

Faculty of Computer Science, Department of Computer Engineering

in cooperation with

In Productline Embedded Software (PES1)

Master Thesis

In

Round-trip engineering concept

for hierarchical UML models

in AUTOSAR-based safety projects

For fulfillment of the academic degree

M.Sc. in Automotive Software Engineering

Submitted by: Charu Pathni

 Matr.-Nr. 355078

 12 August, 1991

 Bangalore, India

Supervisors: Univ.- Prof. Dr. Wolfram Hardt

 Dipl.-Ing. Markus Schwarz

Date of submission: 2 September, 2015

Charu Pathni

Round-trip engineering concept for hierarchical UML models in AUTOSAR-based

safety projects

Master Thesis, Faculty of Computer Science, Department of Computer Engineering

Technische Universität Chemnitz, September 2015

Declaration

I hereby declare that this master thesis in topic “Round-trip engineering concept for hierarchical
UML models in AUTOSAR-based safety projects”, is entirely the result of my own work and it
has been written by me in its totality. Also, I certify that I elaborated this research independently.
The work is based on foundation of the information sources and literatures used in the thesis that
I have faithfully and properly cited.

Stuttgart, September 1, 2015
Place, Date Charu Pathni

Acknowledgement

The contentment and joy that follow the completion of any work is incomplete without express-
ing gratitude to all those people who helped you make it all possible. There are some special
people without whose constant guidance and support, success may not have been achieved with
same spirits.

I would like to express my deepest of regards to my professor Univ.-Prof. Dr. Wolfram Hardt
and my advisor Dr. Ariane Heller. Their constant enlightenment on the subject and persistent
motivation helped through each stage of my master thesis.

My profound thank you to the department of ProductLine Embedded Systems, Vector Infor-
matik GmbH for the opportunity of master internship and master thesis in their teams which
lead my way into captivating developments. My manager Mr.Hartmut Hörner, Senior Manager
Software Development, Vector Informatik GmbH whose constant expertise on the subject was
very valuable for my work during the thesis.

My heartfelt thank you to my mentor, Mr.Markus Schwarz, Senior Software Development En-
gineer who helped me steer my way through the entire master thesis and help me shape and
design my thesis in a very productive manner. I would like to give earnest of regards to Mr.Timo
Vanoni, Senior Software Development Engineer for his absolute patience at each stage and for
his extremely helpful opinions that helped me look at things with a wider perspective.

Last but not the least, this work wouldn’t have been accomplished without continual support
from my family: for having my back at every step throughout my life. My friends, who contin-
ued helping me fix all my problems at any hour of the day, till the very end: Nitesh, Dhanush,
Praveen, Arvind and each one involved at such an intricate level.

A genuine thank to everyone for helping me successfully complete my master thesis into a
reality.

Place: Stuttgart Charu Pathni

Date: September 1, 2015

Abstract

Product development process begins at a very abstract level of understanding the requirements.
The data needs to be passed on the next phase of development. This happens after every stage
for further development and finally a product is made. This thesis deals with the data exchange
process of software development process in specific. The problem lies in handling of data in
terms of redundancy and versions of the data to be handled. Also, once data passed on to next
stage, the ability to exchange it in reveres order is not existent in evident forms.

The results found during this thesis discusses the solutions for the problem by getting all the
data at same level, in terms of its format. Having the concept ready, provides an opportunity
to use this data based on our requirements. In this research, the problem of data consistency,
data verification is dealt with. This data is used during the development and data merging from
various sources.

The concept that is formulated can be expanded to a wide variety of applications with respect to
development process. If the process involves exchange of data - scalability and generalization
are the main foundation concepts that are contained within the concept.

Keywords - software engineering, data model, architecture, requirement, development, compo-
nent, data exchange, verification, generic

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 3
1.3 Thesis structure . 4

2 Literature Research 5
2.1 AUTOSAR . 5

2.1.1 Introduction . 6
2.1.2 AUTOSAR Architecture . 6
2.1.3 Application . 8

2.2 Software Architecture - Profound understanding 9
2.2.1 Architecture - general outlook . 9
2.2.2 UML and Views . 10

2.3 Requirements . 11
2.3.1 Requirement Interchange Format . 13
2.3.2 Requirement Modeling Framework . 15

2.4 Standards . 15
2.4.1 ISO 26262 Standard . 16
2.4.2 SPICE . 18

2.5 Tools and Technologies . 20
2.5.1 Tools . 20
2.5.2 Technologies . 21

3 Conceptualization 23
3.1 Concept . 23

3.1.1 Existing concept . 23
3.1.2 Survey . 24
3.1.3 New concept . 27

3.2 Meta model formation . 28
3.2.1 Meta model - from architecture . 29
3.2.2 Meta model - from source code . 31
3.2.3 Analysis of data . 32

3.3 Format analysis . 34
3.3.1 Evaluating UnderstandC format . 34
3.3.2 Evaluating VCD format . 37
3.3.3 Evaluating ReqIf format . 39

i

Contents Contents

3.3.4 Evaluating AUTOSAR format . 40
3.3.5 Comparison of formats . 41

3.4 Intermediate format conceptualization . 46
3.4.1 Naming conventions . 48
3.4.2 Hierarchy . 52

4 Implementation 54
4.1 Use Cases . 54
4.2 Conversion of data . 57

4.2.1 Converting EA to VSF . 57
4.2.2 Converting UDB to VSF . 63

4.3 Comparing and merging data . 70
4.3.1 Diff tool . 70
4.3.2 Merge tool . 73
4.3.3 Implementation . 74

5 Testing 79
5.1 Testing methods . 79

5.1.1 Static vs Dynamic testing . 79
5.1.2 Black box vs White box approach . 80

5.2 Testing levels . 81
5.2.1 Unit testing . 81
5.2.2 Integration testing . 81

5.3 Verification of Implementation . 81
5.3.1 Conversion of data . 82
5.3.2 Diff tool . 82
5.3.3 Merge tool . 83

6 Conclusion and future work 84
6.1 Conclusion . 84
6.2 Future Work . 85

A Appendix 89
A.1 Examples of various file formats . 89

A.1.1 Example of UnderstandC file format 89
A.1.2 Example of VCD file format . 90
A.1.3 Example of ReqIf file format . 92
A.1.4 Example of AUTOSAR file format . 94
A.1.5 Example of conceptualized VSF file format 96

A.2 Detailed Embedded Model . 98

ii

List of Figures

1.1 Process development - abstract view . 1
1.2 V-Model development process . 2

2.1 AUTOSAR architecture . 7
2.2 AUTOSAR layered software architecture . 8
2.3 Architecture Business Cycle . 10
2.4 Classification of UML diagrams . 11
2.5 Requirement . 12
2.6 Concept depiction - Requirement Interchange Format 14
2.7 Exchange between partners - ReqIf . 14
2.8 Disassembled Mk2 Golf . 16
2.9 Reference phase model for software development 18
2.10 Process assessment on high level . 19
2.11 Depiction of usage of XML and XSLT technologies 22

3.1 Existing concept - an overview . 24
3.2 New concept - an overview . 28
3.3 Abstract view of complete meta-model . 29
3.4 Meta model from Enterprise Architect . 30
3.5 Meta model from UnderstandC . 32
3.6 XML format of UC . 36
3.7 Work flow of UnderstandC . 36
3.8 File model of VSF format . 47
3.9 Hierarchy of format - An example . 52

4.1 Usecase diagram between architecture and component development level . . . 55
4.2 Use Case 1 - Information from Architecture 56
4.3 Use Case 2 - Review within component development 56
4.4 Use Case 3 - Interaction with architecture . 57
4.5 Data artifacts exported from EA . 58
4.6 Step 1 - Selecting component to be converted 59
4.7 Step 2 - Selection of option from add-in . 60
4.8 Basic information given . 61
4.9 Overview of the component . 62
4.10 Example of function details . 62
4.11 Work flow model for conversion from UDB to VSF 63

iii

List of Figures List of Figures

4.12 Data artifacts exported from source code . 64
4.13 Screen shot 1 2 - Implementation of UDB to VSF 65
4.14 Screen shot 3 - During the processing . 66
4.15 Code Part 1 - Processing a component . 67
4.16 Code Part 2 - Example of doxygen comment 68
4.17 Basic overview of output file . 69
4.18 Overview of selected component . 69
4.19 Example of a selected function . 70
4.20 Activity Diagram 1 - Process involved in Diff tool 71
4.21 Activity Diagram 2 - Process involved in Merge tool 73
4.22 Diff tool details . 74
4.23 Merge tool details . 75
4.24 Tool screen shot 1 - Passing the arguments . 75
4.25 Tool screen shot 2 - Diff result file created in working folder 77
4.26 Tool screen shot 3 - Part of the Diff result file 77
4.27 Tool screen shot 4 - All 4 result files created (one after the other) 78

5.1 White box VS Black box testing approach . 80

A.1 Detailed Embedded Model . 98

iv

List of Tables

3.1 Consolidated results of the survey . 26
3.2 Consolidated overview of artifacts from architecture 31
3.4 Analysis of data . 34
3.3 Consolidated overview of artifacts from source code 35
3.5 Object variants . 42
3.6 Sample XPATH access . 42
3.7 Relation variants . 43
3.8 Properties variants . 44
3.9 Hierarchy variants . 45
3.10 Comparison of variants in various formats . 45
3.11 Analysed Data - Consolidated . 46
3.12 Kinds of objects . 49
3.13 Kinds of relations . 50
3.14 Kinds of reference files . 51

4.1 Connector types and corresponding relations 61
4.2 Comparison keys for exceptions . 72
4.3 Different aspects checked for objects in Diff1 and Diff2 76

v

Abbreviations

AL Architecture Language

ALM Application Lifecycle Management

ASIL Automotive Safety Integrity Level

AUTOSAR Automotive Open System Architecture

CDK Component Development Kit

Csh C Sharp

CSS Cascading Style Sheets

EA Enterprise Architect

ECU Electronic control units

E/E Electronics and Electrical

HTML HyperText Markup Language

IEC International Electrotechnical Commission

ISO International Organization for Standardization

OEM Original equipment manufacturer

OMG Object Management Group

Perl Practical Extraction and Reporting Language

PHP Hypertext Preprocessor

ReqIf Requirement interchange format

RTE Run time environment

SPICE Software Process Improvement and Capability Determination

UC Understand C

UDB Understand C Database

UID Unique identification number

UML Unified Modeling Language

vi

List of Tables List of Tables

VCD Vector

VHDL VHSIC Hardware Description Language

V-Model Verification and Validation Model

VSF Vector specification file

XMI XML Metadata Interchange

XML Extensible Markup Language

XPath XML Path Language

XPointer XML Pointer language

XSLT Extensible Stylesheet Language Transformations

vii

1 Introduction

The success of a product, be it construction of a building or producing a motor vehicle, depends
on one of its most critical feature - the architecture. The planning involved in building a software
follows the same lines of principle. Understanding the usage of any particular product evolves
from the knowledge you acquire by understanding the requirements clearly. The following figure
1.1 depicts the basic idea of process of development in every industry.

Figure 1.1: Process development - abstract view

Demands of complex requirements are seeing an exponential increase, Automotive Industry in
particular. One of the main reasons for this growth is the rise in demand for safety features. And
hence, interest was stirred to explore the roots for the same.

1.1 Motivation

While understanding the infrastructure of design and understanding the Automotive Open Sys-
tem Architecture (AUTOSAR) architecture, a particular term repeatedly occurred - Safety. Thus,
captivating interest in the existing use of the concept. Automotive industry must comply with the
safety standards in order to make sure that the driver is safe from any kind of accident, danger
and risk due to the vehicle. This builds the pressure on manufacturers and tool vendors to make
sure what they produce is not only safe for the driver but also complies with all the rules stated
in the standard.

Vector Informatik GmbH provides the basic software components to the manufacturers while
making sure hat the standards of the automotive industry are met.

There are various methodologies when it comes to software engineering. The complete proce-
dure of development can take place in different phases. Some of the methods are:

• Waterfall

• Prototype model

1

1 Introduction 1.1 Motivation

• Incremental

• V-Model

• Spiral, and many more [Rpl13].

This research focusses on Verification and Validation Model (V-Model) development process.
As the name suggests, it not only follows a top to bottom development but also goes upwards
after the coding phase. The model can be represented as seen in following figure 1.2 of
V-Model.

Figure 1.2: V-Model development process

V-Model stands for verification and validation model [Kum15]. As seen in figure 1.2, the first
step to developing a product is analysing the requirement clearly. This phase is followed by
high level design that is architecture design. In this, the complete product design is made which
is further given as input to the next level of development, this is called product design. Then,
the product is divided into smaller components and each one has a detailed design of its own,
and this stage the architecture of each component is finalized. Finally, these components are
implemented. Implementation is incomplete without the step of testing. Each unit/component

2

1 Introduction 1.2 Problem statement

is tested against the detailed design. Once it is sure that each component works independently
as per the design, it is then integrated and tested against the product design/architecture design.
And hence, the last step of this process is when the complete system is verified against the
system requirements that were gathered at the beginning of the process.

This method is not only easy to understand, but fairly simple to use. The defects can be spotted
early during the process and for small systems and it is really efficient to break down into various
phases. For example, if there are problems that are detected at stage four of figure 1.2, the
changes can be made at that level before moving it to next stage and also, updating this change
to stages higher than it. Exchange of information is discussed at length in coming chapters and
also, solutions to its limitations will be covered.

But during the course of internship, discoveries were made with respect to the obstacles in this
simple process. The data that is exchanged from one level to another is in various formats and
the usage at every phase is also variant. Throughout the development, the features of safety has
to be maintained. Being one of the crucial points, data gained more significance amongst all
other factors.

The focal point of this research is established pertaining to architecture design. This is a com-
bination of the first four phases of the V-Model as seen in figure 1.2. All the developments are
based on AUTOSAR platform and this makes it more interesting and complicated to comply
with.

This instigated the thesis topic to be chosen and research on the same theme to its lowest regis-
ter.

1.2 Problem statement

As discussed in the motivation section, architecture is the targeted topic of research.

Taking it another step closer to understanding, the architecture is modelled or designed using
Unified Modeling Language (UML) and this is done with the help of a powerful environment
called Enterprise Architect (EA). UML is a method used to design in software engineering and
provides a standard visualization of the designed system [AW05].

Architecture of the product is thus designed in EA and contained in the EA file. This file is
the design input when given to the component developers. The component developers use this
file as a reference to understand the big-picture of the product. Although they mainly need the
requirements of their own component, this design helps them understand the interaction between
various components. This is important because in case of any change at component level, they
will have an idea on how their change could affect the other components.

Apart from the use of reference of the enterprise architect file, the component developers use
it to refine this design with the information of their concerned component before starting with
implementation.

3

1 Introduction 1.3 Thesis structure

Due to the refinement process of data within these designs, there is a problem that arises - data
redundancy. This issue not only arises at this stage, but as the V-Model progresses, it creates
complication during verification and validation phases of the process too. To formalise the
problem, few main questions will be answered and solved in this Master Thesis and they are as
follows:

• What design information is needed by whom?

• How to work efficiently with data?

• What is the "Master" of data?

• How to comply with standards like ISO 26262 and SPICE process assessment?

• How to use this data during verification?

• How to do architecture "round-trip" data usage?

1.3 Thesis structure

The structure of this Master Thesis is organised in the following chapters:

• Chapter 2 describes the literature research on architecture design in software perspective,
requirements, safety standards, technologies and tools used. This chapter also explains the
requirement standards, interchange formats, modelling framework, International Organi-
zation for Standardization (ISO) 26262 and Software Process Improvement and Capability
Determination (SPICE) in particular. Under technologies and tools various platforms and
methodologies are discussed.

• Chapter 3 forms the core of this Master Thesis. This chapter throws light on the state
of the art on existing problems and its causes. There were observed and collected by
conducting a survey with colleagues of various teams at Vector Informatik GmbH . The
possible solutions are discussed as well. Finally, it unfolds a concept and solution for a
process that can ensure consistency and nearly redundancy-free design.

• Chapter 4 outlays the solution provided in this Master Thesis to achieve the defined goal.
It explains the concept and strategy to attain the objective of the research. Implementation
phase 1 is discussed in this chapter. It covers the formation and usage of the final solution.
Also, it discusses the implementation of the mechanism that was designed during the
thesis. This involves the explanation of implementation of tooling that was completed.

• Chapter 5 describes the results obtained by various implementations. Testing is carried
out to make sure the extensibility of the solution and also its limitations.

• Chapter 6 presents the conclusion to this work underlining the goal to be achieved in
this Master Thesis. Also, it identifies some key enhancements to the existing solution and
projects, the outlook for future development.

