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Abstract

In recent decades, a multitude of concepts and models were developed to understand, assess
and predict muscular mechanics in the context of physiological and pathological events.
Most of these models are highly specialized and designed to selectively address fields in,
e.g., medicine, sports science, forensics, product design or CGI; their data are often not
transferable to other ranges of application.

A single universal model, which covers the details of biochemical and neural processes,
as well as the development of internal and external force and motion patterns and appear-
ance could not be practical with regard to the diversity of the questions to be investigated
and the task to find answers efficiently. With reasonable limitations though, a generalized
approach is feasible.

The objective of the work at hand was to develop a model for muscle simulation which
covers the phenomenological aspects, and thus is universally applicable in domains where
up until now specialized models were utilized. This includes investigations on active and
passive motion, structural interaction of muscles within the body and with external ele-
ments, for example in crash scenarios, but also research topics like the verification of in
vivo experiments and parameter identification.

For this purpose, elements for the simulation of incompressible deformations were stud-
ied, adapted and implemented into the finite element code SLang. Various anisotropic,
visco-elastic muscle models were developed or enhanced. The applicability was demon-
strated on the base of several examples, and a general base for the implementation of
further material models was developed and elaborated.





Kurzfassung

In den vergangenen Jahrzehnten wurde eine Vielzahl verschiedener Konzepte und Mod-
elle entwickelt, um muskuläre Mechanik im Kontext physiologischer und pathologischer
Vorgänge zu verstehen, zu bewerten und vorhersagen zu können. Aufgrund der enormen
Anwendungsvielfalt - von Medizin, Trainingswissenschaften und Forensik bis hin zu Pro-
duktdesign und CGI - sind diese Modelle großenteils hochspezialisiert. Daten, die die
jeweiligen Modelle stützen, sind häufig nicht übertragbar.

Ein generalisiertes Modell, das sowohl die Simulation neurologischer und biochemischer
Prozesse, als auch die Ermittlung von Texturen und externen Kraft- und Bewegungsver-
läufen umspannt, ist aus Effizienzgründen und vor dem Hintergrund der Diversität der
Fragestellungen wenig zweckmäßig.

Das Anliegen der vorliegenden Arbeit war jedoch, ein Modell zur Muskelsimulation zu
entwickeln, das die phänomenologischen Aspekte abdeckt und damit zur querschnittlichen
Anwendung in Bereichen geeignet ist, in denen bislang spezialisierte, exklusive Modelle
zum Einsatz kamen. Das umschließt Untersuchungen der aktiven und passiven Bewegung,
der strukturdynamischen Wechselwirkungen von Muskeln innerhalb des Körpers wie auch
mit externen Elementen in z.B. Crash-Szenarien, aber auch Forschungsaspekte wie die
Verifikation von in-vivo Experimenten und Parameter-Identifikation.

Zu diesem Zweck wurden Elemente zur Simulation inkompressibler Deformationen
sowie verschiedene Materialgesetze und Funktionen zur Muskelmodellierung entwickelt
bzw. verbessert und in das Finite-Elemente-Programm SLang implementiert. Die An-
wendbarkeit wurde anhand mehrerer Beispiele dokumentiert, und es wurden Grundlagen
zur Implementierung weiterführender Materialformulierungen erarbeitet.
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Notation

This section provides a list of the operators, symbols and abbreviations used in this work.
Items which occur only once in the main text or only in the appendix are omitted here and
explained there. Components of higher order entities, distinguishable by italic font style
and italic indeces, are omitted as well. (Indeces in regular font style are abbreviations.)
Continuum mechanics symbols are re-used in the FEM sections. If mistakable, they are
marked by underlines or by a hat in the main text, but not listed here either.

Symbols

Continuum mechanics

δij Kronecker symbol
λ stretch
ρ density
θ modified dilatation
εijk Levi-Cevità symbol
B, V , S correlating domains: body, volume, surface
P material point in B
a area (reference configuration: A)
e error measure
f function
J dilatation
m mass
s distance (reference configuration: S)
t time
v volume (reference configuration: V )
W work, strain energy function



vi NOTATION

ε engineering strain
σ Cauchy stress
τ Kirchhoff stress
b force per unit mass
C right Cauchy-Green tensor
c left Cauchy-Green tensor
d rate of deformation
E Green-Lagrange strain
e Almansi strain
ei right-handed Cartesian base vector
F deformation gradient
ff tensor valued function
gi arbitrary right-handed base vector (reference configuration: Gi)
I identity tensor
n normalized direction vector (reference configuration: N)
P 1st Piola-Kirchhoff stress
S 2nd Piola-Kirchhoff stress
t force per unit surface, traction vector (reference configuration: T)
u displacement vector
v material velocity vector
x position vector (reference configuration: X)
C elasticity tensor (material notation)
c elasticity tensor (spatial notation)
V viscoelastic tensor (material notation)
v viscoelastic tensor (spatial notation)

Finite element method

bl linear strain-displacement matrix
bnl nonlinear strain-displacement matrix
D damping matrix
f force vector
h shape function matrix
J Jacobian
K stiffness matrix
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NOTATION vii

Kl linear stiffness matrix
Knl nonlinear stiffness matrix
Kv viscous stiffness matrix
M mass matrix

Operators

det • determinant of •
div • divergence of •
Exp • natural exponentiation of •
grad • gradient of •
ln • natural logarithm of •
sym • symmetric part of •
tr • trace of •
Φ? • push-forward of •
Φ? • pull-back of •
•0 quantity • in reference configuration
•,? derivative of • with respect to ?
•i,j derivative of component i of • with respect to Xj

•i;j derivative of component i of • with respect to xj
•̇ time derivative of •
•̊ Lie derivative of •
δ • variation of •
δ̊ • Lie variation of •
∆ • linearized increment of •
•T transposition of •
|•| absolut value of •
‖•‖ Euclidean norm of •

For tensor operators with more than one argument refer to sections A.1.1.2 and A.1.1.3.

Abbreviations

AIS Abbreviated Injury Scale
BMI Body Mass index
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viii NOTATION

CAS Computer Assisted Surgery
CE Contractile Element
CGI Computer-Generated Imagery
CSA Cross-Sectional Area
FEA Finite Element Analysis
FEM Finite Element Method
ISM Institute of Structural Mechanics
H1 Hexhedron w/ 1st order interpolation
MRT Magnetic Resonance Tomography
PE Parallel Element
PMHS Post-Mortal Human Subject
RMS Root Mean Square
SE Serial Element
SLM Straight-Line Models
SRI Selective Reduced Integration
T1 Tetrahedron w/ 1st order interpolation
TL Total Lagrangian
UL Updated Lagrangian
URI Uniform Reduced Integration
VHP Virtual Human Project
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Chapter 1

Introduction

1.1 Motivation

Amongst the many fields of mechanics, biomechanics is one of the most exciting and grat-
ifying domains of study. This is due to the vast variety of applications, the inherent
optimization which drives natural design, and the immensely complex processes involved
in the control and generation of animate mobility. Not least, this is also due to every
researcher’s personal life-long experience with the topic. However, due to limited repro-
ducibility and the ethical implications of in vivo experiments, biomechanics is in many
ways also more reliant on simulation-based research than other fields of mechanics.

Even in the very specific field of muscle simulation, with special emphasis on the mus-
cle’s unique capability to generate force and motion, a multitude of unrelated models
have been developed to address topics in even more specific sub-domains. Examples are
branches in neurology (paths and patterns to initiate, perceive, control and inhibit mo-
tion), biochemistry (muscle energy provision, conversion, depletion, exhaustion), pathol-
ogy and medicine (malfunctions of any of the aforementioned, and potential ways to cure
them), sports science (performance optimization and conditioning), ergonomics, forensics,
computer-generated imagery (CGI), and computer-assisted surgery (CAS).

An universal approach to cover all these fields in one type of model will not be feasible
in the foreseeable future. But the desirable consolidation on the modeling side is viable.
This is evident from recent publications, and will be substantiated by the work at hand
for the field of phenomenological three-dimensional modeling.



2 1. Introduction

1.2 Aims of the present work

The objective of this work is to develop a simulation framework for three-dimensional
(3D) modeling of skeletal muscle, universally applicable where body motion, movement,
force generation or specific aspects of body composition are of interest. Processes on
molecular level, i.e. neurological and biochemical aspects, will be disregarded or averaged
appropriately in order to simulate phenomenological processes at reasonable efficiency.

Based on state-of-the-art parametric one-dimensional (1D) descriptions of muscle be-
havior and in conjunction with anisotropic hyperelastic 3D material formulations, a stimu-
lable visco-elastic muscle model shall be developed, and embedded in an appropriate finite
element code. The deduced theoretical base as well as the implementation has to provide
the flexibility to adapt to new or different material formulations, governing variables and
parameter sets.

Application examples shall validate concept and implementation, but also by themselves
provide meaningful results.

1.3 Outline of the work

This thesis is structured as follows:
Chapter 2 introduces the reader to the continuum mechanic concepts, notation and

fundamentals which are required for subsequent parts of the work. Generalized formula for
the implementation of arbitrary invariant-based materials are derived and documented.

Chapter 3 introduces the finite element method in general, and documents specifically
the development and implementation of elements for simulating incompressible hyperelastic
structures. Benchmarks and comparison for several such elements are provided.

Chapter 4 starts with an introduction to skeletal muscle, its properties and the var-
ious established approaches towards modeling. On this basis, specific enhancements are
presented, the fundamental ideas of the proposed modeling approach are explained, and
its development and implementation is elaborated on. The simulation of a squid tentacle
strike is used to validate this work’s model.

Chapter 5 comprises two studies which utilize the previously implemented elements
and models. a) Reproducing the contraction of a rat’s soleus muscle, and a subsequent
material parameter identification. b) Assessment of the rib fracture potential during a car
front-collision depending on the activation state of the anterior thoracic muscles.
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1.3. Outline of the work 3

The work is concluded in chapter 6 with summary and outlook. Beyond that, the
appendix provides helpful complementary information which is considered to be outside
the core scope of the main text.
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Chapter 2

Continuum mechanics

The present work deals primarily with mechanical aspects of muscle modeling. For better
accessibility, this chapter provides an introduction to the utilized continuum mechanical
approach and to the nomenclature used. Consider section A.2 for more details, and the
textbooks of Holzapfel [2000] and Weichert and Başar [2000] for more in-depth information
on the topic.

Continuum mechanics is based on the postulation of material as continuously dis-
tributed in a body’s domain, thereby neglecting its distinctive composition below a certain
threshold scale. Its basic purpose is to describe the internal mechanical behavior of bodies
when interacting or subjected to a dynamic set of boundary conditions. Since kinematic
and material properties are averaged phenomenologically, the findings are valid only for
structures that are large in comparison to their mechanically significant components. The
structures considered in the course of this work comply with this condition.

2.1 Continuum kinematics

This section introduces briefly the theory of deformation of solid bodies and provides the
definition of several stretch, strain and deformation rate measures.

2.1.1 Motion

The material body B be a continuous set of elements P called material point or particle. In
a reference configuration B0, selected arbitrarily, any P is associated with its coordinates
X = X iei in a Cartesian base system {ei}. These X i are referred to as Lagrangian,
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referential or material coordinates. (Variables and operators in the reference configuration
will be denoted by upper-case letters or marked by the index 0.)

In a configuration Bt, the point x = xiei marks the location of a material element P at
the time t. These xi are Eulerian or spatial coordinates and this state is labeled current or
deformed configuration. The deformation of B may be considered as a continuous sequence
of such configurations with the time-dependent one-to-one mapping

x = x(X, t) = X + u(X, t). (2.1)

At t = 0 current and reference configuration are identical.
The displacement u in (2.1) is given in the so-called material or Lagrangian description,

where material coordinates serve as independent variables. When instead spatial coordi-
nates are considered as independent, i.e. u(x, t) = x −X(x, t), it is referred to as spatial
or Eulerian description.

In the former case, X i are utilized as convective coordinates, uniquely identifying any
P ∈ B by the same values in any deformation state. They also constitute a valid specifi-
cation of general curvilinear coordinates. As detailed in (A.50), the corresponding co- and
contravariant base systems {gi} and {gi} of a deformed configuration are then defined by

gi = ∂x
∂X i

= ∂xj

∂X i
ej and gi = ∂X i

∂xj
ej. (2.2)

For the reference configuration, this corresponds to1

Gi = ei = ei = Gi. (2.3)

When a tensor’s base is given as either Gi, gi or both, it is accordingly labeled material,
spatial or two-point tensor.

2.1.2 Deformation measures

Based on the transformation rules for vectorial line elements (A.50), the deformation gra-
dient F can be established as a second-order tensor to relate the bases Gi and gi.

F = gi ⊗Gi = ∂xi

∂Xj
ei ⊗ ej = ∂x

∂X
= Grad x (2.4)

1 The rules for index positioning may be relaxed in Cartesian systems due to the identity of co- and
contravariant base vectors.
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Figure 2.1: Deformation from reference to current configuration. Notational anomaly: XPi marks a line
on which points differ only in their respective Xi coordinates from point P.

Hence F maps an arbitrary infinitesimal line element from reference to current configuration
and describes its rotation and deformation during the motion of B. The mapping of
infinitesimal area (dA) and volume elements (dV ) may be deduced from A.1.1.2:

dx = F dX

na da = J F−TNA dA
dv = J dV

(2.5)

where NA and na are the unit normal vectors to dA and da, respectively. The Jacobian
determinant J=det F will henceforth denote the dilatation. Inversed and transposed forms
of F are quoted in A.2.

Based on the stretch λ = ds/dS with ds = |dx| and dS = |dX|, a variety of strain
functions f(λ) may be defined as measures for the elongation of a material line element
dX. The approach

f(λ) =


1
n

(λn − 1) for n 6= 0

ln λ for n = 0
(2.6)

fulfills the characteristic conditions f(1) = 0, f,λ(1) = 1, and f,λ(λ) > 0. The class of
Lagrangian strain tensors is analogously defined, by substituting λ in (2.6) with the stretch
tensor U that follows from a polar decomposition of F (see A.71). For an even-numbered n
the rotational influence vanishes and therefore the decomposition becomes obsolete. E.g.,
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8 2. Continuum mechanics

the Green-Lagrange strain tensor E and the Almansi strain tensor e are derived with n = 2
and n = −2 as

E = 1
2(FTF− I) = 1

2(gi · gj −Gi ·Gj) Gi⊗Gj

e = 1
2(I− F−TF−1) = 1

2(gi · gj −Gi ·Gj) gi⊗ gj.
(2.7)

Obviously, both feature identical components, although with respect to different bases.
The component description with respect to the Cartesian base ei ⊗ ej (by 2.1 and 2.2)
reads

Eij = 1
2(ui,j + uj,i + uk,i uk,j)

eij = 1
2(ui;j + uj;i − uk;i uk;j)

(2.8)

with ui,j = ∂ui/∂X
j and ui;j = ∂ui/∂x

j. This notation will be kept within the scope of this
work. Also, when not explicitly stated otherwise, tensors in indical notation will always
refer to a right-handed Cartesian base with indeces in alphabetical order.

Both strains E and e represent the squared length change of a convective element dX
in reference and current configuration.

ds2 − dS2 = 2 dX E dX = 2 dx e dx (2.9)

As closely related deformation measures, the right Cauchy-Green tensor C and left Cauchy-
Green tensor c, sometimes also denoted Finger tensor, are established as

C = FTF = gi · gj Gi⊗Gj

c = FFT = Gi ·Gj gi⊗ gj.
(2.10)

For sufficiently small deformations, any strain may be reduced to the so-called engineering
strain εij = 1/2(ui,j + uj,i).

2.1.3 Time derivatives

The material time derivative ḟf is obtained by differentiating any field variable ff with
respect to time t, holding the material coordinates X fixed. Therefore, if ff is given as

Benjamin Winkel PhD Thesis



2.2. Balance Laws 9

ff(X, t) the material time derivative equals the partial time derivative.

ḟf = dff
dt = ∂ff(X, t)

∂t
= ḟijGi⊗Gj (2.11)

If ff is provided in spatial description as ff(x, t) the material time derivative is

ḟf = dff
dt = grad ff v + ∂ff

∂t
= fij(ġi⊗ gj + gi⊗ ġj) + ḟijgi⊗ gj (2.12)

where

v = ẋ = u̇ (2.13)

denotes the material velocity vector. The last element in (2.12), ḟijgi⊗ gj, is labeled
Lie-derivative f̊f , the time derivative of a spatial variable considering the deformed basis
constant. In analogy to (2.9) its relevance becomes more obvious:

d
dt(ds

2 − dS2) = 2 dX Ė dX = 2 dx e̊ dx. (2.14)

The Lie-derivative of a spatial tensor can be obtained by subsequent pull-back (Φ?), deriva-
tive, and push-forward (Φ?) operations, written as

f̊f = Φ?
d
dt(Φ

?ff). (2.15)

See (A.68) for the operator rules. For a covariant tensor f = fijgi⊗ gj this leads to

f̊f = ḟf − grad vff − ff(grad v)T (2.16)

with the spatial velocity gradient grad v. Its symmetric part - the rate of deformation
tensor d - is identical to the Lie-derivative of the Almansi strain tensor.

d = sym(grad v) = e̊ (2.17)

2.2 Balance Laws

The balance equations for mass, linear and angular momentum, energy and entropy pro-
vide the essential framework to thermodynamics and rule a body’s behavior in a given
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10 2. Continuum mechanics

environment. They apply to the body as a whole, but, presuming continuity and sufficient
smoothness of the considered fields, they might as well be utilized on subdomains B̃, or be
transformed into field equations which are valid at every material point within the body.
Subsequently, they are summarized in the latter, local form and their consequences are
briefly discussed.

2.2.1 Conservation of mass

The mass m of B̃ remains unchanged during arbitrary deformations of B. This may be
written as

m(B̃, t) =
∫
V

dm =
∫
V
ρ dv = const. (2.18)

with B̃ occupying a region V enclosed by the smooth boundary surface S. v and ρ denote
current volume and density1. One equivalent local form

ρ0/J = ρ (2.19)

follows from (2.5). Applying J̇ = J div v (A.73) to the time derivative of (2.19) leads
directly to (2.20), known as continuity equation.

ρ̇+ ρ div v = 0 (2.20)

2.2.2 Balance of momentums

The balance of momentum equations describe the equilibrium relations between an external
force on B̃ and the rate of change of B̃’s linear momentum (2.21), and between an external
moment and the rate of change of B̃’s angular momentum (2.22).

d

dt

∫
V
ρv dv =

∫
S

t da+
∫
V
ρb dv (2.21)

d

dt

∫
V

x× ρv dv =
∫
S

x× t da+
∫
V

x× ρb dv (2.22)

1 The notational inconsistency between velocity vector v and infinitesimal volumes dv and dV is not
resolved here.
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2.2. Balance Laws 11

Herein, B̃ is subjected to b, volume forces per unit mass, and to t, contact forces per unit
surface area.

By means of Cauchy’s stress theorem (2.23), the Cauchy stress tensor σ = σijgi ⊗ gj
is established, which relates an infinitesimal surface area da ⊂ S, identified by its unit
normal vector n, to the traction vector acting upon it.

t(x, t,n) = σ(x, t)n (2.23)

Applying (2.23) and the divergence theorem (A.72), the Cauchy equation of motion is
obtained as the local form of (2.21):

ρ v̇ = divσ + ρb . (2.24)

The second term in (2.22) may be transformed in accordance with the divergence theorem
as well, providing

∫
S

x× t da =
∫
V

x× divσ + ε : σT dv (2.25)

using ε the Levi-Cevita symbol (A.8). With this substitution, a comparison of the local
form of (2.22) with (2.24) then leads to ε : σ = 0. Thus, the main consequence of (2.22)
is the symmetry of the Cauchy stress tensor σ.

2.2.3 Kinetic energy balance and entropy

Equation (2.26) is obtained after some transformations through expansion of (2.24) with
the velocity v, and application of the divergence theorem. It describes the rate of change
of kinematic energy to equal the power of external surface and volume forces and the stress
power. By (2.17), the latter is determined to σ : grad v = σ : d.

d

dt

∫
V

1
2 ρv v dv =

∫
S

t v da+
∫
V
ρb v dv +

∫
V
σ : d dv (2.26)

This energy conservation law corresponds to a reduced form of the first law of thermody-
namics, neglecting heat flux and generation.

According to the second law of thermodynamics, the entropy of a closed thermody-
namic system can never decrease. A positive entropy gradient marks the irreversibility
of an energy converting process, whereas a null-gradient defines reversible processes. The

Benjamin Winkel PhD Thesis



12 2. Continuum mechanics

latter precludes any energy dissipation, and thus provides the basis for elastic constitutive
equations in section 2.3.

2.2.4 Energy conjugates

In (2.23), the Cauchy stress tensor σ has been introduced as the mapping of a unit normal
vector n(da) to the Cauchy stress vector t, where t da is the force acting upon the surface
element da. As each of these quantities refers to the current physical configuration, σ is
also known as true stress. Often though, it is convenient to use stresses which reference
other configurations, e.g. the first or second Piola-Kirchhoff stresses P and S, or the
Kirchhoff stress τ .

P = JσF−T = τF−T = FS = P ijGi⊗Gj

S = JF−1σF−T = F−1τF−T = F−1P = SijGi⊗Gj

τ = Jσ = PFT = FSFT = τ ijgi⊗ gj

(2.27)

The material traction vector corresponding to (2.23) reads

T = t
da
dA = P N (2.28)

with the undeformed infinitesimal surface element dA and its unit normal N.
Equivalent to σ in (2.26), the above and other stress tensors might be used to de-

scribe the stress power, as long as the related deformation rate is chosen accordingly. The
following combinations are energy conjugated:

J σ : d = τ : d = P : Ḟ = S : Ė. (2.29)

All of these terms correspond to the same unit volume.

2.3 Constitutive Equations

The aforementioned kinematic and balance equations do not reflect the dependence of
a body’s deformation and stress state on its material properties. In order to uniquely
describe the body’s behavior under given boundary conditions, complementary equations
are required, which link stresses to kinematic and possibly other field quantities. They are
commonly denoted as constitutive equations or material laws.
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2.3. Constitutive Equations 13

2.3.1 Objectivity

An essential requirement for any material description is its compliance with the principle
of material objectivity. In the present context, it translates to the deformation process
being frame-invariant, i.e. energy conversion and dissipation have to be independent of the
observer.

This is usually achieved by utilizing invariants of energy conjugated strain and stress
tensors. In engineering literature though, objectivity is often attributed to certain stress
and strain tensors alone. Some authors [Holzapfel 2000, Ogden 1997] distinguish La-
grangian, Eulerian and two-point objectivity depending on the transformation behavior of
the respective tensors. Other sources refer exclusively to tensors of the first [Altenbach
and Altenbach 1994, Mase and Mase 1999, Greve 2003] or of the second kind [Hill 1978]
as “objective tensors”. As any true tensor is frame-indifferent by definition, it appears
advisable to refrain from the use of that term. See appendix A.2.2 for additional remarks.

2.3.2 Isotropic hyperelasticity

Hyperelastic materials are a class of elastic materials characterized by the existence of a
strain-energy functionW =W(F), which is defined per unit reference volume [Truesdell and
Noll 1965]. Considering (2.26), this also implies a bijective correlation between deformation
and stress. Since neither stress nor strain-energy must be influenced by the rotational part
of F, they might as well be expressed in terms of invariants of Cauchy-Green tensors or
the corresponding strains (see section 2.1.2). From Ẇ =S : Ė, the unspecific constitutive
equations are deduced.

S = ∂W

∂E
= 2∂W

∂C
(2.30)

τ = 2 ∂W
∂c

c = 2 c
∂W

∂c
(2.31)

A generalized representation of the stress tensors is conveniently based on the principal
invariants of C, for which also applies Ii(C)=Ii(c).

I1(C) = tr C = tr c

I2(C) = 1
2
(
(tr C)2 − tr C2

)
= 1

2
(
(tr c)2 − tr c2

)
I3(C) = det C = det c = J2

(2.32)
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14 2. Continuum mechanics

See (A.37) and (A.42) for invariant deduction and differentiation. From (2.30) follows

S = 2
(∂W

∂I1
+ I1

∂W

∂I2

)
I− ∂W

∂I2
C + I3

∂W

∂I3
C−1

 (2.33)

τ = 2
I3

∂W

∂I3
I +

(
∂W

∂I1
+ I1

∂W

∂I2

)
c− ∂W

∂I2
c2

. (2.34)

The time derivative of equation (2.30) provides the definition of a fourth-order elasticity
tensor C which relates stress and strain rates in the material description.

Ṡ = C : Ė with C = ∂2W

∂E ∂E
= 4 ∂2W

∂C ∂C
(2.35)

C is also referred to as the stress-strain tangent modulus, since Ṡ = (∂S/∂E) : Ė. The
spatial elasticity tensor c is defined analogously to (2.35), but might as well be derived as
push-forward of C.

τ̊ = c : e̊ with c = Φ?C = 4c
∂2W

∂c ∂c
c (2.36)

Invariant-based closed representations of C corresponding to the form of (2.33) are provided
in 2.3.4.

2.3.3 Transversely isotropic hyperelasticity

Fiber reinforcement is an ubiquitous measure in biological and artificial structures to
withstand very specific loading conditions. A non-homogeneous fiber distribution causes
anisotropy, i.e. directional dependence of mechanical properties. The particular case of
exclusively parallel fiber orientation results in transverse isotropy, with isotropic material
behavior orthogonal to the distinguished direction N. During the deformation of the body,
the fiber direction changes according to

λn = FN (2.37)

with fiber stretch λ and normalized fiber directions N and n in reference and current
configuration, respectively. In order to incorporate the directional dependence into the
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2.3. Constitutive Equations 15

work equation, it is necessary to define two further deformation invariants, e.g.:

I4 = I4(C,N) = NCN = λn · λn = λ2

I5 = I5(C,N) = NC2N = λ2ncn .
(2.38)

The strain energy function W of any hyperelastic, transversely isotropic material is de-
scribable by means of five invariants (see (A.37) to (A.39)). Following an equipresence
hypothesis, the work equations for isotropic matrix behavior and one-dimensional fiber
description can be superposed: W =Wmat+Wfib. Accordingly, the right hand sides of
equations (2.33) and (2.34) are extended by

2
(
∂W

∂I4
N⊗N + ∂W

∂I5
(N⊗CN + NC⊗N)

)
(2.39)

and

2
(
I4
∂W

∂I4
n⊗ n + I4

∂W

∂I5
(n⊗ cn + nc⊗ n)

)
, (2.40)

respectively.
Note that there is no equivalence between the newly introduced invariants with respect

to either right or left Cauchy-Green tensor: Ii=Ii(C,N) 6=Ii(c,n) for i=4, 5.

2.3.4 Alternative transversely isotropic invariant sets

The given set of principal invariants may be inefficient for some material formulations, and
it has one specific flaw when it comes to experimental verification: The determination of
constitutive parameters is very difficult as, for example, an isochore fiber stretch perturbs
I1, I2, I4 and I5, and a change in dilatation affects all five invariants. Only the latter might
be circumvented by using the dilatation-adjusted modified set Îi, and except for I3, Î3

and I4 none has an apparent physical meaning1. Here Îi are defined in terms of principal
invariants:

Î1 = I1I
− 1

3
3 Î2 = I2I

− 2
3

3 Î3 = I
1
2
3 = J Î4 =I4I

− 1
3

3 Î5 =I5I
− 2

3
3 . (2.41)

1 In most publications, the invariants Îi are marked by an overbar. This is omitted here in order to avoid
confusion with the F̄-notation in 3.2.4.
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16 2. Continuum mechanics

The invariant set proposed by Ehret et al. [2011] comprises an Ĩ5 which is a measure for
the change of the cross-fiber cross-sections.

Ĩ1 = tr C = tr c

Ĩ2 = tr C−1 = tr c−1

Ĩ3 = det C = det c = J2

Ĩ4 = NCN = (n c−1n)−1 = λ2

Ĩ5 = NC−1N = Ĩ4n c−2n = J−2 da2/ dA2

(2.42)

This set will be utilized for the material formulation in section 4.4.
Criscione et al. [2001] developed a set of invariants which can be very helpful in the

experiment-based development and parameter identification of material laws. These invari-
ants I ′i define dilatation (I ′1), isochoric fiber stretch (I ′2), cross-fiber shear (I ′3), along-fiber
shear (I ′4), and the orientation of the along-fiber shear plane relative to the cross-fiber shear
diagonals (I ′5).

I ′1 = (det C) 1
2 = J

I ′2 = (det C)− 1
6 (N ·CN) 1

2 = J−
1
3λ

I ′3 =
(

N2 ·C−1N2

N1 ·C−1N1

) 1
4

= ψ⊥ +
√
ψ2
⊥ + 1

I ′4 =
(

N ·C2N
(N ·CN)2 − 1

) 1
2

= ψ‖

I ′5 = (N1 ·CN)2 − (N2 ·CN)2

(N1 ·CN)2 + (N2 ·CN)2 = cos2 γ − sin2 γ

(2.43)

The unit vectors N1 and N2 are normal to those two planes that contain N and are
perpendicular to each other in both, reference and current configuration. n1 and n2 mark
hereby the principal cross-fiber stretch directions. These vectors are determined by the
following set of equations: N·N1 =0, N·N2 =0, N1 ·N2 =0, n1 ·n2 =N1 ·C−1N2 =0, and
for uniqueness N1 ·C−1N1≤N2 ·C−1N2. ψ⊥ denotes the major cross-fiber shear, and γ

denotes the angle between n1 and the plane of the major along-fiber shear ψ‖.
So far, there are few approaches to base material laws upon Criscione et al.’s invariants,

and in this work they are only utilized as damage measures. But presuming adequate
testing, their advantageous properties can be used for the adaptation of established material
laws by means of a successive parameter conversion to principal invariants. The conversion
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2.3. Constitutive Equations 17

formula between the different invariant sets were completed for this work and are provided
in section A.2.3.1 of the appendix.

2.3.5 General formulae for stress and elasticity tensors

Stress and material tensors for any hyperelastic transversely isotropic material can be built
directly and with little additional analytical effort from the strain energy function by means
of few selected formula. These depend on the respective set of invariants, and are based
on (2.30) and (2.35) by application of the product rule, e.g.

∂W

∂C
= ∂W

∂Ii

∂Ii
∂C

(2.44)

where {Ii} may be any complete set of invariants of (C,N). Whereas the actual structure
of the first part on the right-hand side of (2.44) is specific to the material formulation,
the second part may be derived independent of the specific material, and thus stress and
material tensors may be generalized.

Subsequently, the formulae are presented for those invariant sets that were utilized
during the course of this work. They serve as implementation base for the specific material
formulations provided later. All terms are factorized with respect to combinations of C
and N in order to provide an accessible and verifiable structure.

In this generalized and complete form, these formulae were not found published else-
where.

2.3.5.1 Based on principal invariants

For constitutive equations which are expressed in terms of the previously defined principal
invariants Ii = Ii(C,N), the 2nd Piola-Kirchhoff stress tensor can be computed according
to (2.45), which is a more convenient representation of equations (2.33) and (2.39). Here,
the term Wi substitutes ∂W/∂Ii, and Wij substitutes ∂2W/(∂Ii∂Ij).

