human flow, a model for moving against the human flow, one for an
orthogonal movement, and a transition model for choosing to stand still.

1http://wiki.ros.org/move_base

Figure 5.6: State space of the populated hallway scenario. The blue states indicate the robot’s start positions
in the training task, the red states depict the robot’s initial states in the transfer task, and the green area is
the goal zone. Simulated humans are colored in green with arrows indicating their movement direction.
While the orange arrow indicates the shortest path to the goal, the human experts typically guided the robot
along the violet path.

http://wiki.ros.org/move_base
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(a) Training Set (b) Validation Set (c) Test Set (d) Transfer Set

Figure 5.7: Visualization of the state visitation frequency of the different expert demonstration datasets for
training (a), validation (b), test (c), and transfer (d). A darker shade of red indicates a higher state visitation
frequency.

Human experts that were advised to guide the robot to the goal provided the demon-
strations for training, validation, test and transfer. To achieve this, the robot had to move
through the hallway, cross an intersection and enter the corridor. Even though the shortest
way leads diagonally through the hallway, all human experts operated the robot to move
on the right side of the hallway, staying in the human flow until they reached the intersec-
tion. Then, they guided the robot through the intersection to the goal area. Altogether,
they have provided twenty training demonstrations from which random subsets are used
for training to evaluate the influence of the dataset size. From these reduced training
sets, 10% − 20% of the demonstrations are used for validation purposes such as early
stopping or tuning hyperparameters. Furthermore, we have recorded ten additional test
demonstrations for each the training as well as the transfer task to evaluate the estimates
of the IRL approaches. Fig. 5.7 visualizes the state visitation frequency of the different
datasets. While the state visitation frequencies of training, validation, and test are very
similar, the behavior of the transfer task looks somehow different, since the robot started
in a different state.

We compare MDCE IRL, REIRL, and MDCE SERD, considering the quality of the
estimates in terms of the expected log likelihood of test demonstrations and the expected
Kullback Leibler divergence. Since MDCE IRL can be trained by maximizing the
causal entropy or by maximizing the log likelihood under the distribution specified in
Eq. (3.30), both training methods are applied and compared to the other approaches. For
initialization, we sample feature weights uniformly between [−10, 10] before applying the
IRL algorithms. MDCE IRL and REIRL need a transition model for learning the rewards.
For SERD meaningful initial dynamics are beneficial. Therefore, we estimate dynamics
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from expert demonstrations while assuming a uniform prior. The SERD-based approach
is further optimizing the transition model from this initial guess and might overfit to
the data without proper regularization. Therefore, the application of λ-weighted KLD
regularization (Sec. 4.5.3) should keep the trained model of the dynamics close to the
initial guess. The additional hyper parameter λ allows to vary the penalty for transition
model adjustments. For λ → 0, the regularization term vanishes completely, while for
λ → ∞ MDCE SERD turns to MDCE IRL, since the regularizer does not allow any
difference between the initial guess of the dynamics and the transition model estimate.

Fig. 5.8 (a) – (c) illustrate the performance of MDCE SERD measured by the expected
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Figure 5.8: Results of hyperparameter optimization over different KLD regularization weights λ. The
figures in (a), (b), and (c) illustrate the expected log likelihood of samples from different sets (validation,
test, and transfer) over the sample set size as well as for different KLD regularization weights. (d) depicts the
expected Kullback Leibler divergence KLD(P ||Pθ) from the estimated model of the dynamics Pθ to the
more accurately estimated one from more samples P over the sample set size and the KLD regularization
weight.
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log likelihood of expert actions under the learned models on the validation, test, and
transfer environment for different training set sizes |D| and regularization weights λ.
Fig. 5.8 (a) indicates that larger datasets increase performance, while larger regularization
weights are only beneficial for training sets with a small number of demonstrations.
With a smaller effect, this is also observable in the test set performance in Fig. 5.8 (b).
The transfer set results in Fig. 5.8 (c) show a performance drop for small numbers of
demonstrations and a small regularization weight. However, with more than 10 training
samples, larger regularization was not beneficial anymore. Interestingly, datasets with
12 training samples achieve the best transfer set performance, which might be caused
by early stopping interrupting the training process earlier than with 20 training samples
and thus further stopping the model to overfit to the training task. Finally, Fig. 5.8 (d)
illustrates the expected Kullback Leibler divergence between the true model (estimated
from a larger sample set) and the one estimated by MDCE SERD. As in the log likelihood
evaluation, a larger training set was increasing transition model performance (lower KLD).
However, in contrast to the log likelihood evaluation, increasing the regularization weight
is always improving transition model quality, which was not the case for the expected
log likelihood under larger dataset sizes. This mismatch might be caused by real humans
not fully acting as suboptimal decision makers according to an MDCE policy. Hence,
during hyperparameter optimization it is a design choice whether to favor a more accurate
transition model or policy.

