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Abstract

In the recent trends, automated systems are increasingly seen to be embedded in
human life with the increase of human dependence on software to perform safety-
critical tasks like airbag deployment in automobiles to real-time mission planning in
UAVs (Unmanned Aircraft Vehicles). The safety-critical nature of the aerospace do-
main demands for a software without any errors to perform these tasks. Therefore
the field of computer science needs to address these challenges by providing necessary
formalisms, techniques, and tools that will ensure the correctness of systems despite
their complexity. DO-178C/EC-12C is a standard that governs the certification of
software for airborne systems in commercial aircraft. The additional supplement DO-
333 enables us to use the formal methods in our technique of verifying the autonomous
behaviour of UAV’s.

The Mission Manager system is primarily responsible for the execution of behaviour
sequence in online and offline mission planning of UAV. This work presents the pro-
cess of software verification by making use of formal modelling using model checking
of the Mission Manager component of ARTIS (Autonomous Rotorcraft Testbed for
Intelligent Systems) UAV by gaining advantages from a generic modelling approach.
The main idea is to make use of the designed generic models into specific cases like
ARTIS in our case. The generic models are designed using the ALFU(R)S (Autonomy
Levels For Unmanned Rotorcraft System) framework that delineates the commonal-
ities of several UAVs considered around the world which also includes the ARTIS UAV.

Furthermore this work walks through every process involved in model checking like
requirements extraction and documentation using a template based method, require-
ments specification using the temporal logics like LTL and CTL, developing a formal
model using NuSMV as a model checking tool to analyze the requirements against the
model for the Mission Manager component of MiPlEx (Mission Planning and Execu-
tion). Additionally as a validation approach, test sequences are generated by using
trap properties or negation properties. This aids for a test generation approach by
harnessing counterexample generating capabilities of the NuSMV Model Checker.

Keywords: Formal Specification, Model Checking, Formal Verification, Validation
and Verification, UAV, NuSMV, Test Case Generation, Counterexample.
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Chapter 1

Introduction

1.1 Motivation
UAV’s are gaining a lot of attention in the recent past because of their small-size and
ready to go anywhere capability. Most of them find their application in civil opera-
tions such as fire monitoring, search and rescue operations and safe delivery of cargo
to designated places. It can also be used in tactical purposes like for example military
purposes such as to carry a bombarding material to a remote target location or for
surveillance in places where humans are less suited. These UAV’s achieve tasks with
much less risk to human life and do it more efficiently and effortlessly.

The DLR (Deutsches Zentrum für Luft- und Raumfahrt) Institute of Flight Sys-
tems [3], Braunschweig is developing the experimental flying platform named ARTIS
(Autonomous Rotorcraft Testbed for Intelligent Systems) rotorcraft as shown in Fig-
ure 1.1.

Figure 1.1: The Unmanned ARTIS Helicopters [www.dlr.de]
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The increase in autonomous behaviour of the UAV also increases the dependency
on the software. This implies that the software should be highly reliable and without
any errors or deadlocks. To make sure that the developed software is out of errors
we need a rigorous error detection and correction methods in the software and more
importantly the coverage criteria is important as we need to find the presence of all
the errors within the software.

Reviewing and testing are well known error detection methods and are the major
techniques of software verification in practice. A review constitutes of software inspec-
tion by a group of software engineers. It is a complete manual process which is effective
but not sufficient process because subtle errors such concurrency and algorithm defects
are not easy to detect in review process. According to Baier in [5], 30% to 50% of the
total software development costs are spent on testing. On the other hand testing is a
dynamic process as compared to review which is solely manual process. In testing, a
code is executed or a software is run. This helps us to know the correctness of the code
as we impose the software to traverse a set of execution paths during the run of the
software. But even testing is not complete because the coverage of all the execution
path is not feasible in large application software. That is to say that testing can only
show the presence of errors but it does not show the absence of errors. According to
Baier in [5], the cost of fixing a software during the maintenance is approximately 500
times more that the early design phase. As shown in the Figure 1.2.

Figure 1.2: Introduced, detected errors and repair costs during Software Life Cycle [5]
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1.2 Problem Statement
The DLR Institute of Flight Systems in Braunschweig, Germany performs research
with the UAS (Unmanned Aircraft System) to increase the autonomous behaviour of
dull and dangerous tasks. This requires that the software is free from any defects like
dead locks, assertion violations, integer overflow, division by zero etc. One of the focus
at DLR is to design safe systems.

The larger goal, out of the scope of this thesis work would be to investigate the use
of formal methods in certification of airborne systems. Currently, DO-178C/ ED-12C
is used as a standard for software development and testing of safety-critical systems for
aerospace domains. But the test approach in these standards is stochastic in nature
as mentioned in [8] by Torens. This work also mentions that a large amount of effort
is diverted in creating large set of test cases in identifying these errors. Hence this
work although indirectly, points towards reducing the efforts to detect these errors
using formal methods. As DO-178C enables the use of formal methods from one of its
additional supplements DO-333.

The major research question within the scope of this work would be to use generic
model of UAV and make use of it for designing specific cases like ARTIS. As we could
significantly gain from these generic models in designing other specific cases. This
would significantly reduce the work in verifying other software systems using model
checking. But the question remains up to what extent can we make use of these generic
models? This is depicted in the Chapter 6. It also explains some of the constraints
encountered during this approach. The generality of these generic models remains
within the scope of ALFU(R)S framework which includes ARTIS fleet of UAVs.

The idea of having a requirement based test generation framework also needs us
to answer if we could generate test cases from these generic models. A test generation
approach is explained in Chapter 8. A test generation framework would be significantly
important to work with other specific cases. We could take the advantage of formal
methods using model checking and verify the requirements against models.

1.3 Goals
The objective of this work is to research the use of generic formal models for modelling,
model checking and test generation. The main idea is to use the well known formal
methods in verifying the MiPlEx software using the generic modelling approach. The
ARTIS consists of fleet of UAVs under its flagship like Super ARTIS, Mini ARTIS,
Midi ARTIS etc. The use of generic modelling helps us in reuse of the generic frame-
work in specific cases which reduces considerable effort of designing new framework
for every specific cases.

The main focus would be towards the flight guidance software. Firstly, the design
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of generic formal model with specialization of a MiPlEx component that can be used
for model checking and test generation approach. Secondly, design of test generation
methodology and constraints for specialization of generic formal methods. Further-
more, a formal model should be created that is suitable for model-checking and test
generation. As a modelling language NuSMV is used because of its counterexample
generation capabilities which provides bridging towards test generation framework.

1.4 Document Structure
The thesis work is organised as follows: Chapter 1 explains the basic introduction to
the topic with the motivation to the work and research goals. Chapter 2 describes the
basic fundamentals required to understand the technical details of the work including
the concepts of formal methods. The comparison between different formal techniques
is described in Chapter 2. Also a introduction to the model-checking tool (NuSMV)
is presented. Chapter 3 describes the related work i.e. the research work carried out
in this direction of generic model checking and test generation. Chapter 4 gives the
detailed information about the generic and specific UAV’s. This chapter provides the
information about the system on which the research was carried out.

Chapter 5 gives a brief summary of contribution to thesis is given to present the
work done under this thesis. Chapter 6 presents the approach towards the generic
modelling. It maps the information flow model of GNC component of UAV to the
generic agent model. Chapter 7 explains the process of model-checking of specific
UAV guidance system. It explains the process of requirement extraction, formalisation,
different graphical models generated during this work. Chapter 8 explains the process
of test sequence generation by considering a mission scenario. Finally Chapters9 and
10 depicts the experimental results, conclusion along with future scope of this work.

1.5 Summary
UAV’s find enormous application in civil and military domains because of there ready
to go anywhere capability. Civil UAV’s can be used in fire monitoring or first aid
cargo delivery and in many other emergency situations. But as these need to operate
between narrow building, trees, poles with high precision. For such a precision in
operation the software needs to be out of errors.

The process of review and testing are well known methods in software verification
and are popularly used inn finding errors but for a safety critical system a more rig-
orous methodology needs to be used to find all the errors, deadlocks present in the
software. Hence, formal methods can be used for software verification because of their
high precision and coverage criteria.

CHAPTER 1. INTRODUCTION 4



Chapter 2

Fundamentals

This chapter explains the basic concepts required for understanding this work. Firstly
it provides the process of requirement elicitation. Requirements are necessary to un-
derstand the property or behaviour of a software system. These requirements are
necessary linguistic approach to defines the requirements of a system. Secondly, these
requirements are transformed into mathematical form i.e. in the computer under-
standable language using the Temporal Logics (TL). The temporal logic consists of
LTL (Linear Temporal Logics) and CTL (Computation Tree Logic) logics.

It explains the concept of formal methods as the process of model-checking (used
in this work) is one of a formal method in verifying software systems. This chapter
also states some of the important definition useful in understanding formal artefacts.
Some of the limitations of formal techniques along with its benefits are described.
It compares various formal techniques used in software verification. Followed by the
model checking using NuSMV model checker.

2.1 Requirement Elicitation
Requirements of a software system define the basic desired property or behaviour of
a system. These requirements could be collected from customers base but during the
perpetuation of requirements for example from customer to project leader to analyst to
programmer, it could become ambiguous as the requirements specified by the different
stakeholders do not certainly remain to be the same. This could also create confusion
amongst understanding the right meaning of the actual requirement [35]. This could
lead to erroneous process of understanding and implementation of the requirements of
the system. A structured approach is required in defining these requirements. Several
methodologies are available in defining these requirements like analytical approach,
natural language approach and the template based approach. The template based
approach is better amongst all the requirement methodologies. The natural language
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method basically provides the better approach than compared to the analytical ap-
proach. The reasons that the requirements are clearer basically due to investigation
on the linguistic effects are included and the knowledge gained is being integrated into
the statements. The disadvantage of natural language approach is that this approach
cannot provide a common and uniform understanding of the system. The template
based requirements is as presented below as it provides a structured and uniform ap-
proach to define these requirements using pre-defined templates.

Template Based Requirements:
It is necessary to frame good requirements to avoid typical errors. A simple tem-

plate based method [35] can solve the above problem that is based on linguistic and
philosophical fundamentals. This approach avoids the phrasing error right from the
start. Due to its benefits of phrasing ambiguities and structured approach, it was
also used during the internship work in the process of specifying requirements. The
detailed template based requirement formation is explained below in 6 steps:

Step 1: Determine the process: The desired functionality (like print, save, calculate
and so on) is most important and shall be framed as a process.

Step 2: Determine the activity of system: “The System” or a subsystem shall always
be rendered as the subject of the requirement. A requirement could be classified into
three categories according to paper [35].

• Independent System Activity: The system executes the process independently

THE SYSTEM . . . . . . <proce s s word>

• User Interaction: The system provides the user with the ability to use the process
functionality.

THE SYSTEM . . . . . PROVIDE <whom?> WITH THE ABILITY TO <proce s s word>

• Interface Requirement: The system executes a process dependent upon a third
party (such as an external system).

THE SYSTEM . . . . . . . . . . BE ABLE TO <proce s s word>

Depending on the system activity we can choose one of the three-requirement tem-
plates as shown in Figure 2.1.

Step 3: Determining legal obligation: We should distinguish between the legal
relevance of a requirement such as legal binding, strongly recommended and future
requirement. This could be done by using modal verbs like shall, should and will.
This helps us to easily determine the degree of legal obligation of your requirement as
shown in figure 2.2.
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Figure 2.1: Requirement indicating activity [35]

Figure 2.2: Requirement indicating legal relevance [35]

Summarising step 1 to 4 an example can be formed:
Requirement No 1, Version 1: The system SHALL provide THE RECEPTIONIST

with the ability to PRINT.

Step 4: Fine Tuning: From the above example it is still not clear as to “WHAT”
has to be printed or to “WHERE” it is to be printed. Thus it is clearly seen that more
information is needed about the requirement. It is shown in Figure 2.3.

Requirement No. 1, version 2: The system SHALL provide THE RECEPTIONIST
with the ability to PRINT A BILL ON THE NETWORK PRINTER.

Step 5: Phrasing of logical and temporal Conditions: There is a need to specify
the logical and temporal conditions (Figure 2.4) in order to clearly differentiate certain
conditions. “WHEN” for temporal conditions and the conditional conjunction “IF” for
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Figure 2.3: Requirement without conditions [35]

Figure 2.4: Requirement with conditions [35]

logical conditions. Prerequisites need to be determined, which need to be met before
the requirement is to be valid.

Requirement No. 1, version 3: If the option “BILL REQUIRED” HAS BEEN
SELECTED ON THE MOBILE DEVICE, the system shall provide the receptionist
with the ability to print a bill on the network printer.

Step 6: SOPHIST-Rulebook There are still some exceptions for the requirement to
be complete. The SOPHIST-Rulebook [11] is used in order to ensure completeness of
the semantic meaning and to avoid linguistic defects. On the whole step 6 defines the
auditing of the requirement.

2.2 Formalising Requirements using Temporal Log-
ics

The requirements are formalised using temporal logics. Temporal logics (TL) [5] are
formalism for specifying and verifying properties of reactive systems. The require-
ments template that we have learnt above can be transformed into a special syntax.
By using these sequences we can check if the requirements are holding true to our
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model or not, by this we can verify if the model satisfies the property or not. The
specification can be represented using logical framework. The logic becomes the neces-
sity part to develop language that can model the situations and that makes the way to
reason about them formally. The propositional logic can express the specification such
a way that the logical structure can be brought out. The propositional logic is based
on the propositions that express either being “TRUE” or “FALSE”Ṫhe propositional
logic logic can not express assertions of all types. The predicate logic came up as a
powerful logic than compared to the propositional logic. Predicate logic is the gener-
alisation of the propositional variable. The vital part of both these two logics namely
predicate logic and propositional logic represent the specifications whose truth value is
constant in time[5]. The temporal logics delineate the temporal relations between the
events occurring over time. The temporal logic notation is often simpler and clearer.
Model-checking is one of the methods to verify the temporal properties of the system.
Temporal logic allows for formal specification of properties such as safety (nothing
bad will happen), liveness (something good will happen) and fairness (independent
processes will progress).

