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Abstract
An extension operator assigns to any TU game its extension, a mapping that assigns a worth 
to any non-negative resource vector for the players. It satisfies three properties: linearity in the 
game, homogeneity of extensions, and the extension property. The latter requires the indicator 
vector of any coalition to be assigned the worth generated by this coalition in the underlying TU 
game. Algaba et al. (2004, Theor Decis 56, 229-238) advocate the Lovász extension (Lovász, 1983, 
Mathematical Programming: The State of the Art, Springer, 235-256) as a natural extension ope-
rator. We show that it is the unique extension operator that satisfies two desirable properties. 
Resources of players outside a carrier of the TU game do not affect the worth generated. For mo-
notonic TU games, extensions are monotonic. Further, we discuss generalizations of the Lovász 
extension using CES production functions.
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Abstract

An extension operator assigns to any TU game its extension, a mapping that assigns a worth
to any non-negative resource vector for the players. It satis�es three properties: linearity in
the game, homogeneity of extensions, and the extension property. The latter requires the
indicator vector of any coalition to be assigned the worth generated by this coalition in the
underlying TU game. Algaba et al. (2004, Theor Decis 56, 229�238) advocate the Lovász
extension (Lovász, 1983, Mathematical Programming: The State of the Art, Springer, 235�
256) as a natural extension operator. We show that it is the unique extension operator that
satis�es two desirable properties. Resources of players outside a carrier of the game do not
a¤ect the worth generated. For monotonic games, extensions are monotonic. Further, we
discuss generalizations of the Lovász extension using CES production functions.
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1. Introduction

A cooperative game with transferable utility for a �nite player set (TU game) is given
by a coalition function that assigns a worth to any coalition (subset of the player set),
where the empty coalition obtains zero. In a coalition, a player is either (fully) present
for or (completely) absent from cooperation. A more general way to model the players�
involvement in the generation of worth are resource vectors that assign to any player a
non-negative amount of a resource she owns. In this setting, a coalition is represented by
its indicator resource vector that assigns to any player inside this coalition an amount of
one of her resource and an amount of zero to any player outside this coalition. The natural
question now arises how to extend a TU game from coalitions to resource vectors.
A resource game is a mapping that assigns to any non-negative resource vector a real

number, the worth generated by the resources. An extension operator is a mapping that
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assigns to any TU game a resource game, its extension, with the following properties (Algaba
et al., 2004, Section 4).1

X The worth generated by the indicator resource vector of a coalition in the resource game
assigned to a TU game equals the worth generated by this coalition in the TU game.

L Linearity in the game: the resource game assigned to the linear combination of two
TU games equals the linear combination of the resource game assigned to these TU games.

HX Homogeneity of resource games: the worth generated by a scaled resource vector in
the resource game assigned to a TU game equals the scaled worth generated by the
original resource vector in this resource game.

For a given TU game, its Lovász extension assigns a worth to a resource vector as follows
(Lovász, 1983; Algaba et al., 2004). The worth of an active coalition is scaled by the uniform
amount of their resource the players of this coalition make use of. The �rst active coalition
comprises all players that own at least the smallest amount of the resource, i.e., all players,
which also make use of this amount. The second active coalition comprises all players that
own at least the second smallest amount, which make use of the di¤erence between second
smallest amount and the smallest amount. The third active coalition comprises all players
that own at least the third smallest amount, which make use of the di¤erence between third
smallest amount and the second smallest amount. And so on. Finally, the scaled worths of
all active coalitions are added up. Algaba et al. (2004, p. 233) advocate the Lovász extension
(operator) as �a natural way of extending�TU games to resource vectors.
There exist a vast number of extension operators besides the Lovász extension, for exam-

ple, the extension operators given by (11) or identi�ed by Proposition 5 later on. However,
these fail one of two economically desirable properties for resource games.

CX Carrier property for resource games: resources outside a carrier of a TU game do not
a¤ect the worth generated in the resource game assigned to this TU game. Carrier: a
coalition such that the worth of any coalition equals the worth of its intersection with
the former coalition.2

MX Monotonicity of resource games for monotonic games: In the resource game assigned to
a monotonic TU game, the worth generated does not decrease when the resource vector
increases. Monotonic TU game: all marginal contributions of players to coalitions not
containing them are non-negative.

