Induzierte Selektivität - Die Entwicklung der assistierten Vinylkationenbildung und Anwendung der resultierenden Vinyltriflimide

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Sebastian Schröder, Master of Science
aus
Duisburg

Berichter: Prof. Dr. Meike Niggemann
 Prof. Dr. Markus Albrecht

Tag der mündlichen Prüfung: 11.12.2020

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek verfügbar.
Always listen to experts. They’ll tell you what can’t be done, and why. Then do it – Robert Heinlein

Teile dieser Arbeit wurden bereits veröffentlicht:

Danksagung

Besonders möchte ich Frau Prof. Dr. Meike Niggemann für die freundliche Aufnahmen in ihren Arbeitskreis, die gebotenen Möglichkeiten und die spannende Themenstellung danken.

Herr Prof. Dr. Markus Albrecht danke ich für die freundliche Übernahme des Zweitgutachtens.

Allen ehemaligen und aktuellen Doktoranten und Mitgliedern des Arbeitskreises möchte ich für die schöne Zeit herzlich danken. Für all die gemeinsamen Stunden und fruchtbaren Diskussionen vor allem Christina Strauch, Marian Rauser und Marina Chuchmareva. Stefan Haubenreisser, Raphael Eckert und Tobias Stopka für die gemeinsamen Zeit im Labor und die musikalischen Einflüsse, die noch lange bestehen werden.

Im speziellen hervorheben möchte ich meine Studenten und Azubis, Niklas, Martin, Joel, Darren, Simon und Riccardo für ihre engagierte Arbeit im Labor.

Allen Mitarbeitern der analytischen Abteilungen gilt ebenfalls mein größter Dank, allen voran Dr. Christoph Räuber für die zahlreichen Stunden gemeinsamen NMR-Rätsel Lösens und Cornelia Vermeeren für die große Unterstützung in allen denkbaren Bereichen.

Weiter möchte ich mich bei allen Freunden bedanken, die mich auf diesem Weg begleitet haben. Ohne euch wäre es nicht möglich gewesen. Besonders Hanna für die Tage am Telefon und Henni für die Abende am Wasser.

Der größte Dank gilt an dieser Stelle meinen Eltern und meinen Brüdern, eure Unterstützung und Liebe berührt mich immer wieder.

Und zu guter Letzt möchte ich meiner Verlobten Katharina sagen, dass es überwältigend ist das Leben Seite an Seite mit dir zu leben. Es gibt keine Worte die ausdrücken können was ich für dich empfinde.
Inhaltsverzeichnis

1. Calcium-katalysierte Cycloisomerisierung von Diinolen ... 1
 1.1 Einleitung .. 1
 1.1.1 Einführung in die Chemie der Vinylkationen ... 1
 1.1.2 Struktur und Reaktivität von Vinylkationen ... 2
 1.1.4 Methoden zur Bildung und Kontrolle von Vinylkationen ... 5
 1.1.5 Vinylkationen im Arbeitskreis NIGGEMANN .. 9
 1.2 Konzept ... 17
 1.3 Synthese der Diinole .. 18
 1.3.1 Synthese von Diinolen mit Malonatrückgrad .. 18
 1.3.2 Synthese von Diinolen ohne Malonatrückgrad .. 19
 1.4 Optimierung der Reaktion ... 20
 1.5 Untersuchung der Anwendungsbreite .. 23
 1.5.1 Untersuchung des Aryl-Substituenten .. 23
 1.5.2 Untersuchung der geminalen Substituenten der Hydroxy-Gruppe 25
 1.5.3 Untersuchung des Diinol-Rückgrads ... 27
 1.6 Untersuchung des Mechanismus .. 28
 1.6.1 Untersuchung von Reaktionspfad II .. 30
 1.6.2 Untersuchung von Reaktionspfad I .. 30
 1.6.3 Untersuchung der E/Z-Selektivität mit NMR-Experimenten .. 32
 1.6.4 Zusammenfassung der Mechanismusuntersuchung ... 34
 1.7 Calcium- und Kupfer-katalysierte Pyrrol-Synthese ... 36
 1.8 Zusammenfassung und Ausblick .. 40

2. Synthese von Vinyltriflimiden durch Assistierte Vinylkationenbildung ... 43
 2.1 Einleitung .. 43
 2.2 Konzept ... 50
 2.3 Optimierung der Reaktionsbedingungen ... 53
 2.4 Strukturaufklärung des Phenylvinyltriflimids 227a ... 58
 2.5 Untersuchung der Anwendungsbreite .. 61
 2.6 Mechanistische Untersuchungen .. 67
 2.6.1 Bestimmung der Stereoselektivität via NMR-Spektroskopie ... 67
 2.6.2 Unerwartete Differenzierung zwischen Doppel- und Dreifachbindungen 69
 2.7 DFT-Studien ... 70
4.6 Datensätze zu DFT-Rechnungen ... 198
4.6.1 Berechnete stationäre Punkte in Kapitel 2.5 ... 198
4.6.2 Berechnete stationäre Punkte in Kapitel 2.6.1 202
4.6.3 Berechnete stationäre Punkte in Kapitel 2.7 .. 204
4.6.4 Berechnete stationäre Punkte in Kapitel 2.8.1 211
4.6.5 Berechnete stationäre Punkte in Kapitel 3.2 .. 215
4.6.6 Berechnete stationäre Punkte in Kapitel 3.4 .. 227
4.6.7 Berechnete stationäre Punkte in Kapitel 3.5.2 234

5. Abkürzungsverzeichnis .. 280

6. Literaturverzeichnis ... 283
1. Calcium-katalysierte Cycloisomerisierung von Diinolen

1.1 Einleitung

1.1.1 Einführung in die Chemie der Vinylkationen

Schema 1: Vergleich trikoordinierter Carbokationen mit dikoordinierten Vinylkationen.

Zum einen wurden Vinylkationen als Intermediate angesehen, die aufgrund ihrer hohen Energie äußerst schwer gebildet werden können. Damit verband sich die Erwartung, dass Vinylkationen eine ausgeprägte Tendenz zu unselektiven Reaktionsverläufen, Dissoziationen und Isomerisierungen besitzen. Sie wurden daher zunächst als unattraktiv angesehen und in der organischen Synthese aktiv vermieden.[1d]

1.1.2 Struktur und Reaktivität von Vinylkationen

Um die Reaktivitäten und Möglichkeiten zur Nutzung von Vinylkationen zu verstehen, ist eine genaue Betrachtung der Struktur dieser Spezies von Nutzen. In den Solvolyse-Experimenten konnte schnell gezeigt werden, dass Vinylkationen, wie angenommen, eine lineare Struktur besitzen. Das formell positiv geladene Kohlenstoffatom ist weiterhin sp-hybridisiert und das leere p-Orbital orthogonal zum Molekülorbital der π-Bindung ausgerichtet (siehe Schema 3).

Schema 4: Persistentes Vinylkation 5.

Bei der Betrachtung der Orbitalbesetzungen fällt auf, dass die Doppelbindung in Richtung des formal positiv geladenen Kohlenstoffatom stark polarisiert ist. Diese Polarisierung kann durch die Anteile der Resonanzstruktur 4' von Vinylkation 4 erklärt werden, die ein Carben darstellt, das mit einer positiv geladenen Methylen-Gruppe substituiert ist (siehe Schema 3). [8e, 9b]

Wie in der von METZGER beschriebenen Reaktion insertiert dieses unter Bildung des cyclisierten Produkts 15 intramolekular in die energetisch günstigste C-H Bindung.
Der Arbeitskreis von BREWER nutzte in einer Reihe von Publikationen die Fragmentierung von Diazoketonen um Vinylkationen zu generieren (siehe Schema 6).

Durch geschickte Wahl der Substituenten an der Carbonylfunktion des Startmaterials konnte dann die intramolekulare C-H Insertion begünstigt werden.

Die Erzeugung von Vinylkationen im stark basischen Medium wiederrum gelang ihnen durch die Kombination eines kommerziell erhältlichen Lewis-Säure-Katalysators und der Base LiHMDS. Die von der Base zur Verfügung gestellten Lithiumkationen erwiesen sich bei der Ionisierung der Vinyltriflate als essentiell und führten zu einer erfolgreich durchgeführten intramolekularen C-H Insertion. Die sehr erfolgreiche Nutzung von Vinylkationen zeigt sehr deutlich, dass diese Spezies im Begriff ist, ihr Schattendasein zu überwinden und sich zu etablieren. Um diese Entwicklung weiterzuführen besteht jedoch immer noch die Herausforderung, Vinylkationen effektiv und effizient zu generieren.

1.1.4 Methoden zur Bildung und Kontrolle von Vinylkationen

Die nach der ersten Erzeugung von Vinylkationen häufig für Kinetikstudien genutzte Solvolyse wird in der modernen organischen Chemie nur noch vereinzelt verwendet. Obwohl auch mit dieser Methode, wie in den Beispielen von NELSON demonstriert, sehr effektiv Vinylkationen genutzt werden können, hat sich die Addition von Elektrophilen an Dreifachbindungen als Standardmethode zur Darstellung von Vinylkationen als vorteilhaft gegenüber der Solvolyse erwiesen.\[19\]

Schema 8: Gold-katalysierte Dimerisierung von Alkinen.

Weitere aktuelle Beispiele, die Goldkatalysatoren zur Bildung und Kontrolle von Vinylkationen nutzen, sind die katalysierte Dimerisierung von halogenierten Alkinen sowie eine Kaskadenreaktion zur Bildung tri- und tetracyclischer Produkte von O\textsubscript{HNO}. Bei der Dimerisierung konnte selektiv ein ungewöhnlicher 1,3-Chlor-Shift induziert werden (siehe Schema 10).\(^{[24]}\)
1.1.5 Vinylkationen im Arbeitskreis NIGGEMANN

Besonders die Propargylalkohole 72 stellen in dieser Art von Reaktion interessante Startmaterialien dar, da die entsprechenden Propargylkationen 73 eine mesomere Grenzstruktur des Allenylkations 74, einem aus der Goldkatalyse bekannten Intermediat, darstellen und dieselbe Reaktivität aufweisen können. Die so gebildeten Kationen können dann mit Dreifachbindungen meist intramolekular zu den entsprechenden Vinylkationen reagieren (siehe Schema 12, unten). Zur Aktivierung der Doppelbindung und hauptsächlich zur Dehydroxylierung wird dabei das im Arbeitskreis entwickelte Katalysatorsystem aus Ca(NTf₂)₂ und Bu₄NPF₆ genutzt. Die Funktion des Additivs ist hierbei vor allem die Erhöhung der Löslichkeit durch das Tertbutylammonium-Kation und die Bildung der aktiven Katalysatorspezies 84 durch Anionen-Metathese (siehe Schema 13). Die Dehydroxylierung durch das Katalysatorsystem wird aktuell wie folgt erklärt. Zu Beginn der Reaktion koordiniert die aktive
Katalysator-Spezies an die Hydroxy-Gruppe des Alkohols. Dies führt zu einer Schwächung der C-O Bindung und, assistiert durch die Wasserstoffbrücke zu einem H₂O-Molekül aus der Koordinationssphäre des Calcium-Ions, am Ende zu einer heterolytischen Bindungsspaltung.

Durch die Ionisierung werden Kation 9₁ und Hydroxid 9₀ gebildet. 9₁ kann nach der Transformation in einer Kaskade oder direkt durch Eliminierung oder durch Reaktion mit einem Nukleophil ein Proton freisetzen, dass die Katalysatorspezies 8₆ regeneriert.

Table 1: Comparison of hydrolysis constants and water exchange rates of Al\(^{3+}\), Sc\(^{3+}\) and Ca\(^{2+}\).

<table>
<thead>
<tr>
<th></th>
<th>Al(^{3+})</th>
<th>Sc(^{3+})</th>
<th>Ca(^{2+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>pK(_A)</td>
<td>1.14</td>
<td>4.3</td>
<td>12.9</td>
</tr>
<tr>
<td>WERC (M(^{-1})s(^{-1}))</td>
<td>1.6·10(^0)</td>
<td>4.8·10(^7)</td>
<td>5.0·10(^7)</td>
</tr>
</tbody>
</table>

Schema 14: Calcium-katalysierte Zyklisierungen via Vinylkation 99 und 103.
Durch die Aktivierung einer Doppelbindung durch das Calcium-Katalysatorsystem konnte die Cycloisomerisierung unterschiedlicher Enine 101 durchgeführt werden (siehe Schema 14, unten).\(^\text{[28]}\)

2015 wurde im Arbeitskreis NIGEMANN die intramolekulare Carboarylierung von Alkinen realisiert (siehe Schema 15, oben).\(^\text{[29]}\) Durch die Erzeugung des Vinylkations 108 mithilfe des nukleophilen Angriffs der Dreifachbindung an einem sekundären Carbokation und anschließender schneller Friedel-Crafts artiger Alkylierung konnte so eine Reihe von schwer zugänglichen tetra-substituierten Olefinen

![Schema 16: Oxidative Cycloisomerisierung von Alkinolen 117.](image)

Sogar schwach nukleophile Dialkyllamine 127 können durch eine nukleophile Addition an Carbokation 128 zur Bildung der Vinylkationen 129 genutzt werden (siehe Schema 17, oben). Die Extrusion von Stickstoff begünstigt eine intramolekulare Zyklisierung des Intermediats und ermöglicht so die generelle Synthese mehrfach-substituierter Quinoline 131. Durch den Austausch der Azid-Funktionalität mit Hydroxy- und Tosylamid-Gruppen (siehe Schema 17, unten) konnte nach der anschließenden nukleophilen Addition des Alkins ein ungewöhnlicher 1,3-Aryl-Shift beobachtet werden, der nach abschließender intramolekularer Zyklisierung zu den 1,2-Dihydroquinolinen 137 (Nu = NTs) und 2H-Chromenen 137 (Nu = O) führt.
Diese Beispiele zeigen, dass vor allem durch die intramolekulare Reaktionsführung auch unter Verzicht von Übergangsmetall-Katalysatoren mit Vinylkationen Reaktionskaskaden durchgeführt werden können, die aus simplen Startmaterialien komplexe Produkte mit einer erstaunlichen Selektivität liefern können.

Im ersten Projekt im Rahmen dieser Dissertation soll dieses Konzept erweitert und dazu eine Kaskade realisiert werden, die Elemente der Dehydroxylierung, der Cycloisomerisierung und der Stabilisierung durch Elektronendonoren zur selektiven Synthese komplexer Substrate effizient zusammenführt.
1.2 Konzept

Schema 18: geplante Calcium-katalysierte Cycloisomerisierung der Diinole 138.

Da diese Spezies durch eine 6π-Elektrozyklisierung im Gleichgewicht mit dem entsprechenden 2H-Pyran 143 steht, soll außerdem die Substratbreite detailliert in Bezug auf die Lage des Gleichgewichts bei Veränderungen der Substituenten untersucht werden. Vor allem das Vermögen des Dienons 142, die Elektronendichte des π-Systems ohne Störung zu delokalisieren hat hier einen signifikanten Einfluss und soll im Zuge des Projekts im Detail untersucht werden.

Das Projekt zur Cycloisomerisierung von Diinolen wurde in Zusammenarbeit mit Marian Rauser durchgeführt. Es werden alle Ergebnisse unter Kenntlichmachung der jeweiligen Beiträge aufgeführt:
Optimierung: Sebastian Schröder (Lösungsmittel, Additiv-Variation, Variation der Elektronendonoren) und Marian Rauser (Zeit, Temperatur, Säure-, Katalysator- und Wasser-Variation)
Anwendungsbreite: Sebastian Schröder und Marian Rauser
Mechanistische Untersuchungen: Sebastian Schröder (NMR-Experimente) und Marian Rauser (Kontrollexperimente)
DFT-Rechnungen: Meike Niggemann und Marian Rauser
Teile dieses Kapitels sind bereits veröffentlicht:
Cooperative Catalysis: Calcium and Camphorsulfonic Acid Catalyzed Cycloisomerization of Diynols

1.3 Synthese der Diinole

1.3.1 Synthese von Diinolen mit Malonatrückgrad

Anschließend wurden die Alkohole 149 durch Deprotonierung einer der Dreifachbindungen mit LiHMDS und Addition an die jeweiligen Carbonylverbindungen 148 dargestellt (siehe Schema 20, Ausbeuten in blau). Die gewünschten Diinole 149 konnten nach einstündiger Reaktionszeit in moderaten Ausbeuten von 5% bis 67% erhalten werden. Unter den angegebenen Reaktionsbedingungen führt die Addition von 149 an eine zweite Carbonylverbindung 148 und die geringe Stabilität einiger Aldehyde hierbei zu den vergleichsweise geringen Ausbeuten.
Abschließend wurden in der letzten Stufe der Startmaterialsynthese durch Einführung des aromatischen Phenylsubstituenten in einer Sonogashira-Reaktion die gewünschten Diöle 150 in guten bis sehr guten Ausbeuten von bis zu 97% erhalten (siehe Schema 20, Ausbeuten in schwarz).