Since, the goal of this experiment is teaching a robot to navigate in populated hallways,
the optimal regularization weight is chosen based on the expected log likelihood on the
validation set in Fig. 5.8 (a) for every dataset size. Even though that this might decrease
the accuracy of the estimated transition model. Fig. 5.9 (a) illustrates the expected log
likelihood of samples from the test set on multiple models trained with MDCE SERD,
REIRL, and MDCE IRL with both maximum causal likelihood and maximum causal
entropy optimization over varying training dataset sizes. MDCE SERD outperforms all
other approaches followed by MDCE IRL with log likelihood optimization, MDCE IRL
with maximum causal entropy optimization, and REIRL. MDCE IRL with log likelihood
optimization and MDCE SERD optimize the log likelihood of the training demonstrations
directly. Thus, they estimate proper reward functions under limited demonstrations by
finding appropriate feature weights that cause the stochastic policy to match the observed
behavior. The improvement of MDCE SERD over MDCE IRL with log likelihood
optimization is caused by jointly optimizing the transition model and the reward function,
which allows to further optimize the transition model by considering its influence on
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the experts behavior. In our experiment, the maximum causal likelihood optimization
of MDCE IRL yields better results than the maximum causal entropy counterpart, even
though that the traditional paper motivates the maximum causal entropy optimization
[16] and it has been shown that both optimization procedures should be equivalent [119].
However, equivalence only holds if the correct transition model is known and the experts
feature expectation can be estimated accurately, which is often not true in the limited
data setting. This causes probabilistically bounded approximation errors as derived by
Ziebart et al.[121]. We believe that the differing model of the probability distribution
over trajectories as well as errors in approximating the feature expectation via importance
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Figure 5.9: Results of MDCE SERD, MDCE IRL, and REIRL on training and test task over varying dataset
sizes. The figures in (a) and (b) illustrate the median expected log likelihood with quartiles of samples from
the test and transfer set, while (c) depicts the median expected Kullback Leibler divergence KLD(P ||Pθ)
with quartiles from the estimated model of the dynamics Pθ to the more accurately estimated one from
more samples P over the sample set size.
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sampling causes the results of REIRL. For the transfer set evaluation in Fig. 5.9 (b), we
have recorded ten expert demonstrations from the transfer task, in which the robot starts
in the bottom right of the hallway. We sample the start state uniformly from one of the
red cells in Fig. 5.6. Similar to the training task, MDCE SERD outperforms the other
approaches followed by MDCE IRL, while REIRL yields worse results in explaining the
expert demonstrations. This implies that even though MDCE SERD has more degrees
of freedom during optimization, accurate, generalizable models can be trained without
overfitting to the training task.