Temporal logics may differ according to how they handle branching in the underly-
ing computation tree. In a linear temporal logic, operators are provided for describing
events along a single computation path. In a branching-time logic the temporal op-
erators quantify over the paths that are possible from a given state. LTL (Linear
Temporal Logic) [11] and [5] can have infinite sequences of states where each point
in time has a unique successor based on a linear-time perspective. LTL is built up
from a finite set of automatic propositions. CTL (Computation Tree Logic) [11] and
[5] describes properties of a computation tree and formulas can reason about many
executions at once. It belongs to the family of branching-time logics and semantics
defined in terms of states.

2.2.1 Linear Temporal Logics
LTL characterises every linear path induced by the Finite State Machine (FSM) in
linear-time approach. Linear-time properties specify the traces that a transition sys-
tem should exhibit [5]. The linear temporal logic describes the events only along the
single computation path.

Symbol Meaning
& Logical AND
| Logical OR
! Logical NOT

Table 2.1: Logical Operators [5]
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Symbol Meaning
X Refers to next state
G Globally
F Future
U Until
Y Previous state
S Since

p U q p Until q

Table 2.2: Temporal Operators [5]

The temporal operators such as X, G, F and U basically represent the future and
the operators such as Y and S represents the past. A “F p” read as future, states that
a certain condition p holds in one of the future time instants. “G p” read as globally,
states that a certain condition p holds in all future time instants. “p U q” read as p
Until q, states that condition p holds until a state is reached where condition q holds.
“X p” read as next p, states that condition p is true n the next state[24].

Figure 2.5: Temporal Operator ‘Final’

Figure 2.6: Temporal Operator ‘Next’

Figure 2.7: Temporal Operator ‘Globally’

A similar approach was used during the internship work. One of the example of
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LTL as seen from requirements in this work is presented below:

‘Always the Sequence Controller shall provide the ability to the Manual Pilot to
switch between Manual Pilot Mode and Mission Mode’

LTL specification:
LTLSPEC G ((SC_State = MissionControllerOff) -> F (SC_State =

MissionPlanning));

2.2.2 Computation Tree Logics
Computation tree logic is also called as branching time logic and here the temporal
operators quantify over the paths that are possible from a given state. Its formulas
allow for specifying properties that considers the non-deterministic, branching evolu-
tion of a FSM. The branching time logic represents the time as tree rooted present
instance of time and branching out into the future. The branching has many future
possibilities and it depends on the system behaviour. The evolution of a FSM from
a given state can be described as an infinite tree, where the nodes are the states of
the FSM. The paths in the tree that start in a given state are the possible alternative
evolutions of the FSM from that state [24]. In CTL one can express properties that
should hold for all the paths that start in a state, as well as for properties that should
hold just for some of the paths. The Figure 2.8 illustrates the branching progress of
time. CTL quantifies the statements over all the paths and can also quantify the single
path from a state and this can be further understood easily from the Figures 2.9, 2.10,
2.11, 2.12, 2.13.

Figure 2.8: Branching Progress of Time
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Syntax of CTL: Computational tree logic comprises of atomic propositions, path
quantifiers, logic operators and also temporal operators. Atomic propositions such as
p,q.

Path quantifiers A, E:

• A: all paths starting from the given state.

• E: there shall exist at least one path from a given state

Logic operators such as ˆ , _:

• ˆ :AND

• _:NOT

Temporal operators such as X, F, G, U:

• X (Next): It refers to the next states of current state.

• F (Future): any one of the future states from the current state.

• G (Global): all future states from the current state.

• U (Until): Some CTL formula holds until another CTL formula from the current
state.

X, F, G are the unary operators and the U is the binary operator. Computational
tree logic basically combines the temporal operators with the path quantifiers over
runs. CTL can be better viewed through the pictorial representation of an example.
Lets consider an example with two states black and red. In the figures 2.9, 2.10, 2.11,
2.12, 2.13 the topmost state satisfies the given formula if the black state satisfy p and
the red state satisfy q. A similar approach was used during the internship work. One
of the example of CTL as seen from requirements in this work is presented below:

‘The system shall have different levels of autonomy’
CTL specification:

SPEC AG EF(SC_State = MissionControllerOff);

2.3 Concept of Formal Methods
The application of Formal Methods (FM) techniques could be used in specification
and verification of products from development cycle like requirements, high-level and
low-level design, and implementation. Another advantage would be that the FM tech-
niques could be used for strict traceability between system descriptions across differ-
ent life cycle phases. FM are based on mathematical modelling and formal logic that
are used to specify and verify requirements and software. Formal methods involve
computer-assisted proofs of key properties that explains the behaviour of the system
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Figure 2.9: CTL Operator ‘AX’

Figure 2.10: CTL Operator ‘AG’

Figure 2.11: CTL Operator ‘EF’

Figure 2.12: CTL Operator ‘EX’
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Figure 2.13: CTL Operator ‘EG’

and it proves to be one of the essential tools for activities including certification, reuse,
and assurance [23]. According to [12], a report written by FAA and NASA concludes
that:

“Formal methods should be a part of the education of every computer scientist and
software engineers, just as the appropriate branch of applied math’s is a necessary part
of the education of all other engineers.”

This signifies the prominence of formal methods among computer scientists. FM
techniques could be used in checking internal consistency of a specification and proving
that the system satisfies the desired properties. These characteristics can be automated
using computer based tools. FM refers to the use of techniques from formal logic and
discrete mathematics in the specification, design, and construction of computer sys-
tems and software [23]. The logical properties of a computer systems are described in
a form of a mathematical model. This in turn helps the user to rectify requirements
of certain properties of system. The foundation of FM are based on reasoning from
formal logic. Formal modelling of a system involves transformation of a description of
system (non-mathematical model) into a formal specification using formal languages.
The mathematical inclusion results in the system description with better logical preci-
sion [23]. It also provides better completeness and consistency of system requirements
or design.

Definition of Terms:
The following definitions are taken from [23] that depict basic terms required to un-
derstand this work.

• A formal specification is a concise description of the behaviour and properties of
a system written in a mathematically-based language, specifying what a system
is supposed to do as abstractly as possible, thereby eliminating distracting detail
and providing a general description resistant to future system modifications. The
most formal specifications are written in a language with a well-defined semantics
that supports formal deduction and allows the consequences of the specification
to be calculated through proof of putative theorems.
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• A formal proof is a complete and convincing argument for the validity of a state-
ment about a system description. A proof proceeds in a series of steps, each of
which draws conclusions from a set of assumptions. Justification for each step is
derived from a small set of rules which state what conclusions can be reasonably
drawn from assumptions. Such justification eliminates ambiguity and subjectiv-
ity from the argument. Formal proofs may be prepared manually or, preferably,
with the assistance of an automated FM tool.

• Abstraction is the process of simplifying and ignoring irrelevant details and fo-
cusing, distilling, and generalising what remains. In FM, abstraction is a tool
for eliminating distracting detail, avoiding premature commitment to implemen-
tation choices, and focusing on the essence of the problem at hand.

2.3.1 Different Formal Verification Techniques
There are numerous formal verification techniques that are based on formal logic and
discrete mathematics. Some of them are:

• Theorem Proving

• Model Checking

• Bounded Model Checking (BMC)

• Model-Based Testing (MBT)

• Static analysis with abstract domains

• Equivalence Checking

a. Theorem Proving:
Theorem proving [32] is based on variations of Hoare logic [28] and it can be used
for programs involving complex data structures. Theorem proving can also deal with
infinite state spaces, as they do not need to exhaustively visit the program state space
for verification because it involves constraints on states rather than instances of states.
It uses syntactic domain (structural domain), which is much smaller than semantic do-
main (set of meanings) searched by model checking. It is well suited for data-intensive
systems and supports fully automated analysis only in restricted cases i.e. verification
of inductive structures can be done through mathematical induction but cannot be au-
tomated. Theorem proving has better capabilities than model checkers but the proof
of a practical system in theorem proving can be extremely large and require experts
with more effort. There has been significant effort to combine the complementary
benefits of theorem proving and model checking since past 15 years [32].
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b. Model Checking:
It relies on building a finite model [32] of a system and checking that a desired property
holds in that model.

M |= Φ

An abstract model “M” is constructed in the form of variations on finite state au-
tomata and specification formulas Φ is created in the form of variations on temporal
logic. A specification or property is a logical formula written either using LTL, CTL
or CTL*. To ensure that the formula Φ holds, the verification algorithm involves ex-
ploring the set of reachable states of the model. If Φ is an invariant assertion then the
model checking approach explores the entire state space to ensure that the formula
holds in all states. Hence finite sets of reachable states are required for termination.

Model checking [20] is well suited for “control-intensive” applications (code in form
of control structures, “if” statements) on simple data types (e.g. “int” variables). But
for complex data types such as trees, lists and recursive definitions it is difficult to
verify using model checking. Model checkers are more often applied on C language as
it lacks complex data types. Another advantage is that verification can be fully auto-
mated and counterexamples are automatically generated if the property doesn’t hold
true. But this is difficult for the complex structures that use mathematical inductions.
One of the drawbacks of this model is that it puts limits on exploring the state space
known as the state explosion problem and hence can be considered less robust [32].

c. Bounded Model Checking (BMC):
This technique is a type of Model checking. It performs a depth-bounded exploration
of the state space where the BMC explores program behaviour only up to a given
depth. Bugs that require longer paths are missed. In BMC [37], the design under
verification is unwound “k” times and conjoined with a property to form a proposi-
tional formula, which is passed to a SAT (Satisfiability Modulo Theory) solver. This
technique is mostly used to find superficial bugs and it provides a full counterexample.

d. Model-based testing (MBT):
MBT is an important technique and approach towards test cases in our work. MBT
[36] is software testing in which test cases is generated in whole or in part from a
model that describes some (usually functional) aspects of the SUT (System Under
Test). It consists of Online MBT and Offline MBT. In offline MBT, models are used
for generating conventional test suites that can be later executed on the SUT. In
contrast, an online approach constantly executes the tests as they are generated. In-
creased coverage is seen as especially important in testing concurrent systems that are
hard to test using conventional methods. The development time is highly saved be-
cause the test model can be created at the same time and we can avoid the rework on
wrong implementation. Reusability of the model in long run is the most useful benefit.
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One of the advantage of MBT is instead of creating test cases manually, a selected
algorithm is generating them automatically from the model [21]. It comprises the
automation of black-box test design but white-box testing is also possible. Another
advantage of MBT could be that it allows tests to be linked directly to the SUT re-
quirements, which allows readability, mapping and maintainability of tests. And also
provides good coverage of all the behaviours of the SUT and to reduce the cost and
effort of testing. MBT is a test process that comprises of different test methods that
utilise the executable model in MBD as source information. As mentioned in [21] a
single testing technique is not sufficient to achieve a desired level of test coverage,
different test methods are usually combined to complement each other across all the
specified test dimension. If sufficient test coverage has been attained on the model
level then designed test cases can be reused for testing the software created based on
or generated from the models.

This practice allows the functional equivalence between the executable model, spec-
ification and code can be verified and validated. The most generic definition of MBT
is testing in which the test specification is derived from both the system requirements
and a model that describes selected functional and non-functional aspects of the SUT.
The test specification can take the form of a model, executable model, script, or com-
puter program code [21]. The resulting test specifications are executed together with
the SUT so as to provide the test results.

e. Static analysis with abstract domains:
Static Analysis techniques [37] are mainly used in compiler optimisation but can also
be used for program verification. A sound approximation is necessary in order to in-
spect all the error present in the program. A subset might miss some of the error
while verification and hence we have to consider the superset for guarantees that are
not misleading. These techniques can be used to analyse large software systems with
minimal user interaction and considered to be extremely robust (can cope with large
and varied inputs). But one of the limitations could be that these systems can verify
only simple systems.

f. Equivalence Checking:
This approach is mainly applied in hardware design for checking functional equivalence
of two similar circuits. It uses Canonical representations, such as Binary Decision Di-
agrams (BDDs) [1] or Satisfiability Solvers used for comparison. Validate that the
implementation of a module is consistent with the specification. It is highly automatic
and efficient approach. Most used formal verification technique, primarily in semicon-
ductor industry. Many commercial tools exist such as Design VERIFYer (Chrysalis
Inc.) and Formality (Synopsis, million gates in less than an hour).
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2.3.2 Benefits and limitations of Formal Methods
For the complexity of software critical softwares it is important that the software
should function without any deadlock or errors and this has led to the interest in
formal techniques. The following can be effectively addressed by application of Formal
Methods [23]:

• Aerospace systems are are mostly software critical, complex in nature and devel-
opment needs verification techniques.

• Software-Intensive systems are characteristically different from hardware failures.

• Software developed by organisations with higher degree of software quality re-
quires FM techniques to counter remaining defects in the developed product.

Moreover, it is necessary to detect the errors in the software during the development
stage to reduce the overall cost of software product and for efficient development of
softwares. Some of the benefits of using Formal Methods are listed below [23]:

• Formal specifications holds a high degree of logical precision that removes the
ambiguity that is found in informal specifications.

• Formal proofs removes ambiguities in requirement analysis by providing a logical
argument about the behaviour of the requirements.

• Formal specification provides a systematic and recursive approach to analysis
and thus provides better analysis.

• FM methods can be scaled and tailored to the needs of a project.