4

2 Literature Research

This chapter explains the the following topics comprehensively as part of the literature re-
search:

• AUTOSAR

• Software architecture

• Requirements

• Standards

• Tools and technologies

These topics are the prerequisites to understanding the importance of safety and problems related
to it. It gives a clear picture of the present scenario in all the domains that are mentioned above.

2.1 AUTOSAR

This section introduces AUTOSAR right from the most basic level of understanding. The main
goal is to explain why this platform was introduced in the first place.

With the exponential growth of automotive industry and the massive increase in com-
plexity of the vehicles, there was a need to organize this complex system. So, many founders of
the leading automotive industry, came together to decide on a common platform. This platform
promised the efficiency of increasing the level of complexity and still making it easier to handle.
Based on many disadvantages of the existing development process, AUTOSAR was introduced
to overcome all the problems. Global partnership of automotive manufacturers, suppliers
of tools and software and all other involved like software, electronics and semi-conductor
companies in this industry came together to agree and put together this platform for the common
growth [Sys15].

5

2 Literature Research 2.1 AUTOSAR

2.1.1 Introduction

The complexity of the modern vehicles is increasing day by day. To manage the Electronic/-
Electrical complexity of a vehicle was getting very difficult as there are more than a hundred
Electronic control units (ECU) in today’s cars. Also, the scalability factor becomes very hard to
manage. If there are any modifications made to the existing system, the implementation of the
change is very tedious. Therefore, to improve the quality and reliability, there was a need for
change and introduction of a method that could make all the above mentioned problems really
easy to solve and make the system more competent.

Goals - The main goals of AUTOSAR thus focused on making the development process easier.
They did not just want to deal on a component level but on system level. Modularity was one of
the aims, so that the system can be easily divided and worked upon individually by respective
specialists. Now to transfer the characteristics of the system to much bigger system, scalability
was important. So the next goal was to make it scalable. For individual systems, the property of
transferability was required, so that it could be used to build next better systems, in lesser time.
And finally, the goal of re-usability was covered. Some of the components of the system can
be used for many years to come. So instead of investing time, to rebuild the basic components
again, they worked on the aspect of re-usability.

Members - ([AUT15a]) The core members consist of BMW Group, PSA Peugeot Citroën, Con-
tinental, Robert Bosch, Daimler, Toyota, Ford, Volkswagen and General Motors.

Currently there are 48 premium members and some of them are TATA, Renault, Panasonic,
Infineon, iAV, Elektrobit Corporation and many more. There are 100 associate members cur-
rently and some of them are Alps, Caterpillar, CISCO, HCL, Infosys, Nissan, Toshiba and many
more.

Amongst the development members, there are 24 members at the moment and few are listed as
follows, Vector Informatik GmbH, Basixworx, ESR Labs, Gliwa GmbH and more.

2.1.2 AUTOSAR Architecture

As seen in figure 2.1 [AUT15b], the architecture of AUTOSAR is divided into 4 main layers.
On the topmost layer, the software components are seen. These are application software com-
ponents that can be easily modularized and re-used. Then the AUTOSAR runtime environment
(Run time environment (RTE)) is seen. This environment enables the applications to run on the
platform. Below the RTE, the standardized interface that helps in the running of the components
above is also noticed. These include the operating system, services, communication, ECU
abstraction, Micro controller abstraction and Complex Device Drivers. These interfaces help
in the functioning of the applications on top. All of these are placed above the main ECU
Hardware.

6

2 Literature Research 2.1 AUTOSAR

Figure 2.1: AUTOSAR architecture

Features - Based on the above architecture, features can be derived. Most important feature
is its modularity and reconfigurability. Each function acts as a separate module and can be
detached to configure respectively. This can be done only when there is a standardized interface.
This is very important since there is a need for a common platform to work upon. And finally,
to implement all the components and make sure the interfaces run in synchronized manner, we
have the runtime environment which enables the complete concept of AUTOSAR.

Layered Software Architecture - The layered software architecture is the abstract view of
where the application layer, RTE, Service Layer, ECU abstraction Layer, Micro controller
Abstraction Layer Complex Drivers and Micro controller are clearly defined and given a

7

2 Literature Research 2.1 AUTOSAR

boundary. It consists of different kinds of software components that are developed for various
purposes and run on AUTOSAR RTE. In figure 2.2 [suc15], AUTOSAR layered software
architecture can be seen.

Figure 2.2: AUTOSAR layered software architecture

2.1.3 Application

Application Description - An application in AUTOSAR consists of interconnected “AU-
TOSAR Software components” which is also referred to as Atomic software Component.
AUTOSAR software components are connected via connectors in an application. Each applica-
tion has a description which contains set of fields that need to be covered for each component.
For example, the data elements and operations to be used have to be specified. Requirements
of the components based on the infrastructure of the system. The list of resources that will
be used by the software components is needed. If there is any specific implementation by the
component, that information has to be specified. All the mentioned fields can also be combined
together and called as "software component template."

Application Development - Application development is discussed in detail in this section. The
method of application development is divided broadly in 2 categories [Aut].
Firstly, there is Model-based development of application software component. This uses sim-
ulation method of development. Since, the behaviour of the model being built is verified in
early stage, the final code generation will be of a very high quality. And the final output is an
Extensible Markup Language (XML) file which contains software component description, as
discussed in previous sections. And the code generated is in *.c, *.h format.

8

2 Literature Research 2.2 Software Architecture - Profound understanding

Second method is the "Classic way" of software development. This uses the development by
hand, contrary to the method before. More effort is required to compare the results and meet the
same quality. The output files are same, *.xml, *.c and *.h.

2.2 Software Architecture - Profound understanding

Assuming that a house has to be build, and it is decided not to hire an architect. Questions
like ’how to get it build’ without the knowledge of distributing the work amongst the builders?
Moving to the possibility that it is built, is that house prone to any sort of threats or calamity?

That is exactly how crucial is architecture. When a house or car or a software is planned to be
build, it all comes down to the plan of the product. To understand what is needed and what are
the exact requirements of the user, is the key to begin the process of development.

2.2.1 Architecture - general outlook

Matthew R. McBride writes, "A software architect is a technically competent system-level
thinker, guiding planned and efficient design processes to bring a system into existence. He
is viewed by customers and developers alike as a technical expert. The architect is the author of
the solution, accountable for its success or failure." [MR04]

Architecture definition can be branched into two major stages:
The first stage is breaking down the product that is being designed into smaller segments and
defining its purpose or in technical terms - its functionality.
The second stage is defining the communication or interaction between these segments which is
also a crucial part.
If the understating of communication within the product is clearly defined, it makes it easier
for making refinements to the segments which will not affect the overall functionality of the
product.

Hence, for the architect(s) to design any product, understanding of the requirements is abso-
lutely essential. To understand this a little better, refer to the architecture business cycle that has
been depicted in figure 2.3.

The influence of various factors while the architect designs the architecture of the system, is
noticed in figure 2.3.

To sum it up in one single statement - ’Architecture is design but not all design is architectural’
[Cle+10].

9

2 Literature Research 2.2 Software Architecture - Profound understanding

Figure 2.3: Architecture Business Cycle

2.2.2 UML and Views

Architecture has its own design/modeling/description language. Around the world regularly
used language is UML. It helps the architect to describe the design in visual form using com-
ponents like modules, linkers, activities, interfaces and show the communication and interaction
between various components.

There are a variety of diagrams that are designed in UML. The figure 2.4 represents the classifi-
cation of the various types [Gro]:

A view is the composition of various components of the system and also the relationships be-
tween them. UML helps in modelling 2 different views of the system [Uml]:

• Static view

• Dynamic view

These models can be exchanged in a format called XML Metadata Interchange (XMI). This
format will be discussed in section 2.5.

Different kinds of views are listed as follows [Cle+10]:

• Functional/logic view

• Code/module view

• Development/structural view

• Concurrency/process/runtime/thread view

10

2 Literature Research 2.3 Requirements

Figure 2.4: Classification of UML diagrams

• Physical/deployment/install view

• User action/feedback view

• Data view/data model

There are several architecture frameworks available along with many other architecture descrip-
tion languages. Some of the frameworks include Reference Model of Open Distributed Pro-
cessing (RM-ODP) and the Service-Oriented Modeling Framework (SOMF) [Rpl13]. Amongst
the various Architecture Language (AL) some of them are ABACUS (UTS), ACME / ADML
(CMU/USC), and many more [Mal+15].

After the design is complete, it is not only easy to understand the product, but also goes both
way in hierarchy. It becomes really efficient to discuss the design with the stakeholders and once
it is finalized, it is easy to give architecture design as an input to the component level for further
refinement. The component is defined within the architecture design and then the detailed design
is used for implementation.

2.3 Requirements

In day to day activities, how are the needs generally expressed? While ordering food at a restau-
rant, or deciding which car to buy, or what kind of clothes to buy for a certain occasion or

11

2 Literature Research 2.3 Requirements

building a house? Decisions are made based on the need of the situations. These needs are
technically called requirements.

Figure 2.5: Requirement(Image source: [Pix15])

In software engineering, while developing a product, requirements is a formal definition of all
the functions and services it needs to fulfil. So, while designing the product, at the architecture
level - it is the document that is used as the guiding path. Requirements are not only used in the
beginning for reference, but also at the verification stages to verify at each stage of development.
This keeps the product that is being built, well within the scope of its need.

Requirements are branched into 2 fields [CDC15]:

• Product Requirement - This defines the overall service provided by the product.

• Process Requirement - This definition mainly implies to the organization that is building
the product. It defines the methods and constraints to be maintained during its develop-
ment.

Depending on the phase of development, requirements metamorphose into different types. They
are listed as follows [Int15]:

• State/Mode - Specification of number of states and the progression from one to another
should be clear

• Functional - This requirement must clearly state the task of the system/product

• Performance - The extent to which the product can be used and push the limits is also
defined

• External Interface - This specifies if the system/product can be used in other places/coun-
tries

• Environmental - This describes how the system can run and where does it store its sources
and so on

12

2 Literature Research 2.3 Requirements

• Resource - The amount of consumption by the system/product must be clearly mentioned

• Physical - If we are talking about a system apart from a software, this requirement specifies
its physical properties

• Other quality - This reflects any other requirement which is specifically mentioned apart
from the above mentioned

• Design - This requirement discuses about the internal and external design of the sys-
tem/product in detail

Requirements need to follow some rules as well. Since it plays an important role to provide
intricate details of the system, it should be:

• Easy to understand

• Granular in nature

• Thoroughly descriptive

• Rationally defined

• Testable at every stage

2.3.1 Requirement Interchange Format

Now that it is clear how essential requirement is, understanding how it can be used and ex-
changed is also very important. That’s where there is a concept of an interchange format of
requirements. This was initiated by an international group called the ’Object Management
Group (OMG)’. They develop standards that can be used at an international level for diverse
technologies and industries.

But before OMG took charge of this, it was initially introduced by a group of German automotive
groups and they had named it ’RIF’ [Boa15].

After which,Requirement interchange format (ReqIf) was brought into existence by OMG group.
This idea was thought of when the exchange of requirements was lossy in nature and that caused
a lot of problems during and after the product was developed. When one party(stakeholder)
had to exchange ideas, product and requirements to another party(developer/stakeholder), it was
soon realized that if the requirements were not exchanged seriously, it caused losses for the
stakeholders as well.

ReqIf is a standardized meta-model, in XML schema [Req]. It not only contains information of
the product, but also other details like the version, the ID, stakeholder details and so on. This
concept is depicted in the figure 2.6:

The reason that it plays an important role in this thesis is due to its benefits. It helps in under-
standing the significance of the requirement document and also a possible format that can be
used while considering the data problems being dealt with.

13

2 Literature Research 2.3 Requirements

Figure 2.6: Concept depiction - Requirement Interchange Format

The exchange process between 2 partners is shown in figure 2.7:

Figure 2.7: Exchange between partners - ReqIf (Image source: [Boa15])

In the figure 2.7 shows that partner 1 wants to get feedback on a requirement specification
from partner 2, but only for a certain part of the requirements and sending complete set of
requirements would not be necessary. Therefore, only a subset of the requirement specification
is sent (depicted in dark blue colour) via e-mail or any direct file sharing portal. Partner 2 already
has a set of requirements with them and they import the file into their system. After refinements

14

2 Literature Research 2.4 Standards

of the requirements, and once it is finalized, it exports the file back to the Partner 1. Partner 1
then imports it back to its database [Boa15].

This is a fine example of how ReqIf makes the exchange of data(requirements) so smooth and
uncomplicated.

The file extension is *.reqif and the underlying format of model is in XML to make the process-
ing easier.

2.3.2 Requirement Modeling Framework

In order to make changes to the ReqIf file and to work with it, an environment is needed that
supports this process. To ensure this, a framework is needed and hence the name, requirement
modeling framework.

The framework is eclipse based open-source software. This works with the needs based on
ReqIf.

The functionality of this framework includes storing, writing, validating and manipulating ReqIf
files [Ecl15]. Adding more quality into the product, it can also coordinate with other Eclipse
tools. This feature expands the framework a lot more and sophisticated to use. Developments
continue to make it more dominant and presently prototypes are being released to note the re-
sponse from the industries.

2.4 Standards

According to Merriam-Webster, safety is defined as "the condition of being free from harm or
risk," and security is defined as "the quality or state of being free from danger" [EBC15]. These
feature are used in every industry and here the reasons for it being so essential from automotive
perspective as well are discussed.

The following figure 2.8 [car15] shows a disassembled ’Mk2 Golf’ that is manufactured by
Volkswagen.

The figure 2.8 clearly depicts the complexity of a car. This complexity is exponentially rising as
the day passes and that makes it a responsibility of the manufacturers in the automotive industry
to make sure of one of the very important aspects - SAFETY.

This had to be implemented by introducing standards at an international level and had to be
followed in the automotive industry in order to get necessary permissions before release of any
vehicle.

Two such standards that are focused in this master thesis. They are:

• ISO 26262 standard

15

2 Literature Research 2.4 Standards

Figure 2.8: Disassembled Mk2 Golf (Image source: [car15])

• SPICE

2.4.1 ISO 26262 Standard

In order to make sure they suffice the requirement, it was decided by the ISO to formulate and
release a standard for safety of the automotive Electronics and Electrical (E/E) system. The
earlier release of the standard was International Electrotechnical Commission (IEC) 61508. The
standard discussed here is ISO 26262 which is a derivative of the IEC 61508. [Ins15].

ISO 26262 defines safety aspects in terms of hardware, software and overall at the system level.
The following topics are the general overview of what the ISO 26262 Safety standards covers
[Iso]:

• Vocabulary

• Management of safety functions

• Concept phase

• Product Development at system level

• Product Development at hardware level

16

2 Literature Research 2.4 Standards

• Production and operation

• Supporting Process

• Automotive Safety Integrity Level (ASIL) and safety oriented analyses

• Guidance on ISO 26262

The main focus in this thesis, amongst all the topics listed above is Product development at
software level. This can be summed up under the following topics:

• It provides a safety cycle about all the critical points to be considered during the develop-
ment

• It also provides various classes to classify different risk levels - Automotive Safety In-
tegrity Levels

• Further more, it uses these levels to determine if the system is acceptable or not

• Finally, it states the requirements for validation that all the standards have been met

Product Development at system level, the module was formulated to make sure safety was at
product development at software level. It begins from the requirements understanding at product
level. Understanding of requirements from safety point of view is a step before designing begins.
This is followed by designing the architecture of the complete product. Then it is itemized into
separate components and detail design for each is made. Each unit/component is developed and
tested as it is developed. Once all the units are ready, they are combined together to see the
functioning of the product as a whole. This must pass the tests at product level and one of the
most important requirement is that final product must verifies against the initial requirements
given. The product verifies successfully against the initial requirement that was gathered. The
safety requirements have to be met once the product is complete and only then it passes this
module of the standard.

This makes sure that safety involves at every sub-phase of the development. The depiction of
the concept is in the following figure 2.9.

In the figure 2.9 we notice the steps involved at a detailed level. The system design is
the abstract overview of the first phase in the V-Model represented. It refers to the tables in ISO
part 6. That leads to the architecture of the software. This architecture design is implemented at
component level. After the completion of development at component level, it is then tested unit
wise. When unit testing is completed, the components are brought together to form the software
which is tested after integration against the architecture design. Finally, when we obtain the
integrated software, we need to verify against the safety requirements that is mentioned right
in the beginning. This process completes the module at focus. After which the software is
integrated with rest of the system and tested against the system design.

17

2 Literature Research 2.4 Standards

Figure 2.9: Reference phase model for software development (Image source: [Inc15])

2.4.2 SPICE

SPICE is a major international initiative to support the development of an International Standard
for Software Process Assessment [Pyh04]. In automotive industry, the software involvement is
increasing as the years are passing. It has been found that if the process that is involved in the
development could be assessed then the capability of the process can be determined in an easier
way along with improvement of the process if needed.
SPICE is based on the standard ISO/IEC 15504. In order to understand the process assessment
by SPICE, observe figure 2.10 [Pyh04].

