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Introduction

1 Introduction
1.1 The need for bone graft

Trauma, tumor resection and skeletal abnormalities can cause complex bone
defects, especially under conditions of compromised healing such as infection,
avascular necrosis, atrophic non-union as well as osteoporosis, entailing a
significant burden for the patient. When self-repair mechanisms of the bone reach
their limits, osseous reconstruction requires a considerable quantity of bone graft
in order to recreate form and function of the affected bone and, eventually, to
restore the patient’s quality of life (Dimitriou, Jones et al. 2011, Marsell and
Einhorn 2011).

With bone being the second most transplanted tissue after blood, there has been
a considerable number of attempts to reconstruct bone in order to ensure
structural and functional integrity (Henkel, Woodruff et al. 2013). Autologous and
allogeneic bone graft materials, synthetic bone substitutes, the use of growth
factors and living cells, distraction osteogenesis or the Masquelet technique
represent current clinical strategies with relatively satisfactory outcome for defect
restoration with limited intrinsic regenerative potential (Giannoudis, Dinopoulos
et al. 2005, Dimitriou, Jones et al. 2011, Henkel, Woodruff et al. 2013).

Although autologous bone graft material represents the gold standard in daily
clinical routine, it certainly has, like the others, its disadvantages regarding costs,
efficacy and limitation in availability (Dimitriou, Jones et al. 2011), which will be
described in more detail below (see chapter 1.3). In order to overcome these
apparently insurmountable limits of present bone graft materials and to finally
recreate bone that is indistinguishable from the initially uninjured bone, the
interdisciplinary field of bone tissue engineering has emerged and research in
this area is under intense examination. A very promising field that, once it has
made its way to the clinics, will clearly lead to numerous possibilities for tissue
regeneration and repair (Dimitriou, Jones et al. 2011, Henkel, Woodruff et al.
2013).
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1.2 Biology of bone

Bone maintains important functions that include the protective support for
surrounding organs, metabolic tasks as well as biomechanical strength and
locomotion. Its capacity to rebuild and renew itself throughout lifetime makes
bone an unique tissue (Feng 2009). This chapter provides information about the
osseous composition and structure of the human skeleton, about bone

development and the potential regenerative capacity in case of fracture.

1.2.1  Composition and structure

Bone is a complex composite structure consisting of hydroxyapatite
[Ca10(PO4)s(OH)2] (mineral or inorganic phase, ~60%), collagen and non-
collagenous proteins such as: albumin, fetuin-A, growth factors, proteoglycans,
glycosylated proteins and y-carboxylated proteins (organic phase, ~30%) and
water (Feng 2009, van Blitterswijk and De Boer 2015).

The human skeleton consists of bones of different sizes and shapes. Long bones
(e.g. femur, tibia, radius, humerus, ulna) can be partitioned into three parts. The
middle part of the bone is called diaphysis and contains the bone marrow in the
medullary cavity. The diaphysis then merges into the metaphysis on both sides
where growth processes take place (see chapter 1.2.2) and for what it is also
called growth plate. The end zone is formed by a proximal and distal epiphysis.
The periosteum, a double layered membrane containing collagen fibers, skeletal
cells, blood and lymphatic vessels and nerve fibers, surrounds most parts of the
bone. It is essential for bone nutrition, bone healing and bone growth (Fig.1)
(Spence 1986, Schulte, Schumacher et al. 2011, van Blitterswijk and De Boer
2015).



Introduction

Endostoum

Proximal

Epiphyscal
opiphysis lino

bone
{(containing
rod marnmow)

%
| :Nutncm

artory

Dvaphysts{

A 1T Meduliary
! cavity

Epiphysoal
kno

Distal
opiphysis

Fig. 1 The architecture of long bones. SPENCE, BASIC HUMAN ANATOMY, 3rd, ©1991.
Reprinted by permission of Pearson Education, Inc., New York, New York.

Furthermore, bone tissue consists of a highly organized structure which can be
classified by a hierarchical architecture: a macrostructure, a microstructure and
a nanostructure (Fig.2) (Rho, Kuhn-Spearing et al. 1998, Henkel, Woodruff et al.
2013).

The bony macrostructure consists of two main types: the cortical and the
cancellous bone. The cortical bone (or compact bone) forms the diaphysis of long
bones. Since up to 90% of the cortical bone is calcified, it provides mechanical
strength and protective function. The epiphysis and metaphysis, on the other
hand, mainly consist of cancellous bone (also called trabecular or spongy bone),
ensuring the metabolic function of bone and comprising only about 25% of
calcified bone. Cancellous bone is hence a metabolically more active structure
than cortical bone and remodels itself more often. However, also a small amount
of cortical bone can be found at the epiphyseal and metaphyseal part of long
bones (Rho, Kuhn-Spearing et al. 1998, van Blitterswijk and De Boer 2015).
The microscopic scale of cortical bone demonstrates layers of mineralized

collagen fibers, forming sheets that are called lamellae (~3-7 um). They wrap in
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concentric layers around the Haversian canal with its nerves and blood vessels
and form a unit called Osteon or Haversian system (~250 um). The microstructure
of cancellous bone resembles an interconnected framework of rod-rod, rod-plate
or plate-plate shaped trabeculae (Rho, Kuhn-Spearing et al. 1998).

Eventually, the nanostructure of bone compromises collagen proteins that are
surrounded and reinforced by minerals. The fibrillar substructure of collagen
(~200 nm in length) is once again subdivided into fibrils (~500 nm in width)
consisting of collagen molecules and bone crystals (Rho, Kuhn-Spearing et al.
1998, Kane and Ma 2013).

Collagen
molecule

Cancellous bone

Collagen
Collagen fibril

Lamella fiber

Microstructure Nanostructure

Macrostructure Sub-microstructure Sub-nanostructure

Fig. 2 Schematic representation of the bone structure. Bone can be divided into a
macrostructure (cortical and cancellous bone), a microstructure (osteon formed by the Haversian
system) and a nanostructure (collagen proteins). Reprinted from Medical Engineering & Physics,
Vol: 20, Issue: 2, Rho, J. Y., Kuhn-Spearing, L., Zioupos, P., Mechanical properties and the
hierarchical structure of bone, Page: 92-102, Publication Year: 1998, Copyright © 1998 Published
by Elsevier Ltd., with permission from Elsevier.
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1.2.2 Bone development

Before ossification of human bone begins between the 6th and 7th week of
pregnancy, the skeleton of the human embryo consists mainly of hyaline cartilage
and fiborous membrane which form a sort of guiding structure
(https://opentextbc.ca/anatomyandphysiology/, August 28, 2018). As bone is a
replacement tissue, it can only grow by replacing a template. For the de novo
formation of cancellous or compact bone, this template can consist of membrane
(intramembranous ossification), cartilage (endochondral ossification) or
preexisting bone itself which serves as guide for healing bone that has been
fractured. Endochondral and intramembranous ossification thereby represent two
different pathways that conclude in one and the same structure: calcified bone
(van Blitterswijk and De Boer 2015).

1.2.2.1 Intramembranous ossification

Intramembranous ossification gives rise to flat bones of the skull, most of the
cranial bones and medial clavicles (Ornitz and Marie 2002). Furthermore, it
represents a crucial step during natural fracture healing of bone (see chapter
1.2.3.) (Einhorn and Gerstenfeld 2015).

Therefore, mesenchymal cells differentiate into osteoblasts and synthesize
osteoid, an uncalcified bone matrix that mineralizes subsequently. Due to the
mineralization process, osteoblasts are entrapped and differentiate into
osteocytes. The secretion of osteoid continues and forms a trabecular matrix
starting to interconnect (Lullmann-Rauch 2003). Compact mesenchymal cells
surround the trabeculae and form the periosteum. Osteoblasts on the inner
surface of the periosteum secrete more osteoid and thereby layers of bone are
formed parallel to the existing trabeculae (Gilbert 2000).


https://opentextbc.ca/anatomyandphysiology/
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1.2.2.2 Endochondral ossification

Long bones, some facial bones, lateral medial clavicles and vertebrae develop
by endochondral ossification (Ornitz and Marie 2002). Whereas
intramembranous ossification creates bone directly from mesenchymal cells,
endochondral ossification achieves this by adding an intermediate step: an
avascular cartilaginous template that is gradually being replaced by highly
vascularized new bone. Therefore, mesenchymal cells cluster in order to shape
the cartilage scaffold, also called anlage (Ornitz and Marie 2002, van Blitterswijk
and De Boer 2015). For longitudinal growth, chondrocytes then proliferate,
become hypertrophic and finally mineralize, leaving an extracellular cartilage
matrix in which osteoclasts, osteoblasts and blood vessels invade in order to
eventually transform cartilage into bone (Mackie, Ahmed et al. 2008).

Since bone is a dynamic tissue, it is able to maintain its functions throughout the
lifetime of a healthy human skeleton by constant remodeling processes through
assembly and disassembly. Thereby, the biochemical and biomechanical
surrounding stimulates old bone to disaggregate by the help of osteoblasts,
whereas osteoblasts subsequently recreate renewed bone (Feng 2009).
However, profuse overload and external force application may result in bone
fractures, especially if the osseous structure is already weakened by age related
changes in the hormonal milieu and associated diseases such as osteoporosis.
(Jakob, Ebert et al. 2012, Zhang, Richardson et al. 2012). Fragility fractures of
the vertebrae, the radius and the hip are prone to occur and even minimal trauma
may already result in critical bone fractures that impede physiological bone
healing and regeneration (Jakob, Ebert et al. 2013). This would hence imply the
necessity of accurate bone graft materials or bone tissue engineered constructs,

if available.
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1.2.3 Fracture Healing

Bone regeneration in normal fracture healing is a remarkable, yet complex
physiological complex, involving different cell types, cytokines, growth factors and
the extracellular matrix, all responding to mechanical stimuli of the environment
(Zhang, Richardson et al. 2012, van Blitterswijk and De Boer 2015).

There are two different types of fracture healing that exist: the direct
(intramembranous) and the indirect (intramembranous and endochondral) type.
Since direct fracture healing demands rigidly contact of the bone fragments and
absolute stability, most of the fractures heal by indirect bone formation. This
involves different stages: inflammation, soft callus formation, hard callus
formation and bone remodeling (Marsell and Einhorn 2011).

During the acute inflammatory phase, an initial hematoma is transformed into a
fibrinous thrombus that is then reorganized into granulation tissue. This process
is driven by cytokines and growth factors such as tumor necrosis factor alpha
(TNF-a), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-11 (IL-11) and
interleukin-18 (IL-18), transforming growth factor beta (TGF-B), bone
morphogenetic proteins (BMPs), vascular endothelial growth factor (VEGF) and
platelet-derived growth factor (PDGF) (Marsell and Einhorn 2011, van Blitterswijk
and De Boer 2015). Although both intramembranous and endochondral
ossification are involved, the cartilaginous callus represents a special key
characteristic in the process of indirect fracture healing. Mesenchymal stem cells
(MSCs) cluster and differentiate into chondrocytes. Together with fibroblasts,
they remodel the granulation tissue between the fracture endings and external to
the periosteum into a cartilaginous template that forms a soft callus to stabilize
the fracture, whereby the adjacent subperiostal tissue is transformed into a hard
callus by intramembranous ossification (Marsell and Einhorn 2011). Due to
endochondral ossification, the soft callus is transformed into a hard bony callus
(woven bone) which osteoblasts and osteoclasts will then subsequently
restructure into normal, more solid and fully regenerated bone (Marsell and
Einhorn 2011, Einhorn and Gerstenfeld 2015, van Blitterswijk and De Boer 2015).
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However, there are limits to the capacity of bone to heal by itself if certain defect
sizes are reached. When sufficient stabilization is provided, up to a finite defect
size, bone tissue is able to truly regenerate in a physiological way, without the
development of fibrotic scar tissue (Henkel, Woodruff et al. 2013). This process
can take years to be entirely completed and, depending on age, vascularization
and external circumstances may never be fully achieved. Atrophic fibrous non-
unions and pseudarthrosis (inaccurate joint forming and development of a
synovial membrane) can then occur as a result of insufficient bone repair. There
are two types of non-unions: hypertrophic non-unions (with callus formation at the
fracture ends), often in case of defaulting on sufficient fracture stabilization, and
atrophic non-unions (without callus formation) (Marsell and Einhorn 2011, Garcia,
Histing et al. 2013).

1.3 Current treatment of bone defects

As already mentioned, the human skeleton is able to repair bone defects
effectively in most cases (see chapter 1.2.3). However, limitations in bone healing
occur if certain defect sizes are reached. Therefore, therapeutic strategies
needed to arise in order to support and promote physiological bone healing. This
chapter provides information about the different characteristics of skeletal defects
and current clinical methods applied to treat such critical defects.

1.3.1 Skeletal defects

Seen from an anatomical point of view, skeletal defects can be classified into
diaphyseal, metaphyseal or articular defects. The anatomical location of the
defect has high impact on the prognosis since blood supply and osteogenic
potential varies depending on the location. Considering the extent of the defect,
it is important to specify whether the involved bone includes partial or segmental
circumferential loss (Keating, Simpson et al. 2005).

A critical-size defect has been defined as a segmental bone defect with either a

length that exceeds 2 to 2,5 times the diameter of the affected bone (Gugala,
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Lindsey et al. 2007) or a distance bigger than 2 cm between the bony ends,
including more than 50 percent of the bone tissue circumference and moreover,
would not heal spontaneously in spite of surgical stabilization (Keating, Simpson
et al. 2005). For animal models used in preclinical studies, however, the term
critical-size defect has also been used differently. Schmitz and Hollinger defined
it as the smallest intraosseous defect which cannot heal spontaneously during
the lifetime of the animal or a defect that has less than 10% regeneration during
lifetime (Hollinger and Kleinschmidt 1990, Gugala and Gogolewski 1999,
Schemitsch 2017).

This means that the size that renders a defect “critical" is not very well set
(Lindsey, Gugala et al. 2006). Moreover, in addition to the abovementioned
classifications, it is important to consider other influences that may have impact
on the healing process: the dimension of injured soft tissue surrounding the bone,
the condition of the periosteum, the age of the patient, the presence of underlying
diseases and the consumption of tobacco, alcohol and medications (Keating,
Simpson et al. 2005). According to that, defining a critical-size defect across
anatomical locations and species becomes difficult and therefore hard to apply

clinically.

1.3.2 Bone graft materials

Muschler defined the term "bone graft" as any implanted material that is capable
of bone healing by inducing osteoconductivity, osteoinductivity or osteogenesis
(Bauer and Muschler 2000).

Osteogenesis is the ability to form new bone. Bone graft materials containing
living cells such as mesenchymal stem cells or preosteoblasts (precursor cells),
which are able to give rise to bone generating cells, are able to induce
osteogenesis. Osteoinductive materials can stimulate cells in the surrounding
tissue to proliferate and differentiate from precursor cells into bone generating
osteoblasts. Osteoinductivity is regulated by complex mechanisms that are
controlled by different proteins such as bone morphogenetic proteins (BMPs) and

cytokines. Osteoconductive materials supply a suitable scaffold in which the
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surrounding bone tissue can grow in. Bone graft materials providing
osteoconductivity are hence not able to form bone but serve as a guiding
structure (Schwenzer and Ehrenfeld 2000, Albrektsson and Johansson 2001).
The ideal bone graft material should therefore contribute to sufficient mechanical
properties and vascularization and provide biocompatibility, osteogenesis,
osteoinductivity as well as osteoconductivity all in one. It should be easy to
sterilize and to operate, while at the same time, cost effective and easily available
in a wide range of quantities (Damien and Parsons 1991, Campana, Milano et al.
2014).

1.3.2.1 Autologous bone

Autologous graft is bone tissue harvested from the same individual as it is
implanted in (Bauer and Muschler 2000). This means that donor and recipient
are one and the same person (Schwenzer and Ehrenfeld 2000). Thus, autologous
bone shows histocompatibility and is non-immunogenic (Dimitriou, Jones et al.
2011). According to that, the incorporation of the graft to the host is accomplished
more predictably since the chance of rejection due to immunological response or
transmission of infections is most unlikely. Depending on the harvested tissue
type (cancellous bone, cortical bone, vascularized graft, aspirated bone marrow),
autologous bone supports osteogenesis, osteoinduction and osteoconduction all
in one (Bauer and Muschler 2000) and therefore represents today's gold standard
bone graft material. Jupiter et al. described a method to reconstruct large bone
defects by transferring vascularized fibular autograft to the defect zone (Jupiter,
Bour et al. 1987). Also the iliac crest and ribs have been used as vascularized
bone graft material (Giannoudis, Calori et al. 2013). However, shortage of
guantity and shape of the harvested bone graft and severe donor site morbidity
due to the second surgical intervention cause major drawbacks that outweigh the
benefits of today's material of choice (Damien and Parsons 1991). Furthermore,
it has been shown that defects larger than 5 cm are not suitable for conventional
autologous bone grafting. At this point, any grafting technique is predisposed to

failure (Giannoudis, Calori et al. 2013). These defects, however, are far from

10
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being a rarity. That is why, today, more than ever, the necessity for an adequate
strategy, able to heal such bone defects, is crucial (Giannoudis, Calori et al.
2013).

1.3.2.2 Masquelet technique

Since autologous bone graft alone may be associated with significant drawbacks,
the interest in alternative techniques has increased. In 1986, Alain Masquelet et
al. developed a novel strategy describing a two-stage technique for the treatment
of large diaphyseal bone defects (Masquelet, Fitoussi et al. 2000). Firstly, a
cement spacer (polymethyl methacrylate) is inserted into the defect in which
radical debridement of the surrounding necrotic bone and soft tissue was
performed. The defect is then stabilized by an external fixation system. The first
step allows the formation of an induced pseudosynovial membrane that provides
adequate vascularization, secretion of growth factors and has been shown to
prevent the degradation of the subsequently inserted graft. Secondly, after 6 to 8
weeks, the spacer gets removed and the reconstruction of the defect is operated
by implanting great amounts of autologous cancellous bone graft (Giannoudis,
Faour et al. 2011, Henkel, Woodruff et al. 2013).

The Masquelet technique represents a well-established and successful
technique. However, limited quantity of bone and the risk of possible
complications due to the necessary step of harvesting autologous bone still
remain and hence encourage the development of alternative bone substitutes

(Giannoudis, Faour et al. 2011).

1.3.2.3 Allogeneic bone

An allograft is a tissue that has been harvested from one organism and implanted
into another organism of the same species (Bauer and Muschler 2000). It can be
harvested from living patients or from non-living donors. Therefore, it represents
an attractive alternative to autologous bone since inconveniences such as

additional surgical interventions and quantity restrictions are being bypassed

11
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(Dimitriou, Jones et al. 2011). To circumvent the risk of rejection reactions due to
immunological host response and to limit the possible infective transmission of
pathogens such as human immunodeficiency virus (HIV), hepatitis B virus (HBV),
hepatitis C virus (HCV), or bacteria to the recipient, allograft material needs to
undergo different processes of sterilization (ethanol, gamma irradiation, freezing
or freeze-drying etc.). Accordingly, allogeneic bone is not osteogenic and
depending on the preparation process, detrimental effects on osteoconductive,
osteoinductive and mechanical properties may occur (Roberts and Rosenbaum
2012, Campana, Milano et al. 2014). Moreover, high costs and the remaining
concern of viral or bacterial contamination make allograft an acceptable but
imperfect alternative to autologous bone graft material (Roberts and Rosenbaum
2012).

1.3.24 Xenograft bone

Xenogeneic bone originates from a genetically different, non-human species
such as bovine and porcine bone or coral based materials. Xenograft bone is
usually used as a calcified matrix that has been deproteinized, demineralized or
freeze-dried (Campana, Milano et al. 2014) . Thereby, porcine bone represents
a very suitable xenograft for transplantation since simplified breeding and genetic
manipulations of pigs are possible (Sprangers, Waer et al. 2008). Other
approaches for the establishment of a suitable xenograft material involve the use
of bovine bone mineral (Bio-Oss, Osteohealth, Shirley, NY) which has been
shown to effectively heal defects in oral surgery (Kao and Scott 2007). Coralline
xenografts consist of calcium carbonate that shows accurate resorption when
used as graft but, in contrast to human bone, does not involve hydroxyapatite. In
order to adjust the material to human bone, the use of coral may imply its
transformation into hydroxyapatite which then again influences its resorption rate
(Campana, Milano et al. 2014). Generally, the potential complications concerning
disease transmission, immunological responses and resorption (Kim, Kim et al.

2016) as well as the loss of cells and growth factors due to the preventive

12
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treatments of the graft, minimize the favorable use of xenogeneic materials over
autograft bone (Henkel, Woodruff et al. 2013).

1.3.3 Distraction osteogenesis

In response to mechanical stretch stimuli induced by an external fixator device,
new bone is formed. This phenomenon is the key to the process of distraction
osteogenesis or also called callus distraction. A process that was described by
Professor llizarov in the second half of the 20th century (llizarov, Lediaev et al.
1969).

This ability of bone to regenerate by distraction using an external fixator system
consisting of rings, rods and wires is also used to elongate bone. In a first step,
corticotomy (cutting only the outer layer of the bone and leaving the periosteum
and endosteum intact) is performed in order to obtain two bone fragments. In a
second step, gradual distraction on both sides of the two bone fragments is
exerted using the external fixation apparatus (daily distraction rate of about 1mm).
Due to opposed axial traction, revascularization, callus formation and eventually
de novo bone formation occurs; a so-called "Tension-Stress-Effect” (Raschke,
Ficke et al. 1993, Gubin, Borzunov et al. 2016).

Although this method has several advantages (minimal-invasive surgery, weight
bearing during healing phase), severe disadvantages have to be considered
(complicated technique for surgeons, long and painful treatment as well as pin
site infections) (Raschke, Ficke et al. 1993, Gubin, Borzunov et al. 2016).

1.3.4 Bone substitutes combined with growth factors and
living cells

The complications associated with the aforementioned clinical approaches for
bone defect reconstructions have led to the idea of substituting bone tissue in
order to promote bone regeneration and to replace autologous and allogeneic
bone grafts. The development of organic (biological) and inorganic (synthetic)

materials involves demineralized bone matrix, growth factors, ceramics, polyester
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and composites (Schlickewei and Schlickewei 2007). High versatility, lower costs,
optimized acceptance rate and safety conditions as well as the ease of handling
make bone substitute materials an attractive alternative to conventional methods
(Pryor, Gage et al. 2009). However, the requirement of osteoconductivity,
osteoinductivity and osteogenesis make great demands on the establishment of
an ideal bone substitute material and therefore implies the combination of several
materials (Henkel, Woodruff et al. 2013). Therefore, progress has been made in
the design of scaffold-based tissue engineered products that seek to combine a
three dimensional structure (scaffold) showing osteoinductivity with embedded
osteogenic and osteoinductive components, paving the way to current bone
tissue engineering strategies (Giannoudis, Einhorn et al. 2007, Henkel, Woodruff
et al. 2013). Thereby, BMPs, VEGFs, PDGFs, insulin-like growth factor-1 (IGF-
1) and TGF-B play an important role since they have important physiological
influence on bone healing by effecting cell development, proliferation and
differentiation (Minuth, Strehl et al. 2002, Henkel, Woodruff et al. 2013).

In 1981, based on the work of Marshall R. Urist, Sampath and Reddi finally
managed to prove the existence of BMPs as a large heterogeneous protein family
within the TGF-f superfamily, possessing a wide range of skeletogenic functions.
(Urist 1965, Sampath and Reddi 1981, Campana, Milano et al. 2014). Ever since,
industries and researchers are working on these proteins capable of inducing
bone formation in non-bony sites by promoting the differentiation of MSCs into
osteogenic cells, stimulating vascularization and alkaline phosphatase functions
(Sampath and Reddi 1981, Wozney and Rosen 1998, Campana, Milano et al.
2014, van Blitterswijk and De Boer 2015).

Altogether, 15 different types of human BMPs have been investigated and the
clinical use of BMP-2 and BMP-7 is authorized for certain indications in Europe
and the Unites States following the U.S. Food and Drug Administration (FDA) and
the European Medicines Agency (EMA) approval (Dabra, Chhina et al. 2012,
Campana, Milano et al. 2014, Gothard, Smith et al. 2014).

Although today's surgical techniques for bone reconstruction have made large
progress over the last years and many promising research approaches continue

to be intensively studied, they are still not sophisticated enough to overcome
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practical limits. Driven by the present need for well-developed and applicable
models for bone regeneration, the field of bone tissue engineering has emerged

and searches its way into clinical application.

1.4 Bonetissue engineering

Langer and Vacanti described tissue engineering as an interdisciplinary field
using the principles of biology and engineering in order to develop functional
biological substitutes that reconstruct damaged tissue and maintain tissue
function (Langer and Vacanti 1993). Today, nearly every human tissue has been
intensively studied for the possible replacement with engineered structures
(Langer and Vacanti 2016). The goal is to provide a cell-driven, living construct
that is able to interact with the surrounding tissue (Rose and Oreffo 2002).
Therefore, acquired knowledge from various interdisciplinary fields (medicine,
engineering, material science, quantum physics, molecular and cell biology,
polymer chemistry) is involved into one research project.

Bone, however, represents a very complicated tissue to reconstruct in its former
structure and function (see chapter 1.2). It consists of a unique structure with key
functions to structural support and protection. Furthermore, bone is involved in
mineral homeostasis and the provision of bioactive molecules and hematopoietic
cells (van Blitterswijk and De Boer 2015). This being the case, the magnitude of
its tasks will necessitate the consideration of a multitude of factors when
constructing a bone tissue engineered construct. The combination of certain

basic elements is thereby involved:

a three dimensional and biocompatible scaffold conducive to cell

attachment

- skeletal stem or precursor cells such as MSCs

- bioactive molecules that induce differentiation and tissue formation
(growth factors)

- ahost or culture medium

- mechanical stimulation (Giannoudis, Einhorn et al. 2007)
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Thereby, autologous cells should be used for the engineered construct in order
to avoid vehement reactions of the host's immune system and the underlying risk
of rejection (Minuth, Strehl et al. 2002).

The applied scaffold is expected to provide a three-dimensional interconnected
pore network with surface properties that ensure cell attachment, cell
proliferation, cell differentiation, cell migration as well as metabolic processes,
vascularization and mechanical support. Biocompatibility and controllable
biodegradability are important for the formation and the remodeling of cells and
tissue. For a mechanical scaffold design, geometrical shape, size, porosity,
stiffness and strength of the material have to be taken into account, considering
furthermore the different size, location and type of bony defects (Woodruff, Lange
et al. 2012, Henkel, Woodruff et al. 2013).