• Formal specifications can be used during any life cycle phase. The early use can
benefit in detecting defects and efficient software development.

• Formal proofs and specifications can be automated using computer-based tools.
This enables the proofs to be re-executed.

• Formal Methods helps to find defects. As shown in [27] the undetected defects
were found by using FM that were not evident during extensive testing.

• Formal specifications can also detect errors in requirements and design during
the early stages of software development. This helps in reducing mistakes and
implementing correct requirements and design.

• Another advantage of using FM techniques could be large coverage of tests cases
in finite proof as FM techniques are mainly inclined towards mathematical proofs.

With enormous list of benefits. FM techniques also consists of some limitations.
Some of the limitations of FM techniques are listed below:
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• Writing formal specifications needs minute attention to details. That is the infor-
mal requirements should be transformed into computer understandable language.
There could be undetected gaps or deviation of transformation into computer
understandable language during the process of transformation due to misinter-
pretations or erroneous formalization of correctly stated requirements.

• The logical calculations can fail due to a specification or system of equations
that does not correctly model the real world. On the other side this could also
fail due to misinterpretation of result calculated.

• FM are not well suited for large applications [23]. The size determines the
difficulty of using FM, for example the industrial software projects.

• FM are less suited for highly computational applications and numerical algo-
rithms, this makes it not equally similar to all applications. According to [23]
the methods can be applied to nearly any applications but it states that higher
complexity applications achieve better gains than compared to the lower com-
plexity applications because of the simple fact that less complex problems can
be solved using less rigorous methods. Furthermore considering the applications
based on mathematical domain including floating point arithmetic, pose some
difficulties (working with approximations of real numbers).

2.4 NuSMV Model Checker
NuSMV (http://nusmv.fbk.eu) is designed to allow for the description of FSM. The
FSM can range from synchronous to asynchronous and from detailed to abstract mod-
els. It provides modular hierarchical descriptions and allows reuse of components. A
FSM can be described using boolean, scalar, fixed arrays and static data types. The
transition relation of FSM can be described in NuSMV which helps in evolution of
the state of the FSM. The description of transitions can be done using propositional
expression in propositional calculus [24]. This provides more flexibility in defining the
transitions but on the other hand allows inconsistency. The presence of logical con-
tradictions can lead to deadlock. This can make some specifications vacuously true,
and makes the description unimplementable [24]. This can be resolved using parallel-
assignment syntax.

A simple NuSMV example is as shown in the below example that depicts the status
of states between Ready and Busy. As described above the keyword MODULE is used to
denote the main module. There are three portions of code namely VAR, ASSIGN and
SPEC. VAR identifies a portion of code where variables are defined. The VAR section
defines the set of states. Two variables, each of which has 2 values: in total, 4 possible
combinations, i.e., 4 possible states: s0=(0,ready), s1=(0,busy), s2=(1,ready),
s3=(1,busy) ASSIGN identifies a portion of code where variables are initialised and
evolution is described. ASSIGN section is used to mainly describe the initial states and
its consecutive next states using different case. SPEC defines properties to be verified
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using CTL logic as shown in above section 2.2.2. Similarly we can use LTLSPEC to
specify LTL logic as shown in above section 2.2.1. Additionally FAIRNESS constraints
can be used that restricts the attention only to fair execution paths. During evalu-
ation of specifications, the model checker considers path quantifiers to apply only to
fair paths. If the specified SPEC is not relevant to the model then a counter example is
generated as a finite sequence of transitions through different states and can be repre-
sented in a bounded setting as a finite prefix followed by a loop, i.e. a finite sequence
of states ending with a loop back to some previous state.

VAR
reques t : boolean ;
s t a t e : { ready , busy } ;

ASSIGN
i n i t ( s t a t e ) := ready ;
next ( s t a t e ) := case

s t a t e = ready & reques t : busy ;
1 : { ready , busy } ;
e sac ;

SPEC
AG ( reques t −> AF s t a t e = busy )

NuSMV is used during this work and also during the internship work. The graphical
models presented in Chapter 6, 7 and 8 are also formal modelled in NuSMV in the
similar methodology.

2.5 Summary
This chapter described the basic concepts of FM techniques, model-checking, require-
ment elicitation using template based method, formalising requirements using TL and
the model-checking tool (NuSMV) used in this work. Firstly, the requirement elici-
tation process is important to elicitate the requirements in a structured and uniform
manner. The drawback of non-uniformity in analytical and natural language require-
ment method is refined template based requirement method. It explains 6 steps to
formulate these requirements i.e. determining the process, activity, legal obligation,
refinement, logical and temporal conditions and further expectations to complete these
requirements using the SOPHIST rulebook. Furthermore these requirements have to
be formulated in a mathematical way i.e. in a computer understandable language.
This is done using LTL and CTL temporal logics. These temporal logics becomes the
necessity part to develop language that can model the situations and that makes the
way to reason about them formally. The propositional logic is based on the proposi-
tions that express either being “TRUE” or “FLASE”Ṡome of the examples of LTL and
CTL transformations are also provided to explain these temporal logics.

Formal methods provide better completeness and consistency of system require-
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ments or design. It can also be used for strict traceability between system descriptions
across different life cycle.The benefits achieved from formal techniques are enormous
as it involves high degree of logical precision that removes the ambiguity that is found
in informal specifications. It can be scaled according to the project needs. Because
of its recursive approach it provides better analysis. Another advantage could be that
these FM techniques could be used in any life cycle phase in detecting errors and
hence makes it flexible to use during any life cycle phase of software development. The
automation of formal proofs and specifications using computer based tools enables
the proofs to be re-executed. It can also detect errors during early stages of software
development and helps in reducing mistakes at early stages and in turn this makes the
software development cost effective. The large coverage of test cases helps in finding
the absence of errors along with the presence of errors. There are many formal ver-
ification techniques some of them mentioned are Theorem Proving, Model Checking,
Bounded Model Checking (BMC), Model-Based Testing (MBT), Static analysis with
abstract domains and Equivalence Checking. Although Theorem Proving are better
capable than model checkers but it requires expert with more effort in proof of prac-
tical systems. Although Model checking is well suited for control-intensive applications.

Finally, the model checking tool i.e. NuSMV which is a symbolic model checker is
explained with an example. NuSMV allows in describing the transitions using propo-
sitional expressions. Another advantage of using NuSMV is it capability to generate
counterexamples.
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Chapter 3

Related work

The use of formal methods for software verification is described in many articles. For-
mal methods are well known techniques and in use since 40 years as shown by Pnueli
in [33]. Pnueli describes a unified approach to program verification, which is applied
to sequential and parallel programs. The paper shows suitable reasoning about con-
current programs.

Recent work by Torens as described in [8] shows the introduction of formal meth-
ods and model checking in the test strategy of an automated planning and guidance
software module of an Unmanned Aircraft Vehicle. The idea of focus in [8] is to en-
able the use of formal methods for software testing and validation of requirements, as
the certification standard described by aerospace domain such as DO-178C mentions
the use of formal methods for software in its supplement DO-333. Under the super-
vision of Torens, this work takes a similar direction of requirements elicitation and
formalization of requirements using temporal logics such as Linear Temporal Logics
and Computational Tree Logics, which are used as derivatives of temporal logic. [8]
also uses NuSMV as a model-checking tool to analyze the requirements in regards to
the model.

In the paper [36] written by Sadhukhan explains the use of Model Based Testing
using PIM (Platform Independent Model) in dealing with customer information from
the bank data. The system requirements were fed using UML models to Conformiq
Qtronic tool and most of the modules were developed in Java.

Another paper [9] by NASA Ames presents model checking and symbolic execution
to enable testing of complex softwares by using Java PathFinder model checking tool
(JPF) to enable test case generation for Java Programs that have been applied to
generate test sequences and test vectors for NASA software.

Mats P. E. Heimdahl and Willem Visser et. al [26] from University of Minnesota
and NASA Ames Research Center are working in a similar direction of witnessing
counter example capability of model-checkers for constructing test cases for the flight-
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guidance system written in the RSML e language. A specification based test generation
using NuSMV model-checkers is done along with code based test case generation using
Java PathFinder for Java program.

Rayadurgam [4] uses the concept of state-based specifications for generating test
sequences. It refers to the model checker to automatically generate complete test se-
quences that provide structural coverage of specifiec requirements. Simillay, Gargantini
[4] describe a method for generating test sequences from requirements specified in the
SCR (Software Cost Reduction) notation. To derive a test sequence, a trap property
is defined which violates some known property of the specification. In their work, they
define trap properties to generate counterexamples.

Beyer [10] uses BLAST as a model checker to automatically generate test suites.
In [10] given a C program and a target predicate textitp. The BLAST determines the
set of L of program locations which program execution can reach with p true and au-
tomatically generates a set of test vectors that exhibit the truth of p at all locations in L

Kendoul in [30] describes the current state of the art in autonomous Rotorcraft
UAS (RUAS). It combines the review of last two decades of active research and pro-
vides the autonomy level of RUAS using GNC (Guidance, Navigation and Control)
aspects. This helps with defining the scope of generality of generic UAV.

Brazier [19] uses a similar approach of generic model and its reuse. It defines a
generic agent model (GAM) which abstracts from specific application domains. It
works on a similar platform of reusing the generic model as a template or pattern
for large variety of agent types and application domain types. The book written
by Clements [2] explains the concept of software product lines approach and several
benefits in time and cost reduction in development of software.
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Chapter 4

Generic and Specific UAV

At this point it is important to understand the concepts of generic and specific UAV
as the core functionalities of guidance system is implemented in the FSM. The generic
and specific UAV are distinguished based on generic and specific behaviours of the
UAV. The high level and low level behaviours of UAV along with the components of
GNC and its operations distinguishes the generic and specific UAV.

4.1 Generic UAV
The generic nature of the UAV could be considered at large considering all the UAV
present until date but this would again make the idea of generality unclear. Hence the
idea of considering the generality is to use ALFURS framework [30] as the ALFURS
framework is widely used as a reliable source of information by the RUAS community.

4.1.1 ALFURS Framework
The ALFURS Framework [30] describes the current state of art in autonomous Rotor-
craft UAS (RUAS), and provides detailed review of two decades of active research on
RUAS. It mainly concentrates on there major parts of UAS i.e. Guidance, Navigation
and Control. It provides a standard metrics in characterising and measuring the au-
tonomy levels of a RUAS using GNC as main focus. RUAS has been categorised into
five classes based on attributes such as size and payload [30]. A graphical representa-
tion of the mentioned categories is depicted in ALFURS framework. The Figure 4.1
[30] represents categories as shown in ALFURS framework.

• Class 1. Full-scale unmanned helicopters or optionally piloted autonomous heli-
copters. For example Boeing Unmanned Little Bird (ULB) helicopter.

• Class 2. Medium-scale UAS helicopters that are autonomous or semi-autonomous
with total weight of more that 30 kilograms. For example Yamaha RMAX.
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• Class 3. Small-Scale UAS based on RC-helicopters with optional autopilot inte-
gration with total weight of less than 30 kilograms. For example Vario Benzin
Trainer.

• Class 4. Mini Rotorcraft UAS that are portable and can fly outdoors as well
as indoor environments with total weight ranging from few 100 grams to few
kilograms. For example MIT autonomous indoor quad-rotor.

• Class 5. Micro Air Vehicles (MAV’s) that are mainly designed for indoor appli-
cations. For example Epson micro flying robot.

Figure 4.1: Categories of unmanned rotorcraft system according to ALFURS [30]

4.1.2 Levels of Autonomy
According to ALFURS [30], it defines autonomy as “The condition or quality of being
self governing. When applied to RUAS, autonomy can be defined as RUAS’s own (own
implies independence from human intervention) ability of integrated sensing, perceiv-
ing, analysing, communicating, planning, decision-making, and executing, to achieve
its goals as assigned by human operator(s) through designed Human-Robot Interface
(HRI) or by another system that the RUAS communicates with”.The ALFURS levels
are categorised based on degree of RUAS engagement with the GNC functions. The
autonomy levels is proportional to the level of increase along the GNC functions as
shown in the table 4.1 and 4.2.
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Level Level Guidance Navigation Control
Descriptor

10 Fully Human-level decision-, Human-like navigation Same or better
Autonomous making accomplishment capabilities for control

of most missions most missions, performance
without any fast SA that as for a piloted

intervention from outperforms human aircraft in the
ES (100% (ESI) SA in extremely same situation
External System complex environments and conditions.
Independent), and situations.
the cognizant
of all within

operation range.
9 Swarm Distributed strategic Long track Ability to choose

Cognizance group planning, awareness of the appropriate
and selection of very complex control

Group strategic goals, environments architecture based
Decision mission execution and situations, on the
Making with no supervisory interference and understanding

assistance, anticipation of of the current
negotiating with other agents situation/context
team members intents and and future

and ES strategies, high consequences.
level team SA

8 Situational Reasoning and Conscious knowledge Ability to
Awareness higher level of complex change or

and strategic decision environments and switch between
Cognizance making, strategic situations, interference different

mission planning, of self/ others intent, control strategies
most of supervision anticipation of near based on the
by RUAS, choose future events and understanding of
strategic goals, consequences the current
cognizance. (high fidelity SA) situation/ context

7 RT Collaborative mission Combination of same as
Collaborative planning and capabilities in in previous

Mission execution, evaluation levels 5 and 6 levels (no
Planing and optimization of in highly complex, additional

multi-vehicle mission adversarial and control
performance, allocation uncertain capabilities
of tactical tasks to agent environment are required

6 Dynamic Reasoning, high Higher-level of same as
Mission level decision perception to in previous
Planning making, mission recognise and levels (no-

driven decisions classify detected additional
high adaption to objects/ events control
mission changes, and to infer some capabilities
tactical task alloc of their attributes, are required
exec monitoring mid fidelity SA

Table 4.1: ALFURS Autonomy Levels Part 1 [30]
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5 RT Collision avoidance, Relative navigation Distributed or
Cooperative cooperative path between RUAS, centralised flight
Navigation planning and cooperative control

and execution to meet perception, data architectures,
Path common goals, sharing, collision coordinated

Planning swarm or group detection, shared maneuvers.
optimisation. low fidelity SA

4 RT Hazard avoidance, Perception capabilities Accurate and
Obstacle/ RT path planning for obstacle, risks, robust 3d
Event and re-planning, target and trajectory

Detection event driven environment changes tracking
and decisions, robust detection, RT mapping capability is
Path response to mission (optional), low fidelity desired.