The figure 2.10 represents the process assessment at a high level. Here the focus is on eval-
uating one process at a time. Using SPICE standards, the process undergoes the assessment.
This results in 2 major outcomes - Process improvement and Capability determination. Pro-
cess improvement leads to identifying the changes needed in the process. Whereas capability
determination identifies capability of the process and the risk involved in the process. If there
are risks involved, it motivates for process improvement as well. This entire practice not only
helps in understanding the process but also detecting risks at an early stage. This identification
further helps in reducing the costs involved in improvements at later stages, as compared to cost
of improvement in early stage.

Processes are organized into 5 process categories in the model [Pyh04]:

• Customer-Supplier - The processes that directly affect the customer and operation of the
process.

18

2 Literature Research 2.4 Standards

Figure 2.10: Process assessment on high level

• Engineering - The process that is directly associated with the system software and product
and its documentation.

• Project - This covers the processes that affect the complete project and deals with the
resources and its distribution through the process.

• Support - The processes that support other processes on a project.

• Organization - The processes that discuss the goals of an organization, and help it to
achieve them.

As per software design, there is a specific set of requirements specification [SIG10]. The purpose
of this process is to design in such a way that after implementation, it can be checked against the
initial software requirements. When this process is used correctly, the following advantages are
presented [SIG10]:

1. A software architectural design is defined that identifies the components of the software
and meets the defined software requirements

2. The software requirements are allocated to the elements of the software

3. Internal and external interfaces of each software component are defined

4. The dynamic behaviour and resource consumption objectives of the software components
are defined

19

2 Literature Research 2.5 Tools and Technologies

5. A detailed design is developed that describes software units that can be implemented and
tested

6. Consistency and bilateral traceability are established between software requirements and
software architectural design

7. Consistency and bilateral traceability are established between software architectural de-
sign and software detailed design

The above mentioned advantages have been aimed for throughout this thesis.

2.5 Tools and Technologies

This section discusses various tools and technologies are discussed that were studied and sur-
veyed which might be useful for the implementation of the concept. Each tool and technology
is understood from the point of present research work and how can it be used. The explanation
to each usage is covered under their respective topic.

2.5.1 Tools

1. Enterprise Architect - As mentioned before, one of the crucial steps in system develop-
ment is understanding the requirements clearly. In order to visualize the idea or concept,
we need a tool that can help us model our ideas. One such tool is Enterprise Architect.
EA is a visual modelling and design tool based on OMG UML. It has a range of open
industry standards for designing and modelling software and business systems [Spa98].
Some of the features include:

• Requirements Managements

• Business Modelling and Analysis

• Simulation

• System Development

• Test Management

• Visual execution analysis

• System engineering and so on

Apart from the mentioned points - performance, speed, traceability, complexity manage-
ment, document generation and effective project management are amongst its powerful
features.

20

2 Literature Research 2.5 Tools and Technologies

2. Understand C - Understand C (UC) is a source code analysis and metrics tool. Its de-
sign can maintain huge amount of newly created source code. It provides cross-platform,
multi-language, maintenance-oriented interactive development environment. The source
code analysis may include C, C++, C#, Objective C/C++, Ada, JAVA, Pascal, COBOL,
JOVIAL, VHSIC Hardware Description Language (VHDL), Fortan, PL/M, Python, PHP,
HyperText Markup Language (HTML), CSS, JavaScript, and XML [Und]. Some of its
powerful features are listed as follows:

• Architecture features that help us create hierarchical aggregations of source code
units

• Provides a tool called CodeCheck to make sure code conforms to published coding
standards or our own custom standards

• For all languages, checks are provided to verify that various entity types confirm to
naming conventions and to conrm that code meets metric requirements that were set
for complexity, function length, and the nesting depth

• Understand C can be extended for static checks using Perl

3. CDK - Component Development Kit (CDK) is an internal tool developed at Vector Infor-
matik GmbH. It is used for parsing, static testing and analysing code. This has various
options of testing and representing reports in form of HTML. This will be used during
thesis to integrate the scripts and run with the database.

2.5.2 Technologies

In this section, various technologies are described in brief. Each one has its own purpose of
understanding and will be used in different phases of the thesis.

1. UML - As discussed in section 2.2.2, UML is a general purpose modeling language which
is used in software development process and it is used to describe the software/product in
graphical representation. Details of the system can be described in terms of objects and
its properties. It also allows you to clearly define the relationship between each of the
objects. Thus, making it clear to understand for further implementation.

2. C# - C Sharp (Csh) is an object oriented programming language developed by Microsoft
within its .Net initiative. The features of Csh are as follows [Csh]:

• Portability

• Typing

• Meta Programming

• Methods and functions

• Namespace

21

2 Literature Research 2.5 Tools and Technologies

• Functional programming

3. Perl - Practical Extraction and Reporting Language (Perl) is a high level, general purpose,
interpreted, dynamic programming language [www15b]. It stands for ’Practical extraction
and report language’ [www15a]. Its powerful text extracting features are a result of com-
bination features from various other languages like C, Shell scripting, awk. It is overall
procedural in nature. This scripting language will be helpful during thesis for extracting
data from certain databases and use them further for processing in different forms.

4. XML - XML is language for encoding data in such a way that it is human readable and
machine readable format. The usability of this language is very high due to its simplicity
of defining rules as per the requirements. Since its usability is across internet, it can be
represented in the form of HTML document by transforming the data using XSLT (which
is discussed in next section).

5. XSLT - Extensible Stylesheet Language Transformations (XSLT) is a transforming lan-
guage that helps us represent the encoded data from XML format to HTML or text or just
simple objects (readable and presentable) format. This can be further used to convert data
into PDF as well. It can take more than one XML file as input to process the data. It can
be specified with any computation and it will be performed by the computer, thus making
it a Turing-complete language.

6. HTML - HTML is a mark-up language that is used to create web pages. There are defined
tags that are used while writing a HTML file. But it is mainly used for representation,
since the tags are not shown on the screen. It can be opened by any web browser. Data
is interpreted and displayed on the page as we would like it. The page can be made
interactive or just a read-only page depending on the requirement. In this thesis, it would
be used for representation purpose.

For the representation of how some of the formats would be used, the following figure 2.11 is
used as an example.

Figure 2.11: Depiction of usage of XML and XSLT technologies

22

3 Conceptualization

This chapter covers all the phases of conceptualization. In order to come up with a concept the
following steps were taken:

• Existing Concept

• Survey

• New Concept

• Meta model formation - from different point of views

• Format analysis - of formats like UDB, VDC, ReqIf

• Aspects under consideration

• Intermediate format conceptualized

3.1 Concept

This section discusses about the concept completely. The presently used concept, problems
detected and finally discusses the new concept. The concept was brought together by the survey,
results and understanding the parts involved of the present scenario. The consolidated form of
the present concept is seen in the end of this section.

3.1.1 Existing concept

In the figure 3.1 an overview of the present concept is seen. The two users are architect(s) and the
component developer(s). The interaction between them and the data, along with the exchange
of the data is shown clearly. Also, the formats are specified.

As seen in 3.1, the objects in blue colour code, are the data from various sources. The product
architecture design, component architecture design and the source code itself are available.
All the objects noticed in yellow colour are the various formats that are used. In existing concept:
.vcd format, .xmi format and .xml formats are used. Clearly, there is no one common file that can
be used to exchange data. That is on of the main concerns that is dealt with during this thesis.
One more important point to be noticed is the round-trip engineering concept is not covered
within this existing concept. That has been taken care of within the research work.

23

3 Conceptualization 3.1 Concept

Figure 3.1: Existing concept - an overview

3.1.2 Survey

The first part discusses the reason of the survey and the questions asked. After which analysis
of results of the survey is discussed. Finally how results of the survey helped in detecting the
problems is shown.

These questions are directed mainly to gather input with respect to three areas.

1. Data - What data comes from where and what is actually required.

2. Format - What are the present formats and what could be improved based on what is
needed.

3. Process - How is the exchange happening and if that is efficient to take care of updating
data or verification process.

24

3 Conceptualization 3.1 Concept

The questions that were asked were mainly concentrated in this spectrum. What data is more
interesting data that is required by the developers from the architecture point of view? How was
the data presently presented and what could be the changes they are looking for? In case of
changes at component level, how is it informed to the architecture level? Followed by how is the
developed component verified against the architecture? Their perspective on the present system
can be improved and finally was the environment of EA comfortable for them.

• Questions targeted -

The band of the questions asked varied from architecture requirements data format to ver-
ification of code against requirements after the implementation. This survey was collected
based on the interview of colleagues from component development teams. Since they use
the product architecture design as a reference, it was better to ask people directly involved
with the present process. The list of questions were as follows:

– What do you find interesting from Architecture point of view?

– What information is needed? Why is it needed ?

– What information is not needed?

– How would you like the architecture design to be presented?

– How would you want to use the information? (formal linkage/direct usage?)

– For what do you use the information?

– How do you communicate from component development to architecture in case of
changes?

– What would you provide in case of changes? (Documentation/changes/*.c file)?

– How do you verify architecture design with component?

– How would you like to do the verifications?

– Any improvement aspects concerning work with architecture? (Req/XML/?)

– Are you comfortable with enterprise architect environment?

• Results of the survey and problems detected -

In this section, the consolidated results of the survey that was conducted are presented.
Responses of each person was noted and added to the table. These responses were then
combined together for further analysis. The final consolidated results include the majority
common answers along with certain unique responses which can be further discussed
in thesis. The merged results can be seen in the table 3.1. As seen in 3.1, it was found
that the information that is needed by the developers was very specific. As compared
to present system, they expressed that excess of information is not required for them.
They also told that it would be better if the product architecture design would be more
helpful and easy to understand if it was in a more readable format, with the information

25

3 Conceptualization 3.1 Concept

Merged results of survey

Questions Overall Opinion

Interesting from Architecture point
of view

Interaction between modules, Dia-
grams (class,sequence)

Information needed Interaction between components,
modules, API’s

Information not needed Too detailed (eg Parameter list, fea-
tures)

Architecture design to be presented
in which format

EA is okay but oversized. HTML or
any form of readable format is bet-
ter.

Using information Mainly reference and understand-
ing purpose

Communication in case of changes Personal communication or feature
manager (Basically direct)

Future prospect for communication Either documentation form, or au-
tomated

Verification against architecture de-
sign

Not done and maybe sometimes
manually reviewed

Future prospect for verification Most opinions refer to .c against .ea
verification

Improvements possible Communication improvement (in-
cludes notification in case of up-
date, documentation to raise inter-
est) and important point is ’Run-
time behaviour and interrupt lock-
ing’ must be considered

Comfort level of EA environment Yes but complex and may not be
in favour of majority of other team
members

Table 3.1: Consolidated results of the survey

that is only relevant for them. In case of changes from the component development level,
presently, the information is given only via direct communication or e-mail. If there would
be a more automatic tooling for this, it would be much more efficient and up to date.
When it came to verification, it was realized that most of the verification is done manually.

26

3 Conceptualization 3.1 Concept

The fact that need of communication had to be improved was also established.

Taking all the results into consideration, problems were clearly detected. They can
be consolidated as follows:

– Too detailed

– EA is oversized environment

– Verification done manually and sometimes not at all

– Runtime behaviour

3.1.3 New concept

In this section, an new concept is formalised. This is based on the survey conducted and the
idea of covering round-trip engineering theme. This concept gives a wide view of the possible
solution. The overview of new concept can be seen as follows in 3.2:

As seen in 3.2, exchange of data and interaction between the users and data, is much simpler
than what can be seen in 3.1.
Keeping the colour code same, the blue colour objects in the figure, represent the data sources.
The new thing here is, all the data sources are interacting based on one common file - that is the
new file format that was designed during this thesis. It’s name is VSF file format. It stands for
"Vector Specification File". This is seen as the yellow colour object in the figure.
The dotted lines that are interacting with the product architecture design, named as ’Architecture
EAP’, it can be noticed that the direction of data flow is both way. Hence, covering the theme of
round-trip engineering concept.

Further, once the file format is conceptualized and detailed, it can be used for other smaller
tooling purposes. The intermediate file can be used to generate C template from the architecture
input. This can be also given to the developers which contains the definition of certain data that
is mandatory for them to use, for example the functions. Next, the file can be used to generate
user document. This document would contain all the details of product design and maybe also
the data from source code, that might be useful. Another useful tooling could be generation of
test scripts from this file. These test scripts could be used for static checks of the component
developed. And finally, test cases can also be generated which gives a baseline of what the
component is expected to do, what is available and what is the expected results. This helps in
verification against specific requirements.

The above described concept not only covers the round-trip engineering model, but also explores
the possibilities of tool-extensions. But, before moving on to finding ways of implementation,
it is important to define meta-models from both architecture and source code. Without having a
clear understanding of the different data having different sources, it is not possible to conceptu-
alize the file format.

27

3 Conceptualization 3.2 Meta model formation

Figure 3.2: New concept - an overview

3.2 Meta model formation

In this section, meta-model of data from different sources is constructed. An extensive study on
the data that sources contain was done and hence, based on that, the meta-model was made. The
meta-models were made using EA. Each artifact is carefully taken into consideration along with
its properties and most importantly, the relation between them. This was a very crucial step as
far as conceptualization was concerned. Until the artifacts are clear and relations between them
is understood, it was not possible to proceed further to analyse different formats and finally
come up with a new file format. An overview of the complete model, where all the artifacts are
involved is shown in 3.3.

In figure 3.3, all the artifacts that are involved in the meta-model that is under discussion can be
seen. Various artifacts under examination are as follows:

• Source file

28

3 Conceptualization 3.2 Meta model formation

Figure 3.3: Abstract view of complete meta-model

• Header file

• C function

• Parameter

• Return

• Data object

• Type definition

• Structure

• Enumerator

Each of these artifacts are related with one another as already seen. Also, each of them have
their own specific attributes. All the properties are noted and discussed will be elaborated in
coming sections. But before that, meta model that comes from architecture and from source
code is understood. And finally, data is analysed extensively.

3.2.1 Meta model - from architecture

This sub section specifically deals with understanding of data-artifacts that come from the
enterprise architect or to be precise product architecture design. The relations between these
objects was determined and also the properties of each object.

29

3 Conceptualization 3.2 Meta model formation

The meta-model is first shown in figure 3.4 and the explanation of each object follows.

Figure 3.4: Meta model from Enterprise Architect

In the meta model 3.4 various objects/data artifacts which have the source - enterprise architect
is seen. Although this is the product architecture design, we consider the artifacts/objects within
each component of the product and consolidated into the following types. The overview of each
artifact, along with its properties and the relations is summed up in the table 3.11:

The explanation to some of the properties of artifacts/objects is as follows:

• name - defines the name of the object.

• desc - or description as the name suggests, gives the description of the functionality of the
object.

• lockContext - gives a value, which shows if the function can be called within a section of
a lock interrupt or not.

• preConditions - state if there are any particular conditions that are to be taken care of
before the function executes.

• reentrant - value states if a function can be re-entered while the function is executing.

• serviceId - is a identifier used for a function which is used while error logging.

30

3 Conceptualization 3.2 Meta model formation

Artifacts from architecture

Artifacts Properties Relations

Source file name define, declare, include

Header file name includeby, include, de-
clare, define

C function name, call context, desc, lockCon-
text, preConditions, reentrant, ser-
viceId, stereoType

definein, declareby, has

Parameter name, kind, type, desc (none)

Return name, desc (none)

Type definitions name, kindName, memberNames,
memberKinds

definein, declareby

Table 3.2: Consolidated overview of artifacts from architecture

• stereoType - states the kind of the function, it can be service or call back.

The above data was gathered after analysis of the data artifacts that are present from enterprise
architect.

3.2.2 Meta model - from source code

This sub section deals with understanding of data-artifacts that come from the source code files
that is understand C in this case. The relations between these objects was determined and also
the properties of each object. The meta-model is first shown in figure 3.5 and the explanation of
each object follows.

In the meta model 3.5 various objects/data artifacts which have the source - UC is seen. The
overview of each artifact, along with its properties and the relations is summed up in the table
3.3:

The properties that are seen in the table 3.3 have been already explained in the section 3.2.1. The
extra objects that are noticed here are the structure and enumeration objects. The explanation to
some of the properties that have not been covered earlier are as follows:

• Data - are the data objects, which are defined by source files, declared by header files and
used by functions. Data objects use type definition objects.

• isConst - is the value that states if the data object is constant or not.

• memberName - name of the member of a structure.

31

3 Conceptualization 3.2 Meta model formation

Figure 3.5: Meta model from UnderstandC

• memberType - type of the member of a structure.

• memberDesc - description of the member of a structure.