As our main result, we show that the Lovász extension is the unique extension operator
that satis�es these two properties (Theorem 1). In view of this result, we discuss general-
izations of the Lovász extension, a class of mappings based on CES (constant elasticity of
substitution) production functions with uniform distribution parameter and homogeneity of
degree 1; the CES mappings. Whereas all these CES mappings satisfy linearity in the game,

1The domain of Owen�s (1972) multi-linear extension is the standard cube for the player set. The players�
�ressources�stand for their (independent) probabilities of being present for cooperation.

2This property resembles the carrier property used by Shapley (1953) in the characterization of his value.
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homogeneity of resource games, and the carrier property for resource games (Proposition 3),
besides the Lovász extension, only very few of the CES mappings are extensions (one) or
satisfy monotonicity of resource games for monotonic games (two) (Propositions 4 and 5).
This paper is organized as follows. In the second section, we provide basic de�nitions

and notation. In the third section, we introduce and discuss extension operators and the
Lovász extension. In the fourth section, we provide and discuss our main result. In the �fth
section, we discuss the CES mappings. Some remarks conclude the paper. The Appendix
contains all the proofs.

2. Basic de�nitions and notation

A TU game for a non-empty and �nite player set N is given by a coalition function
v : 2N ! R, v (;) = 0; where 2N denotes the power set of N . Subsets of N are called
coalitions; v (S) is called the worth of coalition S. The set of all games for N is denoted
by V: A coalition C � N is called a carrier of v 2 V; if v (S) = v (S \ C) for all S � N:
For v; w 2 V; and � 2 R, the coalition functions v + w 2 V and � � v 2 V are given by

(v + w) (S) = v (S) +w (S) and (� � v) (S) = � � v (S) for all S � N: For T � N; T 6= ;; the
game uT 2 V given by uT = 1 if T � S and uT (S) = 0 otherwise is called a unanimity
game. Any v 2 V can be uniquely represented by unanimity games. In particular, we have

v =
X

T�N :T 6=;

�T (v) � uT ; (1)

where the coe¢ cients �T (v) are known as the Harsanyi dividends (Harsanyi, 1959) and can
be determined recursively by

�T (v) := v (T )�
X

S(T :S 6=;

�S (v) : (2)

A rank order for N is a bijection � : N ! f1; 2; : : : ; jN jg with the interpretation that
i is the � (i)th player in �; the set of rank orders of N is denoted by R: The set of players
before i in � is denoted by Bi (�) = f` 2 N : � (`) < � (i)g : The marginal contribution of
i in � is denoted by

MCvi (�) := v (Bi (�) [ fig)� v (Bi (�)) : (3)

A game v 2 V is called monotonic if MCvi (�) � 0 for all � 2 R and i 2 N: Player i 2 N
is called a null player in v 2 V; if MCvi (�) = 0 for all � 2 R:

3. Extension operators and the Lovász extension

In a coalition S � N; a player i is either present with all her resources, i 2 N; or not,
i 2 N nS: A more general way to model the distribution of resources are resource vectors
s 2 RN+ ; where a coalition S � N is represented by its indicating resource vector 1S 2 RN+
given by

(1S)i :=

�
1; i 2 S;
0; i 2 N n S = 1 for all i 2 N: (4)
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The question now arises how to extend a TU game from coalitions to resource vectors.
Let E :=

�
f : RN+ ! R

	
; the members of E are called resource games for N: This set

is a linear space on the reals in the obvious sense. For all f; g 2 E and � 2 R; the resource
games f + g and � � f are given by (f + g) (s) = f (s) + g (s) and (� � f) (s) = � � f (s) for
all s 2 RN+ ; respectively. A mapping E : V ! E; v 7! Ev is an extension operator if it
satis�es the extension property, it is linear in the game, and the resource games assigned to
TU games are homogenous (Algaba et al., 2004, Section 4); Ev is called the extension of v:
Extension (X). For all v 2 V and S � N; we have Ev (1S) = v (S) :
This property is at the heart of the very idea of an extension. The representative of a

coalition in the associated resource game, the indicating resource vector, generates the same
worth as the coalition in the underlying TU game.
Linearity in the game, L. For all v; w 2 V and � 2 R; we have E (v + w) = Ev + Ew
and E (� � v) = � � Ev:
Both the space of TU games V and the space of resource games E are linear spaces on

the reals. Hence, it seems to be rather natural to require an extension operator to respect
the linear structure of these spaces. Moreover, by de�nition, we have