1.3.2 Synthese von Diölen ohne Malonatrückgrad

Um weitere Substrate mit Tosylamid-, Ether- und einem Methylen-Rückgrad zu synthetisieren wurde die aus Unterkapitel 1.3.1 bekannte Syntheseroute leicht modifiziert. Nach der Synthese oder dem Einkauf der Diöle 151 werden die Diöle 154 wieder durch die Addition an Carbonylverbindungen 150 und anschließende Sonogashira-Kupplung erhalten.
Die Addition des Diins an Aceton durch die schon beschriebene Deprotonierung mit Hilfe von LiHMDS führte, wie schon bei den Substraten mit Dimalonatrückgrad, zu einer mittelmäßigen Ausbeute von 49%. In den über Nacht laufenden Sonogashira-Kupplungen konnten nach anschließender Isolierung mittels Säulenchromatographie die entsprechenden Diinole 154 dagegen mit guten bis sehr guten Ausbeuten isoliert werden (siehe Schema 21).

1.4 Optimierung der Reaktion

Nach einigen Voruntersuchungen wurde Diinol 150a zur Optimierung der Cycloisomerisierung als Standardsubstrat ausgewählt. Beim ersten Versuch 150a mit jeweils 5 mol% des Katalysators Ca(NTf₂)₂ und des Additivs PhMe₂HN⁺ B(C₆F₅)₄ in DCE einzusetzen, wurde kein Umsatz des Startmaterials beobachtet (siehe Tabelle 2, Eintrag 1). Bei Zugabe von CSA konnte nach einer Stunde Reaktionszeit das gewünschte cyclische Produkt 155a in einer geringen Ausbeute von 24% erhalten werden (siehe Tabelle 2, Eintrag 2). Nachdem es MARIAN RAUSER gelang, die Reaktionszeit auf 7 Stunden zu verkürzen
(nicht in Tabelle aufgeführt) konnte durch die Zugabe verschiedener Carbonylverbindungen, die als Elektronendonoren die intermediären Vinylkationen stabilisieren können, die Ausbeute auf bis zu 81% erhöht werden (siehe Tabelle 2, Einträge 3-7).

Tabelle 2: Optimierung der Calcium-katalysierten Cycloisomerisierung von Standardsubstrat 150a.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Katalysator</th>
<th>Additiv</th>
<th>Säure</th>
<th>Lösungsmittel</th>
<th>Carbonyl-Additiv</th>
<th>Zeit [h]</th>
<th>Ausbeute [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ca(NTf₂)₂</td>
<td>PhMe₂HN⁺</td>
<td>/</td>
<td>DCE</td>
<td>/</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Ca(NTf₂)₂</td>
<td>PhMe₂HN⁺</td>
<td>CSA</td>
<td>DCE</td>
<td>/</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>Ca(NTf₂)₂</td>
<td>PhMe₂HN⁺</td>
<td>CSA</td>
<td>DCE</td>
<td>PhCHO</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>Ca(NTf₂)₂</td>
<td>PhMe₂HN⁺</td>
<td>CSA</td>
<td>DCE</td>
<td>(p-NO₂)C₆H₄CHO</td>
<td>7</td>
<td>41</td>
</tr>
<tr>
<td>5</td>
<td>Ca(NTf₂)₂</td>
<td>PhMe₂HN⁺</td>
<td>CSA</td>
<td>DCE</td>
<td>(p-Cl)C₆H₄CHO</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>Ca(NTf₂)₂</td>
<td>PhMe₂HN⁺</td>
<td>CSA</td>
<td>DCE</td>
<td>(m-OMe)₂C₆H₄CHO</td>
<td>7</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>Ca(NTf₂)₂</td>
<td>PhMe₂HN⁺</td>
<td>CSA</td>
<td>DCE</td>
<td>PhCHO</td>
<td>7</td>
<td>81</td>
</tr>
<tr>
<td>8</td>
<td>Ca(NTf₂)₂</td>
<td>PhMe₂HN⁺</td>
<td>CSA</td>
<td>DCM</td>
<td>PhCHO</td>
<td>7</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>Ca(NTf₂)₂</td>
<td>PhMe₂HN⁺</td>
<td>CSA</td>
<td>MeNO₂</td>
<td>PhCHO</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>Ca(NTf₂)₂</td>
<td>/</td>
<td>CSA</td>
<td>DCE</td>
<td>PhCHO</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Ca(NTf₂)₂</td>
<td>PhMe₂HN⁺</td>
<td>/</td>
<td>DCE</td>
<td>PhCHO</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>12[a]</td>
<td>Ca(NTf₂)₂</td>
<td>PhMe₂HN⁺</td>
<td>CSA</td>
<td>DCE</td>
<td>PhCHO</td>
<td>7</td>
<td>51</td>
</tr>
<tr>
<td>13[b]</td>
<td>Ca(NTf₂)₂</td>
<td>PhMe₂HN⁺</td>
<td>CSA</td>
<td>DCE</td>
<td>PhCHO</td>
<td>7</td>
<td>39</td>
</tr>
<tr>
<td>14</td>
<td>Ca(NTf₂)₂</td>
<td>PhMe₂HN⁺</td>
<td>CSA</td>
<td>DCE</td>
<td>PhCHO</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>Ca(NTf₂)₂</td>
<td>Bu₄NSbF₆</td>
<td>CSA</td>
<td>DCE</td>
<td>PhCHO</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>Ca(NTf₂)₂</td>
<td>H₄NPF₆</td>
<td>CSA</td>
<td>DCE</td>
<td>PhCHO</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>/</td>
<td>/</td>
<td>CSA</td>
<td>DCE</td>
<td>PhCHO</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>/</td>
<td>/</td>
<td>HNTf₂</td>
<td>DCE</td>
<td>PhCHO</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

[a] 1 Äquivalent H₂O (0,1 mmol) vor Reaktionsbeginn zugegeben. [b] Molekularsieb (Porenweite 3 Å) vor Reaktionsbeginn zugegeben
Die Verwendung weiterer Lösungsmittel (siehe Tabelle 2, Einträge 8-10) führte zu erheblichen Einbußen der Ausbeute. Auch die Variation des Additivs konnte die Ausbeute nicht weiter verbessern (siehe Tabelle 2, Einträge 14-16). Die Untersuchung zum Einfluss des Wassergehalts im Lösungsmittel (siehe Tabelle 2, Einträge 12 und 13) auf die Reaktion zeigte, dass sowohl auf Zugabe als auch auf Ausschluss von Wasser ein deutlicher Rückgang der Ausbeute folgt.

Um die Möglichkeit der simplen Katalyse durch Brønstedsäuren auszuschließen, wurde die Reaktion zuletzt ohne den Calciumkatalysator mit der mittelstarken Camphersulfonsäure und der starken Säure HNTf₂ durchgeführt (siehe Tabelle 2, Einträge 17 und 18). In beiden Reaktionen konnte kein Umsatz des Startmaterials beobachtet werden.

Nach der Identifizierung der optimalen Reaktionsbedingungen wurden die synthetisierten Startmaterialien zur Untersuchung der Anwendungsbreite unter den beschriebenen Bedingungen umgesetzt.
1.5 Untersuchung der Anwendungsbreite

1.5.1 Untersuchung des Aryl-Substituenten

Bei der Untersuchung der Anwendungsbreite wurde zunächst der Fokus auf den Aryl-Substituenten an der Dreifachbindung gerichtet. Dieser hat, wie in Kapitel 1.1.2 beschrieben, aufgrund der α-Position zum formell positiv geladenen, sp-hybridisierten Kohlenstoffatom des Vinyllaktions 159 einen signifikanten Einfluss auf die Stabilität des Intermediats und so auch auf den Verlauf der Reaktion (siehe Schema 23, rechts).

Reaktionsbedingungen: Ca(NTf₂)₂ (5 mol%), Additiv (5 mol%), CSA (10 mol%) und PhCHO (0.1 mmol) wurden zu einer Lösung aus Diinol x (0.1 mmol) in DCE (1.0 mL) gegeben und bei 40°C gerührt;
[a] 4 h Reaktionszeit; [b] 7 h Reaktionszeit; * Reaktion durchgeführt von Marian Rausser

direkte Hydrolyse des Allenylkations 158 (siehe Schema 23, links) aufgrund der reduzierten Nukleophilie des Alkins durch den Nitro-Substituenten erklärt werden.

Schema 24: Stabilisierende Wasserstoffbrücke in Diinol 157a.
Nach der Untersuchung des Einflusses des Aryl-Substituenten, die eine ungewöhnliche Beschleunigung der Reaktion bei Destabilisierung des Vinylkations 159 aufdeckte, sollte in der Folge der Einfluss der beiden geminalen Substituenten der Hydroxy-Gruppe näher untersucht werden.

1.5.2 Untersuchung der geminalen Substituenten der Hydroxy-Gruppe

Bereits in der Einleitung dieses Kapitels wurde erwähnt, dass die Lage zwischen Dienon 142 und 2H-Pyran 143 vor allem durch das Vermögen des Dienons, das erweiterte π-System durch Konjugation zu stabilisieren, bestimmt wird. Durch die sterische Hinderung als Folge der Substitution an der α-Position der Hydroxygruppe besteht ein signifikanter Einfluss auf die Möglichkeit, die Doppelbindungen zueinander möglichst planar auszurichten und somit die bestmögliche Überlappung der Orbitale zu erreichen.

Um die Auswirkungen auf die Cycloisomerisierung und die Lage des Gleichgewichts zwischen Dienon 142 und 2H-Pyran 143 detailliert zu untersuchen, wurden die Diinole 150 mit unterschiedlichen Substitutionsmustern am α-C-Atom des Alkohols unter den optimierten Reaktionsbedingungen umgesetzt (siehe Schema 25).

Die ausgezeichnete Selektivität der Reaktion bezüglich der Bildung der Dienone 157 ohne nachfolgende Zyklisierung kann dabei wie folgt rationalisiert werden.

Reaktionsbedingungen: Ca(NTf₂)₂ (5 mol%), Additiv (5 mol%), CSA (10 mol%, und PhCHO (0.1 mmol) wurden zu einer Lösung aus Diinol x (0.1 mmol) in DCE (1.0 mL) gegeben und bei 40°C gerührt; [a] 4 h Reaktionszeit; [b] 0.1 h Reaktionszeit; [c] 24 h Reaktionszeit; [d] E/Z-Verhältnis via NMR bestimmt; * Reaktion durchgeführt von Marian Rauser

Schema 26: Vergleich di- und tri-substituierter Dienone.
Bei der \(E/Z\)-Selektivität der Dienone fällt auf, dass lediglich bei dem Phenyl-substituierten Dienon 157c eine außergewöhnlich hohe \(Z\)-Selektivität erhalten wird, während alle anderen Dienone mit guter (157b) oder ausgezeichneter \(E\)-Selektivität gebildet werden. In einer Reihe von zeitaufgelösten Experimenten (siehe Kapitel 1.6.3) konnte die Isomerisierung des \(Z\)-Isomers nachgewiesen werden und somit die Erklärung liefern, dass die \(E\)-Dienone trotz des kinetisch-bevorzugten \(Z\)-Produkts als thermodynamisch-bevorzugte Produkte nach ausreichender Reaktionszeit selektiv isoliert werden.

1.5.3 Untersuchung des Diinol-Rückgrads

Da auch die Struktur des Diinol-Rückgrads die Selektivität und den Umsatz der Cycloisomerisierung sowie die Stabilität der Intermediate und Produkte umfangreich beeinflussen kann, wurden die Diinole 162 synthetisiert und anschließend unter den optimierten Bedingungen umgesetzt, um die Auswirkung der Veränderung des Rückgrads zu beobachten (siehe Schema 27).

Schema 27: Untersuchung der Anwendungsbreite durch Variation des Rückgrads.

Dabei wurden zuerst die um eine Methylene-Gruppe erweiterten Diinole verwendet. Mit beiden Substraten konnten die entsprechenden Bicyclen 165 und 166 in Ausbeuten von 63% und 91% erhalten werden. Bei Produkt 165 wurde dabei die Isomerisierung einer Doppelbindung beobachtet. Das Dienol mit aromatischem Rückgrat konnte ebenfalls mit einer guten Ausbeute von 72% zu \(2H\)-Pyran 167 umgesetzt werden. Durch die Erweiterung des \(\pi\)-Systems wurde die \(6\pi\)-Elektrocyclisierung hier ebenfalls vollständig unterdrückt.

1.6 Untersuchung des Mechanismus

Zu Beginn des zweiten Reaktionspfads (siehe Schema 29, Pfad II) wird das Allenylkation intermolekular durch ein H$_2$O-Molekül anstatt intramolekular durch die Dreifachbindung (siehe Schema 29, Pfad I) nucleophil angegriffen und bildet dann in einer Meyer-Schuster artigen Umlagerung Enon 182. Durch Koordination des Calcium-Katalysators an die Carboxylfunktion in 183 wird das Kohlenstoffatom für eine nucleophile Addition der Dreifachbindung aktiviert. Das dabei gebildete Vinylkation 184 wird durch ein weiteres Wassermolekül unter Bildung von Enol 185 abgefangen und kann dann entweder durch calcium-katalysierte oder durch spontane Dehydratisierung zum Dienon 180 reagieren.

Um die beobachtete Stereo- und Chemoselektivität zu erklären, wurde nun versucht den ablaufenden Reaktionspfad, Ia, Ib oder II, zu identifizieren. Zudem sollte die Frage beantwortet werden, ob dieser allein abläuft, oder vielleicht der Wechsel von einem zu einem anderen bzw. der parallele Ablauf mehrerer Mechanismen bei der ablaufenden Reaktion eine Rolle spielt.

1.6.1 Untersuchung von Reaktionspfad II

1.6.2 Untersuchung von Reaktionspfad I

Da Reaktionspfad II nicht zur Bildung des Produkts 155a führt, wurde der Fokus der Untersuchung auf den Reaktionspfad I gelegt. Da bei diesem jedoch mit Ausnahme des Dienon-Produkts 180 keine stabilen, und somit (wie im Fall von 182) durch Synthese zugängliche, Intermediate postuliert werden,
wurde zur genaueren Analyse eine detaillierte computerbasierte DFT-Studie mit Blick auf die folgenden Fragen durchgeführt:

Besitzt Reaktionspfad I unter den Reaktionsbedingungen realistische und überwindbare Energiebarrieren?

Kommt es bei der Reaktion über den direkten, konzertierten 1,5-H-Shift oder über die stufenweise Tautomerie/Protonierung/Eliminierungs-Kaskade zur Bildung des Produkts 180?

Welche Faktoren bestimmen das Gleichgewicht der 6π-Elektrocyclisierung zwischen Dienon 180 und 2H-Pyran 155a und wie lassen sich diese beeinflussen?

Da der Lewis-Säure Katalysator bei kationischen Kaskaden nach der Initiierung nur einen sehr geringen Einfluss auf den Verlauf und die Selektivität ausübt, wurde dieser in den Rechnungen nicht weiter berücksichtigt.

Der Reaktionspfad mit der geringsten Energie für die Mechanismen Ia und Ib wurden von MEIKE NIGGEMANN und MARIAN RAUSER mit den drei Funktionalen mPW1PW91, B3LYP und M06-2X und dem Basissatz 6-31+G(d,p) berechnet. Dabei stellte sich die Methode mit dem Funktional M06-2X als die genauste heraus und wird hier für zur Analyse genauer betrachtet.

![Energiediagramm für den postulierten Radikalkettenmechanismus](image)

Abbildung 1: Energiediagramm für den postulierten Radikalkettenmechanismus (Berechnet von MEIKE NIGGEMANN und MARIAN RAUSER).

Die berechneten Energien der Intermediate und Übergangszustände der beiden möglichen Reaktionspfade entlang der Reaktionskoordinate sind in Abbildung 1 dargestellt. Bei der Betrachtung der ersten Übergangszustände fällt die beachtliche Aktivierungsenergie für die Keto-Enol Tautomerie auf (siehe Abbildung 1, Pfad Ib). Sie ist mit 57,9 kcal·mol⁻¹ bei leicht erhöhten Temperaturen so gut wie nicht zu überwinden und liegt deutlich über der Aktivierungsenergie für den 1,5-H-Shift. Die Lage der beiden entstehenden Intermediate zeigt, dass das Dienon 180 im Vergleich zu Allenon 186 erheblich stabiler ist. Dies spricht dafür, dass die Cycloisomerisierung von Diinolen fast ausschließlich über Pfad
la abläuft und Pfad lb nur in sehr geringen Teilen an der Bildung von 155a oder von Nebenprodukten beteiligt ist.

Die Energien der beiden folgenden Intermediate, des Dienons 181 und des 2H-Pyran 155a liegen deutlich unter der des Allenols 177. Die Energiebarriere für die abschließende 6π-Elektrocyclisierung zum 2H-Pyran 155a (19,3 kcal·mol⁻¹) ist unter den Reaktionsbedingungen leicht zu überwinden. Da also die Energien aller Intermediate und Übergangszustände sinnvoll und in Falle der Aktivierungsenergien überwindbare Beträge besitzen, kann bei Reaktionspfad la von einem realistischen Mechanismus ausgegangen werden.

Auch wird deutlich, dass der geringe Energieunterschied von Dienon 181 und 2H-Pyran 155a dafür verantwortlich ist, dass sowohl Elektrocyclisierung, als auch Cycloreversion reversibel ablaufen können. Damit sind Einflüsse auf Faktoren wie Elektronendichte und sterischen Anspruch, die zur Stabilisierung (oder Destabilisierung) des Dienon oder 2H-Pyran führen, in der Lage, das Gleichgewicht zwischen den Produkten stark zu verändern (thermodynamischer Einfluss). Alternativ kann durch diese Einflüsse auch die Aktivierungsenergie einer der beiden Teilreaktionen so erhöht werden, dass die Elektrocyclisierung gar nicht (hohe Energiebarriere für die Elektrocyclisierung) oder irreversibel (hohe Energiebarriere für die Cycloreversion) abläuft (kinetischer Einfluss).