• literalName - name of the literal of an enumerator.

• literalDesc - description of the literal of an enumerator.

3.2.3 Analysis of data

This section now discusses the data that has been collected from both the sources. Here, to make
it better for understanding, a table was created so that data analysis is explicitly completed. This
table will also be clearly answering the question about who is the ’master of data’. Master of
data is considered as the source, that defines the data initially. If the data is further refined, it
is not considered as master or data. The table 3.4 shows all three sources of data, that is the
product architecture, component architecture and the code.

Analysis of data
Data Product

architec-
ture(PA)

Component
architec-
ture(CA)

Code(CO) Master of
Data

Abstract architecture Yes No No PA
Used modules and using modules Yes No No PA
Functionality description of module Yes Yes No Both PA

and CA

32

3 Conceptualization 3.2 Meta model formation

Continuation of Table 3.4
Data Product

architec-
ture(PA)

Component
architec-
ture(CA)

Code(CO) Master of
Data

State diagram Yes Yes No Both PA
and CA

Control Flow and Butterfly diagram No No Yes CO
Modules Yes No No PA
Interaction between modules Yes Not fully No PA
Source file details No Not fully Yes CO
Name No Yes Yes
Desc No Yes Yes
Header file details Not fully Yes Yes PA
Name Yes Yes Yes
Desc No Yes Yes
Type definition Not fully No Yes CO
Typedef/Struct/Enum Not fully No Yes CO
Name
Kind (Typedef/Struct/Enum)
Type
TypeDesc
Members No Yes Yes CO
MemberName
MembeType
MembeDesc
Variables (C objects) No No Yes CO
Name
Kind Name
Type
Desc
API (Routine/Function) Yes Yes Yes PA
Name Yes Yes Yes
Stereotype Yes Yes Yes
Description () Yes Yes Yes
Context Yes Yes Yes
Reentrant Yes Yes Yes
Synchronous Yes Yes Yes
Config No Yes Yes
Lock context Yes Yes Yes
Service ID Yes Yes Yes
C Parameters Yes No Yes PA
Name Yes No Yes
Type Yes No Yes

33

3 Conceptualization 3.3 Format analysis

Continuation of Table 3.4
Data Product

architec-
ture(PA)

Component
architec-
ture(CA)

Code(CO) Master of
Data

Kind (in/out) Yes No Yes
Description Yes No Yes
Return Yes Yes Yes PA
Type Yes Yes Yes
Description Yes Yes Yes

Table 3.4: Analysis of data

The table 3.4 clearly show the data artifact into consideration along with the root location of that
data. There are some extra data artifacts like state diagram, abstract architecture and some more
diagrams which have not been taken into consideration when meta-modeling was done. Reason
being, although it is a part of root location, it does not contain direct properties or relations that
can be shown using meta-model. However, some of these artifacts will be considered in coming
stages while finalizing the file format. Now with this information clearly in hand, we can move
further to analyse the different kinds of format that presently describe these data artifacts and
what are their advantages and disadvantages. That is another very important aspect that has
to be considered and only after the examination of all these factors, a new file format can be
devised/specified for the required purpose.

3.3 Format analysis

In this section, analysis of different formats that are presently available is done. They are:
UnderstandC, VCD and ReqIf. There are three major aspects of these formats, naming:

1. Work flow

2. Structure

3. Context

Each of the formats stated here have their own advantages, uses, structure, scalability and disad-
vantages. By the end of the section, comparison of all these formats are done and amalgamated
into one table based on requirements of the format. That will give a more evident apprehension
for structuring a new file format.

3.3.1 Evaluating UnderstandC format

Understand C Database (UDB) is converted to an XML format using Perl scripting. This was
used earlier to get better way of viewing all the objects it contains in the source code files and

34

3 Conceptualization 3.3 Format analysis

Artifacts from source code

Artifacts Properties Relations

Source file name define, declare, include

Header file name, desc includeby, include, de-
clare, define

C function name, call context, desc, lockCon-
text, preConditions, reentrant, ser-
viceId, stereoType

definein, declareby,
use, has

Parameter name, kind, type, desc (none)

Return name, desc (none)

Data name, kindName, type, typeDesc,
isConst

use, useby, declareby,
definein

Type definitions name, kindName, memberNames,
memberKinds

definein, declareby

Struct name, desc, memberName, mem-
berType, memberDesc

definein

Enum name, desc, literalName, liter-
alDesc

definein

Table 3.3: Consolidated overview of artifacts from source code

since it was XML, it could be easily converted to HTML format to have even better look at it,
for understanding purposes. A small part of that XML file is considered, to get an idea of how
does it access the objects and how is it structured.

1 <ent kind="Function" kindlong="C Unresolved Function" name="
ComM_MainFunction_0" id="719" VScope="global" type="void">

2 <comment></comment>
3 <declarein kind="File" kindlong="C Header File" name="

ComM_Lcfg.h" id="700" line="104" column="29"/>
4 </ent>

To understand the XML format of UC, a meta model is shown in 3.6.

As seen in 3.6, the ent/entity node has attributes such as id, kind, kindlong, name, type and scope.
Some of these attributes are not required within the node itself. Also, relation node contains
id, kind, kindlong and name. Again, kind and kindlong, both are not necessary information.
Any one or combined information would be better. There are 3 kinds of relations involved,

35

3 Conceptualization 3.3 Format analysis

Figure 3.6: XML format of UC

that is include, useby and declarein - shown as examples. And some examples of kind is also
mentioned, like file, function, macro, etc.

The work flow of this format can be seen in 3.7.

Figure 3.7: Work flow of UnderstandC

Now with this format, comparison is made of the data-model discussed in the previous sections.
When it comes to handling such large amounts of data, and each data object having more than
two attributes at the least, there arises a need to evaluate if this kind of listing is efficient to be

36

3 Conceptualization 3.3 Format analysis

used. Next thing considered is the encapsulation of data when more than one component needs
to be realised in the same file. Do keeping objects in parallel working well in that case as well
or not is also examined.
Knowing the fact that there are more than one component in any product development,
following this format only gives the wide overview of all the existing objects. Even when it
comes to relations, having only the id and direction of the object related is not sufficient. It
makes knowing all the relations more complicated, because each time there is a need to search
for that id in the entire file. Expanded version of this example can be found in appendix section
A.1.1.

So summing up the results, there are both advantages and disadvantages in this file for-
mat. They can be summed as follows -

Advantages:

• Suited as import/export format.

• The generic method of addressing objects is a good concept. Since any kind of object can
be defined using that, and with the attribute kind, it gives a wider usage.

• The concept of id is also good since, each object has it’s unique identifier and makes it
easier to access or refer later. But we will discuss the other possibilities of other cases in
coming sections.

Disadvantages:

• All the attributes are contained within the same tag, which creates a lot of confusion when
a certain object has more than, say 2 attributes.

• The relations are addressed based on the kind name directly. Since it is not generic, tag
has to be explicitly defined.

• The attributes ’kind’ and ’kindlong’ are redundant. This can be avoided.

• The line and column are not so significant and take up space for not a real good reason.

3.3.2 Evaluating VCD format

Vector (VCD) is format that was developed at Vector Informatik for internal purpose. This
format deals with the data from EA. Converts the product architecture design into VCD format
which is XML in structure. This format is used to convert data into HTML for reference purpose.
All the data that is available in EA, is converted to VCD format.
In the following lines is an example of part of the file is given and analyses follows.

37

3 Conceptualization 3.3 Format analysis

1 <Method GUID="{0C68D9B3-09A3-478a-8E3E-495051F7F527}" Name="
LinSM_Init" Kind="ServiceFunction" Return="void">

2 <Notes><![CDATA[This function initializes the LinSM.
]]></
Notes>

3 <Tags>
4 <Tag Name="CallContext">
5 <Value>Any</Value>
6 </Tag>
7 <!--.........many more tags............-->
8 <ReturnType>void</ReturnType>
9 <Parameter Name="ConfigPtr" Kind="in" Position="0" Type="

const LinSM_ConfigType*" Type_Plain="LinSM_ConfigType">
10 <Notes><![CDATA[Pointer to the LinSM post-build

configuration data.]]></Notes>
11 </Parameter>
12 <UsedByModule GUID="{BE85B771-ECFF-4a77-961B-7327B1154E8E}"

Name="EcuM______TBDel" />
13 </Method>
14 <!--...................................-->
15 <Dependency Type="Realisation" Stereotype="realize" Name=""

Direction="out" MyMultiplicity="" TargetMultiplicity=""
LinkedGUID="{5E542F8C-ADCD-49f6-89E7-85195020A637}"
LinkedName="LinSm" LinkedType="Interface" LinkedStereotype="
EmbeddedInterface">

16 <Notes>BswM_LinSM_CurrentSchedule BswM_LinSM_CurrentState</
Notes>

17 </Dependency>

In the above example the first thing that is noticed is, there is hierarchy in the structure. When
it comes to objects, the nodes are named based on the kind of object itself. Example , node
named ’method’. This object is of kind function/API/routine/method. The attributes are within
the same node. When it comes to the properties of node ’method’, it has sub nodes with name -
’tags and tag’. Each ’tag’ has a name and value. Similarly, for each parameter in the method, it
is under the concerned method and node name is ’parameter’ with similar form as ’method’.

Each node is explicitly referred by it’s name. Also, node name ’dependency’ with attributes
’type’ and ’stereotype’, along with ’name’, ’direction’, ’multiplicity’, ’targetmultiplicity’,
’linkedname’, ’linkedtype’ and ’interface’. All these properties, are attached with each
’dependency’ node. This makes it more complicated for a developer to understand. The
information about multiplicity, etc is not really needed at that level. Not all the information
given, would be useful. Thus, in the format that is going to be designed, we must take care that
only the information that is needed by the developer (as based on results of the survey) must be
given first preference. Expanded version of this example can be found in appendix section A.1.2.

38

3 Conceptualization 3.3 Format analysis

Based on the example, and analysis, a list of advantages and disadvantages can be listed
as follows -
Advantages:

• The structure is hierarchical.

• Suited as import/export format.

• Value of the property can be easily accessed.

Disadvantages:

• Too many attributes within the tag.

• Tag name specifically named.

• Nodes could occur multiple times

• Dependency not so clear to understand.

• A lot of information that is not required by the developer.

3.3.3 Evaluating ReqIf format

In this section, analysis is done of the format used by ReqIf. It is a standardized meta-model
in XML schema. Since it is used to exchange information between the Original equipment
manufacturer (OEM)’s and the suppliers, it is essential to understand their schema as well. There
could be certain concepts that could be reformed and used for the intermediate file format that
has to be created.
In the following lines is an example of part of the file is given and analyses follows.

1 <DATATYPE-DEFINITION-ENUMERATION IDENTIFIER = "Status" LAST-
CHANGE = "2011-06-13T00:00:00+01:00">

2 <SPECIFIED-VALUES>
3 <ENUM-VALUE DESC = "Requirement has been proposed."

IDENTIFIER = "Proposed" LAST-CHANGE = "2011-06-13T00
:00:00+01:00">

4 <PROPERTIES>
5 <EMBEDDED-VALUE KEY = "1" OTHER-CONTENT = "foo" />
6 </PROPERTIES>
7 </ENUM-VALUE>
8 <!--...................................-->
9 </SPECIFIED-VALUES>

10 </DATATYPE-DEFINITION-ENUMERATION>

39

3 Conceptualization 3.3 Format analysis

In the example above, a generic approach is seen while defining the objects. Something that is
also easily noticed is the structure of the file is hierarchical.
Something that is not seen in other formats is a separate hierarchy for the definition of all
relations. It defines the source, destination and the id of the relation. Expanded version of this
example can be found in appendix section A.1.3.

Based on the example, and analysis, list the advantages and disadvantages of the format
can be listed as follows -
Advantages:

• The structure is hierarchical.

• Suited as import/export format.

• ReqIf has a section to store tool specific settings.

Disadvantages:

• Extreme generic structure.

• Less useful as internal meta-model for tooling.

• Not many tools have ReqIf as internal meta-model.

• The specification of the structure (SpecType) and its values (SpecObject) reside often
in the same XML. If this is split, the specification could be reused for multiple value
files. But this is not indented this way and therefore at times creates problems reusing the
specification and ends up in specification duplication (think about having XML scheme
delivered within every XML).

• Many tools have misused this making ReqIf exchange across tools impossible.

3.3.4 Evaluating AUTOSAR format

In this section, analysis of the AUTOSAR meta-model is done. This example is taken not to
understand with respect to contents but the structure of the meta-model.
A small part of the example is shown as follows.

1 <SHORT-NAME>Msn</SHORT-NAME>
2 <DESC>
3 <L-2 L="EN">Configuration of the Msn (Generic Component)

module.</L-2>
4 </DESC>
5 <CATEGORY>VENDOR_SPECIFIC_MODULE_DEFINITION</CATEGORY>
6 <!--...................................-->
7 <MODIFICATIONS>
8 <MODIFICATION>
9 <CHANGE>

40

3 Conceptualization 3.3 Format analysis

10 <L-2 L="EN">SW Version Number set to 3.00.03</L-2>
11 </CHANGE>
12 </MODIFICATION>
13 </MODIFICATIONS>

In the example above, one major aspect that stands out is the structure of the file. It is clearly
hierarchical in nature. Next important thing that is noticed is that every object or it’s property
has specific node names. Each node has its Unique identification number (UID). So either a
node is referenced by its UID or by its name which can be tagged along with partial parent
name.
This specific example does not deal with objects like files or functions like in the examples
above as noticed. Expanded version of this example can be found in appendix section A.1.4.

Based on the example, and analysis, a list the advantages and disadvantages of the for-
mat is as follows-
Advantages:

• The structure is hierarchical.

• Used with the latest version of AUTOSAR.

• Has concepts of unique ID associated with every node used.

Disadvantages:

• Extremely specific node names.

• Will not comply if only ID is unique due to ID generation from different sources.

• Lot of extra information when it comes to giving it as a reference for developers.

3.3.5 Comparison of formats

In this section, the concept analysis of aspects is narrowed down. Here, aspects that are discussed
are:

1. Objects

2. Relations

3. Properties

4. Hierarchy

Each aspect is individually comprehended as follows:

41

3 Conceptualization 3.3 Format analysis

1. Objects:

In the table 3.5, it is noticed that objects can have 2 variants. In the first variant,
each node is individually named. But in the second approach, it is generic and differen-
tiated based on the kind attribute of the object. This makes it a better choice for the new
file format.

Variant Example
A) Individual XML
nodes 1 <file name="File.c" id="1"/>

2 <function name="Sample_Init" id="2"/>

B) General XML
nodes with kind
attribute

1 <object kind="File" name="File.c" id="1
"/>

2 <object kind="Function" name="
SampleInit" id="2"/>

Table 3.5: Object variants

XML Path Language (XPath) is a language for addressing parts of an XML document,
designed to be used by both XSLT and XML Pointer language (XPointer) [JC15]. This is
important different kinds of XML nodes are used. And XSLT is used for accessing the
nodes in the XML file.
Next, XPath access samples are shown for the objects:

Variant A Variant B
All objects of certain
kind

file object[@kind="file"]

All objects file | function | . . .
(in some cases * is possible)

object

Object by name (id,. . .) *[@name=’Sample_Init’] object[@name="Sample_Init"]

Table 3.6: Sample XPATH access

Clearly, it is easier to access the object if it is a generic node. Only the kind has to be
specified. Makes it more efficient to make changes and design XSLT.

2. Relations:

Table 3.7 shows the variants of object relations. As seen in examples, it is always better
to have generic nodes. This helps in scaling the model as per requirement. In this case,
variant D has better approach for defining relations.

42

3 Conceptualization 3.3 Format analysis

Variant Example
A)

1 <object kind= File id= 1 >
2 <include id= 2 >
3 <object/>
4 <object kind= File id= 2 />
5 <includeBy id= 1 >
6 <object/>

B) Relation as own
XML node 1 <object kind= File id= 1 >

2 <relation id= rel1 >
3 <object/>
4 <object kind= File id= 2 />
5 <relation id= rel1 >
6 <object/>
7

8 <relation id= 1 kind= include
sourceId= 1 targetId= 2 >

C) (like A, but with di-
rection) 1 <object kind= File id= 1 >

2 <include dir= o u t id= 2 >
3 <object/>
4 <object kind= File id= 2 />
5 <include dir= i n id= 1 >
6 <object/>

D)
1 <object kind= File id= 1 >
2 <rel kind= include id= 2 >
3 <object/>
4 <object kind= File id= 2 />
5 <rel kind= includeby id= 1 >
6 <object/>

Table 3.7: Relation variants

3. Properties:

Table 3.8 shows the variants of object properties. As seen in the examples, there are

43

3 Conceptualization 3.3 Format analysis

different possibilities. But, when it comes to accessing the values of the properties, it is
easier to access with the generic node name. It can be accessed based on name attribute
of the property node, thus making variant C a better choice for designing new file format.