Fig. 5.9 (c) shows a measure for the accuracy of the estimated transition models. This
measure is the expected Kullback-Leibler divergence KLD(P ||Pθ) from the estimated
model of the dynamics Pθ to the more accurate transition model, which has been estimated
from all existing demonstrations from the whole environment including additional ones
from other tasks (e.g. moving against the human flow). We compute the expectation
with respect of the joint probability of states and actions of the demonstrations from
the training task. As a consequence, this metric specifies how accurate the transition
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Figure 5.10: Comparison between expected and estimated cumulative distribution functions (CDF) of the
time of arrival (TOA). The expected CDF is directly computed based on the estimated transition model
and the optimal policy of the learned models. The empirical CDF is approximated by applying the optimal
policies in the simulator. All CDF’s that do not increase up to 1 indicate that the robot sometimes is not
able to reach the goal.
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model is, while the KLD of more likely transitions is more strongly weighted. Both
MDCE IRL and REIRL use the same transition model estimates and therefore share a
plot. Their estimate of the environment’s dynamics improves with an increasing number
of available samples. However, for further decreasing the Kullback Leibler divergence, a
lot more samples would be required as experts have goal-directed behavior and bias their
demonstrations. Consequently, certain transitions are rarely observed. In contrast, MDCE
SERD further optimizes the estimates of the dynamics and improves over the initialized
one. Interestingly, it behaves almost constant, while the hyperparameter optimization
in Fig. 5.8 (d) indicated possible improvements with increasing sample set sizes. This
is caused by two contradicting objectives during hyperparameter optimization, which
favored models with high log likelihoods over more accurate transition models. By
changing this objective, one could further reduce the transition model mismatch.

As the human experts were guiding the robot to the goal, the following part of the
evaluation focusses on the quality of the learned task. Therefore, we use all the resulting
models from the different approaches based on the largest training dataset as high-level
controllers in the environment. In every run of the experiment, the simulated robot is
randomly spawning in one of the blue starting states of Fig. 5.6. Then, we apply the
learned controllers to the robot until it either reaches the goal or exceeds seven minutes.
Fig. 5.10 (a) illustrates the cumulative distribution function (CDF) of the times of arrival
(TOA) in the goal area of the resulting optimal policies. The resulting times of arrival
statistics of the different approaches are comparable, indicating that, in general, the SERD
and IRL approaches were able to find meaningful estimates. However, the empirical
CDFs show that MDCE SERD learns estimates, which guide the robot a little bit faster
to the goal. It is important to note that the CDFs of the TOA are not increasing up to 1,
which indicates that some estimates of the compared approaches do not model the desired
behavior accurately enough to guide the robot to the goal area in seven minutes.

As indicated in Fig. 5.9 (c), the transition model estimates of MDCE SERD seem
to be more accurate than the naive initial estimates. Hence, we can assume that more
accurate dynamics result in more accurate estimates of the time of arrival. Fig. 5.10 (b)
- (d) illustrate the CDFs of the expected time of arrival and the empirical one, which is
generated by running simulations of the resulting optimal policies. While the empirical
and the expected TOA CDFs differ strongly for MDCE IRL and REIRL, the expected
TOA CDF of MDCE SERD is much more accurate and very similar to the empirical one.
This gain in accuracy can be beneficial for TOA-based applications, e.g. tasks with strict
time constraints.
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(a) MDCE SERD (b) REIRL

(c) MDCE IRL (Entropy optimization) (d) MDCE IRL (Likelihood optimization)