The use of MSCs as well as periosteal cells and osteoblasts represent promising
strategies for the regeneration of new bone (Henkel, Woodruff et al. 2013).
Multipotent progenitor cells, MSCs, are able to transform themselves into various
osteogenic, chondrogenic and adipogenic tissues and therefore have the
potential to regenerate bone. Furthermore, they are relatively easy to isolate
(bone marrow aspiration) and to expand. However, the in vivo comportment in
humans and long-term effects remain little known (Berner, Reichert et al. 2012,
Lin, Sohn et al. 2018, Toosi, Behravan et al. 2018, Mousaei Ghasroldasht, Matin
et al. 2019).

Furthermore, bone tissue engineering requires an exact recapitulation of
signaling cascades for osteogenesis, chondrogenesis and angiogenesis in order
to heal properly (Gothard, Smith et al. 2014).

The controllable application of osteoinductive growth factors like fibroblast growth
factors (FGFs), PDGFs, IGF-1s, VEGFs and especially BMPs (see chapter 1.3.2)
has great impact on the mechanisms of the bone healing cascade and therein
performed cell differentiations (Sundelacruz and Kaplan 2009, Berner, Reichert
et al. 2012, Gothard, Smith et al. 2014). It has been demonstrated that the use of
growth factors as signaling molecules can increase bone formation and therefore
optimizes any tissue engineering strategy, whereby coordinated release ensures

their survival and bioactivity. However, the spatiotemporal orchestration (dosage,
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dynamics) is not yet completely understood (Rose and Oreffo 2002, Gothard,
Smith et al. 2014) and therefore decelerates the immediate implementation.
Additionally, a proper vascular network is crucial for an adequate integration and
the maintenance of the tissue engineered products (van Blitterswijk and De Boer
2015). One of the major difficulties constitutes the provision of sufficient blood
supply and hence oxygen delivery that is crucial for the long-term survival of cells.
The centered cells of such engineered constructs quickly decline before vital
blood supply is available (Santos and Reis 2010, Laschke and Menger 2012).
Since the process of necessary blood vessel ingrowth is too slow to ensure the
survival of the tissue engineered construct, Laschke et al. investigated two novel
strategies focusing on either the promotion of angiogenesis by blood vessels
provided by the construct surrounding host cells or the stimulation of
vascularization provided by preformed angiogenic networks that have already
been included into the implanted tissue engineered construct (Laschke and
Menger 2012).

Tissue engineered constructs represent a highly promising alternative to current
standard therapies. Unfortunately, they do not completely fulfill all the
requirements to become a routine in reconstructive surgery yet. There is still a
major discrepancy between research in tissue engineering of over 30 years and
its mainstream clinical application. Bara and Herrmann et al. recently published
survey data addressing the current obstacles of the clinical translation of cell-
based therapies in orthopedics, emphasizing the need for better comprehension
of the underlying mechanisms, for enhanced economic support mandatory for
fundamental research and for deeper transparency of regulatory processes
(Bara, Herrmann et al. 2016). Moreover, studies need to be further refined,
focusing on the establishment of standardized in vivo preclinical animal models
allowing comparison and reproducibility (Reichert, Saifzadeh et al. 2009). The
profound research of biological, physical, chemical, clinical and translational
scientists as well as representatives from industry might then pave the way to its

daily clinical application (Woodruff, Lange et al. 2012, Verrier, Alini et al. 2016).
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1.5 Preclinical animal models for bone tissue engineering

The use of appropriate bone defect animal models in preclinical research is
crucial for understanding of the physiology behind bone-healing cascades and
for testing of therapeutic strategies for the treatment of non-unions and critical-
size defects. To enable a reliable interpretation, precisely designed models need
to imitate the human physiology as effectively as possible. Furthermore,
standardization and reliability of research parameters as well as reproducibility in
between studies were described as preconditions for valid quantitative and
qualitative comparison and eventually translation into clinical application
(O'Loughlin, Morr et al. 2008). Therefore, the ARRIVE (Animals in Research:
Reporting In Vivo Experiments) guidelines have been developed. They intend to
ameliorate and maximize the description of utilized animals for research,
including a checklist of necessary facts to be indicated for published research on
animals (e.g. animal species, strain, gender, genetic background, conditions of
animal husbandry and housing, observation methods) (Kilkenny, Browne et al.
2010).

The following chapter provides information about parameters that should be
considered for the establishment of preclinical animal models in the field of bone

tissue engineering.

1.51 The animal choice

Various factors matter when it comes to imitating human conditions in bone
healing as close as possible. Thereby, the choice of the animal species, strain,

age and gender constitute important factors that need to be considered.

15.1.1 The species of the animal

Choosing the right animal species is already challenging when taking all
conceivable options into consideration (Tab.1l) (O'Loughlin, Morr et al. 2008,
Reichert, Saifzadeh et al. 2009, Gothard, Smith et al. 2014).
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Tab. 1 Factors affecting the choice of the animal species.

Aspects for animal model selection
Age Gender
Animal breeding and farming Genetic aspects
Animal size Growth behavior (growth plate characteristics)
Comparability with humans Immunosuppression necessities and methods
Costs State of health and metabolic condition
Ethical values Time of observation

In a review published in 2008, O’Loughlin et al. reported a prominent preference
towards the use of rodent animal models in fracture healing research (rat 38%,
rabbit 19%, mouse 15%) compared to large animal models (sheep 11%, dog 9%,
goat 4%, other 4%). This is not very surprising given the fact that small animal
models are mentioned to be easily available and more convenient to house, to
show faster healing rates than large animal models and to be genetically
manipulable. Furthermore, mice and rats exhibit higher bone turnover and
remodeling rates than large animals (O'Loughlin, Morr et al. 2008), whereby rats
are used very frequently since they were reported to show bigger girth compared
to mice, making surgical procedures and biomechanical testing more feasible.
Rabbits, however, exhibit even longer bones and larger joints compared with
other rodents and they were mentioned to quickly attain skeletal maturity. On the
other hand, the different structure and high metabolic activity of rabbit bone was
reported to have adverse effects on practical applicability since it might
complicate the extrapolation of study results onto results that could be expected
in human beings (O'Loughlin, Morr et al. 2008, Mapara, Thomas et al. 2012,
Gothard, Smith et al. 2014).

Moreover, small animal models were described to show differences compared to
large animal models in terms of mechanical load as well as stress conditions and
even though both endochondral and intramembranous bone formation (see
chapter 1.2.2) was mentioned to occur in rodent animal models, endochondral
ossification dominates (O'Loughlin, Morr et al. 2008).

In addition, when it comes to imitating human conditions in bone healing as
closely as possible, fixation methods and biomechanics can be better

recapitulated in large animals. In comparison with human properties, large
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animals provide more appropriate body weight and bone mineral density (Pearce,
Richards et al. 2007). Sheep, for instance, possess a body weight, a bone mineral
composition and remodeling rates that can be comparable to the one of adult
humans (Reichert, Saifzadeh et al. 2009). Furthermore, the macrostructure of
their long bones and the mechanical environment allows relatable comparison to
humans after the implantation of suitable constructs (Reichert, Epari et al. 2010).
However, cost-intensive husbandry for large animal models and the considerable
amount of time necessary to reach an appropriate age for research generally
complicates their standard use (Aerssens, Boonen et al. 1998, Pearce, Richards
et al. 2007, Gothard, Smith et al. 2014).

15.1.2 The strain of the animal

The work with small animal models demands special attention to the animal
strain. Depending on the strain, there are major differences in skeletal
morphology, bone mineral density, mechanical properties and cellular
metabolism (Beamer, Donahue et al. 1996, Ignatius, Rontgen et al. 2011).
Inbred mice and rats are the result of at least 20 consecutive generations of
brother-sister mating. Emerging from generations of inbreeding, each animal
represents the genetic clone of all other animals in the same strain and therefore
was reported to provide standardization by eliminating the disruptive risk of
genetic variability (Beck, Lloyd et al. 2000). Outbred stocks, on the other hand,
are the result from a closed population of at least 4 generations and show an
increased variability in genetic characteristics. They therefore were referred to as
genetically unique individuals with maximum heterozygosity (Chia, Achilli et al.
2005).

Among rats, Sprague Dawley or Lewis rats represent commonly used outbred
stocks that were mentioned to be easily accessible, manageable, and cost-
effective. However, the femur bone of outbred Wistar rats has been reported to
reflect human bone characteristics more likely than Sprague Dawley rats and
therefore may represent a more suitable model to imitate bone regeneration
(Drosse, Volkmer et al. 2008).
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Transgenic mouse (and recently rat) lines were mentioned to enable the study of
the influence of specific genes in the healing process (Cheung, Kaluarachi et al.
2003).

Since the application of tissue engineered constructs might entail the use of non-
autologous cells and materials and thus the release of a host immunological
response that might provoke the rejection of the implanted construct (Crupi,
Costa et al. 2015), a reduced immune response can be crucial. Nude mice and
rats are characterized by the absence of the thymus, which consequently leads
to an inhibited adaptive immune system. Therefore, nude mice were shown to be
able to accept different types of human tissue and cells without an immune

mediated rejection response (Belizario 2009).

1.5.1.3 The age of the animal

Furthermore, the animal's age represents an important factor in the bone healing
process. Healing time and healing rate vary with the age of the different animal
species. Bone fractures in young rats, for instance, were shown to heal within five
weeks by formation of an external periosteal callus, whereas medullary callus
formation was hardly reported to occur (O'Loughlin, Morr et al. 2008). Meyer and
Meyer demonstrated that rats considered as young (6 weeks old), as adult (26
weeks old) and as old (52 weeks old) showed significant differences in the
amount of time needed for bone formation after induced fracture. Thereby, the
age-related modification of mMRNA expression of genes responsible for bone
formation was mentioned to be one of the reasons (Meyer and Meyer
2007)(O'Loughlin, Morr et al. 2008).

The bone volume of 9-year-old ewes was shown to be comparable to the one of
men and women at the age of around 60 to 70 years. From a histological point of
view, however, ovine bone comprises mainly primary bone structure until the age
of 7 to 9 years, followed by a secondary bone structure with higher bone density
and strength compared to human bone (Pearce, Richards et al. 2007, Reichert,
Epari et al. 2010).
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In context of the growth characteristics, also the biology of the growth plate must
be taken into account. A fully completed closure of the growth plate signifies
skeletal maturity and hence represents an important parameter for bone healing
(Kilborn, Trudel et al. 2002). The time of growth plate closure in different mouse
strains, for instance, was mentioned to vary between an age of 3 to an age of 12
months, whereas other studies described growth plates in rodent animals to
remain disclosed throughout adulthood (Beamer, Donahue et al. 1996, Kilborn,
Trudel et al. 2002, Ignatius, Rontgen et al. 2011, Schindeler, Mills et al. 2018).
Moreover, previous studies demonstrated age associated slow-down in bone
defect bridging as well as delayed bone-healing rates in female mice, showing
that also the animal’s gender may have influence on the outcome of the healing
process (Lu, Hansen et al. 2008, Garcia, Histing et al. 2013).

In conclusion, it can be said that the provision of animal models that enable
studies with reliable comparison for the total bone healing process in humans is
nearly impossible. In fact, each animal model corresponds to a particular
research question addressed to different sections in the bone-healing cascade
(O'Loughlin, Morr et al. 2008).

1.5.2 The surgical design

After choosing the animal model, it is important to define a surgical protocol
which, depending on the different defect designs, may have considerable impact
on the outcome of the healing process. Thereby, specifications concerning the
defect type (simple fracture, open fracture), the defect size, the defect form
(segmental defect, drill hole), the defect model (critical-size defect, non-union
etc.), the defect localization (long bone, flat bone etc.) and the potential fixation
device need to be considered.

Simple fractures, also called closed fractures, do not penetrate the skin.
Compound fractures or open fractures, on the other hand, cause tissue and
periosteal damage. The rate of healing success in open fractures is lower than in
simple fractures due to risk of infection with pathogens that may easily enter

through the open wound (Schulte, Schumacher et al. 2011).
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The presence and the size of a gap in between the bone fragments represent an
important parameter. Bone fractures that do not show the presence of a gap heal
much faster and are not suitable for testing tissue engineered constructs
(O'Loughlin, Morr et al. 2008). However, the creation of critical-size defects can
be challenging regarding the many variables that need to be considered (Tab.2)
(Rimondini, Nicoli-Aldini et al. 2005, Lindsey, Gugala et al. 2006, Reichert,
Saifzadeh et al. 2009, Gothard, Smith et al. 2014).

Tab. 2 Factors affecting the quality of critical-size defects.

Aspects for characterizing a critical-size defect
Size of the defect Fixation method
Bone location Mechanical loading
Bone structure Animal species and strain
Vascularization and nutrition Immune status
Fracture type Age
Surrounding tissue and periosteum Gender

As already mentioned above, controllable fixation is important when it comes to
obtaining reliable results in callus formation, callus size and composition.
Fracture geometry and biomechanical conditions have great impact on the
healing process, whereby load-bearing parameters in calvarian defects may be
ignored. The fixation of bony defects in long bones can be achieved using internal
or external fixation devices including different methods and materials. Internal
fixation represents the most commonly used fixation method and can be
performed using plates, intramedullary screws, wires, pins or nails made of metal
or polyethylene (Drosse, Volkmer et al. 2008, O'Loughlin, Morr et al. 2008).
Thereby, stabilization can be obtained using a rigid or dynamic (allowing
interfragmental movement) fixation design. However, fixation methods that do not
allow any interfragmental movement at all happen to show low bone healing
stimulation (Ignatius, Réntgen et al. 2011). On the other hand, too much
movement may retard the healing process by inducing a larger callus formation
with lower mechanical stiffness and can therefore sometimes lead to
pseudarthrosis (Claes, Augat et al. 1997, Drosse, Volkmer et al. 2008, Ignatius,
Rontgen et al. 2011). Moreover, the use of wires alone does not provide suitable

rotational stability and therefore represents an inadequate fixation device for
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segmental defects. Drosse et al. compared different fixation methods (external
fixation devices and internal plates) in small animal models with regard to their
surgical and biomechanical fithess. Even though all devices showed satisfying
outcome in terms of bone bridging, the use of external fixations, compared to
internal plates, presented a technical more challenging surgical procedure and
complicated the post-operative manipulation (infection, fixation loss, higher costs)
(Drosse, Volkmer et al. 2008).

Additionally, Schindeler et al. recently reviewed studies on preclinical rodent
animals for bone tissue engineering, highlighting commonly employed fracture
models and therefore applied fixation methods. Thereby, fixation of critically sized
segmental defects in the femur, described as the gold standard model for
studying bone healing, was suggested, inter alia, with polyacetyl plate systems
combined with Kirschner wires (Schindeler, Mills et al. 2018).

Garcia et al reviewed previous studies that described surgical interventions in
rodent animal models resulting in delayed fracture healing or the creation of non-
unions, whereby the impact of different stabilization methods was discussed
(Garcia, Histing et al. 2013). Of note, quite apart from ethical aspects, poor or no
stabilization means also to enlarge the variability of callus size and composition
due to inaccuracy in fracture gap size, in localization of the bone fragments and
in interfragmental moving processes and hence should be considered
conscientiously, whether it be in the work with large animal models or with small
ones (Ignatius, Réntgen et al. 2011, Garcia, Histing et al. 2013).

Moreover, the use of different fixation methods can influence the outcome of
biomechanical tests (three-point bending tests, four-point bending tests, torsion
tests) that may be conducted to investigate the mechanical properties of the
healing bone (Manigrasso and O'Connor 2004).

The establishment of preclinical animal models to test bone tissue engineered
constructs demands hence the consideration of several factors and represents a
challenging scientific mission. Researchers need to choose within a broad variety
of possible defect designs, including the selection of an appropriate animal
species, animal strain, age, gender and at the same time applicable observation

methods. This can be complicated given the fact that currently no concrete
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guideline exists, which might be also one of the reasons for the persistent gap

between research studies and their clinical translation.

1.6 Objective of the thesis

For over thirty years, scientists from all over the world have been striving for tissue
engineered strategies to replace damaged bone and the number of published
papers addressing this matter has increased dramatically since 1985, starting
with less than 250 published papers on “Pubmed” between 1985 and 1987 and
more than 4000 papers in 2011 (Amini, Laurencin et al. 2012). Scientific research
in bone tissue engineering has made great progress with promising results.
However, the number of tissue engineered constructs with actual clinical
relevance remains low. Knowledge gaps persist referring to limitations in the
understanding of complex immunological aspects, potential side effects in the
host tissue, the selection of the most effective combination of cells, scaffolds and
bioactive molecules as well as the appropriate evaluation of the osseous quality
and functionality (Amini, Laurencin et al. 2012). Despite intense research activity,
clinical translation has so far been slower than originally expected and remains a
major hurdle that needs to be bridged. This so called "Valley of Death" (Hollister
2009, Summers-Trio, Hayes-Conroy et al. 2019) stands on immense costs and a
distinct lack of predictive preclinical models that would allow the routine clinical
application. Thereby, the necessity of designing animal experiments should be
mentioned as a motivation to streamline experimental procedures in order to
replace, reduce, and refine (ethical principle named “3Rs”) animal experiments
(https:/Iwww.bfr.bund.de/de/3r_prinzip-193970.html, July 26,2019) and in the
sense of the Max Planck society add a fourth “R” for responsibility
(https://www.mpg.de/10885134/3rs, July 26,2019). Moreover, Summers-Trio et
al. recently mentioned the importance of considering a patient’s biography and
biology in order to surmount the translational gap between research advances
and their application in the clinics (Summers-Trio, Hayes-Conroy et al. 2019).
Undoubtedly, once this valley will be bridged, medicine will find itself with

ceaseless possibilities for bone repair (Henkel, Woodruff et al. 2013).
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Therefore, this thesis aimed to evaluate the efficiency of currently used preclinical
models from the perspective of scientists, clinicians and clinical scientists from all
over the world. A survey was conducted addressing the matter of whether
preclinical animal models reflect the current need for bone replacements and how
researchers assess their potential clinical application. Furthermore, the survey
was designed to elucidate the most frequently used and most satisfying models
as well as their limitations. Additionally, an electronic literature research was
conducted in order to review the currently used study designs to test bone tissue

engineered constructs on preclinical animal models.
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2 Materials and methods

This chapter provides information about the survey development and the

literature research design for this thesis.

2.1 Introduction

The aim of this thesis was to compile a comprehensive survey that shows the
perceptions from both surgeons and scientists on currently used preclinical
animal models in the field of bone tissue engineering.

The study was designed in cooperation with the specialized "Junior Research
Group Tissue Regeneration in Musculoskeletal Diseases" of the IZKF Wirzburg,
which is led by Dr. Marietta Herrmann (http://www.med.uni-
wuerzburg.de/mcw/forschung/experimentelle-forschung/izkf-nachwuchsgruppe/,
28 August,2018) and the preclinical surgery department of the AO Research
Institute Davos.

Apart from that, a systemic overview of accessible literature in the field of bone
tissue engineering was compiled and compared to the data obtained with the
survey. Literature research was focused on preclinical in vivo studies testing bone

tissue engineered constructs for bone regeneration.

Analyses of the questionnaire and literature research outcome was performed
using “Microsoft Excel” (Microsoft-Office 365 by Microsoft Corporation). The
software was used for the description and the graphical representations of the
obtained data. Additionally, the scientific 2D graphing software “GraphPad”

(GraphPad Software, Inc.) was used.
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2.2 Survey design

2.21 Procedure of the survey

The targeted participants for this study were, on the one hand, surgeons with
professional background in orthopedic, trauma, craniomaxillofacial or veterinary
surgery and, on the other hand, scientists who do research in the field of bone

biology and regeneration.

Generally, surveys can be conducted using a wide range of distribution
possibilities such as written or oral forms and electronic media. For this thesis, a
web-based electronic survey was mainly used as it provides economical
advantage. Therefore, the survey was conducted by “soscisurvey.de”, an online
tool that enables the user to design and to apply online questionnaires
(https:/lwww.soscisurvey.de/, 28 August 2018). The questionnaire was
distributed via the respective web link and the collected outcome of the survey
was stored into a database automatically. A pilot study was performed in order to
pretest the survey and hence to reduce problems of misreading or
misinterpretation. The actual survey period extended from July 2017 to April
2018.

An invitation mail containing the link to the online questionnaire (shown in
supplementary figure S.1) was written to potential scientists and surgeons from
all over the world to inform them about the survey. Therefore, email-addresses
from surgeons working in orthopedic, veterinary and craniomaxillofacial clinics in
Germany, Switzerland, Austria, Italia, England and Spain were collected.
Furthermore, literature research in the field of bone tissue engineering was
conducted and therein indicated correspondence addresses from the authors
were contacted.

Additionally, a short article appeared in the “News and Views” section of the
Alternatives to Laboratory Animals (ATLA) journal to outline the issue of absent
clinical translation for bone tissue engineering and to draw attention to the online
survey project. Therefore, the article contained the survey link provided by

“soscisurvey” (Herrmann 2017).
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Moreover, the survey was handed out in paper form on the , Tissue Engineering
and Regenerative Medicine International Society“ EU Conference 2017 in Davos,
Switzerland (TERMIS, https://www.termis.org/, 28 August 2018).

The participation in the survey was voluntary. All the recruited respondents were
assured anonymity regarding their data and numerical coding was applied by

“soscisurvey” in order to differentiate the questionnaires.

2.2.2 Structure of the survey

The survey was clearly structured and different question types with different
response alternatives were used (Fig.3 and Fig.4). Selection questions permitted
only one answer, whereas multiple-choice questions allowed more than one

response. Text input was used when participants were asked to enter text.

The survey was divided into four broad categories. Firstly, three questions asking
about the professional background, the experience level and whether the award
of a PhD existed, were put in the survey. This category allowed the classification
of the participants according to their specializations and experience level.

Secondly, surgeons and scientists were surveyed separately about their work.
Thereby, surgeons were asked to indicate their number of surgical cases with
bone graft substitutes per year (ranging from none to more than 50 cases) and to
indicate what kind of bone graft they were thereby applying (autologous bone,
allogeneic bone, bone substitute, cement, none morphogenetic proteins or other).
Furthermore, two open text fields allowed surgeons to write down the most
common indications for bone grafting and possible fixation devices for such
defects. In addition, a question asking about how many cases surgeons would
treat with bone tissue engineered constructs if available (ranging from none to all
of their cases) provided information about their general attitude towards bone
tissue engineering. Additionally, scientists were asked to write down the
indications that they felt to require bone grafting and the indications targeted with

their research into open text fields.
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Thirdly, the general assessment of bone tissue engineering was queried, again
addressing all participants. To evaluate the participants’ perception, the first item
asked whether the participants thought that research on bone tissue engineering
was important or not. The respondents were asked to justify their answer (yes,
no) in an open text field. The following questions inquired whether the
respondents thought that bone tissue engineered constructs would ever become
clinically available or not (yes, no) and if yes, how long it would take (ranging from
5 to more than 20 years). Furthermore, the participants' feeling about currently
used preclinical models for research on bone tissue engineering was queried.
Thereby, the question investigated the quality of the models, ranging from well-
developed and clinically applicable to worthy of optimization.

In a final step, participants doing preclinical research were asked to describe their
animal models in detail (animal species, age, gender, strain, observation time
and methods, implantation site, defect model, defect size and type, fixation
methods) and to differentiate between most and least satisfying model designs.
Additionally, researchers were asked to evaluate their animal model (very
satisfied, mostly satisfied, not satisfied) and to assess its clinical relevance (yes,
no).

Finally, an open text field for comments was provided at the end of the survey.
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IZKFWiirzburg A2 AO Foundation
Research Group Preclinical Services

Tissue Regeneration in Musculoskeletal Diseases Dr Stephan Zeiter )

Dr Marietta Herrmann, marietta herrmann@uni-wuerzburg.de stephan zeiter@aofoundation.org

What is your professional background?
O Trauma surgery 0 Orthopedic surgery [ Craniomaxillofacial surgery 0 Veterinary surgery
O Scientist, trained in

0 Medicine 0 Biology 0 Chemistry 0 Engineering O

0O Representative from industry
0 Other, please specify

0 TholdaPhD

Surgeons All others

How many cases do you treat by applying Which indications require bone grafting?
bone grafting per year?

Onone 0110 01050 0O>50
What kind of bone graft do you use most
frequently?

0 autologous bone [ allogeneic bone s
0 bone substitute [ cement
0 BMP or similar

0 other

What is the most common indication where | What indication do you target with your
you apply bone graft? research?

How many of those would you treat with a
bone tissue engineered construct if
available?

0O all 0 most of the cases [ few [J none

If applicable, what fixation method do you
use most frequently for these cases?

Do you think research on bone tissue engineering is important?
O yes O no Why?

Do you think bone tissue engineering constructs will ever become clinically available?
0O yes O no

Fig. 3 Page one of the survey. The survey was conducted in order to evaluate scientists’ and
surgeons’ general assessment of bone tissue engineering and preclinical animal models.
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If yes, how long will it take?
approx.0] 50 100 20 O >20years

What is your feeling about the preclinical models, which are currently used to test bone tissue
engineered constructs?

7 The models are well developed, reproducible and results translate well in the clinic
] The models are well developed and reproducible but do not translate in the clinic
1 The models need optimization

1 The models are poor

0 | don’t have experience with preclinical models.

If you do preclinical research, which model are you currently using to test the success of bone
tissue engineered constructs? (If you have used several models, please provide information
for the two models with which you are (1.) most satisfied and (2.) least satisfied.)