S = 2
(
W1I +W2(I1I−C) +W3I3C−1+W4N⊗N +W5(N⊗CN + NC⊗N)

)
(2.45)
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18 2. Continuum mechanics

From (2.35) follows C=2∂S/∂C and thus

C = 4
(
δ1I⊗ I + δ4C⊗C + δ6C−1⊗C−1 + δ7C−1�C−1

+ δ8I� I + δ9N⊗N⊗N⊗N + δ10(I� (N⊗N) + (N⊗N)� I)
+ δ18(N⊗CN + NC⊗N)⊗ (N⊗CN + NC⊗N)
+ sym

[
δ2I⊗C + δ3I⊗C−1+ δ5C⊗C−1+ (δ11I + δ12C + δ13C−1)⊗N⊗N

+ (δ14I + δ15C + δ16C−1+ δ17N⊗N)⊗ (N⊗CN + NC⊗N)
])

(2.46)

with

δ1 = W11 + 2I1W12 +W2 + I2
1W22 δ2 = −2(W12 + I1W22)

δ3 = 2(I3W13 + I1I3W23) δ4 = W22 δ5 = −2I3W23 δ6 = I3W3 + I2
3W33

δ7 = −I3W3 δ8 = −W2 δ9 = W44 δ10 = W5 δ11 = 2(W14 + I1W24)
δ12 = −2W24 δ13 = 2I3W34 δ14 = 2(W15 + I1W25) δ15 = −2W25

δ16 = 2I3W35 δ17 = 2W45 δ18 = W55.

(2.47)

The same factors apply in the following spatial formulation, which is derived through the
push-forward operations τ =Φ?S and c=Φ?C.

τ = 2
(
W1c +W2(I1c− c2) +W3I3I +W4I4n⊗ n +W5I4(n⊗ cn + nc⊗ n)

)
(2.48)

c = 4
(
δ1c⊗ c + δ4c2 ⊗ c2 + δ6I⊗ I + δ7I� I + δ8c� c

+ δ9I
2
4 n⊗ n⊗ n⊗ n + δ10I4(c� (n⊗ n) + (n⊗ n)� c)

+ δ18I
4
4 (n⊗ c2n + nc2 ⊗ n)⊗ (n⊗ c2n + nc2 ⊗ n)

+ sym
[
δ2c⊗ c2 + δ3c⊗ I + δ5c2 ⊗ I + I4(δ11c + δ12c2 + δ13I)⊗ n⊗ n

+ I4(δ14c + δ15c2 + δ16I + δ17I4n⊗ n)⊗ (n⊗ c2n + nc2 ⊗ n)
])

(2.49)

Derivation details are provided in A.2.4.1.

2.3.5.2 Based on modified invariants acc. to (2.41)

The following formulae apply when the strain-energy function is provided in terms of the
invariants Îi = Îi(C,N), see (2.41). With Ĉ =J−

2
3 C holds Îi(C,N) = Îi(Ĉ,N) = Ii(Ĉ,N)
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2.3. Constitutive Equations 19

for all i 6=3. The 2nd Piola-Kirchhoff stress tensor can be computed through

S = 2Î−
2
3

3

(
W1I +W2(Î1I− Ĉ) +W4N⊗N +W5(N⊗ ĈN + NĈ⊗N)

− 1
3(W1Î1 + 2W2Î2 −

3
2W3Î3 +W4Î4 + 2W5Î5) Ĉ−1

) (2.50)

with Wi=∂W/∂Îi. The modified invariants Îi are usually utilized in decoupled work equa-
tions, i.e. withWij =∂2W/(∂Îi∂Îj),Wi3 =W3i=0 applies for all i 6=3. The derivation details
in A.2.4.2 contain these Wi3 terms, but they are omitted in the following representation of
the material tensor

C = 4Î−
4
3

3

(
δ1I⊗ I + δ4Ĉ⊗ Ĉ + δ6Ĉ−1⊗ Ĉ−1 + δ7Ĉ−1� Ĉ−1

+ δ8I� I + δ9N⊗N⊗N⊗N + δ10(I� (N⊗N) + (N⊗N)� I)
+ δ18(N⊗ ĈN + NĈ⊗N)⊗ (N⊗ ĈN + NĈ⊗N)
+ sym

[
δ2I⊗ Ĉ + δ3I⊗ Ĉ−1+ δ5Ĉ⊗ Ĉ−1+ (δ11I + δ12Ĉ + δ13Ĉ−1)⊗N⊗N

+ (δ14I + δ15Ĉ + δ16Ĉ−1+ δ17N⊗N)⊗ (N⊗ ĈN + NĈ⊗N)
])

(2.51)

with

δ1 = W11 + 2Î1W12 +W2 + Î2
1W22 δ2 = −2(W12 + Î1W22) δ4 = W22

δ3 = −2
3(W1 + 2Î1W2 + Î1W11 + 2Î1Î2W22 + (Î2

1 + 2Î2)W12 + Î4W14 + 2Î5W15

+ Î1Î4W24 + 2Î1Î5W25) δ5 = 2
3(2W2 − 2W22 + Î1W12 + Î4W24 + 2Î5W25)

δ6 = 1
8 Î3W3 + 1

4W33 + 1
9(Î1W1 + 4Î2W2 + Î4W4 + 4Î5W5 + Î2

1W11 + 4Î2
2W22 + Î2

4W44

+ 4Î2
5W55 + 4Î1Î2W12 + 2Î1Î4W14 + 4Î1Î5W15 + 4Î2Î4W24 + 8Î2Î5W25 + 4Î4Î5W45)

δ7 = −1
4 Î3W3 + 1

3(Î1W1 + 2Î2W2 + Î4W4 + 2Î5W5) δ8 = −W2 δ9 = W44

δ10 = W5 δ11 = 2(W14 + Î1W24) δ12 = −2W24 δ14 = 2(W15 + Î1W25)
δ13 = −2

3(W4 + Î4W44 + Î1W14 + 2Î2W24 + 2Î5W45) δ15 = −2W25

δ16 = −2
3(2W5 + 2Î5W55 + Î1W15 + 2Î2W25 + Î4W45) δ17 = 2W45 δ18 = W55.

(2.52)
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20 2. Continuum mechanics

The push-forward operation leads to the spatial formulation, utilizing ĉ = J−
2
3 c and the

same δ-factors.

τ = 2
(
W1ĉ +W2(Î1ĉ− ĉ2) +W3Î3I +W4Î4n⊗ n +W5Î4(n⊗ ĉn + nĉ⊗ n)

− 1
3(W1Î1 + 2W2Î2 −

3
2W3Î3 +W4Î4 + 2W5Î5) I

) (2.53)

c = 4
(
δ1ĉ⊗ ĉ + δ4ĉ2 ⊗ ĉ2 + δ6I⊗ I + δ7I� I + δ8ĉ� ĉ

+ δ9Î
2
4 n⊗ n⊗ n⊗ n + δ10Î4(ĉ� (n⊗ n) + (n⊗ n)� ĉ)

+ δ18Î
4
4 (n⊗ ĉ2n + nĉ2 ⊗ n)⊗ (n⊗ ĉ2n + nĉ2 ⊗ n)

+ sym
[
δ2ĉ⊗ ĉ2 + δ3ĉ⊗ I + δ5ĉ2 ⊗ I + Î4(δ11ĉ + δ12ĉ2 + δ13I)⊗ n⊗ n

+ Î
2
3
3 Î4(δ14ĉ + δ15ĉ2 + δ16I + δ17I4n⊗ n)⊗ (n⊗ ĉ2n + nĉ2 ⊗ n)

])
(2.54)

2.3.5.3 Based on invariants acc. to Ehret et al. [2011]

The following formulae apply when the strain-energy function is provided in terms of the
invariants Ĩi (as in Ehret et al. [2011]). When no arguments are provided, these invariants
will refer to the right Cauchy-Green tensor and N (2.37): Ĩi= Ĩi(C,N).

The 2nd Piola-Kirchhoff stress tensor can be computed through

S = 2
(
W1I−W2C−2 +W3Ĩ3C−1 +W4N⊗N−W5C−1N⊗NC−1

)
(2.55)

with Wi substituting ∂W/∂Ĩi. From C=2∂S/∂C follows

C = 4
(
δ1I⊗ I + δ4C−2 ⊗C−2 + δ6C−1⊗C−1 + δ7C−1�C−1

+ δ8(C−2 �C−1+ C−1�C−2) + δ9N⊗N⊗N⊗N

+ δ10
(
(C−1N⊗NC−1)�C−1+ C−1� (C−1N⊗NC−1)

)
+ δ18(C−1N⊗NC−1)⊗ (C−1N⊗NC−1) + sym

[
δ2I⊗C−2

+ δ3I⊗C−1+ δ5C−2⊗C−1+ (δ11I + δ12C−2 + δ13C−1)⊗N⊗N

+ (δ14I + δ15C−2 + δ16C−1+ δ17N⊗N)⊗C−1N⊗NC−1
])

(2.56)
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with Wij substituting ∂2W/(∂Ĩi∂Ĩj) and

δ1 = W11 δ2 = −2W12 δ3 = 2Ĩ3W13 δ4 = W22 δ5 = −2Ĩ3W23

δ6 = Ĩ3W3 + Ĩ2
3W33 δ7 = −Ĩ3W3 δ8 = −2W2 δ9 = W44

δ10 = W5 δ11 = 2W14 δ12 = −2W24 δ13 = 2Ĩ3W34 δ14 = −2W15

δ15 = 2W25 δ16 = −2Ĩ3W35 δ17 = −2W45 δ18 = W55.

(2.57)

The same factors apply in the following spatial formulation.

τ = 2
(
W1c−W2c−1 +W3Ĩ3I +W4Ĩ4n⊗ n−W5Ĩ4c−1n⊗ nc−1

)
(2.58)

c = 4
(
δ1c⊗ c + δ4c−1⊗ c−1 + δ6I⊗ I + δ7I� I + δ8(c−1� I + I� c−1)

+ δ9Ĩ4n⊗ n⊗ n⊗ n + δ10Ĩ4
(
(c−1n⊗ nc−1)� I + I� (c−1n⊗ nc−1)

)
+ δ18Ĩ

2
4 (c−1n⊗ nc−1)⊗ (c−1n⊗ nc−1) + sym

[
δ2c⊗ c−1 + δ3c⊗ I

+ δ5c−1⊗ I + Ĩ4(δ11c + δ12c−1+ δ13I)⊗ n⊗ n

+ Ĩ4(δ14c + δ15c−1+ δ16I + δ17Ĩ4n⊗ n)⊗ c−1n⊗ nc−1
])

(2.59)

Derivation details are provided in A.2.4.3.

2.3.6 Transformation of 1D laws to 3D

In the context of muscle modeling, it is necessary to incorporate one-dimensional stress-
strain relations into three-dimensional constitutive descriptions. These 1D descriptions
often stem from force measurements, and thus correspond to a stress function which does
not account for a change in cross-section. Hence, the force to cross-section ratio can be
regarded as first Piola-Kirchhoff stress P1D. Under the assumption of ideal isovolumetric
deformation,

P1D = τ1D/λ = S1Dλ (2.60)

applies with the stretch λ in the direction of the 1D stress component, see (2.27). The
derivation of equivalent stress tensors follows from rotating a n-aligned coordinate system
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into the global coordinate system:

S = S1D N⊗N (2.61)
τ = τ1D n⊗ n. (2.62)

Any functional dependence on λ has to be replaced by the corresponding invariant, e.g.
√
I4 =λ.
The equations are less straightforward when there’s a deviation from the premise of

ideal isovolumetric deformation. Section 4.5 discusses this by means of a specific example
for the deduction of a three-dimension muscle material.

2.3.7 Hypo- and non-elastic materials

The deductions of the previous sections were based on hyperelastic material behavior,
which allows for the determination of a stress state from the deformation state only. In
many cases though, there is no strain-energy function W to validate equations (2.30) and
(2.31), and deviating from (2.35) and (2.36), stress rates may depend on, e.g., deformation
history or other variable’s quantity and change rate.

The validity of balance and derived equations are unaffected by the lack of an explicit
strain-energy function; e.g., the determination of the internal mechanical work rate (2.29)
remains valid. On this base, terms associated with non-hyperelastic material behavior will
be introduced ad hoc in subsequent sections.
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Chapter 3

Finite Element Modeling

While the system of differential equations provided in chapter 2 is sufficient to describe a
structure’s response to predefined boundary conditions mechanically, one has to acknowl-
edge that there are very few cases to which specific analytical solutions are accessible and
feasible. Approximation techniques are therefore essential in order to derive unrestrained
solution algorithms.

Several such methods are established, with ample literature on the most important
ones: Finite Element Method (FEM), Finite Difference Method, Finite Volume Method
and Boundary Element Method. The FEM is predominant in the field of solid mechanics,
especially if geometric or material nonlinearity is involved. This is mainly due to the
favorable structure of the involved matrices and the resulting superior numerical efficiency.

3.1 Theoretical basis

3.1.1 Approximations to differential equation systems

There are several approaches to derive the governing equations of the finite element method.
The method of weighted residuals and its specific realization as Galerkin’s method are
described in most inaugural books, and provide a very general access to the topic (see,
e.g., Bathe [2002], Belytschko [1999]). Providing the same equations, and more intuitively
related to the previous chapter, the variational method will be described here.

The vector-valued differential form of Cauchy’s equation of motion (2.24) applies through-
out and in every point of the body B, and is thus considered the strong form of equilibrium.
By expanding this form with a test function φ and subsequent integration over the body’s
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domain,
∫
V
φ · (divσ + ρ(b− ẍ)) dv = 0 (3.1)

is obtained, referred to as the weak form of equilibrium. Both forms are equivalent and
exact. Only by specifying a single φ out of the set of admissible test functions, equation
(3.1) becomes an approximation to the equilibrium conditions. Introducing a variational
or virtual displacement δu as test function, the admissibility depends on the compliance
with the kinematic boundary conditions at the Dirichlet boundary Su of B. Application
of (A.19), (A.58), and Gauss’ integral theorem (A.72) finally delivers

∫
V
ρ (b− ẍ) δu dv +

∫
St

t · δu da−
∫
V
σ : δ̊e dv = 0. (3.2)

The symbol δ̊ for the variation of spatial quantities, e.g. δ̊e, refers to the Lie-variation.
Adopting the concept of the Lie-derivative (2.15), it describes the variation of a spatial
tensor, holding the deformed base vectors constant. For the present case follows

δ̊e = Φ?

(
δ(Φ?(e))

)
= Φ?(δE) = sym(grad δu). (3.3)

Consequently, the equalities of energy conjugate stress-strain pairings in (2.29) remain
valid if the corresponding variation substitutes the time derivative. Rewriting (3.2) for the
material description yields

∫
V
ρ0 (b− ẍ) δu dV +

∫
St

T · δu dA−
∫
V

S : δE dV = 0. (3.4)

Both equations are referred to as the principle of virtual work: Wext(δu)−Wint(δu)=0.1 .

3.1.2 Linearization

Generally, equation (3.2) is nonlinear in terms of displacements and possibly other inde-
pendent variables. Linearization is indispensable in order to apply the necessary iterative
solution algorithms. Here, a linear approximation is marked by the linearization operator
∆(•), and may be specified as the sum of all independent Gâteaux derivatives (see A.1.1.5).

1 Wint and Wext denote internal and external physical work, not a strain-energy function as in 2.3.2.
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Exemplary for a 2nd Piola-Kirchhoff stress S, which shall depend on two variables:

∆S = ∆uS(u, u̇) +∆u̇S(u, u̇)

= d
dεS(u + ε∆u, u̇)

∣∣∣
ε=0

+ d
dγS(u, u̇ + γ∆u̇)

∣∣∣
γ=0

(3.5)

As with material time derivative and variation, the linearization of spatial quantities follows
the concept of directional derivatives with the deformed base fixed. Whereas the Lie-
derivative describes the change of a spatial quantity relative to the spatial velocity field,
the Lie-variation and -linearization refer to virtual and incremental displacement fields,
respectively. Exemplarily for the Kirchhoff stress (see (2.27)), this leads to

∆τ = Φ?(∆(Φ?(τ ))) = F(∆S)FT . (3.6)

Subsequently, the linearization of the virtual work equations (3.2,3.4) will be limited to
the terms which constitute Wint, presuming ∆Wext = 0. This corresponds to deformation
independent surface loads and external mass forces.

In the spatial description, σ is substituted by the Kirchhoff stress τ to prepare for the
FE-algorithms used later on. Adjusting the integration domain gives

∆
∫
V
σ : δ̊e dv = ∆

∫
V
τ : δ̊e dV . (3.7)

In this chapter, stress items are supposed to be a function of deformation and deformation
rate only, although the number of independent parameters is not limited in general. Taking
advantage of the material tensors’ symmetry and applying (2.35) and (2.36) leads to

∆δWint = ∆
∫
V
τ : δ̊e dV +∆

∫
V
ρ0 ẍ δu dV

=
∫
V

(∆e : c +∆e̊ : v) : δ̊e + τ : ∆δ̊e + ρ0 ∆ü δu dV
(3.8)

∆δWint = ∆
∫
V

S : δE dV +∆
∫
V
ρ0 ẍ δu dV

=
∫
V

(
∆E : C +∆Ė : V

)
: δE + S : ∆δE + ρ0 ∆ü δu dV

(3.9)

with the viscoelastic tensors v and V which account for the deformation rate dependent
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change in the material stiffness. The utilized strain items are derived as

∆e = sym(grad∆u) = sym(∆ui;j) ei ⊗ ej
∆δ̊e = sym(gradT∆u grad δu) = sym(∆uk;i δuk;j) ei ⊗ ej

(3.10)

δE = sym(FT Grad δu) = sym(δui,j + δuk,i uk,j) ei ⊗ ej
∆E = sym(FT Grad∆u) = sym(∆ui,j +∆uk,i uk,j) ei ⊗ ej
∆δE = sym(GradT∆u Grad δu) = sym(∆uk,i δuk,j) ei ⊗ ej

(3.11)

with the notation ∆ui,j =(Grad∆u)ij and ∆ui;j =(grad∆u)ij. The rate expressions read

∆e̊ = sym(grad∆u̇ + gradT u̇ grad∆u)
= sym(∆u̇i;j +∆uk;i u̇k;j) ei ⊗ ej

(3.12)

∆Ė = sym(Grad∆u̇ + GradT u̇ Grad∆u + GradT∆u̇ Grad u)
= sym(∆u̇i,j +∆uk,i u̇k,j +∆u̇k,i uk,j) ei ⊗ ej.

(3.13)

Equations (3.2) and (3.8) were referred to as spatial formulation, featuring the Almansi
strain e and its rate in their variational and linearized forms as deformation measure.
Analogies to the respective forms of the Green-Langrange E strain become apparent in the
above indical notations.

Postulating the reference configuration to be the current rather than the undeformed
configuration leads to ui≡0 and the derivational equivalence ∆ui,j =∆ui;j. The linearized
and variational forms of E evaluated with respect to this updated reference are identical to
the corresponding forms of e. For example, ∆e may be considered to be either the lineariza-
tion of the Almansi strain, or the linearization of the Green-Langrange strain referring to
the current configuration. In conjunction with the Kirchhoff stress τ being identical to the
2nd Piola-Kirchhoff stress S with deformed base, the latter approach is commonly labeled
Updated Lagrangian (UL). It is utilized in the following element formulations.

For further details on linearization, refer to the literature, e.g. to Holzapfel [2000].
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3.1.3 Spatial discretization

The basic idea of the Finite Element Method is the subdivision of the domain Ω into disjoint
subdomains Ωe, whose behavior is then approximated by comparatively simple functions.
The subdomains are governed by the same equations as the domain, and boundary condi-
tions are directly transferred to the affected Γe. By means of local compatibility conditions
between the subdomains, any global integral may be assembled as

∫
Ω() = ⋃ ∫

Ωe().
In structural mechanics, Ω may identified with the body B, and Γ may be regarded

as Dirichlet surface Su with prescribed displacements, or Neumann boundary St with
prescribed traction. The subdomains are referred to as elements, and specific points -
nodes - serve as interpolation roots for the state quantities within the element.

Test functions and weighting parameters introduced in 3.1.1 are now represented by
shape functions he

n(X) and nodal values (marked by a hat), such that, for example, dis-
placements within an element are approximated as

ue
i (X) ∼= he

n(X) ûne
i or ue

i (x) ∼= he
n(x) ûne

i (3.14)

and their derivatives as

ue
i,j(X) ∼= he

n,j(X) ûne
i or ue

i;j(x) ∼= he
n;j(x) ûne

i (3.15)

with the index n running through the nodes of the element. Thus, instead of continuous
field quantities, only a limited set of nodal variables remains to be solved for.

Without regard to element specific formulations, the discrete equilibrium equation

f̂ e
ext − f̂ e

int = 0 (3.16)

as well as the linearization

∆f̂ e
int = Ke∆ûe + De∆ˆ̇ue + Me∆ˆ̈ue (3.17)

may be deduced by identifying the following expressions in (3.2), (3.4), (3.8) and (3.9),
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and subsequent elimination of δûe from those terms.

(δûe)T f̂ e
ext =

∫
St
δu ·T dAe +

∫
V
ρ0 b0 δu dV e (3.18)

(δûe)T f̂ e
int =

∫
V
τ : δ̊e dV e +

∫
V
ρ0 ü δu dV e

=
∫
V

S : δE dV e +
∫
V
ρ0 ü δu dV e

(3.19)

(δûe)T Ke
e∆ûe =

∫
V
∆e : c : δ̊e dV e +

∫
V
τ : ∆δ̊e dV e

=
∫
V
∆E : C : δE dV e +

∫
V

S : ∆δE dV e
(3.20)

(δûe)T
(
De∆ˆ̇ue + Ke

v∆ûe
)

=
∫
V

(∆e̊ : v) : δ̊e dV e

=
∫
V

(
∆Ė : V

)
: δE dV e

(3.21)

(δûe)T Me∆ˆ̈ue =
∫
V
ρ0∆ü δu dV e (3.22)

Genuine external loads as well as the forces that neighboring elements exert on the nodes
contribute to f̂ e

ext. Obviously, f̂ e
int denotes the nodal forces due to internal deformation

and inertia. Tangential stiffness and damping matrices Ke = Ke
e + Ke

v and De are mea-
sures for the element’s resistance against incremental nodal displacements and velocities,
respectively. The mass matrix Me is a measure for forces which originate from a change
in nodal accelerations. It occurs as well in (3.19) as part of the internal forces, which may
be rewritten as f̂ e

int = Me ˆ̈ue + f̂ e
res.

Total and Updated Lagrangian representations of the entities above are fully equivalent.
The UL formulation is usually associated with less expensive calculations in order to model
geometric nonlinearity [Bathe 2002], but the available constitutive equations and software
environment may favor the implementation of the TL form.

Remark: The presented equations were derived by introducing virtual displacement
test functions, and are therefore referred to as displacement or kinematically based FEM.
Elements based on this approach may under certain conditions behave too constrained,
leading to numerical problems or significant inaccuracies (e.g. volumetric locking, see
3.2.3). Mixed formulations which additionally utilize, for example, stress variations help
to overcome these disadvantages. Their derivation is nevertheless similar to the above and
therefore omitted here. See A.3.2 for a brief introduction.
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3.2 Finite Elements

From the element concept introduced in 3.1.3, specific conditions for the element for-
mulation can be deduced, such that by mesh refinement, convergence towards the exact
continuum solution is guaranteed. Standard FEM textbooks like those of Bathe [2002],
Zienkiewicz and Taylor [2005], Betten [1998], Felippa [2001] cover this issue thoroughly.
They describe, amongst others, the class of isoparametric elements as suitable to solve
problems which demand continuity in terms of displacements as, for example, equation
(3.2). These elements are characterized by the use of identical interpolation functions for
coordinates and displacements alike, justifying the term shape functions. The H1-element
as the non-viscous hexahedral UL representative will subsequently serve as an example to
illustrate the implementation methodology, before elements capable of modeling incom-
pressible visco-elastic materials are discussed.

3.2.1 Voigt notation

The Voigt notation allows components of symmetric stress and strain tensors to be as-
sembled in vector form. They are used in conjunction with matrices that contain the
components of minor symmetric fourth-order tensors. The vectors and matrices in ques-
tion are subsequently marked by underlines to make them distinguishable from tensors.
The Voigt representation of equation (2.35) reads

δS = C : δE (3.23)

with

C =



C1111 C2211 C3311 C1211 C2311 C1311

C1122 C2222 C3322 C1222 C2322 C1322

C1133 C2233 C3333 C1233 C2333 C1333

C1112 C2212 C3312 C1212 C2312 C1312

C1123 C2223 C3323 C1223 C2323 C1323

C1113 C2213 C3313 C1213 C2313 C1313


S = [S11 S22 S33 S12 S23 S13]T

E = [E11 E22 E33 2E12 2E23 2E13]T .

The factor 2 in front of the shear strain components is essential for the validity of (3.23).
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Figure 3.1: Arbitrary H1-element in (a) global cartesian and (b) natural representation. Element nodes
are displayed and consistently numbered in (a) and (b); integration points displayed in (b) only.

3.2.2 The H1-element (UL)

This hexahedral element is formed by eight corner nodes which define a natural coor-
dinate system {ξ1, ξ2, ξ3}, such that the nodal coordinates ξ̂in are either 1 or −1, and
xi(ξ)=hn(ξ) x̂ni .1 The partition of unity ∑n hn(ξ) = 1 and hn(ξ̂m) = δmn may be deduced
from (3.14) as mandatory requirements for the description of rigid body movements and
for the consistency of the element mesh. Trilinear shape functions are established as the
standard approach to meet those requirements.

hn(ξ) = 1
8(1 + ξ̂1

n ξ
1)(1 + ξ̂2

n ξ
2)(1 + ξ̂3

n ξ
3) (3.24)

In accordance with (A.50), the Jacobian matrix J is introduced as Jij = ∂xj/∂ξ
i. This

allows for the calculation of displacement derivatives with respect to global coordinates,
and thus leads to the strain items of (3.10) and (3.12).

ui,x(x) = hn,x(x) ûni = J−1 hn,ξ(ξ(x)) ûni (3.25)

Finally, equations (3.18) to (3.22) may be evaluated numerically after substituting dV by
det J dξ1 dξ2 dξ3 and setting the respective integration intervals to {−1, 1}.

An interpolation matrix h(x) based on (3.14) and strain-displacement matrices b(x)

1 As any variable in this chapter refers to the elements domain, the upper index e as well as a special
notation for interpolated quantities are omitted. n and m denote node numbers, i runs through the
coordinates. In subsequent chapters hn will be written as hn due to lack of space.
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are introduced for convenient notation, such that

∆u = h(x)∆û and ∆e = bl(x)∆û. (3.26)

Neither in TL nor UL description, the linear mapping through bl is sufficient for the
consideration of arbitrary great deformations. For example, the stiffness matrix provided
in (3.20) is generally subdivided into

Ke = Kl + Knl =
∫
V

bl
T
cbl dV +

∫
V

bnl
Tτ ? bnl dV (3.27)

where bnl is nonlinear in terms of the shape functions. The remaining items are assembled
to

f̂ int =
∫
V

bl
Tτ dV (3.28)

M =
∫
V
ρh1

T h1 dV . (3.29)

The interpolation matrices h1, bl, bnl of the H1-element are provided in basic FEM text-
books, and are reproduced in section 3.2.4. The two different arrangements τ and τ ? of
the Kirchhoff stress will be elaborated there as well, along with the extension to viscous
behavior.

M denotes the consistent mass matrix in (3.29). In most dynamic analyses, diagonal
lumped mass matrices are used instead [Hinton et al. 1976], assigning the elements mass
directly to its nodes. This leads to small errors concerning angular momentum. As long
as the motion is not dominated by highly accelerated rotations, these errors are of little
significance, and become irrelevant with decreasing element size.

All integrals are numerically evaluated using full quadrature (i.e. by use of eight inte-
gration points, see (A.67)).

3.2.3 Volumetric locking

Displacement based elements of low order are known to develop spurious locking effects
during the analysis of near-incompressibility problems. This includes the simulation of
rubber-like materials, and of biologic tissues whose major component is water.

For infinitesimal deformations and linear elasticity, the locking effect can be explained
as in [Freischläger 2000]: Separating an element’s deformation energy into volumetric and
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Figure 3.2: 6 of the 18 non-zero eigenvalues of an H1 element increase unboundedly along with the bulk
modulus κ.

deviatoric contributions gives

Πint = Πdev + Πvol

= G
∫
V
εdev : εdev dV + 3

2κ
∫
V
εvol : εvol dV

= G
∫
V
(εdev)2 dV + κ

2

∫
V
(tr ε)2 dV

(3.30)

with εvol =tr ε · I and εdev =ε−εvol. For near-incompressible materials, the bulk modulus κ
is typically several orders of magnitude greater than the shear modulus G. Equation (3.30)
illustrates the pointwise equivalence of material incompressibility (κ =∞) and a kinetic
constraint tr ε = 0. Also, with κ→∞ and tr ε 6= 0 anywhere in the element the second
term is of positive value, and becomes significant for very small tr ε. This insight can be
extended to the nonlinear case with

∆Πvol = κ
∫
V
(J − 1)∆J dV (3.31)

which equals zero only if the dilatation J=1 throughout the element and not just in an
integral sense. Therefore even small volume preserving nodal displacements may result in
Πvol � Πdev, corresponding to a spurious increase of the element’s stiffness.

An eigenvalue analysis (Fig. 3.2) illustrates the coupling of isovolumetric deformation
modes to an increasing bulk modulus. This effect is less pronounced in higher-order ele-
ments. However, in large-scale computations first-order approaches are often preferred due
to their inherent simplicity and efficiency. Also, higher order elements tend to be more
difficult to manage in terms of automated mesh generation, model manipulations and the
simulation of interaction phenomena such as contact or friction.

Incompressibility locking occurs in two-dimensional elements as well, and solutions to
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the problem have been proposed as early as in in the mid-seventies. Subsequent propos-
als to inhibit locking in volume elements were based on mixed variational formulations,
penalty methods, B-matrix manipulations, enhanced natural and assumed strain concepts,
sub-grid methods, and on reduced or selective numerical integration. Some of those meth-
ods have been shown to be equivalent or to lead to identical results under certain conditions
[Yeo 1996, Djoko et al. 2004, Zhang et al. 2007]. On the other hand, some more recent
elements incorporate several of those methods in order to compensate for disadvantages
in special cases of geometrical nonlinearity and material behavior, and to provide a rea-
sonable compromise between the contradicting objectives element performance (distortion
insensitivity, coarse mesh accuracy, convergence behavior), computational costs, general
applicability, and implementational effort. An outline on various approaches is given in
the appendix A.3.

3.2.4 The F-bar element

The name F-bar (or F̄) denotes elements with a modified deformation gradient in general.
Nonlinear EAS-elements [Simo et al. 1993] with F̄ = F + F̃ belong to that group, but
subsequently only modifications to the volumetric part of the deformation gradient shall
be considered. This limitation is reasonable as only volumetric locking poses problems in
the given context, and the additive enhancement of the EAS-elements does not reliably
prevent locking for the large deformation incompressible case [see De Souza Neto et al.
1996, Wriggers and Reese 1997, Freischläger 2000].

Based on the volumetric decomposition of the deformation gradient F = FvolFdev =
J

1
3 Fdev the modification of F is performed by introducing an assumed element variable θ

to replace the compatible dilatation J .

F̄ =
(
θ

J

)1
3

F (3.32)

As shown in section 3.2.3, θ needs to be constant in the elements domain in order to
circumvent volumetric locking.