Variant Example
A) as XML at-
tributes 1 <object kind= File id= 1 scope=

global editable= true />
2 <object kind= Function id= 2

callcontext= a n y reentrant= false /
>

B) as specific
XML nodes 1 <object kind= File id= 1 >

2 <scope>global</scope>
3 <editable>true</editable>
4 </object>
5 <object kind= Function id= 2 >
6 <callcontext>any</callcontext>
7 <reentrant>false</reentrant>
8 </object>

C) as general
XML nodes with
kind

1 <object kind= File id= 1 >
2 <prop name= scope >global</prop>
3 <prop name= editable >true</prop>
4 </object>
5 <object kind= Function id= 2 >
6 <prop name=callcontext>any</prop>
7 <prop name= reentrant >false</prop>
8 </object>

Table 3.8: Properties variants

4. Hierarchy:

Aspects: How is hierarchy modelled? By "containment"-relations or by direct hierarchy?
Table 3.9 shows the variants of hierarchy. As per examples seen in the table, having a
flat model makes it difficult to understand the inter-relation of objects. Thus, having a
hierarchy to certain extent is better for understanding and also with respect to the data
model of new file format.

44

3 Conceptualization 3.3 Format analysis

Variant Example
A) Flat

1 <object kind= File id= 1 >
2 <rel kind= contain relObjId= 2 />
3 </object>
4 <object kind= Function id= 2 >
5 <rel kind=containedBy relObjId= 1 /

>
6 </object>

B) Hierarchy
1 <object kind= File id= 1 >
2 <object kind= Function id= 2 >
3 </object>
4 </object>

Table 3.9: Hierarchy variants

To consolidate all the data that was just analysed at abstract and detailed level, the comparison
table 3.10 sums it all up for all the various formats.

File format Object Hierarchy Properties Relations

VCD B B B,A D

UCXML B A A,B A

ARXML A B B

ReqIf

VSF B B C(,A) D

Table 3.10: Comparison of variants in various formats

In the table 3.11, the abstract view of all different formats with respect to the different artifacts
and structure is seen.

Now, the conceptualization of the intermediate format is explained in the following section.

45

3 Conceptualization 3.4 Intermediate format conceptualization

File format Object Relation Hierarchy

UC Generic definition, at-
tributes within same tag

Identified defined using
"kind" of relation di-
rectly. Ex. <use> with
its properties

No

VCD Generic definition, at-
tributes with specific
tags

Defined using <depen-
dency> tags with its
properties

Yes

ReqIf Generic approach while
defining

Separate hierarchy for
relations with source,
target and id

Yes

AUTOSAR Generic approach while
defining with unique
Id’s

- Yes

Table 3.11: Analysed Data - Consolidated

3.4 Intermediate format conceptualization

In this section, the conceptualization of the intermediate format will be explained. This would
include the naming conventions of the objects in the first sub section. That would be followed
by the hierarchy of the format and finally the definition of relations. Each of the sub sections
have to considered from both architecture and source code point of view. It is also found that the
objects that come from both do not match completely. Some data artifacts are only applicable
from architecture point of you some only from source code.
Overall, some important properties of intermediate format are:

• Hierarchical in nature (Variant B of table 3.9)

• Generic approach for the nodes (Variant B of table 3.5)

• All information with respect to a single object directly available, along with the extra
information

• Exclusive artifacts like parameters and relations, directly placed under respective object
for making it easier to edit (add/delete)

• Covers all the advantages of all the formats analysed and overcomes the disadvantages for
them

Figure 3.8 shows the complete file model of Vector specification file (VSF) format.

46

3 Conceptualization 3.4 Intermediate format conceptualization

Figure 3.8: File model of VSF format

All the objects that are covered in the model are shown in 3.8. Along with the object names,
properties of each are also seen. Most important points to be considered while understanding
the file format are:

• Each VSF file contains multiple objects

• Each object has properties, relations and reference and metrics

• There are many different kinds of objects which can be seen in objectKind enumeration

• All the relation kinds covered in the model can be seen in relKind enumeration

• All the reference file kinds can be seen in refFileKind enumeration

47

3 Conceptualization 3.4 Intermediate format conceptualization

• The objId under the relation node, refers to the id of individual node. It can be seen with
the dotted lines between objId and id

3.4.1 Naming conventions

In this section, the naming conventions used and the purpose of using them is understood. This
is the first aspect into consideration.

1. Object -
All the artifacts considered have the name ’object’ and can be generalized.
Each object has these attributes:

• kind - kind of the object

• name - name of the object

• id - unique identification is generated for each object

An example of object node in the VSF file can been here:

1 <object kind="Function" name="Function1" id="1">
2 <!--properties-->
3 <!--relations-->
4 <!--refFiles-->
5 </object>

Under this node, it can have properties with values and relations nodes. Different kinds
can be differentiated by their property ’kind’. The possible kinds of objects can be as
follows:

Objects

Kind Description

Spec specification kind with name attribute. This is the outermost
node, which contains the component and all it’s sub-parts.

Component component kind with name attribute. This is a sub-node of
every specification and contains all the packages in a com-
ponent.

Package package kind with name attribute. There are several pack-
ages under a component when data comes from architec-
ture. When it comes from source code, we have one main
package under the component.

Diagram diagram kind with name attribute. This mainly roots from
the architecture when we have state machines and so on.

48

3 Conceptualization 3.4 Intermediate format conceptualization

Continuation of Table 3.12

Kind Description

State state kind with name attribute. This also comes mainly from
architecture which contains relations from that state to an-
other state.

Function function kind with name attribute. When data comes from
architecture, function can be of kind callback or service.
But when this object originates from source code, it is not
possible to decipher it’s kind.

Return return kind with type as its property. This gives the infor-
mation of the return kind of a function and is always under
the function node.

Parameter parameter kind with name attribute. This object is always
function specific and contains the various properties of the
parameter under it.

File file kind with name attribute. File can have various proper-
ties and relations within. Also, it can be header or code file.
That can be known based on the extension.

Typedef typedef or type definition kind with name attribute. This
object specifies the type as its property. If a file or function
defines a type definition, it is shown by using relations.

Struct struct or structure kind with name attribute. It contains all
properties, members, members details and all the relations
with files and functions is placed within it.

Enum enum or enumerator kind with name attribute. Similar to
structure, it contains all properties members, members de-
tails and all the relations with files and functions is placed
within it.

Data data kind with name. This object describes all the variables
that have been defined. It has its properties and also all the
relations with files and functions.

DesignFeature designfeature with name attribute, also comes from compo-
nent abstract design level. It contains the description and
properties related to the object.

Table 3.12: Kinds of objects

49

3 Conceptualization 3.4 Intermediate format conceptualization

2. Property -
Under each object, there are properties. They have the name ’prop’ with name as its
attribute and value set within the node.
The following example shows the property node with value:

1 <object kind="Parameter" name="ConfigPtr">
2 <prop name="Type">const LinSM_ConfigType*</prop>
3 <!--more properties-->

3. Relation -
Relation node have the name ’rel’. Each relation has these attributes:

• kind - kind of the relation

• objKind - the kind of the object that is related

• objName - the name of the object that is related

• objId - the unique identification of the object that is related

All the relations can be generalized based on the node name ’rel’. This can be differen-
tiated by their property ’kind’. The possible kinds of relations can be seen in table 3.13.
The suffixes like ’by’, and ’in’ are used when the same relation is expressed in opposite
direction between the objects.

Kind Description

include/includeby used when an object includes another object

define/definein used when an object provides definition for another object

use/useby used when an object uses another object

declare/declarein used when an object declares another object

set/setby used when an objects sets a value for another object

call/callby used when an object is called by another object

modify/modifyby used when an object is modified by another object

follow/followby used when an object is followed by another object

contain/containedin used when an object is contained within another object

Table 3.13: Kinds of relations

Not all relations are available in all data sources. Some of the relations are only present in
architecture while remaining come from the source code.
An example of its definition can be seen here:

50

3 Conceptualization 3.4 Intermediate format conceptualization

1 <object kind="File" name="BswM_LinSM.h" id="974">
2 <rel kind="Include" objId="976" objKind="File" objName="

LinSM.h"></rel>

4. RefFile -
Reference file nodes can also be present in the file. Each of these nodes has these at-
tributes:

• kind - reference file that is referenced

• name - name of the reference file that is referenced

It also contains property of the name path, and it’s value gives the path of the file
referenced. Kind of the reference can be as follows:

Kind Description

File This is available when data comes from architecture. It pro-
vides path to the file it references.

Butterfly This comes from source code. It refers to the butterfly kind
of diagrams.

Data members This comes from source code. It refers to the data members
kind of diagrams.

Control flow This comes from source code. It refers to the control flow
kind of diagrams.

Table 3.14: Kinds of reference files

An example of its definition can be seen here:

1 <object kind="File" name="BswM_LinSM.h" id="974">
2 <refFile kind="Butterfly" name="Butterfly_BswM_LinSM.h">
3 <prop name="Path">RefFile\BswM_LinSM.h_Butterfly.png</

prop>
4 </refFile>

As seen above, various kinds have been generalized under the name ’object’,’prop’ and
’refFile’. This makes it easier to scale this model later. In case of any more objects and
properties of different kinds or names in case of properties, it can be easily added and
included in the meta-model.

51

3 Conceptualization 3.4 Intermediate format conceptualization

3.4.2 Hierarchy

In this section, the finalized structure of the format is seen in terms of it’s hierarchy. In the
analysis before, it was noticed that different formats have different structures and based on the
pros and cons of each, the structure has been finalized. It can be seen as follows with simple
example in the form of a diagram in 3.9.

Figure 3.9: Hierarchy of format - An example

The hierarchy of the format can be clearly noticed in the figure 3.9 . All the objects under
package node are in parallel. There can be more than 1 package within a component and multiple
components within a specification. In the figure,the structure below each object can be seen
separately.

To give it more specific name, this format was named ’VSF’ or ’Vector Specification Format’
and has the extension ’.vsf’.

The following example shows the hierarchical structure of the file:

1 <vsf name="test1">
2 <object kind="Spec" name="MSR4">
3 <prop name="CreateDate">2015-07-13 15:26:23</prop>
4 <object kind="Component" name="LinSM">
5 <object kind="Diagram" name="LinSM" id="1">
6 <prop name="Type">Logical</prop>
7 <rel kind="contain" objKind="Class_Module" objName="LinSM"

objId="2" />
8 <refFile kind="File" name="LinSM">
9 <prop name="Path">RefFiles\Sample_Path__Name.png</prop>

10 </refFile>
11 </object>
12 <!--.........-->
13 </object>

52

3 Conceptualization 3.4 Intermediate format conceptualization

14 </object>
15 </vsf>

An entire example of VSF file can be found in appendix A.1.5.

53

4 Implementation

This chapter describes the phases of implementation. It begins with identifying all use cases that
have to considered here. After which conversion of data is discussed. And finally, the comparing
and merging data mechanism is realized.

4.1 Use Cases

Before discussing the different use-cases, it is essential to understand what exactly does use-case
mean and why is it needed?
From software and systems engineering point of view, there is a technique to realize the inter-
action of software or a system with its users. When the user interacts with it, he/she uses the
data. What data is used, how is it useful for the user and how can that data be realized are the
questions that arise. In order to figure the questions out, this technique of classifying use-cases
based on interaction, the contents of the software or system and identifying the end result - gives
possible use-cases. In the use case diagram 4.1 the use-case is seen in form of a interactive di-
agram between architecture and component development levels. The use case diagram 4.1 will
be split into modules and discussed in coming sections. These use cases have been derived after
the analysis of results from the survey that was conducted. The use cases are classified in 3 main
sections:

1. Information from architecture -

The data that is present at architecture level comes from the requirements of the customer.
In this case, product architecture design is designed by the architects and this data is then
given to the component developers as their input of requirements. At this moment, what
data is given as input is realized, how is the data passed or given as input in terms of
format of the file. The following use case seen in 4.2 describes the ’information from
architecture’ evidently. In 4.2 the interaction between the architect(s) and the data is seen
and also the formats involved. The architect(s) designs the product architecture design.
The data that is relevant for the component developers is exported. It is exported in form
of a VSF file and also converted to HTML format.

2. Review within component development -

This use case is related to the component developer. What is done, what data is used, what
is developed and finally the developed component is analysed. All these actions are a part
of this use case. The use case 4.3 that is shown, gives more clarity. In 4.3 the actions

54

4 Implementation 4.1 Use Cases

Figure 4.1: Usecase diagram between architecture and component development level

involved with respect to the developers is realised. This can also be considered as the
second half of the round-trip concerning data.

3. Interaction with architecture -

This use case is the final step and shows the tooling involved within this thesis. After the
component has been developed, it has to interact with the architecture. This is done for
2 purposes: First, it can be used to verify against the architecture and secondly, it can be
used to update the architecture in case of changes. The use case 4.4 that is shown, explains
the use case comprehensibly.

In 4.4 the tooling is contained within the system, since it can be considered as an additional

55

4 Implementation 4.1 Use Cases

Figure 4.2: Use Case 1 - Information from Architecture

Figure 4.3: Use Case 2 - Review within component development

56

4 Implementation 4.2 Conversion of data

Figure 4.4: Use Case 3 - Interaction with architecture

module to the existing system. It purposes of verification and updating data is clearly seen.

4.2 Conversion of data

This includes converting data from EA to the VSF and converting data from UDB to VSF. The
subsections of each of these sections discuss the details of the data considered from each source,
challenges that were faced and the abstract description of the final format from each of these
sources. These refer to the data that is discussed in the data models of EA (3.4) and UDB
(3.5).

In EA, the data is stored in form of classes, packages, interfaces, etc. in the database. The
objects are accessed individually within the environment.

In UDB, data is stored in form of entities and references. Each entity can be accessed
based on its kind. And after the kind is matched, the other attributes can be accessed easily
in UDB. The relationship between these entities are called references. Each grouping of the
reference kinds are in both directions. For e.g., declare and declarein.

Now that it is clear how data is organized within the database of each source, the subsections
further explain the conversion of data from each source.

4.2.1 Converting EA to VSF

In this section the data that comes from architecture and what should be used while converting
or exporting data to VSF file is mainly discussed. This section is divided into 3 main parts, and
they are:

57

4 Implementation 4.2 Conversion of data

1. General details

2. Implementation details

3. Abstract description of result

1. General details -

It was discussed in the previous section (3.2.1) about what data is actually present in archi-
tecture design and what is actually to be used as part of the data model. In the following
figure 4.5, the objects that are exported from EA and which is used to convert into the VSF
file are seen.

Figure 4.5: Data artifacts exported from EA

As seen in figure 4.5, all the data artifacts that are shown, along with its attributes and
related objects, are based on the information that was collected during the survey. It was
found that a lot of extra information was given from architecture product design to the
component development level. Mainly very specific details related to the component was
needed. The information about the interaction between modules, the diagrams like the

58

4 Implementation 4.2 Conversion of data

state machine, class diagrams and sequence diagrams was required. This gave a clear un-
derstanding of the requirements from that particular component.
Each diagram has its properties, modules relation and reference files. These diagrams can
be present before the details of specific packages as well. Based on different requirements
that is provided by the customer, product architecture design is divided into several pack-
ages. Each of this package may contain sub-packages and various kinds of objects. Some
of the kinds of objects are:

• State (diagram)

• Trigger

• Function

• File

This sums up the data artifacts that are needed for export.

2. Implementation details -

The implementation of this export was done using C# technology. When it comes to
extracting data from the EA, Csh is used to fulfil the function since it can access the
artifacts directly from the database of EA and helps to meet the requirements.

To begin with, an add-in was created in EA, which gave an option of directly converting
the component that was selected into VSF. The screen shots of that add-in can be seen in
figure 4.6 and 4.7.

Figure 4.6: Step 1 - Selecting component to be converted

59

4 Implementation 4.2 Conversion of data

Figure 4.7: Step 2 - Selection of option from add-in

In the back end, when this option is selected, the processing begins. A new file is created
with the component name that is selected and extension .vsf. After this for main export
implementation, nodes are created in the newly created file. It begins with the main VSF
node and properties like version, date, the process type and so on. After which, component
node is created. In order to get the packages under that component, the component is
searched completely for all the packages.

Once the package is found, all data is accessed within that package. As discussed before,
only the artifacts that are needed are specifically searched based on kind. As and when
object within our list of artifacts is found, a new node is created. All the properties related
to that object are accessed and stored as prop nodes. This process is done recursively, until
all the data within that component is searched and only the data that we need is added to
the VSF file.