1. Species Age | Gender | Strain/ Duration of | Analysis
Genotype | Observation | Methods
[J sheep

0 rabbit
0 rat

J mouse
) other:

Implantation site: 7] ectopic [ orthotopic  Please specify site:

Defect: (] segmental defect [ drill hole [ simple fracture 0

Defectsize:
if applicable, is the model: [ a critical size model [ non-union model or 71 normal healing
model
Fixation: 0 none [ external fixator 1 intemal plate [ intramedullary nail
a
How satisfied are you with the model? [ very satisfied 7 mostly satisfied [ not satisfied
Is the model clinically relevant? O yes O no
2. Species Age | Gender | Strain/ Duration of | Analysis
Genotype | Observation | Methods
] sheep
[J rabbit
0 rat
[J mouse
0 other:

Implantation site: 7] ectopic ] orthotopic Please specify site:

Defect: (] segmental defect [ drill hole T3 simple fracture O

Defectsize: __
Is the model: 0 a critical size model 3 non-union model or 01 normal healing model
Fixation: 0 none [Jextemalfixator [ intemalplate 0 intramedullary nail

0
How satisfied are you with the model? ] very satisfied [ mostly satisfied [ not satisfied
Is the model clinically relevant? 0O yes 0O no

Comments:

Fig. 4 Page two of the survey
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2.3 Literature research design

2.31 Paper selection process

An online literature research was conducted in order to evaluate currently used
preclinical animal models for testing of bone tissue engineering constructs on
their different study designs and frequency. Therefore, the electronic database
“‘Pubmed” was searched for relevant anglophone literature of the last ten years
spanning from January 2008 to May 2018. The inclusion criteria were determined

and applied on “Pubmed” as follows:

Search: "tissue engineering" AND "bone" AND ("bone defect” OR "fracture") AND
("tibia" OR "femur" OR "cranium" OR "calvaria" OR "radius" OR "humerus" OR
"ulna"” OR "maxilla" OR "mandible”) AND ("in vivo" OR "animal model" OR
"mouse” OR "mice" OR "rat" OR "sheep" OR "goat" OR " rabbit" OR "horse" OR
"pig" OR "dog" OR “mural” OR "equine" OR "porcine" OR "canine" OR "ovine"
OR "rodent")

The key words "tissue engineering" and "bone" were included separately in the
research field in order to minimize the specification and to obtain more research
results. The aim was to evaluate orthotopic models including a "bone defect" or
"fracture” within the most commonly used bones, namely "tibia", or "femur", or
"cranium”, or "calvaria" (as synonym) or "radius", or "humerus", or "ulna", or
"maxilla”, or "'mandible”. Furthermore, animal species were determined following
the general usage of different kinds of large and small animal models. Thereby,
adding the terms "in vivo" and "animal models" was meant to expand the outcome
range of literature research on “Pubmed”.

Reviews were excluded from the search such as articles describing pure in vitro

studies or in vivo studies utilizing ectopic models.
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2.3.2 Literature review

Obtained data on preclinical animal models was tabulated and summarized
graphically. First, the authors name and the target of the research design
described in the selected paper were noted, followed by the indicated information
about the applied animal model specifications. Therefore, details about the
animal species, the animal age as well as its gender and strain were searched
and listed. Furthermore, information about the surgical procedures within the
preclinical animal models was collected, generally including details about the
anatomical location of the defect, the defect size and form, the defect model as
well as the applied fixation method. The papers were then searched for
indications of whether a negative control was conducted or not and if yes, whether
bone bridging occurred in the empty defect or not. After the description of the
surgical design, the paper usually indicated the observation time and observation
method which was also extracted for evaluation.

If the paper did not provide any information about one of the research details
listed above, the missing information was replaced with "/", when listed in an
“‘Excel” table. The age of the animal was sporadically described as "adult" or
"skeletally mature". This information was then classified as "not defined". The
same applies to the healing of the empty defects if neither bone bridging nor the

remaining of a gap were indicated precisely.
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3 Results
3.1 Outcome of the survey

This chapter presents the results from the survey analysis. Supplementary table
1 (Tab-S.1) describes the necessary variables to decode the full set of the online
collected data from the survey which is provided in supplementary table 2 (Tab-
S.2). The table shows the outcome in the way it has been registered by
“soscisurvey” for retrieval. Altogether, 70 surveys were filled out thoroughly in

paper form or online. Incomplete surveys were excluded from the analysis.

3.1.1 Background and experience of the participants

Among the participants, 51% were surgeons (specialized in trauma, orthopedic,
craniomaxillofacial or veterinary surgery) and 42% of the respondents were
scientists trained in medicine, biology, chemistry, engineering or representatives
from industry. Participants working as both surgeon and scientist (7%) are
referred to as clinical scientists (Fig.5A). Fig.5B represents the percentage

distribution of scientists and surgeons in the different specializations.

A background B specialization

Scientist NG 0%
Trauma surgery NN 5%

B Srgenns Orthopedic surgery NN 0%
Bsienfiss CranloSnJ?gx;IrI;faual . o
1 0,
w i) Veterinary [l 9%
scientists

Industry | 1%

Other M 9%

0% 20%  40%  6B0%

Fig. 5 Professional background of the participants in the survey, n=70. A. The graph shows
the professional background of the respondents. B. The diagram indicates the professional
background of surgeons subdivided into specializations; several answers were possible.
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To evaluate the experience and education level of the participants, questions
concerning the number of working years and the obtainment of a PhD degree
were posed. In addition, for the surgeons, the number of with bone graft treated
cases provided a reference of their experience level. Clinical scientists will
hereinafter be ranked among the surgeons as well as the scientists.

Thereby, 22% of surgeons stated to have 0 to 5, 11 to 20 or more than 20 years
of work experience, respectively, and 34% indicated to have 6 to 10 years of work
experience (Fig.6A). Among the surveyed surgeons, 49% hold a PhD (Fig.6B),
making reference to their experience level in research.

When asking scientists about their experience, 25% stated to have 0 to 5 years
of work experience, 28% 6 to 10 years, 19% 11 to 20 years, and 28% more than
20 years (Fig.6C).

A surgeons: working years b surgeons: PhD
B0% B0% .
49% 51%
40% 34% 40%
22% 22% 22%
%
- l l I h
0%
0-5years B-10 11-20  =20vyears 0%
years years yes no
C scientists: working years
B0%
40%
o 28% 28%
19%
20% —
0% |
0-5 years 6-10 years 11-20 years >20 years

Fig. 6 Experience level of the participants in the survey. A. The graph shows the number of
years that surgeons have worked in their domain, n=41. B. The graph shows the number of
surgeons with PhD degree, n=41. C. The graph indicates the number of scientists' working years,
n=33.
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Since the number of treated cases per year may also provide information about
the experience level, a representation of the performed surgeries applying bone
graft materials per year is shown in Fig.7. Hereby, 23% of the surgeons and
clinical scientists stated to perform less than 10 cases per year, 49% operated 10

to 50 cases and 28% of the participants performed more than 50 cases per year.

treated cases per year
60%

49%

40%
28%

23%

20%

0%

0%

none 10-50 >50

Fig. 7 The number of cases that participants treated with bone graft materials per year,
n=34.
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3.1.2 Surgeons

In this chapter, the survey outcome obtained by surgeons shall be assessed
individually. The results from the questioned scientists will be detailed later (see
chapter 3.1.3).

3.1.2.1 Application of bone graft materials

Fig.8 represents bone graft materials that are currently used by the surveyed
surgeons in clinical routine. In the first place, all primarily applied bone graft
materials were evaluated, whereby autologous bone represented the most
commonly used bone graft material (58%) next to allogeneic bone (19%) (Fig.8A).
Secondly, bone graft materials used by surgeons that treat more than 10 cases
per year (Fig.8B) were evaluated, revealing almost the same distribution for the
utilized bone graft materials.

A bone graft material B >10 cases
4% 4%
mautologous
Y Mautologous
mallogeneic
mallogeneic

Whone substitute )
mbone substitute
Hcement

BMP or similar

mother

cement
BMP or similar

Fig. 8 The currently used bone graft materials by the surveyed surgeons. A. The graph
shows an overview of the applied bone graft materials, n=36. B. The graph indicates the bone
graft materials used by surgeons who treat more than 10 cases per year, n=26.
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Thirdly, autologous and allogeneic materials were quantified and imaged
individually depending on the experience level of the surveyed surgeons (working
experience) since they represent the majority of the utilized bone grafts, whereas
bone substitute, cement, bone morphogenetic protein, hydroxyapatite and [3-
tricalcium phosphate constitute only a minor part and were therefore summarized
into a sums list (other) (Fig.9).

mallogeneic mautologous  other
100% 0%
23% 22% .
80% 33%
IS
D 60% 7%
2
o 54% 56%
el
T 40% 56%
[7}]
3
- . . .
o BN
0-5 years 6-10 years 11-20 years >20years
experience

Fig. 9 The most commonly applied bone graft materials by surgeons depending on their
experience level, n=36.

3.1.2.2 Indications for bone graft materials

Regarding the indications for bone graft application, 50% of the surgeons named
large bone defects to be one of the most common indications requiring bone graft
materials. The application of bone graft for non-union defects was mentioned by
30% and the remaining participants implied other indications such as hip
replacement or vertebral fusion surgery (spondylodesis) (Fig.10). For defect
restoration, 71% of large bone defects (Fig.11A) as well as 67% of all non-unions
(Fig.11B) are treated with autologous bone by the respondents in the survey.
Allogeneic bone and other bone grafts such as bone substitute, cement or bone
morphogenetic protein, represent less than half of all bone graft materials applied

for defect restorations.
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indications for bone graft application

®large bone defect
mnon-union
Erevision hip arthroplasty

© spondylodesis

Fig. 10 The most common indications that surgeons mentioned to require the application

of bone graft material, n=34.

A

treatment of large bone

defects

® autologous
= allogeneic
 other

B

treatment of non-unions

®autologous
mallogeneic
“other

Fig. 11 The restoration of common bone defects with different bone graft materials. A. The
graph indicates the number of bone graft applications for the treatment of large bone defects,
n=17. B. The diagram shows the number of bone graft applications for the treatment of non-
unions, n=11.
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3.1.2.3 Surgeons' opinion on bone tissue engineering and
preclinical animal models

In terms of attitude towards bone tissue engineering, surgeons were asked how
many of their cases they would treat with a bone tissue engineered construct, if
available. A 4-point scale with the answer options of "all of the cases" up to "none
of the cases" was used, whereby 62% of the surgeons affirmed that they would
treat all or most their cases with an engineered construct, if available, and 38%

only a few or none of their cases (Fig.12).

treatment with bone tissue engineered construct

16%

) mnone
32% mfew
most of the cases

46% 4l

Fig. 12 Number of cases that surgeons would treat with abone tissue engineered construct
if available, n=31.

Additionally, Fig. 13 shows the different kinds of bone defects as indicated by the
surveyed surgeons and their answer to the question of whether they would treat
such defects with a bone tissue engineered construct or not. In the case of large
bone defects, 54% of the surgeons would use a tissue engineered construct for
all or most of their cases, whereas 46% would use such a construct for only few
or none of them. When treating non-unions, 33% of surgeons would apply an
engineered construct, if available, on all or most of the defects and 67% on only

few or none.
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defects potentially treated using bone tissue engineering

constructs
mall/most few/none
100% —— ———————— ———————— ———————— ——
25%
o, 4 | EE— EE— EE— —
80% 46%
67%
60% +——— —
100%
40% - -
20% - —
00/0 ; T 1
large bone defects non-unions spondylodesis Revision hip arthroplasty

Fig. 13 The potential usage of bone tissue engineered constructs as indicated by the
surveyed surgeons, n=31. The graph depicts how many of the respective cases surveyed
surgeons would treat with bone tissue engineered constructs if available.

Furthermore, to evaluate surgeon's perception of preclinical models designed to
test bone tissue engineered constructs, they were asked to rate the quality of
such models. Their general assessment was that preclinical models for bone
tissue engineering are well developed, reproducible but do not translate well in
the clinic (45%) and that models need optimization (32%). None of the surgical
respondents thought that models were poor and 13% had no experience with

such constructs (Fig.14).

surgeons: feeling about preclinical models

models are well developed reproducible and results P
translate well in the clinic - 10%

models are well developed reproducible but do not _ 45%
translate well in the clinic )
models need optimization || A 3%

models are poor 0%

no experience [ NN 13%

0% 20% 40% 60%

Fig. 14 Surgeons‘ feeling about preclinical models, n=31. Several answer options were
possible to choose for this question.
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Surgeons with more professional routine were then particularly taken into
observation in order to get a profound point of reference (Fig.15). Additionally,
surgeons working more than 10 years had been compared to those who have
been operating for less than 10 years in their specialization (Fig.15 and Fig.16).

A >10 cases

well developed reproducible results translate well in

the clinic
well developed reproducible, do not translate well in
the clinic

neeo optimization

poor

4%
I 50%
I 25%

0%

no expetience NN 11%

0% 20% 40% 60%

what is your feeling about preclinical models?

>10 cases
B0%

46%

40% 1%
19%

all few

how many cases would you treat with bone tissue engineered constructs?

20%
4%
=
none

0%
maost

Fig. 15 Surgeons treating more than 10 cases per year and their perception of preclinical
models and bone tissue engineering, n=26. A. The graph shows surgeons' opinion on the
currently available preclinical models. B. The graph shows the number of cases surgeons would
treat with a bone tissue engineered construct if available.

Among the surgeons who treat more than 10 cases per year, 50% thought that
preclinical models for bone tissue engineering showed reproducible, though not
translatable outcome for the clinics and 35% marked that models needed further
development (Fig.15A). Furthermore, 65% of them would use bone tissue
engineered constructs for all or most of their cases, whereas 35% would use only
few or even none of the constructs (Fig.15B). Hence, numbers did not

differentiate remarkably between the general feeling about preclinical models and
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the one that surgeons with more work routine showed (compare Fig.14).
However, the general disposition to actually apply new tissue engineered
constructs on all or most of the cases in the clinics was less supported among
surgeons with fewer experience than among those with more experience, namely
by only 43% compared to 65%.

Among the surgeons with a longtime career background, 63% would treat all or
most of their large bone defects with a bone tissue engineered construct, whereas
only 43% of those with less than 10 years of experience would do so (Fig.16A).
When treating non-unions, 40% of surgeons with more experience and 25% of
those with less experience would treat their cases with a tissue engineered
construct (Fig.16B).

A surgeons: treatment of large B surgeons: treatment of non-
bone defects unions
100% 100%
a0% L — 80% ==
57% BO0%
60% +—— — — B0% 79% —
0% 1— | L few/none 0% ! _ few/none
mall/most mall/most
0% +— - : 20% . - -
0% +— — — 0% +— — .
0-10 years =10 years 0-10 years =10 years
experience expetience

Fig. 16 Surgeons and their attitude towards bone tissue engineered constructs for osseous
defects by considering their experience level. The graph shows surgeons with more and less
professional experience and their willingness to treat large bone defects (A, n=17) or non-unions
(B, n=11) with bone tissue engineered constructs, if available.

In the survey, autologous bone graft was mentioned most often to be applied by
surgeons for the repair of bone defects. It represents the most popular material
among the surveyed surgeons, whether it was for surgeons who had more than
ten years of experience or less. Therefore, autologous graft was investigated
individually and compared to the potential use of bone tissue engineered
constructs. In case of large bone defects, 67% of surgeons with more experience

and 60% of surgeons with less experience would use a tissue engineered
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construct, if available, for cases they currently treat with autologous bone graft
(Fig.17A). Among the surgeons who have been working for over 10 years and
who currently use autologous bone graft material for non-unions, 33% would use
a tissue engineered construct for most or all of their cases, whereas 67% would
not rely on bone tissue engineered constructs for most of their cases. When
asking surgeons with less than 10 years of experience, 75% would only treat few
or none of their non-union cases with bone tissue engineered constructs
(Fig.17B).

A autologous bone for large B autologous bone for non-
bone defects unions
100% 100% —
80% 40% 3% 80% VE— L
0,
BO0% +— — — B0% 75% s
40% | few/none 40% | few/none
mall/maost ®all/most
Ml N B . t
0% ‘ — 0% ‘ :
0-10 years =10 years 0-10 years =10 years
experience experience

Fig. 17 Surgeons who use mainly autologous bone graft materials for the repair of bone
defects and their attitude towards bone tissue engineered constructs by considering their
experience level. A. The diagram presents the potential use of bone tissue engineered
constructs by surgeons who mainly use autologous bone to repair large bone defects and who
have been working more than or less than 10 years, n=12. B. The diagram presents the potential
use of bone tissue engineered constructs by surgeons who mainly use autologous bone for non-
unions and who have been working more than or less than 10 years, n=7.

Furthermore, the aim was to explore the underlying motives for surgeons'
different perception and attitude towards the potential use of bone tissue
engineered constructs in the future. Therefore, Fig.18 represents the current
surgical use of bone graft materials and surgeons' feeling about preclinical
models. All surgeons were divided into two groups, one representing surgeons
who would treat few or no cases (Fig.18A) and the other one showing surgeons
who would treat all or most of their cases with bone tissue engineered constructs,
if available (Fig.18B).
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B all/most of the cases
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no experience
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Fig. 18 Potential application of bone tissue engineered constructs by surgeons
considering what they currently use as material for bone grafting and their perception of
preclinical models. A. The graph represents the number of surgeons who would treat few or no
cases with such constructs, n=13. The left part of the graph shows the currently used bone graft
material and the right part surgeons' assessment of present animal models. B. The diagram
outlines surgeons who would treat all or most of their cases with bone tissue engineered
constructs, n=22. On the left, bone graft materials which they usually apply are represented and
on the right surgeons' feeling about current preclinical research using animal models.
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3.1.3 Scientists

Whereas the previous chapter outlined the obtained data from the survey when
filled out by surgeons, the following chapter evaluates the outcome of the survey
and the perception of preclinical bone healing from a scientific point of view.
Therefore, the obtained answers from scientists and clinical scientists were

evaluated.

3.1.3.1 Indications for bone tissue engineered constructs

Concerning the targeted indications for bone tissue engineered constructs, 37%
of the researchers referred to large bone defects, 19% to critical-size defects and
41% mentioned non-unions to represent a major indication targeted with bone
tissue engineered constructs. Some scientists referred to spinal fusions as
targeted objective for research, although it represented only a small percentage

(3%) of the indications mentioned in the survey (Fig.19).

indications targeted with research
60%
41%

40% 37%

19%
20% v

0% ==
large bone defect cntical-size defect non-union spinal fusion

Fig. 19 The graph represents the different indications for bone tissue engineering targeted
with the research conducted by the participants of the survey, n=25. Large bone defects
were referred to defects associated with tumor excision, trauma, infections, osteonecrosis or
dental implantology. Non-unions were referred to pseudarthrosis or delay of consolation.
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3.1.3.2 Scientists' opinion on bone tissue engineering and

preclinical animal models

As already performed on the answers of the surgeons, scientists were divided
into two groups by taking their experience level into account. The first group
represents scientists with less than 10 years of professional experience and the
second group scientists with more than 10 years of experience. Among those
with less experience, 26% thought that preclinical models are well developed but
do not translate well in the clinics, whereas 11% indicated that models do
translate well in the clinics. Moreover, 53% replied that models need optimization
and 5% thought that they are poor. The remaining respondents did not have any
experience with research on animal models (Fig.20A). Among the scientists
having more than 10 years of experience, 35% considered models as not well
translated in clinics. In comparison, 6% of them responded the contrary and 47%
thought that they need optimization, while 12% described the models as poor
(Fig.20B).

A <10 years of experience B >10 years of experience
models are well models are well
developed reproducible - 11% developed reproducible . 6%
and results translate.... and results translate...
models are well models are well
developed reproducible [ 26% developed reproducible |G 35%
but do not translate... but do nottranslate...
models need models need
optimizaﬁon _ 53% Optimizatjon _ 47%
models are poor [l 5% models are poor [l 12%
no experience l 5% no experience 0%
0% 20% 40% 60% 0% 20% 40% 60%

Fig. 20 Scientists and their attitude towards preclinical models considering their work
experience. The diagram shows scientists' feeling about preclinical models when having less
than 10 years of professional experience (A, n=19) and more than 10 years of professional
experience (B, n=15).
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3.1.4 Evaluation of preclinical animal models indicated in the
survey

One of the main objectives of this thesis was to explore what kind of animal
models are currently used in the research field for bone tissue engineering and
to evaluate these models regarding their study outcome and translational
success.

To evaluate currently available preclinical animal models, scientists were asked
to describe the models that they are using and to indicate, whether they were

satisfied with the outcome or not.

3141 Establishment of animal models for bone tissue
engineering

The participants were asked to describe the animal models that they were or are
currently using for research on bone tissue engineering. The question was
constructed as a table with open text spaces to fill in the answers. Fig.21 shows
the percentage distribution of all animal species, gender, implantation sites and
defects that were used in the preclinical research models by the survey
participants.

Most of the studies were conducted in small animals, namely rats (36%), mice
(22%) and rabbits (11%). Large animal models such as sheep and goats were
used in 28% of the described studies. The remaining 3% were performed on
minipigs (Fig.21A).

In terms of gender, 28% of the studies were conducted in male animals, 28% in
female animals and 44% in animals of both sexes (Fig.21B).

The implantation sites indicated in the survey varied mainly between femur
(55%), tibia (30%) and cranium (6%). The remaining defects (other) were
performed either in the jaw (mandible) or in the metatarsus (Fig.21C).

When researchers were asked to define the defect model they were working with,
21% described their defect as a simple fracture, 10% as a large bone defect, 50%
as a critical-sized defect and 12% as a non-union. If created defects were

indicated in the survey but could not be clearly assigned to one of the defect
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definitions represented in the graph, they were put in the category named

"other"(Fig.21D).

A animal gender
m goat
= minipig
= male
mouse
. = female
" rabbit
= both
mrat
m sheep
C implantation defect
usimple
fracture
. ularge bone
m cranium defect
u femur critical-size
tibia defect
other non-union
m other

Fig. 21 Models that are currently used as indicated in the survey. If participants mentioned
several models in the same survey, they are listed separately A. The graph pictures all animal
species used in the studies, n=36. B. The chart represents the animal gender that researchers
were working with, n=36. C. The diagram shows the different implantation sites for the defects,
n=33. D. The graph indicates the defect types created for testing the bone tissue engineered

constructs, n=33.

When using the femur bone as implantation site, 80% of the defects were

designed as segmental defects and 20% as drill holes (Fig.22A). Tibial defects

were in 69% of segmental design and in 31% drill hole defects (Fig.22B).
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A femur B tibia

® segmental msegmental
defect defect
mdrill hole mdrill hole

Fig. 22 Defect models in femur and tibia. The graph shows the different surgical designs for
the defects that were created in the femur of the animals (A, n=20) and in the tibia of the animals,
(B, n=13).

3.1.4.2 Satisfaction with the research outcome

Next, the outcome of the reported studies utilizing different preclinical animal
models was evaluated. Therefore, scientists and clinical scientists were asked to
classify the research outcome of their animal model design according to their
satisfaction with it.

Research with goats, mice and rabbits as animal models was described with
equal frequencies in the category most and least satisfied, whereas the work with
rats and sheep was described proportionally more often in the category most
satisfied (Fig.23A). Half of the defects conducted in the cranium, 58% of the
femoral defects and 80% of the tibial defects were mentioned in the category of
satisfying models (Fig.23B). Furthermore, half of the large bone defects, 56% of
the simple fractures, 71% of the critical-sized defects and 80% of the non-unions
provided satisfying outcome (Fig.23C).
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A animal model
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Fig. 23 Researchers' satisfaction with the outcome of currently used animal models. Data
computing was performed using the total count of answers in one category (animal species,
implantation site, defect type) as reference for calculating afterwards what percentage of the total
amount represents the most and least satisfied outcome. The graph shows the outcome for the
two categories, most and least satisfied, when using different animal species, (A, n=36), different
implantation sites (B, n=33) and different defect types (C, n=42).

Segmental defects in the femur were mentioned with 63% in the category most
satisfying outcome, whereas drill holes in the femur were exclusively mentioned
in this category (Fig.24A). In comparison, drill holes in the tibia showed only 75%
of satisfying outcome, whereas segmental defects convinced with 89% in the

positive outcome category (Fig.24B).
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Fig. 24 Researchers' satisfaction with the experimental outcome when using different
types of defects in the femur and tibia. Data computing was performed using the total count of
answers in one category (segmental defects/drill holes in the femur and tibia) as reference for
calculating afterwards what percentage of the total amount represents the most and least satisfied
outcome. The graph shows the outcome for the two categories most and least satisfied when
using segmental defects and drill holes in the femur (A, n=20) and segmental defects and drill
holes in the tibia (B, n=13).

The surgical procedure of creating a bony defect in animal models may,
depending on the defect site, include the application of different fixation methods,
which may themselves influence the outcome of a study. Participants of the
survey were therefore asked to describe their fixation device, if applied. The
obtained answers from researchers showed that segmental defects in the femur
were mainly fixated with plates (53%) or intramedullary nails (26%), whereas
most of the segmental defects in the tibia were stabilized by plates (45%) or
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external fixators (33%) (Fig.25A and Fig.25B). Femoral drill hole defects were
performed without fixation in 75% of the cases (Fig.25C). The same applies to
drill holes in the tibia (Fig.25D).

A segmental defect femur B segmental defect tibia
5%
mnail
unail
mplate
mplate
e_xternal
fixator external
none fixator
C drill hole femur D drill hole tibia
mplate uplate
none none
75% 75%

Fig. 25 Fixation methods for different kinds of defects in the femur and tibia. The graph
shows the fixation methods used for segmental defects in the femur (A, n=19), segmental defects
in the tibia (B, n=9), drill holes in the femur (C, n=4) and drill holes in the tibia (D, n=4).

The different animal models described in the survey were once again evaluated
individually with regard to the applied fixation methods and the satisfaction of
researchers with the models. Thereby, femoral and tibial segmental defects
stabilized by nalils, plates and external fixators were most commonly mentioned
to be satisfying in more than half of the cases. Unfixed segmental femoral defects,
however, were only mentioned in the not satisfactory category, but represent only
one case in the survey (Fig.26A and Fig.26C). Drill holes in the femur provided

satisfactory outcome regardless of whether plates had been used or not
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(Fig.26B), whereas drill holes in the tibia did not satisfy in 33% of the cases in
which no fixation stabilized the defect (Fig.26D).
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Fig. 26 Fixation methods used in femoral and tibial defects and researchers' satisfaction
with them. The graph shows researchers’ satisfaction with the fixation methods used in femoral
segmental defects (A, n=19), femoral drill holes (B, n=4), tibial segmental defects (C, n=9) and
tibial drill holes (D, n=4).
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3.1.5 The assessment of bone tissue engineering from a
scientific and surgical point of view

Main focus of this thesis was to evaluate the assessment and general perception
of scientists and surgeons on bone tissue engineering and its potential way in the
clinics. A particular interest laid in its future development — i.e., the evaluation of
how researchers try to adapt and to potentially renew the design of preclinical
animal models in order to achieve clinical translation of bone tissue engineered
constructs. Therefore, the survey included the question of whether bone tissue
engineered constructs would ever become relevant in clinical practice and if yes,
how long it would take.