(v + w) (S) = v (S) + w (S) and (� � v) (S) = � � v (S)

for all v; w 2 V and � 2 R: The extension property now implies

E (v + w) (1S) = Ev (1S) + Ew (1S) and E (� � v) (1S) = � � Ev (1S) ;

that is, extension operators are linear in the game for the indicating resource vectors. Lin-
earity in the game extends this to arbitrary resource vectors, which re�ects that extensions
should be determined by the underlying TU game.
Homogeneity of resource games, HX. For all v 2 V; s 2 RN+ ; and � 2 R+; we have

Ev (� � s) = � � Ev (s) :

This property requires extensions to show no economies or diseconomies of scale. On the
one hand, of course, this is a strong assumption on the technology embodied in extensions.
On the other hand, in presence of the homogeneity-part of linearity in the game, homogeneity
of resource games is equivalent to interchangeability of scaling of resource vectors and games.
On its own, the latter may be viewed as less demanding in economic terms than the former.
Interchangeability of scaling, IS. For all v 2 V, s 2 RN+ ; and � 2 R+; we have
E (� � v) (s) = Ev (� � s) :
The Lovász extension (operator) (Lovász, 1983; Algaba et al., 2004) L : V ! E;

v 7! Lv for all v 2 V; is given as follows. For s 2 RN+ ; let #s := jfsi j i 2 Ngj denote the
number of di¤erent entries of s and let �s 2 R#s+ be given by �s` = si for some i 2 N for all
` = 1; 2; : : : ;#s and �sk < �s` for all k; ` 2 1; 2; : : : ;#s such that k < `. That is, �s` is the size
of the `th smallest entry of s. Set �s0 := 0 and let

P` (s) := fi 2 N j si � �s`g for all ` = 1; 2; : : : ;#s; (5)
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i.e., P` (s) contains the players with an entry in s at least as great as the `th smallest entry
of s. For v 2 V; its Lovász extension Lv is given by

Lv (s) :=

#sX
`=1

(�s` � �s`�1) � v (P` (s)) for all s 2 RN+ . (6)

Algaba et al. (2004, Theorem 5) express the Lovász extensions in terms of Harsanyi
dividends. For all v 2 V, we have

Lv (s) :=
X

T�N :T 6=;

minT (s) � �T (v) for all s 2 RN+ ; (7)

where
minT (s) := mini2T si for all s 2 RN+ : (8)

Casajus and Wiese (2017, Equation 11) express the Lovász extensions in terms marginal
contributions. For s 2 RN+ ; let

R (s) := f� 2 R j � (i) < � (j) for all i; j 2 N with si > sjg ; (9)

i.e., R (s) contains those rank orders for which players with a greater entry in s come before
players with a smaller entry. For all v 2 V, we have

Lv (s) =
X
i2N

si �MCvi (�) for all s 2 RN+ and � 2 R (s) : (10)

4. Uniqueness of the Lovász extension

In this section, we show that the Lovász extension is the unique extension that satis�es
two economically desirable properties: a carrier property and a monotonicity property.
Carrier property for resource games, CX. For all v 2 V; C � N; and s; r 2 RN+ such
that C is a carrier of v and si = ri for all i 2 C; we have Ev (s) = Ev (r) :
Players outside a carrier are unproductive, i.e., null players. Hence, their resources should

not a¤ect the worth generated. Moreover, if player i 2 N is a null player in v 2 V, then
v (S [ fig) = v (S) for all S 2 N n fig : The extension property now implies Ev

�
1S[fig

�
=

Ev (1S) ; i.e., the resource of player i doesn�t a¤ect the generation of worth in the associated
resource game. This property extends this to arbitrary resource vectors, which re�ects that
extensions should be determined by the underlying TU game.
Monotonicity of resource games for monotonic games, MX. For all v 2 V and
s; r 2 RN+ such that v is monotonic and si � ri for all i 2 N; we have Ev (s) � Ev (r) :
In monotonic games, all players are productive, i.e., all marginal contributions are non-

negative. Hence, whenever resources increase, the worth created should not decrease. Partic-
ularly, if the game v 2 V is monotonic, then v (S [ fig) � v (S) for all i 2 N and S � Nnfig :
The extension property now implies Ev

�
1S[fig

�
� Ev (1S) ; i.e., an increase of player i´s

resource doesn�t decrease the generation of worth in the extension. This property extends
this to arbitrary resource vectors, which re�ects that extensions should be determined by
the underlying TU game.
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Theorem 1. The Lovász extension is the unique mapping E : V! E that satis�es linearity
in the game (L), homogeneity of resource games (HX), the extension property (X), the car-
rier property for resource games (CX), and monotonicity of resource games for monotonic
games (MX).