Most important are the relations node that are created. Since the naming and terms are
different when it comes to EA, while searching for the relations or in this case the connec-
tors, it is converted to the finalized names as in the meta-model. To sum it all, the table
4.1 shows the connector types and corresponsing relations.

Once these are calculated, they are then written as relations.
Finally, in order to process the diagrams. In this case, the state diagrams are processed
in state table. After which, the diagrams are stored with path and appropriate name and
extension. This path is saved as a property of the diagram. When the conversion is taking
place, simultaneously the diagrams are drawn and saved in a folder, same as the VSF file.

3. Abstract description of result -

After the conversion or export of product architecture design into a VSF file is completed,
it is used to convert it into HTML using XSLT technology. Since the VSF file is in XML
technology, it can be easily converted to HTML for readability and understanding pur-
poses. The screen shots ahead in figures 4.8, 4.9 and 4.10, give an abstract overview of

60

4 Implementation 4.2 Conversion of data

Connector types and corresponding relations

Connector Type in EA Relation in VSF

Sequence

Generalization Generalize/Generalizeby

Aggregation Contain/ContainedIn

Dependency/include Include/Includeby

StateFlow Follow/Followby

Table 4.1: Connector types and corresponding relations

how the product architecture design is presented to be used further as an input (along with
VSF file) for the component development.

Figure 4.8: Basic information given

61

4 Implementation 4.2 Conversion of data

Figure 4.9: Overview of the component

Figure 4.10: Example of function details

As seen in the figures 4.8, 4.9 and 4.10, all the data that is required for further develop-
ment is present. The component developers mentioned that the data was needed only for
reference and understanding the requirements. That purpose has been taken care of using
this.

This completed the first half of the round-trip engineering for the data artifacts. But, that does
not complete the process.

62

4 Implementation 4.2 Conversion of data

4.2.2 Converting UDB to VSF

In this section, all the data that comes from source code files is explicitly discussed. In this case
data from UDB and which data is actually used while converting to VSF. This section is divided
into 4 parts. They are:

1. General details

2. Implementation details

3. Challenges faced

4. Abstract description of result

The basic work flow of data can be understood by the figure 4.11

Figure 4.11: Work flow model for conversion from UDB to VSF

1. General details -

In this section, the data artifacts that have to be exported from the source files for VSF
are discussed. When data comes from the lower level of the V-model! (V-model!), that is
from the component development level, there is a lot more data than what was given from
architecture level. It is important to set rules and analyse which data artifacts are required
in this case. Since, the final goal is to verify the data and merge it with data that comes
from architecture, it is very essential to maintain the same level of hierarchy and naming
conventions. This was also followed during the export in previous section.
To get a clear picture of what is to be used and what not, the figure 4.12 is a good
reference.

63

4 Implementation 4.2 Conversion of data

Figure 4.12: Data artifacts exported from source code

As noticed in figure 4.12, there is relatively more data than what was given before as
input. The additional artifacts such as State and Trigger are not available from source
code level. C objects are explicitly a part of the model, along with type definitions,
structures and enumerations. Each artifact has its attributes and relation with one another
specified. And each of these artifacts are contained in each component. When data comes
from source code, it is possible to have more than one component, since the interaction or
connection with other components can be easily represented.

64

4 Implementation 4.2 Conversion of data

2. Implementation details -

This was done using ’Perl’ scripting. Reason perl was opted was because the database
that is used during implementation is UC. The compatibility of using and extracting data
from UDB is most efficient with this technology. Hence, a script was written to extract
data from UDB and write it on a VSF file.

To begin with, a UDB project is selected to be analysed. The implementation has been
added as a part of the working environment CDK at Vector. A glimpse of how it begins can
be seen in the figure 4.13. In screen shot 1, the overview option in CDK can be selected.
In screen shot 2, the options from CDK open in a command line interface. The option to
convert into VSF can be selected.

Figure 4.13: Screen shot 1 2 - Implementation of UDB to VSF

During the processing, all the components, files and functions under consideration in
the database can be seen. The output was taken mainly for reading and following the
implementation purpose. It is seen in figure 4.14.

During the processing, at the back end, the perl script is being implemented. The structure
of the script is now explained.

The script begins with opening the database. If the database is not found, it reports an
error. Then, it searches for a VSF file with same name as the UDB project. If any such file
is not found, it creates a new file with .vsf extension, that is named after the project. Basic
information such as the author, date, version and so on are written on the file. The entire
script is divided into functions. This makes it easier to call them any number of times, and

65

4 Implementation 4.2 Conversion of data

Figure 4.14: Screen shot 3 - During the processing

also for scalability purposes. In case of any addition/deletion, it makes it really handy to
work with functions.

UDB provides with options to directly access certain objects such as functions, files, type
definitions, structures, enumerators and C objects. Mainly, it can give information that
is directly available within the code such as names, types, kinds, etc. So that is taken
care of by accessing the entities of database directly. Also, unique identification codes are
generated for each artifact. This is used for making the internal reference smooth.

It starts with separating all these entities based on which component it is contained under.
For that, the component name has to be realized. Various components are grouped by their
names and all the entities related only to each of them are written on the file accordingly.
Screen shot 4.15 give a little preview of part of the code where only the files and functions
are being handled within a component. Similarly, other entities such as type definitions,
structures, etc. are handled.that is responsible for getting component name and processing
of each component.

Screen shot 4.15 shows that the components are first separated into a list. It is identified
based on the component name. Each file is analysed within that component and processed.
This is done by calling the ’ProcessFile’ function, with file entity sent as an argument.
Similarly, the process repeats for function and all other entities within that component.

All this was elementary and directly accessible, the problems arose when the elements that
were part of the doxygen comment had to be accessed and written in the file as various
properties. This is discussed at length in the next section.

66

4 Implementation 4.2 Conversion of data

Figure 4.15: Code Part 1 - Processing a component

3. Challenges faced -

This section explores the challenges that were faced and how they were handled. As iden-
tified earlier, it is easy to access data which are directly a part of the code. But data from
the comments section are also needed. UC does give us options to access the comments,
but the doxygen comment is divided into many parts. The figure 4.16 presents a small
example of this. Some of the individual problems are discussed as follows:

• In the example given in 4.16 the extraction of values of the properties is needed.
Each one has a specific way of being written, that is, each one is written with ’
’ in front of it. So first, all the comments that are found above or before a definition
are accessed and then split into multiple lines.

• Once the comment is split, a match is done against every starting tag. But still there
are many issues. For tags which are present only once, it is easy to extract their
value. But, in order to get values of tags which occur multiple times, it is important
to store them in the right order. Let us consider the example of multiple parameters
in this case. When the parameter nodes are written in the VSF file, properties such as

67

4 Implementation 4.2 Conversion of data

Figure 4.16: Code Part 2 - Example of doxygen comment

its description is also written. In order for that to happen, another split is required on
the already split doxygen comment.For example, this helps in retrieving the correct
value based on name.

• This can be done by using hash mapping technique. In this scenario, it is used to
store the values of parameter along with its properties in the right order, based on a
unique key for each entry. Once this technique is clear, same concept for all the tags
that occur multiple times is used.

• Next problem was renaming the function scope. Or rather, finding the scope and
assigning the value based on ’kind name’. If the entity is of the kind static or private,
the scope is assigned as ’local’. And if it is not specified, then it is assigned as
’global’. This is done for all the functions and variables.

• Sometimes, the values of 2 tags in order is needed. This needs to be assigned to one
tag in the file and write it in result file. This can be referred to extracting values of
’brief’ and ’details’, which combine to give the value of ’desc’ or description.

• After solving all the issues, the alignment of nodes was also very important. In order
for better readability, the structure of VSF file is important. It makes it simpler to
look for objects since the hierarchy is defined.

4. Abstract description of result -

Once all the data is written in the VSF file, like used in previous sections, the result file
is converted to HTML format. The same XSLT script is used for the conversion. As
noticed, there is lot more data when it comes from source code, so the screen shots 4.17 ,
4.18 and 4.19 display some parts as example for the final result.

Screen shot 4.17 shows that the look and feel of the HTML remains the same, with origin
as UC. It lists all the components in the project. When any of the component is clicked,

68

4 Implementation 4.2 Conversion of data

Figure 4.17: Basic overview of output file

the control is taken to that component. There is only one main component that is being
analysed, so if any other component is clicked, it gives only the related information with
the component under analysis. That is seen in screen shot 4.18. In screen shot 4.19 one
function as an example is seen. It contains a lot more information about it since, it comes
from the developed component itself.

Figure 4.18: Overview of selected component

69

4 Implementation 4.3 Comparing and merging data

Figure 4.19: Example of a selected function

This completes the second half of the round-trip engineering. The combination and tooling of
using these created files is explained in the next section.

4.3 Comparing and merging data

In this section, the different mechanism for the data is discussed. This includes comparison of
data and merging of data. The section is sub divided into 3 parts:

• Diff tool

• Merge tool

• Implementation

4.3.1 Diff tool

In this section, we discuss at length about the concept of the ’diff tool’ (name given for purpose
of ease) or in formal terms the verification tool.
Since we have the same platform, i.e, same file format, a tool was implemented to take these
files as input and have a comparison. We know that file has been formulated based on the data,
structure and process and hence, it is not another file comparison. This comparison takes place

70

4 Implementation 4.3 Comparing and merging data

based on the component name. So, these are the 4 arguments that are given as input for the
implementation. Before going further, let us look at the activity diagram 4.20 which would help
us the steps involved distinctly. And the explanation to each step follows after.

Figure 4.20: Activity Diagram 1 - Process involved in Diff tool

Let us see the steps that are taken in diagram 4.20:

• It begins with passing of 4 arguments. The first 2 are the VSf files. One comes from
architecture and other from component developed. Third argument is type of mechanism
called. In this case, Diff1 or Diff2. The difference is explained in next section under
implementation. Fourth argument is the component name that it has to verify.

• If all these conditions meet, the process continues. Else, there is an error given and process
is stopped.

• Local instances of the file data are created.

• Each file data is sorted based on components

• The component name given as argument is searched in the file data.

• If not found, error is displayed and process is stopped. Else, it goes to next step.

• Each file and function under that component is compared.

• For each object, the result is written in the new result file. The result is mentioned along
with the object that is success, missing or mismatch.

71

4 Implementation 4.3 Comparing and merging data

• Result file can be converted to HTML for readability purpose, since the result file is also
a VSF file format.

The key ideas behind the tooling are as follows:

• Collect the data from both the files

• Group the data based on a key

• Each object had a unique comparison key. This key was created based on the table that is
shown.

• There were 3 exceptions to the comparison key. One was for parameter, then the return
object and finally the relations. These objects were handles separately.

The comparison key for all the objects was ’Kind’ + ’Name’. This formed a unique combination
for all the objects. But there were exceptions to this rule. They can be seen in table 4.2.

Comparison key for exceptions

Artifact Comparison key Description

(1) Parameter Base object comparison
key + Name

Since same parameter can occur in
various functions, it is necessary to
check the comparison key of it’s
parent object. In this case the com-
parison key of the base function is
also considered.

(2) Return Base object comparison
key + Name + Type

Since return can occur in various
functions, it is necessary to check
the comparison key of it’s parent
object. In this case the comparison
key of the base function is also con-
sidered.

(3) Relations
(Kind1)

Kind + ObjKind + Ob-
jId

Combination of kind of the relation,
kind of the related object along with
the id. This is for the related objects
outside the component.

(4) Relations
(Kind2)

Kind + ObjKind +
ComparisonKey

Combination of kind of the relation,
kind of the related object along with
the comparison key of the related
object. This is for the related ob-
jects within the component.

Table 4.2: Comparison keys for exceptions

72

4 Implementation 4.3 Comparing and merging data

4.3.2 Merge tool

In this section, the tool that is implemented for the purpose of merging data and updating it back
to architecture is explained.
This tool has more than one purpose. Firstly, the data can be merged from both ends, that is
architecture and component developed. After which, if there are multiple versions of component
source code, then even that can be merged. Based on some changes, it is possible to set the base
file as new version and the merged file will be up to date version of the file. The activity diagram
4.21 plainly gives us an overview of the process involved. The process is explained extensively
after the diagram.

Figure 4.21: Activity Diagram 2 - Process involved in Merge tool

To understand the tool better in 4.21, following were the steps involved:

• It begins with passing of 3 arguments. They are the VSf! (VSf!) files. These files can
be from 2 different ends of development or also, from the same end. For updating into
new version purposes. The third argument states the type of mechanism and in this case,
SpecMerge1 or SpecMerge2. The difference between these 2 mechanisms is explained in
the implementation section below, in detail.

• If all these conditions meet, the process continues. Else, there is an error given and process
is stopped.

• Local instances of the file data are created.

• Structural merge function is called.

• In this case, source file is kept as base file and comparison begins.

• There are 3 possibilities.

1. When both files have same data, write that data into result file

73

4 Implementation 4.3 Comparing and merging data

2. If data is present only in source file, write that data into result file

3. If data is not present in source file, but only in architecture file, then ignore.

• Merged result file is ready and can be converted to HTML

Merge tool also uses the concept of comparison keys, as discussed in section 4.3.1.

4.3.3 Implementation

In this section, the implementation aspects of the tooling is discussed. Now that the steps in-
volved in each tooling are clear (in sections 4.3.1 4.3.2), more detailed aspect of each and final
output is explained.
This section is divided into the following parts:

1. General details

2. Implementation details

3. Abstract description of result

1. General details -

The implementation of this tooling was done using "Microsoft Visual C# 2010 Express"
and using clearly Csh technology. For the ease of understanding, 2 simple figures 4.22 and
fig:fig51-MergeTool have been created, which provides the idea of the program without
any ambiguity. As seen in 4.22 and fig:fig51-MergeTool , the input and output is shown.

Figure 4.22: Diff tool details

The box with tool written on it is the internal functionality and implementation part of it.

74

4 Implementation 4.3 Comparing and merging data

Figure 4.23: Merge tool details

2. Implementation details -

Here, the actual implementation of the tooling in the form of screen shots is seen.
Firstly, the mechanism of each of these tools are divided into 2 parts - Diff1, Diff2 and
Merge1, Merge2.
The main difference between these was the input files given. In Diff1 and Merge1, the
input was product architecture design file and source code file. For Diff2 and Merge2,
component architecture design file was given as input along with the source code file.

When the objects was matched, there are different properties that are checked for
in these 2 Diff tools. This can be better explained from the table 4.3.

The implementation begins by passing the arguments. This can be seen in screen shot
4.24.

Figure 4.24: Tool screen shot 1 - Passing the arguments

75

4 Implementation 4.3 Comparing and merging data

Different aspects checked for objects

Object Diff1 Diff2

Component Properties Responsible Responsible

File Properties Desc Desc

Function Properties Desc, Reentrant, Synchron Desc

Return Properties Type Desc

Parameter Properties Type, Desc Desc

Relation Properties (none) Kind, ObjKind, ObjName

File Relations (none) Include

Function Relations Definein Definein

Table 4.3: Different aspects checked for objects in Diff1 and Diff2

For a more detailed idea on how this works, each component, that is each data artifact
was divided into individual classes and functions. This was mainly making the usage of
artifacts throughout the program very easy. Each of the classes had their specific properties
and remaining common properties was inherited based on one main class, that is class
object. As seen before, each object has its name and kind. Those can be taken as common
properties. But, in case of ’Property’ itself, kind is not considered. Only the name property
is inherited. This is discussed in previous section 4.3.1.

By having separate modules, it makes the program very easy to scale. In case of additional
functionalities, only a function needs to be added to that specific class.

Once, the implementation is completed, and the results are ready, it can be seen in the
same working directory.

3. Abstract description of result -

When the implementation is complete, a new file is created in the working folder, with the
name ’VDiffResultFile.vsf’. This is shown in 4.25.

To get a look into how the result file looks, 4.26 shows that it is the same VSF file format.
But, we can notice the extra ’result’ node in the VSF file. With slight changes in the XSLT
file, that helps in transformation into HTML, it is possible to convert the VSF file into a
better readable format. In that, each result kind would have a different colour code for
being able to easily get an overview.

76

4 Implementation 4.3 Comparing and merging data

Figure 4.25: Tool screen shot 2 - Diff result file created in working folder

Figure 4.26: Tool screen shot 3 - Part of the Diff result file

Similarly, merge tool is implemented. And as and when the mechanism is called, it’s
corresponding result file is created or updated. All 4 result files are seen in screen shot
4.27.