Figure 5.11: Each of the sub-figures consists of two exemplary final policies for one of the evaluated
approaches. All of the approaches learn reward functions and transition models that explain the experts
trajectories well. While the MDCE SERD policies generalize well to states that have never or rarely been
observed in the expert demonstrations, the baseline approaches REIRL and MDCE IRL (maximum entropy
and maximum likelihood optimization) yield some deficiencies. For example, they might guide the robot
into trapping states and thus will never reach the goal.
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Finally, Fig. 5.11 (a) - (d) illustrate two of the learned optimal policies for each of
the different methods. All of the approaches learned correct policies in the observed
states from the training data and thus correctly operate the robot to drive on the right
side of the hallway, staying in the human flow, and crossing at the intersection for
moving to the goal area. However, differences between the policies can be seen, when
inspecting the generalization to states that have never or rarely been observed in the expert
demonstrations. For example, the upper left part of Fig. 5.11 (a) indicates that policies of
MDCE SERD control the robot against the human flow, if only a few steps are required.
For longer routes, it rather guides the robot into states, in which it can move with the
human flow even though that this yields longer path lengths. In contrast, the policies
based on reward functions trained with REIRL in Fig. 5.11 (b) wrongly generalize to
unobserved states in the upper left and the lower right, e.g. they control the robot to move
into the corner and to stay there. Hence, the robot can get stuck, if it accidentally ends up
in one of these states. This might happen due to noise in the transition model or when
adjusting the initial state during deployment. A similar behavior partially exists in the
policies of MDCE IRL in Fig. 5.11 (c) and (d). Especially, in the upper left there exists
a state, in which a robot might get stuck. However, the number of states, which will
guide the robot into this trap, is smaller than in REIRL. Hence, these policies seem to
be worse than the ones from MDCE SERD, but probably generalize better than the ones
from REIRL. The upper policy in Fig. 5.11 (c) is similar to the ones of MDCE SERD.
Consequently, it can be concluded that with an appropriate initialization (reward function
and transition model) the MDCE SERD can also converge to suitable solutions.

5.3 Conclusions

In this section, we investigated the performance of IRL approaches for robot programming
tasks from human demonstrations. Previous evaluations of SERD only focused on
learning from non-human policies. Consequently, it was not clear whether the results
would transfer to learning from human demonstrations, which might stem from stochastic
policies that differ to the proposed ones. For this purpose, we have created a simulator of
a densely populated hallway to allow for learning high-level navigation strategies. The
evaluation shows improved performance of MDCE SERD, which incorporates the learning
of the transition model into IRL. The computed models explain the demonstrations more
accurately, which further results in better estimates of the time of arrival. However,
MDCE IRL was able to estimate the reward function accurately, too, while REIRL
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sometimes failed to learn meaningful rewards. Therefore, the usage of SERD compared to
MDCE IRL is especially beneficial if better transition models are useful. Such scenarios
are, for example, high-level task planning problems, which need to infer the time of
arrival of robots accurately. Additionally, it can be of interest to estimate the probability
that a robot is not achieving the goal in a specific time. Future work could investigate
the generalization capabilities of the estimated reward functions and transition models
when transferring them to new environments. Furthermore, since SERD estimates the
environment’s dynamics based on expert demonstrations, research could focus on feature
learning for transition models, which could even allow for training shared features between
both the reward function and the dynamics.



Chapter 6

Conclusion

One of the key enablers for autonomous systems that should act in the real world is
their ability for coping with varying tasks in changing environments. Consequently,
there is a necessity for simple programming methods to adjust the system to new tasks,
goals, and strategies. For this reason, the field of Imitation Learning offers approaches
for learning policies from expert demonstrations. However, most existing approaches
have several drawbacks, as they require a model of the environment’s dynamics to be
known or a simulator to be available. In many cases, this is not possible as models are
often not available or it is not known in which environment the system is going to be
deployed. Therefore, the goal of this work was to provide an approach for estimating
both an expert’s motivation and goal as well as the environment’s dynamics solely from
expert demonstrations to enable task adjustment of autonomous systems in changing
environment.