Das wird auch durch die Analyse der Struktur von Dienon 180 deutlich. So führt die elektrostatische Abstoßung zwischen der Methylgruppe am Olefin und einer der Methylengruppe des Fünfrings, sowie die Abstoßung zwischen dem Phenylring und der zweiten Methylengruppe des Rings zur Verwindung des konjugierten π-Systems aus Doppelbindung, Carbonylgruppe und Aromaten zu einer Destabilisierung des Intermediats (Diederwinkel θ = 35°, Idealwert: 0°). Durch diese spezifische Destabilisierung des Dienons 180 wird zugleich die Aktivierungsenergie für die Elektrocyclisierung gesenkt und die thermodynamische Triebkraft zur 2H-Pyran-Bildung erhöht, da die sterische Hinderung bei diesem Intermediat niedriger ist. Zuletzt musste nun der Grund für den auffälligen Wechsel der Stereoselektivität bei der Umsetzung sekundärer Diinole 150 gefunden werden

1.6.3 Untersuchung der E/Z-Selektivität mit NMR-Experimenten

Abbildung 2: Isomerisierung des Dienons 150d in CDCl₃.

Abbildung 3: Isomerisierung des Dienons 150d in DMSO-d₆.

In beiden Lösungsmitteln kann das Z-Dienon 157c anhand der charakteristischen Dublett-Signale der Olefinprotonen (bei δ = 6,45 und 6,07 ppm in CDCl₃ sowie bei δ = 6,50 und 6,04 ppm in DMSO-d₆) gut identifiziert und verfolgt werden. Nach 24 Stunden haben sich beide Spektren kaum verändert. Jedoch können in beiden Lösungsmitteln Signale einer weiteren Doppelbindung bei δ = 6,86 und 6,67 ppm in

Grundsätzlich lassen die Ergebnisse dieser NMR-Studie darauf schließen, dass der 1,5-H-Shift stereoselektiv verläuft und zunächst das kinetisch bevorzugte Z-Dienon ergibt, dass dann zum thermodynamisch begünstigten E-Dienon isomerisiert. Durch die Variation der Reaktionsbedingungen besteht hier also die Möglichkeit, beide Stereoisomere als Hauptprodukt zu erhalten. Mit diesen Erkenntnissen konnte die Untersuchung des Mechanismus der Cycloisomerisierung von Diinolen abgeschlossen werden.

1.6.4 Zusammenfassung der Mechanismusuntersuchung

Die Reaktion beginnt mit der Dehydroxylierung des Diinols 150a. Das entstandene α-Alkinylkation 174 wird anschließend intramolekular durch die verbliebene Dreifachbindung nukleophil angegriffen. Die 1,5 Addition in Allenylkation 175, der mesomeren Grenzstruktur von 174, ist dabei energetisch günstiger und gegenüber der 1,7-Addition an das tertiäre Kation auch durch die Vororientierung bevorzugen. Das entstandene Schlüsselintermediat, Vinylkation 176, wird dann durch einen intermolekularen Angriff von Wasser und anschließende Deprotonierung in Enol 177 überführt. Über einen 1,5-H-Shift lagert 177 (wenn möglich) stereoselektiv zu Z-Dienon 180 um. Von hier aus kann
durch eine reversible 6π-Elektrocyclisierung dann die Isomerisierung zu E-Dienon 181 erfolgen, oder, bei entsprechender Wahl der Substituenten, das 2H-Pyran 155a als stabiles Produkt der pericyclischen Folgereaktion erhalten werden.

1.7 Calcium- und Kupfer-katalysierte Pyrrol-Synthese

Wie bereits bei der Untersuchung des Rückgrats der Diinol-Substrate beschrieben (siehe Schema 27), wurde bei einem Wechsel von Diethylmalonat zu Tosylamiden nicht das erwartete Dienon, sondern das aromatische Pyrrol 168a in mittelmäßigen Ausbeuten von 51% gebildet.

Durch die beobachtete oxidative Cyclisierung bietet sich hier die Möglichkeit, entsprechende Pyrrole mit weiter funktionalisierbaren Substituenten in 2- und 3-Position aus synthetisch gut zugänglichen Tosylamid-Diinolen zu erhalten.

Tabelle 3: Optimierung der oxidativen Cyclisierung von Standardsubstrat 154a.

<table>
<thead>
<tr>
<th>Eintrag</th>
<th>Co-Katalysator (Mol%)</th>
<th>Mol% CSA</th>
<th>t [h]</th>
<th>Ausbeute [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/</td>
<td>10</td>
<td>24</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>O₂</td>
<td>10</td>
<td>20</td>
<td>66</td>
</tr>
<tr>
<td>3</td>
<td>mCPBA (150)</td>
<td>10</td>
<td>20</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>CuI (10)</td>
<td>/</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>CuI (10)</td>
<td></td>
<td>5,5</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>Cu(OTf)₂ (2,5)</td>
<td>10</td>
<td>2,5</td>
<td>57</td>
</tr>
<tr>
<td>7</td>
<td>CuI/Cu(OTf)₂</td>
<td>10</td>
<td>2,5</td>
<td>61</td>
</tr>
</tbody>
</table>

Reaktionsbedingungen: Ca(NTf₂)₂ (5 mol%), Co-Katalysator, PhMe₂NHB(C₆F₅)₄ (5 mol%), CSA, und PhCHO (0.1 mmol) wurden zu einer Lösung aus Diinol 154a (0.1 mmol) in DCE (1.0 mL) gegeben und bei 80°C gerührt.

Zu Beginn der Optimierung wurden verschiedene Oxidationsmittel unter den bekannten Reaktionsbedingungen eingesetzt, um die Pyrrol-Ausbeute zu steigern. Das Durchführen der Reaktion unter reiner Sauerstoff-Atmosphäre sowie die Nutzung von m-CPBA führte zu einer Erhöhung der
Ausbeute um 20% (siehe Tabelle 3, Einträge 1-3). Jedoch wurden gleichzeitig auch signifikante Mengen der Nebenprodukte 189 und 190 (siehe Schema 33) aus der schon im vorherigen Kapitel beobachteten Meyer-Schuster-Umlagerung und Eliminierung aus dem dehydroxilierten Carbokation erhalten.

Schema 33: Untersuchung der Anwendungsbreite der oxidativen Cyclisierung.

Bei elektronenziehenden Substituenten am Aromaten verringert sich aufgrund der geringeren Nukleophilie der Dreifachbindung die Ausbeute des gewünschten Produkts weiter. Mit dem Chlor-Substituenten wird das Pyrrol 168e mit einer mittelmäßigen Ausbeute von 50% erhalten. Doch bei Substitution mit einer Nitrogruppe kommt es zu einem starken Abfall der Pyrrol-Ausbeute auf 7%. Die Nutzung von Thiophen und Naphthalin als Substituent zur Variation des aromatischen Systems, führte zu mittelmäßigen Ausbeuten von 64% und 60%.

Um zuletzt den Einfluss des Tosylamid-Rückgrats zu untersuchen wurde erneut das Substrat mit Ether-Rückgrat eingesetzt. Das Produkt, Furan 169a, wurde dabei mit einer Ausbeute von 41% erhalten und erwies sich über den Zeitraum von einer Woche als instabil. Um abschließend die oxidative Cyclisierung bezüglich der Nutzbarkeit zu beurteilen, wurden die Ausbeuten ausgewählter Substrate und unterschiedlicher Substituenten (mit bekannten HAMMETT-Parametern) mit denen der Cycloisomerisierung verglichen (siehe Diagramm 1).

![Diagramm 1: Vergleich der Ausbeuten der oxidativen Cyclisierung mit den Ausbeuten der Cycloisomerisierung.](image)

Mit den elektronenreichen Substituenten (σ < 0) können effektive Cyclisierungen durchgeführt werden. Dabei werden Ausbeuten im Bereich der entsprechenden 2H-Pyran erreicht. Die Ausbeute bei der oxidativen Cyclisierung fällt jedoch schon bei leicht verringriger Elektronendichte (R = H, σ = 0) um 20% gegenüber dem 2H-Pyran. Bei elektronenarmen Substituenten (σ > 0) bricht die Ausbeute aufgrund der fehlenden Triebkraft der Reaktion ein. Die Bildung der 2H-Pyrane verläuft dagegen durch die Verschiebung des Gleichgewichts (siehe Schema 32) auch bei Substraten mit elektronenarmen Substituenten mit guten Ausbeuten. Ein weiterer möglicher Grund für die verringerte Ausbeute ist die...

1.8 Zusammenfassung und Ausblick

![Diagramm der Cycloisomerisierung von Diinol 138](image)

Durch DFT-Rechnungen, detaillierten Analysen der Anwendungsbreite, sowie Kontrollexperimente und eine komplementierende ¹H-NMR-Studie zur Isomerisierung der Dienone 142 wurde ein umfangreiches Verständnis des ablaufenden Mechanismus sowie der beeinflussenden Faktoren aufgebaut.

Der entwickelte Mechanismus beginnt mit der Calcium-katalysierten Carbokationenbildung ausgehend von Substrat 138 (siehe Schema 34). Die verbliebene Dreifachbindung stellt ein internes Nukleophil da und addiert an das Carbokation. Nach der Addition von Wasser an das entstandene
Vinylkation 140 wird dann Dienon 142 durch den Z-selektiven 1,5-H-Shift von Enol 141 erhalten. Die reversible Transformation der Diinoles 142 zu 2H-Pyrenen 143 konnte im Detail betrachtet werden und führte zu einem besseren Verständnis der Faktoren, die das Gleichgewicht zwischen beiden Spezies beeinflussen.

Schema 35: Calcium/Kupfer-cokatalysierte Cyclisierung der Diinoles 154.
2. Synthese von Vinyltriflimiden durch Assistierte Vinylkationenbildung

2.1 Einleitung

Die intramolekulare elektrophile Addition an ein Alkin war der Schlüsselschritt bei der in Kapitel 1 beschriebenen Cycloisomerisierung von Diinolen. Diese Reaktion stellt in der modernen Syntheseschemie eine oft genutzte Methode zur Bildung von Vinylkationen dar und ist dabei äußerst nützlich für die Synthese vieler ungesättigter Substanzen (siehe Schema 37).\[34\] Vinylhalogenide können zum Beispiel im industriellen Maßstab durch die direkte elektrophile Addition von Halogensäuren an die entsprechenden Alkine synthetisiert werden. Auch Dihalogenierungen, Hydroxylierungen und sogar einzelne Hydroaminierungen\[35\] sind im Labor etabliert und häufig die effizienteste Möglichkeit, die entsprechenden ungesättigten Produkte zu erhalten (siehe Schema 37).\[1e, 19c, g, 36\]

Die intermolekularen elektrophilen Additionen an Alkine reichen jedoch, trotz ihres offensichtlichen Potentials in der Synthese von Olefinen, nicht an die etablierten elektrophilen Additionen an Doppelbindungen heran.\[36a, 37\] Dies liegt vor allem an der verminderten Reaktivität der Alkine gegenüber Elektrophilen.\[36a, 38\] Dies liegt jedoch nicht an der vermeintlich hohen Reaktivität des
Vinylkations als Intermediat und dem damit verbundenen hohen energetischen Aufwands zu dessen Erzeugung, sondern an der im Vergleich zum Alken stärkeren, π-Bindung des Alkins. \[36a\]

Bei den intermolekularen elektrophilen Additionen an Dreifachbindungen kommt es häufig zu unselektiven Reaktionsverläufen und zur überraschenden Bildung neuer, häufig unerwünschter (Neben-)Produkte bei minimaler Änderung der Substrate oder der Reaktionsbedingungen. Der Ursprung dieser komplexen und häufig nicht zielführenden Reaktionen liegt im Mechanismus der elektrophilen Addition an Alkine. Es kommen dabei drei grundsätzliche Mechanismen in Frage (siehe Schema 38).\[1d, 3, 39\] Zum Teil können sie parallel oder auch als Mischformen dieser Extreme ablaufen.

![Schema 38: Mechanismen elektrophiler Additionen an Alkine.](image)

Zum Verständnis der Probleme mit elektrophilen Additionen müssen der A-\textit{S}E\textsubscript{2}-, der Ad\textsubscript{2}E\textsubscript{3}- und der Ad\textsubscript{2}E\textsubscript{2}-Mechanismus genauer betrachtet werden. Verläuft die Addition über den A-\textit{S}E\textsubscript{2} Mechanismus kommt es bei der Addition des Elektrophils zur Bildung eines freien Vinylkations 197 als Intermediat. An dieses addiert das Nukleophil nicht stereospezifisch (siehe Schema 38, 1). In einer Variation des A-\textit{S}E\textsubscript{2} Mechanismus kommt es nicht zur Bildung eines freien Vinylkations (siehe Schema 38, 2). Stattdessen verbleibt das Nukleophil des addierenden Reagenzes mit dem Vinylkation als enges Ionen-Paar in einem Lösungsmittelkäfig. Bei dieser Reaktionsführung kommt es zu einer \textit{syn}-spezifischen Addition an das Kation. Eine Alternative stellt der Ad\textsubscript{2}E\textsubscript{2}-Mechanismus dar (siehe Schema 38, 3). Nach der Addition des Elektrophils wird bei diesem ein nicht-klassisches, verbrücktes Vinylkation 200 als Intermediat postuliert. Aufgrund der dadurch resultierenden Abschirmung einer Seite der Doppelbindung durch das Elektrophil kommt es anschließend zur selektiven \textit{anti}-Addition des

Die Regioselektivität der Addition wird bei den beschriebenen Mechanismen durch die Substituenten bestimmt und führt zu den entsprechenden MARKOVNIKOV-Produkten, da in jedem Mechanismus das Elektrophil so durch die Dreifachbindung angegriffen wird, dass ein möglichst stabiles Kation entsteht. Die Stereo- und Chemo-Selektivität ist jedoch stark abhängig vom dominierenden Mechanismus unter den spezifischen Reaktionsbedingungen und kann zu komplexen und schwer trennbaren Produktmischungen führen. Exemplarisch für die teils starken Veränderungen in der Produktverteilung, die selbst bei einfachen Änderungen der Substituenten am Alkin auftreten können sind die beiden folgenden Beispiele für elektrophile Additionen an Alkine.¹⁴¹

Schema 41: Dichlorierung von Alkinen nach YATES.

Der Aspekt, dass in vielen Fällen das entstehende Olefin reaktiver gegenüber Elektrophilen ist als das Alkin-Startmaterial erschwert eine selektive Reaktionsführung zusätzlich. Die Zahl der möglichen Produkte wird hier durch eine zweite elektrophile Addition an die Doppelbindung weiter erhöht. In der Regel werden bei diesen Reaktionen in α-Position disubstituierte Ketone als Produkt erhalten (siehe Schema 43). Da diese als Reaktionspartner bei Kupplungsreaktionen oder in nukleophilen Substitutionen dienen können, wird häufig versucht durch eine Anpassung der Reaktionsbedingungen die zweite Addition zu nutzen und die entsprechenden Produkte selektiv zu erhalten.

Aufgrund des komplexen Zusammenspiels aus verschiedenen ablaufenden Mechanismen und der häufig erhöhten Reaktivität des als Produkt gebildeten Olefins gegenüber elektrophilen Additionen sind nur wenige methodische Verbesserungen entwickelt worden, um eine möglichst umfassende Kontrolle über die Selektivität bei der intermolekularen elektrophilen Addition an Alkine zu erhalten. So wurden beispielsweise, wie bereits in Kapitel 1.1.4 beschrieben, Übergangsmetall-vermittelte elektrophile Additionen an die Dreifachbindung entwickelt, um die Selektivität in Bezug auf das angreifende Nukleophil und die Konfiguration der Doppelbindung des Produkts zu erhöhen. Dabei sollte vor allem die Bildung von freien Vinylkationen, an die das Nukleophil unspezifisch addieren kann, umgangen werden. Jedoch kommt es auch mit Übergangsmetall-Komplexen bei der Addition protischer Säuren an Alkine zu einer Variation der Konfiguration der Produkte und einem komplexen...
Zusammenspiel parallel ablaufender verschiedener Mechanismen in Abhängigkeit vom Startmaterial und kleinen Änderungen der Reaktionsbedingungen. Mit dem Wissen über elektrophile Additionen an Dreifachbindungen und deren Nutzung zur Erzeugung von Vinylkationen wurde ein Konzept entwickelt, das eine generelle Lösung für dieses alte Problem darstellt und dabei auf Übergangsmetall-Komplexe verzichten kann.
2.2 Konzept

Schema 44: Konzept zur assistierten Vinylkationenbildung bei elektrophilen Additionen an Alkine.