To derive an appropriate θ, one might start from a Hu-Washizu functional typical for
mixed methods, with independent strain (F̄), pressure (p), and dilatation (θ) fields.

Πint =
∫
W (F̄) dV +

∫
p (J − θ) dV (3.33)
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In order to derive a displacement based element, the last two terms should vanish, leading
to

θ = v

V
= 1
V

∫
V
J dV . (3.34)

When applied on element level, this approach is also known as mean dilatation method
[Nagtegaal et al. 1974], with θ=θN representing the exact ratio between current and refer-
enced element volume. A less expensive approach with no variational basis was proposed
for 2D by Moran et al. [1990].

θM = Jc (3.35)

The index c marks the elements center, hence θM matches the volume ratio precisely only
for parallel epipeds and few other selected geometries.

The modification of F leads to modified strain items whose variations differ consid-
erably from their isoparametric counterparts. To derive a more general formulation, the
exponent 1

3 in (3.32) will be replaced by k
3 . According to the value of k, a weighted mod-

ification between the pure isoparametric element (k=0) and a pure F-bar element (k=1)
is available.

The modification (3.32) has to be applied to every deformation item. Adopting the
same linearization rules as for (3.8) gives1

∆ē = ∆e + k

3

(
∆θ

θ
− ∆J

J

)
I (3.36)

∆δ̊ē = ∆δ̊e + 2k
3

(
δθ

θ
− δJ

J

)
∆e + 2k

3

(
∆θ

θ
− ∆J

J

)
δ̊e

+ 2k2

9

(
δθ

θ
− δJ

J

)(
∆θ

θ
− ∆J

J

)
I

+ k

3

(
∆J δJ

J2 − ∆θ δθ

θ2

)
I + k

3

(
∆δθ

θ
− ∆δJ

J

)
I

(3.37)

1 Since linearized and variational expressions are formally identical, the latter is not quoted.
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∆¯̊e = ∆e̊ + 2k
3

(
θ̇

θ
− J̇

J

)
∆e + 2k

3

(
∆θ

θ
− ∆J

J

)̊
e

+ 2k2

9

(
θ̇

θ
− J̇

J

)(
∆θ

θ
− ∆J

J

)
I

+ k

3

(
∆J J̇

J2 − ∆θ θ̇

θ2

)
I + k

3

(
∆θ̇

θ
− ∆J̇

J

)
I.

(3.38)

A modification operator 〈•〉 is introduced, such that the assumed dilatation may be defined
as θ=〈J〉. Based on the approaches of Nagtegaal and Moran, it is specified as

〈•〉N = 1
V

∫
• dV and 〈•〉M = •c. (3.39)

The unresolved expressions in the above equations may now be determined as

δJ

J
= δuk;k

∆J

J
= ∆uk;k

∆δJ

J
= ∆uk;k δul;l −∆uk;l δul;k

J̇

J
= u̇k;k

∆J̇

J
= ∆uk;k u̇l;l +∆u̇k;k −∆uk;l δul;k

(3.40)

and

δθ

θ
= 〈δuk;k〉

∆θ

θ
= 〈∆uk;k〉

∆δθ

θ
= 〈∆uk;k δul;l〉 − 〈∆uk;l δul;k〉

θ̇

θ
= 〈u̇k;k〉

∆θ̇

θ
= 〈∆uk;k u̇l;l〉+ 〈∆u̇k;k〉 − 〈∆uk;l δul;k〉.

(3.41)

δ̊ē, ∆ē, ∆δ̊ē and ∆¯̊e are hereby entirely resolved in component form. Hence, equations
(3.19),(3.20) and (3.21) may be discretized anew, utilizing the modified instead of the
regular deformation quantities. In the subsequent expressions, the material’s responses to
the modified deformations will be marked by an overbar, i.e. τ̄ , c̄, and v̄.

Eq. (3.38) merits special attention. Like ∆e̊ in (3.12), ∆¯̊e depends on ∆u and ∆u̇
alike. Therefore, it contributes to both, damping and stiffness matrix.

3.2.4.1 The static case

Analogously to (3.28), the element forces of an F-bar element are

f̂ =
∫

b̄Tl τ̄ dV (3.42)
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and, disregarding viscosity and thereby Kv, the stiffness matrix is derived in the form
K=Kl+Knl1+Knl2 as

Kl =
∫

b̄Tl c̄ b̄l dV (3.43)

Knl1 =
∫

bTnl τ̄
? bnl d (3.44)

Knl2 = 2k
3

∫
bTl τ̄ h̄1 dV + 2k

3

∫
h̄T1 τ̄ T bl dV + 2k2

9

∫
tr τ̄ h̄T1 h̄1 dV

+ k

3

∫
tr τ̄ h̄2 dV + k

3

∫
tr τ̄ h̄3 dV .

(3.45)

Internal force vector and linear stiffness matrix do not differ from their H1 complements,
except for the use of the modified strain and, consequently, of b̄l instead of bl. The
analogy is likewise evident for the nonlinear stiffness, as Knl1 corresponds to the nonlinear
expression of the conventional element. However, Knl2 is inherent to the F-bar elements
solely.

The strain-displacement matrices introduced in the equations above are given as

bl =
[
b1

l . . .b
8
l

]
6×24

bnl =
[
b1

nl . . .b
8
nl

]
9×24

b̄l =
[
b̄1

l . . . b̄
8
l

]
6×24

(3.46)

with the following submatrices.

bnl =



hn;1 0 0
0 hn;2 0
0 0 hn;3

hn;2 hn;1 0
0 hn;3 hn;2

hn;3 0 hn;1


6×3

bnmod =



〈hn;1〉 − hn;1 〈hn;2〉 − hn;2 〈hn;3〉 − hn;3
〈hn;1〉 − hn;1 〈hn;2〉 − hn;2 〈hn;3〉 − hn;3
〈hn;1〉 − hn;1 〈hn;2〉 − hn;2 〈hn;3〉 − hn;3

0 0 0
0 0 0
0 0 0


6×3

bnnl =


(hn,x)T 0 0

0 (hn,x)T 0
0 0 (hn,x)T


9×3

b̄nl = bnl + k

3 bnmod

Additionally, some strain-interpolation and stress matrices are used which do not corre-
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spond to terms in the conventional formulation:

h̄1 =
[
h̄1

1 . . . h̄
8
1

]
1×24

h̄2 =


h̄11

2
...

h̄88
2


24×24

h̄3 =


h̄11

3
...

h̄88
3


24×24

τ̄ ? =


τ̄ 0 0
0 τ̄ 0
0 0 τ̄


9×9

(3.47)

with

h̄n1 =
[
〈hn,x〉 − hn,x

]
1×3

h̄mn2 =


hm;1 hn;1 − 〈hm;1 hn;1〉 hm;2 hn;1 − 〈hm;2 hn;1〉 hm;3 hn;1 − 〈hm;3 hn;1〉
hm;1 hn;2 − 〈hm;1 hn;2〉 hm;2 hn;2 − 〈hm;2 hn;2〉 hm;3 hn;2 − 〈hm;3 hn;2〉
hm;1 hn;3 − 〈hm;1 hn;3〉 hm;2 hn;3 − 〈hm;2 hn;3〉 hm;3 hn;3 − 〈hm;3 hn;3〉


3×3

h̄mn3 =


〈hm;1 hn;1〉 − 〈hm;1 〉〈hn;1〉 0 0

0 〈hm;2 hn;2〉 − 〈hm;2 〉〈hn;2〉 0
0 0 〈hm;3 hn;3〉 − 〈hm;3 〉〈hn;3〉


3×3

The terms of h̄3 become zero for assumed dilatations like Moran’s θM which is evaluated
at only one specific point of the element.

3.2.4.2 The viscous case

The consideration of general viscosity results in the appearance of damping and viscous
stiffness matrix D and Kv, as shown in (3.21). Their separate deduction from (3.21) is
straightforward, once the component description of ∆¯̊e is derived from (3.38) ff.:

∆¯̊eij = 1
2
(
∆¯̇ui;j +∆¯̇uj;i + ¯̇uk;i∆ūk;j + ¯̇uk;j ∆ūk;i

)
(3.48)

Benjamin Winkel PhD Thesis



38 3. Finite Element Modeling

with

∆¯̇ui;j = ∆u̇i;j + k

3

((
〈∆u̇k;k〉 −∆u̇k;k

)
δij +

(
〈u̇k;k〉 − u̇k;k

)
∆ui;j +

(
〈∆uk;k〉 −∆uk;k

)(
u̇i;j + k

3

(
〈u̇k;k〉 − u̇k;k

)
δij

)
+
(
u̇k;l∆ul;k − 〈u̇k;l∆ul;k〉

)
δij

)

¯̇ui;j = u̇i;j + k

3

(
〈u̇k;k〉 − u̇k;k

)
δij

∆ūi;j = ∆ui;j + k

3

(
〈∆uk;k〉 −∆uk;k

)
δij.

Collecting those terms which are associated with either ∆u̇ or ∆u and subsequent dis-
cretization gives

D =
∫

b̄Tl v̄ b̄l dV (3.49)

Kv =
∫

bTv v̄ b̄l dV (3.50)

with b̄l from (3.46) and

bv =
[
b1

v . . .b
8
v

]
6×24

bnv = bnv1 + k

3

(
2bnv2 + bnv3−〈b

n
v3〉+

(
〈u̇k;k〉− u̇k;k

)
b̄nl
)
. (3.51)

The three additional matrices which occur only in the viscous context read

bnv1 =



¯̇u1;1hn;1 ¯̇u2;1hn;1 ¯̇u3;1hn;1
¯̇u1;2hn;2 ¯̇u2;2hn;2 ¯̇u3;2hn;2
¯̇u1;3hn;3 ¯̇u2;3hn;3 ¯̇u3;3hn;3

¯̇u1;1hn;2 + ¯̇u1;2hn;1 ¯̇u2;1hn;2 + ¯̇u2;2hn;1 ¯̇u3;1hn;2 + ¯̇u3;2hn;1
¯̇u1;2hn;3 + ¯̇u1;3hn;2 ¯̇u2;2hn;3 + ¯̇u2;3hn;2 ¯̇u3;2hn;3 + ¯̇u3;3hn;2
¯̇u1;1hn;3 + ¯̇u1;3hn;1 ¯̇u2;1hn;3 + ¯̇u2;3hn;1 ¯̇u3;1hn;3 + ¯̇u3;3hn;1


6×3

bnv2 =



¯̇u1;1(〈hn;1〉 − hn;1) ¯̇u1;1(〈hn;2〉 − hn;2) ¯̇u1;1(〈hn;3〉 − hn;3)
¯̇u2;2(〈hn;1〉 − hn;1) ¯̇u2;2(〈hn;2〉 − hn;2) ¯̇u2;2(〈hn;3〉 − hn;3)
¯̇u3;3(〈hn;1〉 − hn;1) ¯̇u3;3(〈hn;2〉 − hn;2) ¯̇u3;3(〈hn;3〉 − hn;3)

(¯̇u1;2 + ¯̇u2;1)(〈hn;1〉 − hn;1) (¯̇u1;2 + ¯̇u2;1)(〈hn;2〉 − hn;2) (¯̇u1;2 + ¯̇u2;1)(〈hn;3〉 − hn;3)
(¯̇u2;3 + ¯̇u3;2)(〈hn;1〉 − hn;1) (¯̇u2;3 + ¯̇u3;2)(〈hn;2〉 − hn;2) (¯̇u2;3 + ¯̇u3;2)(〈hn;3〉 − hn;3)
(¯̇u1;3 + ¯̇u3;1)(〈hn;1〉 − hn;1) (¯̇u1;3 + ¯̇u3;1)(〈hn;2〉 − hn;2) (¯̇u1;3 + ¯̇u3;1)(〈hn;3〉 − hn;3)


6×3
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bnv3 =



¯̇u1;1hn;1 + ¯̇u2;1hn;2 + ¯̇u3;1hn;3 ¯̇u1;2hn;1 + ¯̇u2;2hn;2 + ¯̇u3;2hn;3 ¯̇u1;3hn;1 + ¯̇u2;3hn;2 + ¯̇u3;3hn;3
¯̇u1;1hn;1 + ¯̇u2;1hn;2 + ¯̇u3;1hn;3 ¯̇u1;2hn;1 + ¯̇u2;2hn;2 + ¯̇u3;2hn;3 ¯̇u1;3hn;1 + ¯̇u2;3hn;2 + ¯̇u3;3hn;3
¯̇u1;1hn;1 + ¯̇u2;1hn;2 + ¯̇u3;1hn;3 ¯̇u1;2hn;1 + ¯̇u2;2hn;2 + ¯̇u3;2hn;3 ¯̇u1;3hn;1 + ¯̇u2;3hn;2 + ¯̇u3;3hn;3

0 0 0
0 0 0
0 0 0


6×3

All F-bar element matrices relevant for the linearization of the work equation (3.17) are
provided at this point. The stiffness matrix has to be assembled from the linear, nonlinear
and viscous components K = Kl + Knl1 + Knl2 + Kv. Damping matrix and internal force
vector are calculated directly, and the mass matrix may be adopted from the regular H1
element.

Viscous stiffness and damping matrix of the H1 element may be derived from the matrix
definitions of the F-bar element with k=0 and 〈•〉= •.

The previous equations describe the F-bar element the way it has been implemented,
except for the usual simplifications concerning sparse matrices. Examples for the element’s
behavior and comparisons follow in section 3.2.7.

3.2.5 Inconsistent F-bar element

The name “F-bar element” has been used by De Souza Neto et al. [1996] for a slightly
different approach to the F-bar idea. The element in concern eliminates volumetric lock-
ing as well and is less expensive than the just presented. A severe disadvantage of the
formulation is the asymmetry of the stiffness matrix as shown below.

De Souza Neto et al. use the same deviatoric-volumetric split as presented before,
utilizing the approach of equation (3.35):

F̄ =
(
Jc

J

)1
3
F. (3.52)

In contrast to the consistent method in 3.2.4 they apply this modification exclusively to
the stresses in the variational formulation. With σ̄=σ(F̄) they define

δWint =
∫
σ̄ : δ̊e dv (3.53)

for the static case.
In order to derive a more general description for this work, the exponent in (3.52) is
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again expanded by k, and the assumed dilatation - not necessarily the one at the element’s
centroid - is denoted θ. Cauchy and Kirchhoff stress are then linked through σ̄= Jk−1

θk
τ̄

and an adaptation of the previous expression to the form of equation (3.8) reads

δWint =
∫ (

J

θ

)k
τ̄ : δ̊e dV. (3.54)

In contrast to (3.8) the linearization has to be conducted with respect to three terms,
leading to

∆δWint =
∫ (

J

θ

)k(
k

3

(
∆J

J
− ∆θ

θ

)
τ̄ : δ̊e

+ (∆ē : c̄ +∆¯̊e : v̄) : δ̊e + τ̄ : ∆δ̊e
)

+ ρ0 ∆ü δu dV.
(3.55)

A transformation back to the form of (3.53) would simplify this equation, but to empha-
size the similarities to the consistent F-bar and isoparametric formulation, the current
representation shall be kept.

3.2.5.1 The static case

When velocity and acceleration dependence are disregarded, equation (3.55) becomes

∆δWint =
∫ (

J

θ

)k
∆e : c̄ : δe dV +

∫ (
J

θ

)k
τ̄ : ∆δ̊e dV

+k3

∫ (
J

θ

)k(
∆J

J
− ∆θ

θ

)
(I c̄− τ̄ ) : δe dV.

(3.56)

Again, first and second part are almost identical to the respective linear and nonlinear
expressions Kl and Knl of the isoparametric element (3.20), (3.27). As intended, only the
stress and material tensor differ since they rely on the modified deformation gradient. The
favorable structure of the regular strain-displacement matrix remains therefore untouched.

f̂ =
∫

b̄Tl τ̄ dV (3.57)
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Another advantage over the F-bar element of the previous section is the less expensive
additional stiffness. However, the discretization of that last term

Kadd = k

3

∫ (
J

θ

)k
bTl (c̄ I− τ̄ ) h̄1 dV (3.58)

with IT = [1 1 1 0 0 0] and h̄1 according to (3.47) reveals the asymmetry of the stiffness
matrix. As already pointed out by the inventors, this element is very efficient in explicit
calculations or in conjunction with materials that produce asymmetric tangent moduli
anyway.

3.2.5.2 The viscous case

Damping and viscous additional stiffness matrices are also very similar to those of the
consistent F-bar element, see (3.49) and (3.50). The mass matrix may be adopted without
modification from the H1 element (3.29).

D =
∫ (

J

θ

)k
b̄Tl v̄bl dV (3.59)

Kv =
∫ (

J

θ

)k
bTv v̄bl dV (3.60)

The influence of viscosity leads in F-bar and H1 formulations alike to an additional viscous
stiffness matrix Kv which is usually asymmetric. The disadvantageous assymmetric Kadd

of the inconsistent F-bar element becomes therefore irrelevant, and under arbitrary viscous
conditions the element is potentially more efficient than the consistent F-bar element.

3.2.6 Reduced integration elements

The constant dilatation needed to avoid volumetric locking might as well be ensured
through application of an one-point quadrature rule. The F-bar element based on the
approach in (3.35) is an example which might be classified as selective reduced integra-
tion (SRI) element.1 In [Flanagan and Belytschko 1981, Belytschko 1983] approaches to
uniform reduced integration (URI) elements were published, utilizing only one integration
point and thus uniform strains. This leads to huge cost reductions in explicit computations
1 Some SRI elements are based on hybrid formulations whose additional variables are not eliminated on
the element level. Those elements are not subject of this work as they require specific decoupled material
descriptions.
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x3
2

x1

x2
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12

node x1 x2 x3
1 0.0 0.0 0.0
2 0.0 3.0 0.0
3 0.0 3.0 3.0
4 0.0 0.0 3.0
5 3.0 0.0 0.0
6 3.0 3.0 0.0
7 3.0 3.0 3.0
8 3.0 0.0 3.0

node x1 x2 x3
9 0.960 0.558 1.071
10 0.495 2.235 0.894
11 0.819 2.250 2.310
12 0.747 1.026 2.424
13 2.031 0.915 0.951
14 2.364 2.079 1.068
15 2.550 1.947 2.211
16 2.478 0.864 2.136

Figure 3.3: Cubical patch geometry, undeformed.

where the calculation of element forces is the most expensive task. And naturally, volu-
metric locking does not occur. However, in the hexahedral element, the stiffness matrix
- based on six independent strain components - has twelve singular modes, on its own
often leading to meaningless results globally. A stabilization of these hourglass modes is
therefore essential to the application of SRI elements.

A hybrid URI-H1 element has been implemented into SLang for comparison. A factor
k in the range of 0 to 1 is utilized, which determines how the centroid integration point is
weighted against the regular eight integrations points of the H1 element.

3.2.7 Numerical tests

3.2.7.1 Patch test

The basic concept of the patch test is to check the capability of a patch of irregularly shaped
elements to exactly reproduce an uniform stress state from a linear deformation state and
vice versa. If an element passes the test, it appears suitable to reproduce arbitrary stress
states with any desirable accuracy by means of mesh refinement. Compliance with the
patch test is not imperative for a well performing element. However, it is considered of
great value as validity check and test for implementation accuracy.

The geometry of the present test is taken from Hu and Nagy [1997]. The cubical
patch consists of seven elements, for details see Fig. 3.3. It is subjected to a homogeneous
displacement field u1 =x1, u2 =(x1+x2)/2, u3 =(2x1+x2+x3)/5, prescribed at the outer
nodes. The position of the inner nodes is determined iteratively. A Neo-Hookean material
law is utilized with the Kirchhoff stress τ = (ln J)I+(c−I)/2. Analytical results and test
deviations may be taken from Tab. 3.1.

As expected, all elements with the exception of F̄Moran and URI comply with the patch
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maximum error [%]
τ H1 F̄M F̄N URI0.99 iF̄M iF̄N

2.781 0.0 17.73 0.0 36.76 0.0 0.0
2.031 0.0 21.34 0.0 50.03 0.0 0.0
1.601 0.0 26.27 0.0 61.84 0.0 0.0
0.500 0.0 54.59 0.0 103.84 0.0 0.0
0.250 0.0 79.86 0.0 173.01 0.0 0.0
0.400 0.0 90.85 0.0 217.95 0.0 0.0

Table 3.1: Analytical Kirchhoff stress and maximum deviation in the patch. URI-element with k=0.99
for convergence.

2

1

p
11

2

a) b) c)

Figure 3.4: Indented block. a) Full descriptive sketch b) Quarter block: Locking (H1) c) No locking (F̄)

test. The failure of the former is caused by the element shapes which deviate significantly
from parallel-epipeds. A premise to the element formulation is therefore invalid. The
failure of the URI element is caused by the rank deficiency of its stiffness matrix. To
enforce convergence at all, the weighting coefficient was set to k = 0.99, thereby slightly
enhancing the URI element’s stiffness matrix with that of an H1 element.

3.2.7.2 Indention of a near-incompressible block

This test is a common tool to study the convergence behavior of finite elements in the
incompressible range. It consists of a cuboid which is loaded with even pressure at the
center of its upper surface. Due to symmetry constraints, only a quarter needs to be
modeled (see Fig. 3.4). Here, meshes with 2, 4, 8, and 16 elements per edge were realized
for all four previously introduced element types (H1, URI, F̄ and iF̄).

Fig. 3.5 shows the indention at the center node of the upper surface with respect to mesh
refinement and element type. The H1 elements display the typical locking effect, which
becomes less pronounced for finer meshes due to a more homogeneous dilatation within the
individual elements. Again, the URI formulation had to be enhanced in order to remain
stable. With k set to 0.99, similar results are derived as with the F̄ elements. Both F̄
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Figure 3.5: Indented block; convergence with mesh refinement. Neo-Hooke material: λ=400900 µ=80.

and iF̄ elements produce very similar results for the fine mesh configuration, however, iF̄
elements were shown to be inapt for the highly distorted coarse mesh. For either element
type, there was no significant difference in the results between Nagtegaal’s and Moran’s
approaches for either element type, thus they are not distinguished in the diagram.

3.2.7.3 Eigenvalue analysis

The eigenvalues of an element provide valuable insight into its locking behavior, e.g. in sec-
tion 3.2.3 and Fig. 3.2 the unphysical dependence of several eigenvalues on the bulk mod-
ules was illustrated for the isoparametric formulation. An examination of eigenforms asso-
ciated with those restrained eigenvalues reveals explicitly the critical deformation states.
The modal base of a hexahedral element is depicted in Fig. 3.6, where the separation be-
tween isochore modes (a-q) and dilatation mode (r) is enforced through a very high bulk
modulus. Even though the overall deformations are clearly not homogeneous for modes
a-f, they feature identical dilatation values in all integration points. The latter applies to
modes g-k as well. Varying dilatation values occur in modes l-q, thereby causing volu-
metric locking in the H1 element. The effect is illustrated in Tab. 3.2 which contains the
eigenvalues of various hexahedral elements and connects them to their respective modes.
The Hookean material law was adopted from [Freischläger 2000] to include the values for
the EAS formulations in the comparison.

All F̄ and EAS elements display identically locking-free behavior due to the cubic
element geometry. The deviations in some of the eigenvalues of the various elements
affect inhomogeneous modes only. They result from the different approaches to internal
displacement interpolation.

The analysis of F̄, iF̄, and URI elements with irregular shapes comfirmed consistent
locking-free behaviour, but deviating dilatation-eigenvalues illustrated the inaptness of the
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a) b) c) d) e) f)

m) n) o) p) q)

g) h) j) k) l)i)
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Figure 3.6: Deformation modes of hexahedral elements: torsion (a,b), bending (c-e), corotated warp (f),
shear (g-i), tension (j-k), warp (l-n), frustum (o-q), dilatation (r).

mode H1 F̄/iF̄ URI H1/P0 H1/E6 H1/E12 H1/E21

7 5.6e+00 5.6e+00 0.0e+00 5.6e+00 3.7e+00 3.7e+00 5.6e+00
8 5.6e+00 5.6e+00 0.0e+00 5.6e+00 3.7e+00 3.7e+00 5.6e+00
9 1.7e+01 6.2e+00 0.0e+00 6.2e+00 3.7e+00 3.7e+00 5.6e+00
10 1.7e+01 6.2e+00 0.0e+00 6.2e+00 5.6e+00 5.6e+00 5.6e+00
11 1.7e+01 6.2e+00 0.0e+00 6.2e+00 5.6e+00 5.6e+00 5.6e+00
12 2.2e+01 9.3e+00 0.0e+00 9.3e+00 1.7e+01 1.1e+01 1.1e+01
13 3.3e+01 9.3e+00 0.0e+00 9.3e+00 1.7e+01 1.1e+01 1.1e+01
14 3.3e+01 9.3e+00 0.0e+00 9.3e+00 1.7e+01 1.1e+01 1.1e+01
15 3.3e+01 1.7e+01 0.0e+00 1.7e+01 2.2e+01 2.2e+01 2.2e+01
16 3.3e+01 1.7e+01 0.0e+00 1.7e+01 3.3e+01 3.3e+01 3.3e+01
17 3.3e+01 1.7e+01 0.0e+00 1.7e+01 3.3e+01 3.3e+01 3.3e+01
18 9.3e+04 2.2e+01 0.0e+00 2.2e+01 3.3e+01 3.3e+01 3.3e+01
19 9.3e+04 3.3e+01 3.3e+01 3.3e+01 3.3e+01 3.3e+01 3.3e+01
20 9.3e+04 3.3e+01 3.3e+01 3.3e+01 3.3e+01 3.3e+01 3.3e+01
21 5.6e+05 3.3e+01 3.3e+01 3.3e+01 3.9e+01 3.3e+01 3.3e+01
22 5.6e+05 3.3e+01 3.3e+01 3.3e+01 3.9e+01 3.3e+01 3.3e+01
23 5.6e+05 3.3e+01 3.3e+01 3.3e+01 3.9e+01 3.3e+01 3.3e+01
24 2.5e+06 2.5e+06 2.5e+06 2.5e+06 2.5e+06 2.5e+06 2.5e+06

Table 3.2: Eigenvalues of a cubic element (geometry: 1×1×1, material: E= 100, ν = 0.49999). Bold
values mark the homogeneous deformation modes g-k and r in Fig. 3.6. Highlighted values correspond to
locking modes. Columns 5 to 8 taken from [Freischläger 2000].
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Moran formulation for non-parallel edged geometries.

3.2.7.4 Linearization quality

Although each of the presented elements converges quadratically in a Newton-Raphson
iteration, the number of necessary iteration steps may differ for the same problem. This is
due to the specific nonlinear character of the element in concern, which directly affects the
nonlinearity of the global equations. When comparing element efficiency, this effect should
be taken into account, additionally to the costs on element level.

An appropriate way to derive at least a qualitative predication is to compare the tangent
stiffness matrix K with a pseudo-stiffness matrix Kf that is assembled from the change
in element forces due to a single nodal displacement ∆u. In a geometrically or physically
nonlinear setting, the value of that displacement ∆u may have a significant impact on the
result of this comparison.

The assessment is based on an error value calculated through

e =

∥∥∥∥K− ∑
i

Kf (û+∆ûi)−Kf (û)
∆u?

∥∥∥∥
‖K‖

(3.61)

where ∆ûi denotes the incremental nodal displacement vector whose elements are zero
except for the i-th which is ∆u. ∆u? is its unit-free relative length, normalized with
respect to the elements dimension. Thus, ∆u?=0.01 corresponds to a displacement of 1%
of the cubic element’s edge length.

Results are shown in Fig. 3.7. A significant difference in the behavior of the various
element types is not detectable, not in other tested, irregularly shaped configurations either.
The error in the range ∆u? < 10−8 is a result of the general computational inaccuracy,
while the error which increases with ∆u? directly represents the nonlinearity in strains.
Obviously, none of the implemented elements performs significantly different from the H1
element.

3.3 Solution techniques

The solutions of FE equations are trivial only for static, linear problems. Otherwise, special
techniques are required to obtain solutions reliably and with the aspired accuracy. The
utilized algorithms are presented in the following overview.
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Figure 3.7: Linearization error in a hexahedral element of various types: H1, F̄, iF̄, and URI.

3.3.1 Iteration procedures

3.3.1.1 Load controlled iteration

The most frequently used algorithm to follow an equilibrium path in nonlinear calculations
is the Newton-Raphson method, mathematically based on a first-order Taylor expansion
of the considered function. A linearized term as given in (3.17) is therefore essential.

Starting from an equilibrium state as identified by (3.16), the next equilibrium state
corresponding to a prescribed load increment is sought. The superscript (n, i) indicates a
variable at load step n and iteration step i, a single index (n) marks the equilibrium state.
The initial deformation state û(n) with the corresponding internal forces f̂ int(û(n)) needs a
modification ∆û(n+1), such that

f̂ (n+1)
ext − f̂ int

(
û(n) +∆û(n+1)

)
= 0. (3.62)

This reflects a purely statical approach. Defining û(n+1,0) = û(n), K(n+1,i) =K(û(n+1,i)) and
f (n+1,i) = f(û(n+1,i)), the iteration proceeds as follows:

û(n+1,i+1) = û(n+1,i) +
(
K(n+1,i)

)−1 (
f̂ (n+1)

ext − f̂ (n+1,i)
int

)
. (3.63)

The latter part of (3.63) represents the displacement increment at iteration step i,∆û(n+1,i),
which converges to zero when equilibrium is approached. A one-dimensional interpretation
is illustrated in Fig. 3.8.

The computation of the stiffness matrix and its processing is the most time consuming
part of the iteration procedure. Depending on the characteristics of the problem, a modified
Newton-Raphson method may prove to be more efficient: In contrast to (3.63), the stiffness
matrix is not updated in every iteration step, and K(n+1,i) is replaced by K(n). In some
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cases, the update is abdicable throughout the whole deformation process. This initial
stiffness method corresponds to the substitution of K(n+1,i) by K(0). Both simplifications
result in a significant decrease of computational effort per iteration step, at the cost of a
diminished convergence rate and ability.

An effective approach to speed up convergence, especially for Newton-Raphson meth-
ods, is provided with the method of conjugated lines [Crisfield 1982] or line-search method.

f)

f̂(n,2)
int

a)

∆û(n,1) ∆û(n,2)
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int
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ext
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·∆û(n,1)
s(3)s(2)

Figure 3.8: Illustration on iteration procedures a) Newton-Raphson method b) modified Newton-Raphson
method c) line-search extrapolation d) divergence at inflection point e) line-search interpolation f) enhanced
linesearch interpolation with s(1) =s

(1)
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3.3.1.2 Iteration acceleration

The line-search algorithm may be utilized to speed up iterative solution techniques as the
above-mentioned, or to provide convergence where they would possibly fail. In contrast
to manual step-length manipulation, the displacement increment ∆û(n+1,i) is scaled by
a factor s(k) which is a function of the energy increment during the iteration step. By
applying this concept to (3.63) one derives

û(n+1,i+1,k) = û(n+1,i) + s(k)∆û(n+1,i) (3.64)

with s(0) =0 and s(1) =1. The energy increment during the line-search substep is approxi-
mated as

g(k) = ∆û(n+1,i) (f̂ (n+1)
ext − f̂ (n+1,i+1,k)

int ) (3.65)

and the scaling factor accordingly, evaluated by simple interpolation as

s(k+1) = s(k) g(0)

g(0) − g(k) . (3.66)

See Fig. 3.8:c,e for an illustration. A convenient enhancement of this method may be
achieved by updating the referenced interpolation boundaries in (3.66). Introducing the
lower and upper values sl and su gives

s(k+1) = s
(k)
l + (s(k)

u − s
(k)
l ) g

(k)
l

g
(k)
l − g

(k)
u

. (3.67)

Starting with s
(1)
l = s(0), s(1)

u = s(1), s(2) becomes the new s
(2)
l or s(2)

u , depending on the
value of g(2), which becomes either g(2)

l or g(2)
u accordingly. The line-search ends as soon

as |g(k)/g(0)| drops below a given threshold or a maximum number of steps is performed.
In the latter case the applied s(k) is the one which refers to the smallest |g(k)| calculated
during the procedure.