Planning changes, SA.
3 Fault/ Health diagnosis, Most health and Robust flight

Event limited adaptation, status sensing controller,
Adaptive onboard conservative by the RUAS, reconfigurable or
RUAS and low-level decisions, detection of adaptive control

execution of hardware and to compensate
pre-programmed software faults. for most failures,

tasks. mission
2 ESI Same as in All sensing and Same as

Navigation Level 1 state estimation in Level 1
(e.g., by the RUAS (no

Non-GPS) ES such as GPS),
all perception and
situation awareness

by the human
operator

1 Automatic Pre-programmed Most sensing Control commands
Flight or uploaded flight and state are computed by
Control plans (waypoints, estimation the flight control

reference by the RUAS, system (automatic
trajectories, etc.), all perception control of the RUAS
all analysing, and situational 3D pose.)
planning and awareness by

decision-making the human
by ES operator

0 Remote All guidance Sensing may be Control
Control functions are performed by the commands

performed by RUAS, all data is are given by
external systems processed and a remote ES
(mainly human analysed by an (mainly human

pilot or external system pilot)
operator) (mainly human)

Table 4.2: ALFURS Autonomy Levels Part2 [30]
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As shown in the table 4.1 and 4.1. It considers mainly 3 systems:

• Flight Control System

• Navigation System

• Guidance System

• Flight Control System: According to [30], RUAS control systems are based on
control technologies of manned aerial vehicles. Although RUAS includes addi-
tional systems like position/ velocity control, 3D trajectory tracking, heading
control etc. As shown in the Figure 4.2, the flight system is classified into 3
main categories. More information is available in [30]. In our case, the flight
control system is also considered during modelling of generic information flow
model, along with Navigation and Guidance systems.

• Guidance System: The UAS guidance system is a substitute to pilot’s delib-
erative process and decision system. It gives commands to flight controller to
attain mission and also importantly safety of mission. Depending on the lev-
els of autonomy the human operator can intervene the ongoing mission. This
is clearly mentioned in the ALFUS [29] autonomy levels under "Teleoperation
Mode". The ALFUS (Autonomy Levels for Unmanned Systems) defines teleop-
eration mode as: “A mode of UMS operation wherein the human operator, using
sensory feedback, either directly controls the actuators or assigns incremental
goals on a continuous basis, from a location off the UMS ”. The guidance system
is classified into 3 main categories as shown in the Figure 4.3.

• Navigation System: The higher levels of autonomy requires navigation system
for sensing, state estimation, environment perception and situational awareness.
The ALFURS defines Navigation system as “Navigation is a process of data ac-
quisition, data analysis, and extraction and interference of information about
the vehicle’s state and its surrounding environment with the objective of accom-
plishing assigned missions successfully and safely”. It is majorly divided into 4
categories as shown in Figure 4.4.

Figure 4.2: Classification of Flight control system [30]
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Figure 4.3: Classification of Guidance system [30]

Figure 4.4: Classification of Navigation system [30]

4.2 Specific UAV
The specific UAV considered in our case is the ARTIS UAV. The DLR Institute of
Flight systems in Braunschweig develops the ARTIS platform for the research in au-
tonomous behaviour of UAV’s. The detailed description of the ARTIS UAV is ex-
plained in the next section.
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4.2.1 The ARTIS Platform
The ARTIS platform consists of a fleet of UAV’s for research on autonomous flight. It
ranges from a fixed wing UAV called “Prometheus” (as shown in Figure 4.5) to sev-
eral rotorcraft UAV’s. The latest addition to the ARTIS fleet is capable of maximum
take-off weight of 150 kgs named “SuperARTIS” with 3 meter rotor diameter [6] (as
shown in Figure 4.6).

The ARTIS framework can operate within ALFURS level 4 to 6. It has the capa-
bility to be operated under[14]:

• Mission Mode: In this mode the predefined mission is executed to complete a
given task. It can operate in online or offline modes subsidiarily. The UAV is
assigned a mission with all the relevant information needed to achieve this task.
In case of the offline mode a 3D World information has to be loaded along with
the task and other parameters like vehicle dynamics. But while in the online
mode the 3D World model is generated by itself by using the vision services.

• Command Mode: In this mode the MissionController is receiving direct com-
mands from the operator at ground station. The direct commands can signify
the change in the mission. The command mode could intervene the mission mode
through operator intervention.

• Remote Control Mode: In this mode the remote pilot gives direct flight controls
to the UAV. In this mode the "MissionControllerOff" state is active. It signifies
that the MissionController is not operating and is turned off. Here a ground
based operator can control the helicopter using a remote control.

Figure 4.5: Prometheus Fixed Wing UAV [www.dlr.de]
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Figure 4.6: SuperARTIS Rotorcraft UAV [www.dlr.de]

The research idea towards ARTIS platform is the implementation of decision mak-
ing components for onboard mission management. The main goal is to enable onboard
system which allows different levels of UAV autonomy for the urban areas [14].

4.2.2 MiPlEx System
The MiPlEx function is used onboard in the unmanned helicopter ARTIS. It performs
online and offline path planning and execution and mainly concentrates on the urban
terrain where the buildings, street poles, trees, birds are closely packed and this poses
the major challenges to avoid obstacles and achieve the target mission. It is imple-
mented onboard of unmanned aircraft vehicle ARTIS designed by DLR institute of
Flight Systems. Unlike ALFU(R)S generic unmanned model the Guidance function is
implemented within the MiPlEx and is capable of receiving the inputs and commands
from the Operator/ Human Element on ground. In offline planning, the operator can
send necessary preloaded information’s such as the task sets, 3D World Model and
other parameters (dynamic limits of the specific aircraft) to the aircraft. It has a fault
tolerant capability by having self-sufficient decision taking potential during low fuel
level and monitors communication links between the Mission Manager and Operator.
The Figure 4.7 shows the abstract model of the MiPlEx states specifically in the offline
mode. It is based on the deterministic roadmap path planner [9] that is combined with
the real-time obstacle mapping algorithms.

The Mission Planner generates the Mission Plan or the Behaviour Sequence and
forwards it to the Mission Manager for generation of flight controls. The system is
capable of working in offline as well as online mode. In case of the offline mode the user
sequences are uploaded into the system such as the 3D World Model as shown in the
Figure 4.7 and in case of online planning the system has to project its own optimum
route using real-time functionalities. The mission manager involves two subdivisions
mainly “Supervisor” and “Sequence Controller”.
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Figure 4.7: The Abstract MiPlEx Offline Model

Supervisor and Sequence Controller

Figure 4.8: The ARTIS Sequence Control System [14]

As shown in the Figure 4.8 that describes the component organisation of the Mission
Manager. As shown in the Figure 4.8 the Supervisor operates on a higher level and
monitors or influences the control on the Sequence Controller. The Supervisor is
mainly responsible to handles/ concise of higher level commands like “Gate Mission”
or “Search and Rescue” whereas the Sequence Controller handles/ concise of low level
behaviours such as “HoverTurn” or “TakeOff” as shown in Figure 4.9 [14]. This is
also shown in Figure 4.9 in terms of a 3T architecture [14] that mainly consists of 3
layers:

• Reactive Layer

• Sequencing Layer
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• Deliberate layer

The low level behaviours are located at the reactive layer (also called as skill layer)
while the higher level behaviours are located at the deliberate layer. The reactive or
skill layer consists of 2 basic behaviour groups. The former group consists of behaviours
having direct position and velocity commands to the flight controller, for example the
take-off and landing behaviours uses a fixed position for horizontal layer on X and
Y axis and a velocity command on the Z axis. These type of behaviours are called
reflexive behaviours. The second group has the largest set of behaviours that consists
of trajectory-based control commands. These behaviours contains behaviours to wait
at a position (WaitFor), turn on the spot (HoverTurn), fly along a linear trajectory
towards a location (HoverTo), to fly around a point along a horizontal circular tra-
jectory (Pirouette), and to do fast forward flight along an arbitrary trajectory (FlyTo).

Figure 4.9: 3T sequencing layer of ARTIS Sequence Control System [14]

The deliberate layer consists of complex behaviours. These behaviours are capable
to change the current ongoing mission. However, the compilation can take place on-
board as well as by the ground control station and sent directly to Sequence Control
System.

According to Figure 4.8, the Sequence Control System can interface to the flight
control system. The Sequence Controller can inputs from many sources like the ground
control station, vision computer this enables the Sequence Controller to provide safe
handling and robust coordination [14].
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4.3 Summary
The generic and specific UAV are distinguished based on specific behaviours of the
UAV. The generality of the generic UAV is within the scope of ALFURS framework,
which is one of the reliable sources in the RUAS community. The ALFURS framework
describes the current state of art in the autonomous Rotorcraft UAS and provides de-
tailed review of active research on RUAS. It concentrates on three major parts of UAS
i.e. Guidance, Navigation and Control. The ALFURS framework defines the auton-
omy levels of UAS depending on its autonomous capabilities. It categorises UAS into
five categories depending on size and payload capabilities from Class 1 to Class 5. The
autonomy levels in ALFURS framework is categorised from “Level 0” to “Level 10”.
Level 0 being Remote Control that is operated by remote pilot whereas Level 10 being
Fully Autonomous that is capable of human level decision making capabilities.

The specific UAV on the other hand is the ARTIS UAV which is developed by the
DLR Institute of Flight systems in Braunschweig. The main purpose of the ARTIS
platform is for the research in the autonomous behaviour of UAV’s. It consists of
several fleets of UAV’s ranging from fixed wing to rotorcraft UAV’s. The ARTIS UAV
can operate in 3 modes namely Mission Mode, Command Mode and Remote Control
Mode. The “Mission Mode” executes the predefined mission to complete a given task
whereas the “Command Mode” receives direct commands from the operator at ground
station. These direct commands can change the current ongoing mission or create a
new mission altogether. In the “Remote Control Mode” the UAV is under the influence
of the remote pilot. In this mode the guidance system of UAV is switched off as all
the guidance functions of the UAV is carried out by the remote pilot. The MiPlEx
(Mission Planning and Execution) defines the guidance system of the ARTIS UAV. It
can operate under online and offline planning modes. In the offline mode, the operator
can send necessary preloaded information’s such as the task sets, 3D World Model and
other parameters (dynamic limits of the specific aircraft) to the aircraft. In this mode
the user sequence are uploaded into the system such as the 3D World Model and in
case of the online planning the system has to project its own optimum route using real
time functionalities.

The MiPlEx consists of “Mission Planner” and “Mission Manager”. The Mission
Manager is responsible for execution of the generated mission plans by the Mission
Planner. The Mission Manager consists of the “Supervisor” and “Sequence Controller
System”. The Sequence Controller consists of the “3T architecture” consisting of 3
layers namely Reactive layer, Sequence layer and Deliberate layer. The deliberative
layer consists of the high level behaviours whereas the reactive layer consists of the
low level behaviours. These low level behaviours are categorised into two parts namely
Velocity/ Position-based Flight Control and Path-based Flight Control.

The knowledge about the construction and components of the MiPlEx is very sig-
nificant in understanding the finite state model of specific UAV whereas the ALFURS
framework is necessary for the understanding of the generic UAV.
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Chapter 5

Contribution to this Master
Thesis

This Chapter mentions the contributions towards the Master thesis in brief. Although
detailed aspects of contributions and technical aspects of work are discussed in the
later Chapters 6, 7 and 8.

5.1 Requirement Extraction and Formulation
Requirements extraction is necessary process and artefact in the process of validation of
software. The sources considered for gathering requirements could be from customers
for example. In this work the requirements gathered are mainly divided into 2 sets:

• Generic Requirements

• Demonstrator/ ARTIS Specific Requirements

The Generic requirements caters to requirements that are common amongst set of
UAV’s categorised under the ALFURS by Kendoul [30]. It describes the art in RUAS,
and comprises of detailed literature review of last two decades of active research on
RUAS. Some of the requirements for a fixed wing UAS are also considered from AL-
FUS (Autonomy Levels for Unmanned Systems) framework edited by Huang [29] with
contributors ranging from U.S Air Force Research Laboratory et al. ALFUS gives a
more generic approach towards unmanned systems in general. It also provides termi-
nology and definitions that serve as common reference for aerospace community.

Some of the requirements were also considered from STANAG (Standardization
Agreement) [31], as it gives better information about UAV control systems. STANAG
was developed to have close co-ordination and the ability to quickly task available
UAS (Unmanned Aerial Vehicle Systems) assets.
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These documents provide enough knowledge to understand the generic behaviour
of the UAS systems.

Furthermore the ARTIS specific requirements are mainly extracted from the source
code, core software developers and its documentations. The source code is implemented
in C++ and it is possible to extract requirements from the source code by understand-
ing the code itself and also some of the comments marked within the code.

Several interactions and brainstorming sessions with Christoph Torens (Thesis Su-
pervisor, Research Scientist at DLR and AIAA Member) and Florian-Michael Adolf
(Research Scientist at DLR and AIAA Senior Member) helped this work to extract
and understand the specific nature of ARTIS UAV’s. Also suggestion and query solv-
ing by Lukas Goormann (DLR) has evaded ambiguities in understanding the ARTIS
platform better.