- geringe Stereoselektivität aufgrund diverser Mechanismen
- geringe Chemoselektivität schlechte Differenzierung zwischen verschiedenen Nukleophilen
- Reaktivität Alken (Produkt) > Reaktivität Alkin (Edukt)

unsere Lösung:

assistierte Vinylkationenbildung

✓ keine Bildung freier Vinylkationen als Nebenreaktion
Aktivierung des Elektrophils nötig
✓ hohe Stereoselektivität
Fixierung des Nukleophils und des Elektrophils in einem Komplex führt zu selektiver Syn-Addition
✓ hohe Chemoselektivität selektive Addition des "fixierten" Nukleophils

![Schema 45: Vergleich zwischen Triflat- und Triflimid-Anion.](image)

Die N-Addition ist hierbei aufgrund der sterischen Hinderung, aber auch aufgrund der geringen statistischen Wahrscheinlichkeit (vier Sauerstoffatome gegenüber einem Stickstoffatom) gegenüber der O-Addition deutlich schwieriger durchzuführen. In der Tat zeigen die wenigen literaturbekannten Reaktionen, dass die O-Addition ohne steuernde äußere Faktoren klar bevorzugt abläuft. Im Schnitt wird bei diesen Reaktionen maximal ein N- zu O-Additionsverhältnis von 1:5 erreicht.[45d-e]

Das Projekt zur assistierten Vinylkationenbildung wurde in Zusammenarbeit mit Studenten im Rahmen von Forschungs-, Bachelor- und Masterarbeiten durchgeführt. Es werden alle Ergebnisse unter Kenntlichmachung der jeweiligen Beiträge aufgeführt:

Optimierung: Sebastian Schröder
2.3 Optimierung der Reaktionsbedingungen

Zunächst wurde eine umfangreiche Untersuchung der optimalen Bedingungen zur Bildung eines geeigneten Lithium-Clusters durchgeführt. Die einfache Zugabe von 1,5 Äquivalenten LiNTf₂ in DCM führte dabei nicht zum Umsatz des Acetylens (siehe Tabelle 4, Eintrag 1). Es konnte jedoch beobachtet werden, dass sich das Lithium-Salz nicht löst und sich nach der Reaktionszeit zu großen Teilen am Boden des Reaktionsgefäßes abgesetzt hatte.

Da in protischen Lösungsmitteln die Möglichkeit besteht, dass diese in einer Nebenreaktion an das im Komplex gebildete Vinlykation oder das Vinyltriflimid 227a addieren, wurde die Reaktion hauptsächlich in weiteren aprotischen Lösungsmitteln durchgeführt.
Tabelle 6: Optimierung des Lösungsmittels.

<table>
<thead>
<tr>
<th>Nr[^a]</th>
<th>Lösungsmittel</th>
<th>Ausbeute Triflimid 227a [%]</th>
<th>Ausbeute Keton 3a [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,4-Dioxan</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>H₂O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>DMF</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>THF</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>MeCN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>MeNO₂</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Et₂O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>DCE</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>DCM</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>CHCl₃</td>
<td>54</td>
<td>1</td>
</tr>
</tbody>
</table>

[^a]: Reaktionsbedingungen: LiNTf₂ (1.5 Äquiv.), Bu₄NPF₆ (0.1 Äquiv.) und CSA (0.5 Äquiv.) werden im Lösungsmittel (0,2 M) gelöst. Acetylen 207a (0,2 mmol, 1 Äquiv) wird dem Reaktionsgemisch zugesetzt und für 24 Stunden gerührt.

Unabhängig von ihrer Polarität konnte in nicht halogenierten Lösungsmitteln (siehe Tabelle 6, Einträge 1 - 7) keine Aktivität in der Reaktion beobachtet werden. Jedes dieser Lösungsmittel besitzt mindestens ein Heteroatom, und ist somit potentiell in der Lage Lithiumkationen zu komplexieren und somit den Aufbau eines Lithium-Clusters zu verhindern. Im Gegensatz dazu konnte in den halogenierten Lösungsmitteln 1,2-Dichlorethan und Chloroform das Triflimid 227a mit Ausbeuten von 33% und 54% erreicht werden (siehe Tabelle 6, Einträge 8 - 10). Für alle weiteren Untersuchungen der Reaktion wurden deshalb halogenierte Lösungsmittel verwendet. Da auch der Löslichkeitsvermittler einen Einfluss auf die die räumliche Anordnung, Löslichkeit und Zusammensetzung des Clusters besitzen kann, wurden in der Folge weitere Additive in der Reaktion eingesetzt und ihr Einfluss auf die Ausbeute untersucht.
Unter den gegebenen Reaktionsbedingungen zeigten die SiF₆- und SbF₆-Salze mit Ausbeuten von weniger als 5% bzw. 27% die geringste Aktivität (siehe Tabelle 7, Einträge 1 und 2). Die Nutzung von Tetrabutylammoniumtetrafluoroborat und Ammoniumhexafluorophosphat ergab mittelmäßige Ausbeuten um 40% (siehe Tabelle 7, Einträge 3 und 4), während sich Bu₄NBF₄ mit 71% Ausbeute als das beste Ammonium-Salz herausstellte (siehe Tabelle 7, Eintrag 5). Das schon in der Calcium-katalysierten Cycloisomerisierung und Calcium/Kupfer-katalysierten oxidativen Cyclisierung von Diinolen (siehe Kapitel 1) genutzte Additiv N,N-Dimethylaniliniumtetra(pentafluorophenyl)borat (siehe Tabelle 7, Eintrag 6) zeigte auch hier eine besondere Aktivität. Die Reaktionszeit konnte durch die Zugabe von nur 10 mol% des Salzes von 24 Stunden auf 5 Minuten verkürzt werden. Jedoch war das Verhältnis zwischen dem gewünschten Triflimid und dem Keton mit ungefähr 1:1 zu schlecht um effektiv genutzt zu werden. Daher wurde für alle weiteren Optimierungsschritte Tetrabutylammoniumhexafluorophosphat genutzt. Um die Ausbeute an Vinyltriflimid 227a weiter zu erhöhen, wurden im Anschluss die Verhältnisse der Reaktanten sowie die Konzentration der Reaktanten durch die Veränderung der Lösungsmittelmenge variiert.

Tabelle 7: Optimierung des Additivs.

<table>
<thead>
<tr>
<th>Nr<sup>[a]</sup></th>
<th>Additiv</th>
<th>Ausbeute Triflimid 227a [%]</th>
<th>Ausbeute Keton 3a [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Bu<sub>4</sub>N)<sub>2</sub>SiF<sub>6</sub></td>
<td><5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Bu<sub>4</sub>NsBF<sub>6</sub></td>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>H<sub>4</sub>NPF<sub>6</sub></td>
<td>41</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Bu<sub>4</sub>NBF<sub>4</sub></td>
<td>42</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Bu<sub>4</sub>NPF<sub>6</sub></td>
<td>71</td>
<td>10</td>
</tr>
<tr>
<td>6<sup>[b]</sup></td>
<td>PhMe<sub>2</sub>HN<code>B(C<sub>6</sub>F<sub>3</sub>)<sub>4</sub></code></td>
<td>52</td>
<td>48</td>
</tr>
</tbody>
</table>

[a] Reaktionsbedingungen: LiNTf₂ (1,5 Äquiv.), Additiv (0,3 Äquiv.) und CSA (0,5 Äquiv.) werden im DCE (0,2 M) gelöst. Acetylen 207a (0,2 mmol, 1 Äquiv) wird dem Reaktionsgemisch zugesetzt und für 24 Stunden gerührt. [b] 0,1 Äquiv PhMe₂HN`B(C₆F₃)₄`; 5 min Reaktionszeit
Tabelle 8: Optimierung der Stöchiometrie und Konzentration.

<table>
<thead>
<tr>
<th>Nr[a]</th>
<th>X Äquiv. LiNTf₂</th>
<th>Y Äquiv. Bu₄NPF₆</th>
<th>Z Äquiv. CSA</th>
<th>Konzentration c [M]</th>
<th>Ausbeute 227a [%]</th>
<th>Ausbeute 3a [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>0.2</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.1</td>
<td>1.5</td>
<td>0.2</td>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>1</td>
<td>0.5</td>
<td>0.2</td>
<td>70</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0.1</td>
<td>3</td>
<td>0.2</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>0.3</td>
<td>0</td>
<td>0.25</td>
<td>47</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>0.3</td>
<td>0</td>
<td>0.33</td>
<td>62</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>0.3</td>
<td>0</td>
<td>0.4</td>
<td>59</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>1.5</td>
<td>0.3</td>
<td>0</td>
<td>0.5</td>
<td>52</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>0.3</td>
<td>0.5</td>
<td>0.33</td>
<td>67</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
<td>0.3</td>
<td>0.5</td>
<td>0.33</td>
<td>79</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>1.5</td>
<td>0.3</td>
<td>0.5</td>
<td>0.33</td>
<td>35</td>
<td>12</td>
</tr>
</tbody>
</table>

[a] Reaktionsbedingungen: LiNTf₂ (X Äquiv.), Bu₄NPF₆ (Y Äquiv.) und CSA (Z Äquiv.) werden in DCM (c M) gelöst.
Acetylen 207a (0,2 mmol, 1 Äquiv) wird dem Reaktionsgemisch zugesetzt und für 24 Stunden gerührt.

2.4 Strukturaufklärung des Phenylvinyltriflimids 227a

Da Vinyltriflimide zu Beginn dieses Projekts nicht bekannt waren, musste die sorgfältige StrukturAufklärung die beiden folgenden Kernpunkte der Reaktion absichern: Zunächst muss die Addition des Triflimid-Anions bestätigt werden. Darüber hinaus stellt sich die Frage nach der Regioselectivität, also ob die Triflimid-Gruppe über ein Sauerstoff- oder das Stickstoffatom an das quatäre Kohlenstoffatom der Doppelbindung gebunden ist. Zuerst wurde die molare Masse der unbekannten Substanz mittels Massenspektroskopie bestimmt. Mit 383.0 g/mol entspricht sie genau C₂₇H₁₇NO₅S₂, der Summenformel des Additionsprodukts aus HNTf₂ und Phenylacetylen. Um zu bestimmen ob es sich
um das Produkt der MARKOWNIKOV- oder das anti-MARKOWNIKOV Addition handelt, wurden verschiedene zweidimensionale NMR-Spektren der unbekannten Substanz gemessen.

Abbildung 4: COSY-¹H-NMR Spektrum der unbekannten Substanz 227a.

Um zu bestimmen, mit welchem Atom die NTf₂-Gruppe an das Olefin gebunden ist, wurden in Anlehnung an Ochiai das 19F- und das 13C-NMR-Spektrum analysiert. Da bei einer Bindung an das Sauerstoffatom die Trifluormethylgruppen in der NTf₂-Gruppe nicht mehr chemisch äquivalent sind, werden bei Sauerstoff-verbrückten Vinyltriflimiden zwei unterschiedliche Signale für diese Gruppen beobachtet. Im Fall des Stickstoff-verbrückten Vinyltriflimids sind die beiden CF₃-Gruppen dagegen chemisch äquivalent und ergeben daher nur ein Signal.

Sowohl im 19F- als auch das 13C-NMR-Spektrum ist für die beiden CF₃-Gruppen nur ein Signal (siehe Abbildung 6) vorhanden, ein Singulett im 19F-Spektrum bei -67,9 ppm und ein Quartett im 13C-Spektrum bei 119,1 ppm. Es handelt sich somit um chemisch äquivalente CF₃-Gruppen.
2.5 Untersuchung der Anwendungsbreite

Um zu bestimmen, ob die Synthese von Vinyltriflimiden mithilfe der assistierten Vinlykationenbildung generell durchführbar ist, wurde die Anwendungsbreite der Acetylene unter den optimierten Reaktionsbedingungen untersucht. Als erstes wurden elektronenreiche, mono-substituierte Alkine eingesetzt, da diese durch die erhöhte Elektronendichte in der Dreifachbindung als die erfolgsversprechendsten Acetylene erschienen.

Einfache Aryl-substituierte Alkine konnten in sehr guten Ausbeuten von 94%-99% regioselektiv zu den entsprechenden Vinyltriflimiden umgesetzt werden (siehe Schema 47, 227a-c). Sogar mit Heterozyklen substituierte Alkine, bei denen eine Koordination des Lithiums an das Heteroatom die Bildung der Komplex-Struktur erschweren oder unterbinden kann, wurden mit guten Ausbeuten umgesetzt (siehe Schema 47, 227d und 227e). Um die Auswirkung des Substitutionsmusters am Aromaten auf Reaktion zu untersuchen wurde eine Versuchsreihe mit ortho-, meta- und para-Methoxy substituierten Phenylacylidenen durchgeführt. Es zeigt sich, dass die Substitution mit einer Methoxy-Gruppe einen Grenzfall für die assistierte Vinlykationenbildung darstellt, da mit diesen Substraten signifikante Mengen der als Nebenprodukt anfallenden Acetophenone entstehen und sowohl para- als auch meta-
Methoxy-Vinyltriflimid 227g und 227h nur in mäßigen Ausbeuten isoliert werden können (siehe Schema 47). Im Falle des ortho-substituierten Vinyltriflimids 227i ist dieses so unstabil, dass es während der Reaktion und Aufarbeitung zum entsprechenden Acetophenon hydrolysiert.

Schema 48: Produktumfang elektronenarmer Substituenten am Aromaten.

![Schema 49: Produktumfang zweifach-substituierter Alkine.](image)

Die Umsetzungen der alkylsubstituierten Arylacetylene zeigen, dass die entsprechenden Vinyltriflimide (siehe Schema 49, Einträge 229a-i) mit einer erhöhten Elektronendichte in der Dreifachbindung unter den gegebenen Reaktionsbedingungen mit mäßigen bis guten Ausbeuten, aber mit exzellenten E/Z-Selektivitäten erhalten werden. Der erhöhte sterische Anspruch an der Dreifachbindung scheint hier die Addition des Triflimids zu erschweren. Vorläufige DFT-gestützte Struktur-Optimierungen der Vinyltriflimide 231a, 229c, 229i und 227a belegen, dass durch die Substituenten an der Doppelbindung der Phenylring gezwungen wird, weiter aus der Ebene der Doppelbindung heraus zu stehen. So werden zwar abstoßende Wechselwirkungen zwischen den Protonen am Phenylring und den Substituenten an der Doppelbindung vermieden, das entsprechende Triflimid durch die geringere Konjugation aber destabilisiert (siehe Tabelle 10).
2.6 Mechanistische Untersuchungen

Um die assistierte Vinylkationenbildung bei der Synthese von Vinyltriflimiden belegen zu können, wurde der Mechanismus detailliert mit Kontrollexperimenten und ergänzenden DFT-basierten Rechnungen zum Reaktionspfad untersucht.

2.6.1 Bestimmung der Stereoselektivität via NMR-Spektroskopie

Abbildung 7: Vergleich der NOE-Spektren des E- und Z-Triflimids 229f.
2.6.2 Unerwartete Differenzierung zwischen Doppel- und Dreifachbindungen

\[
\begin{array}{ccc}
\text{NTf}_2 & \text{NTf}_2 & \text{NTf}_2 \\
\text{55\% 232a} & \text{39\% 231i} & \text{31\% 232c}
\end{array}
\]

Schema 52: Vinylsubstituierte Triflimide.

Hierzu wurden zur optimierten Standardreaktion mit Phenylacetylen 227a jeweils Cyclohexen 233 und Dodecen 234 zugegeben. Der Umsatz des Acetylen und der Alkene wurde via Gaschromatographie durch den Vergleich mit 1,1',2,2'-Tetrachloroethan als internem Standard verfolgt.

\[
\begin{array}{ccc}
\text{Ph} & \text{NTf}_2 & \text{Ph} \\
\text{207a} & \text{233} & \text{207a} \\
0,5 \text{ äquiv LiPF}_6 & 1,5 \text{ äquiv. LiNTf}_2 & 0,3 \text{ äquiv. Bu}_4\text{NPF}_6 \\
\text{DCM, RT, 21h}
\end{array}
\]

ausgeprägt ist und so Dreifachbindungen in Gegenwart von Doppelbindungen selektiv umgesetzt werden können.

2.7 DFT-Studien

Um weitere Erkenntnisse über den ablaufenden Mechanismus zu erlangen, wurden von Meike Niggemann DFT-basierte Rechnungen zu unterschiedlichen Modellkomplexen durchgeführt. Durch sie sollen zwei zentrale offene Fragen geklärt werden, die bei Betrachtung der bisherigen Ergebnisse gestellt werden müssen:

1) Welche Faktoren führen bei der Reaktion zur beobachteten Reaktivität und Selektivität?
2) Was genau ist die Rolle des Lithium-Kations?