In the multidimensional case, it is necessary to restrict the maximum extrapolation
range of s(k), as the direction of ∆û(n+1,i) needs to be updated as well. This is due to
the approximative character of (3.65) which is precisely orthogonal only for k = 0. The
postulation of a target g(k) =0 is inapt for the same reason. In many cases, a conservative
approach, as for example, 0.1≤s(k)≤1.2 with an enhancement threshold |g(k)/g(0)|< |0.5|
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provides a significant acceleration compared to the regular Newton-Raphson iteration tech-
nique [Matthies and Strang 1979, Felippa 2001]. Still, for strong nonlinearity it appeared
adequate to omit the line-search algorithm (3.65) until convergence problems indeed occur.

3.3.1.3 Displacement controlled iteration

Load controlled iteration schemes may often fail when the deformation process comprises
stages of zero-stiffness, e.g. when viscous material behavior is involved. Displacement
controlled methods can overcome this limitation. The base for the following approach
is a distinction between degree of freedom with unknown (û1) and controlled (û2) nodal
displacements, here handled as if assembled successively: û = [û1, û2]. This separation
applies to f̂ int =

[
f̂ int,1, f̂ int,2

]
and f̂ ext =

[
f̂ ext,1, f̂ ext,2

]
accordingly. The stiffness matrix

relating ∆f̂ int and ∆û can then be disassembled to

K =
 K11 K12

K21 K22

 . (3.68)

The resultant iterative equation (3.69) is very similar to equation (3.63).

û(n+1,i+1)
1 = û(n+1,i)

1 +
(
K(n+1,i)

11

)−1 (
f̂ (n+1)

ext,1 − f̂ (n+1,i)
int,1 −K(n+1,i)

12 û(n+1)
2

)
(3.69)

The iteration is conducted with respect to the unknown displacements only, whereas the
controlled displacements act as unaffected inputs. If of interest, the external reaction forces
f (n+1)

ext,2 acting on the displacement-controlled nodes can be determined afterwards.
Approaches to reduce iteration efforts may be applied as in the previous two sections,

although the omittance of the stiffness update per iteration step may have a lesser effect
since only the submatrix K11 has to be inverted.

3.3.2 Time integration

Within the spatial discretization framework of the FEM, a discretization in the time domain
is indispensable in order to account for the nonlinearities during dynamic simulations.
Strategies to satisfy the governing differential equations sequentially at subsequent time
steps, e.g. Euler, Taylor and Runge-Kutta methods, rely on on the computation of time
derivatives through finite difference techniques. They are categorized as explicit or implicit,
depending on whether they incorporate approximations of state variables at the respective
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following time step as well. They differ in terms of solution stability, costs, and accuracy,
depending specifically on the problem to be solved. For a general overview and advice
on the choice of methods see for example Harrach [2017]. Here, central difference and
Newmark methods are elaborated with specific focus on viscous material behavior.

3.3.2.1 Central finite difference method

Denoting successive nodal quantities at equidistant time intervals ∆t by upper left indeces
t−∆t, t, t+∆t, . . ., the central difference approximations of the displacement derivatives
read

t ˙̂u = (2∆t)−1
(
t+∆tû− t−∆tû

)
(3.70)

t ¨̂u = (∆t)−2
(
t+∆tû− 2 tû + t−∆tû

)
. (3.71)

This follows from the application of a midpoint rule and the linearization of the velocity
within the time steps. Utilizing these substitutions and lumped nodal masses for the
evaluation of the equilibrium equation (3.16) at time t allows for a direct determination of
the displacements t+∆tû.

t+∆tû = ∆t2 M−1
(
tf̂ ext − tf̂ res

)
+ 2 tû− t−∆tû (3.72)

The accuracy and boundedness of the solution is - as with other explicit methods - con-
tingent on whether the ∆t is chosen smaller than a critical step width.

In (3.72) appears the term tf̂ res, which may depend on nodal velocities in case of vis-
cous materials. Accordingly, its evaluation relies on an initial assumption and subsequent
iterations with t+∆tû(i+1) = t+∆tû(i)+∆û(i+1). All methods listed in 3.3.1 are appropriate for
this purpose, exemplary

∆û(i+1) =
( 1
∆t2

M + 1
2∆t

t
vK

(i)
)−1(

tf̂ ext − tf̂ (i)
res −M t ¨̂u(i)

)
(3.73)

denotes the regular Newton-Raphson scheme. Herein, vK marks the viscosity matrix

t
vK

(i) = ∂ tf̂ (i)
res

∂ ˙̂u
(3.74)

and the factor 1
2∆t stems from the evaluation of ∂ t ˙̂u

∂ t+∆tû specifically for the central difference
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method (3.70). This general approach could not be located in the literature. While there
is a direct, non-iterative solution to (3.72) in the case of constant damping coefficients
(where the damping matrix corresponds to 2∆t vK), the proposed iteration allows for the
solution of coupled systems with f̂ res(û, ˙̂u) 6= f̂ res(û) + f̂ res( ˙̂u) as well.

The computation of the viscosity matrix contradicts the typical small-costs-per-step
advantage of a central difference approach. Few occasional updates after several time
steps may prove sufficient though, depending on the sensitivity of the element forces on
the velocities. In case of stronger nonlinearities, the approximation quality and fitness of
the central difference remains doubtful anyway, reconsidering its fundamental assumption
(3.70).

The following direct iteration scheme provides a less expensive solution. However,
compared to (3.73) it will more often fail to converge, as the derivatives of the internal
forces are not taken into account.

∆û(i+1) = ∆t2 M−1
(
tf̂ (i−1)

res − tf̂ (i)
res

)
(3.75)

3.3.2.2 Newmark method

When the time steps required by the central difference method are neither feasible nor
demanded, other methods such as the one by Newmark [1959] may provide a robust solution
more effectively. Newmark proposed

t+∆tû = tû + t ˙̂u∆t+
(
(0.5− β) t ¨̂u + β t+∆t ¨̂u

)
∆t2 (3.76)

t+∆t ˙̂u = t ˙̂u +
(
(1− γ) t ¨̂u + γ t+∆t ¨̂u

)
∆t (3.77)

as approximations to displacements and velocities at time t+∆t. The parameters γ and
β determine the method’s properties, containing as special cases the linear acceleration
method (β = 1

6 , γ = 1
2), central difference method (β = 0, γ = 1

2), and others. For a dis-
cussion on their behavior see, e.g., [Ogden 1997]. The implicit and unconditionally stable
method originally suggested by Newmark uses β = 1

4 γ = 1
2 . It is also known as averaged

acceleration or trapezoidal rule.
Following a rearrangement of (3.76) and (3.77), the equilibrium equation (3.16) may

be restated at time t+∆t

t+∆tû = β ∆t2 M−1
(
t+∆tf̂ ext − t+∆tf̂ res

)
+ (0.5− β)∆t2 t ¨̂u +∆t t ˙̂u + tû (3.78)
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with both t+∆tû and t+∆tf̂ res being unknown. For linear visco-elastic material behavior, the
explicit solution may be taken from textbooks. In general though, an iterative calculation
of these variables is necessary. Defining as before

vK = ∂ f̂ res

∂ ˙̂u eK = ∂ f̂ res

∂ û vemK = γ

β∆t vK + eK + 1
β∆t2

M (3.79)

the displacement increment for a Newton-Raphson scheme is derived. The evaluation of
∂ t+∆t ˙̂u
∂ t+∆tû for Newmark’s method led to the factor γ

β∆t
.

∆û(i+1) = t+∆t
vemK(i)−1(t+∆tf̂ ext − t+∆tf̂ (i)

res −M t+∆t ¨̂u(i)
)

(3.80)

Utilizing a modified Newton-Raphson technique, t+∆t
vemK(i) may be substituted by t

vemK =
t+∆t

vemK(0) in many cases, avoiding the stiffness computation in every iteration step. Equiva-
lent to (3.75) a speed-up may by achieved through a direct iteration, again at the risk of
an impaired convergence.

∆û(i+1) = β ∆t2 M−1
(
t+∆tf̂ (i−1)

res − t+∆tf̂ (i)
res

)
(3.81)

Like the central difference scheme presented before, the Newmark formulation does not
demand an initially decoupled description of viscous and elastic forces. The decoupled
and linear viscous versions can be derived by introducing the appropriate simplifications
to (3.78) and (3.80).
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Chapter 4

A general model of skeletal muscle

A wide variety of approaches is currently utilized and effective for the assessment of me-
chanical aspects in vertebrate physiology - from small rigid body simulations, to models
which comprise fine details of joints, ligaments, cartilage and bone structures, to highly so-
phisticated models that even consider metabolic and electro-chemical processes. Research
objectives cover very diverse fields, like implant and trauma medicine, training and sport
sciences, occupational safety, product design, paleontology and forensics. Given that con-
text, one single, general physiological model could not possibly be effective in all of these
applications.

The present work aims to describe a model of skeletal muscle that is generally applicable
at the scale of whole-body to full muscle simulations, and within the domain of active and
passive locomotion, occupational safety, impact simulation and physiological testing for
muscle properties.

4.1 Properties of skeletal muscle

A comprehensive description of skeletal muscle behavior and functionality may easily cover
several books, and still be considered basic in many aspects. The complex chemical, neural
and thermomechanical mechanisms which drive and control the muscle are still subject to
fundamental research. However, accepting certain limitations, reliable theories are avail-
able, covering for example the mechanical behavior of muscles. In the following section a
description of the muscle physiology is provided, which should suffice as foundation to the
models explained afterwards. Neural and metabolic implications will barely be considered.
Standard texts recommended for the further interested reader are McMahon [1984], Pollack
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Figure 4.1: Muscle anatomy, adopted from Lieber [2002].

[1990], Winters and Woo [1990], and Herzog [2000].

4.1.1 Muscle physiology

The main functions of skeletal muscle are generation, short time recuperation and dis-
sipation of mechanical energy, the first being the most exclusive one. It is achieved by
generating tension forces between origin and insertion of the muscle. Adequate motor con-
trol presumed, these forces result in coordinated movements, locomotion and stabilization
of the body.

The structure of a muscle - apart from tendons and tendon sheets (aponeuroses) - is
depicted in Fig. 4.1. The muscle belly consists of muscle bundles (fascicles) which again
contain several muscle fibers (cells). Every fiber, bundle, and muscle is surrounded by
connective tissue and membranes which among other tasks ensure their nutritional supply
and responsiveness. Within a muscle fiber, myofibrils are arranged in parallel, themselves
constructed from series of sarcomeres, the smallest contractile units. Fig. 4.2 illustrates
how the sarcomere is bordered by Z-lines which intersect the thin myofilaments in the
so-called I-band. Thick myofilaments form the A-band. They slide between the thin
filaments and connect with them via crossbridges when the muscle contracts. Thick and
thin filaments are often referred to as myosin and actin filaments, as these two proteins are
their main respective components.

4.1.2 Contraction mechanism

The sliding filament and crossbridge theories were introduced by Huxley and Hanson [1954],
Huxley and Niedergerke [1954], and Huxley [1957], and - with some adjustments - have been
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Figure 4.2: Schematic illustration of the sarcomere, longitudinal and transversal section.

confirmed ever since. They proposed that the myosin molecules from the thick filaments
attach to certain proteins on the thin filaments, bend and detach again. The respective
sarcomere contracts during this cyclic process and so does the whole muscle fiber.

The contraction is initiated by an electrochemical stimulus from the motor neuron. It is
propagated along the cell’s surface and makes the sarcotubular system permeable to Ca2+

ions which migrate into the myofibrils. They bind to troponin and thereby activate the
attachment sites on the thin filament. The myosin heads may now attach, deform through
the breakdown of ATP to ADP1, and detach. The strike length amounts to 5−10nm.
Neighboring myosin heads and attachment sites are offset in a way that enables a smooth
sliding mechanism.

Gordon et al. [1966] were the first to describe the force-length relationship of a single
sarcomere. The graph in Fig. 4.3 refers to frog skeletal muscle, but is almost identical to
those obtained for cat, humans, and other mammals. The respective slack lengths are com-
monly specified in the range from 2.1 to 2.7µm. Absolute forces are hardly comparable as
they depend very much and differently on experimental conditions like, e.g., temperature.

It is important to emphasize the isometric nature of the underlying experiment, i.e.
the forces were measured at fixed lengths. If the descending limb referred to a general
displacement-force function, the softening behavior would destabilize the muscle fibers.
The activation of a fiber with sarcomeres of different initial lengths at the descending
limb would make the shorter ones contract and the longer ones extend. This effect has
indeed been observed [Julian and Morgan 1979], but following some creepage, equilibrium
is achieved and subsequently a positive stiffness verified. Force enhancement - the increase
in force when an already activated sarcomere is stretched - is not only essential for inter-
sarcomere stability, but also on whole muscle level for effective motion control.

In experimental contexts, eccentric, concentric, isometric, isotonic, and isokinetic con-

1 ATP/ADP - adenosine tri-/diphosphate. Said chemical reaction is known as Lohmann reaction.
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Figure 4.3: Isometric tension vs. length curve and corresponding appearance of the sarcomere.

traction are distinguished, denoting shortening and lengthening contraction, contraction
at constant length, constant force, or constant velocity, respectively.

4.1.3 Activation mechanism

Muscles are organized in motor units that contain several muscle fibers which are all
innervated via the same pathway, the motor neuron. The fibers of a motor unit do therefore
always contract and relax simultaneously. The contraction force depends on the firing rate
of the motor neuron: The response to single stimulations with sufficiently long intervals
in between are single force twitches. A second stimulation before the force twitch subsides
will increase its magnitude and duration. With increasing frequency of the stimulation
the overlap increases, the force curve becomes smoother, and eventually fused (Fig. 4.4)
at a frequency that may vary between 20−120Hz, depending on the particular muscle and
temperature.

The characteristic form of a single twitch depends on the metabolic and structural
properties of the fiber, i.e. the fiber type, as well as the motor neuron diameter. The resul-
tant time courses of single twitches vary significantly in length an height. E.g., contraction
times in humans vary from below 10ms in eye muscles to beyond 100ms in locomotion mus-
cles. The underlying reasons are varying metabolic and structural properties, and different
motor neuron diameters.

Muscle contraction may as well be induced artificially through electrodes that are ei-
ther placed on the skin, in the muscle body (percutaneous, accessed via needle-puncture)
or implanted in the proximity of the motor neuron. Surface electrodes are obviously non-
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unfused tetanus

fused tetanus

time

force
relative

Figure 4.4: Schematic force evolution vs. time for different stimulation frequencies.

invasive, but they are also not suitable for the stimulation of profound muscles, require
higher voltages to be effective, and act less selective than the subcutaneous options. Im-
plant electrodes require surgery, but presuming intact innervation of the muscle, only the
motor neuron needs to be stimulated to propagate the signal throughout the muscle. In
contrast, surface and percutaneous placements often require an array of electrodes in order
to avoid locally damaging currents. All three methods are capable of inducing full tetanic
activation, mimicking the natural frequency-modulated stimulation in conjunction with a
sufficient signal amplitude.

4.1.4 Muscle geometry and force

Force-length characteristics of a muscle follow directly from its architecture, which often
appears as an optimized solution targeting on maximum performance. Most sarcomeres
work in and close to the plateau region of Fig. 4.3. A major factor on the relation between
working ranges of muscle and sarcomeres is the pennation angle α, defined as the angle
between fiber orientation and the muscle’s line of pull. The effective fiber force is propor-
tional to cosα and the number of parallel fibers is reversely proportional to cosα, so the
physiological cross-sectional area

Apcs = muscle volume
optimal fiber length (4.1)

is an appropriate measure to estimate the maximum isometric force of a muscle. The
proportionality factor amounts typically to 20−40N/cm2. The optimal fiber length is
determined by the optimal lengths of the enclosed sarcomeres, corresponding to the slack
length in Fig. 4.3.

The simplification lies here in the assumption of an uniform pennation angle which
may lead to inaccurate results. Some classical examples for different fiber arrangements
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c) d) e) f) g)b)a)

Figure 4.5: Various pennation types. a) unipennate b) bipennate c) multipennate d) strap with tendinous
intersections e) triangular f) tricipital g) fusiform [Company 2002].
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Figure 4.6: Schematic isometric force-length functions of frog
muscles [Epstein and Herzog 1998].

F0

v−v0

Fmax

Figure 4.7: Force-velocity curve,
based on [Hill 1938, Katz 1939].

are given in Fig. 4.5. The variety in muscle architecture illustrates the variety in func-
tional tasks. Maximum force as well as the range in which force can be generated are
correspondingly variable, even if neglecting the size effect. Individual muscles in a group of
agonists are designed to physiologically complement each other, usually in a way that each
muscle’s working range coincides roughly with its mean optimal fiber length. The amount
of connective tissue is to some extent dependent on the muscle architecture too, such that
the passive properties vary according to Fig. 4.6.

Apparently, the length dependence of the active force in a muscle is much smoother
than possibly expected from a sarcomere’s behavior. This is an effect of slight variations
in lengths between parallel and serial sarcomeres, and to a lesser extent minor deviations
of intrinsic sarcomere properties and fiber recruitment patterns.

Contraction velocity acts as a further major influence on the active force. From some of
the first experiments conducted and published by Hill [1938], the inverse relation between a
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muscle’s active force and its contraction velocity was derived for full activation, concentric
motion and near-optimal length (see Fig. 4.7). These data, generated from quick release
experiments, were shown to be compliant with theoretical thermodynamic considerations
regarding the heat generation of a shortening muscle. While similar energy considerations
were inconclusive in the eccentric range (until the sliding filament theory was established),
the first experimental data investigating active force versus lengthening velocity were made
available at about the same time by Katz [1939].

Considering muscle in arbitrary settings, neither isometric nor isokinetic, experimental
data indicate a scaling of the muscle force by both length- and velocity dependent factors.
Specific proposals and assumptions are discussed in section 4.2.

4.1.5 Three-dimensional properties

The muscle properties addressed so far refer exclusively to results and experiments where
quantities in the line of pull were recorded. As this work aims at a spatial representation,
some additional remarks concerning three-dimensional muscle behavior are necessary.

Near-incompressibility is clearly the mechanically most relevant characteristic of any
dense soft tissue. Due to this property, muscle activation will have an immediate and sig-
nificant effect also on stresses and stiffness perpendicular to the fiber direction. Specifics
of the passive muscle’s transversal properties impact the active behavior to a much lesser
extent, and although the micro-mechanical molecular processes are well understood, no
consistent mechanical description for the cross-fiber behavior has been established. Re-
search is mostly focused on the tetanic muscle (see section 4.3), and few experiments
investigate its passive three-dimensional properties.

Strumpf et al. [1993] reported the in-fiber direction stiffness of a passive canine di-
aphragm to be significantly smaller than its transverse stiffness, but activation reversed
this relation. In bi-axial experiments on activated cardiac muscle Humphrey and Yin
[1987], Hunter and Smaill [1988] and Guccione et al. [1993] found the stiffness in fiber
direction to be two to five times higher than the transverse stiffness. For passive skeletal
muscle under compression, Van Loocke et al. [2006] found the stiffness to be twice as high
in transversal direction than along the fibers, while under tension Morrow et al. [2010]
measured longitudinal stiffness to be roughly twenty times as high as in the transverse
direction. Bosboom et al. [2001b] conducted in vivo transversal compression experiments
on the relaxed rat tibialis anterior muscle. Weichert et al. [2011] investigated passive be-
havior on cubic muscle samples under various loading condition, and Siebert et al. [2014]
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assessed lateral mechanical behavior of isolated rat muscles at different activation states
in what appears to be the most recent approach to the topic. While those studies provide
valuable data, a comprehensive systematic investigation of strain and activation dependent
three-dimensional muscle properties is still lacking.

4.2 Review and extension of straight-line models

Straight-line models (SLM) of muscle, i.e. models which represent the muscle or its fibers
as line elements, date back to the beginning of the previous century. Aside from being still
the method of choice for many simulations, they also serve as basis for the constitutive
descriptions of higher dimensional models.

They are often classified as either rheological or biophysical, dating back to the models
invented by A.V. Hill and A.F. Huxley, respectively. Several models of both kinds will be
explained subsequently. The fiber properties associated with the three-dimensional model
developed in this work will heavily rely on these one-dimensional descriptions.

4.2.1 Rheological models

Hill [1938] stated in the summary of his famous paper that skeletal muscle may be consid-
ered as a serial ‘two-component system, the one component being undamped and elastic,
the other being governed by the characteristic equation (F+a)(v+b)=const.’ which refers
to the shortening range of Fig. 4.7. The formula proposed by Hill is commonly rewritten
as

F = F opt
0 b− a v
b− v

(4.2)

with the constants a and b representing the asymptotes of the hyperbola in the concentric
range. Here, the contraction velocity v is negative during shortening. Hill’s two components
will be denoted serial elastic (SE) and contractile element (CE). Typically, the effect of
the CE is scaled with activation and a parallel elastic element (PE) is supplemented, for
otherwise a passive muscle could not exert a force as shown in Fig. 4.6.

Closely related to Hill’s proposal, other rheological models have been developed, some
of them depicted in Fig. 4.8. The variety in the properties of the utilized springs, dashpots
and CEs add to the diversity of the available models. However, the three element model
remains by far the most popular, as it may be adapted to a wide range of applications with
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Figure 4.8: Rheological models for muscle. a) Hill [1938] b) i.e. Winters and Woo [1990] c) Forcinito
et al. [1998], with elastic rack d) Vain [2001] e) Van der Linden [1998] f) Tamura and Saito [2002], with
inertia g) Zajac [1989] h) Durfee and Palmer [1994] i) Yücesoy [2003] j) Ding et al. [1998].

satisfying accuracy and at reasonable costs.
An intrinsic shortcoming of rheological models is their purely phenomenological, lumped-

parameter nature. This makes an association between model and muscle components futile,
and analytical parameter assessment difficult. E.g., the popular connotation of the serial
elastic element (SE) in Fig. 4.8:a as the tendon’s equivalent appears inadequate because
cross-bridges and aponeuroses contribute significantly to the series elasticity.

Still, due to the physiology of the samples used in [Hill 1938] and similar works (i.e. frog
sartorius muscle, 32mm long and 0.35mm thick) the findings can be transferred from the
whole-muscle level onto representative parallel-fibered muscle units. Zajac [1989] embedded
this in a model which included pennation and a separate elastic element representing the
tendon. This allows for the reapplication of identified parameters to muscles with different
architecture, and finally the derivation of higher-dimensional continuum models.

Remark: Most publications addressing the one-dimensional properties of skeletal mus-
cle deal with force, displacement and velocity measures, like the experiments they are re-
ferring to. When quoting from such papers a transcription from force to nominal stress
(P = F/A0), from length to stretch (λ = l/lopt), and from velocity to stretch velocity
(λ̇ = v/lopt) is conducted. Due to the linear relation between those respective items the
original functions require little modifications; essentially only an adaptation of parameters.

Despite the continuum mechanic quantities involved, the terms “force-length” and
“force-velocity” will be kept. Indices and markers remain unchanged as well.
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4.2.1.1 The elastic elements

Serial and parallel elastic elements in the rheological three element model assume simul-
taneously the functions of tendons, aponeuroses, collageneous fibers and connective tissue.
In the context of a three-dimensional modeling approach, these structural elements will be
modeled individually, or - considering the model resolution in FEA - they will be regarded
as a multitude of various elastic elements. Accordingly, there is no equivalent to the elastic
elements of the three element model in the present work’s three-dimensional approach. A
detailed discussion of their properties is therefore omitted.

4.2.1.2 The contractile element

In contrast to the above, the contractile element in rheological models mimics muscle
behavior only, and the properties of muscle fibers in this work’s three-dimensional approach
are directly derived from the rheological CE descriptions.

As previous explained, the stress generated by the CE is derived as a function of isomet-
ric force at optimal length, activation level, contraction velocity, length when activated and
instantaneous length. Fatigue and other effects of contraction history will be disregarded
at this stage. A proper functional description may be based on the scaling functions

fl(λact, λ) = P0/P
opt
0 (4.3)

fact(α, t) = PCE|λ̇=0/P0. (4.4)

P opt
0 represents the maximum isometric stress at optimal length. Accordingly, P0 is the

maximum isometric stress at activation length. The activation function fact is time depen-
dent and smoothes alleged jumps of the activation state α, sharing the same co-domain
[0, 1]. For example, upon full stimulation the muscle stress rises steadily from zero to the
tetanic stress in Fig. 4.4.

Supported by the findings of Edman [1979; 1988] and others, some authors [Van Leeuwen
1991, Van der Linden 1998, Meier and Blickhan 2000] suggest a similar scaling function to
account for the velocity dependence of the CE’s stress:

fv(λ̇) = PCE/PCE|λ̇=0, (4.5)

assuming independence of fv from other state variables. The resultant PCE = fvfactflP
opt
0

is computationally convenient, but its validity is limited to near-full-force contractions
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(α≈1). The maximum shortening velocity v0 (see Fig. 4.7) was shown to correlate with
the activation state [Petrofsky and Phillips 1981, Chow and Darling 1999], and lengths
below the optimal length have an influence on the force-velocity relation as well [Stern
1974, Van Soest 1992].

A comprehensive model for submaximal activation states was presented by Günther
[1997], where fv is a function of fact, fl, λ̇, λ, and muscle specific parameters. That
approach (4.13) will be discussed in detail and expanded on later in this chapter.

Force-length relations

The length dependent scaling factor fl accounts for the activation-length dependence of
the muscle stress. Several functional descriptions are compared below. For brevity, only
the function segments with fl>0 are presented, everywhere else applies fl =0.

A recurrent approach to model fl is the parabolic function (4.6), albeit with some
variation in its parameter a (Günther [1997]: a=0.54, Epstein and Herzog [1998]: a=0.6,
Scovil and Ronsky [2006]: a=0.72).

fl = 1− 1
a2 (λact − 1)2 for 1−a < λact < 1+ a (4.6)

Bovendeerd [1990], who for cardiac muscle only described the ascending limb of the force-
length function, proposed

fl = 1 + 1
a

(λact − 1)−
√

1
a2 (λact − 1)2 + b for λact > 1− a1− b

2 (4.7)

with a=1.538, b=0.01. Otten [1987] and Van der Horst [2002] utilized the exponential
function

fl = exp
(
− 1
ab2

(λ b1
act − 1)b2

)
(4.8)

with a=0.54, b1 =1, b2 =2, and another exponential description is provided in [Van der
Linden 1998]:

fl =


exp

(
−b1 (λact − 1)4

)
for λact ≤ 1

exp
(
−b2 (λact − 1)3

)
for λact > 1

(4.9)
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Figure 4.9: Isometric force-length functions. Ap-
proach (4.11) is here parameterized to approximate
Günther [1997] and Scovil and Ronsky [2006].
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Figure 4.10: Force-velocity functions. Ap-
proach (4.21) is here parameterized to approxi-
mate Günther [1997].

with b1 =30 and b2 =5. Ehret et al. [2011] proposed

fl =
(

1 + 1
ac

(λact − 1)
)

exp
(
− 1

2a2
c
(λact − 1)2 − 1

ac
(λact − 1)

)
for λact ≥ 1−ac (4.10)

with ac =0.395.
All of the mentioned functions are displayed in Fig. 4.9.
The exponential functions and their gradients are steady and possess positive values for

every real-valued λ. This may improve the convergence behavior in iterative computations
over the more realistic approaches in accordance with (4.6). The latter are adequate as long
as the algorithms do either not demand steadiness, or λ does not exceed the physiological
range during computation.

For this work, a third order polynomial function is proposed (4.11). It allows for distinct
and independent maximum and minimum stretch values at which force can be exerted, and
is better suited for curve fitting to asymmetric experimental data than (4.6).

fl = 1 + 1
a2

e a
2
c

(
(λact − 1)3 (ae − ac)− (λact − 1)2 (a2

e + a2
c − aeac)

)
. (4.11)

This description is derived from the boundary conditions fl(1)=1, f ′l (1)=0,
fl(1− ac)=0, fl(1+ae)=0. It contains as special case the parabola of (4.6) with a=ae =ac.
The indexes e and c mark parameters in the eccentric and concentric range, respectively.

Several authors [Meier and Blickhan 2000, Tamura and Saito 2002, Till et al. 2008,
Siebert et al. 2015] applied Gordon’s multi-linear force-length curve for sarcomeres directly
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to muscle models. This appears appropriate only if the sarcomere properties’ variation and
length non-uniformities that may exist initially or develop during contraction are consid-
ered in the model, possibly by including a probabilistic approach. These non-uniformities
in sarcomere length are thought to be the main reason for the divergence between isometric
sarcomere and muscle force-length relations [Herzog 2007]. Already the actual measure-
ments in [Gordon et al. 1966], which refer to a fiber segment and not to a single sarcomere,
are not quite as piece-wise linear as the proposed function suggests.

Force-velocity relations

Most formulae to calculate PCE originate from the hyperbolic functions developed by Hill
[1938], and from data by Aubert [1956]:

PCE =


P opt

0 bc − ac λ̇

bc − λ̇
for λ̇0 ≤ λ̇ ≤ 0

P opt
0 be − ae λ̇

be − λ̇
for λ̇ > 0

(4.12)

For λ̇<λ̇0 applies PCE =0, which is omitted here and in subsequent equations.
The above relations were derived from maximally activated muscles at optimal lengths,

and different proposals followed on how to incorporate activation and length dependence.
Günther [1997] developed a model which will be considered as a reference in this work:

PCE =


factflP

opt
0

gactBrel + glArelλ̇

gactBrel − λ̇
for λ̇0 ≤ λ̇ ≤ 0

factflP
opt
0

(
1 + (cr − 1)(glArel + 1)csλ̇

(cr − 1)gactBrel + (glArel + 1)csλ̇

)
for λ̇ > 0

(4.13)

This can be derived from (4.12) in several steps:

1. transcription of the eccentric hyperbola to not depend on its asymptotes ae and be,
but instead on a slope factor cs and a ratio cr, with
dPCE

dλ̇
|λ̇→0+

=cs
dPCE

dλ̇
|λ̇→0−

and cr =Pmax/P0 (4.14)

2. substituting P opt
0 with PCE|λ̇=0 =factflP

opt
0

3. eliminating ac and bc by introducing the muscle independent invariants

Arel =−ac/(factP
opt
0 ) and Brel =bc/λopt =bc (4.15)
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4. scaling of Arel by gl and Brel by gact, which then results in

λ̇0 = −gactBrel

glArel
. (4.16)

Thus, a scalable description of the force-velocity relation is derived. In conjunction with
the following functions, which were already proposed by Van Soest [1992], Günther [1997]
achieved an activation and stretch dependent downscaling of the maximum shortening
velocity as it has been observed experimentally.

gact =
1 for fact > 0.3
fact/0.3 else

gl =
1 for λact > λopt

f−1
l else

(4.17)

One of the few approaches which does not comply with (4.2) is given in [Van der Linden
1998]:

fv = cr

1 + c1 exp(−c2 sinh(c3
λ̇
λ̇0

+ c3
1
2))

(4.18)

Like in Van der Linden’s force-length relation (4.9), this exponential form leads to positive
values throughout the domain, and accordingly to small deviations from Günther’s curve;
i.e. fv(λ̇0) 6= 0. Its steady derivative can be of great merit during iterative computations.
However, for λ̇/λ̇0 > 8, the double exponential denominator term exceeds 1.798 · 10308,
the limit for double precision numbers. While physiologically irrelevant, equation (4.18) is
therefore inapt as a general force-velocity description for computational purposes.