77

4 Implementation 4.3 Comparing and merging data

Figure 4.27: Tool screen shot 4 - All 4 result files created (one after the other)

78

5 Testing

In software engineering, the process of checking the program that is implemented, matched the
initial requirements, is called testing. Testing can be performed in various ways. During this
thesis, the work included learning about various kinds of testing methods and testing levels.
After the implementation was completed, it was tested in few of the mentioned ways and that is
discussed further. In this chapter, the following topics are mainly discussed:

1. Testing methods - Possible ways of testing

2. Testing levels - Possible levels at which testing is done

3. Verification of implementation - All checks done after the scripts were ready

5.1 Testing methods

This section explains about what exactly are testing methods and the types that are considered
for this thesis. This section is divided into following sub-sections:

• Static vs Dynamic testing

• Black box vs White box approach

Before brief explanation of each, it is important to know that there are various methods that can
be used for testing. These methods are based on the information that are provided about the
implementation, and also when are these tests performed.

5.1.1 Static vs Dynamic testing

As the name suggests, static testing concerns with testing of the program without running it.
This includes going through the program in the form of reviews, walkthroughs or inspection
of the code [Mel15]. During any of these static methods, as a developer, code is read through
and verification against the requirements is tried as much as possible. In this thesis, it was
performed by making the code into a modular format rather than a continuous format.
The program was divided into many smaller functions for each functionality. This made the
program modular and easy to edit (add or delete functionality without affecting anything else).

Dynamic testing is performed when test cases are specifically written for a program.

79

5 Testing 5.1 Testing methods

When the program is executed, it gives test results based on test cases written for it. This was
not covered during this thesis due to limitation of time and hence has been considered as a part
of the future work of the thesis.

5.1.2 Black box vs White box approach

Before explaining how these approaches were used for this thesis, it is important to understand
what is meant by each of these approaches. The abstract difference between the two is shown in
figure reffig:fig52-Testing1.

Figure 5.1: White box VS Black box testing approach

Black box approach -

This approach is used when a check has to be made, how the program is used and interacts with
the user. User only knows about what the program does - what is input supposed to be and
what is expected as output. When the program is given to the user, for testing purpose only
basic information is given. The back end of the program is unknown. So, the review that is
gathered from the user, about the usability and if it works with various inputs or not, is mainly
this approach - called black box.
During this thesis, black box approach was done very briefly, by making some of the team
members use the program. Feedback from them helped in improvisation on some usability
details with respect to the program.

White box approach -

This approach is used by the developers, who know what is happening within the program. The
usability based on the knowledge of the program is checked. The white box approach, was done
by me since the working of the program in detail was known. The explanation of the tests done
from white box approach has been comprehensively covered in section 5.3.

80

5 Testing 5.2 Testing levels

5.2 Testing levels

This section clarify the topic under testing levels. Although there are various levels of testing,
in this section the following are discussed:

• Unit testing

• Integration testing

Both of these testing levels were used during this thesis but at a very primary level. Specific
test cases and scripts are to be implemented as a part of future work (as already mentioned in
previous section).

5.2.1 Unit testing

Unit testing as the name suggests, means testing each part of the program individually. This can
be done by writing test cases for each and noting the results from each function. This can also
be called module testing, since each part is tested separately. The dependencies can be faked or
mocked during unit testing. And also, these tests run faster.

5.2.2 Integration testing

Integration testing is when the whole system is tested together. These tests can be slower than
unit testing. Also, if any part of the program is not tested carefully, integration testing can fail at
smallest of errors.

5.3 Verification of Implementation

This section explains the various tests performed on the implemented scripts. The results of
each one were noted and then the data was modified for further tests. It is divided into 3 sub
sections:

• Conversion of data

• Diff tool

• Merge tool

81

5 Testing 5.3 Verification of Implementation

5.3.1 Conversion of data

Tests - The tests were done to check if the implemented scripts provided the results as expected.
So, source code from real component was used for the tests. Data from EA and UDB for same
component was used to check the result VSF files.

Intermediate Result - Result VSF file was created as expected. Next important thing
was if the structure was found as designed for the file. VSF file was designed with a hierarchy.
The objects that are placed under groups and some objects within objects, like the functions and
parameters was checked. This was found to be same in both the result files.

Modification - Data was intentionally changed in the source code and the script was run again.
This test was done to check if the modification is noticed and processed corresponding to the
rules of the script.

Result - The script worked as intended and the bugs that were inserted in the source code or
the modification that was done on the source code was handled as expected. For instance, if an
entity is not defined in the right way, it was not identified to be a part of the result file.

5.3.2 Diff tool

Tests - The first test that was done was to check if the script was running as expected. Both the
result VSF files were taken as input. Both the files was the output from the previous section
5.3.1. And since the result file was of the same component from both architecture and the
source code, same component name was given as the argument for this test.

Intermediate Result - The script provided the output as expected and the comparison of
data was done manually at this stage. This step had the following main checks:

• If the data existed in both files and was same in both files, the result is expected to output
one value and describe it as ’success’.

• If the data existed in both files, but the values were different, the result is expected to
output both values and describe it as ’mismatch’.

• If the data existed in any one of the file, the output is expected to be value of that one file
and result as ’missing’, with the file name mentioned.

These results were successful.

Modification - Since the output for the 2 files was known, data from one of the file was inten-
tionally modified. Some data was changed, some was removed and some were made to be same
as in other file.

Result - The results even after modification were successful. The modified data was processed
as expected and a new and different result file was created.

82

5 Testing 5.3 Verification of Implementation

5.3.3 Merge tool

Tests - Tests began with checking if the script was implementing as expected. The input were
same files that were collected in section 5.3.1 (Since they are collected from implementing with
real data).

Intermediate Result - The script provided the output as expected and the comparison of
data was done manually at this stage. This step had the following main checks:

• If the data had maintained its hierarchical nature. The objects were placed under right
parent objects.

• If data existed in both files, and the data was same, it was directly placed in result file.

• If data existed in both files, and the data was different, base file was considered as the
source code VSF file, and only that data was to be written in the result file.

• If the data only existed in any one of the files. If the data was from architecture VSF file,
then it should not be considered for the results. If it is found only in source code VSF file,
then it is considered and written in the result file.

These results were all successful.

Modification - Now that the result file was created and its successfully matched the rules, data
was intentionally modified in both files slightly. For instance, some data was added, and some
was deleted from base file - that is source code VSF file.

Result - The results even after modification were successful. The data that was deleted from
base file was not found in new result file. That clearly shows that the script runs as per its
defined rules.

83

6 Conclusion and future work

A research is incomplete if the differentiation between the scenarios of past work and present
implementation of the theme is unable to be made. In order to recognize and realize the work
done during this thesis, it is important to consolidate all the work and give a temporary closure.
Also, no research can be ended without having an idea for scope of improvement and thus it is
necessary to know what is the prospective of the work and topic.

All research and development done during this thesis has been encapsulated within the
section of conclusion in this chapter. After which, a section on future work has been included to
concretely give a compact overview of what can be further done with respect to this research.

6.1 Conclusion

The topic of this thesis deals with the concept of round-trip engineering, data models and
understanding of AUTOSAR safety projects. The focus was to find more clarity on the process
of development of a software, data that is exchanged and how does the mechanism work.
The exchange of data that takes place between architecture and development levels have been
studies extensively.

Since, V-model is being considered to have a start of concept, we know that the flow of
data is only downwards. But, for making use of the data more efficient, this thesis research
shows that flow of data can be reversed for a lot of positive changes. This research had 3 main
aspects to look into and develop a concept, they are the data, the format and the process.

The main concept is build based on the problems that are found with the present process.
The process and format of the data exchange was found. If the data that was used neces-
sary was the next part of research. Conceptualization was focused on building the format
for that data, which combines the advantages of other presently used formats. Once this
was achieved, a mechanism was build that mainly focussed on ’exchangeable’ property
for the data. It was designed in a way that with the same base of the file, it could have
different purposes. The technique involved verification of data from two different sources and
merging of the data in such a way that it could in turn be used for updating in the reverse manner.

The results of the research have been proven to be positive in terms of usability, useful-
ness and covering the problems that existed before this. The fact that it is the same file that is

84

6 Conclusion and future work 6.2 Future Work

being used, expanding the mechanism is even more interesting to use and see it directly. The
base for this has already been designed well. With time constraints, the extra features including
specific test-cases, test scripts, C code generator and also a document generator could not be
implemented. The most important part of the result was that the concept that was developed was
extremely generic. This has helped in a lot of ways and the results can be scaled to powerful
levels in the time ahead.

6.2 Future Work

The concept developed does not confine itself to only be used for V-model software development
process. This model can be used for any development process that involves interaction between
various phases of development. And as far as the studies have shown, for software development,
there always have to be data that is exchanged from one level to another.

Besides expanding to other processes, it has promising properties of covering the data
exchange for entire V-model. This can be done from each level and data can be exchanged as
per requirement to make the model usability even mote powerful.

At a more detailed level, present concept can be scaled to not just work with one com-
ponent, but a cluster of components together. This will be useful to the other users that are
presently not dealt with in this thesis, like all the users who exchange more detailed level data
and also the people involved with testing of these components at each stage.

Overall, the solution developed, hints promising concepts of development presently for
software development. But, as a concept it can be improvised and further developed with any
process that involves data exchange.

85

Bibliography

[Aut] AUTOSAR Tooling in Practice. 2013 (cit. on p. 8).

[AUT15a] AUTOSAR.org. AUTOSAR - Partners. 2015. URL: http://www.autosar.
org/partners/current-partners/ (cit. on p. 6).

[AUT15b] AUTOSAR.org. Technical Overview: AUTOSAR. 2015. URL: http://www.
autosar.org/about/technical-overview/ (cit. on p. 6).

[AW05] Addison-Wesley. Unified Modeling Language User Guide, The (2 ed.),p. 496.
2005. ISBN: 0321267974 (cit. on p. 3).

[Boa15] International Requirements Engineering Board. How the ReqIF Standard for Re-
quirements Exchange Disrupts the Tool Market. May 2015. URL: http://re-
magazine.ireb.org/issues/2014-3-gaining-height/open-
up/ (cit. on pp. 13 sqq.).

[car15] carthrottle.com. Disassembled MkII Golf. 2015. URL: http : / / www .
carthrottle.com/post/check-out-your-picture-of-the-
day/ (cit. on pp. 15 sq.).

[CDC15] CDC. CDC UNIFIED PROCESS PRACTICES GUIDE. 2015. URL: http:
//www2.cdc.gov/cdcup/library/practices_guides/CDC_UP_
Requirements_Management_Practices_Guide.pdf (cit. on p. 12).

[Cle+10] Paul Clements et al. Documenting Software Architectures: Views and Beyond, Sec-
ond Edition. 2010. ISBN: 0321552687 (cit. on pp. 9 sq.).

[Csh] C Sharp (programming language). 2015. URL: https://en.wikipedia.
org/wiki/C_Sharp_%28programming_language%29 (cit. on p. 21).

[EBC15] PE Eric Byres and John Cusimano. Safety and Security: Two Sides of the Same
Coin. 2015. URL: http://www.controlglobal.com/articles/
2010/safetysecurity1004/ (cit. on p. 15).

[Ecl15] Eclipse.org. Requirements Management for Eclipse. May 2015. URL: http:
//www.eclipse.org/rmf/ (cit. on p. 15).

86

http://www.autosar.org/partners/current-partners/
http://www.autosar.org/partners/current-partners/
http://www.autosar.org/about/technical-overview/
http://www.autosar.org/about/technical-overview/
http://re-magazine.ireb.org/issues/2014-3-gaining-height/open-up/
http://re-magazine.ireb.org/issues/2014-3-gaining-height/open-up/
http://re-magazine.ireb.org/issues/2014-3-gaining-height/open-up/
http://www.carthrottle.com/post/check-out-your-picture-of-the-day/
http://www.carthrottle.com/post/check-out-your-picture-of-the-day/
http://www.carthrottle.com/post/check-out-your-picture-of-the-day/
http://www2.cdc.gov/cdcup/library/practices_guides/CDC_UP_Requirements_Management_Practices_Guide.pdf
http://www2.cdc.gov/cdcup/library/practices_guides/CDC_UP_Requirements_Management_Practices_Guide.pdf
http://www2.cdc.gov/cdcup/library/practices_guides/CDC_UP_Requirements_Management_Practices_Guide.pdf
https://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
https://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
http://www.controlglobal.com/articles/2010/safetysecurity1004/
http://www.controlglobal.com/articles/2010/safetysecurity1004/
http://www.eclipse.org/rmf/
http://www.eclipse.org/rmf/

Bibliography Bibliography

[Gro] Object Management Group. OMG Unified Modeling Language (OMG UML), Su-
perstructure (cit. on p. 10).

[Inc15] Suresoft Technologies Inc. Automotive. 2015. URL: http : / / www .
suresofttech.com/solution/solution/ (cit. on p. 18).

[Ins15] National Instruments. What is the ISO 26262 Functional Safety Standard? 2015.
URL: http://www.ni.com/white-paper/13647/en/#top (cit. on
p. 16).

[Int15] Project Performance International. What is the significance of different types of
requirements such as states and modes, functional, performance, external inter-
face, environmental, resource, physical, other qualities and design? 2015. URL:
http://www.ppi-int.com/systems-engineering/types-of-
requirements.php (cit. on p. 12).

[Iso] Road vehicles — Functional safety — Part 1: Vocabulary. First edition, 2011-11-
15. Reference number ISO 26262-1:2011(E). Nov. 2011 (cit. on p. 16).

[JC15] Steve DeRose James Clark. XML Path Language. 2015. URL: http://www.
w3.org/TR/xpath/ (cit. on p. 42).

[Kum15] S Kumar. What is V-model- advantages, disadvantages and when to use it? May
2015. URL: http://istqbexamcertification.com/what-is-v-
model-advantages-disadvantages-and-when-to-use-it/ (cit.
on p. 2).

[Mal+15] Ivano Malavolta et al. Architectural languages Today. 2015. URL: http://
www.di.univaq.it/malavolta/al/#people (cit. on p. 11).

[Mel15] MelbourneStar. Software testing. 2015. URL: https://en.wikipedia.
org/wiki/Software_testing#Testing_methods (cit. on p. 79).

[MR04] McBride and Matthew R. The software architect: essence, intuition, and guiding
principles. 2004. ISBN: 1-58113-833-4 (cit. on p. 9).

[Pix15] Pixshark. Requirement. 2015. URL: http : / / pixshark . com /
requirement.htm (cit. on p. 12).

[Pyh04] Marko Pyhäjärvi. SPICE International Standard for Software Process Assessment.
2004 (cit. on p. 18).

[Req] Requirement Interchange Format(RIF). 2015 (cit. on p. 13).

[Rpl13] Rplano. Introduction to Software Engineering. en.wikibooks.org, 2013 (cit. on
pp. 2, 11).

87

http://www.suresofttech.com/solution/solution/
http://www.suresofttech.com/solution/solution/
http://www.ni.com/white-paper/13647/en/#top
http://www.ppi-int.com/systems-engineering/types-of-requirements.php
http://www.ppi-int.com/systems-engineering/types-of-requirements.php
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-use-it/
http://www.di.univaq.it/malavolta/al/#people
http://www.di.univaq.it/malavolta/al/#people
https://en.wikipedia.org/wiki/Software_testing#Testing_methods
https://en.wikipedia.org/wiki/Software_testing#Testing_methods
http://pixshark.com/requirement.htm
http://pixshark.com/requirement.htm

Bibliography Bibliography

[SIG10] Automotive SIG. Automotive SPICE® Process Assessment Model. May 10, 2010
(cit. on p. 19).

[Spa98] Geoffrey Sparks. Enterprise Architect User Guide. Sparx Systems Pty Ltd, 1998-
2014 (cit. on p. 20).

[suc15] successsaravana. AUTOSAR - Introduction. 2015. URL: http :
/ / successsaravana . blogspot . de / 2014 / 08 / autosar -
introduction.html (cit. on p. 8).

[Sys15] Vanadium Systems. AUTOSAR. 2015. URL: http://vanadiumsystems.
com/autosar.html (cit. on p. 5).

[Uml] UML for Systems Engineering: Watching the Wheels IET,p.58. 2004. ISBN: 0-
86341-354-4 (cit. on p. 10).

[Und] User Guide and Reference Manual. 2013 (cit. on p. 21).

[www15a] www.die.net. perl(1) - Linux man page. 2015. URL: http://linux.die.
net/man/1/perl (cit. on p. 22).

[www15b] www.perl.org. About Perl. 2015. URL: https://www.perl.org/about.
html (cit. on p. 22).