Um eine Analyse in Hinblick auf die assistierte Vinylkationenbildung durchzuführen und um Antworten auf die aufgeworfenen Fragen geben zu können, ist ein verlässlicher Reaktionspfad unerlässlich. Der konventionelle Pfad der minimalen Energie und dementsprechende Rechnungen reicht hier aus, um ein qualitativ richtiges Bild zu erhalten, auch wenn quasi-klassische Berechnungen der Moleküldynamik bei den relativ flachen Potentialhyperflächen in der Kationenchemie eine noch detailliertere Darstellung des Sachverhalts liefern können.\[47\] Rechnungen mit den Komplexen \(\text{LiHNTf}_2^+\), \(\text{LiNTf}_2^+\cdot0,5\ \text{H}_2\text{O}\), \(\text{LiNTf}_2^+\cdot1\ \text{H}_2\text{O}\), \(\text{LiNTf}_2^+\cdot2\ \text{H}_2\text{O}\), \(\text{LiNTf}_2^+\cdot3\ \text{H}_2\text{O}\) und \(\text{Li}[(\text{NTf}_2)^-\text{HNTf}_2^+]\) führten nicht zur Identifizierung von stationären Punkten auf einem sinnvollen Reaktionsweg. Erst mit einem Modellkomplex aus dem Triflimid-Anion, zwei Lithiumkationen und drei Wassermolekülen konnte die Reaktion von den Edukten hin zum Produkt mit realistischen Aktivierungsenergien ermittelt werden. Der Pfad der geringsten Energie (IRC) für diesen Komplex ist in Abbildung 8 dargestellt. Es handelt sich um einen Pfad mit einem ungewöhnlichen Plateau, der frei von Intermediaten ist.
Abbildung 8: Pfad der geringsten Energie auf der Potentialhyperfläche für die Bildung von Vinyltriflimid 227a.

Der Reaktionspfad allein gibt jedoch keine vollständige Antwort auf die Fragen, wie es zu diesem Reaktionspfad kommt und welche Faktoren eine erfolgreiche Reaktion ermöglichen. Um diese zu beantworten, wurden die auffälligen Strukturen auf dem Reaktionspfad genauer betrachtet und die Beiträge verschiedener Orbitale zur Stabilisierung einzelner Intermediate mittels NBO-Analyse untersucht.

2.7.1 Protonierung der Dreifachbindung

Abbildung 9: Protonierung der Dreifachbindung.
2.7.2 Ausbildung der Kohlenstoff-Stickstoff Bindung

Abbildung 10: Bildung der C-N-Bindung.

Diese beiden Wechselwirkungen, die Hyperkonjugation der Orbitale der freien Elektronenpaare des Stickstoffs in das sich bildende p-Orbital und die Wasserstoffbrücke zwischen dem beim ersten Schritt übertragenen Hydroxylproton und der komplexierten Hydroxygruppe sind also der Schlüssel für die Stabilisierung der beiden Übergangszustände in der Reaktion. Um herauszuarbeiten, ob auch eine Reaktion über die schon in Kapitel 1.1 beschriebenen A-S₂ und Ad₂ Mechanismen ablaufen kann, wurde im Anschluss versucht, einen sinnvollen Reaktionspfad für die einfache Addition von HNTf₂ an Phenylacetylen zu finden.

2.7.3 Die Rolle des Lithium-Kations

Abbildung 11: Reaktionspfad ohne Lithium-Cluster

Dieses Ergebnis stimmt mit den experimentellen Ergebnissen (siehe Schema 54 und Yu) überein, bei denen keine Additionsprodukte (sowohl der O- als auch der N-Addition) isoliert werden konnten.[48] Stattdessen wurde eine komplexe Produktmischung erhalten, die vermutlich durch die Oligomerisierung der Vinylkationen und anschließende säurekatalysierte Umlagerungen in den Zwischenprodukten entsteht.[48]

Das Lithium-Kation hat also direkten Einfluss auf zwei elementare Punkte der intermolekularen elektrophilen Addition von HNTf\textsubscript{2} an Alkine. Zum einen sorgt es durch die Koordination an das Triflimid-Anion dafür, dass das Anion in seiner trans-Konformation vorliegt und somit die Orbitale der freien Elektronenpaare am Stickstoff zugänglich sind. Zum anderen sorgt das Kation für vorteilhafte Orientierung des Triflimid-Anions, sodass die Hyperkonjugation aus den beschriebenen Orbitalen in das leere p-Orbital des entstehenden Vinylkations den gesamten Komplex stabilisieren kann. Nachdem somit der Mechanismus der assistierten Vinylkationenbildung gestützt und die Rolle der Lithium-Kationen identifiziert werden konnte, wurde im Anschluss die Reaktivität der bisher unbekannten Vinyltriflimde untersucht.
2.8 Reaktivität der Vinyltriflimide

Nachdem die einfache und effiziente Synthese der Vinyltriflimide etabliert und der Mechanismus via assistierter Vinylkationenbildung durch Kontrollexperimente und Berechnung eines plausiblen minimalen Energiepfades in DFT-Studien belegt wurde, stellte sich die Frage, ob diese neue Substanzklasse in Folgereaktionen effizient und innovativ umgesetzt werden kann. Idealerweise sind so wichtige Substanzklassen wie Amine, Amide oder Sulfonamide durch neue Syntheserouten zugänglich. Um eine erste Einschätzung der Reaktivität vorzunehmen, wurden die charakteristischen Merkmale vergleichbarer Substanzklassen wie (aliphatischen und aromatischen) Triflimide, Vinyltriflate und Enamide betrachtet.

Vinyltriflate sind heute aufgrund ihrer häufigen Verwendung als Pseudohalogenid in verschiedenen Kreuzkupplungen mit diversen Organometall-Spezies etabliert. Sie zeichnen sich dabei häufig durch hohe Stereoselektivitäten und hohe Toleranz für funktionelle Gruppen aus.

Die Vinyltriflimide sollten in ihrer Reaktivität teilweise den beschriebenen Substanzklassen ähneln. Eine genaue Vorhersage welche Reaktivität in welchen Fällen überwiegt ist jedoch nicht trivial, sodass...

Abbildung 13: Fokus der Untersuchungen zur Reaktivität der Vinyltriflimide.

Die Vinyltriflimide sollten in ihrer Reaktivität teilweise den beschriebenen Substanzklassen ähneln. Eine genaue Vorhersage welche Reaktivität in welchen Fällen überwiegt ist jedoch nicht trivial, sodass...
hier eine Untersuchung der Vinyltriflimide unter verschiedensten Reaktionsbedingungen helfen kann. Dabei wurde sich im Rahmen dieser Dissertation auf die folgenden Schwerpunkte fokussiert: die Reaktion mit verschiedenen Nukleophilen, die Umsetzung in Übergangsmetall-katalysierten Kupplungen und die Durchführung photochemischer Reaktionen mit Vinyltriflimiden.

2.8.1 Voruntersuchungen mit Nukleophilen

Da ein nukleophiler Angriff mit dieser Spezies im Allgemeinen häufig besser abläuft, je höher das HOMO liegt, sollte eine Verwendung des Vinyltriflimids als Nukleophil, analog zur häufigen Nutzung der Enamide als Nukleophil (siehe Schema 57), schwer realisierbar sein.

![Abbildung 14: Vergleich verschiedener Enamide mit Vinyltriflimid 227a.](image)

Allerdings ist auch die Lage des LUMOs, einer Kombination aus π*-Orbitalen des Aromaten und der Doppelbindung, außergewöhnlich. Das LUMO des Vinyltriflimid 227a liegt bei einer Energie von -1,24 eV deutlich niedriger als die LUMOs der anderen Enamide. Dies kann den Angriff eines Nukleophils...
bedeutend vereinfachen. Diese Reaktivität würde eine Umpolung der Enamid-Struktur darstellen und wäre bei der Difunktionalisierung von Enamiden sehr interessant.

Klassischerweise wird hierbei die nukleophile Reaktivität des Enamids im ersten Reaktionsschritt genutzt, um das Iminium-Ion 239 zu generieren (siehe Schema 58). Dieses Kation kann dann in einem zweiten Schritt mit einem Nukleophil zum difunktionalisierten Produkt 240 umgesetzt werden.\[51\]

Die Difunktionalisierung von Enamiden:

\[
\begin{align*}
\text{NHEWG} & \quad \xrightarrow{\text{E}^+} \quad \text{NHEWG}^+ \\
\text{E}^+ + \text{Nu} & \quad \longrightarrow \quad \text{E}^-\text{Nu}
\end{align*}
\]

(1) Nebenreaktionen:

\[
\begin{align*}
\text{NHEWG} & \quad \xrightarrow{\text{H}_2\text{O}} \quad \text{O}^- \quad \text{EWG}^-\text{NH}_2 \\
\text{H}^+ & \quad \longrightarrow \quad \text{EWG}^-\text{NH}_2
\end{align*}
\]

(2) Hydrolyse

\[
\begin{align*}
\text{NHEWG} & \quad \xrightarrow{\text{H}^+} \quad \text{NEWG} \\
\text{EWG}^-\text{NH}_2 & \quad \longrightarrow \quad \text{EWG}^-\text{NH}_2
\end{align*}
\]

(3) Deprotonierung

\[
\begin{align*}
\text{NHEWG} & \quad \xrightarrow{\text{R}^+} \quad \text{EWGHN} \\
\text{R}^-\text{NH}_2 & \quad \longrightarrow \quad \text{R}^-\text{NH}_2
\end{align*}
\]

(4) Oligomerisierung

Schema 58: Difunktionalisierung von Enamiden.

Bei einer Umpolung des Enamids ist es möglich, die Difunktionalisierung mit zwei verschiedenen Nukleophilen durchzuführen (siehe Schema 59). Im ersten Schritt würde dabei das Imin 245 gebildet werden. Das Imin 245 kann dann mit einem weiteren Nukleophil zu Produkt 246 reagieren. Das Imin sollte aufgrund der elektronenziehenden Gruppe am Stickstoff deutlich robuster gegenüber der Hydrolyse als das entsprechende Iminium-Ion sein. Außerdem würde sich hier die Möglichkeit ergeben, durch passende Wahl der beiden Nukleophile eine selektive Reaktion durchzuführen. Zum
Beispiel durch ein sterisch gehindertes Nukleophil, dass an das umgepolte Enamid, aber nicht an das Imin addieren kann.\[52\]

Schema 59: Difunktionalisierung von umgepolten Enamiden:

Auch die Reaktion des Vinyltriflimid mit Nukleophilen an der SO₂-Funktion eröffnet Möglichkeiten, die Vinyltriflimide auf effiziente Weise in der organischen Synthese zu nutzen. Bei Betrachtung der Literatur fällt auf, dass in der Tat überwiegend harte Nukleophile mit Triflimiden unter Triflierung des Nukleophils umgesetzt werden. Inspiriert von dieser Reaktivität wurde das Konzept ins Auge gefasst, die Vinyltriflimide als latente Nukleophile zu nutzen (siehe Schema 60). Latente Nukleophile sind hierbei Spezies, die für sich selbst keinen nukleophilen Charakter besitzen, aber durch Aktivierung gute Nukleophile erzeugen können.\[54\]

Schema 60: Nutzung der Vinyltriflimide als latente Nukleophile.

Da sowohl die Addition an die Doppelbindung als auch die Addition an die SO₂-Funktion konzeptionell neue Möglichkeiten zur effizienten Synthese von Amiden und Aminen bieten, wurde begonnen das

Parallel zur Untersuchung der Reaktion mit unterschiedlichen Aminen wurde versucht, Alkohole mit Vinyltriflimiden umzusetzen. 2001 hatte DECROIX gezeigt, dass die Addition von diversen Alkoholen an Phenyltriflimid am Schwefelatom stattfindet (siehe Schema 63).\cite{50} Durch die Übertragung der Triflylgruppe auf den Alkohol bildet sich ein Triflat 261, dass hier durch das aktivierte Amid-Nukleophil 262 angegriffen werden konnte. Die Durchführung der Reaktion mit Vinyltriflimiden würde hier eine erste Bestätigung des Konzepts zur Nutzung der Vinyltriflimide als latente Nukleophile darstellen.

In ersten Reaktionen mit Lithiummethanolat konnte das alkylierte Vinylsulfonamid 264 mit einer guten Ausbeute von 62% isoliert werden (siehe Schema 64). Nachdem so das Konzept bestätigt wurde, wurde versucht, weitere Alkanolate in der Reaktion zu nutzen. Es handelt sich hierbei um Alkohole, die eine Doppelbindung in der Struktur aufweisen und so die Komplexität der Produkte, sowie die Möglichkeiten ihrer Verwendung erhöhen.

Zuletzt wurde versucht, Tertbutylammoniumfluorid in der Reaktion einzusetzen. Das entstehende Trifluoromethylsulfonylfluorid sollte im Vergleich zu den Triflaten ein schlechteres Elektrophil und
daher gegenüber dem aktivierten Nukleophil weniger reaktiv sein.\(^{55}\) Dies kann die Anwendbarkeit der Vinyltriflimide als latente Nukleophile deutlich erhöhen, indem auch andere Elektrophile in der Reaktion eingesetzt werden können.

Schema 65: Reaktion von Vinyltriflimid 227a mit TBAF.

In ersten Experimenten zeigte sich, dass Tertbutylammoniumfluorid äußerst schnell mit Vinyltriflimid 227a reagiert. Erneut wurden große Mengen an Acetophenon 3a als einziges Produkt der Reaktion erhalten. Um den postulierten Mechanismus der nukleophilen Addition an die Sulfonylgruppe zu bestätigen und die Herkunft des Ketons zu klären wurden auf \(^1\)H-NMR-Spektroskopie basierende zeitaufgelöste Experimente durchgeführt. Dazu wurde Vinyltriflimid 227a in deuteriertem Chloroform gelöst und in ein NMR-Rohr überführt. Direkt nach Zugabe des Tertbutylammoniumfluorids wurde dann eine Reihe von \(^1\)H-NMR-Spektren aufgenommen (siehe Abbildung 15).

Abbildung 15: Zeitaufgelöstes NMR-Experiment der Reaktion von Triflimid 227a mit TBAF.

Das Experiment zeigt, dass das Vinyltriflimid 227a schon nach 60 Sekunden vollständig umgesetzt wird. Zusätzlich zu einer erheblichen Menge Acetophenon 3a können zwei weitere Spezies identifiziert werden. Zum einen das Anion 247a, mit einem Signal der Olefinprotonen bei 4,81 ppm, und zum
anderen das Imin 267, mit einem charakteristischen Signal der Methylgruppe bei 2,95 ppm. Nach 400 Sekunden Reaktionszeit ist auch das aktivierte Nukleophil vollständig umgesetzt, und nach 500 Sekunden ist das Acetophenon 3a das einzige in der Reaktionslösung vorhandene Produkt. Die genaue Betrachtung der 1H- und 13C-Spektren (siehe Abbildung 16) der Lösung nach der vollständigen Reaktion offenbart eine Überraschung. Die Integrale der Signale des Aromaten und das Integral der Methylgruppe haben ein Verhältnis von 5:2. Außerdem zeigen die Auszüge der Spektren im Bereich der Methylgruppe sowohl im 1H- als auch im 13C-Spektrum ein kompliziertes Kopplungsmuster anstatt des für Acetophenon erwarteten Singuletts.

Abbildung 16: 1H- und 13C-NMR-Spektrum nach Ende der Reaktion von Triflimid 227a und TBAF.

Die Spektren lassen darauf schließen, dass es sich bei dem Produkt um eine Mischung aus Acetophenon und mono-, di- und tri-deuteriertem Acetophenon d^3-3a handelt. Der analog zur
Deuterierung von Enolaten ablaufende postulierte Mechanismus (siehe Schema 66) liefert hierfür eine Erklärung.\cite{56} Nachdem Anion 247a durch die schnelle Addition eines Fluorid-Anions an Vinyltriflimid 227a gebildet wurde, kann es über mehrere mögliche Reaktionspfade umgesetzt werden. Am Anfang der Reaktion kommt es primär zur Abstraktion eines Deuterons vom Lösungsmittel und der Bildung des deuterierten Sulfonamids d1-267' beziehungsweise seines Tautomers Imin d1-267. Durch anschließende Hydrolyse wird das entsprechende deuterierte Acetophenon d1-3a gebildet. Bei fortgeschrittener Reaktion erhöht sich jedoch die Wahrscheinlichkeit, dass das Anion 247a mit dem deuterierten Imin oder Acetophenon d1-272 an Stelle des deuterierten Chloroforms reagiert. Dabei führt die Abstraktion eines Deuterons aus d1-272 dazu, dass wieder ein Anion 247a sowie das Imin d1-267 gebildet wird. Die Produktverteilung wird hiervon nicht beeinflusst. Wird jedoch Imin oder Keton d1-272 durch das Anion 247a deprotoniert, so bildet sich zum einen das nicht-deuterierte Imin 267 (und daraus nach der Hydrolyse das Acetophenon 3a), und zum anderen das deuterierte Anion d1-273. Dieses Anion kann dann durch die Abstraktion eines Protons aus den unterschiedlichen Produkten letztlich wieder zum deuterierten Acetophenon d1-3a reagieren. Es besteht jedoch zusätzlich die Möglichkeit, dass sich mit dem Lösungsmittel unter Abstraktion eines Deuterons das di-deuterierte Imin d2-267 bildet und zu Acetophenon d2-3a hydrolysiert. Bis zum vollständigen Umsatz des Anions 247a reagiert es also mit einem Äquivalent des Lösungsmittels. Dabei entsteht aber nicht nur das mono-deuterierte Acetophenon d1-3a, sondern eine Mischung aus nicht-, teilweise-, und vollständig deuteriertem Acetophenon d1-3a (x=0-3).

in der Amidierung, der Weiterentwicklung der Konzepte zur Reaktion von Vinyltriflimiden mit Nukleophilen sowie der Nutzung weicher Nukleophile weitergeführt.

2.8.2 Voruntersuchungen zu Übergangsmetall-katalysierten Kupplungen

![Schema 67: Mechanismus der Suzuki-Miyaura-Kupplung.](image-url)

in der Lage ist oxidativ zu addieren. Eine Kupplung mit der Boronsäure konnte jedoch nicht erfolgreich durchgeführt werden.