When asked whether research on bone tissue engineering was important,
nobody answered in the negative. A designated open text field was part of the
guestion for answering why research on bone tissue engineering was considered
important. Here, aspects concerning donor site morbidity, costs and the need for
alternatives to conventional bone grafts have been mentioned repetitively. In
particular, the need of an alternative to today's gold standard, autologous bone,
was noted. Autologous bone was described to be often limited in quantity and not
capable to heal in a satisfactory manner, especially when it comes to larger bone
defects.

The assessment of preclinical models for testing bone tissue engineered
constructs had already been illustrated individually for surgeons and scientists
(Fig.14 and Fig.20). Now, Fig.27 represents surgeons' and scientists' feeling
about such models in comparison. Generally, scientists showed a more
pessimistic perception of the models than surgeons. The broad assessment of
surgeons was that preclinical models for bone tissue engineering were well
developed and reproducible (45%) but do not translate well in the clinic, whereas
scientists confirmed this statement in only 30 % of the cases. Further optimization
for the models was underlined to be necessary by 32% of the surgeons and 50%
of the scientists. The minority of both surgeons and scientists reported that
models were sufficient and adequate for clinical translation. However, again, this
opinion had a greater presence among the surgical respondents (10%) than

among the scientists (8%). Moreover, none of the surgical respondents thought
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that models are poor, whereas 9% of scientists marked this answer with a cross.
Surgeons who had no experience with such models occurred naturally more often
(13%) than scientists (3%).

feeling about preclinical models

models are well developed reproducible and results 10%
translate well in the clinic ‘8%

models are well developed reproducible but do not
translate well in the clinic

45%

models need optimization 50%

models are poor

no experience La% ‘ 13%

0% 0% 20%  30% 40%  50%  60%

surgeons M scientists

Fig. 27 Respondents' feeling about preclinical animal models; several answers were
possible, scientists: n=34, surgeons: n=31.

Fig. 28 summarizes the perception of the surveyed scientists and clinical
scientists on preclinical research models for bone tissue engineering.
Furthermore, it reflects the opinion of the survey respondents on the possible
breakthrough of bone tissue engineering in today's clinical practice. When asking
scientists whether the applied animal models were clinically relevant or not, 77%
of the surveyed researchers affirmed the models as relevant (Fig.28A). In this
context, all participants in the survey were asked if they could envisage the actual
clinical translation of bone tissue engineered constructs in the future. This was
affirmed by 98% of all respondents (Fig.28B).
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Fig. 28 The assessment of preclinical animal models and the potential clinical availability
of bone tissue engineered constructs in the future. A. The graph represents the relevance of
currently used animal models, n=31. B. The graph indicates the possibility for bone tissue
engineered constructs to become clinically available (scientists and surgeons point of view), n=67.

After confirming the possible translation of bone tissue engineering in the clinics
by almost all participants, the point of interest was then to perceive an idea of
how long it would take. Therefore, a question concerning the estimated period of
time required to achieve clinical application of bone tissue engineered constructs
realistically was part of the survey. Thereby, the participants did not always
estimate actual clinical translation as imminent. However, only 5 years until
clinical application were indicated to be necessary by 31% of the scientists and
19% of the surgeons. 10 years for achieving clinical translation were assumed by
61% of the surgeons and 41% of the scientists, showing a slightly greater
optimism from the surgical side. The remaining smaller part of the participants
(28% of scientists and 20% of surgeons) marked 20 years or more to be realistic
for actual clinical application. Nevertheless, the majority of both surgeons (80%)
and scientists (72%) deemed clinical translation in the nearer future (5 to 10
years) possible, whereby surgeons affirmed a slightly more optimistic assumption
(Fig.29A and Fig.29B).
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Fig. 29 The estimated time for bone tissue engineered constructs to become clinically
applicable. The graph indicates the duration (years) as estimated by surgeons (A, n=28) and
scientists (B, n=29).

3.1.6 Issues for further discussion

At the end of the survey, respondents were asked to comment their reflections,
suggestions and opinion on preclinical animal models for bone tissue
engineering. Therefore, the last question of the survey provided an open text field
for the respondents to fill out.

The following are the comments that participants had put in the field designated
for discussion:

e "Need for better non-union models which are difficult to treat and lead to
ischemic bone wounds."

e "Small animal models are appropriate research questions, but they are
used too often for trying to directly translate into the clinical situation. Large
bone defect models have quite a variability which is not described or taken
into account appropriately.”

e "The immunological aspect of tissue regeneration in vivo is entirely
different from what we observe in animal models. We are able to get only
an idea of how it will work but the moment the graft is put inside a human

body, vascularity plays a crucial role. | believe there is race between tissue
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regeneration and apoptotic signals that influences the final outcome of a
tissue engineered bone."

"There is the need of preclinical in vivo model standardization to
reduce/refine animal use; also, post-operative management of animals
during bone regeneration is to be targeted and standardized."

"Tissue engineering will always be a domain of academic institutions and
not for daily practice."

"We work with rats for all the obvious reasons but question their clinical
relevance because they respond so exuberantly to BMP-2. Humans do
not. Also, it's hard to identify new and better osteogenetic agents when
BMP2 is so hard to beat as a positive control.”

“In my opinion, and I'm not a bone researcher, personalized 3D bio printing
with incorporated bone (allo-or auto-) graft (aspirate or cells) is an
interesting research field regarding large sized bone defects."
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3.2 Outcome of the literature research

3.21  Evaluation of currently used preclinical animal models

The following chapter presents the results from the literature analysis. Out of 260
potential papers, a total of 167 papers fulfilled the search criteria as described
above. The papers and a summary of the studies are listed in supplementary
table 3 (Tab-S.3). Supplementary table 4 (Tab-S.4) shows a list of paper that had
been excluded. The aim was to evaluate the included paper with regard to therein
described animal models and thus to obtain a general trend in the current design
of preclinical animal models.

The studies described in the papers generally provided information about the
utilized animal (species, age, strain), the observation process (methods, time),
the implantation site, the defect design (type, classification, size, fixation) and

whether an empty defect was part of the investigation or not.

3.2.2 Research target of the studies

Experiments with preclinical animal models were mainly conducted to test new
bone tissue engineered constructs (91%) using different kinds of scaffolds, cells
and/or bioactive factors. Other studies (9%) aimed to establish new preclinical
animal models by testing defects of different sizes and shapes by exploring the
appearance of interfragmentary movements and by creating new fixation or

observation methods or biomechanical tests.

3.2.3 Animals
3.2.3.1 Species and strain

Preclinical animal models involved large animal models such as dogs (n=6),
goats (n=6), horses (n=1), monkeys (n=2), pigs (n=3) and sheep (n=8). However,

the predominant majority of the evaluated paper described studies performed on
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small animal models, namely mice (n=18), rabbits (n=69) and rats (n=54)

(Fig.30).
species
50%
42%
40%
32%
30%
20%
1%
10%
5%
3% 3% % 1% I 204
0% <_-___-_,_L——_._ | . >
dog goat horse  monkey mouse pig rabhit rat sheep

Fig. 30 An overview of the preclinical animal models used in the field of bone tissue
engineering over the last 10 years. The graph shows the different kinds of animal species that
were used for the studies, n=167.

Table 3 summarizes the different strains that were reported in the publications.

Outbred strains (Sprague—Dawley rats, Wistar rats, New Zealand White rabbits)

were used in 74% of the studies with small animal models, whereas inbred strains

(Lewis rats, Fischer rats, BALB/c mice, C57bl/6J mice, C3H/HeN mice) were

used in 16%. All in all, 10% of the studies were conducted using immunodeficient

animals (mice or rats) and 3% studies using ovariectomized models.

Tab. 3 Different animal strains used for research in bone tissue engineering.

mouse rabbit rat dog monkey pig sheep
Wistar
32'7‘3%\] Fischer Merino
. New Zealand White | Sprague Dawley . Swiss Alpine
SCID beige . Macaca- MGH-miniature
Japanese White Holtzman . . . Black-face
C3H/HeN - . ] Beagle | Fascicularis | Danish Landrace .
nude Nihon White Lewis Rhesus Sus Scrofa Mountain
. Chinchilla-bastard | nude Bergamasca
genomic- ) :
e genomic- Latxa Asturian
modifications e
modifications
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3.2.3.2 Age and gender

The reported age of small animal models (mouse, rabbit, rat) started at 6 weeks.
Thereby, the age of mice ranged between 6 weeks and 3,5 months, whereby the
average age was 2,4 months. Rabbits were used between the age of 6 weeks
and 12 months and the mean age was 4,5 months. The indicated age of rats
varied between 6 weeks and 6 months with a mean age of 2,9 months (Fig.31A).
In large animal models (dog, goat, monkey, pig, sheep, horse), the reported age
ranged between 5 months and 17 years, whereby dogs were used between the
age of 12 and 18 months and with a mean age of 15,6 months. Goats’ age varied
between 12 months and 3 years and the mean age was 24,5 months. The studies
using pigs reported an age range between 5 and 20 months and a mean age of
11,3 months, whereas the age of sheep ranged between 1 year and 9 years,
resulting in an average age of 4,4 years (Fig.31B). One study was evaluated
using horses between the age of 11 and 17 years. The terms "skeletally mature”
and "adult" were used sporadically to describe the animals age. However, they
were not included for the evaluation of age since they cannot be defined precisely
by an exact age. The same applies for studies indicating the age of the animals

when “purchased”, “obtained”, “provided”, “procured”, “acquired”, “fed or kept in
cages”, but not indicating the exact age of surgical procedures.

If reported, male animals were used in 57% of the studies for examinations,
whereas studies on female animals were described in 31% of the evaluated
publications. Experiments on animals of either sex were performed in 12%.

(Fig.31C).
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Fig. 31 The animal mean age and gender that researchers were working with, n=119. A. Age
of small animals upon study entry. Data is given as mean * standard deviation, n=63. B. Age of
large animals upon study entry. Age is depicted in month for dog, goat, pig and years for sheep.
Data is given as mean + standard deviation, n=14. C. The graph shows details on the sex of
animals used for the studies if indicated, n=119.

3.24 Defect design
3.24.1 Implantation site

Anatomical implantation sites for the defects varied mainly between the cranium
(11% of the studies), the femur (38% of the studies), the tibia (14% of the studies),
the radius (20% of the studies) and the mandible (11% of the studies). The ulna,
the humerus and the maxilla occurred less often and are summarized under the

umbrella term "other” (Fig.32).
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Fig. 32 Anatomical locations of the created defects to test bone tissue engineered
constructs, n=171. If several implantation sites were reported in one study, they are listed

separately.

In small animal models, 13 % of the defects were induced in the cranium, 40 %

in the femur, 8% in the tibia, 24% in the radius, 9% in the mandible and 6% in

other anatomical locations (ulna, humerus, maxilla) (Fig.33A)

In large animal models, 31% of the defects were conducted in the femur, 36% in

the tibia, 21% in the mandible and 10% in the cranium, humerus, and radius
(other) (Fig.33B).
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Fig. 33 Sites of orthotopic bone defects in preclinical animal models. A. The graph shows
the locations in small animal models, n=142. B. The graph shows the defect locations in large
animal models, n=29. If several implantation sites were reported in one study, they are listed

separately.
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Studies with small animal models involved rabbits, rats and mice. In rabbits,
orthotopic defects were mainly created in the radius (42%) and the femur (22%),
whereas tibial and mandibular defects occurred less often in the rabbit animal
model such as the ulna, the humerus and the cranium (Fig.34A).

Rats were used proportionally more often for the creation of femoral defects
(59%) and cranial defects (20%). Furthermore, surgery was conducted less often
on the jaw (11%) and on the tibia and radius (5% each) (Fig.34B).

Almost the same applies to mice, albeit used more seldom as preclinical animal
model. Half of the defects were induced in the femur and 20 % in the cranium,
whereas tibia and radius represented less predominant defect sites (Fig.34C).

In general, surgery on large animals was performed considerably less often to
test bone tissue engineered constructs. If, however, researchers did conduct
studies on large animal models, sheep represent the most frequently used
species among them. Thereby, most defects were created in the tibia (45%) and

the femur (36%). The mandible and the humerus were used only once (Fig.34D).

66



Results

A rabbit B rat
60% 60%
59%
42% 40%
40%
20%
22% 20% -
11%
20%
11% 5% 13% 5% 5%
30/0 ° 00/0 ; T T - T - T
s @ @ A
é‘\\\g\\ '\e@\) ¥ ,bb\" @4‘\
& RN
R
&
&
C mouse D sheep
60% 60%
50%
45%
40% 40% 369%
28%
199%
20% - 20% °
11% 11%
00/0 ; T T l T l_v 00/0 T
cranium femur tibia radius femur tibia other

Fig. 34 Defect sites in preclinical animal models. The graph shows the different anatomical
locations for the created defects in rabbits (A, n=69), rats (B, n=55), mice (C, n=18) and sheep
(D, n=11). If several implantation sites were reported in one study, they are listed separately.

3.24.2 Defect form and defect model

For the creation of orthotopic defects, surgeons mainly utilized dental drills, burs
and saws, resulting in different shapes of defects. Segmental defects were
created in 59% of the cases (86 % in small animals, 14% in large animals) and
drill holes or cubic defects in 32% of the cases (87% in small animals, 13% in
large animals). The remaining defects were performed as alveolar defects in the
mandible or maxilla, which showed a broad variety of surgical designs: the
removal of either cortical plates, trabecular bone and tooth roots (“full thickness

bone defect") or solely one side of the plates, trabecular bone and tooth roots ("
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partial thickness bone defect") (Young, Bashoura et al. 2008) such as parodontitis
induced alveolar bone defects (Fig.35A). One defect was described as bone gap
in the mandibular symphysis of a rat, which was not included in the graph
(Yagyuu, Kirita et al. 2015) .

Researchers specified their defects as non-critically sized defect (3%), large bone
defect (6%), critically sized defect (75%), delayed bone healing defect (2%), non-
union defect (7%) or other (simple fracture, experimental periodontitis model,
infected bone defect, osteonecrosis model, alveolar cleft, open fracture model,
peri-implant osseous defect) (Fig.35B)

A defect form B defect model

80% 75%

60%

msegmental defect 40%

drill hole
20%

m cubic defect

malveolar defect

Fig. 35 The different bone defect designs created for research in bone tissue engineering.
A. The graph shows the induced defect form, n=167. B. The graph shows the defect model chosen
to test, n=126.

3.24.3 Defect size

Table 5 shows the different ranges of defect sizes that were reported in the
studies of the literature search. One defect in a goat was described as a
percentage of the osteotomy length to the whole bone length (Jian, Tian et al.
2010). Defects of the lower and upper jaw bone showed a broad range of
indicated defect shapes and are therefore not comparable and were not
summarized.

Drill hole defects in the murine calvaria varied between 2,5 mm and 5 mm

diameter) with a mean area of 11,3 mmz2, in the cranium of rabbits between 12
(
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mm and 15 mm resulting in an average area of 144,8 mmz2 and in the cranium of
rats between 4 mm and 8 mm (28 mm?2). Drill hole defects in long bones varied
between 4 mm and 8 mm in rabbits (34 mm?) and 0,8 mm and 4 mm (5,3 mm?)
in rats. They were all mainly described as critically sized defect models.

Femoral segmental defects ranged between 1 mm and 5 mm in mice (both
described as critical-sized defects), in rabbits between 12 mm and 15 mm
(described as critical-size defect) and between 1 mm and 10 mm (both described
as critical-size defect) in rats. Radial and tibial segmental defects were mainly
performed on the rabbit animal model and started at 5 mm in the tibia and 5 mm
in the radius (described as critical-size defect) and ranged up to 20 mm.

Most of the defects created in large animal models were conducted in sheep,
followed by dogs and goats. Thereby, surgery performed on ovine animal models
concluded mainly in tibial and femoral segmental defects that ranged between 20
mm and 30 mm (both critical-size defects). Drill holes in long bones varied
between 5 mm and 8 mm (32,7 mm?2 mean area) and were indicated as critical-
size or large defects. Canine models were mainly utilized for defect surgery at the
mandible and goats as animal model for critical segmental defects in the tibial

bone (25 mm to 30 mm).
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Tab. 4 Reported defect sizes and implantation sites in preclinical animal models.

Large animal models shown left, small animal models right. In case several defect sites were
reported in one study, these are listed separately in the table. For defect size, diameter is given
for drill hole defects, gap size for segmental defects and defect area or volume for other volumetric
defects. * due to extreme heterogeneity in defect location and size in mandibular defects no

summary possible.
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3.2.4.4 Fixation methods

The different fixation devices that were applied for defect stabilization are shown
in Fig.36. Thereby, drill holes, non-load-bearing sites (cranium) as well as
implantation sites that are sufficiently stabilized by one another (radius, ulna)
were excluded from the evaluation of the fixation methods (see also chapter 4.2.6
and 4.2.8). The graph shows that fixation of segmental defects in the femur, tibia
and the jaws was obtained through external fixation systems, plates, dynamic
and static intramedullary fixation systems (rods, nails, Kirschner wires, pins) and
other fixation methods (gauge needle, orthotopic splint, ligature wire).

When operating on large animal models, stabilization of the defect was most often
obtained by plates (73%) of which more than the half occurred in the tibia.
Furthermore, dynamic and static intramedullary fixation devices were applied in
the femur and the tibia (20%). One external fixation system was applied in the
tibia of a goat model.

For defects in small animal models, plates were utilized in 55% of the cases and
almost exclusively in the femur. Intramedullary fixation devices were reported in
12% of the studies, whereby either the femur or the mandible were stabilized.
Furthermore, external fixation systems, which were reported for both the femur

and the tibia were applied in 21% of the reported studies.

fixation method

12% 16%

external fixator

intramedullary fixation
18%

plate

other
54%

Fig. 36 An overview of the different fixation methods in load-bearing defects applied in
animal surgery, n=58.
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3.2.4.5 Negative control

To find out whether created defects would have also healed without any
intervention or implantation of a bone tissue engineered construct, studies often
included the creation of an empty defect, meaning no implantation of any material
in a defect of the same size and shape.

The evaluation of such defects was included in 56% of the studies with animal
models of which 2% showed bridging, 92% resulted in non-unions and 6%
described none reproducible outcomes. The remaining 44% of the studies

forwent an empty defect as negative control.

3.2.5 Observation process

Table 4 outlines the different observation methods for quantitative and qualitative
analysis and the frequency of occurrence in the evaluated studies. Thereby, the
most commonly used combination of methods included the application of
radiology (x-ray), tomography (micro-computed tomography) and histology.

The observation time in the publications ranged from 2 weeks to 12 months in
small animal models and from 12 days to 10 months in large animal models.

Tab. 5 Observation methods used for preclinical examination.

small large all
animal animal
models | models
(n=141) (n=26) (n=167)

radiology x-ray, energy dispersive spectral studies 60% 73% 62%

computed tomography, micro-computed tomography (u-ct),
single photon emission computed tomography (SPECT), cone

tomography beam computed tomography, perfusion weighted magnetic 64% 73% 65%
resonance imaging (MRI), fluorescence molecular tomography
(FMT)
histomorphometry, immunohistochemistry,
histology immunofluorescence, fluorescence microscopy, morphometric 91% 92% 92 %

analysis, neovasculogenesis analysis

electron

: scanning electron microscopy, laser electron microscopy 11% 4% 10%
microscopy
molecular gene expression, reverse transcription polymerase chain o o o
biology reaction, in situ hybridization 11% 8% 10%
blomechanlcal push-out test, 3 point bending 33% 35% 34%
testing
fluorexon fluorochrome analysis with calcein 9% 8% 9%
other in vivo fluorescence imaging, flow cytometry, ultrasonography 6% 8% 7%
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4 Discussion
4.1 Introduction

In the last years, the interest in bone tissue engineering with the objective of bone
regeneration, bone augmentation, bone repair or bone replacement has
tremendously increased. Large bone defects, due to injury or disease, represent
a critical clinical and socioeconomic challenge, especially in today's ageing
population. The restoration of such defects requires the supply of significant
amounts of bone, which is not yet realizable and hence entails a major decrease
of life quality and increase of clinical expenses (Rose and Oreffo 2002). In vivo
testing of bone tissue engineered constructs incorporates a necessary step half
way between laboratory in vitro testing and clinical studies in humans but requires
the attention to a multitude of factors. The focus of this thesis was hence to
evaluate these factors and to discuss how scientists assess their implementation
in research. Currently used preclinical study designs for research were analyzed
in order to get an impression of how surgeons and scientists evaluate the current
and future role of bone tissue engineering. A particular view was given to the
establishment of preclinical animal models in order to develop an understanding
of why current engineered constructs still fail to appear in the daily routine of
clinics.

The following chapters discuss the design of current studies reported in the
survey and described in the evaluated papers from literature research.
Furthermore, issues that were raised in the comments from the participants of the

survey will be addressed.

4.2 Need for standardization

Although in vitro studies represent helpful strategies to examine different
processes of bone tissue regeneration, in vivo studies are crucial and
indispensable as they provide a way to imitate underlying biological mechanisms
and environments (Peric, Dumic-Cule et al. 2015). Clinical application of bone

tissue engineering depends on preclinical studies in animal models and in order
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to analyze and to optimize their outcome, the systematic control of objective and
quantifiable study parameters is needed (Muschler, Raut et al. 2010). However,
the evaluation of the preclinical animal models described in the conducted survey
and in the reviewed paper revealed that the experimental set-up of the studies
still varies significantly and no official common guideline for the study design
could be distinguished. Consequently, a recurrent argument in the evaluated
surveys is the need for standardized and reproducible preclinical in vivo models
in order to reduce and refine animal use. This ethical principle named "3Rs"
(Reduce, Refine and Replace) was first described in 1959 by William Russell and
Rex Burch (Russell, Burch et al. 1959) and should represent the basis for the
standardization of study designs. Preclinical animal models should be designed
by elaborated guidelines, whether it is for choosing the animal species, strain,
age, observation time and observation methods, implantation site, defect form
and size, fixation methods or other criteria. Standardization thereby enables
comparison between the studies and capturing of well-established results by
creating a uniform language (Reichert, Saifzadeh et al. 2009, Reichert, Epari et
al. 2010). Laboratory animal science concentrates on the appropriate application
of animals in research with regard to ethical, scientific, and legal aspects. It is
hence necessary to require profound knowledge about animal welfare, animal
biology, animal breeding and housing and accurate surgical techniques when
working with animal models (Auer, Goodship et al. 2007, Conn 2008). The
ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) as well
as the GSPC (Gold Standard Publication Checklist) thereby intend to enhance
the description of research with animal models and to prevent the conduct of
unnecessary research trials (https://www.nc3rs.org.uk/arrive-guidelines, 28
November, 2018) (Hooijmans, de Vries et al. 2011). Their implementation into
study designs with preclinical animal models could accelerate the provision of
reliable standardization, which was described as necessary in the surveys and
the papers from the literature search. Ultimately, such guidelines would facilitate
the still missing clinical translation of bone tissue engineering and reduce the

number of unnecessary animal experiments. The following chapters provide
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hence information about general classifications of laboratory animals and their

application in the evaluated studies.

421 Animal species

The philosopher Bernard Rollin once mentioned that no matter how brilliant a
study design and its implementation on the applied animal might be, no matter
how much money available and how thorough the investigators knowledge and
talent turns out, it would all be wasted if the animal choice is not correct (Rollin
1990, Conn 2008). Throughout history, animals served as experimental models
for scientists to obtain insight of biomedical functions and anatomical structures
(Conn 2008). Naturally, it would be favorable to determine one species for
research that approximately reflects the biological characteristics of a human
being. However, the recreation of authentic human conditions in animal models
that reliably represent pathogenic processes is difficult (Auer, Goodship et al.
2007). It should be remembered that animal models remain simplified imitations
of the actual system in question (Liebschner 2004). One species cannot be
compared to another and therefore needs to be assessed individually (Conn
2008). Moreover, it has been annotated that conflicting outcome may occur when
using the same study design in different animals (Nunamaker 1998). The term
animal modeling was meant to describe the modeling of humans and hence
should be considered as "analogy" between the raised research question and the
animal substitute that is necessary to understand the targeted question (normally
with prospects for further applicability in humans) (Conn 2008). The choice of an
appropriate animal species depends hence on the targeted inquiry and is
influenced by a multitude of factors (e.g. costs, housing, availability, animal size,
animal resistance, osseous characteristics etc.) (Nunamaker 1998, Bigham-
Sadegh and Oryan 2015).

The preclinical studies described in the survey and in the papers from the
literature search were conducted on various animals (dog, goat, horse, monkey,
mouse, pig, rabbit, rat, sheep) but no common guideline for choosing one specific

animal species could be determined. It was rather the more unspecific choice
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between small and large animal models that was distinguished when evaluating
the data of the survey and the literature search. The use of small animal models
was thereby described more often and advantages in housing, costs and
availability might be associated with this choice. Large animal models occurred
less often and primarily when load bearing tests were part of the examinations,
which will be described more in detail in the following chapter. Moreover, the
evaluated studies showed a broad range of different surgical designs in different
animal models and no standardized procedure could be determined. The
provision of reliable regulations in order to design a preclinical animal model able
to provide the extrapolation of study data to other species would hence be
desirable, but remains challenging due to the individuality of each study design
(Conn 2008).

4211 Choosing between small and large animal models

The animal choice automatically influences the study design and its conduct,
whereby it was mentioned that the chosen animal model should ideally mimic the
surgery method applied in the clinics and enable the evaluation of the study
outcome (Akar, Tatara et al. 2018). As already indicated, choosing the animal
species for testing bone tissue engineered constructs meant primarily choosing
between a small or a large animal model in the evaluated studies.

Studies conducted on rabbits and rats, as small animal models, and sheep, as
large animal model, represent the most commonly described experiments in the
surveys and in the paper obtained from the literature research. A comment written
from a participant of the survey described small animal models to be an
appropriate research model but used too often for trying to directly translate their
outcome into clinical situation. Large animal models, on the other hand, were
mentioned in the survey to have quite a variability, which is not described or taken
into account appropriately. Indeed, important differences in bone anatomy,
development, and physiology need to be taken into account when working with
different animals as research models for bone tissue engineering (Reichert,

Saifzadeh et al. 2009). Parameters affecting the variability like breed variety
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(dogs), different bone remodeling rates (dog, sheep), growth rates (pig) or
mechanical strength (dog, sheep) (Gothard, Smith et al. 2014) need to be
weighed up.