For this work, a new force-velocity function is proposed (4.21) which accounts for
activation dependence as in (4.13), keeps scalability as in (4.5), and resolves some numerical
disadvantages of the pure double hyperbolical descriptions.

For reference, Günther’s formula (4.13) is transcribed to a compliant parameter set

fv =



1− λ̇
λ̇0

1 + cc
λ̇
λ̇0

for λ̇0 ≤ λ̇ ≤ 0

1− ce1
λ̇
λ̇0

1− ce2
λ̇
λ̇0

for λ̇ > 0 ,

(4.19)

with

λ̇0 = −gactBrel

glArel
cc = 1

glArel
ce1 = cr cs(1 + cc)

cr − 1 ce2 = cs(1 + cc)
cr − 1 (4.20)

Benjamin Winkel PhD Thesis



4.2. Review and extension of straight-line models 69

fact =1.0
fact =0.8
fact =0.6
fact =0.4
fact =0.2

Günther [1997]: dotted
Eq. (4.21): solid

fvfact

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0

-1.0 -0.5 0.0 0.5 −λ̇/λ̇0

Figure 4.11: fv dependence on fact according to
Günther [1997].

fvfl

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0

λ=0.5
λ=0.6
λ=0.7
λ=1.0
λ=1.3
λ=1.4
λ=1.5

Günther [1997]: dotted
Eq. (4.21): solid

-1.0 -0.5 0.0 0.5 −λ̇/λ̇0

Figure 4.12: fv dependence on fl according to
Günther [1997] (here mapped to λ via eq. (4.6)).

a form which is very similar to the ones proposed by Van Leeuwen [1991], Epstein and
Herzog [1998], and Van der Horst [2002]. But whereas cc, ce1, ce2, and λ0 are considered
constants by those authors, here they represent functions of fact and fl as in Günther’s
approach. Consequently, fv is only dependent on λ̇ in the former case, while in the latter it
depends as well on α, t, and λ via (4.17).1 These dependencies are visualized in Fig. 4.11
and Fig. 4.12.

The proposed function (4.21) mimics the double hyperbolic form of (4.19) and (4.13)
closely, but maintains a steady derivative. Its concentric range is based on a quadratic
parabola, modified by a third order polynomial denominator to maintain the functional
values of the hyperbola in λ̇ = 0 and λ̇ = λ̇0, and its gradient in λ̇ = 0. Additionally, a
zero-gradient in λ̇= λ̇0 is enforced. The hyperbolic base function is kept in the eccentric
range, but an exponential term is added to ensure a steady derivative towards the concentric
domain. The parameter k determines the curvature of the modified function in the eccentric
proximity of λ̇=0. A value of k=40 is appropriate [Edman 1988].

fv =



(
1− λ̇

λ̇0

)2

1− (1− cc) λ̇
λ̇0

+ (3− 2cc)
(
λ̇
λ̇0

)2
− (2− cc)

(
λ̇
λ̇0

)3 for λ̇0 ≤ λ̇ ≤ 0

1− ce1
λ̇
λ̇0

1− ce2
λ̇
λ̇0

−
(1 + cc − ce1 + ce2) λ̇

λ̇0

exp
(
−k λ̇

λ̇0

) for λ̇ > 0

(4.21)

1 It is noteworthy, that different sets of parameters, i.e. {Arel, Brel, cs, cr} or {λ̇0, cc, ce1, ce2}, which de-
scribe the hyperbolic function fv for the specific case fl =fact =1 identically, do not produce identical
descriptions of fv otherwise.
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Diagrams Fig. 4.11 and Fig. 4.12 show the excellent agreement of (4.21) with Günther’s
description, while providing the numerically advantageous steady derivatives. The pro-
posed form may serve as substitution for any of the aforementioned double hyperbolic
functions by applying the conversions from (4.20).

Note, that gact and gl in (4.20) are functions of fact and fl, respectively (see (4.17)).
Concentric parabolic functions that are defined in terms of {λ̇0, cc} may be enhanced by
substituting cc with cc/gl, and λ̇0 with λ̇0 gact/gl in order to account for activation and
stretch dependence in accordance with (4.13).

Activation function

Following either neural or artificial stimulus, the calcium release into the muscle cell and
thereby the active force increase rapidly. For full whole-muscle contractions, the activation
includes also the accumulative activation of the muscles’ various motor units. Despite the
complexity of activation patterns and the underlying processes, the activation-driven force
development can be modeled through successive superposition of comparatively simple ac-
tivation scaling functions fact (4.4), which include the time-dependent transition between
an initial and a targeted activation states. This applies similarly to activation and deacti-
vation dynamics, although they may be parametrized differently.

Van Leeuwen and Kier [1997] suggested a sinusoidal function for zero-to-full activation,
which may be generalized for arbitrary intervals to

fact =



α1 if t < t0

α1 +∆α

(
1
2 −

1
2 cos

(
π(t− t0)
|∆α|ta

))c
if t0 < t < t0+|∆α|ta

α2 else

(4.22)

for an activation switch from α1 to α2 by ∆α. The time t0 denotes the time of the onset of
α2; ta is the time to complete a full activation. To model a different slope for deactivation,
ta could be substituted by an independent parameter td leading to a less steep activation
decay.

Johansson et al. [2000] proposed

fact =
α1 if t < t0

α1 +∆α
(
1− exp(−c(t− t0))

)
if t0 < t

(4.23)
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where c was chosen identically for increasing and decreasing activation. The bracketed
term will never amount to 1 precisely, hence, in order to convert the respective parameters
ta and c between (4.22) and (4.23), an approximation is required. Substituting ∆α by
0.999∆α leads to the relation c=6.908/ta.

There are more sophisticated approaches to muscle activation than the presented, some
of which account for very specific metabolic effects. But the more detailed the descriptions
become, the less adequate they appear within the framework of a rheological model and
the macro-scale perspective in this work. A progression to further accurateness leads to
the so-called biophysical models that are discussed briefly in the next section.

4.2.2 Biophysical models

Along with his cross-bridge hypothesis, Huxley [1957] presented a mathematical model
for the cross-bridge formation. Assuming rate parameter functions f(x) for attach-
ment/bonding, and g(x) for detachment/unbonding of the active interacting sites on thick
and thin filaments, the time rate of the proportion of the attached cross-bridges n(x, t)
was derived.

dn
dt = (1− n)f(x)− n g(x) (4.24)

See Fig. 4.13 for an illustration. With a cross-bridge force of F =kx and introducing the
sliding velocity v(t) via its integral relation to x(t), Huxley was able to match Hill’s force-
velocity observations in the shortening range. In the eccentric range, the theory matched
the data by Katz [1939] only qualitatively, and the force predictions due to rapid length
changes were poor.

An enhancement to the model was provided in [Huxley and Simmons 1971] by the
introduction of three distinct stable attachment states. A transition between those states,
not necessarily corresponding to a relative displacement of the filaments, led to a more
realistic behavior at high strain rates.

Far more sophisticated biophysical models of sarcomere contraction have been proposed
since then. As molecular kinematics became observable with astonishing resolution, models
of cross-bridge kinetics became very detailed [Holmes and Geeves 2000, Arakelian et al.
2015]. In addition to the larger number of identified attachment states, variables were
introduced which govern, e.g., Ca2+ transients and diffusion [Shames et al. 1996, Wexler
et al. 1997] and the ATP hydrolysis cycle [Ferenczi et al. 2005].
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Figure 4.13: Huxley’s original model [Huxley 1957], and the attachment (f) and detachment (g) rate
functions for a stimulated cross-bridge.

These models tend to agree exceptionally well with the data they are compared to.
However, a general and significant disadvantage of all biophysical models is their extremely
expensive computational basis. Even Huxley’s two-state model appears as inappropriate
for whole muscle simulations. Zahalak and Ma [1990] introduced the Distribution-Moment
model, an integral, probabilistic approach to (4.24), providing similar solutions on the
macroscopic scale more efficiently. Nonetheless, it is far more expensive than comparable
rheological models, and its use is advantageous only when the link to metabolic processes
and cross-bridge behavior are of interest.

As that is not the case in this work, biophysical models are not considered further.

4.3 History of three-dimensional muscle models

The earliest three-dimensional models of biological soft tissues dealt with ligaments, ten-
dons and skin. Comparatively late, in a previous edition of [Fung 1993], the author ex-
tended the idea of transverse isotropy to muscle, suggesting an exponential, isotropic strain-
energy function for the passive behavior and an unspecified time- and Ca2+-dependent func-
tion to factor in the fiber properties. Following this concept, Humphrey and Yin [1987]
developed a cardiac muscle model considering different fiber types, but not activation dy-
namics. This was included by Hunter and Smaill [1988] who distinguished between full
and non-activation. Bovendeerd [1990] presented a sophisticated model of the left ventricle
during a cardiac cycle, with sarcomere geometry and certain timing parameters as input,
and using CE- and SE-length as internal variables. The constitutive description is specific
to the ventricle structure, and the activation pattern is not suitable for generalization ei-
ther. As in Hunter and Smaill’s case, the working range of the sarcomeres was limited to
the ascending limb and plateau of the force-length curve, typical for cardiac muscle. Weiss
et al. [1996] developed an extended Mooney-Rivlin description for transversely isotropic
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biotissues which was implemented into the finite element code NIKE3D (Lawrence Liv-
ermore National Laboratory) and has been referenced by some of the following authors.
Maurel [1998] proposed a combination of Humphrey and Yin’s and Zajac’s models for
the CHARM toolkit (EU ESPRIT Project), which to some extent has been realized by
Martins et al. [1998]. However, the emphasis of those works were visualization and three-
dimensional geometry generation for an upper torso based on the Visible Human Data Set
(U.S. National Library of Medicine). Kojic et al. [1998] published another utilization of the
two-element Hill-type approach in 3D without detailing his (compressible) passive consti-
tutive model. The first to ever utilize a Distribution-Moment model to describe the active
properties of muscle in a 3D context were Gielen [1998] and, based on that work, Maenhout
[2002]. Their models incorporated a simple mechanism of Ca2+-release and -uptake for the
activation process. Probably due to performance issues, the presented examples were lim-
ited to planar, quasi-2D slices. Investigating inertia effects during contraction, Johansson
et al. [2000] and Meier and Blickhan [2000] implemented a muscle model into ANSYS,
including arbitrary activation levels of Hill-type fibers embedded in an isotropic Mooney-
Rivlin material. The stresses were scaled through Gordon’s force-length relationship and
an exponential function for the activation process. Oomens et al. [2003] pursued the work
of Gielen, utilizing an enhanced description of the Ca2+-dynamics and an isotropic Neo-
Hookean passive behavior. In an attempt to research compression induced muscle damage,
Breuls [2003] presented a multilevel model. Since his main concern was prolonged loading
in immobilized patients though, neither activation nor contraction dynamics were taken
into account. In [Teran et al. 2005], an approach to derive B-spline fiber representations
from the Visible Human Data Set was presented, and a follow-up article by Blemker et al.
[2005] included a muscle model based on the one of Weiss in NIKE3D. It comprises sar-
comere length-dependence and on/off activation. Tang et al. [2007] enhanced the model of
Kojic et al. to incorporate fatigue effects. In a straightforward approach to utilize estab-
lished 1D muscle implementations in a 3D context, Hedenstierna et al. [2008] investigated
the limits of combined solid/truss models. Lu et al. [2010] implemented a basic visco-
elastic anisotropic material law for muscle in LS-DYNA, and for detailed studies on how
the electro-chemical principles on sarcomere-level comply with phenomenological findings,
chemo-electro-mechanical models as in [Heidlauf and Röhrle 2014] were developed. Most
recently, Spyrou et al. [2017] proposed a two-scale approach with a high-resolution differ-
entiation between muscle fibers and extracellular matrix on the fine scale, and a deduced
representative volume element for both on the coarser level.
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4.4 Proposed modeling approach

The previous section illustrates the variety of muscle models that were utilized in 3D
simulations of skeletal muscle. Most of the simulations were either adapted to a very
specific environment and not generally applicable, or limited by a lack of truly three-
dimensional reference data. Even with exclusive regard to passive muscle behavior, very
few data were published that are suitable for validation purposes, and, accordingly, there
are very few validated material models.

The publication of Weichert et al. [2011] stands out in that regard, and the proposed
and tested material description therein - which also opens for anisotropic behavior in the
non-excited muscle - serves as a base for the description of passive muscle behavior in
this work. Selected other material models that have often been utilized for the passive
description of muscle were implemented during the course of this work as well, and will be
addressed below.

The conventional additive superposition of active and passive contributions to the mus-
cle’s behavior will be maintained, as well as the consideration of active behavior in fiber
direction only. While the latter constitutes a limitation to the model, no publications could
be found which indicate a benefit from the consideration of direct activation effects in more
than one dimension.

The fundamentals for the modeling of both, active and passive behavior, were elabo-
rated in section 4.2 and section 2.3, respectively. Section 2.3.6 specifically described how the
muscle fiber’s one-dimensional constitutive laws are incorporated into a three-dimensional
framework. This section only presents the selected specific realizations of those approaches.

4.4.1 Proposed passive constitutive equations

During the course of this work, several isotropic Rivlin-type materials were implemented in
order to comply with and reproduce findings of previous publications. Rivlin’s generalized
material law is defined as

Wdev(Î1, Î2) =
∑
p,q

αpq(Î1 − 3)p(Î2 − 3)q (4.25)

which only describes the deviatoric share of the work equation. Neo-Hooke (α10 6= 0),
Mooney-Rivlin (α10 6=0, α01 6=0), and Yeoh (α10 6=0, α20 6=0, α30 6=0) material formulations
can be derived from (4.25). These three models are popular in the simulation of rubber-like
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materials, and common in the simulation of biotissue. In the aforementioned order, they
read

W = c1(Î1 − 3) +Wvol (4.26)
W = c1(Î1 − 3) + c2(Î2 − 3) +Wvol (4.27)
W = c1(Î1 − 3) + c2(Î1 − 3)2 + c3(Î1 − 3)3 +Wvol. (4.28)

The above constitutive descriptions are confined to isotropic behavior. For this work’s
model and the simulations conducted here (see chapter 5), the consideration of the
anisotropy of the passive muscle was considered crucial. The chosen anisotropic strain-
energy function

W = µ

4α(exp
[
α
(
w0

3 Ĩ1 +wpĨ4−1
)]
−1)+ µ

4β (exp
[
β
(
w0

3 Ĩ2 +wpĨ5−1
)]
−1)+Wvol (4.29)

is based on [Ehret et al. 2011], and has been verified and adapted to passive muscle prop-
erties by Weichert et al. [2011]. Weichert et al. investigated cubic samples of coney muscle
during compression tests, with fiber orientations at 0°, 45°, and 90° towards the compres-
sion direction. Superficial deformation and force were monitored closely, and the material
parameters were identified through (a) adaptation to an idealized homogeneous deforma-
tion state, and (b) adaptive FEM computations. The two identified parameter sets are

a) α=8.5224, β=6.875 · 10−4, µ=1518.7Pa, w0 =0.824 (4.30)
b) α=7.54, β=1.0 · 10−3, µ=2226.0Pa, w0 =0.762 (4.31)

with wp = 1−w0. See Fig. 4.15 for a depiction. The latter set is chosen as starting point
for the simulations and subsequent optimization in section 5.1.

The work due to volumetric deformationWvol is set to 1
2 κ(J−1)2 across all material laws

in the course of this work, with κ denoting the compression modulus, and the dilatation J
as defined in equation (2.5)1. There are various other approaches, but Fig. 4.14 illustrates
their conformity in the range of small dilatation and thus in the present context.

1 Dilatation J = I
1
2
3 = Î3 = Ĩ

1
2
3 . Refer to section 2.3.4 ff. for the invariants utilized above, and for the

derivation of stress functions and material tensors from the above strain-energy functions.
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Figure 4.14: Comparison of different approaches for Wvol. Function and derivative progression.

4.4.2 Proposed active constitutive equations

The modeling of active stress is based on the scaled approach described in section 4.2.1.2
for the contractile element.

PCE = fvfactflP
opt
0 (4.32)

Several of the there presented scaling functions were implemented, but for the subsequent
simulations, the newly proposed functions (4.11) and (4.21) along with (4.23) were selected
to describe fl, fv, and fact, respectively.

4.4.3 Complementary: aponeurosis constitutive equations

Naturally, when considering muscle behavior, the respective aponeuroses may need to be
considered as well. This is the case for one of the subsequent model applications. Thus a
suitable constitutive description was derived and is listed here.

Also aponeuroses display strong anisotropy, with higher stiffness and exponential stress-
strain relation in fiber direction. They undergo smaller strains than muscle fibers during
active or passive muscle contraction. For the active case, maximum stretch values between
5% and 10% were published (Scott and Loeb [1995], Monti et al. [2003], Azizi and Roberts
[2009], Siebert et al. [2015]). It is therefore not necessary to utilize a constitutive description
that covers the nonlinearities which occur beyond that range.

The chosen material model for aponeuroses is therefore a straightforward combination
of an isotropic Neo-Hookean law (4.26) with a fiber stress description that was fitted to
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the data of Pavan et al. [2011]:

σfib = a(λ− 1)2 + b(λ2 − 1)2 for λ ≥ 1 (4.33)

with a = 2153.5MPa, b = −357.9MPa, c1 = 2.08MPa, κ = 5.55MPa. For infinitesimal
strains, the latter two values correspond to a linear elastic law with Young’s modulus of
10MPa and a Poisson ratio of 0.2. There are few data [Cutts et al. 1991] to support a choice
for lateral aponeurosis properties, but deviations are negligible as the stiffness perpendic-
ular to the fiber direction is too small to have a significant effect on muscle deformation.
This is evident from the literature and became also apparent from the computations in
this work.

4.5 Validation example: Squid tentacle strike

4.5.1 Introduction

While the term ‘skeletal muscle’ points clearly to the muscle’s specific purpose of comple-
menting a skeletal system, there are instances of identical muscles acting independently
of any mobile skeletal base. They are referred to as muscular hydrostats. Almost always,
these muscles are subject to complex activation patterns and therefore unsuitable for model
validation purposes. However, some straightforward, maximum activation contractions oc-
cur with the objective of prey capture. This was verified by Van Leeuwen et al. [2000] who
compared snatch mechanisms of squid tentacles, frog tongues, and chameleon tongues.
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a)

b)

Figure 4.17: Loligo pealei. a) specimen with extended tentacles [NOAA Central Library] b) schematic
diagram of tentacle [Kier 2016]: AN axial nerve cord, CM circular muscle, HM helical muscle, LM longi-
tudinal muscle, SLM superficial longitudinal muscle, TM transverse muscle.

The former is described in detail in [Kier and Van Leeuwen 1997] and shall be reproduced
subsequently to illustrate the required steps for such a simulation, and to verify the current
implementation.

Kier and Van Leeuwen monitored tentacle strikes of Loligo pealei, a squid species of
about 30cm length, with eight arms and two tentacles (see Fig. 4.17). The tentacle consists
of two functional units: The muscular stalk which elongates rapidly when striking, and the
terminal club which is equipped with suckers to grasp the prey. The extensor muscles are
oriented transversely within the stalk. Their contraction translates into longitudinal stretch
and drives the club forward. The club itself does not deform significantly until contact
with the prey is established. A minor fraction of the stalk is occupied by longitudinal,
circumferential and spiral muscle fibers, which remain passive during the snatch phase.

Van Leeuwen and Kier [1997] suggested that the extraordinary rapidity of the strike is
the result of optimized, nonuniform sarcomere lengths in the extensor muscles along the
tentacle stalk. They developed a 1D disc model to reproduce the experimental observa-
tions, and to determine the actual sarcomere lengths computationally. The contraction
dynamics was broken down to the level of myosin head action in order to derive adjusted
phenomenological descriptions similar to Fig. 4.3 and Fig. 4.7. Based on an extensive set of
known and estimated parameters, Kier and Van Leeuwen performed an optimization of few
variables with respect to maximum terminal club velocity (see lower section of Tab. 4.1).
This approach led to results that agree very well with their actual measurements. In this
chapter, and based on the same set of muscle parameters, they are reproduced by means
of this work’s 3D model.
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symbol definition value unit

tentacle properties

ls0 initial stalk length 53.143 mm
lc0 initial club length 39.857 mm
r0 initial stalk radius 3.7 mm
% mass density 1050 kg m−3

Acl0/Ac0 fraction of longitudinal muscle in stalk cross-section 79.86 -
η fraction of extensor muscles in stalk surface cross-section 0.7 -
α relative surface mass increase to account for water inertia 0.08 -

reference muscle properties

lmyo,ref optimum reference thick (myosin) filament length 1.58 µm
lact,ref optimum reference thin (actin) filament length 2.24 µm
lsarc0,ref optimum reference sarcomere length 2.37 µm
lbz length of bare zone on thick filament 0.14 µm
lz width of z-disc 0.06 µm
λ̇min,ref minimum unloaded reference stretch rate −17 s−1

σmax,ref maximum isometric reference stress 280 kPa
ta time delay between initial and full activation 40 ms

optimization results

lmyo,1 optimum thick filament length at stalk base (independent) 0.9707 µm
lmyo,50 optimum thick filament length at stalk end (independent) 0.4997 µm
lact,1 optimum thin filament length at stalk base 1.2099 µm
lact,50 optimum thin filament length at stalk end 0.5976 µm
lsarc0,1 optimum sarcomere length at stalk base 1.3399 µm
lsarc0,50 optimum sarcomere length at stalk end 0.7276 µm
λ̇min,1 minimum unloaded stretch rate at stalk base −30.07 s−1

λ̇min,50 minimum unloaded stretch rate at stalk end −55.37 s−1

σmax,1 maximum isometric stress at stalk base 161.53 kPa
σmax,50 maximum isometric stress at stalk end 69.94 kPa

Table 4.1: Model parameters utilized by Kier and Van Leeuwen [1997].

4.5.2 Model derivation

4.5.2.1 Reference model

The model of Kier and Van Leeuwen builds on a geometrical coupling of strictly one-
dimensional descriptions of transverse contraction dynamics and passive longitudinal elas-
ticity, thereby omitting the utilization of a three-dimensional material law. Figure 4.18
visualizes their modeling approach. There, the tentacle consists of one rigid terminal club,
and 50 stalk disc elements with two initially independent variables each: Radius ri and
width bi. By defining the disc’s volume Vi = π bi r

2
i to be constant, the degree of freedom

is reduced to just one per element. This coupling condition postulates perfect incompress-
ibility. Therefore, all kinematic variables can be expressed in terms of the longitudinal
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disc element i
ri

bi

stalk: 50 disc elements club: rigid

Figure 4.18: Black: illustration of the segmented tentacle model of Kier and Van Leeuwen [1997]. Green:
FE model cross-section.

displacements of the disc interfaces. With the resultant linear equation system, Kier and
Van Leeuwen followed an explicit time integration scheme to model the tentacle strike.

Fortunately, and in contrast to most 1D studies on skeletal muscle, Kier and
Van Leeuwen also provided cross-sectional measures in their publications, which are es-
sential for the 3D simulation of hydrostats. Hence, 1D stresses rather than just forces can
be referred to. The interrelation is Pl(λl)=f(λl)/A, with Pl the longitudinal component of
the nominal stress tensor P, and f the force acting in longitudinal direction. λ denotes the
stretch and A the undeformed cross-sectional area. Indices l and t mark longitudinal and
transversal reference, respectively. The Cauchy stress amounts to σl(λl) =λl Pl(λl). This
relation is strictly valid only for incompressible continua, but for near-incompressibility the
error is small of higher order, and thus negligible.

4.5.2.2 Finite element model and computation

The mesh used here for the finite element simulation is of similar simplicity as the reference
model. Utilizing the latter’s symmetries, only a quarter of the tentacle cross-section was
modeled (see fig. 4.18). The elementation in longitudinal direction was adopted from the
reference. The previously introduced F-bar elements were used, and the central difference
scheme (see section 3.3.2) was applied for time integration.

4.5.2.3 Passive material adaptation

A recurring task during 3D modeling of muscle tissue is the transcription of constitutive
laws into three dimensions. It is common practice to utilize 1D data for calibration and
verification of 3D models; first and foremost due to the intricacy of an experimental deter-
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Figure 4.19: Effect of tension (l) and lateral compression (r) on dilatation. Grey reference shape resembles
perfectly isovolumetric deformation with identical longitudinal strain.

mination of conclusive 3D data, but also due to the wealth and quality of readily available
1D data. Data from hydrostats are particularly expedient for verifications, as shown by
Meier and Blickhan [2000], Liang et al. [2006], and Tang et al. [2009]. Measurements on
these structures reveal more about their passive properties than comparable data of skele-
tal muscles, in which fibers are roughly aligned with the external loads. But this special
quality also requires an adaptation approach that is distinct from the common postulation
of force-equivalence in fiber direction [Winkel and Schleichardt 2011].

In the present context, an equivalent three-dimensional constitutive description of the
passive material needs to be obtained. Equation (4.34) defines the deformation state which
corresponds to the 1D longitudinal stretch λl, and accounts for the dilatation that occurs
in the 3D simulation.

F(λl) = F(λl, J(λl)) =


λl 0 0
0 (J/λl)

1
2 0

0 0 (J/λl)
1
2

 (4.34)

The relation between stretch and dilatation depends on the material model. Once an
appropriate law is determined - here the Yeoh law - specific material parameters can be
adapted. The governing equation for the adaptation is usually based on a force-equivalent
approach (4.35), equating the force-stretch relation of 1D and 3D models in the line of
action.

σ
(
F(λl)

)
=


σ1D(λl) 0 0

0 0 0
0 0 0

 (4.35)

This approach is reasonable when fiber direction and line of action coincide, e.g. in regular
skeletal muscles. However, a deviating equivalent-pressure approach was developed for the
present example. It reproduces the stress state as it typically occurs in hydrostats, where
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elongation is driven by transversal contraction (see Fig. 4.19).
For this, the geometrically enforced incompressibility is reconsidered as an incompress-

ible hydrostatic material, so the transversal compression σt required to elicit the same
longitudinal stretch as the longitudinal stress σ1D in (4.35) amounts to

σt = −σ1D. (4.36)

The passive material law is now supposed to resolve the incompressibility constraint as
well as to account for the predefined longitudinal passive stress. This can be done by
superposing the latter σ1D(λl) with the hydrostatic stress state; i.e. σt = σl. For static
deformation states, equilibrium requires both longitudinal stress components to add up to
zero, i.e. σl + σ1D = 0 in accordance with (4.36). Therefore only the transversal stress
components σt =σ1D contribute to the combined pressure.

peq(λl) = −1
3 tr(σ) = 2

3 σ1D(λl) (4.37)

The proposed equivalent-pressure approach aims at reproducing that pressure in a 3D
framework. The corresponding stress state is

σ
(
F(λl)

)
=


0 0 0
0 −3

2 peq(λl) 0
0 0 −3

2 peq(λl)

 (4.38)

thus accounting for the transverse contraction as the pressure-generating mechanism.
In [Kier and Van Leeuwen 1997], the authors utilized the following exponential descrip-

tion for the passive stress-stretch function:

P1D(λl) = 133.11kPa(λl − 1)2.26 (4.39)

This corresponds well with the Yeoh type material description mentioned in section 4.4.1.
Thus, equation (4.39) was evaluated at λl =1.2/1.45/1.7731 in order to provide the required
support points for the Yeoh parameter deduction. The parameters were then obtained by
means of a least square curve fitting procedure, based on (4.28), (4.34) and either (4.35)
or (4.38). The former led to the Yeoh parameter set in accordance with the traditional
equivalent-force approach (4.40), the latter to the parameter set in accordance with the

1 The value 1.773 refers to the application limit of (4.39) in the cited paper.
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Figure 4.20: Comparison of original data from [Kier and Van Leeuwen 1997] with the deduced 3D
material’s passive behavior. Longitudinal stretch vs. tension stress Pl (left) and vs. lateral pressure p
(right). Depiction of equivalent-force (4.35) and equivalent-pressure modeling approach (4.38), with the
respective relative deviation error e.

equivalent-pressure approach (4.41).

a10 = 1140.3Pa a20 = 11014.5Pa a30 = 796.6Pa (4.40)
a10 = 1141.3Pa a20 = 11013.6Pa a30 = 716.1Pa (4.41)

The bulk modulus κ was presumed to 2·107 Pa.
The resultant passive model behavior is shown in Fig. 4.20. As expected, the force-

equivalent approach provides a material description which mimics the original’s 1D be-
havior well for longitudinal tension. In contrast, the material derived from the pressure-
equivalent approach coincides very well with the original material under transversal con-
traction or compression. The error plots show also the equivalent-pressure data to be closer
to the original data under tension, than the equivalent-force data are under compression.
This observation is, however, specific to the application and not valid in general.

4.5.2.4 Active material adaptation

Sarcomere characteristics in the tentacle vary from stalk base to end. As already mentioned
in [Kier and Van Leeuwen 1997], the stalk was divided into 50 elements in order to reflect
this in the model’s active properties. The proximal lmyo,1 and the distal lmyo,50 were handled
as independent variables in Kier and Van Leeuwen’s optimization, presuming a linear
evolution along the stalk length. lact,i, lsarc0,i, λ̇min,i and σmax,i were expressed by lmyo,i

and a set of reference muscle parameters (see Tab. 4.1). For the present 3D model, the
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factor parameters

fact ∆α = 1, ta = 40ms, c = 15

fv cc = 4, ce1 = 55.232, ce2 = 30.24

fl λa = 0.57, λb = 0.769,
λc = 1− 0.07 µm l−1

sarc0,

λd = 1 + 0.07 µm l−1
sarc0,

λe = 1.769− 0.13 µm l−1
sarc0,

fl(λb) = 1− lsarc0−0.619 µm
4.902lsarc0−1.275 µm

Table 4.2: Parameters for scaling factors of
active stress.
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Figure 4.21: Tentacle strike comparison.

variables are transformed to follow the scaling approach from 4.2.1: fact according to (4.22),
fv according to (4.19), and fl according to Fig. 4.3. The resultant active parameters are
listed in Tab. 4.2.

4.5.2.5 Results and evaluation

The validity of the derived material formulation and the model is verified in a 3D simulation
of the tentacle strike. Taking advantage of its rotational symmetry, only a quarter of the
stalk was modeled by F-bar elements. The element size was chosen analogously to the
original model; mass distribution and inertial effects of the surrounding water were fully
reproduced from Kier and Van Leeuwen in order to confine the comparison to material
effects.

Results from the 3D simulation show excellent agreement with the original 1D model
data (see Fig. 4.21). The deviation from the experimental data beyond the point of max-
imum extension occurs in both simulations. Kier and Van Leeuwen attributed this to
partial activation of the longitudinal contractor muscles once the tentacle has reached its
maximum length.