Parallel zu den Voruntersuchungen zur SUZUKI-MIYURA Kupplung wurde versucht, alternative Kupplungspartner in der Palladium-Katalyse einzusetzen. Die BUCHWALD-HARTWIG Kupplung ist dabei eine weitere robuste und mechanistisch gut etablierte Methode für die Erprobung der Kupplung mit Vinyltriflimiden (siehe Schema 70). Der erste Schritt ist wieder die oxidative Addition des Triflimids 227a an die Pd(0)-Spezies 274. Anschließend wird das Triflimid-Anion dann durch Amin 283 ausgetauscht. Durch reduktive Eliminierung des Produkts 286 wird zuletzt die aktive Katalysatorspezies 274 regeneriert und der Katalysezyklus geschlossen.\(^{[60]}\)

![Schema 70: Katalyse-Zyklus der Buchwald-Hartwig-Kupplung.](image)

![Schema 71: Reaktion von Vinyltriflimid 227a mit Pyrrol 283 (durchgeführt von NIKLAS GAELUNGS).](image)

Zuletzt wurde die Nickel-katalysierte KUMADA-Kupplung erprobt. Im Gegensatz zu den beiden vorherigen Kupplungen ist es bei ihr möglich, auch chlorierte und sogar fluorierte Edukte in guten Ausbeuten umzusetzen. Durch Transmetallierung und anschließende reduktive Eliminierung wird aus dem Nickel(II)-acetylacetonat zunächst eine Nickel(0)-Spezies 286 gebildet, an die das Vinyltriflimid

Tabelle 11: Optimierung der Stöchiometrie und Konzentration (durchgeführt von MARTIN FUCHS).

<table>
<thead>
<tr>
<th>Nr</th>
<th>Ligand</th>
<th>Lösungsmittel</th>
<th>Atmosphäre</th>
<th>Reaktionszeit [h]</th>
<th>Ausbeute 291a [%]</th>
<th>Ausbeute 267f [%]</th>
<th>Ausbeute 3f [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/</td>
<td>THF/CDCl₃</td>
<td>Labor</td>
<td>48</td>
<td>0</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>/</td>
<td>THF/CDCl₃</td>
<td>Labor</td>
<td>24</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>/</td>
<td>THF/CDCl₃</td>
<td>Argon</td>
<td>24</td>
<td>0</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>/</td>
<td>THF/CDCl₃</td>
<td>O₂</td>
<td>48</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>/</td>
<td>THF/DMF</td>
<td>Argon</td>
<td>2</td>
<td>Komplexes Spektrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>/</td>
<td>THF/MeCN</td>
<td>Argon</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>bpy</td>
<td>THF</td>
<td>Argon</td>
<td>24</td>
<td>0</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>PPh₃</td>
<td>THF</td>
<td>Argon</td>
<td>24</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>terpy</td>
<td>THF</td>
<td>Argon</td>
<td>24</td>
<td>0</td>
<td>36</td>
<td>0</td>
</tr>
</tbody>
</table>

2.8.3 Voruntersuchungen zu photoinduzierten Reaktionen mit Vinyltriflimiden

Bei der überwältigen Mehrheit der entwickelten Methoden basiert die Reaktion dabei auf einem von drei Mechanismen, dem direkten Energietransfer, dem Atomtransfer, oder der Übertragung eines Elektrons.[62b]

Im Gegensatz zum Energietransfer wird beim photoinduzierten Elektronentransfer (siehe Schema 74) die besondere Eigenschaft vieler angeregter Katalysatorspezies genutzt, im Vergleich zum Katalysator im Grundzustand sowohl ein besseres Oxidationsmittel als auch ein besseres Reduktionsmittel zu sein.[62b]

H-Atomtransfer:

direkt:

![Schema 75: Mechanismus des photoinduzierten Protonentransfers.](image)

Bei der Betrachtung dieser drei Mechanismen stellt sich die Frage, wie Vinyltriflimide in neuen photoinduzierten Prozessen umgesetzt werden können. 1958 konnte McKUSICK zeigen, dass Vinylsulfonamide in einem Elektronenstrahl in einem Radikalkettenmechanismus zu den entsprechenden Aminen umsetzen.$^{[63]}$ 1974 konnte dieselbe Reaktivität auch unter Bestrahlung mit ultraviolettem Licht beobachtet werden.$^{[64]}$ Die Induzierung eines Bruchs der relativ schwachen N-S

Schema 76: Voruntersuchungen zu photoinduzierten Transformationen von Vinyltriflimiden (Reaktionen mit bromierten Substraten durchgeführt von Marina Chuchmareva).

Das Projekt wurde von MARINA CHUCHMAREVA während der Anfertigung ihrer Masterarbeit mit besonderem Schwerpunkt auf der Verbesserung der Substratbreite weitergeführt. Erstaunlicherweise konnte das aromatische Vinyltriflimid 227a in Dichloroethan während der Voruntersuchungen in geringer Ausbeute zum trifluoromethylierten Keton 294 umgesetzt werden. Es stellte sich sofort die Frage, nach welchem Mechanismus das trifluoromethylierte Keton ohne klassisches Trifluormethylierungsreagenz gebildet wird und ob diese beobachtete Reaktivität zur effizienten Synthese trifluoromethylierter Substrate genutzt werden kann.

2.9 Zusammenfassung und Ausblick

Schema 78: Mesomerie des Triflimid-Anions.

3. Photoinduzierte Trifluoromethylierung von Vinyltriflimiden

3.1 Einleitung

Die Produkte der im vorangehenden Kapitel gezeigten „Assistierten Vinylkationenbildung“, die Vinyltriflimide\[^{68}\], sind eine bisher unbekannte Substanzklasse. Es stellt sich schnell die Frage ob es sich bei dieser, in Analogie zu den häufig in Übergangsmetall-vermittelten Kreuzkupplungen genutzten Vinyltriflaten\[^{69}\], um ein potentes Strukturmotiv handelt, welches Transformationen in andere wichtige Substanzklassen wie beispielsweise Amine, Amide und Alkene ermöglicht. Eine Trifluoromethylierung\[^{70}\] der Doppelbindung würde aus dieser Perspektive einen ersten Nachweis des Potenzials der Vinyltriflimide darstellen. Trifluoromethyl-Gruppen sind besonders in der pharmazeutischen und in der Agrochemie wichtige funktionelle Gruppen, da ihr Einbau eine einfache Möglichkeit darstellt um die Eigenschaften des Moleküls, wie zum Beispiel die Lipophilie, Metabolisierbarkeit und die Polarität, signifikant zu ändern. Unter den vielen entwickelten Methoden zur Einführung dieser Gruppe besitzt die photoredox-katalysierte Trifluoromethylierung von Alkenen\[^{70e, f, 71}\] (siehe Schema 80) einen hohen Stellenwert. Neben der Einführung der CF\(_3\)-Gruppe unter Bildung einer neuen C(sp\(^3\))-CF\(_3\) Bindung kommt es zur simultanen Einführung einer zweiten funktionellen Gruppe (oder eines Protons) was den Aufbau komplexer Molekülarchitekturen mit einer guten Stufen-Ökonomie ermöglicht.\[^{72}\]

![Schema 80: Photoredox-katalysierte Trifluoromethylierung von Alkenen.][72]

Im letzten Jahrzehnt wurde diese Methode in zahlreichen, photoredox-katalysierten Oxo-, Amino-, Thio, und Carbotrifluoromethylierungen genutzt.

Die Carbotrifluoromethylierung beinhaltet dabei eine zweite C-C Bindungsknüpfung neben der C-CF\(_3\) Bindung. Sie ist, im Gegensatz zu Hydro- und Oxotrifluoromethylierungen, auch katalysiert durch Übergangsmetallkomplexe, selten beschrieben. Die beschriebenen Methoden basieren zudem häufig auf intramolekularen Reaktionen, wie der Friedel-Crafts-artigen Reaktion von Aromaten oder der
Addition des gebildeten Radikals an eine weitere Doppelbindung im Molekül.71e, l, n, p, 73 Eine Ausnahme in diesem Zusammenhang stellen Cyanotrifluoromethylierungen dar, die vor allem Kupfer-katalysiert durchgeführt werden.74 Die Elektronendichte der Doppelbindung kann bei der Trifluoromethylierung eine eher untergeordnete Rolle spielen. So konnten Acrylate als Radikalakzeptoren zeigen, dass trotz des elektrophilen Charakters des Trifluoromethylradikals die Addition nicht auf elektronenreiche Doppelbindungen beschränkt ist.75 2014 konnte die Gruppe von MAGNIER und MASSON das Cyanid-Anion in einer photoredox-katalysierten Trifluoromethylierung von Enecarbamaten als Nukleophil nutzen (siehe Schema 81).70e

\begin{center}
\textbf{Schema 81: Cyanotrifluoromethylierung von Enecarbamaten.70e}
\end{center}

Sie konnten durch diese Drei-Komponenten α-/β-Difunktionalisierung eine Reihe β-trifluoromethylierten Amine erhalten und den beschriebenen Radikal-Crossover mit weiteren Nukleophilen durchführen (siehe Schema 82):

\begin{center}
\textbf{Schema 82: Mechanismus der Carbontrifluoromethylierung von Enecarbamaten.70e}
\end{center}

Um basierend auf dieser interessanten Reaktion eine generelle Methode zu entwickeln gibt es mehrere mögliche Ansatzpunkte. Zuerst wäre es wünschenswert, auf überstöchiometrischen Mengen an Togni-Reagenz verzichten zu können (siehe Schema 82, I). Dieses elektrophile Trifluoromethylierungs-Reagenz kann die Bandbreite an Nukleophilen einschränken und ist vielleicht ein Grund dafür, dass das Cyanid-Anion von MAGNIER und MASSON nur in vier Beispielen eingesetzt wurde.72b Die Nutzung des Togni-Reagenzes scheint zudem zu einer Verringerung der Ausbeute gegenüber den Kupfer-katalysierten Cyanotrifluoromethylierungen zu führen.74 Eine Verringerung der Menge des eingesetzten Reagenzes, oder bestenfalls der komplette Verzicht darauf, könnte also
sowohl zur Nutzung weiterer Nukleophile als auch zu besseren Ausbeuten in der Reaktion führen, zusätzlich die Atomökonomie verbessern, und auch die Kosten der Reaktion deutlich verringern.

Der Schlüsselfschritt dieser Reaktionen ist die Fragmentierung des α-Oxo-Radikals (siehe Schema 85, II). Durch diese Fragmentierung kann in der Reaktion auf die Nutzung eines Photoredox- oder Übergangsmetall-Katalysators verzichtet werden. Zur Initiierung der Radikalkette wird von LI
katalytische Mengen AgNO$_3$ in Kombination mit $(\text{NH})_2\text{S}_2\text{O}_8$ als Oxidationsmittel genutzt. Die Gruppe von Kawamoto verwendet dagegen das klassische BEt$_3$/O$_2$-System, um die Radikalkette durch die Addition '*in-situ*' erzeugter Ethyl-Radikale zu starten.

![Schema 85: Konzept der Trifluoromethylierung von Vinyltriflaten][1]

3.2 Konzept

Diese Methode bietet mehrere Vorteile: Zum Beispiel ist die Nutzung von Lithiumtriflimid als „verstecktes“ Reagenz zur Trifluoromethylierung. Wie bereits beschrieben sind die häufig genutzten Trifluoromethylierungsreagenzien sehr teuer und somit in größerem Maßstab nur eingeschränkt nutzbar. Bei einem Vergleich zeigt sich, dass der auf die Stoffmenge bezogene Preis der üblichen Reagenzien um den Faktor 2-100 höher ist als das in diesem Fall genutzte Lithiumtriflimid.
Das Projekt zur Carbotrifluoromethylierung von Vinyltriflimiden wurde in Zusammenarbeit mit Christina Strauch durchgeführt. Es werden alle Ergebnisse unter Kenntlichmachung der jeweiligen Beiträge aufgeführt:

Optimierung: Sebastian Schröder
Substratbreite: Sebastian Schröder und Christina Strauch
Mechanistische Untersuchungen: Sebastian Schröder
DFT-Rechnungen: Sebastian Schröder, Meike Niggemann und Gwendal Grelier

Teile dieses Kapitels werden als Manuskript zur Veröffentlichung vorbereitet.
3.3 Optimierung der Reaktionsbedingungen

Zu Beginn des Projekts wurde der Fokus auf die photoredox-katalysierte Carbotrifluoromethylierung gelegt. Auch wenn längerfristig eine Reaktionsführung ausgehend vom Alkin geplant ist, erschien es sinnvoll, den Schlüsselschritt unter vereinfachten Reaktionsbedingungen zu untersuchen. Da das vermutete Zwischenprodukt der Reaktion, Imin 312a, unter den Reaktionsbedingungen durch Hydrolyse zum trifluoromethylierten Keton 294 umgesetzt werden kann, wurden die Umsätze der Reaktionen mittels in-situ NMR-Spektroskopie verfolgt.

![Schema 89: Oxidatives Quenchen von Ru(bpy)\(_3\)\(^2^+\) mit Diazoniumsalzen.](image)

Es zeigte sich unter den gegebenen Reaktionsbedingungen bei 3 der 7 eingesetzten Katalysatoren hohe Umsätze des Startmaterials. Mit dem stark oxidierenden Katalysator 9-Mesityl-10-Methylacridinium Tetrafluoroborat (9-MesAcrBF₄) wurde hauptsächlich das hydrolysierte trifluoromethylierte Acetophenon 294 erhalten. Das gewünschte Imin 312a wurde nur mit 40% Ausbeute erhalten (siehe Tabelle 12, Eintrag 7). Die Nutzung von Eosin Y (siehe Tabelle 12, Eintrag 1) führte zu einer guten Imin-Ausbeute von 65%. Tris(bipyridin)ruthenium(II)chlorid stellte sich als bester Photokatalysator für diese Reaktion heraus (siehe Tabelle 12, Eintrag 5). Neben einer sehr guten Imin-Ausbeute von 80% konnte zusätzlich die Reaktionszeit auf 3 Stunden verkürzt werden. Da eine Nutzung der organischen Photokatalysatoren gegenüber den ÜM-Katalysatoren jedoch Vorteile hinsichtlich Kosten und ökologischer Bilanz bieten, wurde die Reaktion mit Eosin Y optimiert. Anschließend wurde überprüft, welchen Einfluss die Reaktanten in der Reaktion haben.

Tabelle 14: Untersuchung des Lösungsmittel einflusses.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Lösungsmittel</th>
<th>Ausbeute Imin 312a [%]</th>
<th>Ausbeute Keton 294 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C₅H₁₂</td>
<td>Kein Umsatz</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Et₂O</td>
<td>Kein Umsatz</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CDCl₃</td>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>DCM</td>
<td>94</td>
<td>Spuren</td>
</tr>
<tr>
<td>5</td>
<td>CHCl₃</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>DCE</td>
<td>87</td>
<td>0</td>
</tr>
</tbody>
</table>

[a] Reaktionsbedingungen: 1,0 Äquiv. 227a und 2 Äquiv. PhN₂BF₄ wurden für 19 Stunden bei RT in 1 ml Lösungsmittel (0.1 M) unter Bestrahlung mit blauen LEDs gerührt.

Es wurde aufgrund der Flüchtigkeit und der Reaktivität des Imins 312a und des trifluoromethylierten Acetophenons 294 darauf geachtet, leicht siedende, nicht-protische Lösungsmittel zu nutzen, bei denen die Wahrscheinlichkeit unerwünschter Nebenreaktionen mit den reaktiven Zwischenstufen gering ist. In den unhalogenierten Lösungsmitteln Pentan und Diethylether (siehe Tabelle 14, Einträge 1 und 2) wurde kein Umsatz beobachtet. In den halogenierten Lösungsmitteln hingegen konnten...
durchgehend gute bis sehr gute Ausbeuten von Imin 312a erhalten werden. Als bestes Lösungsmittel stellte sich Dichlormethan (siehe Tabelle 14, Eintrag 4) mit einer ausgezeichneten Ausbeute von 94% heraus. Aufgrund der guten Ausbeute in deuteriertem Chloroform (siehe Tabelle 14, Eintrag 5) konnte die Reaktion in einigen Mechanismusexperimenten direkt via NMR-Spektroskopie verfolgt werden. Als nächstes wurde die benötigte Menge an Diazoniumsalz genauer untersucht.

Tabelle 15: Untersuchung der benötigten Initiator-Stoffmenge.

<table>
<thead>
<tr>
<th>Nr</th>
<th>x</th>
<th>Ausbeute Imin 312a [%]</th>
<th>Ausbeute Keton 294 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.15</td>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.015</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>/</td>
<td>66</td>
<td>0</td>
</tr>
</tbody>
</table>

[a] Reaktionsbedingungen: 1,0 Äquiv. 227a und x Äquiv. PhN₂BF₄ wurden für 13,5 Stunden bei RT in 1 ml CDCl₃ (0.1 M) unter Bestrahlung mit blauen LEDs gerührt.