More than half of the studies revealing satisfying results were conducted in small
animal models when querying the satisfaction with the experimental outcome of
the models reported in the survey. As already described in chapter 1.5.1, small
animal models, which appeared in 85% of the reviewed paper and 69% of the
studies received with the survey, provide advantages in handling, housing,
availability, and cost-effectiveness compared to large animal models (Shanbhag,
Pandis et al. 2017). Also, small animals achieve skeletal maturity and bone
healing in less time (Liebschner 2004). Such advantages could explain why
researchers might tend to use rather small animals for their study design. Then
again, 10 out of 12 studies categorized as “least satisfying” described studies
involving small animals, whereas only 2 of the studies in this category referred to
large animal models. Even though small animal models happen to facilitate the
study conduct, researchers might be unsatisfied with the results when searching
to imitate human like conditions since large animal models were mentioned to
provide more reliable outcome compared to small animal models (Liebschner
2004). Pellegrini et al. reported that rats are applicable for evaluating
immunological and age-related aspects for tissue regeneration and for testing
effects due to systemic disorders like osteoporosis (Pellegrini, Seol et al. 2009)
but they cannot be considered as human miniatures (Sengupta 2013). Moreover,
surgery in small animal models was mentioned to be more challenging to do and
results in lower quantities of newly formed tissues (Nunamaker 1998, Akar,
Tatara et al. 2018). Large animal models, on the other side, which were used in
16% of the reviewed studies and in 31% of the described studies in the survey,
generally provide a bigger size and a bony anatomy that is closer to the one of
humans, making surgical methods and biomechanical testing easier to handle
and the outcome more effective (Liebschner 2004). Moreover, their size was
mentioned to allow the upsizing of tissue engineered constructs to a relevant
defect dimension in order to enable the application in humans (Pobloth, Johnson

et al. 2016). The increased work with large animal models would hence be
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favorable when testing bone tissue engineered constructs. Thereby, the size and
shape of ovine long bones was discussed to enable the application of implants
that were originally constructed for the use in human patients (Newman, Turner
et al. 1995, Reichert, Epari et al. 2010). In this context, it is important to have in
mind that the larger and hence clinically more relevant the defect volumes gets,
an adequate supply of vascularization is required (see chapter 1.4). This may
have major implication for the choice of the animal model and its success since
the creation of a functioning vascularization system remains extremely
demanding. The animal model should therefore ideally allow the recreation and
evaluation of vascularized bone (Akar, Tatara et al. 2018) which mainly depends
on the creation of an extensive blood vessel network that surrounds the defect
site and enables the transport of vital components for bone repair (Auer,
Goodship et al. 2007, Frohlich, Grayson et al. 2008, Laschke and Menger 2012,
Roux, Cheng et al. 2015). The within lying complications and the relating high
expenses could explain why the number of the evaluated studies with large
animal models is considerably lower than the one with small animal models and
why there remains a considerable number of studies resulting in unsatisfying
outcome. As already mentioned, it would be important to expand further
knowledge about vascular aspects by choosing the large animal as appropriate
test model. Additionally, large animals show a closer imitation of the human bone
healing process than rodents, notably in terms of biomechanical testing and
fixation methods (O'Loughlin, Morr et al. 2008) which will be described in more
detail below. Consequently, their anatomical shape such as their physiological
and pathological analogies to humans should encourage the choice of large
animal models over small animal models (Pellegrini, Seol et al. 2009).

It is not surprising that already the beginning of establishing a preclinical animal
model for bone tissue engineering represents a major challenge, since even the
first step, consisting of only choosing between a small and a large animal,
depends on several considerations which will be described in the following

chapters.
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4.2.1.2 Impact of different bone structures on fracture
healing

For research in bone tissue engineering it is indispensable to observe differences
and analogies in the bone structure of the animal species used for the study and
the human being since it may have great impact on the surgical design and the
healing process. Most animals exhibit an osseous anatomy, cell biology,
immunology and histology distinct from human individuals, which influences the
process of fracture healing and therefore needs to be factored into the evaluation
of the study outcome (Nunamaker 1998, Auer, Goodship et al. 2007).

Thereby, the bone structure of small animal models showed variations between
different species and different stages of their skeletal growth (Liebschner 2004).
Li et al. and Liebschner et al. critically discussed the structure of the Haversian
systems in the bone cortex of rodent animal models. They reported that the
Haversian-type bone structure of skeletal mature rodents showed limited
remodeling, whereby rats were mentioned to show only trabecular remodeling
and no intracortical remodeling. Li et al. described the complete absence of
Haversian-type remodeling in rodent animals (Liebschner 2004, Li, Chen et al.
2015). Moreover, it was annotated in the survey that rabbits showed different
bone marrow environment compared to humans, whereby differences in the bone
macro-and microstructure need to be kept in mind when analyzing bone healing.
Rabbits, even though classified as small animal models, provide long bones and
a human-like lumbar spinal structure (Liebschner 2004). They were mentioned to
achieve skeletal maturity shortly after sexual maturity (approximately at the age
of 6 months), whereby the bone tissue comprises a high rate of vascular canals
of osteons that surround the bone marrow canal and the periosteum. Thereby, a
dense Haversian system occurs in between the layers (Pearce, Richards et al.
2007) resulting in intracortical bone remodeling and faster bone turnover rates
compared to rodents (Castaneda, Largo et al. 2006). Differences of osseous
phenotypes and other physiological variations, like the fact that rodents show
significantly higher rates in their metabolic system and their capillary density
(Conn 2008), indeed do affect the outcome of bone tissue engineering research

constructs adversely and need to be taken into account when working with

79



Discussion

preclinical animal models (Liebschner 2004), especially since studies with
rodents make up more than three quarters of the evaluated studies from literature
search and the survey. Clinical translation depends on reliable study results
which eventually should mimic human conditions as closely as possible.
Therefore, the large proportion of studies with rodents should be questioned.
Sheep, in contrast, are considered to be an important animal for research in bone
tissue engineering (Li, Chen et al. 2015) since they were mentioned to possess
bone mineral compositions, bone remodeling rates, body weight and metabolic
processes similar to humans (Reichert, Epari et al. 2010) and their biomechanics
are well understood (Reichert, Epari et al. 2010, Li, Chen et al. 2015). They were
used in 22% of the studies received with the survey (thereof only one study with
unsatisfying outcome) and in 5% of the reviewed paper. However, histological
differences in the bone structure of sheep were observed, showing a large
amount of primary bone structure compared to the secondary, Haversian bone
structure of humans (Reichert, Epari et al. 2010). In sheep, secondary remodeling
occurs rather late (7-9 years), leaving a bone histology different to the one of
humans by showing higher trabecular bone density and strength (Li, Chen et al.
2015).

The exact imitation of human like conditions in preclinical animal studies is hence
unrealizable. However, research should pay special attention to the
implementation of large animal models in order to come as close as possible to

human comparison.

4.2.1.3 Impact of different animal species on signaling
pathways

It was mentioned in the survey that the remodeling environment of rats would not
be human-like and that working with rats could be unfavorable regarding their
exuberant response to BMP-2 compared to humans. As described in chapter
1.3.4, BMPs are members of transforming growth factor-g (TGF-B) super family
of growth factors and attracted high attention for their capability to promote bone

regeneration (Urist 1965, Sampath and Reddi 1981, Campana, Milano et al.
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2014, Kirby, White et al. 2016). Therefore, in particular BMP-2, has been
intensively studied for its osteoinductive activities (Wozney 1992). Different
preclinical studies in rats involving testing of BMPs were evaluated for this thesis
and their outcome reflected the aforementioned capacities of BMPs. The studies
demonstrated that they showed to be valuable candidates for new bone formation
and bone repair (Johnson, Boerckel et al. 2011, Keibl, Fugl et al. 2011, Zhang,
Tsurushima et al. 2011, Boerckel, Kolambkar et al. 2012, Foo, Reagan et al.
2013, Willett, Li et al. 2013, Priddy, Chaudhuri et al. 2014, Corre, Merceron et al.
2015). However, in line with the comment made in the survey, Osyczka et al.
reported that BMPs promoted osteogenesis in MSCs of rodents, but mostly failed
to effect the bone forming capacity of human MSCs when using equal dosages
(Osyczka, Diefenderfer et al. 2004). In addition, working with BMPs has led to
concerns when comparing the required high and cost-intensive dosage for
experimental trials on bone formation compared to the concentration observed in
physiological bone fusion (Valentin-Opran, Wozney et al. 2002, Hu, Wang et al.
2016). Severe side effects such as osteolysis, inflammation, systemic and local
toxicity, malignant bone degeneration and bony hypertrophy occurred when
working with recombinant human BMP-2 (rhBMP-2) on both animals and humans
(Poynton and Lane 2002, Carragee, Hurwitz et al. 2011). This might be
circumvented when working with biomaterial carriers also capable of
regenerating bone using lower quantities of growth factors (Priddy, Chaudhuri et
al. 2014).

The challenge when working with BMPs and preclinical animal models will hence
be to determine the optimal mix and dosage in order to justify their (cost-

intensive) implementation in research and to allow further standardization.

4.2.2 Animal strain

The next step for establishing a preclinical animal model, after determining its
species, is to decide for one particular strain among many others (see chapter
1.5.1). More than 700 rat inbred strains and 70 rat outbred stocks can currently

be found in the Rat Genome Database (RGD, https://rgd.mcw.edu, September
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12, 2018). The International Mouse Strain Resource (IMSR,
http://www.findmice.org, September 12, 2018) provides more than 600 mouse
inbred lines and 16 outbred stocks.

Thereby, the creation of rodent inbred models was meant to produce strains that
simulate specific human conditions in health and disease (Conn 2008) and to
enable studies on genetic variability which are possible due to the limitless
amount of genetically identical individuals (Beamer, Donahue et al. 1996).
Furthermore, such genetically delineated lines were described as more uniform,
more available, more reliable and more standardized compared to the genetically
undefined outbred stocks (Festing 2010), which, on the other hand, were thought
to show larger phenotypic variations (Jensen, Porsgaard et al. 2016). A
considerable number of varieties was hence described for a lot of different animal
species but predominantly in mice and rats in which a multitude of different lines
exist (Conn 2008).

The evaluation of the studies from the literature search and the survey revealed
that different inbred lines were used in 31% of the experiments when working with
mice and rats and outbred stocks in 54%. Thereby, femoral defects were
conducted more often in Sprague Dawley rats, namely in almost half of all
reported femoral defects in rats, whereas Wistar rats were utilized in less than
10% when operating on the femur. This might be related to the fact that Sprague
Dawley rats are considered to be an ideal surgical model and provide advantages
in terms of ease of handling, high disease withstanding, little mortality after birth,
early procreative capacity, low neonatal mortality and fast growth with the
achievement of a considerable full-grown size (Parker, Chen et al. 2014). For
bone tissue engineering, murine outbred strains, which were rarely used in the
evaluated studies (or their lineage not precisely indicated), were mentioned to be
an appropriate animal model for testing the level to which genetically different
populations may vary when examining skeletal biomechanics (Wallace, Judex et
al. 2015). However, diversity in gene functions in murine outbred lines might lead
to more scattered results of the studies and inbred strains are hence needed for

precise genotypic standardization.
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When using the rabbit as animal model for research, the outbred New Zealand
White rabbit was used in 85% of the cases. It was mentioned that these strains
happened to show less aggressiveness and develop less diseases compared to
other breeds (Mapara, Thomas et al. 2012). Moreover, an advantage of using
outbred strains would be that they supposedly mimic more accurately human
conditions (Shultz, Badowski et al. 2013) since human populations are genetically
diverse. In this context, a main issue discussed in literature is the fact that a lot
of studies conducted on animals generally show a lack of concordance between
the outcome of animal research and its clinical application in humans (loannidis
2012) and that it would not be possible to apply obtained study outcome reliably
on humans, also referred to as a poor extrapolation (Conn 2008). A wider
adoption of outbred lines, especially when using large animal models, would
hence be favorable for clinical translation.

Furthermore, the process of fracture healing was mentioned to depend on the
different genotypes of the animal strains since genetic variability was mentioned
to influence material properties as well as the reaction of newly formed bone to
mechanical stimuli (Judex, Donahue et al. 2002, Auer, Goodship et al. 2007).
Beamer et al. demonstrated that there exist considerable genetic impacts on the
regulation of peak bone density among different female mice inbred strains
(Beamer, Donahue et al. 1996). This has been further elaborated by Manigrasso
et al., who demonstrated that femoral fracture healing in different inbred mice
strains showed variations with respect to the quantity of bone and cartilage
created in the fracture callus resulting in different structural and material
properties of the newly formed bone (Manigrasso and O'Connor 2008). The
considerable variety of different inbred and outbred strains surely offers a broad
range of possible study designs but also complicates, once again, the
standardization of the studies with preclinical animal models, which recurrently
turns out as inconsistent in the analysis of the studies evaluated for this thesis
(survey outcome and literature research). Conclusions from one study cannot be
simply applied on study designs with different animal strains but should remain
strain specific. Consequently, comparisons within one strain demands a

considerable number of suitable study outcome and hence a higher number of
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studies involving one particular animal strain. Moreover, standardization of the
study designs is needed in order to allow such comparison and eventually the
translational success to other studies.

Moreover, one participant of the survey commented that the immunological
aspect of tissue regeneration in humans differs entirely from what we observe in
animal models (Zhang, Li et al. 2015) and that we get only an idea of how bone
tissue engineering will eventually work in humans. Indeed, variations of
immunological aspects (Zhang, Li et al. 2015) and in the bone morphology of
trabecular and cortical bone were shown to exist not only between different
species, but also across and in between mice strains (Judex, Garman et al. 2004,
Wallace, Judex et al. 2015). Once again, findings from research with one animal
strain cannot be automatically applied on further study designs using different
strains since the process of fracture healing in one study might entirely differ from
the healing process observed in a similar study with other genetically different

strains (Judex, Garman et al. 2004).

4221 Impact of immune modulation on fracture healing

The comparison of study results obtained in immunodeficient strains and the
outcome obtained in immunocompetent strains was stated to be crucial for the
understanding of the process of bone healing which is influenced by the presence
of immunological cells and inflammation (Zhang, Li et al. 2015). A high number
of genetically engineered immunodeficient mice and rats is available for
experimental studies involving human cells with the object of avoiding possible
rejection reactions (Belizario 2009). Study results then need to be critically
compared to the outcome obtained by studies using immunocompetent animals
since fracture healing considerably depends on underlying immunological
aspects (see chapter 1.2.3).

Generally, the motivation for the use of animals with manipulated immune status
lies in the gain of further knowledge about the immune system and its role within
the process of bone repair. For bone tissue engineering the use of such animals

relies on the need for immunodeficient strains for testing xenogeneic constructs
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containing human cells. Such strains, which were used in 21% of the evaluated
studies in rodents (survey outcome and literature search), show defects in B-cells
and T-cells as well as knockdown of toll-like receptors (TLR), transcription factors
and genes for cytokines (Belizario 2009). Among them, nude mice and rats
represent hairless rodents characterized by an insufficient immune system due
to genetic mutation and the absence of a thymus which leads to a decreased
inflammatory response (Hougen 1991, Belizario 2009). This may have great
impact on bone tissue regeneration, considering the influence of inflammatory
processes on the behavior of osteoblasts, osteoclasts, T-cells and transplanted
cells which are all, inter alia, responsible for bone healing (Frohlich, Grayson et
al. 2008, Mori, D'Amelio et al. 2013, Zhang, Li et al. 2015). As described in
chapter 1.2.3, the process of fracture healing exhibits a sequence of well-
organized phases including an inflammatory response to the injury which ensures
cell organization, blood clot formation, angiogenesis, tissue granulation and
finally bone remodeling. The depletion of T-cells, which represent cells of the
lymphoid lineage and coordinate the adaptive immune response, thereby
enhances the decrease of bone repair (Einhorn and Gerstenfeld 2015, Oryan,
Monazzah et al. 2015, Baht, Vi et al. 2018). There exists hence a strict interplay
between the bone healing process and the immune system which, however, still
needs to be fully elucidated (Schaffer and Barbul 1998, Konnecke, Serra et al.
2014, Schmidt-Bleek, Petersen et al. 2014, Baht, Vi et al. 2018). Therefore,
several studies have been published, trying to show evidence for the connection
between bone fracture healing and immune cell involvement: ElI Khassawna et
al. demonstrated that studies in mice lacking T-cells entail more rigid bone tissues
which are unable to provide satisfactory quality and hence are prone to injury (El
Khassawna, Serra et al. 2017). In contrast, studies in mice exhibiting a
manipulated adaptive immune system by the way of decreasing the number of
CD8+ T cells resulted in improved bone repair, whereas the increase of these
cells adversely affected the healing process (Barbul, Breslin et al. 1989, Reinke,
Geissler et al. 2013). Liu et al. showed that the use of pro-inflammatory T-cells
resulted in the decrease of bone formation by enhancing bone marrow

mesenchymal stem cell apoptosis through down regulation of runt-related
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transcription factor 2 (RUNX2) and TNF-a caused by interferon-y (IFN-y). The
other way round, the application of regulatory T-cells in murine cranial defects
induced the decrease of IFN-y and TNF-a which increased bone marrow
mesenchymal stem cell triggered bone formation (Liu, Wang et al. 2011). Toben
et al. demonstrated that the use of recombination activating gene 1 knockout
(RAG1-/-) mice, exhibiting a defect which entails a lack of lymphocytes,
remarkably entailed accelerated fracture repair (Toben, Schroeder et al. 2011).
The impact of the adaptive immunity on fracture healing is hence rather
controversially debated since studies regarding the role of T-cells happen to
demonstrate both better healing after bone fracture as well as negative impact on
osseous repair after injury (Park and Barbul 2004, Schlundt, Schell et al. 2015,
El Khassawna, Serra et al. 2017).

Since the use of immunodeficient laboratory animal models was reported to affect
the results of research for bone tissue engineering considerably and since even
the understanding of bone healing mechanism in animals with healthy immune
systems remains incomplete, it was suggested to treat their application with
caution (Zhang, Li et al. 2015). Corre et al. proposed that, when choosing
immunocompromised animal models for research, the outcome obtained due to
the choice of the strain should be clearly distinguished from the outcome gathered
due to the experimental conditions (Corre, Merceron et al. 2015). The increased
use of immunodeficient models, which according to the analysis of the studies is
the case, might have led to a higher number of studies with satisfying outcome
and hence entail the success of the preclinical animal model. However, study
results need to be compared to the outcome gathered by equivalent

immunocompetent models.

4.2.3 Animal age

The animal’s age in a study design represents a crucial parameter to consider
since the process of bone healing happens to reveal age sensitive conduct,
whereby younger organisms exhibit faster and more reproducible bone healing

rates during their growth phase compared to full-grown and mature organisms
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(Nunamaker 1998, McGovern, Griffin et al. 2018). With relation to the age of
experimental animals, skeletal and sexual maturity as well as the body weight
represent important indicators that could affect study results and therefore need
to be considered for research in bone tissue engineering (Pearce, Richards et al.
2007).

For every bone, stages of bone development start from narrow calcification
centers to a series of modifications in form and shape in order to finally reach a
skeletally adult, mature appearance (Gilbert 2000). Thereby, intramembranous
ossification occurs in flat bones of the skull, the majority of the cranial bones and
the medial clavicles of the human body, whereas long bones, some facial bones,
lateral medial clavicles and vertebrae are formed by endochondral ossification
(see chapter 1.2) (Ornitz and Marie 2002). Growth plate closure then indicates
skeletal maturity and can be assessed by radiographs (Hughes and Tanner
1970). Furthermore, sexual maturity, defined for female rodents as vaginal
opening and for male as balanopreputial partition (Sengupta 2013), can be
considered as an important process since bone growth ceases in most mammals
after achieving sexual maturity (Kilborn, Trudel et al. 2002). Jilka et al. examined
the relevance of the murine model for research on bone tissue more closely and
indicated that longitudinal bone growth in mice continued after sexual maturity (6-
8 weeks), whereas human long bones do not continue to grow afterwards (Jilka
2013). This is an important factor to consider when working with mice for testing
bone tissue engineered constructs. The evaluation of the studies from the survey
outcome and the literature search revealed that the calculated mean age of
preclinical mice models, which were used in 13% of the studies, amounted to only
1,9 months. Regarding the data given by Jilka et. al, longitudinal bone growth in
the utilized mice might not had been finished and study results need hence to be
critically looked at. Moreover, the comparison to outcome obtained from studies
with older animals should be interpreted with care. Additionally, Kilborn et al.
reviewed literature for time and age of growth plate closure and sexual maturity
in different animal species, whereby mice were found to complete growth plate
closure at the age of 5 months and findings indicated that bone growth in rats

continues after achieving sexual maturity (which was listed to be reached at the
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age of 1,8 to 2,1 months in Sprague Dawley rats) and physeal plates, until then,
do not close compared to other species (Kilborn, Trudel et al. 2002). For rats, no
reliable information for the age at growth plate closure could be gathered, but
they referred to more ancient reports that mentioned 29 months to be the age for
growth plate closure in tibias of rats (Strong 1925). The analysis of the studies
from the literature search and the survey outcome revealed a mean age of 2,7
months for the utilized rats. Moreover, male rabbits were mentioned to show
closed growth plates at the age of 6,8 months and female rabbits at the age of
5,3 months, whereas the calculated mean age of the applied rabbits in the studies
described in the survey and the papers from literature search was 3,5 months.
From this follows that a large number of preclinical models were examined before
growth plate closure, which may contribute to an overestimation of the study
outcome. As already described for the mice models, study results need to be
carefully interpreted when using immature animal models since bone formation
considerably depends on the growth stage of the bone. For standardization of
studies with preclinical animal models, the use of animals revealing an
appropriate age regarding skeletal maturity to test bone formation would be
favorable and regarding the fact that small animals achieve maturity relatively fast
compared to large animals, working with small animal models of suitable age is
feasible.

In contrast, growth plate closure in sheep, as representative of large animal
models, was described at the age of 17 months and sexual maturity was listed to
be reached at the age of 5,5 months (Kilborn, Trudel et al. 2002). However, it is
crucial to mention that the process of reaching sexual maturity was described to
show considerable time ranges between the two genders and even between
individuals of the same sex. Also, it was proposed that sexual maturity should not
be equated with adulthood but rather with the commencement of an intermediate
step, the adolescence (Sengupta 2013). Moreover, Malhotra et al. examined
differences in bone growth of skeletally mature sheep compared to skeletally
immature sheep after the implementation of defects in the femur and the tibia,
whereby the age of their skeletally immature sheep was even 18 months

(Malhotra, Pelletier et al. 2014). In a paper written by Reichert et al., they even
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favorized the usage of 7 to 9 year old sheep since secondary remodeling rates
then occur and enable the better comparison to humans (see chapter 4.2.1)
(Reichert, Epari et al. 2010). The evaluation of the studies from the literature
search and the survey outcome resulted in a mean age of 3,7 years, which,
according to the data given by Reichert et al., would be too young as that skeletal
maturity could have been achieved. Compared to small animal models, large
animal models revealing an appropriate age are difficult to apply regarding
increased costs for animal care and housing. However, clinical success depends
on reliable and transferable study outcome and it is therefore indispensable to
use preclinical animal models with sufficient age.

Furthermore, the animal's body weight correlates with its age and is therefore
used for age estimation in animals, although it does not represent a precise
indicator (Nafei, Danielsen et al. 2000). Fig.37 represents the changes of body
weight during aging in male Wistar rats, published by Sengupta et al. (Sengupta
2013). The graph demonstrates that the growth curve clearly flattens at the age
of about 4 months, indicating that stable growth then gradually comes to an end.
From the age of 15 months, body weight starts to even out and does no longer
change remarkably. No rat older than 7 months was used in the evaluated
studies, which might be due to the increased costs when working with older
animals. However, considering the flattening of the curve at the age of 4 months,
it might not be necessary to wait until the age of 15 months before starting with
research. Nevertheless, the mean age of Wistar rats used in the evaluated
studies was 2,3 months and thus, according to graph shown in Fig.37, too young
to ensure stable growth rates. The obtained data need hence be interpreted with

caution.
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Fig. 37 Development and diversity of body weight in the lifespan of male Wistar rats.
Reprint from International Journal of Preventive Medicine, 4(6),624-630; Figure 2, with permission
from author and International Journal of Preventive Medicine.

Furthermore, research for literature reporting growth rates in ovine models was
conducted and is outlined in Fig.38. Van Niekerk and Casey published average
daily growth rates (g/day) for Merino sheep that were shown to amount to 149
g/day, whereby the rate was 107 g/day from birth to 10 kg, 189 g/day from 10 to
23 kg, 256 g/day from 23 to 32 kg and 163 g/day from 32 to 41 kg (Van Niekerk
and Casey 1988). The evaluated studies from literature research indicated the
use of sheep with an average body weight between 39 kg and 76 kg. According
to the graph shown below, this would mean that their growth rate is not yet but
already about to descend. Consequently, the used preclinical animal models
would still be growing, which would hence influence the study results in a hitherto
unknown extend. Once more, time and costs might play an important factor when
choosing animals of lower body weight since feeding and housing of the animals

are expensive co factors in research with large animals.
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Fig. 38 Growth rate (g/day) of merino sheep from birth to 41 kg. Data obtained from Van
Niekerk and Casey 1988.

4.2.3.1 Impact of age on bone biology and fracture healing

Significant differences have been reported to exist in the bone biology of young
and adult animals and humans, namely in its mechanical properties, its form and
function and in the molecular and cellular structure of bone (Boskey and Coleman
2010, Jackson, Andrews et al. 2017). Thereby, the age-related transformation of
the bone physiology and the underlying decline of osteogenic and angiogenic
ability consequently result in altered fracture healing (Meyer, Meyer et al. 2003,
Lu, Hansen et al. 2008, Histing, Kuntz et al. 2013), whereby the
mechanotransduction of bone in elderly individuals has been discussed to
change due to modifications of hormone levels and signaling pathways resulting
in delayed fracture healing and graduate loss of bone mass (Haffner-Luntzer,
Liedert et al. 2015). Moreover, the aging process of the immune system of an
organism leads to changes in its cellular composition and was reported to reduce
the ability of bone to regenerate (Schlundt, Schell et al. 2015), whereas Xing et
al. studied the enhanced healing capacity of aged mice after rejuvenation of
immunological cells and thereby, once again, demonstrated the crucial role of the
immune system on the process of fracture healing (see chapter 4.2.2.1).