The documentations and technical papers written by Adolf in [14], [13], [16], [15],
[17] and [18] along with technical papers by Torens in [8], [6] and [7] also caters to
extraction of ARTIS specific requirements. Along with the above mentioned sources,
some of the requirements are taken from the previous internship work collaboratively
extracted by Girish Patil and the author of this work. Additionally, Christoph Torens
has provided with some of the requirements.

All the requirements are formulated using Template Based requirements [34] be-
cause of the ambiguities present in understanding requirements from Natural Language
and Analytical approach. The analytical approach and template based requirements
elicitation are mentioned in Chapter 2 in detail.

5.2 Requirement Formalisation
The requirements formalisation is a process of converting the human understandable
requirements i.e. written in simple english language to mathematical form using tem-
poral logics. The following two temporal logics were considered in requirements spec-
ification as explained in Chapter 2.

• Linear Temporal Logics (LTL)

• Computational Tree Logic (CTL)

Temporal Logic extends propositional or predicate logic by modalities that permit
to referral to the infinite behaviour of a reactive system [5]. They provide mathemat-
ical precise notation for expressing properties of the system. The transformation of
requirements is necessary for machine understandable language. While LTL considers
only linear time in sequence, CTL logic consists of tree and branching of time.
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5.3 Extraction of Transitions from Source Code
The MiPlEx consists of several C++ classes within the code. It consists of two classes
namely “Supervisor.cpp” and “SequenceController.cpp” which are the major part of
focus of this work. The MiPlEx is explained in detail along with Supervisor and Se-
quence Controller in Chapter 4.

The main idea behind extraction of transitions from source code is because it caters
to ease of designing finite state machine and also gives a organised list of transitions
between different states. A tabular description is given in the Chapter 7 of this work.
This also helps as a bridge between FSM and the source code, providing a direct
mapping between the two of them.

5.4 Generic FSM of UAV Guidance System
The generic FSM of UAV guidance system is realised using the generic requirements
and complying to ALFURS autonomy levels. The ALFURS autonomy levels ranges
from 0 to 10. For example 0 being the UAV under remote control operation to 10 being
fully autonomous. The designed system in this work complies within ALFURS levels 0
to 6 i.e. it is capable of handling functionalities from being operated by a remote pilot
to making some decisions on its own like “Dynamic Mission Planning” under which
the UAV is capable of reasoning, high-level decision making, mission driven decisions,
high adaption to mission changes, tactical task allocation and execution monitoring.

Firstly, the information flow model consists of the entire GNC components of UAV
and describes the information flow along all the GNC components. It can be mapped
to ALFURS levels 0 to 3 and ALFUS teleoperation mode. The generic information
flow model was created during the internship work. It has be optimised and mapped
to the GAM to better reflect the system during this thesis work.

Secondly, a behaviour model of generic model is created which is focused to guid-
ance system that reflects mission manager operations. It can be mapped to ALFURS
levels 0 to 6 and ALFUS teleoperation mode to comply to generic behaviour of the
system.

5.5 Specific FSM of UAV Guidance System (Mi-
PlEx)

The specific finite state model of UAV guidance system consists of two finite state mod-
els functioning independently i.e. Supervisor FSM and Sequence Controller FSM. The
two components together constitutes mission manager in total as shown in Chapter
4. The specific FSM is mapped up to ALFURS level 6 autonomy along with ALFUS
teleoperation mode. This is one approach of using the generic approach in designing
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the FSM as the specific FSM can be mapped to a generic framework.

In this work the difference between the specific and generic model is the imple-
mented low level and high level behaviours and the absence of slowdown state. The
low and high level behaviours are specific to UAV’s operations and capabilities.

5.6 Model Checking using NuSMV
NuSMV (http://nusmv.fbk.eu) is a symbolic model checker, As mentioned in the given
link it uses aiger 1.94 (http://fmv.jku.at/aiger/) for verifying properties. The descrip-
tion of NuSMV coding is explained in Chapter 2 sections. The generic and specific
FSMs of UAV guidance systems are coded into NuSMV and run using textitEclipse
IDE.

Firstly the states used in the model have to be defined that involves all the states.
Secondly, the initial states has to be specified so that the system understands the ini-
tial condition of the entire states from where the transition has to begin. The state
transitions have to be specified according to the model using the next functionality.
The FAIRNESS constraints has to be specified to each states such that every state
is visited at least once with this functionality. Finally, requirements are formalised
using CTL and LTL temporal logics and specified within the NuSMV code as shown
in Figure 5.1. The model checker then checks the specified property against the system.

After compiling the described model and running it using Eclipse IDE we get a
list of temporal logic that satisfies and some that doesn’t satisfy the model. A coun-
terexample is generated if the specification is FALSE, this could be the reason that the
model fails to satisfy a property serving a indispensable debugging information. The
counterexample indicates how the model could reach the undesired state. It describes
an execution path that leads from the initial system state to a state that violates
the property being verified. With the help of counterexample, the user can trace the
violating transition or state, in this way obtaining useful debugging information, and
adapt the model (or the property) accordingly.

For the one that doesn’t satisfy the model there can be several reasons. Firstly the
TL has to be specified more correctly or there has to be certain changes made to the
model in order to make the model satisfy all the requirements or in some cases the
requirement itself has to be changed as shown in the Figure 5.2.
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Figure 5.1: Model Checking approach

Figure 5.2: Analysis Phase
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5.7 Generating Counterexamples for Test Genera-
tion

As discussed above a model checker is used to analyse a FSM for property compliance
and violations. If the model checker detects no violations, then the property holds
TRUE. On the other side a counterexample is generated incase there is a violation of
the property against the system behaviour. The use of trap properties according to
[4] forces the model checker to generate counterexamples. These counterexamples are
generated intentionally to construct test sequences. A trap property is a negation of
a property that is TRUE otherwise.

5.8 Approach towards Test Cases
The generated counterexamples itself serves as the bases for test generation. The test
cases are considered by using trap properties to all the requirement specification that
are TRUE otherwise. A mission scenario is considered from the log files. The mission
description is described in Chapter 8. This enables or gives a scenario under which
the system is tested. Similarly, a FSM of mission scenario is designed and followed by
model checking using NuSMV to describe the test scenario.

The detailed work and contribution to the thesis is shown in the following Figure
5.3.
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Figure 5.3: Thesis Contribution Summary
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Chapter 6

Generic UAV Finite State
Machine

This Chapter describes the process of model-checking of generic UAV guidance system.
The generic FSM is created using the generic requirements and complying to ALFURS
autonomy levels. The ALFURS autonomy levels ranges from level 0 to level 10. The
major component in guidance system is Mission Manager. The mission manager is a
substitute to pilot’s deliberate process and decision system. It includes several high
level and low level behaviours of the system.

The following set of steps need to be followed in the process of generic model check-
ing. Firstly, it is important to extract requirements that comply with the generic UAV
system because this is also useful in designing the FSM. These requirements need to
be formalised in a mathematical way to make it computer understandable. Finally,
the system need to be described in NuSMV model checker along with the formalised
requirements to know if the requirements matches the system behaviour. In the last
step it is necessary to generate the counterexamples from the satisfied specifications
using the trap properties.

The process steps is as given below.

• Requirement Analysis

• Formalising Requirements

• Designing of FSM for generic guidance system

• Formal Modelling using NuSMV model checker

• Formal Verification

• Counterexample generation using trap properties
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In the next section, the generic modelling approach is explained using information
flow diagram of generic GNC component created during the internship work. During
the thesis work the information flow diagram is refined and mapped to the GAM [19].
Instead of designing a new model from scratch every time we can make use of the
generic model. A specific model is a model with more specific processes, at low level of
process abstraction. As explained by Brazier in [19] the process of instantiation could
be used for refinement at lower level of knowledge abstraction.

6.1 Generic Modelling Approach using Generic In-
formation Flow of GNC

A model can be considered as generic in two cases [19]. Firstly, it could be “generic
with respect to the processes or tasks”
or it could be “generic with resect to the knowledge structures”. The former refers to
the level of process abstraction i.e. a generic model abstracts from processes at lower
levels. In specific sense this means that specific model represents processes in a model
with more specific processes, at a lower level process abstraction. Considering the later
i.e.. genericity with respect to knowledge refers to levels of knowledge abstraction. A
generic model abstracts from more specific knowledge structures. Although the former
technique of using genericity with respect to “processes or tasks”
is mainly used in the work.

As shown in the Figure 6.1 [19]. It depicts the process modelled within the generic
agent model. It categorises process into “Own Process Control”, “World Interaction
Management” “Agent Interaction Management” “Maintenance of World Information”
“Maintenance of Agent Information” “Co-operation Management” and “Agent Spe-
cific Task”.

The process involved in controlling an agent for example monitoring its own goals
along with processes of maintaining a self-model are task of own process control. The
processes involved in managing communication with other agents are the task of agent
interaction management. The processes involved in managing interaction with the ex-
ternal World are the tasks of World interaction management. The processes involved
in maintaining knowledge of other agents knowledge is the task of maintenance of agent
information. The process involved in maintaining knowledge of external World is the
task of maintenance of World information. The processes involved in co-operation
management involves all the tasks related to social processes, that is co-operation in
a project. The processes involved in specific tasks for which a agent is designed is
considered in agent specific tasks.

As shown in Figure 6.2 taken from Brazier [19], it depicts the interface information
types of components within the agent. These are based on the internal primitive agent
concepts[19]. The component own process control uses belief information on other
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agent and external world, as input. The output of the component own process control
is the agent’s characteristic used by other processes. Similarly other process interfaces
are explained in more detailed in [19].

Figure 6.1: Processes within the Agent [19]

Our “Generic Information Flow Model” can be mapped to the Generic Agent Model
concept. This brings a sense of generality to our model and the concept of reusing
a generic model. As shown in Figure 6.3 the information flow model includes the
“Operator Control Unit”, “Guidance System”, “Navigation System”, Remote Control
System”, “Control System”, “UAV State” along with the “Health Monitoring” and
“Data Link Monitoring System”. The detailed description of the states and edges within
these systems is explained in Tables 6.1 and 6.2 . The information flow

model is also mapped to the ALFURS framework until level 3 along with the AL-
FUS Teleoperation Mode. Different colour codes are used to represent these mappings
to the agent processes. For example, the “outCmds” state within “Operator Con-
trol Unit” maps to the “Agent Interaction Management” because this state manages
its communication with other agents such as “inCmds”. Although the “outActCmds
state” within “Control System” involves the component of two processes i.e. “Agent
Interaction Management” and “Co-operation Management”.

The book “Software Product Lines” written by Clements [2] describes the benefits
of reusing the software product in terms of organisational and timely benefits. Suppose
if we consider a scenario of building a control system for different UAV types ranging
from fixed wing, rotorcraft and quadracoptors. Building each of the system from the
scratch would be very difficult for each of these UAV types and it would involve more
resources and time. Therefore Clements explains the concept of software product lines
through which the commonalities between different system could be recognised and
only the implementation differences can be realised.
Similarly we can make use of the same concept in our case in generic modelling. This
would mean that designing further specific cases would be realising only the differences
in modelling the generic and specific models. This enables us to save time and also
resources.
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CelciusTech (complete case study is available in [22] by Brownsword) launched a
product line effort to build their software. A product line is a set of products that
together address a particular market segment or fulfil a particular mission. A product
line succeeds because the commonalities shared by the software products can be ex-
ploited to achieve economies of production. A software product line is a set of software
intensive systems sharing a common, managed set of features that satisfy the specific
needs of a particular market segment or mission and that are developed from a com-
mon set of core assets in a prescribed way. The product lines are economical because
each product is formed by taking applicable components from the base of common
assets, tailoring them as necessary through preplanned variation mechanisms such as
parameterisation or inheritance, adding any new components that may be necessary,
and assembling the collection according to the rules of a common, product-line-wide
architecture. Building a new product (system) becomes more a matter of assembling
or generalisation than one of creation; the predominant activity is integration rather
than programming. For each software product line there is a predefined guide or plan
that specifies the exact product-building approach. Instead of designing each and ev-
ery new application from the scratch.

Benefits of Generic Modelling:
The generic modelling approach avoids designing of a new specific model from scratch
and allows significant reduction in time, expertise and effort. Some of the benefits of
using generic modelling approach are listed below:

• Extensive requirements analysis is saved. Some of the requirements can be
reused.

• With respect to the modelling and analysis with each new product, time required
in designing is reduced.

• In case of testing, new product the ‘time to market’ problems have reduced and
synchronisation, and absence of deadlock have been eliminated. This reduces
the effort in testing significantly.

• With the reuse of requirements the effort of converting them into formal specifi-
cations is also reduced as the reuse of requirements directly reduces the time in
converting of template based requirement into formal language.

• A similar structure of finite state model could be used to resemble the generic
case. This gives better understanding of the system and its operation.

• On the organisational front it gives better time-to-market and product quality.
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Figure 6.2: Agent Model Local Neighbourhood [19]
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Figure 6.3: Information Flow Mapped to Agent Model
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6.2 Generic Requirements Elicitation and For-
malization of UAV Guidance System

The generic requirements are realised keeping in mind the commonalities of spe-
cific UAV’s. The scope of the generality lies within the ALFURS framework So,
to cater to this difficulty it is necessary to follow a framework which considers
and describes the current state of art in autonomous UAS. The ALFURS frame-
work [30] provides a detailed review of two decades of active research on RUAS.
As mentioned in Chapter 4, it categorises the UAS into 5 classes depending on
the size and autonomous behaviour and plots the autonomy levels depending on
the Flight Control System, Navigation System and Guidance System. Our point
of interest is to extract the requirements for the guidance system mentioned in
the ALFURS framework. Some of the missing gaps of requirements extraction
are filled using the STANAG (Standardization Agreement) [31] and ALFUS [29].
The STANAG gives better information about UAV control system. STANAG
was developed to have close co-ordination and the ability to quickly task avail-
able UAS. The ALFUS framework provides better terminology and autonomous
behaviour about generic unmanned systems in general irrespective of only UAS.
These 3 documents provide good understanding about the generality about the
generic UAV.