Überraschenderweise konnte festgestellt werden, dass bei der Trifluormethylierung der Vinyltriflimide auf eine Nutzung des Diazoniumsalzes 324 verzichtet werden kann (siehe Tabelle 15, Eintrag 5). Kleine Mengen (1.5-15 mol%) verbessern die Ausbeuten der Reaktion jedoch (siehe Tabelle 15, Einträge 1 - 4). Der Grund hierfür kann, wie in der Trifluormethylierung von Vinyltriflaten beschrieben, eine zusätzliche oxidative Initiierung der Reaktion sein.

Tabelle 16: Nukleophile Addition von Grignard-Verbindungen an Imin 312a.

<table>
<thead>
<tr>
<th>Nr[a]</th>
<th>R</th>
<th>Ausbeute Amid 327 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph (327a)</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>Kein Umsatz</td>
</tr>
<tr>
<td>3</td>
<td>Me (327b)</td>
<td>77</td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>Kein Umsatz</td>
</tr>
</tbody>
</table>

[a] Reaktionsbedingungen: 1,0 Äquiv. 227a und 0,15 Äquiv. PhN₂BF₄ wurden für 24 Stunden bei RT in 1 ml DCM (0,1 M) unter Bestrahlung mit blauen LEDs gerührt. Es wurden 2 Äquiv. RMgBr zugetropft und weitere 24 Stunden bei RT gerührt.

[b] Zugabe RMgBr am Anfang der Reaktion

Sowohl Phenylmagnesiumbromid (siehe Tabelle 16, Eintrag 1) als auch Methylmagnesiumbromid (Eintrag 3) addierten in guten Ausbeuten von 69% beziehungsweise 77% an Imin 312a. Eine erste Bestätigung des Konzepts wurde damit erbracht. Jedoch war die Isolation der Sulfonamide 327a und 327b herausfordernd. Zudem inhibiert die direkte Zugabe der Grignard-Reagenzien zu Beginn der Reaktion (Eintrag 2 und 4) die Bildung des Imins 312a vollständig. Aus diesem Grund wurde versucht, weitere Nukleophile zu addieren, die idealerweise direkt im ersten Schritt zur Reaktionsmischung zugegeben werden können.

Tabelle 17: Nukleophile Addition diverser Nukleophile an Imin 312a.

<table>
<thead>
<tr>
<th>Nr[a]</th>
<th>Nuc</th>
<th>Ausbeute Imin 312a [%]</th>
<th>Ausbeute Amid 327 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KCN</td>
<td>82</td>
<td>Kein Umsatz</td>
</tr>
<tr>
<td>2</td>
<td>KCN</td>
<td>Nicht bestimbar</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>LiF</td>
<td>78</td>
<td>Kein Umsatz</td>
</tr>
<tr>
<td>4</td>
<td>B₂pin₂</td>
<td>54</td>
<td>Kein Umsatz</td>
</tr>
</tbody>
</table>

[a] Reaktionsbedingungen: 1,0 Äquiv. 227a, 0,15 Äquiv. PhN₂BF₄ und 2 Äquiv. Nukleophil wurden für 24 Stunden bei RT in 1 ml DCM (0,1 M) unter Bestrahlung mit blauen LEDs gerührt. [b] mit 2 equiv. CSA

Mit Kaliumcyanid, Lithiumfluorid und Bispinacolboran konnte kein Umsatz des Imins zum Sulfonamid beobachtet werden (siehe Tabelle 17, Einträge 1, 3 und 4). Bei der Nutzung von Camphersulfonsäure zur Aktivierung des Nukleophils durch eine in-situ Bildung von HCN kam es zur kompletten Gelierung der Reaktionsmischung, weshalb eine Bestimmung des Umsatzes nicht möglich war (Eintrag 2). Im Verlauf der Reaktionen wurde beobachtet, dass die Löslichkeit der Reagenzien KCN und LiF im gewählten Lösungsmittel problematisch ist. In den Reaktionslösungen befanden sich auch nach 24h
große Mengen der ungelösten Salze. Um die Cyanid-Konzentration in Lösung zu erhöhen wurden anschließend die Reaktionsbedingungen variiert.

Tabelle 18: Nukleophile Addition von Cyanid-Anionen an Imin 312a.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nu (x equiv.)</th>
<th>Additiv (y equiv.)</th>
<th>Ausbeute Imin 312a [%]</th>
<th>Ausbeute Keton 294 [%]</th>
<th>Ausbeute Amid 328a [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KCN (2)</td>
<td></td>
<td>70</td>
<td>0</td>
<td>Kein Umsatz</td>
</tr>
<tr>
<td>2</td>
<td>KCN (2)/MeOH</td>
<td>Ca(NTf₂)₂ (0.15)</td>
<td>0</td>
<td>57</td>
<td>Kein Umsatz</td>
</tr>
<tr>
<td>3[b]</td>
<td>KCN (2)</td>
<td></td>
<td>63</td>
<td>9</td>
<td>Kein Umsatz</td>
</tr>
<tr>
<td>4[b]</td>
<td>KCN (2)/MeOH</td>
<td>Ca(NTf₂)₂ (0.15)</td>
<td>31</td>
<td>11</td>
<td>Kein Umsatz</td>
</tr>
<tr>
<td>5[b]</td>
<td>TMS CN (5)</td>
<td></td>
<td></td>
<td></td>
<td>Kein Umsatz</td>
</tr>
<tr>
<td>6[b]</td>
<td>TMS CN (5)</td>
<td>Ca(NTf₂)₂ (0.15)</td>
<td></td>
<td></td>
<td>Kein Umsatz</td>
</tr>
<tr>
<td>7</td>
<td>TMS CN (5)</td>
<td></td>
<td>67</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>KCN (5)/MeOH</td>
<td>Ca(NTf₂)₂ (0.15)</td>
<td>41</td>
<td></td>
<td>Kein Umsatz</td>
</tr>
</tbody>
</table>

[a] Reaktionsbedingungen: 1,0 Äquiv. 227a und 0,15 Äquiv. PhN₂BF₄ wurden für 24 Stunden bei RT in 1 ml DCM (0,1 M) unter Bestrahlung mit blauen LEDs gerührt. Es wurden x Äquiv. Nukleophil und y Äquiv. Additiv zugegeben und weitere 24 Stunden bei RT gerührt.

3.4 Untersuchungen zur Anwendungsbreite

![Schema 90: Produktumfang elektronenreicher Substituenten am Aromaten. [* von Christina Strauch isoliert]](image)

Die, unter optimierten Bedingungen eingesetzten, Vinyltriflimide mit elektronenreichen Aromaten wurden in guten bis exzellenten Ausbeuten zu den β-trifluoromethylierten Nitrilen umgesetzt (siehe Schema 90, 328a-g). Die besten Ergebnisse wurden mit Alkyl-Substituenten in para-Position am Aromaten (328b-c) erzielt. Sogar Vinyltriflimide mit heteroaromatischen Substituenten konnten in der Reaktion eingesetzt werden, jedoch zeigte sich das Imin mit 2-substituierten Thiopen zu stabil für eine Addition des Cyanid-Ions unter den gegebenen Reaktionsbedingungen und wurde letztlich als Sulfonamid 329 isoliert.

Als nächstes wurden Vinyltriflimide mit elektronenarmen Aromaten eingesetzt. Hierbei stellt sich die Frage, ob die Verringerung der Elektronendichte in der Doppelbindung des Vinyltriflimids die Addition des elektrophilen Trifluoromethylradikals im ersten Teilschritt der Reaktion erschwert. Unter den Standardbedingungen konnten eine Reihe von Vinyltriflimiden mit elektronenarmen Phenylresten mit
guten bis zu sehr guten Ausbeuten umgesetzt werden (siehe Schema 91, 328h–p). Bemerkenswert ist hierbei, dass selbst bei Substraten mit stark elektronenziehenden Resten wie \(m,m-(\text{CF}_3)_2\text{C}_6\text{H}_3 \) oder \(p\text{-NO}_2\text{-C}_6\text{H}_4 \) keine signifikanten Einbußen der Ausbeute beobachtet wurden (siehe Schema 91, 328m und 328o).

Zuletzt wurde untersucht, ob auch Vinyltriflimide ohne aromatischen Substituenten, sowie dreifach substituierte Vinyltriflimide in der Reaktion eingesetzt werden können. Während das relativ elektronenarme Cyclopropyl- und Cyclohexenylvinyltriflimid jeweils mit guten Ausbeuten umgesetzt werden konnten (siehe Schema 92, 328q und 328r), wurde bei Butadienylinyltriflimid 232c kein Umsatz beobachtet. Sehr wahrscheinlich ist in dieser Reaktion die Elektronendichte der Doppelbindung für den ersten Teilschritt der Reaktion zu gering.
Vinyltriflimide mit Alkyl-Resten zeigen vermutlich ebenfalls aufgrund zu geringer Elektronendichte in der Doppelbindung keine Reaktivität in dieser Reaktion. Eine andere Erklärung wäre die fehlende Stabilisierung des Übergangszustands und des entstehenden Radikals durch ein aromatisches System oder durch Konjugation mit weiteren Doppelbindungen, welche die Addition erschweren kann. Auch die dreifach-substituierten Vinyltriflimide 229a und 229i konnten in dieser Reaktion nicht weiter umgesetzt werden (siehe Schema 92, 328v und 328w). Eine zu geringe Elektronendichte der Doppelbindung ist in diesem Fall als Ursache auszuschließen, da diese durch die zusätzlichen elektronenschiebenden Reste und den aromatischen Substituenten geminal zur Triflimid-Funktionalität gegenüber den aliphatischen und vinyl-substituierten Vinyltriflimiden erhöht ist. DFT-Rechnungen lassen hier vermuten, dass die Substituenten aufgrund der sterischen Hinderung die Ausbildung des konjugierten π-Systems von Doppelbindung und Phenylsubstituenten stören und so die Stabilisierung bei der Addition des Trifluoromethylradikals verringert wird.

Um den Einfluss der Substituenten an der Doppelbindung besser zu verstehen wurden die Strukturen sieben verschiedener Vinyltriflimide in DFT-Rechnungen auf dem m062x/6-31+(d,p)-Niveau optimiert und die Energien der höchsten besetzten Molekülorbital (HOMO) miteinander verglichen (siehe Schema 93). Das elektrophile Trifluoromethylradikal mit einem tiefliegenden einfach besetzten Molekülorbital (SOMO) sollte besser an höher liegende HOMOs addieren. Der Vergleich zeigt jedoch, dass die Lage des HOMOs nicht der einzige Faktor in dieser Reaktion ist. Während disubstituierte Vinyltriflimide mit HOMO-Energien um -8,4 eV gut umsetzen, wird bei trisubstituierten

Schema 92: Produktumfang weiterer Substrate. [* von Christina Strauch isoliert]

Vinyltriflimide mit Alkyl-Resten zeigen vermutlich ebenfalls aufgrund zu geringer Elektronendichte in der Doppelbindung keine Reaktivität in dieser Reaktion. Eine andere Erklärung wäre die fehlende Stabilisierung des Übergangszustands und des entstehenden Radikals durch ein aromatisches System oder durch Konjugation mit weiteren Doppelbindungen, welche die Addition erschweren kann. Auch die dreifach-substituierten Vinyltriflimide 229a und 229i konnten in dieser Reaktion nicht weiter umgesetzt werden (siehe Schema 92, 328v und 328w). Eine zu geringe Elektronendichte der Doppelbindung ist in diesem Fall als Ursache auszuschließen, da diese durch die zusätzlichen elektronenschiebenden Reste und den aromatischen Substituenten geminal zur Triflimid-Funktionalität gegenüber den aliphatischen und vinyl-substituierten Vinyltriflimiden erhöht ist. DFT-Rechnungen lassen hier vermuten, dass die Substituenten aufgrund der sterischen Hinderung die Ausbildung des konjugierten π-Systems von Doppelbindung und Phenylsubstituenten stören und so die Stabilisierung bei der Addition des Trifluoromethylradikals verringert wird.

Um den Einfluss der Substituenten an der Doppelbindung besser zu verstehen wurden die Strukturen sieben verschiedener Vinyltriflimide in DFT-Rechnungen auf dem m062x/6-31+(d,p)-Niveau optimiert und die Energien der höchsten besetzten Molekülorbital (HOMO) miteinander verglichen (siehe Schema 93). Das elektrophile Trifluoromethylradikal mit einem tiefliegenden einfach besetzten Molekülorbital (SOMO) sollte besser an höher liegende HOMOs addieren. Der Vergleich zeigt jedoch, dass die Lage des HOMOs nicht der einzige Faktor in dieser Reaktion ist. Während disubstituierte Vinyltriflimide mit HOMO-Energien um -8,4 eV gut umsetzen, wird bei trisubstituierten
Vinyltriflimide mit ähnlichen HOMO-Energien keine Addition des Trifluoromethyl-Radikals beobachtet. Womöglich ist die veränderte Struktur des HOMO’s oder der erhöhte sterische Anspruch hierfür verantwortlich.

Um genaueren Einblick in die Reaktion und über den ablaufenden Mechanismus zu erhalten wurden Versuchsreihen zur mechanistischen Untersuchung und DFT-Rechnungen durchgeführt.

3.5 Mechanistische Untersuchungen

Bei der Betrachtung des Konzepts stellen sich einige Fragen, deren Beantwortung von besonderem Interesse sind:

1) **Handelt es sich um eine Radikalkettenreaktion oder um eine intramolekulare Reaktion?**

2) *Wie kommt es ohne Photokatalysator zur Initiierung der Trifluoromethylierung?*

Schon im Rahmen der Synthese der Vinyltriflimide wurden bei längerer Standzeit der Substrate zunehmend Verfärbungen beobachtet. Durch 1H- und 19F-NMR-Spektroskopie konnte jedoch keine Zersetzung der Triflimide festgestellt werden. Da zur Initiierung von Photoreaktionen eine Spezies mit Licht in sichtbarer Wellenlänge angeregt werden muss, kann die gebildete farbige Spezies möglicherweise in der Reaktion als Photokatalysator initiieren. Dabei sind mehrere Möglichkeiten denkbar wie diese farbige Spezies gebildet wird:

![Schema 96: Mögliche Spezies zur Initiierung der Trifluoromethylierung.](image)

3) *Welche Funktion übernimmt das Diazoniumsalz?*

3.5.1 Kontrollexperimente

![Reaktionsverlauf bei wechselnder Bestrahlung](image)

Das Experiment ergab, dass die Reaktion nicht weiter umsetzt sobald Licht ausgeschlossen wird (siehe Abbildung 17). Lange Radikalketten sind in dieser Reaktion also unwahrscheinlich, da in einem solchen Fall nach der Initiierung auch in Perioden ohne Lichteinstrahlung bis zum vollständigen Kettenabbruch das Startmaterial zunächst weiter umsetzt. Jedoch kann ein Mechanismus mit einer kurzen Radikalkette nicht ausgeschlossen werden.\(^{[86]}\) Um spezifische experimentelle Belege für die beiden verbliebenen möglichen Mechanismen, kurze Radikalkette oder intramolekulare Umlagerung mit SO$_3$-Extrusion, zu erhalten wurde in einer Versuchsreihe die Initiierung der Reaktion durch mit klassischen Methoden erzeugten Trifluoromethylradikalen untersucht.\(^{[87]}\) Mit einer Kombination aus Langlois Reagenz als Radikalquelle und Diacetoxyiodbenzol als Oxidationsmittel wurde Imin \textbf{312a} nach 24h mit einer mittelmäßigen Ausbeute von 46% erhalten (siehe Tabelle 19, Eintrag 3). Eine Erhöhung der Temperatur führte zu einer verbesserten Ausbeute (siehe Tabelle 19, Eintrag 4). Da die Reaktion unter Lichtauschluss stattfand, kann davon ausgegangen werden, dass die Reaktion durch die Generation des Trifluoromethylradikals aus den beiden Reagenzien initiiert wird und nicht auf dieselbe Weise wie in den Licht-induzierten Reaktionen.
Tabelle 19: Klassische Bedingungen zur Erzeugung des Trifluormethyl-Radikals.[87]

<table>
<thead>
<tr>
<th>Nr[a]</th>
<th>Blaue LED (an/aus)</th>
<th>Additiv 1 (x Äquiv.)</th>
<th>Additiv 2 (y Äquiv.)</th>
<th>Ausbeute Imin 312a [%]</th>
<th>Ausbeute Keton 294 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>an</td>
<td>PhN₂BF₄ (0.15)</td>
<td></td>
<td>57</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>an</td>
<td>NaSO₂CF₃ (3)</td>
<td>PhI(OAc)₂ (2)</td>
<td>78</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>aus</td>
<td>NaSO₂CF₃ (3)</td>
<td>PhI(OAc)₂ (2)</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>4[b]</td>
<td>aus</td>
<td>NaSO₂CF₃ (3)</td>
<td>PhI(OAc)₂ (2)</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>5[c]</td>
<td>aus</td>
<td>NaSO₂CF₃ (3)</td>
<td>PhI(OAc)₂ (2)</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

Nach Erzeugung des CF₃-Radikals kann folglich eine Addition des Radikals an die Doppelbindung stattfinden und als wahrscheinlicher Schritt in der photo-induzierten Carbotrifluoromethylierung postuliert werden.