The example illustrates the general validity of the present model, and how the pressure-
equivalent approach allows for an expedient adaptation of the passive hydrostat material
formulation to the one-dimensional reference. However, in this and in the original tentacle
strike simulation occur minor deviations between 1D and 3D results. These may be at-
tributed to a fundamental flaw immanent to any such adaptation. While in 1D the stress
state within the tissue matrix depends on λl only, it depends on the nine components of the
deformation gradient in 3D. The exploitation of symmetries may reduce the dependence
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to only transversal and longitudinal stretch like in the current case. But the ratio of both
is not determined uniquely by the pressure.

Equation (4.38) describes just one prominent stress state for which a set of adequate
material parameters can be derived by means of the equivalent-pressure hypothesis. It is
convenient to use, since it matches the pure contraction situation at static equilibrium,
i.e. with the effective longitudinal stress σl + σ1D = 0. But in the context of accelerated
motion, this sum does not equal zero, and the ratio between σl and σt is not constant.
Therefore, neither the formula to derive 3D material parameters could remain constant, if
the behavior of a 1D model was to be reproduced perfectly.

This ambiguity is caused by the deficiency in information that results directly from
the reduction of the real structure to a 1D data set. Every approach to develop a 3D
model from this reduced data set requires the selection of a reasonable substitute based on
experience or case-specific complementary information.
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Chapter 5

Model application

A wide range of applications exists for the muscle model which was introduced in the
previous chapter. Utilizing verified material parameters, the example of a squid tentacle
stroke was provided there in order to validate the model and its implementation.

In this chapter, novel application samples are investigated by means of the proposed
model in order to document its usefulness and versatility.

5.1 Investigations on M. soleus of rattus norvegicus

5.1.1 Introduction

The modeling of skeletal muscle as proposed in this work requires detailed information on
the particular architecture of the muscle concerned. A model based on just a rough descrip-
tion of the external muscle geometry and an averaged pennation angle would not take full
advantage of this approach’s capabilities. Localized pennation data, fiber geometries and
information on the muscle-tendon junction, but also increased precision of parameters like
maximum fiber twitch velocity and isometric stress support the accuracy and predictive
quality of the model.

To date, very few data sets provide the complete fiber mapping of a muscle, and almost
none of them are publicly accessible. However, research in that area is lively and techniques
supporting the automated capture of this kind of data are ever-evolving, especially those
which follow noninvasive approaches [Lansdown et al. 2007, Sinha et al. 2011, Noorkoiv
et al. 2010, Oudeman et al. 2016]. These noninvasive methods have distinct limitations
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regarding scanning time and quality of border identification between different tissue types.
Also, they do not accomplish the level of spatial resolution that invasive or combined
methods may. Usually, the latter require less expensive technical equipment, and are
particularly appropriate when the objective comprises the determination of parameters
which demand dissective measures anyway.

One such invasive approach was presented by Stark [2008], Stark and Schilling [2010],
who developed the techniques and a reliable procedure to simultaneously acquire fiber
course data and contractile force data of single muscles in rattus norvegicus. Mr. Stark
kindly authorized and supported the use of their data within the bounds of this work.

Stark [2008] investigated the fiber mapping of the soleus muscle of five laboratory rats
(rattus norvegicus, Wistar strain). From each specimen, left and right soleus muscles were
extracted, fixed in a clamping device and shock frozen - one in relaxed state and the re-
spective other in the state of isometric tetanic contraction. The corresponding contraction
force was recorded. Subsequently, histological sections were prepared to acquire data on
the muscle architecture and further parameters.

Although the body weight varied significantly between the rats, left and right muscles
from the same animal showed excellent conformity. Taking symmetry into regard, this
justifies the consideration of either as the relaxed, respectively stimulated, representation
of the other.

The results from one pair of soleus muscles (from animal #7 in Stark [2008]), is used
as reference in the subsequent analyses. Starting from the relaxed state and based on the
muscle architecture from this source, the tetanic isometric contraction will be simulated in
order to derive the modified architectural representation of the stimulated state.

5.1.2 Data base

Stark [2008] captured data from the m. triceps surae of twelve laboratory rats. Both
components of the m. triceps surae - i.e. m. soleus and m. gastrocnemius (Fig. 5.1) - were
considered separately. The most complete data sets were derived from the pair of soleus
muscles from male rat #7 (denoted #3 in [Stark and Schilling 2010]), which will therefore
serve as reference in this work.

The muscles were taken from the anesthetized animal and fixated in situ at relaxed
length, or at contracted length in case of those muscles which were later to be stimulated.
The muscles were put in a clamping device, which also allowed for the recording of contrac-
tion forces. The left soleus of animal #7 was supramaximally stimulated via the clamps

Benjamin Winkel PhD Thesis



5.1. Investigations on M. soleus of rattus norvegicus 89

m. soleus

m. gastrocnemius, caput mediale

m. gastrocnemius, caput laterale

(m. flexor digitorum pedis superficialis)

Figure 5.1: M. triceps surae (red) of rattus norvegicus, picture from [Stark 2008].

(DC 10V, 120Hz, 0.2ms). The right soleus of animal #7 remained relaxed. Either muscle
was then shock-frozen in ethanol at -70◦C. This step proved to be time critical, since for
an ideal result the stimulation had to be maintained throughout the freezing process. A
premature relaxation could lead to disturbed fiber paths within the initially contracted
muscle. This effect limits the applicability of the overall procedure to muscles with small
cross-sections whenever contraction is of concern.

Subsequently, longitudinal serial sections of the frozen muscles were prepared by micro-
tome, each with a thickness of 12µm. Every fourth section was kept for further histological
processing. An immediate fixation in formalin and subsequent treatment with a staining
agent led to distinctive dyeing of connective tissue and muscle fibers.

The sections were scanned as unassociated pictures. Post-processing included align-
ment, image enhancement, artifact removal, and fiber tracing. The latter was based on the
evaluation of the fibers’ cutting angles and the validity of traces between adjacent sections.
The approach eventually led to a volume representation of the muscle geometry, vector
field data of fiber orientations, and sets of validated fiber traces. The final coordinate
systems defined the x-axis as the muscle’s line of action from proximal to distal, and the
z-axis in the direction of the greatest lateral dimension (approximately corresponding to
the medio-lateral axis).
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Figure 5.2: Visualization of a) vertex cloud data set and b) fiber trace data set.

5.1.3 Model derivation

5.1.3.1 Mesh generation

The finite element mesh for this work was derived from the 100µm spaced vertex cloud
which represented the muscle volume. This vertex cloud was provided by Stark, based on
the aligned microtome sections. It displays clear derangements and fringes at the border
due to the mechanical impact of the microtome sectioning (see Fig. 5.3).

For this work, a cross-sectional area (CSA)-preserving smoothing algorithm was utilized
to remove these faults from representative transversal cross-sections. These were then
connected to obtain a volume representation of the muscle, which was subsequently meshed
with hexaeder elements. These three steps to convert the vertex cloud information into
finite element representation were performed in CATIA®.

The soleus volume representations from Stark [2008] could not be used for the FE model,
as they were generated with the sole objective of visualization, and CSA preservation was
not ensured.

The digitized geometries comprise significant parts of the Achilles tendon (tendo calca-
neus) which was disregarded here. The junction between tendon and distal tendon sheet,
which also marks the distal limit of the contractile muscle tissue, was determined by a
strong shift in the gradient of the CSA along the longitudinal muscle axis (see Fig. 5.4).
The CSA at the identified distal location coincides well with the CSA at the proximal
insertion of the soleus; which is to be expected as both are structured similarly and need
to transfer the same forces.

Aponeuroses were modeled by membrane elements of varying thickness. (The particular
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Figure 5.3: Vertex cloud cross-section (black),
smoothed border (green), microtone distortions
(red), and deduced mesh cross-section (blue).
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Figure 5.4: Comparison of model CSA and number
of original vertexes per cross-section (relaxed).

elements for this purpose were built by manipulating the four-noded SLang shell element
[Bucher 2013] to not possess any bending stiffness.) They were implemented as surface
elements to the previously described hexaeder mesh. Their size and shape was determined
by the spread of fiber trace endpoints. The fiber tracing algorithm from Stark [2008]
omitted invalid or disturbed data and lead almost exclusively to fiber traces which span
from one aponeurosis to the other. Their endpoints provide therefore a valid base for the
determination of the aponeuroses’ shape.

The aponeuroses’ thickness could not be deduced from the original data sets. Instead,
the thickness was derived from the overall CSA and it’s gradient, the local inclination
of aponeurosis with respect to the longitudinal muscle axis, the local alignment angle
between aponeuroses and attached fibers, and the premise of a constant weighting factor
γ for aponeurosis cross-sectional area (CSAa) with respect to muscle cross-sectional area
(CSAm).

The details are as follows: In the relaxed state, proximal and distal aponeurosis do
not overlap in longitudinal direction, and for the biggest cross-section applies max CSA=
max CSAm. From

CSA(x) = CSAm(x) + CSAa(x) (5.1)
max CSA = CSAm(x) + γ · CSAa(x) (5.2)
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distal
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Figure 5.5: FE model with aponeuroses thickness [m].

follows

CSAa(x) = 1
γ − 1

(
max CSA− CSA(x)

)
. (5.3)

Based on Cutts et al. [1991], γ is set to 31.0. CSAa(x) describes the complete aponeurosis’
area within a specific soleus cross-section determined by x. The actual element thickness
is then derived by weighting its share of the aponeurosis circumference at that section with
the integrated effective force from muscle fibers which are directly or indirectly attached
to this part of the aponeurosis. The latter contributes the dependance on the aponeurosis-
fiber alignment angles. This approach may be rephrased as the simple assumption, that
the aponeurosis thickness is proportional to its loads.

A depiction of the resultant aponeuroses element thickness is provided in Fig. 5.5.

5.1.3.2 Fiber mapping

Along with [Stark and Schilling 2010], the authors published several data files which may
be downloaded from the journal’s website. They contain vertex coordinates along with the
respective fiber orientation vectors for both, contracted and relaxed muscles of animal #7.

Based on these data sets, the fiber orientation was interpolated at every Gauss point
of the FE model. The response surface functionality of SLang (smoothing factor 2, see
Fig. 5.6 for illustration) was utilized to derive the interpolated vector coordinates. For
fiber orientation within the aponeuroses, the interpolated direction vectors were projected
onto the aponeuroses’ planes.

Fig. 5.7 shows the fiber orientations within the aponeuroses and the muscle body, where
each colored line represents the direction for one element’s integration point.
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Figure 5.7: FE model fiber directions in aponeuroses (left) and muscle body (right).

5.1.3.3 Constitutive descriptions

The actual contraction of the soleus samples was predetermined by Stark through the
specific flexion of the rat’s hind limb during sample preparation. This posture corresponded
to the muscle’s optimal length where the maximum force was expected to occur. The muscle
was kept at this length throughout the contraction and freezing process, hence activation
dynamics, length change or contraction velocity did not affect the measurement results.
Accordingly, (4.32) was simplified for the simulation, and the maximum isometric fiber
stress was set to 22N/cm2, in accordance with the measurements of [Stark 2008].

The base strain-energy function (4.29) was used with default parameters (4.31) for
the initial computation. Later, as described in section 5.1.5, parameters were adapted to
specifically fit the soleus data at hand.

The aponeuroses material model was utilized as introduced in section 4.4.3, along with
the parameters provided there.
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5.1.3.4 Boundary conditions

Nodes of both, proximal and distal model surfaces were restrained in longitudinal (x-)
direction. Selected nodes of these surfaces were also restrained in lateral directions (y, z)
to provide positional stability. Beyond this, displacements were not restricted.

5.1.4 Computation

The contracted equilibrium state was derived following a Newton-Raphson approach with
line-search enhancement as described in section 3.3.1. Starting from the relaxed state at
the length imposed by Stark on the contracted muscle, the activation parameter fact was
increased from 0 to 1 in several steps. This supports a robust computation, and is not
related to a physiological activation process.

In the following sections, the resultant, fully activated model state will be compared to
Stark’s actual data from the contracted muscle.

5.1.5 Results, optimization and evaluation

5.1.5.1 Geometry alignment

The simulation is based on geometry data from the relaxed right soleus, and results after
the simulated contraction shall be compared to original data from the left contracted soleus.
It is therefore necessary to mirror one geometry and align it with the other in a first step.

As mentioned before, Stark [2008] defined local coordinate systems such that the max-
imum lateral dimension would occur in z-direction, roughly aligned with the physiological
medio-lateral orientation. Hence, the mirroring is performed with respect to the x-y-plane.

Hovever, the alignment utilized for this work does not follow the original approach.
While the cross-section’s major and minor dimensions are clearly distinct from each other
(see Fig. 5.3), the identification of the actual maximum could be strongly impaired by
minor flaws in the geometric data (e.g., distortions in the vertex cloud as in Fig. 5.3), or
the FE mesh data (e.g., the position of surface nodes). Also, due to the deformation caused
by the contraction itself, the direction of the maximum lateral dimension identified from
the contracted muscle’s geometry is unlikely to coincide with the direction derived from
the relaxed muscle.

Instead, in order to provide a reliable base for the comparison, FE and original geome-
tries are aligned by first aligning their centers of gravity, and a subsequent alignment of
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their principal inertial axes. This approach was applied to the reference data base of the
contracted muscle, and led to a corrective rotation of 5.08◦ around the x-axis, and minor
corrections of 1.28◦ and 1.61◦ around y- and z- axes, respectively.

5.1.5.2 Shape alteration during contraction

Due to volume preservation, the shortening of the soleus is accompanied with a signifi-
cant lateral expansion, resulting in a characteristically altered CSA distribution. Fig. 5.8
compares the actual measurements with simulation results that are based on the initial
parameter set (4.31) of the constitutive description (4.29). This simulation clearly exag-
gerates the mass shift from the proximal end towards the muscle belly.

The discrepancy between computed and measured CSA course calls for an adaptation
of the model. A parametrized modification of either initial geometry, fiber course, or active
stress does not appear meaningful in the present context, whereas the origin of the actual
values of the passive material parameters are not as well-documented. Fig. 5.8 also depicts
simulation results which were derived through optimization of these parameters, and which
agree much better with the measurements.

The goal of matching the computed CSA data as closely as possible with the measured
CSA data was implemented by minimizing the root-mean-square (RMS) of the difference
between both data vectors. The optimization process - utilizing successively evolutionary
algorithms (EA) and adaptive response surface method (ARSM) - was controlled with
optiSLang® [Dynardo GmbH 2015]. The derived parameter set is:

α=35.05, β=1.120, µ=5955.2Pa, w0 =0.9072 (5.4)

The RMS minimization between computed and measured CSA course is a very obvious
choice for an optimization objective in the present context and with the available data.
However, some material parameters may have little impact on the objective in the given
situation. In order to assess the quality of the adapted parameters, the sensitivity of the
objective with respect to these parameters should be considered whenever data fitting is
performed. Here, parameters were independently varied in the range of 80% to 120% with
respect to their values in equation (5.4). The weighting parameter w0 is close to its limit
value of 1.0, hence the variation is performed with respect to the complementary term
1−w0. Results are depicted in Fig. 5.9. Clearly, the variation of the parameter β is of little
significance to the selected optimization objective. This is due to the specific structure
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data from Stark [2008]
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Figure 5.8: Comparison of original and computed
CSA of the contracted soleus, based on Weichert
et al.’s and optimized parameter sets.
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Figure 5.9: Sensitivity of the CSA optimization
objective with respect to individual parameters.
Optimization results (5.4) are used as reference.

of the work equation (4.29) in conjunction with the absence of any lateral loading in the
experiment.

This case illustrates well how reliable material parameters must be derived from a wider,
carefully assembled experimental base, and how different findings may be weighted.

5.1.5.3 Contraction force

Stark also recorded the maximum contraction force of the soleus, right before shock-freezing
the muscle. The major nerve branch was stimulated at 120Hz, and full tetanic contraction
was ensured. The corresponding maximum force amounted to 2.09N. The simulation with
the original material parameters (4.31) led to a contraction force of 1.95N, while a sim-
ulation with the parameters determined in (5.4) led to 1.51N. This confirms the findings
from the previous section, that CSA curve fitting based on the available data is in itself
not sufficient for the reliable identification of material parameters.

Another optimization was conducted with the objective to minimize the deviation from
the measured muscle force and identify the respective material parameters. However, this
objective was shown to be inadequate, as the difference between computed and measured
force amounts to numerically zero for multiple parameter sets within and outside the
parameters’ plausible range of (4.31) and (5.4). The parameters for arbitrary three of
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Figure 5.10: Sensitivity of force optimization ob-
jective with respect to individual parameters. Op-
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(dotted) are used as reference.
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Figure 5.11: Sensitivity of the combined
force/CSA optimization objective with respect to
individual parameters. Optimization results (5.9)
are used as reference.

these optima are listed in (5.5) et seq. for illustration.

α=24.01, β=1.080, µ=1571.8Pa, w0 =0.5547 (5.5)
α=29.45, β=0.8078, µ=1929.2Pa, w0 =0.4247 (5.6)
α=38.48, β=0.7851, µ=1014.4Pa, w0 =0.2095 (5.7)

The corresponding sensitivities are depicted in Fig. 5.10. Other than in the previous
section, the parameter α is of little significance and the parameter β is (locally) significant
to the current force optimization objective, thus indicating that the two objectives may
complement each other well.

5.1.5.4 Combined shape and contraction force optimization

In order to derive a set of parameters which accounts for both, contraction force and CSA
course, a final optimization was performed with respect to a combination of the previous
objectives. They were weighted such that a 1% deviation of the simulated force Fsim from
the measured value Fexp corresponds to a 1% RMS deviation of the computed CSA course
with respect to the RMS value of the measured CSA course in x-direction:

fobj =
∣∣∣∣∣Fsim − Fexp

Fexp

∣∣∣∣∣+
∣∣∣∣∣rms(CSAsim)− rms(CSAexp)

rms(CSAexp)

∣∣∣∣∣ (5.8)
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Figure 5.12: Comparison of averaged pennation
angles of the contracted rat soleus muscle; original
vs. simulated.

α β µ [Pa] w0 equation

CSA optimized, section 5.1.5.2
35.05 1.120 5955.2 0.9072 (5.4)

force optimized, section 5.1.5.3
24.01 1.080 1571.8 0.5547 (5.5)
29.45 0.8078 1929.2 0.4247 (5.6)
38.48 0.7851 1014.4 0.2095 (5.7)

combined objective, section 5.1.5.4
40.55 0.7626 1005.1 0.1786 (5.9)

Table 5.1: Overview over parameter sets for mate-
rial law (4.29) as derived from optimizing the con-
traction simulation with different objectives.

This weighing is somewhat arbitrary. It should ideally be based on accuracy, sensi-
tivity and reliability of the comparison values, i.e. of the measurements. However, this
information is not available at this point.

α=40.55, β=0.7626, µ=1005.1Pa, w0 =0.1786 (5.9)

The combined approach led to the parameter set (5.9). The resultant force complies with
the measured force of 2.09N; the CSA course is depicted in Fig. 5.8 as well. Relative
parameter sensitivities are shown in Fig. 5.11.

5.1.5.5 Fascicle orientation

One further potential means to validate or determine material parameters is the comparison
of the fascicle orientation after contraction. However, comparison between reported data
and computation results based on the parameters of equation (5.9) gave mediocre results
(see Fig. 5.12), and the optimization of material parameters within reasonable bounds did
not lead to a significantly lessened misalignment between the two curves.

Several factors are likely to contribute to this behavior: For the simulation, the proxi-
mal and distal ends of the muscle are modeled plane in the relaxed state, and are presumed
to remain plane during contraction. This approach may be unrealistic, especially in con-
junction with the potentially distorting clamping mechanism of the experiment. Relative
offsets between fibers at both ends may cause the pennation disparity shown in proximal
and distal positions of the graph, and they may impact the pennation in the muscle body.
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Figure 5.13: Contracted soleus. a) aponeurosis strain in fiber directions b) lateral pressure distribution
(in the element planes marked on the left) [Pa].

Pennation may also be affected by inconsistencies in the reference data of Stark [2008],
which stem from the different objectives and various data processing approaches of that
work (e.g., for the contracted geometry, the number of available grid points with directional
information amounts to less than 1/15th of that of the relaxed geometry). And due to
the way the model has been deduced from different data sets (see section 5.1.3), there are
artifacts where fibers are not perfectly aligned with the surface of the 3D representation,
resulting in small non-physiological model areas (see protruding corner in blue circle in
Fig. 5.13).

As the computed pennation angle is much more sensitive to such errors than the afore-
mentioned CSA and contraction force, these issues render the current data unfeasible for
an optimization with respect to fiber orientation.

5.1.6 Summary

Based on an extensive geometric data set of contracted and relaxed rat’s m. soleus by
Stark [2008], a detailed three-dimensional model of that muscle was developed. The model
included detailed descriptions of aponeuroses and muscle fiber geometry, and transversely
isotropic material behavior as deduced in section 4.4. The contraction process was sim-
ulated, starting from the relaxed soleus geometry, and resulting in a fully activated rep-
resentation of that muscle. Material parameters were initially taken from Weichert et al.
[2011], and subsequently optimized for compliance with Stark’s data of the contracted mus-
cle. The utilized optimization objectives comprised the minimization of deviations from
the measured course of cross-sectional area and from the measured contraction force. The
course of averaged pennation data proved to be insufficiently consistent for optimization
purposes.
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Implementing the optimized parameters, and following a corrective alignment based on
the orientation of the principal inertial axes, simulation results and measurements show
good agreement. Muscle pressure and aponeurosis stress distribution are plausible and
well within the physiological range reported from other measurements in comparable con-
traction scenarios. The overall approach to modeling and simulation was validated and is
expected to perform as well in different settings.

Furthermore, the investigation clearly illustrates that more physiological samples and
complementing simulations are required to determine an optimization objective which may
be used to not only reliably derive material properties, but, subsequently, also to identify
experimental or modeling shortcomings, to evolve material models, and to ultimately in-
crease simulation quality.

5.2 Muscle activation as means of injury prevention

5.2.1 Introduction

In anticipation of impact forces or sudden accelerations, conditioned defensive reflexes
do often include muscle tensioning which involves both, agonist and respective antagonist
muscles. The objective of such contractions is clearly not coordinated movement, but rather
the utilization of an increased stiffness of the muscles, and thus the potential protection they
may provide. A quantification of such effects is currently lacking, and areas of advantageous
application have only insufficiently been identified.

In light of the inadequacy of natural reflex conditioning with respect to the hazards
of modern technologies and artificial environments, huge efforts are made to keep the
associated risks at a minimum. In fact, safety systems have themselves become a highly
innovative field of research and development.

Passenger cars are an outstanding illustration of this circumstance. A regular modern
car subjects its occupants to velocities that were unforeseeable for the wide public just
hundred years ago. The associated risks are very obvious, but were hardly addressed
during the pioneering years of the automobile. Only with cars becoming less exclusive
and accessible to a significant part of the population, the awareness of these risks grew
on behalf of the manufacturers and regulating authorities. Subsequently, passenger safety
became increasingly important in car design. Occupant protection, along with accident
avoidance, is one major objective in that process. The typical approach is to establish
safety zones around the occupants which must not be penetrated by any items of the car
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interior, and to restrain the occupants from moving out of that zone. Especially the latter
requires in-depth knowledge of occupant kinematics and injury thresholds.

Extensive data mining was and is undertaken to generate a wide statistical base on the
course of accidents, occurrence probabilities, and damage inflicted. Because this informa-
tion was traditionally acquired by policemen or insurance experts, the inclusion of medical
injury assessments in statistically relevant numbers is a rather recent development1. Al-
though the variance in human physiology is acknowledged to have significant influence on
injury mechanisms and severity, only lately the influence of the instantaneous muscle tens-
ing on passenger kinematics has been studied. Here, this approach shall be taken one step
further, and the local effect of muscle tension on the outcome of a potentially damaging
impact will be investigated.

5.2.2 Background

Many studies which relate car crash injury data to passenger parameters evidence the
significance of the latter. Weight, age, gender, BMI (body mass index), height and other
factors do strongly influence injury probability and severity in otherwise identical accident
scenarios. Some correlations may be attributed to physique-specific posture, body weight
distribution or positioning of seat belts, which in turn influence the occupant’s kinematic
during a crash [Dischinger et al. 1995, Tsunetoshi et al. 2006, Kent et al. 2010]. But there
is also a distinct dependence on structural parameters. For example, the comparatively
high risk of fractures and fatalities in the elderly can be attributed directly to diminished
bone mineral density and a loss of skeletal elasticity due to the ossification of cartilage
[Mercier et al. 1999, Zhang et al. 2000, Yoganandan et al. 2007]. Duprey et al. [2008] also
demonstrated a similar, but less pronounced, gender dependence.

These latter relations support the assumption that also factors like body composition
and, in case of skeletal muscles, instantaneous activation will affect injury probability and
severity.

However, while BMI data have been recorded in several occupant injury studies, more
detailed data on body composition were rarely acquired. Given that samples for these kind
of studies cannot be preselected, a great number of individual cases would be necessary to
reliably capture the subtle distinctions of different soft tissue types in injury scenarios, e.g.
slack muscle and adipose tissue. Kent et al. [2010] attempted to identify specific injury

1 Data bases containing injury assessments: CCIS (Co-operative Crash Injury Study - UK), NASS/CDS
(National Automotive Sampling System/Crashworthiness Data System - USA)
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patterns in the obese on the base of sled tests with PMHS (post mortal human subjects),
but were unable to separate the effects of obesity and weight due to their strong correlation.

While these investigations of the relation between body composition and injury sever-
ity in car crashes are difficult due to the lack of sufficient data, an investigation of the
muscle tension effect in humans is practically impossible during potentially harmful crash
situations. One sample instance of this effect was reported in [Tencer et al. 2002]. Femural
fracture due to a rear-end collision was shown to occur more often in the bumping driver’s
right than in the left leg. This type of fracture is commonly caused by insufficiently re-
straining lap belts, resulting in a forward motion of the lower torso and the knee hitting
the dashboard. Ruan et al. [2008] could validate Tencer et al.’s hypothesis, that tension
in the extensors (m. quadriceps femoris) of the right leg due to hard braking generates
longitudinal pressure and a bending moment in the femur, thereby increasing the risk of
fracture.

There are few studies investigating muscle damage due to stationary pressure [Bosboom
et al. 2003, Gefen et al. 2005], but further sources of real-world data or publications regard-
ing the influence of muscle contraction in dynamic impact scenarios with humans could
not be acquired. Several animal studies on the topic are available. E.g., Crisco et al. [1996]
exposed rat gastrocnemius muscle to a blunt lateral impact while either relaxed or fully
tensed, and evaluated the damage to the muscle tissue itself (result: tensed muscle took
less damage). However, as more complex experiments would not yield transferable results
for humans, these investigations are generally restricted to similar fundamental relations.

A reliable modeling and simulation base is essential to assess the effects and potential
benefits of muscle tension, voluntary or imposed, in accident scenarios.

5.2.3 Sample object: Thorax

Beyond the obvious kinematic or postural examples, there are many more scenarios worth
considering when investigating muscle activation as a means of injury prevention. E.g.:

- Selective contraction of limb muscles may counteract potentially harmful bending
stresses in bones caused by external loads (e.g. biceps femoris contraction during the
aforementioned dashboard collision).

- Contraction of torso muscles may help maintaining the blood supply to the brain
under high inferior acceleration forces (comparable to a pilot’s pressure suit).
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- Simultaneous contraction of agonists and antagonists may impose compressive
stresses where otherwise harmful shear stresses would dominate (e.g. the effect of
simultaneous erector spinae and rectus abdominis contraction on the spine under
transversal torso loads).

- Contraction of muscles which cover bones may serve to disperse loads and prevent
local trauma (e.g. semispinales contraction protecting the cervical spine from local
impact loads)

- Contraction of abdominal muscle may help shielding sensitive organs from external
impact loads.

Et cetera. Subsequently, the consequences of anterior thorax muscle activation during an
automobile front-impact are considered, specifically with respect to potential rib fractures
from seatbelt restraints.

In general, rib fractures alone are not regarded as severe injuries in healthy adults, with
an AIS injury rating1 of 1 (single rib fracture) or 2 (two to three fractured ribs). However,
rib fractures can contribute to far more severe thoracic injuries such as lung and heart
laceration. And while the occurrence of rib fractures in automobile crash scenarios does
not necessarily point to more severe organ injuries, the latter are unlikely to occur in the
absence of a rib fracture. (E.g., Thor and Gabler [2008] studied NASS2 data of frontal
crashes and identified AIS2+ lung injuries in 7% of occupants with broken ribs, whereas
rib fractures were diagnosed in 45% of those with AIS2+ lung injury.)

The specific choice of the sample object was also made due to the availability of a thorax
geometry representation at the Institute of Structural Mechanics (ISM) at the Bauhaus
University Weimar, and the thorax research conducted there [Drücker 2002, Bruhin et al.
2005, Schneider 2012].

5.2.4 Model derivation

The thorax model which was developed at the ISM helped assess different thorax closure
techniques subsequent to median sternotomy [Drücker 2002, Bruhin et al. 2005]. The

1 The AIS (Abbreviated Injury Scale) rates the severity of individual injuries from 0 (minor) to 6 (maxi-
mum). It is revised and regularly updated by the Association for the Advancement of Automotive Medicine.
The AIS is not based on, but loosely correlating with the odds of mortality, with 6 also paraphrased as
certain death. 2 The NASS (National Automotive Sampling System) is is based on a continued collection
of crash data by the NHTSA (National Highway Traffic Safety Administration) with specific emphasis on
injury mechanisms.
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Figure 5.14: Triangularized thorax geometry
model from Bruhin et al. [2005].

Figure 5.15: Transversal thorax cryosection,
width=432mm (Visible Human Project, U.S. Na-
tional Library of Medicine).

model comprised a triangularized geometry/finite element representation of the thorax
(Fig. 5.14), and complex constraint definitions to account for realistic spine kinematics
and spine-rib coupling. Muscles were represented through one-dimensional forces only.

5.2.4.1 Mesh generation and fiber mapping

The model in this work is utilized to assess the local effect of muscle activation at the
seat belt contact area. Hence, a reduced modeling approach was followed, with only two
representative ribs and the enclosing muscle. Ribs 3 and 4 from the ISM thorax model
were chosen. In order to avoid non-physiological stress peaks in the ribs, and to allow for
a smooth mesh transition to the muscle, the triangular rib representation was dismissed.
Center splines and rib cross-sections were determined, and elliptic tube sections (in the
detailed model area) and stiffness-equivalent beam cross-sections (elsewhere) were defined
(see Fig. 5.16). The detailed, tubular part of the ribs was modeled by means of four-node
shell elements. This part of the ribs extends beyond the core model in order to keep stress
disturbances from the beam-tube transition out of the assessed region.

The muscular structure was modeled from the interspace between 4th and 5th rib in-
ferior to the interspace between 2th and 3th rib superior. Laterally, the dimension was
determined to sufficiently extend beyond the belt contact area. The thickness of the pec-
toral muscle layer was derived from cryosections of the Visual Human Project (VHP, U.S.
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rib 4
m. pectoralis major
m. intercostales externi
m. intercostales interni
rib 3

Figure 5.16: Derived FE model of ribs 3 and 4, with added muscle structures.

c)a) b)x
y

z

Figure 5.17: Fiber course in the three muscle layers (depicted at integration points of the foremost
element layer only): a) m. pectoralis major b) m. intercostales externi c) m. intercostales interni

National Library of Medicine, Fig. 5.15). Outer and inner intercostales muscles were mod-
eled to comply with the rib geometries. Pennation information had to be gathered from
anatomical drawings. Estimates at few selected points served as supports for the interpo-
lation of fiber direction vectors at integration points. See Fig. 5.17 for a visualization of
the fiber course.