The following table 6.3 provides some of the requirements gathered during our
work. The requirements are formulated using template based method which is
also called as semi-formalised specification method.The “Logical/ Temporal Con-
ditions” define of the requirement should be valid during all the time or followed
by another activity. The “System under focus” defines the validity of the require-
ment to particular system or in general. The requirements are categorised into
high level (HL) and low level (LL) requirements based on “WHAT” and “HOW”.
The high level requirements describes the intended software functionality using
the “WHAT” criteria to describe the requirements. The low level requirements
describes the “HOW” the software shall execute the designated functionality.

The formalization of requirement done using LTL specifications. An example of
Requirement 1HL (from Table 6.3) is as formulated below:
LTLSPEC G ((MM_State = HumanOperated) -> F(MM_State = MissionExe-
cution));

In the above LTL specification the Mission Manager is code named as “MM_State”
for the ease of coding the system behaviour in NuSMV.
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Abbreviations Expansions Meaning
Operator Control Unti States

(OCU_State)
Initializing_OCU Initializing Operator Initializes the Operator Control Unit

Control Unit
outCmds Output Commands OCU sends the commands to

Guidance system from this node
inData Input Data The control outputs from the UAV

is received by this node
Operator Control Unit Commands

OCU_Initialized Operator Control Unit This Command ensures the proper
Initialized initialization of OCU and thereby

transition to operation
receiveData Receive Data Directs the OCU to receive the

Control outputs from UAV
sendCmds Send Commands Directs the OCU to send the

commands to the Guidance System
receiveCmds Receive Commands Directs the “outCmds” node

to send the commands to Guidance System
Guidance System States

(GS_States)
inCmds_and_Saving Input Command and Saving Receive the Commands sent by

OCU and save the received commands
OperIntervention Operator Intervention This node intervenes the ongoing

mission plan or can also specify
new mission to the Guidance System

MissionPlanning Mission Planning The process of generation of a Mission
Plan takes place at this node

inPathPlan_and_PathPlanning Input to Path Plan This node receives the Navigation
and Path Planning data and does Path Planning accordingly

UploadingTraject Uploading Trajectories In the Offline Mission Planning the
trajectories are loaded whereas in online

mission planning the Trajectories are generated
Guidance System Commands

PlanMission Plan Mission After receiving the required data
the “PlanMission” directs to the

actual process of Mission Planning
OperCmds Operator Commands Denotes the Commands sent by the Operator

ChangeMission Change Mission Plan Denotes the interruption caused to the
current mission plan or the process of uploading a

new mission plan directly by the operator
PlanPath Plan Path Triggers the Path Planning process

LoadTraject Load Trajectories Triggers the uploading of trajectories
inUploadingTraject Input Uploaded Trajectories Sends the trajectories to Flight Controls

Control System States
(CS_State)
GenFlightCtrls Generating Flight Controls Receives the trajectories from “UploadingTraject”

and generates the flight controls
outActCmds Output Actuator Commands Sends the Actuator Commands to UAV

Control System Commands
inFlightCtrls Input Flight Controls Makes the “outActCmds”

to receive the generated flight controls
sendActCmds Send Actuator Commands Sends the Actuator Commands to the UAV

UAV State (UAV_State)
outData Flight and Output Data Sending the data to the OCU

inActCmds Input Actuator Commands Receives the actuator commands sent by
the Control system and directs it to the actuators

UAV Commands
receiveActCmds Receive Actuator Commands Triggers the “Flight_and_outData”

to receive the actuator commands
sendData Send Data Sends the control outputs to the OCU

Table 6.1: Description of states Part 1
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Abbreviations Expansions Meaning
Navigation System State

(NS_State)
Initializing_NS Initializing Navigation System Initializes the navigation system

SenseEnv Sense Environment Included the sensing and state estimation of
altitude, position and velocity of the environment

outPathPlan Output to Path Plan Sends the navigation data to the path
planning process during the Semi

Autonomous and Teleoperation Mode
outPilot Output to Pilot Sends the navigation data to the pilot

during the Remote Control Mode
Navigation System Commands

NS_Initialized Navigation System is Triggered when the Navigation
Initialized system is initialized correctly

outputNavData Output the Navigation Data Send the Navigational data to
the respective recipients

SenseValues Sense Values Redirects the Navigation System
to Sense the Environment

receiveNavData Receive Navigational Data Triggers the Navigational data
sent to the Path Planning process

endNavData Send Navigational Data Triggers the Navigational data
sent to the Pilot

Remote Control System States
RC_State

Initializing_RC Initializing Remote Control “Turn on” of the Remote
System Control switch

outRemoteES Output Remote External Commands from the Remote Controller
System Commands

inPilot Input to Pilot This node receives the Navigational Data
Remote Control System

Commands heightRC_Initialized Remote Control System Triggered when the Remote Controller
Initialized is turned on correctly and under full operation

receiveNavData Receive Navigation Data Triggered to receive Navigational Data
receiveinPilot Receive from “inPilot” receives the values from “inPilot”

Node
inRemoteES Input from Remote Send the “RemoteES”

External System Commands to the Control System
Health Monitoring System
States (Health_State)

Health Diagnosis Health Diagnosis Monitors the health status
HealthFaultyEntry Health Fault Entry Records and generates the error

report of Health faults
Health Monitoring System

Commands
Health_Ok Health Status Ok Monitored Health status is good

Health_NotOk Health Not Ok Monitored Health Status is not
under safe tolerance

Data Link Monitoring System
States (DataLink_State)

DataLinkDiagnosis Data Link Diagnosis Monitors the Data Link Communication Status
DataLinkFaultEntry Data Link Fault Entry Records and generates the error report

of Data Link Communication faults
Data Link Monitoring Commands

DL_Ok Data Link Status Ok Monitored Data Link status is good
DL_NotOk Data Link Status Not Ok Data Link is interrupted or no clear

communication between OCU and UAV

Table 6.2: Description of states Part 2
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6.3 Illustration of Generic Guidance FSM

As shown in the Figure 6.4 the generic UAV guidance system is designed that
can be mapped to the ALFURS framework. The graphical representation is
done using yED Graph editor. As shown in the table 4.1 and 4.2, our FSM is
designed such that it can operate up to ALFURS autonomy level 6. The mapping
of autonomy levels is shown using the colour coding of the edges and nodes.
Also the ALFUS teleoperation mode is mapped to our FSM. The terms used
in naming the edges and states are taking from ALFURS framework or ALFUS
framework to keep the generic FSM in close contrast to the generic terms. The
FSM operates into three different modes i.e. Human Operated Mode (Remote
Control Mode), Teleoperation Mode (Command Mode) and Mission Mode. The
mission manager has the options to plan the missions online or offline. In the
online planning mode the behaviour sequence is generated in real-time with the
vision services. Whereas in the offline mode it is necessary to load data such as
3D World model to plan the mission.

6.4 Summary

The main idea behind using generic agent model is, instead of designing a new
model from scratch every time we can make use of the generic model. The gener-
ality of a generic model can be considered using two senses i.e. one with respect
to the processes or tasks and other with respect to the knowledge structures [19].
The idea of using generality with respect to the process or task is used in de-
signing the abstract and detailed models. A specific model is a model with more
specific processes at low level of process abstraction. The agent model explains
several process in defining processes within an agent and its interface transitions.
This use of generic modelling approach in designing specific cases provides many
benefits such as the effort on requirement analysis is saved extensively. Also
the requirements can be reused from generic to specific cases. This additionally
provides ease of designing specific models because of pre-known structures of the
generic case. Also the book by Clements [2] on Software Product Lines describes
the benefits of reusing the software product in terms of organisational and timely
benefits.

The generic finite state machine is designed according to the ALFURS frame-
work. The ALFURS framework provides reliable source of information over the
research on autonomous behaviour of UAS to the aerospace community. The
missing gaps in modelling the graphical model and the requirement extraction is
taken from the STANAG and ALFUS framework. A set of sequence is followed in
the process of model checking the generic model i.e after the requirement analysis
these requirements are formalised using the LTL and CTL temporal logics. A
graphical model is created keeping in consideration of the system requirements.
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Figure 6.4: Generic Mission Manager FSM Model
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This graphical model provides the system behaviour in terms of switching of
states as a finite state machine. Finally a NuSMV code is programmed to depict
the system behaviour and to translate the graphical model into a formal model.
This formal model is verified against the specifications. This gives us a set of
requirements that satisfy the system behaviour and the other set of requirements
that fails to match the specifications to system behaviour. A change or adaption
or refinement in the requirements or graphical model or formalised requirements
is necessary when the requirement does not match the system behaviour. Lastly,
these satisfied requirements are made to generate counter examples using the
trap properties. With these counter examples an approach towards the test
generation is enabled as shown in Chapter 8.
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Chapter 7

Specific UAV FSM of
Mission Manager System

This Chapter provides a detailed overview of model-checking the ARTIS guid-
ance system. Process steps remains to be the same as compared to the model
checking of the generic UAV guidance system. Although the source of extraction
of requirements and detailed low level information is taken from specific sources
unlike a generic framework like ALFURS.

The process steps is as given below:

– Requirement Analysis from specific sources
– Formalising Requirements
– Transition extraction from source code
– Designing of specific FSM
– Formal Modelling using NuSMV model checker
– Counterexample generation using trap properties

The specific UAV in our case is considered as the ARTIS UAV. As mentioned
above it can operate upto ALFURS level 6. It can operate in online and of-
fline mission planning modes. The specific model can be mapped directly to the
ALFURS autonomy levels which enables us to map the specific model directly
to the generic behaviour model. As mentioned in Chapter 4 it has 3 operating
modes namely Mission Mode, Command Mode and Remote Control Mode. Our
focus is mainly towards designing the FSM of the guidance system of ARTIS.
The main component of guidance system is MiPlEx (Mission Planning and Ex-
ecution) which consists of the Mission Manager. The mission manager provides
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replacement to the human guidance system through software. This makes the
UAV safety critical as it is more dependent on software.

The Mission manager is capable to take inputs from operator located at the
ground control station, vision services during the online mission planning and
also works along with the health management system. It provides output to the
flight controller and direct the UAV’s path. The mission manager consists of the
High level and low level behaviours that are predefined motions and missions.
The behaviours are organised in the form of a 3T architecture as shown in Figure
4.9. Two major subsystem of the mission manager are the sequence controller
and the supervisor. The supervisor consists of the high level behaviours and can
control the UAV’s operation in online planning mode.

7.1 Specific Requirements Elicitation and For-
malization

Similar to the generic requirements, even the specific requirements are formulated
using the template based requirements method. Reliable sources were consid-
ered while extracting these requirements. Firstly, some of the requirements were
gathered from the developers (Christoph Torens and Florian Adolf) through sev-
eral brainstorming sessions which led to good understanding of the entire ARTIS
platform. Secondly, to extract the low level requirements the source code was
considered. The source code is implemented in C++ language. Amongst the
entire source code, the focus was to extract requirements from “Supervisor.cpp”
and “SequenceController.cpp” as these classes implement major parts of focus
within the scope of thesis.

The template based requirements method is used to formulate requirements.
The table 7.1 shows some of the examples of requirements that were considered
during the work. If we compare Table 6.3 and 7.1 we could notice that some of
the requirements are same. This denotes that the specific requirements could be
reused from the generic requirements.

The formalisation of these requirements is done similar to the formalisation of
generic requirements i.e. with the LTL and CTL temporal logics. For example
considering the Requirements number 1HL(High Level) from Table 7.1. This is
formalised using CTL logic as given below:

SPEC AG EF(SC_State = SlowDown);

CHAPTER 7. SPECIFIC UAV FSM OF MISSION MANAGER SYSTEM 56



Similarly formalisation of Requirement number 1.8LL (Low Level) from Table
7.1 is done using LTL logic as shown below:

LTLSPEC G (SC_State = FlyBuffer eBehaviorAborted) -> X(SC_State =
SlowDown);

7.2 Transition extraction from Source Code

The extraction of transitions plays a vital role in designing the specific FSM.
Specific behaviour of the UAV is extracted if the FSM is in close relation to
the source code. These transitions gives the information about “Start State”,
“ Triggering Condition” and “Next State”. The triggering condition defines the
transition of one state to another. A total of “112” transitions were extracted
from the source code. Some of the transitions are provided in Table 7.2. It shows
one of the transitions from “ParseCommand”. Similarly other transitions were
plotted.

7.3 Mapping of different Artefacts

Mapping or traceability is very essential to track different artefacts. All the re-
quirements are given a “Requirement ID” i.e. a low level requirement with “LL”
preceded by a number and similarly high level requirement with “HL” preceded
by a number as shown in Table 6.3 and 7.1. These requirement id’s are mapped
to the formal NuSMV code as well as the graphical FSM. This is helpful in
tracking a requirement when the requirement does not satisfy against the sys-
tem behaviour in NuSMV model checker.

Similarly, the edges in the graphical model is given a unique number that is
mapped to the transitions as well as the formal code. This gives advantage in
tracking the edge coverage during model checking and also to track the transi-
tions from a counterexample. Any unsatisfied requirement can be easily tracked
and corrected depending on the corrective measures to the design or the require-
ment itself.