Moreover, Liebschner et al. reported that skeletal immature animals were able to
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repair bone defects in a less complicated way, namely faster and more
consistently compared to aged individuals (Liebschner 2004), which
consequently affects the results of studies analyzing fracture healing in younger
animals and thereby considerably complicates the comparison of different study
designs. Another aspect that has to be considered is the fact that human
individuals generally have a longer life expectancy than the animal models for
research and that clinical translation therefore might be impeded since the long-
term side effects of fracture healing in aged individuals cannot be evaluated
adequately (Auer, Goodship et al. 2007). However, age constitutes an important
factor to be observed since elderly patients make up an important target group
for the concept of bone tissue engineering. In a recent paper, Jackson et al. even
proposed that the disregard of the animal's age, predominantly with regard to
rodents, and hence the use of inappropriately aged models could have impact on
the missing translation of preclinical animal research into clinical trials (Jackson,
Andrews et al. 2017). They outlined age and bone related physiological changes
in rodent animals, whereby the development of the rat's brain, for instance, was
described to proceed over the first 9 weeks, which has to be considered when
creating cranial defects (Jackson, Andrews et al. 2017).

The rat, as rodent animal model, was examined at the age of 1,5 to 2,5 months
(48%), at the age of 3 to 4 months (44%) and at the age of 6 months (8%).
Sprague Dawley rats were used in 42% of all evaluated studies and their age
ranged between 7 weeks and 6 months, indicating that sexual maturity has
already been reached. The mean age of rats used for the creation of cranial
defects was 3,1 months. According to the data given by Jackson et al., the cranial
development was already completed and study designs should hence present
suitable results for further standardization. As already mentioned, the age of
mice, if indicated, varied mainly between the age of 1,5 months and 3,5 months.
Rabbits were hardly applied under the age of 3 months (4%), but rather between
the age of 3 to 5 months (57%) or 6 months up to 12 months (39%). Sheep and
goats younger than 12 months were not described in the studies. They were
examined starting at the age of 12 months up to 3 years (goat) and 9 years

(sheep). The evaluated studies show hence a rather inconsistent choice of age
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among different animal species with a relatively large number of poorly indicated
time specifications. Regarding the average time of growth plate closure as it was
reviewed by Kilborn et al. (Kilborn, Trudel et al. 2002), it can be concluded that
primarily the evaluated studies using sheep provided animals of an appropriate
maturity.

Noteworthy, when evaluating the studies of the literature research and those
obtained by the survey run, data concerning the animal's age was often not
indicated or vaguely defined. Thereby, the indication "adult" was summarized
under the term "not defined" since it does encompass a broad range of possible
ages. For instance, half of the studies using rabbits for research did not define
the age of the animal such as 32% of the research work on rats and 24% of the
described studies on murine models. Furthermore, the animals’ age indicated in
the studies often referred to the time of acquisition and not the actual study
conduct. Age, however, represents an important factor when establishing a
preclinical animal model for testing bone related questions and in some cases,
its disregard could result in the diminishment of scientific validity and in the
expansion of experimental variability (Jackson, Andrews et al. 2017). Although
different opinions and age specifications about the appropriate time frame for one
animal species have been reported (Kilborn, Trudel et al. 2002, Jilka 2013,
Jackson, Andrews et al. 2017), it must be outlined that, in order to obtain clinical
translation of preclinically tested bone tissue engineered constructs, research on
animals need to more rigorously apply current knowledge on age related
processes for the utilized animal strain. This is even more important as the target
population for bone surgery apart from trauma surgery is mainly an elderly
population that may suffer from regeneration and healing deficits like age-related

osteoporosis and other age-related conditions.

4.2.4 Observation methods

The application of different assessment methods represents an integral step in
scientific research which is motivated by the interest to achieve answers to the

targeted question. In the context of bone tissue engineering, histological methods
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help visualizing the nature of newly formed tissue and its cellularity; radiographs
allow outcome measures of bone formation and bone union, whereas only
mechanical tests can be applied for both functional and structural evaluation of
the bone (Spicer, Kretlow et al. 2012, Martine, Holzapfel et al. 2017, McGovern,
Griffin et al. 2018, Schindeler, Mills et al. 2018). Testing mechanical properties
through biomechanical testing, namely compression, tension, torsion and flexion
tests, thereby helps analyzing and confirming criteria like solid bone fusion,
termed bone bridging and mechanical strength (Liebschner 2004) such as stress
fracture resistance, ductility and elastic moduli (Muschler, Raut et al. 2010,
Schindeler, Mills et al. 2018). However, two-dimensional radiographic techniques
and three-dimensional imaging processes also allow assessment of bone quality
regarding bridging, volume extension and bone density.

A wide range of different examination techniques have been applied in the
evaluated studies in order to observe the process of bone healing, namely the
arrangement, volume and structure of the newly formed bone. Observation
methods thereby varied between radiology, tomography, histology, electron
microscopy, molecular biology, biomechanical testing and other methods (see
Tab.4). In rodent animal models (mice and rats), the combination of u-ct, x-rays
and histological observation occurred predominantly as primary outcome
measure. Biomechanical tests were applied in only 32% of all studies with
rodents, whereby proportionally more often on rats than on mice. This might be
due to the bigger size of rats compared to mice, which facilitates the
implementation of biomechanical tests. Almost the same applies to the work with
rabbits, which mainly implied the performance of histological, radiological and p-
ct examinations, including biomechanical tests in only 33% of the cases, mostly
when examining the radius (21%). However, as already mentioned above, only
the application of biomechanical tests help visualizing functional characteristics
of the newly created bone in animal models and their implementation remains
crucial for the obtainment of reliable study results which might ultimately allow
further steps to the still missing clinical translation of previous research.
Moreover, the further evaluation of research in large animal models revealed that

almost two thirds of all evaluated studies did not ascertain mechanical properties
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of their constructs, which in turn could reduce the reliability and quality of the
study results and hence the possibility of their successful clinical translation. In
one third of the studies obtained by the survey, researches were unsatisfied with
their animal model, whereby most study designs applied radiographs and
histological methods to analyze their outcome, whereas mechanical tests
occurred in only one case. Researches might not have been satisfied with the
models because the choice of the observation methods was not adapted to their
research question and the limited use of biomechanical tests would not allow
reliable comparison between their study results and the outcome of other
preclinical animal models. Even though two-dimensional radiographic techniques
and three-dimensional imaging processes allow the assessment of bone quality
and have become the gold standard for the analysis of bone formation
(Schindeler, Mills et al. 2018), biomechanical tests remain crucial when
examining functional aspects. The use of p-ct examinations might provide
information about bone mineralization and allows the evaluation of
aforementioned qualities of newly formed bone, which then might also reflect the
quality of the mechanical properties (Muschler, Raut et al. 2010). Nevertheless,
biomechanics still represent the substantial parameter to analyze the bone quality
which is relevant for the appropriate mechanical integration (Muschler, Raut et al.
2010). It was furthermore proposed that assessment of mechanical properties
might additionally require the implementation of histological evaluation in order to
confirm bone strength in the microarchitecture of the bone (Schindeler, Mills et
al. 2018).

Moreover, as described in the chapter 1.4, vascularity plays a crucial role and
represents a vital parameter for the success and survival of an engineered
construct (Muschler, Nakamoto et al. 2004, Laschke and Menger 2012). Blocking
angiogenesis with therefore applied inhibitors was shown to lead to suppressed
fracture healing and non-union like ectopic osseous formation (Hausman,
Schaffler et al. 2001). Concerning this matter, it was clearly annotated in the
comments of the survey that the moment a graft is put inside a human body, there
would be a race between tissue regeneration and apoptotic signals influencing

the final outcome of a tissue engineered bone. Indeed, a review focusing on
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vascularization in the field of bone tissue engineering was published by Santos
and Reis, outlining current limitations in the context of bone tissue engineering.
Thereby, slow ingrowths and anastomoses of newly developed blood vessels
with the surrounding circulation as well as constraint and late provision of vital
molecules by diffusion was discussed to lead to cell death after implantation and
eventually to the pitfall of a bone tissue engineered construct (Santos and Reis
2010). Amini et al. thereby referred to a need for matrix structures that provide
cell survival of the seeded cells even before vascularization, which usually only
appears within days to weeks (Amini, Xu et al. 2016). Management of post
implantation angiogenesis therefore needs to be controlled using highly
elaborated imaging techniques that are able to combine aspects of histological,
immunohistochemical, microtomographic and microscopic examinations (e.g.
perfusion weighted MRI, vessel wall labeling by promoters like Cadherin 5 or the
injection of fluorescent molecules) (Lafage-Proust, Roche et al. 2015, Akar,
Tatara et al. 2018). The combination and assessment of such methods would
certainly augment the quality of the animal models and hence allow the
obtainment of more sound results which are necessary for the clinical translation
of bone tissue engineering. However, the application of methods devised with the
motive to depict vascular processes was described in less than 10% of the
evaluated studies. Reasons therefore might be the higher costs and the high time
requirement for their implementation as well as the need for skilled scientists
providing necessary knowledge in order to correctly operate the elaborated
technology and to interpret its outcome.

Moreover, methods like 3D imaging, SPECT, or fluorochrome analysis with
calcein were conducted rarely but evenly in large and small animals. Once again,
higher costs for the implementation as well as the requirement of specific
knowledge about technical procedures and the assessment of the outcome
certainly limit the use of such methods. The use of fluorochrome in preclinical
animal models was mentioned to be challenging and valid standardization still
complicated since many different kinds exist and the application of the adequate
type and its concentration demands experience and knowledge (van Gaalen,

Kruyt et al. 2010). However, the use of fluorochrome for bone tissue engineering
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was stated to enable the evaluation of the exact spot of osteogenesis and the
onset time as well as the analysis of the newly formed bone type and its formation
rate (van Gaalen, Kruyt et al. 2010). It might hence be favorable to implement the
advantages of fluorochrome labeling more often in the study designs with
preclinical animal models. Furthermore, the use of SPECT was brought up for its
provision of high resolution images without artefacts, which also allows the
examination of smaller animals such as mice (Wirrwar, Schramm et al. 2001,
Lienemann, Metzger et al. 2015). In addition, it follows the guideline of reducing
animal sacrifice since the in vivo monitoring of bone healing processes is possible
without affecting the examined animal (Wirrwar, Schramm et al. 2001). In order
to actually implement the aforementioned principle of “3Rs” and to standardize
animal research, studies need to rely more often on new methods. This might be
cost-intensive and complex but surely provides promising results for the clinical
translation of bone tissue engineered constructs.

In conclusion, many parameters are necessary to assess the properties of newly
formed bone. A wide range of techniques designed to provide quantitative and
qualitative description of newly formed bone is currently available and studies on
preclinical animal models should therefore focus on the implementation of
research question related outcome measures and analysis. However, the
evaluation of the studies described in the survey and in literature revealed that
the use of a combination of clinically significant observation methods (e.g.
biomechanical testing, fluorochrome labeling, SPECT, imaging techniques able
to assess osseous vascularization) was often not described and that research
often focused on histological and radiological observation methods. This might
be one of the reasons why clinical translation of bone tissue engineering still fails

to appear.

4.2.5 Observation time

Significant discrepancies in observation time were indicated in the evaluated
studies for this thesis. Thereby, the final observation time of preclinical animal

models reported in the survey varied from 3 to 16 weeks in small animals and
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from 12 to 48 weeks in large animal models. The evaluated publications reported
times ranging from 2 to 25 weeks in small animals and 5 weeks to 48 weeks in
large animals. As described in the previous chapter, each scientific issue
demands different observation methods as well as different observation times
depending on the research question to be answered. It has been proposed that
if the objective of a study was to observe long-term effects in bone healing and
remodeling driven by bone tissue engineered constructs, follow-up periods
should be chosen generously to allow reliable outcome (Reichert, Saifzadeh et
al. 2009). If, however, the research question seeks to analyze earlier procedures
of bone healing processes, observation time naturally follows a different time
schedule. The targeted outcome parameter hence indicates the specific time
frame for one particular observation among many. For instance, Garcia et al.
defined the term bone union as the first observable signs of osseous bridging,
whereby 8 weeks have been described to be necessary for bone healing in
human individuals, 5 weeks in rats and 4 weeks in mice (Garcia, Histing et al.
2013). The term non-union was furthermore defined as an enduring failure of
fracture healing and a healing duration exceeding 6 months for humans, 15
weeks for rats and 12 weeks for mice was mentioned to define long term failure
of osseous union. However, only 8% of the evaluated studies from the survey
and literature search using rats as animal model adhered to a duration of 15
weeks for observation time and only 26% of the studies using mice exceeded
their study duration to 12 weeks. Regarding the applied observation time, there
remains hence only a small number of studies that would be suitable to
demonstrate reliable outcome for the assessment of definite fracture healing or
bone remodeling rates, which demand even longer observation times. However,
if the purpose of a study was to monitor bone bridging in rodent animal models,
it was proposed that it should be assessed within the first visible signs of osseous
union. Observation time points between first and complete bone continuity would
be harder to set reasonably and would not provide any more significant results
for defining the already ongoing process of bone union (Garcia, Histing et al.
2013). Therefore, Garcia et al. proposed observation time points at 2 weeks and

1, 2 and 3 months and in rats at 2, 5, 10 and 15 weeks (Garcia, Histing et al.
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2013). However, with respect to the fact that the animal’s strain and age influence
the temporal course of fracture healing (see chapter 4.2.2 and 4.2.3), the
observation time should be adapted. Moreover, the use of different fixation
methods and surgical designs may also influence the “normal” healing period and
sequence (see chapter 1.5.2). One of the evaluated studies aimed to examine
early vascularization and bone repair in a critical-sized defect under the effect of
MSCs and endothelial progenitor cells (EPCs) and therefore applied adequate
observation methods (VWF staining) in the appropriate time frames, i.e. 1, 4 and
8 weeks (Seebach, Henrich et al. 2010). The histological assessment of early
vascularization and the beginning of bone formation was performed after 1 and 4
weeks, whereby only bone formation was assessed at 8 weeks using histology,
M-ct and mechanical tests.

It would be favorable if study designs applied appropriate periods of observation
times based on the purpose of their research, even if this entails a high time

requirement in the case of long-term studies and consequently more costs.

4.2.6 Implantation site

Whereas the use of ectopic animal models reaches its limits for evaluating bone
regeneration, orthotopic models enable more appropriate assessment of ongoing
processes during osseous healing (Black, Goriainov et al. 2015). Both literature
research and survey evaluation revealed that femur, tibia, radius and cranium
represent commonly used anatomical sites for receiving bone tissue engineered
constructs (see Fig.21C and Fig.32). Whether a defect is tested in the femur, the
tibia, the radius, the humerus, the ulna or the maxillofacial zone and the cranium,
thereby mostly depends on what kind of tissue is targeted with the tissue
engineered construct under examination. Studies need to credibly represent
animal bone defects that are comparable to clinically significant scenarios of
human bone injury (Pearce, Richards et al. 2007, Black, Goriainov et al. 2015).
Moreover, quite apart from finding the potentially ideal defect location, the
intactness or fraction of the periosteum and therein presented MSCs constitutes

an important surgical aspect when creating an osseous injury since cellular and
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molecular processes in fracture healing considerably depend on periosteal
participation and its angiogenic contribution (Zhang, Xie et al. 2005, Colnot 2009,
Chang and Knothe Tate 2012, Lin, Fateh et al. 2014, Neagu, Tiglis et al. 2016).
Thereby, the provision of an intact periosteum after injury might not always be
granted in clinical cases and studies with preclinical animal models involving
defects with ruptured periosteum might therefore represent clinical conditions
more closely. However, only 40% of the evaluated studies precisely indicated the
condition of the periosteum when creating osseous defects of which 15%
described its preservation during surgical operation. It would be favorable if more
studies indicated whether the created defects healed with or without the help of
an intact periosteum in order to reliably compare study results and hence allow
better clinical application.

Another aspect to keep in mind when creating a defect, before choosing its
precise implantation site, would be the distinction between the different bone
formation types. As described in chapter 1.2.2, bone formation of the cranium
occurs mainly through intramembranous ossification and underlying cell
differences due to distinct embryonic tissue origin (neural crest and mesoderm)
have been described to influence the fracture healing of the cranial bone (Quarto,
Wan et al. 2010). This is an important aspect to consider if conducted research
is focused on finding strategies for endochondral bone formation (Spicer, Kretlow
et al. 2012). Thereby, cranial bones origin from both neural crest derived cells
(frontal bone) and mesoderm derived cells (parietal bone) and it has been
demonstrated that the former evince higher osteogenic rates and healing
capacities (Quarto, Wan et al. 2010). Indeed, no unsatisfying outcome was
described for cranial defects when evaluating the outcome of the survey, which
might affirm an increased healing potential in defects created in the cranium of
animal models. Moreover, osteoinductive cells of the facial bones descend from
the neural crest and form bones through intramembranous ossification, whereas
long bones are formed by osteoblasts that originate from the mesoderm and
develop bone by endochondral formation (Couly, Coltey et al. 1993, Reichert,
Gohlke et al. 2013). Even though both bone types have been shown to exhibit

the same osseous structure, the functional and molecular differences between

100



Discussion

the osteoblasts were hypothesized to influence the process of fracture healing
(Reichert, Gohlke et al. 2013). Therefore, Aghaloo et al. examined differences
between bone marrow stromal cells of the mandibular and the tibia of rats
regarding the time needed for bone regeneration after injury, whereby findings
indicated that the osteogenic performance of the mandible cells preponderated
(Aghaloo, Chaichanasakul et al. 2010). Similar findings were described by
Reichert et al. who described the enhanced osteogenic potential of ovine
mandible osteoblasts compared to tibial counterparts (Reichert, Gohlke et al.
2013). Again, researchers that participated in the survey did not describe study
outcomes as unsatisfactory when classifying animal models with mandibular
defects, whereas two studies indicating tibial defects in the goat and the mouse
were mentioned in this category. However, the tibia was mentioned to represent
the most common localization for bone defects, which was related to its poor
stabilization by only few surrounding muscle coverage (Reichert, Saifzadeh et al.
2009). Moreover, distal femoral defects in rabbits were suggested to be an
important implantation site for recreating bone defects since they represent a
commonly affected area after bone tumors or total knee replacements (Li, Chen
et al. 2015).

The evaluation of the studies (survey and literature) revealed that femur and tibia,
classically exposed to high weight-bearing loads, represented the most
commonly used implantation sites (71%) for testing the macrostructures of the
newly formed bone and its behavior under realistic biomechanical conditions. A
large number of the studies seek hence to imitate clinical conditions more
realistically by choosing commonly affected defect sites, which is important for
accelerating the necessary steps towards clinical translation. Thereby, femoral
defects occurred recurrently in both small (42%) and large (32%) animal models,
whereby long bones in large animals were discussed to provide more reliable
information about osseous rigidity and load- bearing aspects under
biomechanical conditions than long bones in small animal models (Pearce,
Richards et al. 2007, O'Loughlin, Morr et al. 2008). Defects in the tibia were rather
reported in large animals (39%) and results might hence emerge more

informative regarding their clinical translation. The animal model designs detailed
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in the surveys additionally indicated when study outcome was not satisfying
revealing that 8 out of 12 unsatisfying results occurred when choosing the femur
of small animals. Again, the missing clinical references in small animal models
might be a reason why animal models turned out unsatisfactory.

Moreover, the bone structure and size of the radius was mentioned to provide
convenience regarding the operation of segmental defects and their histological
and radiographic observation (An and Freidman 1998). Additionally, due to the
stabilizing effect of the adjacent ulna, no supplementary fixation device is needed
(An and Freidman 1998). The same internal fixation effect applies to the ulna,
leaving additional fixation devices unnecessary (Horner, Kirkham et al. 2010). It
is therefore not surprising that a large majority of all defects created in rabbits
(85%) were described in the radius as forearm bone, whereas the ulna as defect
model was tested less often. This might also be due to its comparatively lower
rounded anatomical shape that was considered as less favorable for surgical
operation as well as histological, radiographic and biomechanical observation (An
and Freidman 1998).

If, however, the focus of a study did not involve the imitation of load-bearing
conditions as observed in humans but predominantly structural properties,
Liebschner et al. discussed smaller animals as more favorable regarding their
quicker healing rates, larger amounts of data collection and lower cost
expenditures (Liebschner 2004). Defects in the cranium of small animals thereby
represented a popular model to test engineered constructs (McGovern, Griffin et
al. 2018). The evaluation of both survey and literature outcome revealed that
surgical procedures in the cranium were mainly conducted in rats (62%), whereas
only one cranial defect was described in a large animal model (Jensen, Tvedesoe
et al. 2016). Such defects provide advantages regarding the cranial bone
structure similar to a plate, which was proposed to simplify the approach to
uniform defects and to allow reproducibility and standardization without the need
for stabilization (An and Freidman 1998). Moreover, the comparison of the
outcome provided by study designs testing cranial defects in animal models is
possible since there exists already a large amount of them (An and Freidman

1998). Additionally, the anatomical location was mentioned to simplify access for
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surgical interventions and observation methods and the surrounding Dura mater
stated to be capable of providing nutritional supply for the implant (Gomes and
Fernandes 2011, McGovern, Griffin et al. 2018) and hence to have an important
influence on the outcome of osseous reconstruction in cranial defects (Cooper,
Mooney et al. 2010). However, it is questionable whether the provision of an intact
Dura mater after injury can be assumed. Research driven by the incentive to
imitate clinical conditions in order to improve clinical translation should hence
carefully weigh up the decision of leaving the Dura mater intact or not. Thereby,
36% of the studies describing cranial defects and evaluated for the thesis
indicated the protection of the Dura mater during the surgical procedure. It would,
however, be interesting to compare study results describing defects with and
without an intact Dura mater and eventually necessary in order to allow
standardization of the defect designs and ultimately clinical application of the
results.

Moreover, even though rats represent a popular model for the creation of cranial
defects (62% of all evaluated studies describing defects in the cranium), their fast
bone healing rates were discussed to pose major issues (An and Freidman 1998)
when used for scientific purpose in the context of bone tissue engineering. Study
results could hence be hard to apply for clinical translation. Furthermore, surgery
can be technically challenging regarding the small size of the animals and
complicated if research demands special surgical finesse like the aforementioned
maintenance of an intact Dura mater, if intended (Cooper, Mooney et al. 2010).
As mentioned earlier in this chapter, studies that seek to create reliable designs
for bone tissue engineered constructs, of which the outcome might soon-to-be
applicable for the treatment of comparable human bone defects, are crucial and
imply the combination of results obtained from different animal species as well as

different anatomical sites.

4.2.7 Defect dimension

Another parameter that shows broad range of data is the defect size. The

evaluation of all study designs revealed that most of the authors and participants
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of the survey indicated a defect size for their model but did not specify the explicit
defect dimension (length, width, depth, height). Such information often failed to
occur in the description or showed significant variations. Especially the
description of defects created in the mandible or the maxilla showed extreme
heterogeneity which complicated the provision of a well-structured summary of
the alveolar defects and, most importantly, impedes the standardization of the
defect design in general.

As described in chapter 1.3.1 and 1.5.2, critical-size defects represent an
important fracture model to test bone tissue engineered constructs since they
cannot heal spontaneously and hence depend on interventions that affect the
bone healing process. However, the definition of a critical-size defect across
various anatomical locations, animal species, animal strains and different age
groups is difficult to determine and to standardize and therefore hard to apply.
Fig.39 indicates the wide size range of defects, which were referred to as critical-
size defects, in the different implantation sites of rats. Segmental defects in long
bones thereby varied from 1 mm to 10 mm. Drill holes tested in rats and described
as critical ranged between 5 mm and 8 mm, yet 4 mm drill hole defects described
as non-critically sized were also reported. Similarly, segmental defects in rabbits
ranged from 5 mm to 20 mm, all described as critical. Drill hole defects in rabbits
showing the size of 6 mm were reported in papers and described as both critically
sized and non-critically sized. Segmental femoral defects created in sheep, which
were likewise described as critical, varied from 20 mm to 30 mm, whereas 8 mm
large femoral defects and 8 mm normal healing femoral defects were also
described by participants of the survey. This huge variation underlines the fact
that there exists no exact definition for the creation of a critical-size defect. Two
defects of the same size might likewise occur as critical in one study and as non-
critical in another study. Each study applies different defect designs, which
complicates reliable comparison between the study results and hence does not
allow any standardization for the preclinical animal models and even less the

clinical translation of their outcome.
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Fig. 39 Critical size defects in rats. The graph shows the range of defect sizes (mm) for critical
size defects for different implantation sites in rats that have been reported in the reviewed papers
and in the survey. The indicated sizes in the diagram are the diameter size for drill hole defects
created in cranium and the distance between the two bone fragments for segmental defects in
the femur. A wide range of sizes, varying mainly between 5 mm and 8 mm for cranial defects and
between 1 mm and 10 mm for femoral defects, was applied and therefore complicates the
standardization of critically sized defects.

However, there have been attempts of determining precise indications for the size
of such defects. For instance, a circular defect with a diameter of 8 mm was
considered to represent a critical-size defects in the cranium of Sprague Dawley
rats (An and Freidman 1998, Spicer, Kretlow et al. 2012), whereas 15 mm were
mentioned to be necessary for cranial critical defects in adult New Zealand White
rabbits (An and Freidman 1998). However, no cranial defect of 8 mm was
described in the evaluated studies when working with Sprague Dawley rats and
only one study occurred indicating a 15 mm critical-size defect in the cranium of
New Zealand White rabbits with an average age of 9 months (Kim, Sharma et al.
2012). Once again, it might be the vast definition for critical-size defects that
renders study designs inconsistent and impedes the drawing of conclusions from
one study to another.

Long bone defects were widely defined as critical when exceeding two times the
diameter of the bone in question resulting in a necessary defect size of at least
12 mm or even 15 mm in the radius of New Zealand White rabbits (An and
Freidman 1998). Such defects occurred in 86% of all evaluated radial defects in

rabbits of which even 92% showed the size of 15 mm or more. Such study
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designs would hence rather fit into the framework of detailed regulation. On the
other side, as already mentioned, it was proposed that critically sized defects
should be hardly defined by exact size indications, but rather to be circumscribed
as defects that do not heal spontaneously (which underlines the need for empty
defects as described in chapter 4.2.9) or have less than 10% regeneration during
the lifetime of an animal (Schmitz and Hollinger 1986). A rather abstract definition
that was mentioned to complicate the standardization for defect sizes in
preclinical animal models but also to avoid the risk of incorrectly defining only
subcritical defect as critical and hence necessary since a non-critical-size would
heal by itself, without intervention (Spicer, Kretlow et al. 2012). It is thereby
important to note that almost all study results in rodent animal models, which
researchers from the survey mentioned to have turned out as unsatisfactory,
revealed a defect size of only 5 mm or smaller. This could lead to the conclusion
that defining an exact defect size as guideline for research would after all limit the
number of studies resulting in unsatisfactory outcome.