5.2.4.2 Constitutive descriptions

For all three muscles in the simulation, the strain-energy function (4.29) was used in
conjunction with the parameter sets derived in section 5.1. Active muscle properties were
modeled as described in section 4.2.1.2: activation by (4.23), strain and and strain rate
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dependence by (4.11) and (4.21), respectively. The utilized parameters are provided in
Tab. 5.2.

Ribs were modeled as hollow tubes. In reality, ribs possess no single-cavity marrow-filled
center, but are interfused with spongy bone structures. But the stiffness of this trabecular
bone amounts to less than 5% of the stiffness of the outer cortical bone [Li et al. 2010].
Hence, it has little structural relevance and may be disregarded as long as investigations do
not account for the actual damage or fracture mechanisms of ribs. The present simulation
does consider neither, and strains remain below 5% within the ribs, so a linear elastic
material model was chosen for cortical bone. The Poisson ratio was determined to 0.3
and the Young’s modulus to 13.5GPa. The latter was taken from Subit et al. [2013] and
presents a reasonable average with respect to other literature values (Zioupos et al. [2008]:
16.1GPa, Kemper et al. [2007]: 13.9GPa, Li et al. [2010]: 11.5GPa).

5.2.4.3 Loading

The loading scenario is based on a 30mph rigid barrier crash test in accordance with
U.S. Federal Motor Vehicle Safety Standard (FMVSS) No. 208. Kent et al. [2007] and
other publications propose a validated one-dimensional three-mass spring damper model to
derive thorax deceleration during this particular and similar scenarios. It accounts for the
delayed reaction of internal and posterior thoracic structures. The resultant acceleration
loads (see Fig. 5.18) were applied in the simulation at hand.

The belt deceleration was imposed directly in the designated contact area, whereas the
delayed mass forces were accounted for as pressure loads on rib loop and anterior muscle
surface.

5.2.4.4 Boundary conditions

Nodes in the belt contact area were constrained to remain plane; the curvature of the belt
is disregarded. Also, all four surfaces that intersect muscle fibers were modeled with indi-
vidual planar constraints. Rib nodes in the medial and lateral surface planes were excepted
from these constraints to allow for independent bending. The rib loop was restrained at
the spinal nodes such that only motion perpendicular to the spine is permitted.
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Figure 5.18: Model motion for 30mph rigid barrier crash
test. (Accelerations dashed. Displacement of delayed
mass shown relative to belt displacement.)

factor eq. parameters

fact (4.23) α1 = 0
∆α = 1
c = 2.996

fv (4.21) λ̇0 = −20
cc = 4
ce1 = 55.232
ce2 = 30.24
k = 40

fl (4.11) ac = 0.52
ae = 0.73

Table 5.2: Contraction parameters

5.2.5 Computation

The simulation covers the 0.1 s impact time shown in Fig. 5.18 plus any preceding con-
traction time. Referring to that scale, the onset of contraction was varied between −0.3 s
and +0.1 s, the latter corresponding to a contraction-free impact.

Equilibrium states during the impact process were derived following the Newmark pro-
cedure from equation (3.80).

5.2.6 Results and evaluation

5.2.6.1 Rib fracture probability

The major concern of the present study is to investigate whether and to what extent the
effect of muscle activation may reduce the occurrence of rib fractures in the given accident
scenario. This is deduced from an assessment of maximum rib bending moments. Fig. 5.19
displays their course for various contraction onset times, i.e. with different contraction
states while exposed to the same impact environment. The advantageous decrease in the
rib’s bending moment with increased muscle tension is evident; it amounts to 23% if the
activation is initiated at least 0.1s before the impact.

Anterior rib fracture moments are reported in the area of 2.0 to 2.5Nm [Cormier et al.
2005, Pezowicz and Glowacki 2012]. There are many more publications regarding the
fracture strength of ribs, but although the (US-)National Highway Traffic Safety Adminis-
tration provides guidance on how to capture data from a standardized rib bending test
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belt for different activation onsets

-0.3 -0.2 -0.15 -0.1 -0.05 0 0.05 [s]

[s−1]
70
60
50
40
30
20
10
0
-10

+0.10s
+0.00s
-0.10s
-0.20s
-0.30s

0.9

1

1.1

1.2

1.3

1.4

[-]

-0.25

Figure 5.21: Maximum fiber strain (solid) and
strain rate (dashed) for different activation onsets
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Figure 5.22: Maximum cross-fiber (solid) and
along-fiber (dashed) shear strain for different ac-
tivation onsets

procedure [NHTSA 2014], few published data are actually comparable. Often, forces
are presented without reference geometries, strains without cross-sections, or equivalent
stresses without clear definition. Nonetheless, the coefficient of variation1 cv of either re-
sult - fracture moment, fracture force or fracture stress - can often be deduced, and the
comparison is valid:

• Stitzel [2003]: cv = 48.7% (59 samples, 2 female/2 male subjects)

• Kemper et al. [2005]: cv = 28.5% (117 samples, 3 f./3 m. subjects, age 18-67)

1 cv is also referred to as relative standard deviation, defined as standard derivation divided by mean.
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• Granik and Stein [1973]: cv = 29.2% (subjects pre-selected, 5 of 15 excluded)

• Subit et al. [2013]: cv = 22.8% (10 samples, 3 subjects, age 54-71)

• Agnew et al. [2014]: cv = 60.9% (test samples, 10 f./33 m. subjects, age 9-92)

• Stein and Granik [1976]: cv = 35.6% (218 samples, 79 subj., age 27-83, cv age-
corrected)

• Cormier et al. [2005]: cv = 66% (52 samples, 2 f./2 m. subjects, age 61-71)

• Pezowicz and Glowacki [2012]: cv = 32% (33 samples, 17 f. subjects, age 10-22).

Of the above, the first two studies examined samples of cortical rib bone, the other ones
tested intact rib segments in bending setups. The numbers illustrate an overall significant
variation between the subjects, with a strong dependence on age and gender. The variance
within one individual cannot be deduced from these data. However, three of the above
publications provide more details, e.g. the assignment of results to specific ribs, rib po-
sitions or donors: Agnew et al. [2014] tested complete ribs, and provided the number of
tested ribs per subject along with the individual mean and variation of the fracture stress.
Cormier et al. [2005] and Stitzel [2003] tested rib segments and provided the results per
rib, segment origin (anterior, lateral, posterior) and subject.

For further evaluation, data were confined here to sets which comprised at least four
tests per individual and segment location. Also, only data from the middle ribs (ribs 3 to
8) were considered. 22 such individual sets were identified; the respective coefficients of
variation are:

• Stitzel [2003]: cv = 28.6/28.8/27.8/29.4/16.7/23.9/17.9 %

• Agnew et al. [2014]: cv = 18.7/22.8/16.2/24.9/36.3/23.4/23.8/7.3/27.0/33.4 %

• Cormier et al. [2005]: cv = 29.1/23.5/31.6/20.5/26.6 %

averaging to a coefficient of variation for rib fracture characteristics of cv = 24.5% with
a standard variation of σ(cv) = 6.5%. The data sets are not sufficiently conclusive with
respect to age and gender to derive a more precise estimate for the 38 year old male VHP
donor on which the present computation was based (see Fig. 5.15).

The individual fracture data sets from Cormier et al. [2005] and Stitzel [2003] do not
agree on one specific distribution type, but are clustered around a hypothetical uniform
distribution. Likewise, the complete set of all rib fracture data is best approximated as
uniformly distributed, although the data range (54% to 131% of the mean, see Fig. 5.23)
reflects the slight non-uniformity.
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For an ideal uniform distribution, the standard variation σ amounts to 28.9% of the
distribution interval, and the interval range is ±1.73σ. Thus, if the realization of an
uniformly distributed fracture parameter changes by 1σ within the distribution interval,
the fracture probability changes by 28.9% accordingly.

With these data as reference, the effect of muscle tone in the simulated scenario can
be assessed: The maximum reduction in rib bending moment amounts to 23%, and was
shown to occur when the pectoralis major muscle is fully activated. This corresponds to
0.94cv with cv = 24.5% as derived above. Hence, presuming the mean as reference point,
the reduction of the rib bending moment by way of muscle activation results in a reduced
fracture probability of up to 27.1%.

5.2.6.2 Muscle indention and tissue injury

The level of muscle tissue injury cannot be deduced directly from the present simulation,
because there are no comparison data, adequate theories or models available. Overall,
there are few studies regarding the damage mechanisms involved, and none was found to
address the influence of contraction.

Pressure was frequently proposed as a damage indicator [Bosboom et al. 2001a, Breuls
2003], but the exclusive subject of those investigations were sores from prolonged load ap-
plication. Ceelen et al. [2008] and Oomens et al. [2014] followed the same objective, but
validated two separate damage mechanisms in animal studies: ischaemic damage (semi-
static pressure-related and caused by the occlusion of blood vessels) and deformation dam-

Benjamin Winkel PhD Thesis



5.2. Muscle activation as means of injury prevention 111

age (related to shear strains orthogonal to the fiber direction). Whereas the former should
have little bearing in the present impact simulation, the latter is likely to be relevant here.
However, a quantitative assessment of the deformation damage was not deduced. Also,
due to the nature of their experiments - only lateral muscle compression was considered
- Ceelen et al. and Oomens et al. did not identify along-fiber shear and fiber strain as
damage indicators, which Ito et al. [2009] proposed in a theoretical approach.

It appears likely that excessive strain in any direction will result in tissue damage.
Unfortunately though, there are no verified injury thresholds available for deformations
other than fiber strain and strain rate (which are covered by a wealth of sport- and exercise-
related publications, e.g. Garrett et al. [1987], Friden and Lieber [1992], Taniguchi et al.
[2003]). Reported failure strains in fiber direction lie in the range of 25% to 50%. Data show
this threshold to be significantly diminished in case of extreme eccentric strain rates, and
slightly increased with activation. These two effects act antithetic in the present scenario,
as shown in Fig. 5.21: The impact simulation with relaxed muscle fibers (contraction
onset +0.10s) produces the highest strain rates, whereas further progressed contractions
result in lesser strain rates. Also, the relaxation of muscle fibers prevents the build-up of
significant shear stresses, and thus the aforementioned potential damage indicators cross-
fiber (deduced from I ′3 in (2.43)) and along-fiber shear strain (I ′4 in (2.43)) increase with
the activation level. This is well illustrated in Fig. 5.22.

The comparison of relaxed vs. fully contracted muscle provides no clear conclusion as to
which scenario leads to lesser injury in the pectoralis major. Significantly higher maximum
fiber strains (+19%) and strain rates (factor 4) indicate higher damage probability or more
severe damage in the relaxed configuration, respectively, while higher shears strains (factor
3) indicate the opposite. The former values lie within a range that was shown to be critical
in some cases, whereas no comparison values are available for the latter. Aside from the
apparent lack of thresholds, these damage indicators are likely to be insufficient for a
definite assessment. Considering the microstructure of muscle tissue, strain and pressure
gradients may as well have an impact on inflicted damage; and an integral consideration -
strong localized vs. lesser extended damage - may prove favorable to assess healing chances
and thus damage severity.

Given the vagueness in the prediction of muscle injury, it shall be pointed out that
skeletal muscle injury is always regarded as minor (AIS ≤ 1) and will be of secondary
interest in a severe injury scenario.
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Figure 5.25: Depiction of structure at +0.07s, with activation onset at −0.1s before impact (see 5.2.5):
a) posterior view of deformed structure b) rib bending stress σxx c) pressure (model bisected) [MPa].

5.2.7 Summary and discussion

The results provided in the previous sections clearly validate the initial hypothesis that
muscle activation has a significant potential for injury prevention. For the specific setting
of a 30mph rigid barrier car impact, it was derived that rib fracture probability for a belted
car occupant could be reduced by means of a timely activation of the m. pectoralis major.
The activation should be triggered at least 0.2s before impact in order to fully benefit from
the effect, i.e. decrease the fracture probability by 27%.

A quantitative assessment of the - potentially less severe - tissue damage could not be
provided due to the lack of established damage thresholds.

The presented model allows the investigation of the localized protective effect of the
contracted muscle. The consideration of postural or joint manipulations by means of muscle
control, and their implication on loading and whole-body kinematics exceed the scope
of this simulation. Currently, this exceeds the scope of a fully three-dimensional model
approach in general - not due to a limitation of the underlying methods and algorithms,
but rather due to the immense efforts required for the geometrical modeling of free-form
geometries with multiple anisotropic materials. At least when isolated, said considerations
are more effectively undertaken by using the established straight-line models (see 4.2).
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Chapter 6

Conclusion

6.1 Summary

A model for the simulation of active skeletal muscle has been developed, implemented,
validated and applied in this work.

It is founded on a finite element approach and a continuum description of muscle,
which accounts for anisotropy by means of continuous fiber vector fields. Fiber kinematics
as well as visco-elastic properties and activation control patterns are considered for the
muscle dynamics.

Herein documented is the development of finite elements capable of handling semi-
incompressible material behavior, the development of functions to describe the muscle
fiber properties, and their incorporation into an adequate three-dimensional constitutive
framework. The different steps are compared to and and match positively against various
alternative approaches, and overall prove to be advantageous with respect to completeness
and general applicability.

Two application studies were conducted a) on the contraction behavior of rat soleus
muscles and the determination of relevant muscle parameters, and b) on the impact of
upper body constitution on likelihood and severity of specific seatbelt injuries which ve-
hicle occupants may experience in an automobile crash scenario. Either study provided
meaningful results and led to further validation of this work’s approach.

For all involved domains, scientific context and foundations are provided.
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6.2 Discussion and outlook

One major motivation for this work was the lack of a generally applicable simulation
framework for researching active muscle behavior, the generation of motion and force, while
considering three-dimensional constraints and interaction. The present work provides such
a framework, and also the basis for further extension in terms of variables to consider (e.g.
fatigue and recovery) and model enhancements (e.g. constitutive descriptions).

Specifically the need for the latter is illustrated well by examples in sections 4 and 5,
for which reference solutions are established. While the material models utilized here were
successfully optimized to closely mimic the objectives and thus provide worthwhile results,
the deviation between different fitting parameter sets indicate that a further enhancement
of the base material model would be meaningful. However, such efforts have to be based
on extensive coordinated testing, far beyond the mostly independent small sample exam-
inations which are currently published. Such a structured approach to investigate muscle
behavior thoroughly and in three dimensions appears to be a significant and essential step
to further advance the quality of simulation.

An automated, non-invasive capturing of muscle geometries (and also of the geometries
of aponeuroses, tendons, origin and insertion sites) could be another contributor to sim-
ulation advancement. Several disadvantages of the shock-freezing method applied in the
rat soleus study were already named. But current progress in that field is significant: Es-
pecially Live-MRT is an extremely promising means for better physiological interpretation
of high-resolution images.

The study on seatbelt injuries illustrates the potential of the developed model. But
it also illustrates a significant enhancement potential in the way such a complex scenario
needs to be simplified. In order to derive reasonable boundary conditions, the study had
to rely on several results from preceding publications which could not be fully validated.
The consideration of different coupled models appears to be essential for future efficient,
thorough simulations. In the present context, rigid body and finite element models, straight
line and 3D models, and possibly also complementing models on different scales would allow
for a more complete model and thus advance flexibility and reliability of the simulation.
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Appendix

A.1 Mathematical preliminaries

This section gives a short outline on tensor calculus and notation. For more extensive
information on the topic consider the corresponding chapters in mechanics textbooks, e.g.
Betten [1987], Ogden [1997], Weichert and Başar [2000], Itskov [2009], or Iben [1995],
Lippmann [1996] for a rather mathematical approach.

Einstein summation convention applies throughout this work, except for indices in
brackets. The notational convention from chapter 2.1.1 regarding the physical interpreta-
tion of upper and lower case variables does not apply here. Instead, the following notation
is used: first-order tensors are denoted by bold lower-case letters, second-order tensors by
bold upper-case letters, higher-order tensors by double-struck letters. Non-bold letters of
either case denote scalars.

A.1.1 Tensor calculus

A.1.1.1 Base systems

An arbitrary basis is formed by independent base vectors in covariant {gi} =
{g1,g2, . . . ,gn} or contravariant notation {gi}. The terms co- and contravariant refer
to the index position only and do not reflect any physical constraint. The relation between
the dual bases is postulated as

gi · gj = δji (A.1)

with the Kronecker symbol δji =δij =δij ={1 ∀ i=j, 0 ∀ i 6=j}, stating that each base vector
is perpendicular to the complemental set of base vectors in the opposite notation. Metric
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coefficients gij =gi · gj and gij =gi · gj are used to convert between the dual bases.

gi = gijgj , gi = gijgj (A.2)

An orthonormal or Cartesian basis {ei} consists of perpendicular unit vectors. As a con-
sequence, co- and contravariant base vectors are identical and gij =δij, gij =δij.

A.1.1.2 Vectors and vector operations

According to the previous section, a first-order tensor is represented by

a = aigi = aigi (A.3)

in symbolic or indical notation, respectively.

Scalar product, tensor product, cross product, box product: These four basic opera-
tions are defined as

a · b = b · a = aib
i = aibi = aibjg

ij = aibjgij (A.4)
a ⊗ b = aibj gi⊗ gj = aibj gi⊗ gj = aib

j gi⊗ gi = aibj gi⊗ gj (A.5)
a × b = −b× a = εijka

ibj gk = εijkaibj gk (A.6)
〈a b c〉 = a · (b× c) = εijka

ibjck = εijkaibjck = det[a,b, c] (A.7)

respectively, with a⊗b also written as ab, and the permutation or Levi-Cevita symbol ε.

εijk = εijk =


1 if (i, j, k) is an even permutation of (1, 2, 3)
−1 if (i, j, k) is an odd permutation of (1, 2, 3)

0 else

(A.8)

Eqs. (A.6) and (A.7) are valid in the three-dimensional Euclidean space R3 only.
The geometrical interpretation of scalar, cross and box product in R3 yield scaled pro-

jection length a · b=‖a‖ ‖b‖ cosφ(a,b), spanned area A(a,b) =‖a × b‖=‖a‖ ‖b‖ sinφ(a,b),
and spanned volume V(a,b,c) =〈a b c〉. When applied to base vectors, this illustrates how
the metric coefficients (A.2) describe indeed the geometrical characteristics of a given basis.

In general, ‖•‖ denotes the Euclidean norm of a tensor. Accordingly, ‖a‖=
√

a · a is
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the length of the vector a.

A.1.1.3 Higher-order tensors and tensor operations

Second- or higher-order tensors may be derived from or deconstructed into a combination
of tensors of lower order (as in, e.g., eq. (A.5)). According to their components’ notation,
they are called covariant, contravariant, or mixed tensors:

A = Aijgigj = Aijgigj = Aijgigj = A j
i gigj. (A.9)

For brevity, the following descriptions are based on second-order tensors in covariant
notation only. Neither transference to contravariant or mixed tensor representations nor
the use of higher-order tensors produce any irregular results.

Tensor products: Several tensor products may be defined. Unless explicitly stated
otherwise, the term will refer to the regular version, consistent with (A.5), e.g.

A⊗B = AijBklgigjgkgl. (A.10)

Three further tensor products - only applicable to dyads - will be used in this work:

A⊕B = AikBljgigjgkgl (A.11)
A	B = AilBkjgigjgkgl (A.12)
A�B = 1/2(A⊕B + A	B) (A.13)

The operational symbols ⊕ 	 � are used differently by some authors.

Contraction: Simple and double contraction of arbitrary tensors is denoted as in
the following example.

A ·B = (Aijgigj)(Bkl gkgl) = Aijg
jkBklgigl = AijB

j
l gigl = A k

i Bkl gigl (A.14)
A : B = (Aijgigj) : (Bkl gkgl) = Aijg

ikgjlBkl = AijB
ij = AklBkl (A.15)

A : B = (Aijkl gigjgkgl) : (Bmngmgn) = AijklB
klgigj = A mn

ij Bmngigj (A.16)

In this work, an omitted operation symbol marks a dyadic product between first-order
tensors, but a simple contraction when at least one higher-order tensor is present (i.e.
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ab=a ⊗ b, but AB =A ·B). The Euclidean norm of a second-order tensor is computed
as ‖A‖=

√
A :A.

Some sources (e.g. Itskov [2009]) conflict with definition (A.16) and would contract
gj ·gm and gk ·gn instead. This may have implications on the nomenclature of identity
tensors, transposition rules, symmetries and derivatives.

Transposition and symmetry: The transposition of a second-order tensor A is uniquely
defined as

AT = (Aijgigj)T = Aijgjgi. (A.17)

A symmetric tensor is characterized by AT = A, a skew-symmetric tensor by AT =−A.
Any tensor may be split up into its symmetric and skew-symmetric parts.

A = sym A + skew A (A.18)
sym A : B = sym A : BT = sym A : sym B (A.19)

A symmetric second-order tensor of dimension n comprises only n(n+1)/2 independent
components. One representation which emphasizes this property for a symmetric A is

A =
n∑
i=1

Aii gigi +
n∑
i=2

i−1∑
j=1

Aij(gigj + gjgi). (A.20)

The transposition of a fourth-order tensor is defined by

B : AT : C = C : A : B (A.21)
B : At : C = B : A : CT (A.22)

which with the convention of (A.15) leads to Aijkl=(AT)klij and Aijkl=(At)ijlk. Likewise,
there are also several types of symmetries for fourth-order tensors. Major symmetry denotes
A=AT or Aijkl=Aklij, whereas right minor symmetry denotes A=At or Aijkl=Aijlk, and
left minor symmetry can be written as AT =

(
AT
)t

or Aijkl = Ajikl. Super symmetry
denotes the simultaneous occurrence of all three symmetries. In this work, the symmetry
operator “sym” marks major symmetrization when applied to fourth-order tensors.

symA=1/2(A+AT) (A.23)
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Identity tensor: Identity tensors are derived from the following properties.

I · a = a · I = a (A.24)
I : A = A : I = A (A.25)
It : A = A : It = AT (A.26)

With (A.15), this leads to

I = gi gi = δij gi gj (A.27)
I = δik δ

j
l gigjgkgl (A.28)

It = δil δ
j
k gigjgkgl. (A.29)

Because of I=gij gigj and (A.2), the identity tensor I is also referred to as metric tensor.
A super-symmetric identity tensor is defined as Is =(I + It)/2 with Is :A=A :Is =sym A.

Trace, spherical and deviatoric tensor: The trace of a second-order tensor is defined
through a double contraction (A.15) with the identity tensor.

tr A = A : I = (Aijgigj) : (gklgkgl) = A i
i (A.30)

The deviatoric-spherical split can be introduced according to

A = dev A + sph A with sph A = 1
3(tr A) I. (A.31)

Power function: Power functions are used with integer exponents only, as in

A2 = AA A0 =I AA−1 = I A−2 = A−1A−1. (A.32)

Eigenvalues and eigenvectors: The search for nontrivial solutions of the 3D eigenvalue prob-
lem (A−λ I) n = 0 always leads to the characteristic equation

det(A− λ I) = 0 = λ3 − I1(A)λ2 + I2(A)λ− I3(A) (A.33)

from which the three eigenvalues λi and subsequently the corresponding eigenvectors ni
may be derived. I1, I2, and I3 are the principal invariants of A, see (A.37). If the

Benjamin Winkel PhD Thesis



120 Appendix

eigenvectors are distinct, they form a Cartesian basis in which A is defined as

A =
3∑
i=1

λi ni ⊗ ni (A.34)

with

Aα =
3∑
i=1

(λi)α nini ln A =
3∑
i=1

ln λi nini exp A =
3∑
i=1

expλi nini. (A.35)

From (Aα−λα I) n = 0 for any α and (A.33) follows the Cayley-Hamilton theorem which
states that every second-order tensor fulfills its own characteristic equation. An expansion
of the resultant equation by A−1 yields

A−1 = 1
I3(A)(A2 − I1(A)A + I2(A)I). (A.36)

Invariants: Every isotropic function f(A) may be expressed as a function of A’s principal
traces tr Ak. Based on these, arbitrary sets of invariants may be deduced for specific
applications. E.g., coefficients of a tensor’s characteristic polynomial (A.33) form a set of
invariants often referred to as principal invariants. For a three-dimensional second-order
tensor A, these principal invariants read:

I1(A) = tr A

I2(A) = 1
2
(
(tr A)2 − tr A2

)
I3(A) = 1

3 tr A3 − 1
2 tr A tr A2 + 1

6(tr A)3 = det A

(A.37)

An isotropic function f(A,B) which depends on two independent symmetric second-order
tensors A,B ∈ Sym3, can be expressed as a function of the following principal traces:

tr A, tr A2, tr A3, tr B, tr B2, tr B3, tr(AB), tr(A2B), tr(AB2), tr(A2B2) (A.38)

Following this pattern, a dependence on A and a normalized vector n can be fully incor-
porated through f(A,n⊗n). In that case, five elements of (A.38) are redundant due to
‖n‖=1. Only two additional invariants I4 and I5 are required to complement (A.37), such
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that f(A,n⊗n)=f(I1, I2, I3, I4, I5). A common choice for I4 and I5 is

I4(A,n) = tr(An⊗ n) = n ·An

I5(A,n) = tr(A2n⊗ n) = n ·A2 n.
(A.39)

A.1.1.4 Tensor differentiation

Derivatives of tensor functions: Tensor functions are differentiable if the Gâteaux derivative
exists, such that

f(A),A : X = d
dεf(A + εX)

∣∣∣
ε=0

(A.40)

for arbitrary X, given that A+X is an admissible operation. The subscript comma marks
the partial derivative with respect to the subsequent subscript quantity.

The above applies as well for the differentiation of higher-order tensor-valued functions,
e.g. b(a) and B(A). The corresponding derivatives are

f(A),A = ∂f(A)
∂Aij

gigj b(a),a = ∂bi(a)
∂aj

gigj B(A),A = ∂Bij(A)
∂Akl

gigjgkgl (A.41)

presuming the base vectors are independent of a and A, respectively.
If non-ambiguous, the derivative arguments in parentheses will be henceforth omitted.

Specific tensor function derivatives: The derivatives for the principal isotropic (A.37) and
transversely isotropic invariants (A.39) read

I1(A),A = I

I2(A),A = I1 I−AT

I3(A),A = I3 A−T = (A2)T − I1 AT + I2 I

(A.42)

and

I4(A,n),A = n⊗ n

I5(A,n),A = n⊗An + nA⊗ n.
(A.43)
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The following rule applies for the differentiation of principal traces in general:

(tr Ak),A = k(Ak−1)T. (A.44)

For arbitrary second-order tensors holds

A,A = I (A.45)
(A−1),A = −A−1⊕A−1. (A.46)

However, derivatives with respect to symmetric tensors are non-unique due to the reduced
number of independent components in those tensors (see (A.20)). It is common convention
- not mathematical necessity - to disregard the skew-symmetric content of these derivatives,
and utilize the unique symmetric derivative exclusively. The above then becomes (with
A=symA)

A,A = (I + It)/2 = I� I = Is (A.47)
(A−1),A = −A−1 �A−1. (A.48)

Tensor transformation: With ai and ãi being the components of a in two arbitrary coor-
dinate systems xi and x̃i, the identity a = ai gi = ãi g̃i and (A.1) yield the transformation
rules for independent base vectors

g̃i = ∂a
∂x̃i

= ∂a
∂xj

∂xj

∂x̃i
= gj

∂xj

∂x̃i
g̃i = gj

∂x̃i

∂xj
(A.49)

which are hereby defined as tangent vectors to the corresponding coordinate isolines. (A.49)
leads to the covariant and contravariant transformation rules for tensors undergoing a one-
to-one mapping from xi to x̃i coordinates.

ãi = ∂xj

∂x̃i
aj ãi = ∂x̃i

∂xj
aj Ãij = ∂xk

∂x̃i
∂xl

∂x̃j
Akl (A.50)

These rules are applicable to tensors of different order and notation analogously.

Coordinate derivatives: For the definition of the partial coordinate derivatives of
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base vectors, the Christoffel symbol Γ is introduced:

gi,j = ∂gi
∂xj

= Γkij gk gi,j = −Γijk gk Γijk = Γikj (A.51)

The partial derivative of a second-order tensor follows from the chain rule.

A,i = ∂A
∂xi

= Akl,i gkgl + Aklgk,i gl + Aklgkgl,i

= (Akl,i + ΓkijAjl + ΓlijAkj) gkgl
= Akl|i gkgl

(A.52)

Herein, Akl,i is the partial derivative of Akl with respect to xi, and Akl|i is its covariant
derivative (since it obeys the covariant transformation rule in (A.50)). Other covariant
derivatives are

ai|j = ai,j + Γijk ak

ai|j = ai,j − Γkij ak
Akl|i = Akl,i − ΓjikAjl − ΓjilAkj.

(A.53)

The coordinate differentiation of the metric coefficients (A.2) yields Γkij =0 and Akl|i=Akl,i

for all Cartesian base systems.

Nabla operator, gradient, divergence, curl: The Nabla operator ∇= gi ∂/∂xi is used
to define several frequently used operators, e.g. gradient, divergence and curl (the latter
also often referred to as rotation):

∇a = ∂a
∂xi

gi = aj|i gjgi = a,x = grad a (A.54)

∇ · a = gi · ∂a
∂xi

= ai|i = grad a : I = div a (A.55)

∇× a = gi
∂

∂xi
× a = εijkaj|i gk = curl a (A.56)

The Nabla operator as in (A.54) and (A.55) is applicable analogously to scalar- and tensor-
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valued fields. The following rules apply:

grad(ab) = a grad b + b⊗ grad a
grad(a · b) = (grad a)T b + (grad b)T a

grad(aB) = a grad B + B⊗ grad a
grad(Ab) = b · grad(AT) + A · grad b

(A.57)

div(ab) = a div b + b · div a
div(ab) = a div b + grad a · b

div(aB) = a div B + B⊗ div a
div(Ab) = AT : grad b + b · div(AT)

div(a × b) = b · curl a − b · curl a .

(A.58)

In this work, (grad a)ij denotes ∂ai/∂xj. Some authors, e.g. [Tai 1994], use interchanged
indeces.

A.1.1.5 Linearization

Any sufficiently smooth function f(x) of a tensor-valued quantity x may be approximated
by a first-order Taylor expansion, i.e. by linearization at x = x̄:

f(x̄ +∆x) ≈ f(x̄) + f(x),x
∣∣∣
x=x̄

∆x. (A.59)

This may be generalized to

f(x +∆x) ≈ f(x) +∆f(x, ∆x). (A.60)

The linearization operator ∆(•) marks the increment of a field quantity, here ∆x. It is
also utilized as Gâteaux operator, e.g. to mark the linearized increment of the function
f(x) due to ∆x.

∆f(x, ∆x) = d
dεf(x + ε∆x)|ε=0 (A.61)
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For brevity or clarity, the following terms may be used interchangeable for f=f(x):

∆f = ∆
(
f(x)

)
= ∆f(x, ∆x) = ∆xf(x) = ∆xf (A.62)

From the identity (A.61) follows the applicability of superposition, product and chain rule.