7.4 Graphical Illustrations

The model of the system need to be very precise according to the actual system
because any verification using model-based techniques is only as good as the
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Start State Triggering Condition Next State

ParseCommand CManualPilot MissionControllerOff

ParseCommand CCommandStop or !bMissionMode Slowdown

ParseCommand CMissionFinished Slowdown

ParseCommand CDirectCommandValid_GCS_Vel VelGCS

ParseCommand CGroundHeightAvailable Landing
and eBehaivor_Basic_Landing

ParseCommand eBehavior_Basic_TakeOff TakeOff

ParseCommand eBehaivor_Basic_WaitingFor WaitingFor

ParseCommand eBehavior_Basic_HoverTo HoverTo

ParseCommand eBehavior_Basic_FlyTo FlyTo

ParseCommand eBehavior_Basic_FlyBuffer FlyBuffer

ParseCommand eBehavior_Basic_CircleAroundXY CircleAroundXY

ParseCommand eBehavior_Basic_PiroutteFlightXYZ PiroutteFlightXYZ

ParseCommand eBehavior_Basic_HammerHeadTurn HammerHeadTurn

ParseCommand eBehavior_Basic_StandBy Slowdown

ParseCommand eBehavior_Basic_Slowdown Slowdown

ParseCommand NULL cmd Slowdown

ParseCommand GUARD_SELF ParseCommand

Table 7.2: Transition of States from source code
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model of the system. The pictorial representation of the finite state machine
has to be created before describing the model in NuSMV. The graphical repre-
sentation is done using yED Graph editor. Our model is a modular design that
works independent of each other and is capable of representing the Sequence
Controller and Supervisor with a clear distinction. The transitions are triggered
by changes in the state. The transitions are drawn with different colour and
manifestation to map to the ALFURS autonomy levels. Every colour signifies to
different ALFURS autonomy levels. Edges are marked with different numbering
so that we can track every requirement to its specification. This allows us to
have a link between requirements list, NuSMV code, formal specification and the
design itself.

7.4.1 Abstract MM Model

The abstract models of Sequence Controller and Supervisor is as shown in Fig-
ures 7.1 and 7.2 respectively. Both the FSM are created using abstraction of the
detailed models (Figures 7.3 and 7.4). The sequence controller and supervisor
finite state machines are coded into one NuSMV code. Both the FSM function
independently although the supervisor controls the operation of the sequence
controller.

The abstract model complies to all the high level ARTIS specific requirements.
The process of abstraction is done on the detailed models Figures 7.3 and 7.4).
For example all the low level behaviours in detailed model is abstracted into
one state i.e. “Predefined Behaviours”. Also the presence of “VelGCS” and
“TrajectoryCommands” in the detailed model is abstracted into a single state
“man_trans_command” (manual transmission command).

Similarly the “StopAndGo” functionality in detailed model is abstracted into
“Main/ Parser” in the abstract model. The abstract model can also be mapped
directly to the ALFURS autonomy levels.
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Figure 7.1: Specific Mission Manager (Sequence Controller) abstract FSM Model
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Figure 7.2: Specific Mission Manager (Supervisor) abstract FSM Model
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7.4.2 Detailed MM Model

The detailed model complies to the low level requirements. It is established in
close relevance to the source code. The “MissionControllerOff” state depicts the
Remote Control operation as the mission manager is turned off during this op-
eration as the guidance of UAV is solely done by the human pilot. Whenever a
“CManualPilot” command is triggered all the states switches to the “Mission-
ControllerOff” state. The “SlowDown” depicts the smooth transfer of different
modes of operation i.e. either before switching from Manual Pilot to Command
Mode or from Mission Mode to the Command Mode. The “VelGCS” state (Ve-
locity command from ground control station) and “TrajectoryCommand” repre-
sents the mission manager operation in Command Mode. The “StandBy” state
is used whenever a behaviour is finished and the mission manager is waiting for
next consequent commands.

The Supervisor operates on a higher level and monitors or influences the con-
trol on the Sequence Controller. The Supervisor is mainly responsible to handle
higher level commands like “Gate Mission” as shown in Figure 7.4 whereas the
Sequence Controller handles low level behaviours such as “HoverTurn” or “Take-
Off” as shown in Figure 7.3 . Some of the low level behaviours are present in
the FSM that are specific to ARTIS UAV. It contains behaviours to wait at a
position (WaitFor), turn on the spot (HoverTurn), fly along a linear trajectory
towards a location (HoverTo), to fly around a point along a horizontal circular
trajectory (Pirouette), and to do fast forward flight along an arbitrary trajectory
(FlyTo).

7.5 Specific Model Checking

As discussed in chapter 3. Formal Methods offers early integration of verification
in the design process and makes the verification more efficient which in-turn
reduces the verification time. Model-based verification techniques are based on
models describing the possible system behaviour in a mathematical manner. The
main advantage of model checking is that before any verification, it leads to the
discovery of incompleteness and inconsistencies in informal specifications. The
system models systematically explores all the states of the system model.
Model checking explores all the possible system states available to trace. It
examines all possible system scenarios in a systematic manner. This means that
the errors that cannot be discovered by review and testing as mentioned in the
above section can be found using the model checkers.
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Figure 7.3: Specific Mission Manager (Sequence Controller) Detailed FSM Model
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Figure 7.4: Specific Mission Manager (Supervisor) Detailed FSM Model
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7.6 Summary

A detailed overview of model checking of ARTIS guidance system is presented.
The process involves requirement analysis, these requirements are extracted from
specific sources like source code, documentation, meeting with software devel-
opers. Later these semi formal requirements written in template based method
are converted to mathematical form using temporal logics, A important source of
information to design specific finite state machine is to know when the state tran-
sition is done by which triggering command or condition. Hence the transitions
are extracted from the source code “SequenceController.cpp” and “Supervisor”
. These transition need to connected to each other in the form of graphical model
to obtain the finite state machine.

Later the model checking is done by formal modelling the graphical model into
NuSMV. The model is verified against the the specifications. Any error in the
model or requirement is encountered by a property that does not satisfy the
model. The final step is to generate counterexamples using the trap properties
by using equivalence transformation. This gives a finite set of states that show
why the property is not violated.
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Chapter 8

Test Case Generation

Verification and Validation (V & V) consumes approximately 50% to 70% of
software development resources [25] for high assurance system or safety critical
systems. Even though model checking provides greater advantage compared to
testing, testing still remains to be a vital part of V & V technique. In current
trends majority of time is denoted to development of test cases to test the nec-
essary functionality of software against the specified behaviour [25]. Thus if the
process of deriving test cases could be automated than most of the time and
cost is saved in the process of testing a software. Model checkers can be used
to automatically generate test sequences. Such that these test sequences in turn
aid for a predefined structural coverage of a formal specification.

In this chapter, it is shown how the formal methods can be used to generate
structural tests from a formal specification of the respective system behaviour.
One of the major benefit of using NuSMV is its capability of generating coun-
terexample when the specification does not satisfy the system behaviour. This
is because model checkers explores the reachable state space searching for vio-
lations of the properties under investigation. The counterexample explains how
the violation can take place in terms of finite state transition from the initial
state of the finite state system to the position within the finite state transition
where the violation occurs.

8.1 Counterexample Generation using Trap Prop-
erties

As explained in the above section, the counterexamples provides a set of transi-
tion within the finite state machine and depicts the position where the violation
occurs. But this is true when the specification does not hold “TRUE” against the
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system behaviour. But to find the test sequences it is necessary to purposefully
generate a counterexample for the specifications that are “TRUE” otherwise.
For example, we can force the model checker that a certain transition in a spec-
ification does not transit. This would challenge the model checker to generate a
sequence of inputs with respective outputs to display that this transition actually
exists. This provides us our necessary approach towards test case generation as
a test sequence is automatically generated by the model checker.

This assertion of transition is possible using the trap properties as mentioned in
[4]. The trap property violates the satisfying property of the specification and
forces the model checker to generate a counter example. The counterexample
assigns a sequence of values to the inputs and outputs of the system making the
counterexample as a test sequence.

Figure 8.1: Process of negating a satisfied property

As shown in Figure 8.1, the process of generating the counterexamples as test
sequences is depicted. It is necessary to use the trap properties only to the speci-
fications that satisfy against the system behaviour. Or in other words, the system
has to be model checked and violating specifications needs to be refined before
applying the trap properties. As shown in the figure 8.1 the process flow accord-
ing to the red edges also shows that a counterexample is generated during the
process but this is not our required test sequence. As the counterexample in this
case shows the violation of specification to the system behaviour. Our required
test sequence is generated when the blue edges are followed i.e. an equivalence
transformation is applied to the specification to generate these counterexamples.
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One way would be to use equivalence transformation. The LTL logics are ex-
plained in Chapter 2. Negation propagation for LTL as shown below:

¬XΦ ≡ X¬Φ

¬GΦ ≡ F¬Φ

¬FΦ ≡ G¬Φ

Although we could achieve a negation of LTL and CTL properties by using a
simple “exclamatory !” sign because the NuSMV tool is capable of this easy form
of negation but the position of application of the symbol is important to ensure
its correctness. For example considering a requirement 1.8 LL from Table 7.1:
“Always the system should allow to goto Standby after all flight behaviours” the
LTL specification would be:

LTLSPEC G (SCM_State = TakeOff) -> F(SCM_State = Standby);
−− Specification_1a

In the above specification “SCM_State” refers to Sequence Controller Mission
States and “Takeoff” and “Standby” are the behaviours in the mission scenario
explained in next section according to figure 8.3. The requirement mention “Al-
ways” that means that this specification should be Global to entire system and
hence “G”. After application of the negation property the above specification
appears as follows:

LTLSPEC !G ((SCM_State = TakeOff) -> F(SCM_State = Standby));
−− Specification_1b

Similarly, considering another requirement for a CTL specification: “The system
shall be able to Takeoff ” the CTL specification appears to be as follows:

SPEC AG EF(SCM_State = Takeoff);−−Specification_2a

After applying the negation property the specification is as follows:

SPEC AG !EF(SCM_State = Takeoff);−−Specification_2b

8.2 Test Case Scenario

A mission plan (highest-level task assigned to a unmanned system according to
ALFUS) or behaviour sequence assigned by operator to UAV is considered as
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a test scenario to explain the generation of test sequences. The test mission
scenario is taken from [14] is as shown in Figure 8.2 on the left. The defined
mission is a sequence of behaviour commands for traversing into appropriate
states. The system cannot reason about the sensibility of the mission plan but the
ENBF grammar (as shown in Figure 8.2 on the right) checks for the plausibility
of the mission plan [14]. It ignores malformed behaviour sequences that does not
match to its grammar. For example the ENBF enforces every mission to start
with a “TakeOff” behaviour and finish with a “Landing” behaviour. The Figures

Figure 8.2: Mission Scenario (left) and ENBF grammar (right) [14]

7.3 and 7.4 has modified and only the behaviours within the mission plan is
considered as shown in Figure 8.3 to consider a test scenario. As the mission plan
is executed in the mission mode, all other modes such as the remote pilot mode
and the command mode is not considered in this example. Thus the “SlowDown”
state is eliminated as there is no change over in different modes of operation.
The “ParseCommand” is is used as for each behaviour there exists a termination
condition or to have transition between different behaviours considered in the
mission plan. The “ParseCommand” is an important state to execute the next
behaviour within the mission plan. In the mission plan shown in Figure 8.2 the
UAV takes-off (TakeOff State) and hovers at the position followed by hovering
to a specified location and makes a hover turn (HammerHeadTurn state in our
case) then waits at the location (WaitingFor state) followed by a fast flight to a
location and performs its task and land at that position. This scenario can be
covered in our FSM. The ENBF grammar ensures that a “HoverTo” command
is not executed after a “Landing”. But this functionality can be adopted during
the description of states in the NuSMV model checker.
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Figure 8.3: Mission Scenario from Specific Mission Manager Detailed FSM Model

The mission scenario of graphical model is formal modelled in NuSMV and model
checking is performed with the appropriate requirements suiting to the mission
plan. Even in this case the modules can be reused from the formal model of spe-
cific guidance system and a similar methodology is followed for model checking.
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Figure 8.4: CTL Counterexample

As explained in the previous section, the trap properties are used to force the
model checker to generate counterexamples. The generated counterexamples are
as shown in the next section.

8.3 Understanding Counterexamples for Test Cases

The counterexample generation is a very powerful functionality in understanding
the violation of any specification against its system behaviour. Also there is
another advantage as it also serves as a test sequence when used along with
trap properties to the specifications. It shows a finite state of transition from
the initial state of a system up to the state where the violation occurs. For
example considering Specification_1b and Specification_2b the LTL and CTL
counterexample are generated. The LTL counterexample of Specification_1b is
as shown in Figure 8.5 and the CLT counterexample of Specification_2b is as
shown in Figure 8.4.

The requirement of Specification_2a mentions that “The system shall be able
to TakeOff”. When a trap property is applied Specification_2b is formulated.
According to Specification_2b it means that the system shall not be able to goto
TakeOff state, which is not true and hence a counterexample is generated showing
that the system traces the “TakeOff” state right in the initial State 1.1 according
to Figure 8.4. Similarly when we consider the requirement of Specification_1a
which states “Always the system should allow to goto Standby after all flight
behaviours”. After applying trap properties this means that after the flight
behaviours (TakeOff is considered in this case) the system cannot transit to the
“StandBy State” but this is not possible according to the system behaviour and
hence a counterexample is generated. As seen in the Figure 8.5 the system starts
from its initial SCM_State i.e. TakeOff (marked in figure under State: 2.1), it
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traces different path and finally reaches StandBy state (marked in figure under
State: 2.31). This gives us a test sequence of transition through different paths.
And it finally loops back to its start state i.e. SCM_State = TakeOff (marked
in figure under State:2.34)

8.4 Summary

A test case is a set of conditions under which a tester will determine whether
a software system and it behaviour or features is working without any defects
as it was planned to be established. The test cases can ensure parts of struc-
tural coverage of a model. In this work our two test case are assigned to each
requirements i.e. a positive and a negative test case or a satisfied property and
a counterexample generated sequence. The NuSMV provides a counterexample
for a negated property and forces the inputs and display the output in terms of
finite trace of states. In other words the current state as a precondition and the
next transited state or output state as a post condition. The commands trigger
the switching of states. Although testing is not replaceable completely using the
process of counterexample generation as test sequences but it provides a benefit
of automation in generating the test sequences. An instantiation process needs
to be carried out to these counterexamples to have a test generation.