In this thesis, we have uncovered several problems of recent IRL approaches that
encounter when the environment is unknown. We have created a minimum example,
which can illustrate these deficiencies, and specified a new problem class, called ”Si-
multaneous Estimation of Rewards and Dynamics” (SERD). It formalizes problems, in
which both the reward function as well as a transition model are unknown. Our proposed
approaches aim for learning them simultaneously from expert demonstrations, since both
have an influence on the expert’s policy. If the expert misconceived the environment,
he might act suboptimal. To account for these cases, SERD allows decoupling the real
environment’s dynamics and the expert’s estimate of it. We have derived two solutions
to the upper problem, which make different assumptions on the policy of the expert.
The solutions consider that both dynamics and rewards have long-term influences on
the policy and estimates them by learning reward functions and transition models that
explain the observed demonstrations. This way, it even allows drawing conclusions on the
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transition model in unobserved states. In a first study, we have evaluated the two proposed
approaches on idealized experiments and shown that they are in general able to solve the
SERD problem in an idealized experiment, in which expert demonstrations stem from a
ground truth model. We have shown that they improve both the transition model estimate
as well as the accuracy, when predicting expert behavior given the learned models. As
real humans might follow a different unknown policy type, a second study focused on
evaluating whether SERD also yields accurate models, when learning from suboptimal,
noisy demonstrations of human experts. Indeed, the SERD approach improved both the
reward and transition model estimates as well as the generalization of the policy to states
that were rarely or never observed. Furthermore, it shows that the proposed approach
is able to learn high-level navigation strategies of robots in populated environments, in
which pedestrians obey social rules or etiquette.

While this work provides first approaches for solving reward and transition model
estimation from expert demonstrations, several other open points could not be addressed.
As indicated in the minimum example, the SERD problem can be ambiguous, yielding no
clear solution. In addition, the two proposed approaches are gradient-based methods of a
non-convex objective and thus optimization can get stuck in local optima. Consequently,
potential improvements could be better methods for global optimization, such as using
multiple random initializations. When finding all equally accurate global optima, a human
expert can choose the most accurate one by resolving the ambiguity using prior knowledge,
e.g. certain transition models might not be meaningful. In this work, we cast SERD as
a maximum a posteriori problem under a specified policy model. However, many tasks
require learned transition models and policies to be robust for ensuring a safe deployment
of autonomous systems in new environments. Given knowledge about a potential prior
distribution over transition models, a fully Bayesian SERD approach could extract the
posterior distribution over transition models. The resulting uncertainty is beneficial for
improving safety, e.g. learning not to drive into states with high uncertainty by constrained
reinforcement learning. Often prior knowledge is not available or hard to formalize. In
these cases, the SERD problem could also be formulated as a full Maximum Entropy
problem, which tries to find the least committed transition and policy model under the
given information. In various domains and settings, these problems have shown to yield
very robust models.

The proposed approaches and proofs in this thesis assume discrete, finite state- and
action-spaces. However, many real world problems are continuous. Therefore, the
proposed solutions for the SERD problem are not directly applicable. A promising future
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research direction would be extending the approaches to variants with efficient solutions
for continuous problems. This will probably require relaxing certain assumptions on the
optimality of the iterative gradient estimation.

A property of the problem class that has not been exploited, is that the expert’s estimate
of the environment’s dynamics might differ from the real dynamics. In such cases, learning
separate models allows to identify errors in the expert’s assumptions about the world.
This can enable studies of wrong human decision making under risk and might even allow
analyzing the reasons for sub-optimality. Furthermore, several publications have shown
that humans are not optimal decision makers, that they make errors, and that they are even
biased. For really learning human objectives of their decision making, it is required to
adjust the general IRL and SERD approaches to the types of sub-optimality and the errors
that humans make.

Furthermore, SERD can be extended by several recent advances in IRL, such as learning
in multi-agent environments, learning from trajectories that are scored by humans instead
of generating optimal demonstrations directly, or meta-learning for easily and efficiently
changing environments and tasks.





Abbreviations

BC Behavioral Cloning
EM Expectation maximization
Feature Expectation Expected, cumulated, discounted feature counts
GAIL Generative Adversarial Imitation Learning
GAN Generative Adversarial Network
IOC Inverse Optimal Control
IRL Inverse Reinforcement Learning
LfD Learning from Demonstration
MAP Maximum a posteriori
MDP Markov Decision Process
ME Maximum Entropy
MCE Maximum Causal Entropy
MDCE Maximum Discounted Causal Entropy
PM Policy Matching
POMDP Partially Observable MDP
RE Relative Entropy
SERD Simultaneous Estimation of Rewards and Dynamics
SL Supervised Learning
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