Critical-size defects might furthermore lead to non-unions which reflect the long-
term failure of osseous healing and exhibit the appearance of scar tissue in
between the fracture endings (see chapter 1.2.3) (Garcia, Histing et al. 2013).
Clearly, non-unions and delayed healing processes constitute a large clinical and
economic burden for causing significant loss of function and life quality, not
forgetting the serious pain caused by such defects (Victoria, Petrisor et al. 2009).
Preclinical study models representing non-unions are hence important in order to
recreate clinical conditions more closely and to investigate possibilities to cure
such defects. However, non-union models were reported in less than 10% of all
evaluated studies (survey and literature), whereby mice and rats were
predominantly used. Thereby, segmental defects of only 2-3 mm in mice and 5-
8 mm in rats were described as non-unions, which might not be big enough for
examining the behavior of non-union defects adequately. Additionally, one of the
participants in the survey commentated that there is still a major need for better
non-union models which are difficult to treat and lead to ischemic bone wounds.
Indeed, whereas the performance of critical-sized defects has been widely

investigated over the last years, the step towards non-union model studies was
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reported to increase only slowly (Garcia, Histing et al. 2013). The establishment
of such models might be challenging in small animal models since their bone
structure was mentioned to possess increased bone healing potential
(Manigrasso and O'Connor 2004) and therefore complicates the standardization
of non-union models for research. Moreover, high-resolution imaging methods
are needed in order to allow adequate assessment of the ongoing processes of
tissue formation in non-unions as well as well-defined time points for such
observation.

In the end, the exact definition and hence standardization for both critical-size
defects and non-unions in preclinical animal models is hard to determine and
therefore complicates scientific research on the models. Studies do not follow any
guidelines since they do not exist and therefore reveal various defect designs

which hardly allow comparison to each other.

428 Fixation methods

Different fixation methods have found their way into surgical operation techniques
allowing adequate stabilization of the created defects in preclinical animal models
(see chapter 1.5). Thereby, fixation can be obtained by different osteosyntheses
techniques including external fixation, internal plates or intramedullary nails and
wires.

Papers describing segmental defects in load-bearing sites reported the use of
different fixation devices. Cranial defects, drill holes and defects at implantation
sites that are sufficiently stabilized by adjacent bones do not need any
supplementary fixation device and are therefore not discussed in this chapter.
External fixators, reported in 19% of all cases, were discussed as easily
applicable and hardly disruptive for the soft tissue environment, whereas pin
loosening and pin associated infections as well as extended healing periods were
mentioned to have detrimental impact on this temporary fixation method
(Reichert, Epari et al. 2010). Moreover, the external manipulation of the device
and self-inflicted injuries are hard to control when operated on animal models

(Drosse, Volkmer et al. 2008). The mentioned drawbacks might explain the low
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frequency of external devices in the evaluated studies, whereby studies using
external fixators in human individuals have likewise reported complications such
as pin loosening, inadequate bone alignment and osseous union as well as the
risk of soft tissue necrosis and osteomyelitis (Green 1983, Milenkovic, Mitkovic
et al. 2018). Intramedullary nails, although commonly chosen for stabilization in
human bodies (Schneider, Michel et al. 2001), were associated with
disadvantages considering the diminishment of blood circulation due to drilling
and nailing in animal models, leading to temperature-associated 0sseous
necrosis and therefore, albeit reversible, resulting in delayed healing processes
(Reichert, Epari et al. 2010). On the other hand, Histing et al. reported positive
outcome regarding axial and rotational rigidity of intramedullary nails that have
been applied to stabilize femoral defects in mice (Histing, Menger et al. 2016).
The implementation of such fixation devices, however, was reported in less than
20% of the evaluated studies, whereas the application of internal plates was
described in more than 52%. However, almost half of the studies from the survey
that reported unsatisfactory outcome applied plates as internal fixation method.
Even though plates were mentioned to ensure sufficient fixation, their application
involves disadvantages regarding false alignment, decreased vascularity, and
osseous damage due to augmented pressure caused by the plate (Reichert,
Epari et al. 2010). The emergence of plate-associated complications stands in
contrast to the still relatively high number of evaluated studies reporting to apply
such devices, whereby such disadvantages might lead to the persisting
limitations of preclinical animal models and lower the translational success of the
study outcomes. However, the last-named drawback could be avoided when
using new plate systems which have been discussed to allow the circumvention
of direct contact between bone and plate (Reichert, Epari et al. 2010). Moreover,
the use of compliant plates allowing moderate movements in between the bone
fragments and hence the transmission of only axial loadings to the newly formed
bone has been reported to enhance bone repair compared to stiff plates
(Boerckel, Kolambkar et al. 2012).

Regardless of the disadvantages, it is important to have in mind that fixation

methods ensure stabilization and therefore minimize the risk of hypertrophic non-
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unions characterized by endochondral ossification and the development of a
callus which results in the formation of non-mineralized cartilage at the fracture
site (Garcia, Histing et al. 2013). Leaving defects without any fixation or applying
fixation devices that cannot ensure axial and rotational stabilization in segmental
defects (single pins, intramedullary pins and rods) can lead to unmanageable
biomechanical situation that do not represent standardized defect designs
(Thompson, Miclau et al. 2002).

429 Empty defects

Concurrent control groups have already been mentioned to represent a crucial
part of a valid experimental set-up. Further steps towards clinical translation can
only take place if study designs allow the comparison of the created defect with
defects of the same size and shape but left empty or filled with autologous bone.
Drosse et al. underlined that the understanding of osseous reconstruction in
connection with bone tissue engineering demands the observation of critical-size
defects (Drosse, Volkmer et al. 2008), whereby problems concerning the creation
of a critical-size defect following precise definitions have already been discussed
in this thesis (see chapter 4.2.7). Some defect designs referred to as critical may
heal without any intervention at all. Therefore, it is necessary to provide an empty
defect that confirms the created defect as critical since healing in the control
group did not take place (Liebschner 2004). Moreover, the involvement of
additional defects containing autologous bone would be favorable when testing
bone tissue engineered constructs in preclinical animal models. Autologous bone
still represents today's gold standard in the clinics and the direct comparison of
defects containing tissue engineered constructs to defects filled with autologous
graft would show their different effects on bone healing best.

Out of all evaluated studies from literature research (the question of whether
studies included an empty defect or a control group with autologous bone was
not part the survey), 55% described the usage of empty defects, whereas less
than 10% of the studies described the implementation of a defect filled with

autologous bone. Thereby, murine models were not part of the evaluation of
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studies containing autologous fillings as control group since the animals were
considered too small to allow the creation of second injury sites for the bone
harvesting. The results reported in the studies showed that most of the empty
defects consistently developed only small amounts of fibrous tissue formation
and hence did not show complete bone bridging. The outcome demonstrates that
most of the studies examining critical-size defects in preclinical animal models
imitated clinically relevant injuries relating to the fact that the created defects
would not heal when left empty. The study results can therefore be considered
as potentially relevant regarding their implementation for clinical translation.
However, there remains a large number of studies that did not involve the creation
of a control group in their preclinical animal model, which, as a result, lowers their

informative value for clinical translation.

4.3 Scientific and clinical perspectives

The evaluation of the survey and the literature search demonstrated that intense
research is being conducted with the aim of finding solutions that would fill the
still existing lack of suitable preclinical animal models for bone tissue engineering
and of which the outcome would allow further steps towards clinical translation.
Thereby, the survey data revealed accordance and differences given by both
scientists and surgeons concerning their opinion in the assessment of bone tissue
engineering and the therefore conducted research with preclinical animal models,
whereby the latter group would, if clinical translation takes place, ultimately take
advantage of the novel constructs.

Regarding the assessment of the preclinical animal models currently used to test
bone tissue engineered constructs, the evaluation of the surveys generally
revealed a rather optimistic attitude and models were mostly considered as
relevant (see Fig.28). Moreover, most of the participants considered them to be
well developed, although not yet clinically useful and still reliant on further
optimization (see Fig.27). Thereby, clinicians showed slightly more optimism
concerning the models compared to scientists. This might be due to their closer

relation to clinical cases and hence their experience with present treatments of
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bone injuries. It is thereby important to keep in mind that clinical translation
depends on both theory and practice and therefore clinicians represent an
interesting target group. They might contemplate clinical translation in a more
balanced way concerning practical application and aspects of pure theory,
applied theory and the interpretation of study results. Conversely, especially
scientists with more professional experience, who are possibly holding a more
theoretic point of view, considered the models as poor (12%), dependent on
optimization (47%) and the outcome of the studies less often as well translated
in the clinics (35%) (see Fig.20). As already mentioned, the idea of bone tissue
engineering exists since the early 90s, which represents a large amount of time
and could explain the more pessimistic assessment of scientists with higher
experience level and hence more experience concerning the failure of the study
results in terms of clinical application.

Even though some few surgeons queried in the survey envisaged the outcome
of preclinical studies as already transferable into the clinics (see Fig.18), it has to
be emphasized that, as described in the previous chapters, the need for better
standardization of the study design as well as the disregard or lack of knowledge
concerning factors that affect bone healing (e.g. animal species, strain, age,
surgical design, vascularization etc.) represent essential limiting factors. It is
therefore not surprising that the implementation of advanced therapy medicinal
products (ATMPSs), which represent genetic, cell or tissue level based medical
treatment solutions for human diseases, is confined to only few market licenses
in Europe (Ten Ham, Hoekman et al. 2018, Yu, Gupta et al. 2018).

Regarding the assessment of bone tissue engineering, there remains a
considerable number of surgeons (38%) who demonstrated a rather skeptical
attitude towards novel tissue engineered constructs and would apply them on
only few or even none of their cases (see Fig.12), predominantly when treating
non-unions. Aspects concerning further costs and supplementary time necessary
to investigate patient specific needs could be one of the reasons why some
surgeons might hesitate to use new tissue engineered strategies in the clinics.
Also, new designs, even if already clinically accepted by the FDA, generally

demand a notable amount of time before long term success can be identified.
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Understandably, if during their professional career surgeons have made positive
experiences with currently applied clinical strategies for bone augmentation, they
might not be willing to take risks when learning the implementation of novel
strategies. The evaluation showed that most of the participating surgeons who
use autologous bone as bone graft material for the repair of non-unions would
not agree to take such risks since the so-called gold standard has provided
satisfactory outcome over the years. Nevertheless, as described in chapter 1.3.2,
even the gold standard for bone augmentation reveals severe negative side
effects that need to be considered when used in the clinics.

Moreover, despite the fact that one surgeon indicated that bone tissue
engineering would always be a domain of academic institutions and not for daily
practice, both surgeons and scientists preponderantly marked that clinical
application of bone tissue engineered constructs would take place one day and
that research on bone tissue engineering is important. Therefore, novel methods
are needed in order to surmount current limitations of preclinical animal models
in bone tissue engineering such as the lack of standardization which hinders their
way from academic institution into clinical practice. Indeed, when asking about
the time needed for clinical application, opinions on temporal classifications
differed slightly. The majority of the participants indicated that future
implementation in the clinics could be realistic in the next ten years (see Fig.29).
However, scientists showed slightly more confidence for the nearer future,
namely five years, although their assessment of preclinical animal models turned
out less enthusiastic regarding the progress of the models and the transferability
of the study results into the clinics. There is hence a slightly contradictory view
and given the fact that researchers still pore over elementary issues of current
bone tissue engineered constructs, in particular the maintenance of sufficient
oxygen and nutrient supply (Laschke and Menger 2012) as well as the regulation
of approved and standardized procedures for the entire study design (Frohlich,
Grayson et al. 2008, Reichert, Saifzadeh et al. 2009, Schindeler, Mills et al.
2018), it will be interesting to see if the clinical breakthrough could be plausible in
only five years. For sure, novel strategies continue to arise, trying to solve

aforementioned problems, particularly the missing standardization of research
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with preclinical animal models and the resulting lack of study results suitable for

clinical translation.

4.4 Conclusion

Even though the participants of the survey assessed the currently available
preclinical animal models to test bone tissue engineered constructs as well
developed and reproducible (see Fig.27), the further need for optimization in
order to achieve clinical translation was emphasized. The studies described in
the survey and the papers from literature search clearly reveal that the
establishment of a preclinical animal model demands the attention to a wide
range of interdependent considerations starting with the choice of the animal
species, the animal strain, its age and gender. Apart from this, choosing the right
defect location, surgical design as well as the adequate fixation method and
whether the creation of control groups should take place, requires theoretical and
practical reflections. Moreover, the implemented observation methods and the
time spend to observe bone healing make important contributions to the
interpretation of the study results.

The evaluation of the preclinical animal models described in the survey and the
studies from literature search thereby revealed a rather inconsistent choice of
study designs, whereby the number of studies involving small animals was
significantly higher than the one with large animal models. Information regarding
the animal’s age and the created defect dimensions was often not or vaguely
indicated. Current knowledge about adequate age groups and defect sizes, which
would allow reliable interpretation of the study results, was often not applied or
ignored. Consequently, the used animals were often too young and the created
defects too small to enable the provision of clinical relevant scenarios. In addition,
studies recurrently undercut the necessary time for observing bone healing
properly and adequate observation methods were not always applied. Moreover,
studies including preclinical animal models often lack the necessary
standardization as for considering their outcome relevant for clinical translation.
Naturally, the heeding of established guidelines indicating the appropriate animal

model, its age, adequate defect sizes, fixation methods and surgical designs
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would be necessary when working with preclinical animal models in the context
of bone tissue engineering. However, it is important to stress that currently no
common guideline, which offers clear indications for adequate study designs,
exists and that the compliance with such generally valid guideline for the design
of preclinical animal models has hence so far faced difficulties in implementation.
This probably represents one of the main reasons why, until now, the
establishment of reproducible and translatable animal models, which would each
allow answers to targeted research questions and hence suitable outcome for
clinical translation, has failed to be demonstrated. Respecting simultaneously all
factors that affect the study outcome of preclinical animal models presents an
almost impossible thing to do and even though no fully satisfactory model
allowing the introduction into clinical trials currently exists, well-versed
researchers from all over the world constantly establish novel models with new
approaches (see chapter 4.5) in order to finally reach the primary objective of
clinical translation.

However, even though promising results have been reported, the large
discrepancy between research efforts and the very limited translational success
stands out. This thesis shows that no consensus and no standardization on the
use of preclinical animal models for bone tissue engineering currently exists
resulting in a lack of well-defined, reproducible and accepted preclinical models.
There is a major need for better defined and optimized preclinical models in order

to improve translational aspects of the models.

4.5 Future perspectives

The beginning of bone tissue engineering dates back over 30 years and until
today its clinical application has failed to be demonstrated. The previous chapters
provided information about current study designs including preclinical animal
models and their limitations regarding further steps into the clinics. Thereby,
limitations in the establishment of well standardized research when working with

preclinical animal models was detected, resulting in an inconsistence of the study
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results, which hinders the clinical translation of bone tissue engineered
constructs.

This thesis clearly exposed the critical impact of the experimental study design
(chosen age of the preclinical animals, the breed or strain, the defect size and
localization as well as fixation methods) on the process of bone healing and
eventually the translational success of study results. However, the evaluation of
the survey and the literature revealed that there still exists a large number of
studies that do not respect appropriate criteria for preclinical animal models or
show a lack of reporting. Consequently, the study outcome becomes difficult to
interpret and to compare and the study design unreproducible. Moreover, the
missing clinical translation of current preclinical models is a crucial concern since
it questions the actual use of such animal models for the envisaged future clinical
application in humans. In this respect, it would be necessary to weigh up the
further implementation of preclinical animal models that fail to enable clinical
translation. Furthermore, it would be favorable to monitor complete integrity and
validity of stated preclinical information by preclinical experts.

Moreover, the evaluation of the survey revealed that scientists seem to be in
general more satisfied with large animal models than with small animal models.
The lower number of studies in large animals could be explained by the higher
expenses and demanding housing, but also shows a potential reason for the low
number of studies with translational success. A higher number of studies
involving large animal models would hence be favorable since they allow a closer
comparison to human like conditions.

Despite the fact that the majority of the survey participants considered a clinical
availability of bone tissue engineered constructs as conceivable within the next
10 years, the major need for optimization of preclinical animal models was
underlined. Novel, future-orientated strategies need hence to arise, whereby it
was mentioned in the comments that personalized three-dimensional bioprinting
with incorporated bone represents an interesting research field regarding large
sized bone defects. It describes a novel manufacturing technology allowing the
fabrication of well-defined constructs nearby identical to biological tissues and

able to function as scaffolds on which cells can adhere and grow for the following
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transplantation into defects (Derby 2012, Rose and De Laporte 2018). This in turn
will require suitable preclinical animal models as well as further understanding of
biological procedures in order to allow standardization. Clinical translation could
therefore be difficult to reach in the near future.

For now, clinical translation of bone tissue engineered constructs has not taken
place and could actually remain a domain of academic institutions if research
does not start to establish valid study protocols that serve as binding guidelines.
The standardization of study designs at every level is indispensable in order to
prevent unnecessary mistakes at the expense of animals, redundant costs, effort
and time. Moreover, further clarification on cell communication and interaction
would be necessary in order to correctly apply the novel constructs and to
surmount ongoing complications such as adequate tissue vascularization
(Stevens 2008, Schindeler, Mills et al. 2018). Therefore, additional preclinical in
vivo studies are required, starting in smaller animals which are necessary to
assess the proof of concept and proceeding to larger animals which allow further
biomechanical evaluation of an implant in more human like conditions (Salgado,
Coutinho et al. 2004) and finally, maybe one day, reaching clinical studies, which
would improve the quality of life for many patients in today’s aging population.
Moreover, financial support is required in order to promote further knowledge and
navigate the transparency of the studies. For the future, it would hence be
favorable to focus on both clinical and scientific considerations, whereby the
importance of intensive cross-disciplinary collaboration between scientists at the

bench and surgeons at the bedside needs to be emphasized again.
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5 Summary

Autologous bone still represents today’s gold standard for the treatment of critical
size bone defects and fracture non-unions despite associated disadvantages
regarding limitations in availability, donor site morbidity, costs and efficacy. Bone
tissue engineered constructs would present a promising alternative to currently
available treatments. However, research on preclinical animal studies still fails to
provide clinical applicable results able to allow the replacement of currently
applied methods. It seems that the idea of bone tissue engineering, which has
now been integral part of academic studies for over 30 years, got somehow stuck
at an intermediate level, in between intense preclinical research and striven
stages of initial clinical trial phases. A clear discrepancy exists between the
number of studies with preclinical animal models for bone tissue engineering and
the number of clinically approved bone tissue engineered constructs available to
patients.

The aim of this thesis was hence to evaluate preclinical animal models for bone
tissue engineering as well as the perception of scientists and clinicians towards
these models. Moreover, the general role of bone tissue engineering and its
clinical need assessed by scientists and surgeons was investigated. A survey
was conducted questioning both scientific and clinical opinions on currently
available study designs and researchers’ satisfaction with preclinical animal
models. Additionally, a literature research was conducted, resulting in 167 papers
from the last 10 years that report current designs of preclinical orthotopic animal
studies in bone tissue engineering. Thereby, the focus lied on the description of
the models regarding animal species, strain, age, gender and defect design. The
outcome of the literature search was evaluated and compared to the outcome
obtained from the survey.

The survey data revealed that both scientists and surgeons generally remain
positive about the future role of bone tissue engineering and its step to clinical
translation, at least in the distant future, where it then might replace the current
gold standard, autologous bone. Moreover, most of the participants considered
preclinical animal models as relevant and well developed but the results as not

yet realizable in the clinics. Surgeons thereby demonstrated a slightly more
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optimistic perception of currently conducted research with animal models
compared to scientists. However, a rather inconsistent description of present
preclinical study designs could be discerned when evaluating the reported study
designs in the survey and the papers of the literature search.

Indeed, defining an appropriate animal species, strain, age, gender, observation
time, observation method and surgical design often depends on different
indications and research questions and represents a highly challenging task for
the establishment of a preclinical animal model. The existing lack of valid
guidelines for preclinical testing of bone tissue engineering leads hence to a lack
of well standardized preclinical animal models. Moreover, still existing knowledge
gaps regarding aspects that affect the process of fracture healing, such as
vascularization or immunological aspects, were found to hinder clinical translation
of bone tissue engineered constructs.

Using literature review and survey, this thesis points out critical issues that need
to be addressed to allow clinical translation of bone tissue engineered constructs.
It can be concluded that currently existing study designs with preclinical animal
models cannot live up to the claim of providing suitable results for clinical
implementation. The here presented comprehensive summary of currently used
preclinical animal models for bone tissue engineering reveals a missing
consensus on the usage of models such as an apparent lack of reporting and
standardization regarding the study designs described in both papers from the
literature review and the survey. It thereby indicates a crucial need to improve
preclinical animal models in order to allow clinical translation. Despite the fact
that participants of the survey generally revealed a positive perception towards
the use of bone tissue engineered constructs and affirmed the clinical need for
such novel designs, the missing standardization constitutes a main weak point
for the provision of reliable study outcome and the translational success of the
models. The optimization of reproducibility and reliability, as well as the further
understanding of ongoing mechanisms in bone healing in order to develop
effective tissue engineered constructs, need to form the basis of all study designs.
The study outcomes might then fulfill the requirements of maybe today's and

hopefully tomorrow's aging population.
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6 Zusammenfassung

Uber die letzten 30 Jahre hat die Rolle von Bone Tissue Engineering
vielversprechenden Fortschritt gemacht und immer neue Ansatze werden
etabliert. Somit stellt Bone Tissue Engineering eine aussichtsvolle Alternative zu
dem heutigen Goldstandard (autogene Knochenersatzmaterialien) dar, nachdem
diese haufig mit Nachteilen einhergehen: limitierte Verfugbarkeit, Morbiditéat
durch Zweiteingriffe, ungeniigend Stabilitdt und Kosten. Die klinische Umsetzung
findet jedoch nicht so schnell statt, wie urspriinglich erhofft und es scheint, als
wuirde die vorklinische Forschung auf der Stelle treten. Das Ausbleiben von
reproduzierbaren und standardisierten vorklinischen Studien verhindert dabei
eine "bench to bedside" Translation.

Ziel dieser Doktorarbeit war es, derzeitige praklinische Tiermodelle fir Bone
Tissue Engineering zu evaluieren und dabei zu untersuchen, woran es liegen
konnte, dass die Lucke zwischen vorklinischen Studienergebnissen und
klinischer Umsetzung noch immer existiert. Es wurde ein Fragebogen erstellt,
anhand dessen die generelle Meinung gegentber Bone Tissue Engineering und
die Effizienz derzeitiger praklinischer Studienmodelle aus sowohl klinischer, als
auch wissenschaftlicher Sicht hinterfragt wurde. Hier wurde auf3erdem auf die
Beurteilung der Zufriedenstellung solcher Modelle seitens der Forscher
eingegangen.

Darlber hinaus erfolgte eine systemische Literatursuche auf der Online-Plattform
“‘Pubmed” mit dem Ziel Studien der letzten zehn Jahre Uber praklinische
orthotopische Tiermodelle in Bone Tissue Engineering zusammenzufassen und
die verschiedenen Studiendesigns zu evaluieren. Der Fokus lag dabei auf der
Beschreibung der Tiermodelle bezuglich Tierart, Geschlecht, Alter und
Defektdesign. Ergebnisse der Literatursuche wurden anschlief3end evaluiert und
mit den Antworten aus dem Fragebogen verglichen und diskutiert.

Es hat sich anhand des Fragebogens gezeigt, dass sowohl Wissenschatftler, als
auch Chirurgen positiv gestimmt sind, was die zukinftige Anwendung von Bone
Tissue Engineering in den Kliniken betrifft. Jedoch beurteilten die meisten
Teilnehmer des Fragebogens die préklinischen Tiermodelle zwar als relevant und

gut entwickelt, deren Ergebnisse als klinisch allerdings nicht anwendbar. Dabei
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fiel die Einschatzung préaklinischer Forschung mit Tiermodellen unter den
Chirurgen etwas optimistischer aus als unter den Forschern. Die Evaluierung der
Studien aus dem Fragebogens und der Literatursuche zeigte jedoch auch, dass
die darin beschriebenen Tiermodelle einen eher uneinheitlichen Studienaufbau
aufweisen. Tatsachlich stellt die Etablierung eines fundierten Studiendesigns im
Anbetracht der zahlreichen Mdglichkeiten eine immense Herausforderung dar.
Die Festlegung eines Versuchsaufbaus hangt dabei von der Wahl der Tierart,
dessen Geschlecht und Alter, des chirurgischen Ablaufs, sowie der technischen
und zeitlichen Beobachtungsmdglichkeit ab. Es stellte sich heraus, dass fir viele
Studien eine diesbezlglich notwendige Standardisierung kaum existiert und
dadurch Studienergebnisse entstehen, die schwer reproduzierbar sind und somit
den Ansprichen einer klinischen Umsetzung nicht gerecht werden kdnnen. Hinzu
kommen aul3erdem die noch immer bestehenden Wissensliicken in Bezug auf
Knochenheilung beeinflussende Faktoren wie Vaskularisation und Ablaufe des
Immunsystems.

Abschlie3end lasst sich sagen, dass die durchgefuhrte Evaluierung von Studien
mit préklinischen Tiermodellen eine fehlende Standardisierung derzeit
existierender Studiendesigns darlegt und eine klinische Umsetzung der daraus
resultierenden Studienergebnissen somit noch nicht mdglich ist. Auch wenn die
Teilnehmer des Fragebogens den Bedarf an neuen, klinisch anerkannten
Methoden fur Knochenaufbauten nahelegten und eine generell positive
Einstellung gegentber dem potentiellen Gebrauch von Bone Tissue Engineering
Konstrukte in den Kliniken zeigten, ist die Ablésung von autologem Knochen
durch solch neuartige Designs nicht realisierbar, solange die Reproduzierbarkeit
der Daten aus praklinischen Tiermodellstudien fehlt. Zusammen mit
wegweisenden Richtlinien und fundiertem Wissen Uber grundliegende
Mechanismen im Knochenheilungsprozess, sollte sie die Basis eines jeden
Studienaufbaus mit praklinischen Tiermodellen darstellen, um schliel3lich zu den
Ergebnissen zu gelangen, die es fir eine klinische Umsetzung von Bone Tissue

Engineering bedarf.
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Supplement

Supplement

Dear colleagues,

Research in Bone Tissue Engineering (BTE) has made fast progress in the last years
and many promising results from preclinical studies have been published. However,
translation of these approaches to the clinics remains a major hurdle.