A mission plan is considered as a test scenario. The mission plan consists of a
behaviour sequence with several flight behaviours. All the flight behaviours and
consequent states are covered in the elicitated requirements. This provides us
a specification to be tested for all the edges present in the finite state machine.
When a counterexample is generated it traverses through different states and
depicts that all the edges of the model are considered in the test sequences.

The process of using trap properties helps in generating the counterexamples.
These trap properties negate the satisfied property and thus forces the NuSMV
model checker to generate test sequences. This work gives an approach towards
the test generation using model checking.
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Figure 8.5: LTL Counterexample
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Chapter 9

Experimental Results

The overall results gathered during this thesis is briefed in this Chapter. In
Chapter 5 gives the concept of the thesis. Chapters 6, 7 and 8 provides detailed
information about the contribution to this thesis and the results achieved. Chap-
ter 6 explains the implementation of generic modelling approach by mapping the
information flow model of GNC component of UAV to the GAM. Chapter 6
also shows the result of extracted generic requirements in Table 6.3. These re-
quirements were formalised using LTL and CTL properties. According to one
of the goal of this thesis a generic model (Figure 6.4) is created using the AL-
FURS framework and according to the research question the specific cases can
be derived using the generic approach as shown in Figures 7.3 and 7.4 (showing
detailed FSM of Sequence Controller and Supervisor respectively).

Chapter 7 explains about the specific model checking of UAV mission manager
system. It provides the sources considered for requirements extraction. Table
7.1 gives a snippet of the extracted requirements. Also section 8.1 gives some
examples of formalising these requirements using temporal logics. It explains
the process of transition extraction from the code and a part of the transition is
given in Table 7.2. Chapter 7 also explains how the mapping of different arte-
facts is helpful in tracking amongst all the requirements and thus fault finding.
The graphical models of abstract sequence controller and supervisor is shown in
Figure 7.1 and Figure 7.2 respectively. A more detailed version of the graphical
models is shown in Figures 7.3 and 7.4.

A total of 4 FSMs were created and model checked using NuMSV as summarised
in the Table 9.1. These models were refined according to the property satisfying
the FSM. Chapter 8 gives the result of counterexamples generated using trap
properties which can be used as test sequences. 8.5 and 8.4 shows the coun-
terexample generated from applying trap property to a LTL and CTL logics
respectively.
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Description Figure Number
Generic Mission Manager FSM Model 6.4

Specific Mission Manager (Sequence Controller) abstract FSM Model 7.1
Specific Mission Manager (Supervisor) abstract FSM Model 7.2

Specific Mission Manager (Sequence Controller) Detailed FSM Model 7.3
Specific Mission Manager (Supervisor) Detailed FSM Model 7.4

Mission Scenario from Specific Mission Manager Detailed FSM Model 8.3

Table 9.1: List of FSMs Designed
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Chapter 10

Conclusion and Future
Scope

In this work, the research is carried on generic modelling approach so that the
above mentioned generic model be extended and specialised to reflect specific
cases like ARTIS. This allows the (re)use of these generic models as a template
rather than building or designing a model from scratch. This work addressed
the design of generic models that could be reflected or abstracted to specific cases.

Furthermore, the reuse of artefact amongst generic and specific cases initiated
right from the first step i.e. the requirement extraction as some of the require-
ments were common and could be reused amongst both the cases. These shared
requirements could also be used for other specific UAV’s. The use of TL provides
a uniform notation for expressing wide range of requirements. These shared re-
quirements also reduces the time in formalising them using temporal logics as
the temporal logics can be reused just by relating to the generic or specific terms.
As a modelling point of view the generic model could be abstracted from specific
cases. This serves as a basis for designing other specific cases similar to the
software product line approach.

The objective to research was to use of generic formal models for model-checking
and test generation using model-checking. This objective was addressed during
this work. But due to lack of low level behaviours of generic models generating
tests with specific inputs is challenging . Instead a basis of test generation ap-
proach using model-checking is performed over specific models. The availability
of low level behaviour in specific UAV allow the user to test the desired outputs
for a set of inputs as this characteristics is not available with the generic models
due to its abstract nature.
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An approach towards test case generation involves generation of test sequences
or counterexamples using trap properties on the properties that are TRUE oth-
erwise. These test sequences gives us parts of structural coverage. To ensure
better structural coverage a mission scenario was considered from the specific
UAV. The Figures 7.3 and 7.4 were was restructured to suit the mission scenario
as shown in Figure 8.3. A wide set of requirements helps in providing better
structural coverage as the negation of every satisfied property makes the model
checker to visit untraced transitions for generation of a counterexample.

One of the limitation could be correctness of the designed model influences di-
rectly on the generated tests. A designed FSM should be in close relation to its
requirements or real world behaviour. Any missing gaps between the software
system and the formal model needs to be bridged by formulating good require-
ments.

As a future scope, these test sequences or counterexample generated using trap
properties can be further harnessed to create executable test cases and followed
by test case generation framework. So that the other specific UAVs can benefit
from this framework rather than attempting to build a set of test cases from the
scratch. A similar approach can be followed for other specific cases.

CHAPTER 10. CONCLUSION AND FUTURE SCOPE 78



Bibliography

[1] Henrik Reif Andersen. An introduction to binary decision diagrams. Lecture
Notes for Efficient Algorithms and Programs, September 1999.

[2] Paul Clements. Software Product Lines: Practices and Patterns. Addison-Wesley
Professional, August 2001.

[3] DLR. Dlr-institute of flight systems www.dlr.de, 2015.
[4] Angelo Gargantini et al. Using model checking to generate tests from requirement

specifications. In Software Engineering - ESEC/FSE, pages 146–162, Italy, 1999.
Springer.

[5] Christel Baier et al. Principles of Model Checking, volume 26202649. MIT Press
Cambridge, Cambridge, May 2008.

[6] Christoph Torens et al. Automated verification and validation of an onboard
mission planning and execution system for uavs. In AIAA Infotech@Aerospace
2013, Boston, August 2013. American Institute of Aeronautics and Astronautics,
Inc.

[7] Christoph Torens et al. Software verification consideration for the artis unmanned
rotorcraft. In 51st AIAA Aerospace Sciences Meeting, Grapevine,TX,USA, 2013.
American Institute of Aeronautics and Astronautics, Inc.

[8] Christoph Torens et al. Formal requirements and model-checking for vv automa-
tion of a rpas mission management system. In AIAA Infotech@Aerospace, FL
USA, January 2015. American Institute of Aeronautics and Astronautics, Inc.

[9] Corina S P et al. Symbolic execution and model checking for testing. In Hardware
and Software: Verfication and Testing, pages 17–18. Springer, 2008.

[10] Dirk Beyer et al. Generating tests from counterexamples. In Proceedings of
the 26th International Conference on Software Engineering, pages 326–335, USA,
2004. IEEE Computer Society.

[11] Edmund M Clarke et al. Automatic verification of finite-state concurrent sys-
tems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems (TOPLAS), 8(2):244–263, April 1986.

[12] Fahroo et al, editor. Recent Adavances in Research on Unmanned Aerial Vehicles,
volume 444. Springer, Springer-Verlag Berlin Heidelberg, 1 edition, 2013.

79



[13] Florian-Micheal Adolf et al. Probabilistic roadmaps and ant colony optimization
for uav mission planning. In Intelligent Autonomous Vehicles, volume 6, pages
264–269, Braunschweig, Germany, 2007. German Aerospace Center (DLR).

[14] Florian-Micheal Adolf et al. A sequene control system for onboard mission man-
agement of an unmanned helicopter. In AIAA Infotech@Aerospace 2007, Rohnert
Park, California, May 2007. AIAA, American Institute of Aeronautics and Astro-
nautics, Inc.

[15] Florian-Micheal Adolf et al. Behaviour-based high level control of a vtol uav.
In AIAA Infotech@Aerospace 2009, page 13, Washington, April 2009. American
Institute of Aeronautics and Astronautics, Inc.

[16] Florian-Micheal Adolf et al. Vision-based target recognition and autonomous
flights through obstacle arches with a small uav. In Anibal Ollero, editor, AHS
65th Annual Forum Proceedings, pages 259–280, Grapevine,TX,USA, May 2009.
AHS International.

[17] Florian-Micheal Adolf et al. Multi-query path planning for exploration tasks with
an unmanned rotorcraft. AIAA Infotech@Aerospace, 19:20, 2012.

[18] Florian-Micheal Adolf et al. Trajectory time reduction using field of view-based
smoothing of roadmap-based paths. In AHS 69th Annuak Forum Proceedings.
AHS International, Inc, May 2013.

[19] France M T Brazier et al. Compositional design and reuse of a generic agent
model. Applied Artifical Intelligence, 14(5):491–538, 2000.

[20] Jeffrey JP Tsai et al. A comparative study of formal verification techniques for
software architecture. Annals of Software Engineering, 10(1-4):207–223, 2000.

[21] Justyna Zander et al, editor. Model-Based Testing for Embedded Systems. CRC
Press, 2011.

[22] Lisa Brownsword et al. A case study in successful product line development. Tech-
nical report, Software Engineering Institute, Camegie Mellon University, Pitts-
burgh, Pennsylvania 15213, October 1996.

[23] Rick Convington et al. Formal Methods Specification and Verification Guidebook
for Software and Computer Systems. National Aeronautics and Spcae Adminis-
tration, Washington, DC 20546, July 1995.

[24] Roberto Cavada et al. NUSMV 2.3 Tutorial. Italy, July 2005.
[25] Sanjai Rayadurgam et al. Test-sequence generation from formal requirement mod-

els. In High Assurance System Engineering, pages 23–31. IEEE, 2001.
[26] Sanjai Rayadurgam et al. Auto-generating test sequences using model checkers:

A case study. In Formal Approaches to Software Testing, pages 42–59. Springer,
2004.

[27] Steven P Miller et al. Formal verification of the aamp5 microprocessor: A case
study in the industrial use of formal methods. In Industrial-Strength Formal
Specification Techniques, pages 2–16, USA, 1995. IEEE.

BIBLIOGRAPHY 80



[28] Mike Gordon. Background reading on hoare logic. Lecture Notes, April 2012.
[29] Hui-Min Huang. Autonomy levels for unammned systems (alfus) framework. Tech-

nical report, National Institute of Standards and Technology, October 2008.
[30] Farid Kendoul. Survey of advances in guidance,navigation and control of un-

manned rotorcraft systems. Journal of Field Robotics, 29(2):315–378, 2012.
[31] NATO. Stanag 4586 (edition 3) - standard interfaces of uav control system (ucs)

for nato uav interoperability, November 2012.
[32] Martin Ouimet. Formal software verification:model checking and theorem proving.

Technical report, Massachusetts Institue of Technology, USA, 2008.
[33] Pnueli. The temporal logic of programsal. In Foundations of Computer Science,

18th Annual Symposium, USA, October 1977. IEEE.
[34] Klaus Pohl. Requirements Engineering: Fundamentals, Principles and Tech-

niques. Springer-Verlag Berlin Heidelberg, Berlin Heidelberg, 1 edition, 2010.
[35] Chris Rupp, editor. The Requirements Template - The Assembly Plan of a Re-

quirement. SOPHIST, 2010.
[36] Sadhukhan, editor. Model Based Testing Practices. Idea, Approach and Solution,

Kolkata, India, 2011. Global Business Services (GBS).
[37] Daniel Kroening et al Vijay D’Silva. A survey of automated techniques for formal

software verification. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(7):1165–1178, July 2008.

BIBLIOGRAPHY 81


	Acknowledgment
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Goals
	Document Structure
	Summary

	Fundamentals
	Requirement Elicitation
	Formalising Requirements using Temporal Logics
	Linear Temporal Logics
	Computation Tree Logics

	Concept of Formal Methods
	Different Formal Verification Techniques
	Benefits and limitations of Formal Methods

	NuSMV Model Checker
	Summary

	Related work
	Generic and Specific UAV
	Generic UAV
	ALFURS Framework
	Levels of Autonomy

	Specific UAV
	The ARTIS Platform
	MiPlEx System

	Summary

	Contribution to this Master Thesis
	Requirement Extraction and Formulation
	Requirement Formalisation
	Extraction of Transitions from Source Code
	Generic FSM of UAV Guidance System
	Specific FSM of UAV Guidance System (MiPlEx)
	Model Checking using NuSMV
	Generating Counterexamples for Test Generation
	Approach towards Test Cases

	Generic UAV Finite State Machine
	Generic Modelling Approach using Generic Information Flow of GNC 
	Generic Requirements Elicitation and Formalization of UAV Guidance System
	Illustration of Generic Guidance FSM
	Summary

	Specific UAV FSM of Mission Manager System
	Specific Requirements Elicitation and Formalization
	Transition extraction from Source Code
	Mapping of different Artefacts
	Graphical Illustrations
	Abstract MM Model
	Detailed MM Model

	Specific Model Checking
	Summary

	Test Case Generation
	Counterexample Generation using Trap Properties
	Test Case Scenario
	Understanding Counterexamples for Test Cases
	Summary

	Experimental Results
	Conclusion and Future Scope