Remark 2. Careful inspection of the proof of Theorem 1 in Appendix A reveals that lin-
earity in the game can be relaxed into additivity in the game: for all v; w 2 V; we have
E (v + w) = Ev + Ew:

On the one hand, the Leontief type technology in (7) underlying the Lovász extension
is rather particular. On the other hand, the theorem now tells us that it is inevitable if
an extension is supposed to satisfy economically desirable properties. In an informal sense,
linearity in the game, homogeneity of resource games, the carrier property for resource
games, and monotonicity of resource games for monotonic games seem to be less speci�c
with respect to the technology of extensions than the extension property. Hence, one could
attribute the Leontief type technology inherent in the Lovász extension to the latter.
We conclude this section by showing that the characterization of the Lovász extension in

Theorem 1 is non-redundant for jN j > 1: To save space, we anticipate results from Section 5.
By Theorem 1 and Propositions 3, 4, and 5, the mapping LCES : V! E given by

LCESv =

�
Lv; v (N) � 0;
CES0v; 0 > v (N)

for all v 2 V inherits all properties but linearity in the game from the Lovász extension and
CES0. The mapping L2 : V! E given by

L2 v (s) := Lv
�
s2
�

and
�
s2
�
i
= s2i

for all v 2 V, s 2 RN+ , and i 2 N inherits all properties from the Lovász extension but
homogeneity of resource games. By Propositions 3, 4, and 5, the mapping CES1 satis�es all
properties but the extension property. The extension L? given by

L? v (s) = Lv (s?) and s?i =
p
si �maxN (s) (11)

for all v 2 V; s 2 RN+ , and i 2 N inherits all properties but the carrier property for resource
games from the Lovász extension. By Propositions 3, 4, and 5, the mapping CES0 satis�es
all properties but monotonicity of resource games for monotonic games.

5. CES mappings

Formula (7) shows that a CES (constant elasticity of substitution) technology determines
the Lovász extension, the minimum operators (8). In this section, we generalize the Lovász
extension using CES production functions in (7) and explore their properties.
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For any coalition T 6= ; and substitution parameter % 2 �R := R [ f�1;+1g ; the CES
production function c%T : RN+ ! R with uniform distribution parameter and homogeneity of
degree 1 is given by

c%T (s) :=

"X
`2T

1

jT j � s
%
`

# 1
%

for all s 2 RN+ : (12)

For % 2 f�1; 0;+1g ; one consider the appropriate limits and obtains

c�1T (s) := minT (s) ; c0T (s) := jT j

sY
`2T

s`; c+1T (s) := maxT (s) (13)

for all s 2 RN+ ; where

maxT (s) := maxi2T si for all s 2 RN+ : (14)

For % 2 �R; the CES mapping CES% : V! E is given by

CES%v (s) :=
X

T�N;T 6=;

c%T (s) � �T (v) for all v 2 V and s 2 RN+ : (15)

By (7), (13), and (15), we have CES�1 = L; i.e., the CES mappings indeed generalize
the Lovász extension. By construction, the CES mappings satisfy linearity in the game,
homogeneity of resource games, and the carrier property for resource games.

Proposition 3. The CES mappings CES%; % 2 �R satisfy the following properties: linearity
in the game (L), homogeneity of resource games, and the carrier property for resource games
(CX).

In view of Theorem 1, all CES mappings except the Lovász extension must fail either the
extension property or monotonicity of resource games for monotonic games. Indeed, only
very few of the other CES mappings satisfy even one of these properties.

Proposition 4. For jN j > 1; a CES mapping CES%; % 2 �R satis�es the extension property
(X) if and only if % 2 f�1; 0g :

Only for % 2 f�1; 0g ; a player�s resource cannot be completely substituted by the other
players�resources in the CES production functions (12) and (13). This is what drives this
result.