We are interested to evaluate the efficiency of currently used preclinical models. Do the
models reflect the clinical need for bone replacements? Which models are most
frequently used and how satisfied are researchers with these models?

We kindly invite you to participate in the online questionnaire which will take you only
few minutes but might help us answering these questions and eventually to improve
translation in BTE.

https://lwww.soscisurvey.de/bte1questionnaire/

Thank you for your time! Please feel free to pass the questionnaire to your colleagues.

Fig-S. 1 E-mail addressed to potential surgeons and scientists.
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Tab-S. 1 Variables and response codes for the interpretation of the survey data provided

by soscisurvey.com

VAR LABEL TYPE INPUT QUESTION RESPONSE
CASE Interview number METRIC SYSTEM
(ongoing)
TEO1 1: Residual option NOMINAL SYSTEM What is your
(negative) or number of professional
selected options background?
TEO1_01 1: Trauma surgery DICHOTOMOUS CHECKBOX 1: not checked : checked
TEO1 02 1: Orthopedic surgery DICHOTOMOUS CHECKBOX 1: not checked : checked
TEO1_03 1:Craniomaxillofacial DICHOTOMOUS CHECKBOX 1: not checked : checked
surgery
TEO1 04 1: Veterinary surgery DICHOTOMOUS CHECKBOX 1: not checked : checked
TEO1_05 1: Scientist, trained DICHOTOMOUS CHECKBOX 1: not checked : checked
TEO1 0O5a 1: Scientist, trained in TEXT OPEN 1: not checked : checked
(free text)
TEO01_06 1: Representative DICHOTOMOUS CHECKBOX 1: not checked : checked
TEO01_07 1: Other DICHOTOMOUS CHECKBOX 1: not checked : checked
TEO1 07a 1: Other (free text) TEXT OPEN
TEO2 2 NOMINAL SELECTION Experience: 1:0-5
2:6-10
3:11-20
4:>20
-9: no answer
TEO3 3 NOMINAL SELECTION I hold a PhD 1:yes
2:no
-9: no answer
TEO4 4 NOMINAL SELECTION How many 1: none
cases do you 2:1-10
treat by 3:10-50
applying bone 4:>50
grafting per -9: no answer
year?
TEO5 5 NOMINAL SELECTION What kind of 1: autologous
bone graft do 2: allogeneic
you use most 3:substitute
frequently? 4. cement
5. BMP
6. other
-9: no answer
TEO5_06 5: other TEXT OPEN
TEO6 6 NOMINAL SELECTION What is the
most common
indication
where you
apply bone
graft?
TEO06_01 6: [No Description] 01 TEXT OPEN
TEO7 7 NOMINAL SELECTION How many of 1: all
those would 2: most
you treat with 3: few
a bone tissue 4: none
engineered -9: no answer
construct if
available?
TEO8 8 NOMINAL SELECTION If applicable,
what fixation
method do
you use most
frequently for
these cases?
TEO08_01 8: [No Description] 01 TEXT OPEN
TEO09_01 9: [No Description] 01 TEXT OPEN
TE10 10 NOMINAL SELECTION What
indication do
you target with
your
research?
TE10_01 10: [No Description] 01 TEXT OPEN
TE11l 11 NOMINAL SELECTION Do you think 1:yes
research on 2: no
bonetissue | _g: g answer
engineering is
important?
TE11 01 11: yes Why? TEXT OPEN why
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VAR LABEL TYPE INPUT QUESTION RESPONSE
TE12 12 NOMINAL SELECTION Do you think 1l:yes
bone tissue 2:no
engineering -9: no answer
constructs will
ever become
clinically
available?
TE13 13 NOMINAL SELECTION If yes, how 1:5
long will it 2:10
take? 3: 20
4:>20
-9: no answer

TE14 14: Residual option NOMINAL SYSTEM What is your
(negative) or number of feeling about
selected options the preclinical

models, which
are currently
used to test
bone tissue
engineered
constructs?

TE14_01 14: The models are DICHOTOMOUS CHECKBOX 1: not checked
well developed, checked
reproducible and
results translate well in
the clinic

TE14_02 14: The models are DICHOTOMOUS CHECKBOX 1: not checked
well developed and checked
reproducible but do not
translate in the clinic

TE14_03 14: The models need DICHOTOMOUS CHECKBOX 1: not checked
optimization checked

TE14_04 14: The models are DICHOTOMOUS CHECKBOX 1: not checked
poor checked

TE14_05 14: 1 don’t have DICHOTOMOUS CHECKBOX 1: not checked
experience with checked
preclinical models.

TE15_01 15a: species TEXT OPEN

TE15_02 15a: age TEXT OPEN

TE15_03 15a: gender TEXT OPEN

TE15_04 15a: strain TEXT OPEN

TE15_05 15a:0observation TEXT OPEN

TE15_06 15a: analysis methods TEXT OPEN

TE15_07 15a: implantation site TEXT OPEN

TE15_08 15a: specify site TEXT OPEN

TE15_09 15a: defect TEXT OPEN

TE15_10 15a: defect size TEXT OPEN

TE15_11 15a: what model TEXT OPEN

TE15_12 15a: fixation TEXT OPEN

TE15_13 15a: satisfaction TEXT OPEN

TE15_14 15a: relevance TEXT OPEN

TE16_01 15b: species TEXT OPEN

TE16_02 15b: age TEXT OPEN

TE16_03 15b: gender TEXT OPEN

TE16_04 15b: strain TEXT OPEN

TE16_05 15b: observation TEXT OPEN

TE16_06 15b: analysis methods TEXT OPEN

TE16_07 15b: implantation site TEXT OPEN

TE16_08 15b: specify site TEXT OPEN

TE16_09 15b: defect TEXT OPEN

TE16_10 15b: defect size TEXT OPEN

TE1l6_11 15b: what model TEXT OPEN

TE16_12 15b: fixation TEXT OPEN

TE16_13 15b: satisfaction TEXT OPEN

TE16_14 15b: relevance TEXT OPEN

TE18 01 16: [01] TEXT OPEN Comments:
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Tab-S. 2 Obtained data of the survey outcome. The table shows one by one the obtained

data of each completed questionnaire, whereby the ongoing interview number begins with 156

after excluding questionnaires from the pretest and unfulfilled questionnaires.
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M and F 12 microCT, | orthotopic | calvarium | punch hole 4 mm diameter critical none not no
histology size satisfied
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183



Supplement

PLGLAL | €L GL3AL ZL S13L | 1L SL3L | 0L SiaL 60 GL3L 80 GL3L | 20 6131 |90 6LAL | S0 SLaL 076131 | €0 SL3AL
= — = — = = — — [+
20 S1L3L| L0 SLaL S0 #L3L | ¥0 #L3L | €0 #L3AL Z0 ¥13L 10 PL3AL #131 €131 ZiaL 10 LL3aL LaL| %
6- 6 6 6 6 6 N
10 0L3L 013L 10 6031 603L | 10 8031 8031 L031 | 107903L 903L | 90 S03L 5031 vo3L | &
ABojoiqoueyoap
Z l oipaedoypQ Ul juepms aud Z L l L L L 3 L
£03L Z03L 220 L03L | 2071031 | 90" L0O3L eS0 1L03L S0 103L | #07 1031 [ €07 1031 | 207 L03L 101031 103L
10 8L3L P 9131 [ €1 9130
ZL 9131 | L1 9131 0L 9131 |60 9L3L | 80 9131 2079131 90 9131 | S0 9131 [0 9L3L | £0 9131 Z0 9131 | L0 9L3L
#L G131 | €L SLaL ZL 6130 | L SaL | oL SiaL 60 GL3L 80 G1L3L | 2076131 |90 G131 | S0 SLAL 076134 | €07 GLaAL m
[ %]
Z0 S1L3L | L0 SLaL S0 #L3L |0 #L3L | €0 #L3L Z0 ¥13L 10 PL3L P13l €13l ZLaL 1071131 naL| &
100131 0L3L 10 603L 6031 | L0 803L 803l 2031 | 1079031 9031 | 9075031 S03L $03L
WAQ
! € ! | Aiebing 3Ng 4 ! ! ! 1 !
£03L zo3alL 2.0 L03L |20 103L | 90 LO3L eS0 1L03L G0 103L | #0 1031 [ €0 103L | Z0 L03L 101031 103L
10" 8L3aL v 9L3L| €1 9131
ZL 9131|1913 | 0L 9L3L |60 9L3L| 80 9L3AL 20 9131 | 90 94L3L S0 9131 | #0 913L €0 9L3L Z0 9L3L| L0 9i3L
alewa4
PLGLIL | €L GLAL| ZLGLIL| L GIAL| 0L GLAL 60 GL31| 80 GL3L 2076131907 GLaAL S0 GL3AL $0 GL3L| €0 Gi3aL 2
uayuas »
SyaaMm 2 nqgey Z I I L I L Z |l | epiqiowswyewus I H._
20 SL3L| L0 SLAL| SO PLAL| PO PLIAL| €0 PLIAL Z0 ¥L3Ll| L0 ¥L3IL pLalL €131 ziaL 10" LL3L LaL | &8
‘peay |eijawny
Smalas ‘sasoJypepnasd
6 6- + 8jeld ! 2| ‘'nesjeideiq b _‘ L
10 0L3L 0L3L| L0 603L 603L| 10 8031 8031 2031 10 9031 9031 907 503L S03L $03.1
z ! L 1 | ! ! ! z |
€031 Z03L|®Z0 1L03L| 07 LO3L| 90 L03L eGS0 1031 | S0T103L 0 L03L | €07 L03L 20" 103L 10" L03L 103L
SpPUNOM
auoq dIWayos! pue ‘JeaJ)-oj-)|noiip
‘SUOIUN-UOU JO S[POL JaJ}aq pasu
10" 8L3L 19131 [ €1 9130

184



Supplement

10 8L3L pL 9131 | £17913L
Zb 913l 1L 9L3L 0L 7913160 913L| 80 9L3L 20 9131 90 9131 [ S0 9131 $0 9131 [ £0 9131 20 913L | 109131
pL 613l €L 613l ZVSL3L|L6kaL| 0L SL3AL 60 G131 |80 GL3L |20 GL3L 90 6131 |50 613l p0 G131 | £0°GL3L m
) ) 4 | | | 4 } LI ®
206131 10 6L3L S0 vL3L|p0 PL3L| €0 pi3L 209b3L| L0 P3| vi3L g3l zialL 1071131 paL| 8
108)8p
8uoq
6" 6 6" €| onewney l 14 £
1070131 043L l0603L| 603L| L0 803L 8031 | 2031109031 9031 | 9075031 5031 031
4 } } | | | } ! 4 |
£031 2031 2071031 | 207 103L| 90 L03L 260 103L | S0 4031 | ¥0 LO3L €07 1031 | 2071031 1071031 1031
10 8L3L P17 913L | €17 9131
ZLi 913l bL9LaL 04 9131 |607913L| 80 943L 209131 | 90 9431 | S0 9431 $0 913L | €0 9431 20 9431 | 109131
e €1 61alL ZV6LaL| b GaL| 0L GLaL 60 G13L| 80 G43L |0 S1AL 90 6131 | S0 G1aL $0 G13L | €0 G1AL
8
"]
2075431 | 107S43L S0 ¥L3L | ¥0 pL3L | €0 PLAL 20 vi3L WPaL| w130 €131 ziaL WaL|  uaL|
6- ! 6- 6- 6- 6- 6| 0
b00L3L| o013L 107603L| 603L| L0 803L 8031 2031 (1079031 903190 S03L S031| p03L
| ! 4 ! ) | } ! 14 14
£03L| 203l 220 103L | 20 1031 | 90 103L 260 1031 G0 1031 | #07103L | £07103L | 20 LOIL 107 103L| 103l
1078131 pL 9131 | £47913L
ZL9b3L | 193l 0L79131 | 6079131 | 80 913L 1079431 90 9131 |S079L3L | #0 9L3L | £07943L 2079431 | 107 9L3L

185



Supplement

Jepow Buysnes
1sea|, e aney

jou op am 8auay
‘el ay1 jo jepow
109jep 9zIs |eanuo
ay) Ajuo asn ap

10 8131 vL 9131 €L 913l
ZL 913l | L9131 0L 9131 60 9131 80 9131 20 9131 90 9431 | S0 9L3L| +0 9L3L| €0 913L Z0 94L3L 10 9131
palsnes |apow azis wiw 109)8p
saf Apsow | aleld jewsiul leanuo e 0l ‘wwg |eyuswbas Jnway | aidoyuo gL sjel apnu ‘gs alew
#1611 | €1 61aL ZL siaL L 613l [ N 60 S13L 80 GL3L| 20 SL3L| 90 SL3L| S0 GLIAL #0 SL3L €0 613l
SaNssi) Jayjo
jo 31 0) pasedwod
wioped o) Asea
Aannesedwos '|eusjew
auoq m:omo_QJm m
aleds o) sdjay ‘Guieay ®
auoq jo uonelajedoe R
PO 80 el ! L z ! 4 z z L 0} pes] Wb L~
20 G613l | L0 GLIL S0 ¥i3L| +0 pLaL £0 131 Z0 ¥13L 10 7131 p13L €13l Zi1al 10 LL3L 1aL
uonoajul
‘Jown) ‘ewnel
sjoejep 0} anp s}o8jep
auoq able| l auoq abie| L 6- 6- 6- 6- 6-
10 0131 013L 10 6031 6031 10 8031 8031 L03L| L0 903L 9031 | 907 S03L 5031 031
I ¥ ! ! ABojoig Z ! ! ! ! !
£03L 203l B0 L03L| L0 L03L 90 1031 €60 L03L S0 L03L| #0 L03L| €0 1L03L|Z0 LO3L 10 103L 1031
10 8131 L9131 | €1 9131
ZL 913l 1L 9L3L 0L 9131 (60 9L3L| 80 9131 2079131 |90 9L3L | S0 913L #0 913L| €0 913L 09131 | 107 913L
(1]
vL 13l €1 SL3L ZL SL3L| L S1aL| 01 SK3aL 606131 |80 GL3L | 20 Si3L 90 GL3L| SO Si3L $0 G13L| €0 S13al m
L ! L L ! 0 4 ! L
Z0 613l 10 GL3IL S0 #L3L | ¥0 vi3L| €0 vL3L Z0 ¥13L| 10 #L3L vi3L €131 Z1alL 10 1131 pwaL| @
6 6 6 Z| ewney 1 I [4
1070131 0131 10 603L 603L1| 10 803L 8031 2031 | 1079031 903L| 90°s03L S03L #03L
! z ! L ! L ! ! z 1
€031 203L| ®/0°103L[/0103L| 9071031 S0 103L| S0 1031 | ¥0O LOIL| €0°103L| 2071031 101031 1031

186



Supplement

|
10 8L3L ¥L 913L| €L7913L
ZL 9L3L| L1 913l 0L 91L3L| 60 9L3L 80 9L3L| 207 9L3L| 90 9L3L G0 9L3L| #0 9L3L €0 9131 Z0 9L3L| L0 913L
¥L6LAL | €17G1L3L ZLsLaL|  siaL 0L GL3L| 60°SL3L| 80 SLAL 206131 | 90 §L3L TEN $0 GL3L| €0 GLIAL
Alpiqiow
8)IS JoUOP pIOAE ‘pajLul] m
14 L I I L 5 14 L s| auoq snobojojne L N
20 SL3L | L0 SKAL S0 #13L| #0 ¥L3L €0 #I3L| 2ZO¥LAL| 1O #L3AL #13L =T ZLaL 10 LL3L paL| o
sj08)8p
6- 1 | uonexy ayed 1 e au0q puB uoIuNUoU L l €
10 0L3L 0L3L L0 603L 603L 10 803L 8031 203L 10 9031 9031 90 5031 S03L #03L
1 z L I ! L L z z z
£03L 203L| 0 L03L| L0 L03L 90 103L| ©BG0 L03L| SO L03L #0 1L03L| €0 L03L 20103l 10" 1L03L L03L
10 8L3aL ¥L OLAL| €1 913L
ZLh 9K3aL| L1 913l 0L 9Lb3L| 60 9L3L 80 94b3L| £079L3L| 90 9L3L S0 9L3L| #0 9L3L €0 9131 20 9Kb3L| L0 943L
pL GLAL| €1 GLAL ZLVsLaL| 1 sLaL 0L GL3L| 60 SL3AL| 80 SLAL 206431 90 SL3L TN $0 GL3L| €0 GL3AL m
L]
-9
20 G1L3L | L0 GL3AL G0 vL3L| PO PLIL €0 v13L| 20 vi3L 10 PL3L 131 €13l ZiaL [LTEND paL| ©
6- 6- 6- 6- 6- 6- 6"
L0 0L3L 0L3L L0 603L 603L L0 803L 803L 2031 10 9031 9031 90 5031 G03L #031
6- 6- L l L L 1 I 1 0
£03L 203L| ®©0 L03L| L0 L03L 90 103L| ©BSO L03L| SO0 L03L #0 1L03L| €0 L03L 20103l 10 1L03L 103L
10 8L3aL PL9L3L €L 9131
ZL 913l | L 913l 0L 9L3L| 60 9L3L 80 913L| 20794131 90 9131 S0 9131 0 9131 €0 9131 Zo 913l 1079131
L S13L| €1 6131 A= L SL3L 0L SL3L| 60 Si3L 80 613l 20°SL3L| 90 SL3L G0 k3L #0 SL3L €0 S13L
L ! ! L 1 0 6 6- 6-
Z0 SL3L| L0 SLaAL S0 pL3L|  $0 ¥L3IL €0 131 | 20 vL3L 10 vL3L 131 €13l ZiaL L0 LL3L L3l
6 6- 6- 6- 6 6 6| 8
10 0L3L 0L3L 10 6031 603.L 10 8031 803L 2031 10 9031 9031 90 6031 5031 p03L| ©
6 6 I I 1 L L ! | 0| &
3 L=-]
€031 Z03l 20 1031 | 20 1031 9071031 | S0 1031 S0 1031 0 1031 | €0 1031 Z0 1031 101031 1031

187



Supplement

I do large animal
models for cartiage
TE. but not bone.

TEO1 TE01_01 TEO01_02 TE01_03 | TE01_04 TE01_05 TEO1_05a | TE01_06 TE01_07 TE01_07a TEO02 TEO03
2 2 2 1 1 1 1 1 2 1
TE04 TE05 TEO05_06 TE06 TE06_01 TEO7 TE08 TE08_01 TE09 TE09_01 TE10 TE10_01
3 4 1 Cysts 3 1 Impaction -9 9
TE11 TE11_01 TE12 TE13 TE14 TE14_01 TE14_02 TE14 03 TE14_04 TE14 05 TE15 01 | TE15_02
R To handle with big | 1 1 1 1 1 2 1 1
% defects
@ |TE15_03 | TE15_04 TE15_05 TE15_06 | TE15_07 TE15_08 TE15_09 TE15_10 TE15_11 TE15_12 TE15_13 | TE15_14
Q
TE16_01 | TE16_02 TE16_03 TE16_04 | TE16_05 TE16_06 TE16_07 TE16_08 TE16_09 TE16_10 TE16_11 | TE16_12
TE16_13 | TE16_14 TE18_01
TEO1 TEO01_01 TE01_02 TE01_03 |TE01_04 TE01_05 TE01_05a | TE01_06 TE01_07 TE01_07a TE02 TEO3
2 2 2 1 1 1 1 1 3 1
TE04 TEO5 TEO05_06 TE06 TEO06_01 TEO7 TE08 TEO08_01 TEO09 TE09_01 TE10 TE10_01
3 1 1 non-unions | 3 1 plate 1 non unions, 1 tissue
osteosynthesis, deformity correction engineering
nailing
TE11 TE11_01 TE12 TE13 TE14 TE14_01 TE14_02 TE14_03 TE14_04 TE14_05 TE15_01 | TE15_02
o |1 avoid donor site 1 3 2 1 2 2 1 1
N morbidity; enhance
@ healing capabilityby
E “intelligent” bone
o grafts
TE15_03 | TE15_04 TE15_05 TE15_06 |TE15_07 TE15_08 TE15_09 TE15_10 TE15_11 TE15_12 TE15_13 | TE15_14
TE16_01 | TE16_02 TE16_03 TE16_04 | TE16_05 TE16_06 TE16_07 TE16_08 TE16_09 TE16_10 TE16_11 | TE16_12
TE16_13 | TE16_14 TE18_01
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Tab-S. 4 Paper excluded from the literature search outcome. The following paper were not
included in the evaluation of preclinical animal models in bone tissue engineering. Main reasons
therefore were differing research objectives targeted by the scientists or the use of ectopic animal
models.

Beck-Broichsitter, B. E., A. N. Werk, R. Smeets, A. Grobe, M. Heiland, I. Cascorbi, J. Wiltfang, R. Hasler
and S. T. Becker (2015). "Targeting gene expression during the early bone healing period in the mandible:
A base for bone tissue engineering." J Craniomaxillofac Surg 43(8): 1452-1460.

Castilho, M., M. Dias, E. Vorndran, U. Gbureck, P. Fernandes, |. Pires, B. Gouveia, H. Armes, E. Pires and
J. Rodrigues (2014). "Application of a 3D printed customized implant for canine cruciate ligament treatment
by tibial tuberosity advancement." Biofabrication 6(2): 025005.

Ciocca, L., F. De Crescenzio, M. Fantini and R. Scotti (2009). "CAD/CAM and rapid prototyped scaffold
construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study." Comput
Med Imaging Graph 33(1): 58-62.

Espinar-Escalona, E., L. A. Bravo-Gonzalez, M. Pegueroles and F. J. Gil (2016). "Roughness and wettability
effect on histological and mechanical response of self-drilling orthodontic mini-implants." Clin Oral Investig
20(5): 1115-1120.

Fan, W., R. Crawford and Y. Xiao (2008). "Structural and cellular differences between metaphyseal and
diaphyseal periosteum in different aged rats." Bone 42(1): 81-89.

Gao, P., H. Zhang, Y. Liu, B. Fan, X. Li, X. Xiao, P. Lan, M. Li, L. Geng, D. Liu, Y. Yuan, Q. Lian, J. Lu, Z.
Guo and Z. Wang (2016). "Beta-tricalcium phosphate granules improve osteogenesis in vitro and establish
innovative osteo-regenerators for bone tissue engineering in vivo." Sci Rep 6: 23367.

Golab, K. G., I. R. Kashani, A. Azami-Tameh, A. Zaminy, I. N. Nik and S. N. Nik (2016). "Evaluation of the
effect of adipose tissue-derived stem cells on the quality of bone healing around implants.” Connect Tissue
Res 57(1): 10-19.

Han, P., S. Lu, Y. Zhou, K. Moromizato, Z. Du, T. Friis and Y. Xiao (2016). "Multi-Elemental Profiling of Tibial
and Maxillary Trabecular Bone in Ovariectomised Rats." Int J Mol Sci 17(6).

He, J., W. Zhang, Y. Liu, X. Li, D. Li and Z. Jin (2015). "Design and fabrication of biomimetic multiphased
scaffolds for ligament-to-bone fixation." Mater Sci Eng C Mater Biol Appl 50: 12-18.

Ibrahim, M. R., S. Singh, A. M. Merican, H. R. Raghavendran, M. R. Murali, S. V. Naveen and T. Kamarul
(2016). "The effect of strontium ranelate on the healing of a fractured ulna with bone gap in rabbit." BMC Vet
Res 12(1): 112.

Jian, Y. K., X. B. Tian, B. Li, B. Qiu, Z. J. Zhou, Z. Yang and Q. H. Li (2008). "Properties of deproteinized
bone for reparation of big segmental defect in long bone." Chin J Traumatol 11(3): 152-156.

Kemppainen, J., Q. Yu, J. Alexander, R. Jacquet, T. Scharschmidt and W. Landis (2014). "The character of
gene expression of human periosteum used to form new tissue in allograft bone." Connect Tissue Res 55
Suppl 1: 146-149.

Liu, Z., X. Yuan, M. Liu, G. Fernandes, Y. Zhang, S. Yang, C. N. lonita and S. Yang (2018). "Antimicrobial
Peptide Combined with BMP2-Modified Mesenchymal Stem Cells Promotes Calvarial Repair in an Osteolytic
Model." Mol Ther 26(1): 199-207.

Lydon, H., A. Getgood and F. M. D. Henson (2017). "Healing of Osteochondral Defects via Endochondral
Ossification in an Ovine Model." Cartilage: 1947603517713818.

Mueller, T. L., A. J. Wirth, G. H. van Lenthe, J. Goldhahn, J. Schense, V. Jamieson, P. Messmer, D.
Uebelhart, D. Weishaupt, M. Egermann and R. Muller (2011). "Mechanical stability in a human radius
fracture treated with a novel tissue-engineered bone substitute: a non-invasive, longitudinal assessment
using high-resolution pQCT in combination with finite element analysis." J Tissue Eng Regen Med 5(5): 415-
420.

Pearce, A. |, S. G. Pearce, K. Schwieger, S. Milz, E. Schneider, C. W. Archer and R. G. Richards (2008).
"Effect of surface topography on removal of cortical bone screws in a novel sheep model." J Orthop Res
26(10): 1377-1383.
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Romero, R., L. Chubb, J. K. Travers, T. R. Gonzales, N. P. Ehrhart and M. J. Kipper (2015). "Coating cortical
bone allografts with periosteum-mimetic scaffolds made of chitosan, trimethyl chitosan, and heparin."
Carbohydr Polym 122: 144-151.

Smith, E. L., M. Locke, R. J. Waddington and A. J. Sloan (2010). "An ex vivo rodent mandible culture model
for bone repair." Tissue Eng Part C Methods 16(6): 1287-1296.
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marrow-derived mesenchymal cells can rescue osteogenic capacity of devitalized autologous bone." J
Tissue Eng Regen Med 2(1): 61-68.

Wauthle, R., J. van der Stok, S. Amin Yavari, J. Van Humbeeck, J. P. Kruth, A. A. Zadpoor, H. Weinans, M.
Mulier and J. Schrooten (2015). "Additively manufactured porous tantalum implants.” Acta Biomater 14: 217-
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Zhang, K., Y. Zhang, S. Yan, L. Gong, J. Wang, X. Chen, L. Cui and J. Yin (2013). "Repair of an articular
cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on
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