∆x
(
f(x) + g(x)

)
= ∆xf(x) +∆xg(x) (A.63)

∆x
(
f(x) · g(x)

)
= ∆xf(x) · g(x) + f(x) ·∆xg(x) (A.64)

∆x
(
f(g(x))

)
= ∆[∆xg(x)]f(g(x)) (A.65)

For multivariable tensor functions,

∆f = ∆
(
f(x1,x2, . . .)

)
= ∆x1f(x1,x2, . . .) +∆x2f(x1,x2, . . .) + . . . . (A.66)

applies. All of the above rules for the scalar-valued tensor functions f and g are valid for
higher-order functions as well.

A.1.2 Numerical integration

In FEM applications, integrals over the elements domain are hardly ever evaluated ana-
lytically. The integral of a polynomial shape function of order 2n− 1 may be determined
by means of the n-point Gauss-Legendre quadrature.

∫ 1

−1
f(ξ) dξ =

n∑
i=1

ci f(ξi) (A.67)

For the usual range of natural coordinates −1 ≤ ξ ≤ 1, integration point coordinates ξi
and weights ci may be taken out of textbooks. The accuracy of the computed integral is
limited by these inputs and computing precision only.

A.2 Complementary continuum mechanics

This section provides some complementary information and formulae referenced in the
continuum mechanics chapter (2) of the main text. Only tensor fields in the Euclidean
space R3 are considered, and any index is supposed to run from 1 to 3 unless stated
otherwise.
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A.2.1 Transformation and deformation

Push-forward (Φ?) and pull-back (Φ?): These operators map tensor components from the
undeformed basis into the deformed or vice versa. In view of (2.4) which gives gi = FGi,
the push-forward for a second-order tensor reads Φ?(A) = Aijgigj = FT (AijGiGj)F. Gen-
erally holds

Φ?(·) = F(·)FT Φ?(·) = F−1(·)F−T for contravariant components
Φ?(·) = F−T (·)F−1 Φ?(·) = FT (·)F for covariant components.

(A.68)

The fourth-order spatial elasticity tensor c=cijklgigjgkgl is according to (2.36) expressible
as the push-forward of C.

c = Φ?C = C ijkl(FGi)(GjFT )(FGk)(GlFT ) = C ijklgigjgkgl (A.69)

Obviously, cijkl=C ijkl applies.

Deformation tensors: The components F i
j of F (2.4) form a Jacobi matrix which

describes an invertible and orientation preserving transformation. Accordingly, it always
holds that J=det F >0. For reference, the inverse and transposed forms of F are quoted:

F−1 = Gigi = ∂X i

∂xj
eiej = grad X

FT = Gigi = ∂xj

∂X i
eiej

F−T = giGi = ∂X i

∂xj
ejei

(A.70)

Polar decomposition: The deformation of dX - described through the mapping dx=F dX
- may also be regarded as sequential rotation and stretch. Depending on their order, right
and left polar decomposition are distinguished.

F = RU = vR (A.71)
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Herein, U and v are the symmetric right and left stretch tensors1; R is the orthogonal
rotation tensor. Since C = U2 and c = v2, these three tensors can be computed from the
eigenvalues of C and c (A.34).

Divergence theorem: Also named Gauss’ integral theorem or Gauss-Green theorem,
where S is the surface boundary of a volume V with n as outward unit normal vector field
on S.

∫
S

A · n dA =
∫
V

div A dV . (A.72)

Transport theorem: From (A.42) and (A.55) follows

J̇ = ∂J

∂F
∂F
∂t

= JF−T : Ḟ = J I : grad v = J div v (A.73)

which in conjunction with (A.72) may be used to derive Reynold’s transport theorem

d

dt

∫
V
f(x, t) v dv =

∫
V

∂f(x, t)
∂t

dv +
∫
S
f(x, t) v · n da. (A.74)

A.2.2 Objectivity

Many textbooks on continuum mechanics introduce the concept of objective tensors to
explain the compliance of constitutive laws with the principle of material objectivity. The
concept is introduced rather dogmatically and even with substantial contradictions in dif-
ferent books. Therefore a summary is presented.

By definition, every tensor (though not its components) is independent of any basis
and could therefore be referred to as objective. In the given context, a tensor field is
considered objective, if it is monitored identically by different observers who agree on
reference configuration and measures for space, mass and time.

A change of observer may be regarded as change of origin and basis. Two observers
O and Õ monitoring the movement of a body B will record its deformation differently: A
material point P observed by O at place x and at time t is identified by Õ at x̃ and t̃,
where the tilde marks all quantities associated with a specific event, but observed by Õ

1 This notation of v is limited to this “polar decomposition” subsection, otherwise v refers to the velocity
vector.
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O

Q

xP x̃P

a, ã

u, ũ
P

Õ

x̃Q

xQ

e2

ẽ2

e1

ẽ1

i ei eĩ ẽi ẽĩ

1
[
1
0

] [
0
1

] [
0
−1

] [
1
0

]
2
[
0
1

] [
−1
0

] [
1
0

] [
0
1

]
i xPi xP

ĩ
x̃Pi x̃P

ĩ

1 1 −3 −4 −4
2 3 1 4 −4

i ai aĩ

1 0 −1
2 1 0

i xQi xQ
ĩ

x̃Qi x̃Q
ĩ

1 7 −2 2 −3
2 2 7 3 2

[
Qij

]
=
[
0 −1
1 0

]

Figure A.1: Illustration to the comments on objectivity. The tables exemplify the notation with regard
to the objects in the sketch. Consider the tics surrounding the sketch as scale.

instead of O. Fig. A.1 illustrates the configuration. Obviously,

x̃=x+a (A.75)

applies, where a is the vector connecting the reference points of O and Õ. Introducing two
associated Cartesian bases {ei} and {ẽi}, the coordinate vectors of P may be written as

x = xi ei = xj̃ ẽj
x̃ = x̃i ei = x̃j̃ ẽj .

(A.76)

The tilde at the index marks a tensor component referring to the basis {ẽi}. (Note, that
this does not require the tensor to be perceived by Õ.) Stipulating the use of identical
measures for time intervals and lengths by any observer, an orthonormal rotation matrix
Q=ei ⊗ ẽi maps between the base vectors.

ei = Q ẽi (A.77)

The components of Q read Qij =Qĩj̃ = ẽi · ej. With Qij ẽi=ej one derives

x̃ĩ = Qij xj + aĩ (A.78)
x̃ĩ = xĩ + aĩ . (A.79)
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The frequently used notation x̃=Qx+a is misleading without further remarks, as it would
be expected to work regardless of the utilized bases, which is refuted by (A.79).

To prove the identity of two tensors, their components with regard to the same basis
need to be equal. Therefore, (A.79) shows that coordinates are not objective. However,
the distance between material points and their displacements are objective in terms of this
definition, easily shown by u=xQ − xP , ũ= x̃Q − x̃P and

ũĩ = x̃Q
ĩ
− x̃Pĩ = xQ

ĩ
− xPĩ = uĩ. (A.80)

Here, uĩ is the component of u as perceived by O, but in reference to the base {ẽi}.
Keeping in mind that this property - the identity of components with regard to the

same base - is the only criterion to prove two tensor’s identity, and thus to verify observer
indifference, simplifications may appear convenient. By restricting any tensor marked by
a tilde, i.e. observed by Õ, to be expressed in terms of {ẽi} only, and likewise any tensor
without tilde to be expressed with respect to {ei}, equation (A.78) is deduced in its popular
form

x̃ = Qx + a (A.81)

and ũ = Qu. Accordingly, (2.2) yields

g̃i = ∂x̃
∂Xi

= ∂Qx
∂Xi

= Qgi. (A.82)

A premise for the latter is the agreement of the distinctive observers on the material
coordinates Xi. This restriction is significant as it requires them to utilize the same origin
and basis in the reference state when x≡X at t0 = t̃0. An unrestricted formulation would
require an additional constant mapping.

Since the agreement now leads to G̃i=Gi, the transformation behavior of a tensor
depends on whether it is based on gi (A.83), Gi (A.84), or both (A.85).

ã(x̃, t̃) = a(x, t)
ã(x̃, t̃) = Q(t)a(x, t)
Ã(x̃, t̃) = Q(t)A(x, t)QT (t)

(A.83)
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ã(x̃, t̃) = a(x, t)
ã(x̃, t̃) = a(x, t)
Ã(x̃, t̃) = A(x, t)

(A.84)

Ã(x̃, t̃) = Q(t)A(x, t) (A.85)

Therefore, all deformation, strain and stress measures introduced in 2.1.2 and (2.27) are
objective: c, e, τ and σ comply with (A.83), C, E, P and S with (A.84), and F with
(A.85). As referenced in the main text, some authors mention these three types as Eulerian,
Lagrangian, and two-point objectivity, while others acknowledge exclusively either (A.83)
or (A.84) as objectivity equations. Material frame invariance of constitutive equations is
achieved whenever W (C), W (QF), or W (QcQT ) are independent of Q.

Noting that F̃ = QF, the equivalence of these three notations becomes apparent. For
deformation-dependent spatial tensor functions, equation (A.83) may be cited in its com-
mon form as

Ã(F̃) = Ã(QF) = Q A(F) QT or Ã = QAQT . (A.86)

This transformation rule is valid only for Eulerian tensors defined with respect to gi, but
as mentioned before, is frequently used to legitimize the labeling of a tensor as objective
tensor. It remains remarkable, that this label appears regularly in engineering literature,
but in none of the textbooks on tensor calculus consulted during the course of this work.

The aforementioned transformation rules apply to rate measures as well. With the time
derivation of (A.82):

˙̃gi = Q̇gi + Qġi (A.87)

follows the compliance of specific derivatives such as the Lie-derivative of Eulerian tensors,
e.g. e̊, with (A.86). The time derivative of Lagrangian tensors, e.g. Ė, complies with
(A.84).
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A.2.3 Invariants addendum

A.2.3.1 Invariants conversion

In section 2.3.4 of the main text, invariants from [Criscione et al. 2001] were cited, highlight-
ing their potential for parameter identification in conjunction with a successive mapping
to the principal invariants. The conversion formulae are based on the original source, but
comprise several necessary corrections:

I1 = I ′1
2
3

(
I ′2

2(1 + I ′4
2)+ I ′2

−1(
I ′3

2 + I ′3
−2))

I2 = I ′1
4
3

(
I ′2
−2(1 + I ′3

4 + I ′3
−4)+ I ′2

(
1 + I ′4

2)(
I ′3

2 + I ′3
−2)

+ I ′2
4(1 + I ′4

2)2
+ I ′1I

′
4

2(
I ′3

2 sin2 γ + I ′3
−2 cos2 γ

))
I3 = I ′1

2

I4 = I ′1
4
3 I ′2

2

I5 = I ′1
4
3 I ′2

4(1 + I ′4
2)

(A.88)

I ′1 = I
1
2

3

I ′2 = I
− 1

6
3 I

1
2

4

I ′3 =

I1I4 − I5

2
√
I3I4

+

√√√√(I1I4 − I5

2
√
I3I4

)2

− 1


1
2

I ′4 =
√
I5 I

−2
4 − 1

I ′5 = I1I4I5 + I1I4
3 + 2I3I4 − I5

2 + 2I2I4
2 − I5I4

2 − 2I1
2I4

2

(I5 − I4
2)
√

(I1I4 − I5)2 − 4I3I4

(A.89)

Likewise, the invariants from [Ehret et al. 2011] can be converted as follows:

I2 = Ĩ2Ĩ3

I5 = Ĩ1Ĩ4 − Ĩ2Ĩ3 + Ĩ3Ĩ5
(A.90)

Ĩ2 = I2I
−1
3

Ĩ5 = (I5 − I1I4 + I2)I−1
3

(A.91)
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For all other than the above indices, Ii= Ĩi applies.

A.2.3.2 Invariants derivatives

The derivatives of invariants of (C,N) are essential for the deduction of the generalized
formula in section 2.3.5. Note that also the differentiation with respect to c is conducted
with the invariants based on C and N.

Derivatives of principal invariants Ii: The invariants are introduced in section 2.3.2.
Compliant with (A.42) and (A.43), the derivatives are

I1,C = I I1,c = I

I2,C = I1 I−C I2,c = I1 I− c

I3,C = I3 C−1 I3,c = I3 c−1

I4,C = N⊗N I4,c = I4(n⊗ n)
I5,C = N⊗CN + NC⊗N I5,c = I4(n⊗ cn + nc⊗ n).

(A.92)

Derivatives of modified invariants Îi: See (2.41) for the invariants. Ĉ=J−
2
3 C.

Î1,C = Î
− 2

3
3 (I− 1

3 Î1Ĉ−1) Î1,c = I− 1
3 Î1ĉ

Î2,C = Î
− 2

3
3 (Î1I− Ĉ− 2

3 Î2Ĉ−1) Î2,c = Î1I− ĉ− 2
3 Î2ĉ

Î3,C = 1
2 Î
− 1

3
3 Ĉ−1 Î3,c = Î

− 1
3

3 ĉ−1

Î4,C = Î
− 2

3
3 (N⊗N− 1

3 Î4Ĉ−1) Î4,c = Î4(n⊗ n− 1
3 ĉ−1)

Î5,C = Î
− 2

3
3 (N⊗ ĈN + NĈ⊗N− 2

3 Î5Ĉ−1) Î5,c = Î4(n⊗ ĉn + nĉ⊗ n)− 2
3 Î5ĉ−1

(A.93)

Derivatives of invariants based on Ehret et al. [2011] Ĩi: See (2.42) for the invariants.

Ĩ1,C = I Ĩ1,c = I

Ĩ2,C = −C−2 Ĩ2,c = −c−2

Ĩ3,C = Ĩ3 C−1 Ĩ3,c = Ĩ3 c−1

Ĩ4,C = N⊗N Ĩ4,c = Ĩ4(n⊗ n)
Ĩ5,C = −C−1N⊗NC−1 eĨ5,c = Ĩ5(n⊗ n) + Ĩ4(n⊗ c−1n + nc−1 ⊗ n)

(A.94)
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A.2.4 Material tensor addendum to section 2.3.5

A.2.4.1 Derivatives for material tensor (eq. 2.46)

Here, Wi and Wij substitute ∂W/∂Ii and ∂2W/(∂Ii∂Ij), respectively.

∂(W1I)
∂C

=
[
W11I +W12(I1I−C) +W13I3C−1

+W14N⊗N +W15(N⊗CN + NC⊗N)
]
⊗ I

(A.95)

∂
(
W2(I1I−C)

)
∂C

=
[
W21I +W22(I1I−C) +W23I3C−1

+W24N⊗N +W25(N⊗CN + NC⊗N)
]
⊗ (I1I−C)

+W2(I⊗ I− I� I)

(A.96)

∂
(
W3I3C−1

)
∂C

=
[
W31I +W32(I1I−C) +W33I3C−1

+W34N⊗N +W35(N⊗CN + NC⊗N)
]
⊗ I3C−1

+W3I3(C−1 ⊗C−1 −C−1 �C−1)

(A.97)

∂
(
W4N⊗N

)
∂C

=
[
W41I +W42(I1I−C) +W43I3C−1

+W44N⊗N +W45(N⊗CN + NC⊗N)
]
⊗N⊗N

(A.98)

∂
(
W5(N⊗CN + NC⊗N)

)
/ ∂C

=
[
W51I +W52(I1I−C) +W53I3C−1 +W54N⊗N

+W55(N⊗CN + NC⊗N)
]
⊗ (N⊗CN + NC⊗N)

+W5 ((N⊗N)� I + I� (N⊗N))

(A.99)
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A.2.4.2 Derivatives for material tensor (eq. 2.51)

Here, Wi and Wij substitute ∂W/∂Îi and ∂2W/(∂Îi∂Îj), respectively.

∂
(
W1Î

− 2
3

3 (I− 1
3 Î1 Ĉ−1)

)
/ ∂C

= Î
− 4

3
3

([
W11I +W12(Î1I− Ĉ) +W14N⊗N +W15(N⊗ ĈN + NĈ⊗N)

− (1
3 W11Î1 + 2

3 W12Î2 − 1
2 W13Î3 + 1

3 W14Î4 + 2
3 W15Î5) Ĉ−1

]
⊗ (I− 1

3 Î1 Ĉ−1)

− 1
3 W1

(
C−1⊗ I + I⊗ Ĉ−1 − 1

3 Î1Ĉ−1⊗ Ĉ−1 − Î1C−1�C−1
))

(A.100)

∂
(
W2Î

− 2
3

3 (Î1I− Ĉ− 2
3 Î2Ĉ−1)

)
/ ∂C

= Î
− 4

3
3

([
W21I +W22(Î1I− Ĉ) +W24N⊗N +W25(N⊗ ĈN + NĈ⊗N)

− (1
3 W21Î1 + 2

3 W22Î2 − 1
2 W23Î3 + 1

3 W24Î4 + 2
3 W25Î5) Ĉ−1

]
⊗
(
Î1I− Ĉ− 2

3 Î2Ĉ−1
)

+W2
(
I⊗ I− I� I− 2

3

(
Ĉ−1⊗ (Î1I− Ĉ)

+ (Î1I− Ĉ)⊗ Ĉ−1 − 2
3 Î2Ĉ−1⊗ Ĉ−1 − Î2Ĉ−1� Ĉ−1

)))
(A.101)

∂
(

1
2 W3Î

1
3
3 Ĉ−1

)
/ ∂C

= 1
2 Î
− 1

3
3

([
W31I +W32(Î1I− Ĉ) +W34N⊗N +W35(N⊗ ĈN + NĈ⊗N)

− (1
3 W31Î1 + 2

3 W32Î2 − 1
2 W33Î3 + 1

3 W34Î4 + 2
3 W35Î5) Ĉ−1

]
⊗ Ĉ−1

+W3
(

1
4 C−1⊗C−1 − 1

2 C−1�C−1
))

(A.102)

∂
(
W4Î

− 2
3

3 (N⊗N− 1
3 Î4Ĉ−1)

)
/ ∂C

= Î
− 4

3
3

([
W41I +W42(Î1I− Ĉ) +W44N⊗N +W45(N⊗ ĈN + NĈ⊗N)

− (1
3 W41Î1 + 2

3 W42Î2 − 1
2 W43Î3 + 1

3 W44Î4 + 2
3 W45Î5) Ĉ−1

]
⊗
(
N⊗N− 1

3 Î4Ĉ−1
)
− 1

3 W4
(
C−1⊗N⊗N + N⊗N⊗ Ĉ−1

− 1
3 Î4Ĉ−1⊗ Ĉ−1 − Î4C−1�C−1

))
(A.103)
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∂
(
W5Î

− 2
3

3 (N⊗ ĈN + NĈ⊗N− 2
3 Î5Ĉ−1)

)
/ ∂C

= Î
− 4

3
3

([
W51I +W52(Î1I− Ĉ) +W54N⊗N +W55(N⊗ ĈN + NĈ⊗N)

− (1
3 W51Î1 + 2

3 W52Î2 − 1
2 W53Î3 + 1

3 W54Î4 + 2
3 W55Î5) Ĉ−1

]
⊗
(
N⊗ ĈN + NĈ⊗N− 2

3 Î5Ĉ−1
)

+W5
(
(N⊗N)� I + I� (N⊗N)

− 2
3

(
Ĉ−1⊗ (N⊗ ĈN + NĈ⊗N) + (N⊗ ĈN + NĈ⊗N)⊗ Ĉ−1

)
+ 4

9 Î5Ĉ−1⊗ Ĉ−1 + 2
3 Î5Ĉ−1� Ĉ−1

))
(A.104)

A.2.4.3 Derivatives for material tensor (eq. 2.56)

Here, Wi and Wij substitute ∂W/∂Ĩi and ∂2W/(∂Ĩi∂Ĩj), respectively.

∂(W1I)
∂C

=
[
W11I−W12C−2 +W13Ĩ3C−1

+W14N⊗N−W15C−1N⊗NC−1
]
⊗ I

(A.105)

∂
(
W2C−2

)
∂C

=
[
W21I−W22C−2 +W23Ĩ3C−1

+W24N⊗N−W25C−1N⊗NC−1
]
⊗C−2

−W2(C−2�C−1 + C−1�C−2)

(A.106)

∂
(
W3Ĩ3C−1

)
∂C

=
[
W31I−W32C−2 +W33Ĩ3C−1

+W34N⊗N−W35C−1N⊗NC−1
]
⊗ Ĩ3C−1

+W3Ĩ3(C−1⊗C−1 −C−1�C−1)

(A.107)

∂
(
W4N⊗N

)
∂C

=
[
W41I−W42C−2 +W43Ĩ3C−1

+W44N⊗N−W45C−1N⊗NC−1
]
⊗N⊗N

(A.108)
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∂
(
W5C−1N⊗NC−1

)
∂C

=
[
W51I −W52C−2 +W53Ĩ3C−1

+W54N⊗N−W55C−1N⊗NC−1
]
⊗C−1N⊗NC−1

+W5
(
(C−1N⊗NC−1)�C−1 + C−1 � (C−1N⊗NC−1)

)
(A.109)

A.3 Finite element addendum

A.3.1 Linear elements for finite incompressibility

As mentioned in chapter 3.2.3, various concepts have been published to avoid locking ef-
fects during the analysis of near-incompressible solids. Although the pioneering works of
Nagtegaal et al. [1974] (mean dilatation method), Malkus and Hughes [1978] and Hughes
[1980] (selective reduced integration method, SRI), Flanagan and Belytschko [1981] (re-
duced integration method with stabilization, RI), Sussman and Bathe [1987] (mixed dis-
placement/pressure method, u/p), and Simo and Rifai [1990] (enhanced assumed strain
method, EAS) provided the foundation for the development of many three-dimensional
elements, they themselves were often limited to plate or shell formulations. Therefore,
those and other sources are not referred to in the following overview, which shall be re-
stricted to papers that actually describe realizations of three-dimensional elements. Still,
this overview is not complete in terms of publications, as it is only intended to cover the
main developments within the area of research.

In many publications, first-order quadrilateral and hexahedral elements are often in-
distinguishable by their names. For example, EAS plate elements with four and twelve
enhanced modes are often labeled Q1/E4 and Q1/E12 while the related brick element with
nine enhanced modes is labeled Q1/E9. To unify element names in the present work, hex-
ahedrons will be denoted by an initial H, tetrahedrons by a T, and quadrilaterals by a Q.
The subsequent numbers mark the interpolation order of the displacements, followed by a
method-specific token.

Although several papers suggested the application of enhancement methods to hex-
ahedral elements before, Pian and Tong [1986] appear to be the first to have actually
realized such a formulation. Based on their hybrid assumed stress Q1/HR-5 element orig-
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inating from a Hellinger-Reissner variational formulation [Pian and Sumihara 1984]1, they
developed the H1/HR-18 element with 18 internal parameters. The applicability of this
element is limited to geometric and material linearity, but within this limit it is described
by several authors as highly efficient and accurate. Sussman [1987], Sussman and Bathe
[1987] invented the class of u/p-elements - mixed displacement-pressure formulations that
allow for an elimination of the pressure variables on the element level. This facilitates a
straightforward inclusion into regular displacement based codes, given decoupled constitu-
tive descriptions are available. By first- and second-order displacement interpolation the
elements H1/P0 and H2/P4 were introduced, with constant and linear pressure interpola-
tion, respectively. H1/HR-18 and more frequently H1/P0 serve as standard references to
verify the locking behavior of newly developed elements in the near-incompressible case.

Based on Hu-Washizu’s variational principle (see A.3.2), the Enhanced-Assumed-Strain
method yielded the nonlinear H1/E9 element with nine enhanced strain modes in [Simo
and Armero 1992]. Due to apparent instabilities under certain compression conditions,
Simo et al. [1993] proposed the improved versions H1/E12 and H1/ME12. With twelve
enhanced modes, special quadrature rules and up to 354 internal variables, these elements
provide satisfying coarse mesh accuracy, but their computational cost are extraordinarily
high. At the same time, Andelfinger and Ramm [1993] published EAS elements with even
more enhanced modes, e.g. the H1/E21. Remarkably, even those elements develop rank
deficiencies and the associated hourglass modes for stress states with compression [Wriggers
and Reese 1996], as well as volumetric locking appeared in the case of distorted geometries
[Freischläger 2000]. Wriggers and Korelc [1996] stated that thirty enhanced modes were
necessary to avoid any locking in nonlinear applications, however this is hardly feasible
and apparently hasn’t been realized. Instead, the authors proposed a conjugated gradi-
ent method that along with other artificial hourglass control mechanisms which performed
better than H1/ME12, but still failed to provide the desired properties for EAS elements
with arbitrary geometry and nonlinear deformations. Probably due to the required imple-
mentation effort of progressive EAS elements, later formulations as in [Kasper and Taylor
2000, De Sousa et al. 2003] were mostly compared to the classic ones. Still, no universal
benchmark or unified test set which includes tests for distortion sensitivity, locking and
hourglassing under great deformations has been established.

Meanwhile, Weiss [1994] proposed an augmented Lagrangian iteration procedure to en-
force the incompressibility constraint to any desired accuracy. Starting from a compressible

1 This publication was not available to the author. The comments rely on several reputable recitations.
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state the incremental increase of a penalty parameter (i.e. the compression modulus) avoids
the ill-conditioning of the stiffness matrix which may occur even in locking-free elements
when near-incompressibility is modeled.

De Souza Neto et al. [1996] published the well-performing F-bar formulation, described
and enhanced in section 3.2.5, with the known shortcoming of a non-symmetric tangential
stiffness matrix.

Hexahedral RI elements with one-point quadrature rule don’t display volumetric locking
by default, and several efforts were published to further enhance their regular stabilization
in order to handle incompressible materials. Stabilization parameters, which needed ad-
justment by the user and at worst would influence the solution, were a common drawback.
The H0/Jet3D element in [Li and Cescotto 1997] utilizes such a parameter, but is reported
to provide good results even in the nonlinear range. In contrast, no manual calibration
is necessary for the element of Hu and Nagy [1997], which instead is valid only for small
deformations. Liu et al. [1998] used a corotated coordinate system and four integration
points for the stabilizing terms in their H0/DS formulation. This measure ensures good
performance in large deformation analysis without the need for parameter adjustment.
Sensitivity to mesh distortion was apparently not tested for. The superior cost advantage
of the one-point quadrature element H0 is diminished by weighted superimposition with
the regular H1 element as proposed in [Doll et al. 2000]. This stabilization is similar to
the k-exponent introduced in section 3.2.4 and still less expensive than comparable fully
integrated EAS formulations. Reese et al. [2000] invented the concept of an equivalent par-
allelepiped to derive the stabilization terms, which along with the solutions are, to some
degree, load dependent. Besides, the deviation of the actual element geometry from a
parallelepiped leads to diminished accuracy of distorted elements as in other formulations.
For these elements in particular, mesh refinement leads to less distorted and therefore more
accurate elements. Updates with minor improvements were presented in Puso [2000], and
[Reese 2005], where the H0/SP element compared favorable to H1/P0 and H1/ME12 in
several tests.

Also linear tetrahedral elements have been enhanced to work properly for near-
incompressible situations. Although not as accurate as hexahedrons, they are attractive
due the option to reliably generate meshes fully automatically. Taylor [2000] claimed this
to be the driving motivation behind his mixed enhanced strain element T1/ME1P1 with
independent displacement, pressure and internal strain fields. A similar approach has been
followed by Chiumenti et al. [2002] and [Cervera et al. 2003], who additionally applied a
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sub-grid method (developed by Hughes [1995]) to relax the incompressibility constraint
and avoid the geometrical locking typical for triangular and tetrahedral meshes. The men-
tioned elements were validated for linear elasticity only. A different idea for the essential
constraint relaxation was proposed by De Souza Neto et al. [2003]: Incompressibility was
enforced over a patch of elements, which concedes in a dependence of stabilization effec-
tiveness on the size of the patches. The actual elements used were derived by the same
strategy as the hexahedrons in [De Souza Neto et al. 1996], resulting in an asymmetric
stiffness matrix as well.

Remark: The term stabilization has been used without further explanation so far.
This is due to the few commonalities the different approaches possess, apart from their
purpose. They all provide enhancements to the otherwise rank-deficient stiffness matrix.
As the eigenvectors associated with negative eigenvalues have the well known hourglass
shapes, the stabilization usually assigns some stiffness to those particular modes. This may
be done on element level, for a patch of elements or globally. The stabilizing terms are
often derived from orthogonality conditions (as enhanced strains), from Taylor expansions
of strain and stress fields (for RI elements), from equivalent normalized elements, or by
ad hoc modifications of strains, stresses, gradient or stiffness matrices. It is absolutely
recommended to refer to the respective publications to get detailed information on the
methods used.

A.3.2 Variational base for mixed element formulations

In equations (3.2) and (3.4), strain-displacement relations were included which are not an
integral part of the principle of virtual work. These kinematic field equations, kinematic
constraints (u = ū on Su) and even constitutive material descriptions may be considered
as specific boundary conditions for the formularization of that principle. One approach
which instead allows for their direct inclusion is the consideration of a minimum potential
energy. It may be written as

δΠ = 0 with Π = Πint + Πext =
∫
B
W (E) dV + Πext. (A.110)

This is equivalent to the virtual work equation (3.4), apart from the substitution of the
term S : δE by the more general δW (E). While ultimately still being a function of the
deformation, this allows for the variation of other quantities than just displacements.

To discriminate between independent and dependent variables, an upper index is in-
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troduced that will point to an explicit dependence. E.g., Eu marks a Green-Lagrange
strain which depends on the displacements (through kinematic equations), ES indicates a
dependence on the stress (through constitutive equations) and E denotes the independent
strain variable. Prescribed boundary values are marked by an overbar.1

The three-field Hu-Washizu variational principle is one exemplary realization of the
above approach on which many enhanced finite elements are based. Starting from eq.
(A.110), S and TS are introduced as Lagrange multipliers, such that

ΠHW =
∫
B
W (E) dV +

∫
B

S : (Eu − E) dV +
∫
Su

TS (ū− u) dA+ Πext. (A.111)

The independent variables herein are the displacements u, the 2nd Piola-Kirchhoff stresses
S, and the Green-Lagrange strains E.

δΠHW =0 identifies a stationary potential energy, and derived as the sum of the varia-
tions with respect to those three variables

δΠHW =
∫
B

∂W

∂E
: δE dV +

∫
B

S : (δEu − δE) dV +
∫
B
δS : (Eu − E) dV

−
∫
B
ρ0 b δu dV −

∫
St

(T̄−TS)δu dA +
∫
Su
δT(ū− u) dA = 0. (A.112)

The linearization has to be conducted with respect to all three independent variables.
If a uniform discretization would be applied to all three, the resultant element formu-

lations would not deviate from the virtual work based approach. However, while displace-
ments fields in the continuum context are required to be steady even in their discretized
form, strains and stresses might be approximated by functions with discontinuities on el-
ement boundaries. This allows for the definition and elimination of the stress and strain
quantities on element level (leading to enhanced displacement based formulation), globally
or independent of the displacement discretization patterns. The F-bar element introduced
in section 3.2.4 can be traced to this approach as well, with the independent dilatation
being a function of the Green-Lagrange strains.

The Hu-Washizu functional is considered one of the most flexible variational formula-
tions for the derivation of displacement based and mixed finite elements. There are several
others of importance though, often overlapping but usually also with distinct advantages.
[Wriggers 2009] provides a thorough introduction and overview.

1 The proposed notation is limited to this section only.
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