Proposition 5. For jN j > 1; a CES mapping CES%; % 2 �R satis�es monotonicity of re-
source games for monotonic games (MX) if and only if % 2 f�1; 1;+1g :

Whereas all CES production functions (12) and (13) are monotonic, only for % = 1;
they are additive in the resource vector. And only for % 2 f�1;+1g ; their elasticity of
substitution is zero. This is what seems to drive this result.
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6. Concluding remarks

Casajus and Wiese (2017, Section 4) use the Lovász extension to construct the Lovász-
Shapley value, a solution for TU games that are enriched by resource vectors. Later on,
Casajus et al. (2020) use this value in order to construct replicator dynamics that are
derived from TU games. Since their stability results for these dynamics crucially rely on the
Leontief type technology inherent in the Lovász extension, they suggest to explore alternative
extensions that are based on CES technologies. Propositions 4 and 5 indicate that one has
to waive either the extension property or monotonicity of resource games for monotonic
games.

Appendix A. Proof of Theorem 1

The Lovász extension indeed is an extension (Algaba et al., 2004, p. 233), i.e., it satis�es
X, L, and HX. Players outside a carrier of a game are null players. If i 2 N is a null player
in v 2 V; then �T (v) = 0 for all T � N such that i 2 T: In view of (7), the Lovász extension
satis�es CX. Remains to showMX.
Since the minimum operators (8) are continuous and by (7), the Lovász extensions are

continuous in the resource vector. Hence, we are also allowed to restrict attention to generic
resource vectors s for which any two players own a di¤erent amount of resources. For
such resource vectors, the set of induced rank orders R (s) contains a single rank order �s.
Moreover, we are allowed to restrict attention to scenarios where only one player�s resource
increases (i) without changing this rank order or (ii) where only this player changes the
position with her predecessor. In monotonic games, all marginal contributions are non-
negative. By (10), the worth generated does not decrease in scenario (i). Let us turn to
scenario (ii). Let s; r 2 RN+ and i; j 2 N; i 6= j be such that both s and r are generic,
s` = r` for all ` 2 N n fig and si < ri; �s (`) = �r (`) for all ` 2 N n fi; jg ; �s (i) = �r (j) ;
�s (j) = �r (i), and �r (i) = �s (i)� 1: This implies si < sj = rj < ri and therefore

Lv (r)� Lv (s) (10)= ri �MCvi (�r) + rj �MCvj (�r)� si �MCvi (�s) + sj �MCvj (�s)
� rj �MCvi (�r) + rj �MCvj (�r)� rj �MCvi (�r) + rj �MCvj (�s)
= 0;

where the last equation follows from

MCvi (�r) +MC
v
j (�r) =MC

v
i (�s) +MC

v
j (�s) � 0;

which drops from the fact that i and j are neighbors in �r and �s who just swap their
positions and the game being monotonic. Hence, the Lovász extension satis�esMX.
Let now the extensionE be as in the theorem. In view of L, it su¢ ces to showEuT = LuT

for all T � N; T 6= ;:

Claim 1, C1. For all s 2 RN+ such that si = 0 for some i 2 T; we have EuT (s) = 0:
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We obtain

0
X,HX
= EuT

�
minNnfig (s) � 1Nnfig

� MX
� EuT (s)

MX
� EuT

�
maxNnfig (s) � 1Nnfig

� X,HX
= 0

and therefore EuT (s) = 0:

Claim 2, C2. For all s 2 RN+ ; we have minT (s) � EuT (s) � maxT (s) :
Coalition T is a carrier of uT ; and we obtain

minT (s)
X,HX
= EuT (minT (s) � 1T )

MX
� EuT (s)

CX,MX
� EuT (maxT (s) � 1T )

X,HX
= maxT (s) :

Claim 3, C3. For all s 2 RN+ ; we have EuNT (s) = minT (s) :
If jT j = 1; the claim is immediate from C2. Let now jT j > 1: Further, let (*) i 2 T be

such that si = minT (s) and let v 2 V and s�i 2 RN+ be given by

v :=

 X
`2T

uf`g

!
� uT (A.1)

and
(s�i)i := 0 and (s�i)` := s` for all ` 2 N n fig : (A.2)

We obtain

X
`2Tnfig

s`
C1,C2,(A.2)