88

http://successsaravana.blogspot.de/2014/08/autosar-introduction.html
http://successsaravana.blogspot.de/2014/08/autosar-introduction.html
http://successsaravana.blogspot.de/2014/08/autosar-introduction.html
http://vanadiumsystems.com/autosar.html
http://vanadiumsystems.com/autosar.html
http://linux.die.net/man/1/perl
http://linux.die.net/man/1/perl
https://www.perl.org/about.html
https://www.perl.org/about.html

A Appendix

A.1 Examples of various file formats

A.1.1 Example of UnderstandC file format

1 <udbXml ucVersion="770" scriptVersion="2013-08-14">
2 <ent kind="File" kindlong="C Header File" name="LinSM_PBcfg.h"

id="1" VScope="global" type="">
3 <comment></comment>
4 <include kind="File" kindlong="C Header File" name="

LinSM_Types.h" id="3"/>
5 <include kind="File" kindlong="C Header File" name="LinIf.h"

id="4"/>
6 <include kind="File" kindlong="C Header File" name="ComM.h"

id="5"/>
7 <define kind="Macro" kindlong="C Macro" name="LINSM_PBCFG_H"

id="2"/>
8 <define kind="Macro" kindlong="C Macro" name="LINSM_PBCONFIG"

id="6"/>
9 <define kind="Macro" kindlong="C Macro" name="

LINSM_LTCONFIGIDXOFPBCONFIG" id="9"/>
10 <define kind="Macro" kindlong="C Macro" name="

LINSM_PCCONFIGIDXOFPBCONFIG" id="10"/>
11 <use kind="Macro" kindlong="C Macro" name="LINSM_PBCFG_H" id=

"2"/>
12 <includeby kind="File" kindlong="C Header File" name="

LinSM_Cfg.h" id="675" line="47" column="0"/>
13 </ent>
14 <!--Object kind function-->
15 <ent kind="Function" kindlong="C Unresolved Function" name="

ComM_MainFunction_0" id="719" VScope="global" type="void">
16 <comment></comment>
17 <declarein kind="File" kindlong="C Header File" name="

ComM_Lcfg.h" id="700" line="104" column="29"/>
18 </ent>

89

A Appendix A.1 Examples of various file formats

A.1.2 Example of VCD file format

1 <vcd BaseType="Package" BaseName="Work.Product.Design.Detailed.
Modules.LinSm" CreationDate="2015-02-24 14:35:51">

2 <ModelData Name="MSR4" Release="AR4-R12" ShortName="MSR4"
Status="UnderDesign" TemplateVersion="10000" Process="
Process2x" Type="Product" Version="4.12.00" />

3 <Package Name="LinSm" Stereotype="" GUID="{D10FA7BB-8951-43a0
-BA2D-08A7DDBCD3FB}">

4 <Description><![CDATA[]]></Description>
5 <Element GUID="{A68D7649-3244-4d3e-9678-634395C9F918}" Name

="LinSM" Type="Class" Stereotype="Module" DateCreate="
2007-02-13" DateModify="2014-10-10" ModifyAge="137"
VersionCreate="1.0" VersionModify="1.0" VersionPlan=""
Review="NotRequired">

6 <Notes><![CDATA[LIN State Manager]]></Notes>
7 <CompositDiagram Name="LinSM" GUID="{7E1D719B-C9A4-4b74

-983D-6CBEC165261B}" />
8 <Tags>
9 <Tag Name="Cluster">

10 <Value>LIN</Value>
11 </Tag>
12 <Tag Name="ComplexityClass">
13 <Value>Normal</Value>
14 </Tag>
15 <!--.....................-->
16 <Dependency Type="Realisation" Stereotype="realize"

Name="" Direction="out" MyMultiplicity=""
TargetMultiplicity="" LinkedGUID="{5E542F8C-ADCD-49
f6-89E7-85195020A637}" LinkedName="LinSm" LinkedType
="Interface" LinkedStereotype="EmbeddedInterface">

17 <Notes />
18 </Dependency>
19 <Dependency Type="Dependency" Stereotype="use" Name=""

Direction="out" MyMultiplicity="" TargetMultiplicity
="" LinkedGUID="{3DE52450-C179-45f2-9887-8981259
EABCA}" LinkedName="BswM" LinkedType="Interface"
LinkedStereotype="EmbeddedInterface">

20 <Notes>BswM_LinSM_CurrentSchedule
21 BswM_LinSM_CurrentState</Notes>
22 </Dependency>
23 <!--.....................-->
24 <Method GUID="{0C68D9B3-09A3-478a-8E3E-495051F7F527}"

Name="LinSM_Init" Kind="ServiceFunction" Return="

90

A Appendix A.1 Examples of various file formats

void">
25 <Notes><![CDATA[This function initializes the

LinSM.
]]></Notes>
26 <Tags>
27 <Tag Name="CallContext">
28 <Value>Any</Value>
29 </Tag>
30 <Tag Name="IrLockContext">
31 <Value />
32 </Tag>
33 <!--.........many more tags............-->
34 <Tag Name="MemResourceClassification">
35 <Value>Medium</Value>
36 </Tag>
37 <Tag Name="Synchron">
38 <Value>true</Value>
39 </Tag>
40 </Tags>
41 <ArgString>const LinSM_ConfigType* ConfigPtr</

ArgString>
42 <ReturnType>void</ReturnType>
43 <Parameter Name="ConfigPtr" Kind="in" Position=

"0" Type="const LinSM_ConfigType*"
Type_Plain="LinSM_ConfigType">

44 <Notes><![CDATA[Pointer to the LinSM
post-build configuration data.]]></
Notes>

45 </Parameter>
46 <UsedByModule GUID="{BE85B771-ECFF-4a77-961B

-7327B1154E8E}" Name="EcuM______TBDel" />
47 </Method>

91

A Appendix A.1 Examples of various file formats

A.1.3 Example of ReqIf file format

1 <?xml version="1.0" encoding="UTF-8"?>
2 <REQ-IF xmlns="http://www.omg.org/spec/ReqIF/20110401/reqif.xsd

"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:schemaLocation="http://www.omg.org/spec/ReqIF/20110401/

reqif.xsd http://www.omg.org/spec/ReqIF/20110401/reqif.xsd"
5 xml:lang="en">
6 <THE-HEADER>
7 <REQ-IF-HEADER IDENTIFIER="EF5AEFF3-C695-488A-9955-EDAAEACFE359

">
8 <COMMENT>Optional comment associated with the Exchange Document

as a whole</COMMENT>
9 <CREATION-TIME>2011-06-13T10:24:18+01:00</CREATION-TIME>

10 <REPOSITORY-ID>A4123EB9-CC82-4B62-95E1-31CB3203E39C</REPOSITORY
-ID>

11 <REQ-IF-TOOL-ID>SparxSystems Enterprise Architect 8.0</REQ-IF-
TOOL-ID>

12 <REQ-IF-VERSION>1.0</REQ-IF-VERSION>
13 <SOURCE-TOOL-ID>microTool in-Step</SOURCE-TOOL-ID>
14 <TITLE>Example ReqIF file</TITLE>
15 </REQ-IF-HEADER>
16 </THE-HEADER>
17 <CORE-CONTENT>
18 <REQ-IF-CONTENT>
19 <DATATYPES>
20 <DATATYPE-DEFINITION-STRING IDENTIFIER = "Text" LAST-CHANGE =

"2011-06-13T00:00:00+01:00" MAX-LENGTH = "1000">
21 </DATATYPE-DEFINITION-STRING>
22 <DATATYPE-DEFINITION-ENUMERATION IDENTIFIER = "Status" LAST-

CHANGE = "2011-06-13T00:00:00+01:00">
23 <SPECIFIED-VALUES>
24 <ENUM-VALUE DESC = "Requirement has been proposed." IDENTIFIER

= "Proposed" LAST-CHANGE = "2011-06-13T00:00:00+01:00">
25 <PROPERTIES>
26 <EMBEDDED-VALUE KEY = "1" OTHER-CONTENT = "foo" />
27 </PROPERTIES>
28 </ENUM-VALUE>
29 <ENUM-VALUE DESC = "Requirement has been accepted." IDENTIFIER

= "Accepted" LAST-CHANGE = "2011-06-13T00:00:00+01:00">
30 <PROPERTIES>
31 <EMBEDDED-VALUE KEY = "2" OTHER-CONTENT = "foo" />
32 </PROPERTIES>

92

A Appendix A.1 Examples of various file formats

33 </ENUM-VALUE>
34 <ENUM-VALUE DESC = "Requirement has been rejected or de-scoped

." IDENTIFIER = "Rejected" LAST-CHANGE = "2011-06-13T00
:00:00+01:00">

35 <PROPERTIES>
36 <EMBEDDED-VALUE KEY = "3" OTHER-CONTENT = "foo" />
37 </PROPERTIES>
38 </ENUM-VALUE>
39 <ENUM-VALUE DESC = "Requirement has been satisfied by an

implementation of system components." IDENTIFIER = "
Implemented" LAST-CHANGE = "2011-06-13T00:00:00+01:00">

40 <PROPERTIES>
41 <EMBEDDED-VALUE KEY = "4" OTHER-CONTENT = "foo" />
42 </PROPERTIES>
43 </ENUM-VALUE>
44 <ENUM-VALUE DESC = "Satisfaction of requirement has been

approved by QA and customer/user." IDENTIFIER = "Approved"
LAST-CHANGE = "2011-06-13T00:00:00+01:00">

45 <PROPERTIES>
46 <EMBEDDED-VALUE KEY = "5" OTHER-CONTENT = "foo" />
47 </PROPERTIES>
48 </ENUM-VALUE>
49 </SPECIFIED-VALUES>
50 </DATATYPE-DEFINITION-ENUMERATION>

93

A Appendix A.1 Examples of various file formats

A.1.4 Example of AUTOSAR file format

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!---->
3 <AUTOSAR xsi:schemaLocation="http://autosar.org/schema/r4.0

AUTOSAR_4-0-3.xsd" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xmlns="http://autosar.org/schema/r4.0">

4 <AR-PACKAGES>
5 <AR-PACKAGE UUID="1a558d5f-22b4-4518-b46b-79a97233bf1f">
6 <SHORT-NAME>MICROSAR</SHORT-NAME>
7 <ELEMENTS>
8 <ECUC-MODULE-DEF UUID="e394ce6b-b9e6-407b-925f-8ffdc04bd789"

>
9 <SHORT-NAME>Msn</SHORT-NAME>

10 <DESC>
11 <L-2 L="EN">Configuration of the Msn (Generic Component)

module.</L-2>
12 </DESC>
13 <CATEGORY>VENDOR_SPECIFIC_MODULE_DEFINITION</CATEGORY>
14 <ADMIN-DATA>
15 <DOC-REVISIONS>
16 <DOC-REVISION>
17 <REVISION-LABEL>-</REVISION-LABEL>
18 <ISSUED-BY>virchl</ISSUED-BY>
19 <DATE>2014-08-19T06:01:53+02:00</DATE>
20 <MODIFICATIONS>
21 <MODIFICATION>
22 <CHANGE>
23 <L-2 L="EN">SW Version Number set to 3.00.03</L-2>
24 </CHANGE>
25 </MODIFICATION>
26 </MODIFICATIONS>
27 </DOC-REVISION>
28 <DOC-REVISION>
29 <REVISION-LABEL>3.00.04</REVISION-LABEL>
30 <ISSUED-BY>virchl</ISSUED-BY>
31 <DATE>2015-01-13T04:51:04+01:00</DATE>
32 <MODIFICATIONS>
33 <MODIFICATION>
34 <CHANGE>
35 <L-2 L="EN">Default value of MsnVersionInfoAp set

to false</L-2>
36 </CHANGE>
37 <REASON>

94

A Appendix A.1 Examples of various file formats

38 <L-2 L="EN">ESCAN00067535</L-2>
39 </REASON>
40 </MODIFICATION>
41 </MODIFICATIONS>
42 </DOC-REVISION>
43 </DOC-REVISIONS>
44 </ADMIN-DATA>
45 <LOWER-MULTIPLICITY>0</LOWER-MULTIPLICITY>
46 <UPPER-MULTIPLICITY>1</UPPER-MULTIPLICITY>
47 <REFINED-MODULE-DEF-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/

EcucDefs/Msn</REFINED-MODULE-DEF-REF>
48 <SUPPORTED-CONFIG-VARIANTS>
49 <SUPPORTED-CONFIG-VARIANT>VARIANT-PRE-COMPILE</SUPPORTED-

CONFIG-VARIANT>
50 </SUPPORTED-CONFIG-VARIANTS>

95

A Appendix A.1 Examples of various file formats

A.1.5 Example of conceptualized VSF file format

1 <!--Intermediate format example based on real data:-->
2 <component>
3 <object id="21" kind="SequenceDiagram">
4 <prop name="name">SeqDiagram</prop>
5 </object>
6 <object id="31" kind="HeaderFile">
7 <prop name="name">FileName</prop>
8 <prop name="context"></prop>
9 </object>

10 <object id="1" kind="Routine">
11 <prop name="id">1</prop>
12 <prop name="name">A</prop>
13 <prop name="desc">TEXT</prop>
14 <prop name="callcontext"></prop>
15 <prop name="details"></prop>
16 <prop name="lockcontext"></prop>
17 <prop name="reentrant"></prop>
18 <prop name="returntype"></prop>
19 <prop name="returntypedesc"></prop>
20 <prop name="serviceid"></prop>
21 <prop name="stereotype"></prop>
22 <prop name="synchron"></prop>
23 <prop name="preconditions"></prop>
24

25 <rel id="rel1" kind="use" dir="o" relobj="2">
26 <rel kind="contain" relatedId="ParamA1" dir="" id="

rel123">
27 <rel kind="use" relatedId="345" dir="o" id="rel2">
28 <object id="123" kind="Parameter">
29 <prop name="name">ParamA</prop>
30 <prop name="desc">TEXT</prop>
31 <prop name="type">TEXT</prop>
32 <prop name="kind">TEXT</prop>
33 </object>
34 <object id="345" kind="Variable">
35 <prop name="name">VarA</prop>
36 <prop name="type">TEXT</prop>
37 <rel kind="define" relatedId="3" dir="o" id="

rel3">
38 <rel kind="use" relatedId="1" dir="i" id="rel2"

>
39 </object>

96

A Appendix A.1 Examples of various file formats

40 </object>
41 <object id="2" kind="TypeDefinition">
42 <prop name="type">TypeA</prop>
43 <prop name="typedesc">TEXT</prop>
44 <prop name="typemember">TEXT</prop>
45 <prop name="typememberdesc">TEXT</prop>
46 <rel kind="use" relatedId="1" dir="i" id="rel1"

>
47 </object>
48 <object id="3" kind="Cfile">
49 <prop name="desc">TEXT</prop>
50 <prop name="includeheader">TEXT</prop>
51 <prop name="variable">TEXT</prop>
52 <rel kind="use" relatedId="1" dir="i" id="rel1"

>
53 </object>

97

A Appendix A.2 Detailed Embedded Model

A.2 Detailed Embedded Model

Figure A.1: Detailed Embedded Model

98

	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Thesis structure

	2 Literature Research
	2.1 AUTOSAR
	2.1.1 Introduction
	2.1.2 AUTOSAR Architecture
	2.1.3 Application

	2.2 Software Architecture - Profound understanding
	2.2.1 Architecture - general outlook
	2.2.2 UML and Views

	2.3 Requirements
	2.3.1 Requirement Interchange Format
	2.3.2 Requirement Modeling Framework

	2.4 Standards
	2.4.1 ISO 26262 Standard
	2.4.2 SPICE

	2.5 Tools and Technologies
	2.5.1 Tools
	2.5.2 Technologies

	3 Conceptualization
	3.1 Concept
	3.1.1 Existing concept
	3.1.2 Survey
	3.1.3 New concept

	3.2 Meta model formation
	3.2.1 Meta model - from architecture
	3.2.2 Meta model - from source code
	3.2.3 Analysis of data

	3.3 Format analysis
	3.3.1 Evaluating UnderstandC format
	3.3.2 Evaluating VCD format
	3.3.3 Evaluating ReqIf format
	3.3.4 Evaluating AUTOSAR format
	3.3.5 Comparison of formats

	3.4 Intermediate format conceptualization
	3.4.1 Naming conventions
	3.4.2 Hierarchy

	4 Implementation
	4.1 Use Cases
	4.2 Conversion of data
	4.2.1 Converting EA to VSF
	4.2.2 Converting UDB to VSF

	4.3 Comparing and merging data
	4.3.1 Diff tool
	4.3.2 Merge tool
	4.3.3 Implementation

	5 Testing
	5.1 Testing methods
	5.1.1 Static vs Dynamic testing
	5.1.2 Black box vs White box approach

	5.2 Testing levels
	5.2.1 Unit testing
	5.2.2 Integration testing

	5.3 Verification of Implementation
	5.3.1 Conversion of data
	5.3.2 Diff tool
	5.3.3 Merge tool

	6 Conclusion and future work
	6.1 Conclusion
	6.2 Future Work

	A Appendix
	A.1 Examples of various file formats
	A.1.1 Example of UnderstandC file format
	A.1.2 Example of VCD file format
	A.1.3 Example of ReqIf file format
	A.1.4 Example of AUTOSAR file format
	A.1.5 Example of conceptualized VSF file format

	A.2 Detailed Embedded Model