=

 X
`2T

Euf`g (s�i)

!
� EuT (s�i)

L,(A.1)
= Ev (s�i)

MX,(A.2)
� Ev (s)

L
=

 X
`2T

Euf`g (s)

!
� EuT (s)

C2
=

 X
`2T

s`

!
� EuT (s)

and therefore

minT (s)
C2
� EuT (s) � si

(*)
= minT (s) :

By (1) and (7), this concludes the proof.
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Appendix B. Proof of Proposition 4

For % 2 R n f0g ; we have

CES%uN
�
1fig
�
=

�
1

jN j

� 1
%

6= 0 = uN (fig)

and CES+1uN
�
1fig
�
= 1 6= 0 = uN (fig) for i 2 N: That is, the mapping CES% fails X for

% 2 �R n f�1; 0g : We already know that the Lovász extension L = CES�1 satis�es X. For
S � N; we obtain

CES0v (1S)
(13),(15)
=

X
T�N;T 6=;

jT j

sY
`2T

s` � �T (v)
(4)
=

X
T�S;T 6=;

�T (v)
(2)
= v (S) :

Hence, the mapping CES0 satis�es X.

Appendix C. Proof of Proposition 5

For i; j 2 N; i 6= j; let the (monotonic) game v 2 V be given by

v = ufig + ufjg � ufi;jg: (C.1)

For � 2 R+ and R n f0g ; we obtain

CES%v
�
� � 1fig

� (12),(15),(C.1)
= � �

 
1�

�
1

2

� 1
%

!
:

For % 2 (�1; 0) ; we have

1�
�
1

2

� 1
%

< 0;

which implies that CES% failsMX for % 2 (�1; 0). In view of Theorem 6 and Propositions 3
and 4, the extension CES0 must failMX.
For � 2 R+ and % 2 R n f0g ; we obtain

CES%v
�
� � 1fig + 1fjg

� (12),(15),(C.1)
= �+ 1�

�
1

2

� 1
%

� (�% + 1)
1
%

and
d

d�
CES%v

�
� � 1fig + 1fjg

�
= 1�

�
1

2

� 1
%

�
 

�

(�% + 1)
1
%

!%�1
:

Hence, we have

lim
"#0

d

d�
CES%v

�
"
1
% � 1fig + 1fjg

�
= �1 for % 2 (0; 1)
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and

lim
"!1

d

d�
CES%v

�
"
1
% � 1fig + 1fjg

�
= �1 for % 2 (1;1) :

Therefore, CES% failsMX for % 2 (0; 1) and % 2 (1;+1) :
By Theorem 6, we already know that the Lovász extension L = CES�1 satis�es MX.

Remains to show that both CES1 and CES+1 satisfy MX. First, we show that

CES1v (s) =
X
i2N

si �
X
�2R

1

jRj �MC
v
i (�) : (C.2)

and
CES+1v (s) =

X
i2N

si �MCvi (�) for � 2 R� (s) (C.3)

for all v 2 V and s 2 RN+ ; where

R� (s) := f� 2 R j � (i) < � (j) for all i; j 2 N with si < sjg : (C.4)

Since both sides of (C.2) and (C.3) are linear in the game, we are allowed to restrict
attention to unanimity games. Let T � N; T 6= ;: For any � 2 R; the marginal contribution
of the last player from T is one for uT ; whereas the marginal contributions of all other players
are zero. Since all rank orders have the same probability in the right-hand side of (C.2),
any of the players in T has a probability of 1= jT j of being the last player from T: Hence,
we have X

i2N
si �
X
�2R

1

jRj �MC
uT
i (�) =

X
i2T

1

jT j � si
(1),(12),(15)

= CES1uT (s) :

For any s 2 RN+ and � 2 R� (s) ; the marginal contribution of the last player from T is
one for uT ; whereas the marginal contributions of all other players are zero. By (C.4), the
amount of the resource of any of the last players from T is maxT (s) : Hence, we haveX

i2N
si �MCuTi (�) = maxT (s)

(1),(13),(15)
= CES+1v (s) :

In monotonic games, all marginal contribution are non-negative. By (C.2), it is therefore
immediate that CES1 satis�esMX. Using arguments analogous to those showing that L =
CES�1 satis�esMX in the proof of Theorem 6, one shows that CES+1 satis�esMX.
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