Danach wurde Phenylvinyltriflimid 227a in Anwesenheit von n-Butylvinyltriflimid 232e umgesetzt (siehe Schema 98). Da das aliphatische Triflimid 232e keinen Umsatz zeigte, sollte so geklärt werden, ob es sich um eine chemoselektive Trifluoromethylierung handelt oder ob im Fall der aliphatischen Triflimide lediglich die geeignete Spezies zur Initiierung der Reaktion fehlt.[77a] Auch bei diesem Experiment zeigte das aliphatische Triflimid 232e keinen Umsatz, während das Imin 312a mit einer sehr guten Ausbeute erhalten werden konnte. Die Elektronendichte der Doppelbindung des aliphatischen Triflimids scheint also nicht für eine Addition des Radikals auszureichen. Eine weitere mögliche Erklärung kann in der in aliphatischen Triflimid fehlenden Stabilisierung des Übergangszustands der Reaktion und des intermediären Radikals durch Konjugation mit einer Doppelbindung oder einem π-System bestehen.

In einem weiteren Cross-Over-Kontrollexperiment wurde Phenylvinyltriflimid mit para-Chlorophenylvinyltriflat 342 umgesetzt, um weitere Hinweise auf den ablaufenden Mechanismus zu erhalten (siehe Schema 100), da im Fall einer intramolekularen Reaktion des Vinyltriflimids lediglich das trifluoromethylierte Imin 312a erhalten wird und das Vinyltriflat 342 nicht umsetzen sollte.

Schema 100: Crossover-Experiment mit Vinyltriflat 342.

Es zeigte sich, dass beide Substrate in der Reaktion umsetzen. Das Vinyltriflat 342 setzte zudem bedeutend schneller um als das Triflimid 227a. Da die Triflat-Gruppe im Vergleich zur Triflimid-Gruppe weniger elektronenziehend ist, besitzt das Vinyltriflat trotz der elektronenziehenden Gruppe am Aromaten die höhere Elektronendichte. Das Ergebnis des Experiments lässt sich hier durch die bevorzugte Addition des elektrophilen Trifluoromethylradikals an die Doppelbindung mit erhöhter Elektronendichte rationalisieren.

Erstaunlicherweise konnte die Reaktion in den Optimierungsexperimenten auch ohne Zugabe eines Photokatalysators unter Lichteinstrahlung, aber nicht im Dunklen, durchgeführt werden. Dies kann, wie bereits beschrieben (siehe Kapitel 3.5, Frage 2) möglicherweise durch die Koordination von Metallkationen und einen dadurch induzierten bathochromen Shift der Anregungswellenlänge des Triflimids ermöglicht werden. Um diese Vermutung zu überprüfen wurde eine umfangreiche Reihe an Experimenten durchgeführt.[88]

Zunächst wurde verschiedene Lösungen des reinen Substrats mit und ohne Zusätze via UV/Vis-Spektroskopie untersucht. Es wurde zuerst ein UV/Vis-Spektrum des via HPLC gereinigten, farblosen Triflimids 227a aufgenommen.

Abbildung 18: UV-Vis Spektrum des reinen Vinyltriflimids 227a.
Im aufgenommenen Spektrum (siehe Abbildung 19) kann man erkennen, dass die Anregungswellenlänge in Richtung des Bereichs des sichtbaren Lichts verschoben ist. Zusätzlich gemessene 1H- und 19F-NMR-Spektren der Proben (siehe Abbildung 20) zeigen weder die charakteristischen Signale des Imins noch Signale anderer möglicher Fragmente. Da in beiden Proben also kein Umsatz des Vinyltriflimids die Bildung von Chromophoren erklären kann, ist die Koordination des Lithium-Kations an die Triflimid-Gruppe und der daraus resultierende bathochrome Shift wahrscheinlich für die Färbung der Reaktionslösung verantwortlich.

Abbildung 19: Vergleich der UV/Vis Spektren des Triflimids 227a mit und ohne LiNTf$_2$

Absorbtionsspektren mit und ohne LiNTf$_2$

- Phenylvinyltrifimid + 20 mol% LiNTf$_2$ (3.33mg/ml)
- Phenylvinyltrifimid (3.33mg/ml)
Abbildung 20: \(^1\text{H- und }^{19}\text{F-NMR-Spektren des Vinyltriflimids 227a mit und ohne LiNTf}_2.\)

Abbildung 21: Vergleich der UV-Vis Spektren des Triflimids 227a mit und ohne LiNTf\(_2\) sowie nach vollständiger Reaktion.

Hierbei ist klar zu erkennen, dass die Anregungswellenlänge weiter in Richtung der Wellenlänge des sichtbaren Lichts verschoben ist. Dies lässt darauf schließen, dass mindestens eine nach der Reaktion
vorhandene Spezies von sichtbarem Licht angeregt werden kann und als Energietransfer-Katalysator bei der Reaktion in Frage kommt.

Um weitere Einblicke in den Mechanismus zu erhalten, wurden Kontrollexperimente mit 20 mol% Lithiumtriflimid und verschiedenen Additiven durchgeführt (siehe Tabelle 21).

Zunächst sollte die Zugabe verschiedener Photokatalysatoren klären, ob es in der Reaktion zu einer Katalyse durch Energietransfer von der angeregten Spezies auf das Substrat kommt. Zunächst sollte die Zugabe verschiedener potentieller Energietransfer-Katalysatoren klären, ob diese die Reaktion beschleunigen. Die Kontrollexperimente zeigen jedoch, dass ein Energietransfer vermutlich keine Rolle

Tabelle 20: Vergleich der Reaktion mit verschiedenen Lewis-Säuren.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>LA</th>
<th>Ausbeute Imin 312a nach 4 h [%]</th>
<th>Ausbeute Imin 312a nach 10 h [%]</th>
<th>Ausbeute Imin 312a nach 24 h [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>/</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>FeCl₂</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>LiBF₄</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Bi(OTf)₃</td>
<td>0</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>Sc(OTf)₃</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>LiOTf</td>
<td>0</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>LiCl</td>
<td>0</td>
<td>1</td>
<td>56</td>
</tr>
<tr>
<td>9</td>
<td>Al(OTf)₃</td>
<td>0</td>
<td>1</td>
<td>59</td>
</tr>
<tr>
<td>10</td>
<td>Ca(NTf₂)₂</td>
<td>0</td>
<td>1</td>
<td>63</td>
</tr>
<tr>
<td>11</td>
<td>Mg(NTf₂)₂</td>
<td>0</td>
<td>1</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>Ga(OTf)₃</td>
<td>0</td>
<td>1</td>
<td>66</td>
</tr>
<tr>
<td>13</td>
<td>LiNTf₂</td>
<td>0</td>
<td>25</td>
<td>72</td>
</tr>
<tr>
<td>14</td>
<td>LiNTf₂</td>
<td>1</td>
<td></td>
<td>77</td>
</tr>
</tbody>
</table>

[a] Reaktionsbedingungen: 1,0 Äquiv. 227a und 0.2 Äquiv. Lewis-Säure wurden für 24 Stunden bei RT in 1 ml DCM (0.1 M) unter Bestrahlung mit blauen LEDs gerührt. [b] Startmaterial via HPLC gereinigt [c] Reaktionsgemisch vor Zugabe von 227a 22.5h gerührt.
spielt. Durch Ru(bpy)$_3$Cl$_2$ wurde die Reaktion komplett inhibiert (siehe Tabelle 21, Eintrag 1). In den Reaktionen mit Eosin Y und Rose Bengal verringerte sich die Ausbeute gegenüber der Reaktion ohne Photokatalysator um 33% beziehungsweise 21% (Eintrag 5 und 6). Einzig mit Fluorescein (Eintrag 12) wurde die Ausbeute, ähnlich dem Experiment indem Lithiumtriflimid und Startmaterial vor Beginn der Reaktion für 24 vorgerührt wurden, leicht erhöht. Jedoch wurde in jedem dieser Kontrollexperimente eine Induktionsperiode beobachtet. Somit ist in diesen Fällen ein Energietransfer als geschwindigkeitsbestimmender Schritt unwahrscheinlich.

Alternativ kann es sich um eine Autokatalyse handeln, bei der erst das entstehende Imin 327a oder das Keton 294 (Produkt der Hydrolyse von 312a) angeregt werden kann und so die Reaktion erst mit entsprechenden Mengen dieser Spezies gute Umsätze aufweist. Dies kann die lange Induktionsperiode erklären, in der ohne Katalyse nur geringe Mengen an Produkt gebildet werden und ab einer gewissen Konzentration der Prozess autokatalytisch abläuft. Da das Imin 312a hydrolyse-empfindlich ist und nicht isoliert werden konnte wurden in den Kontrollexperimenten das Nitril 238a und das trifluoromethylierte Keton 294 eingesetzt.
Tabelle 21: Vergleich verschiedener Additive bei der Lewis-Säure katalysierten Trifluormethylierung von Triflimid 227a.

<table>
<thead>
<tr>
<th>Nr. [a]</th>
<th>Additiv (x Äquiv.)</th>
<th>Ausbeute Imin 312a nach 4 h [%]</th>
<th>Ausbeute Imin 312a nach 10 h [%]</th>
<th>Ausbeute Imin 312a nach 24 h [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ru(bpy)$_3$Cl$_2$·6 H$_2$O</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2[b]</td>
<td>Argon</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>3[b]</td>
<td>O$_2$</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>HOTf (0.05)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Eosin Y</td>
<td>1</td>
<td>21</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>Rose Bengal</td>
<td>0</td>
<td>0</td>
<td>51</td>
</tr>
<tr>
<td>7</td>
<td>α-CF$_3$-Acetophenon</td>
<td>0</td>
<td>32</td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>Nitril 328a</td>
<td>0</td>
<td>31</td>
<td>71</td>
</tr>
<tr>
<td>9</td>
<td>Acetophenon</td>
<td>1</td>
<td>38</td>
<td>71</td>
</tr>
<tr>
<td>10</td>
<td>K$_2$CO$_3$</td>
<td>0</td>
<td>43</td>
<td>78</td>
</tr>
<tr>
<td>11</td>
<td>PhN$_2$BF$_4$</td>
<td>8</td>
<td>45</td>
<td>78</td>
</tr>
<tr>
<td>12</td>
<td>Fluorescein</td>
<td>1</td>
<td>46</td>
<td>78</td>
</tr>
<tr>
<td>13[b]</td>
<td>SO$_2$</td>
<td>1</td>
<td></td>
<td>86</td>
</tr>
</tbody>
</table>

[a] Reaktionsbedingungen: 1,0 Äquiv. 227a, 0,2 Äquiv. Lithium Bistriflimid und x Äquiv. Additiv wurden für 24 Stunden bei RT in 1 ml DCM (0,1 M) unter Bestrahlung mit blauen LEDs gerührt. [b] unter Additiv-Atmosphäre

leicht gesteigerten Ausbeute, weiterhin eine Initiierungsphase auf und kann deshalb nicht für die Initiierung der Reaktion verantwortlich sein.

3.5.2 DFT-basierte Untersuchungen

Um einen belastbaren Beleg für den wahrscheinlich ablaufenden Radikalketten-Mechanismus zu erhalten, wurde dieser mittels DFT-Rechnungen modelliert und dabei sowohl Zwischenprodukte als auch Übergangszustände als stationäre Punkte optimiert. Die Initiierung der Reaktion wurde für die Betrachtung der Radikalkette zunächst ausgeklammert. Die Ergebnisse der Berechnung werden in dem Energiediagramm in Abbildung 22 dargestellt.

Das Energiediagramm zeigt, dass die Addition des Trifluoromethylradikals nur eine sehr geringe Aktivierungsentnergie von +2.9 kcal·mol⁻¹ (ÜZaa) besitzt. Sie findet bei Raumtemperatur also spontan statt. Aufgrund des sterischen Anspruchs der Triflimid-Gruppe wird das Radikal vor der Addition in dieser Rechnung so orientiert, dass das entstehende α-Amidoradikal 311a zunächst als ekliptisches
Konformer erhalten wird. Jedoch führt die Drehung um die C-C-Bindung mit einer Aktivierungsenergie von nur +0.9 kcal·mol⁻¹ (ÜZₜₙₕ) fast barrierefrei zu α-Amidoradikal 311'a in der gestaffelten Konformation. Aus diesem findet anschließend die, von CURRAN beschriebene, homolytische Bindungsspaltung der S-N-Bindung mit einer relativ niedrigen Aktivierungsenergie von +8.6 kcal·mol⁻¹ (ÜZₜₙₕ) statt.[90] Als Produkte werden das Imin 312a und das Trifluormethylsulfonylradikal 333 erhalten. Energetisch liegen diese beiden Spezies 52,9 kcal·mol⁻¹ unterhalb des Niveaus der Startspezies 227a und 335. Die Trifluormethylierung des Triflimids kann folglich als irreversibel betrachtet werden.

Abbildung 23: Berechnete Bindungsenergien [in kcal mol⁻¹].

Um die Wahrscheinlichkeit einer homolytischen Bindungsspaltung in den jeweiligen Intermediaten besser abschätzen zu können wurden relevante Bindungsenergien verschiedener Triflimid-Spezies mit weiteren DFT-Rechnungen bestimmt (siehe Abbildung 23).[91] Anschließend wurden diese mit den Bindungsenergien des Vinyltriflats 344 verglichen.[92] Dabei fällt auf, dass die Beträge der Bindungsenergien des Vinyltriflimids 227a in derselben Größenordnung wie die des Vinyltriflats 344 liegen. Die stabilste Bindung ist die C-N-Bindung (∆H = 105,7 kcal·mol⁻¹). Ihre Bindungsenergie ist vergleichbar mit der von C-H-Bindungen in aliphatischen Kohlenwasserstoffen. Die F₃C-S-Bindung ist bedeutend schwächer (∆H = 58,6 kcal·mol⁻¹) und vergleichbar mit aliphatischen C-I-Bindungen (∆H = 55,6 – 57,6 kcal·mol⁻¹).[93] Die mit Abstand schwächste Bindung ist jedoch die S-N-Bindung (∆H = 40,9 kcal·mol⁻¹). Die Bindungsenergie dieser Bindung ist vergleichbar mit der des (CH₃)₂C-O₂-Radikals, das durch homolytische Bindungsspaltung sehr einfach in das stabile (CH₃)₂C-Radikal und O₂ überführt werden kann. Der Bruch der S-N-Bindung im Vinyltriflimid 227a ist demnach energetisch relativ günstig. Die Bindungsenergie derselben Bindung im α-Amidoradikal 311a ist im Vergleich nochmals um den Faktor 5 geringer. Sie ist mit ∆H = 8,3 kcal·mol⁻¹ sehr schwach, ähnelt von Energieniveau eher einer Wasserstoffbrücke als einer kovalenten Bindung und kann daher bei Raumtemperatur äußerst
schnell homolytisch gespalten werden. Dies untermauert die im Energiediagramm in Abbildung 22 dargestellte einfache Fragmentierung des Radikals 311a’.

3.6 Trifluoromethylsulfonamid-Derivatisierung

Um den Nutzen der Trifluoromethylsulfonamide zu zeigen, wurde versucht, diese in unterschiedliche Derivate, wie Amine, Amide und Aminosäuren, zu überführen. Aufgrund der Relevanz von fluorierten, nicht-natürlichen Aminosäuren in der Medizin- und Proteinchemie scheint die Überführung des Sulfonamids 328 in ein freies Amin als erster Schritt zur Synthese der nicht-natürlichen trifluoromethylierten Aminosäuren von besonderer Bedeutung.\[94\]

Schema 101: Geplante Derivatisierung der Trifluoromethylsulfonlamide 328.

<table>
<thead>
<tr>
<th>Nr[a]</th>
<th>Base 1 (x equiv.)</th>
<th>Base 2 (y equiv.)</th>
<th>Ausbeute Sulfonamid 348 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NaH (3)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>K₂CO₃ (4)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NaH (4)</td>
<td>K₂CO₃ (3)</td>
<td>Spuren unbekannter Produkte</td>
</tr>
<tr>
<td>4</td>
<td>NaH (3)</td>
<td>TFAA (4)</td>
<td>0</td>
</tr>
</tbody>
</table>

[a] Reaktionsbedingungen: 1,0 Äquiv. 227a und 0,15 Äquiv. PhN₂BF₄ wurden für 24 Stunden bei RT in 1 ml DCM (0,1 M) unter Bestrahlung mit blauen LEDs gerührt. Im Anschluss wurde nach Zugabe von 5 Äquiv. TMSCN weitere 24h gerührt. Zuletzt wurde 1 Äquiv. Keton mit x Äquiv. Base 1 und y Äquiv. Base 2 zugegeben und für weitere 3 Stunden gerührt.

Mit keiner der eingesetzten Basen konnte die Substitution erfolgreich durchgeführt werden (siehe Tabelle 22). Durch Untersuchung mittels NMR-Spektroskopie konnte gezeigt werden, dass das Sulfonamid 227a zwar wie erwartet deprotoniert wird, jedoch ist das entstehende Anion aufgrund der Stabilisierung durch die Triflyl- und die Nitril-Gruppe scheinbar zu stabil um in einer Substitution weiter zu reagieren.

Aufgrund der beobachteten Schwierigkeiten Nitril 227a weiter zu funktionalisieren wurde versucht eine alternative Derivatisierung an Imin 312a durchzuführen (siehe Tabelle 23). Eine Hydrierung würde bei erfolgreicher Durchführung zu den β-trifluoromethylierten Sulfonamiden 349 führen. Aufgrund der Möglichkeit, diese Reaktion asymmetrisch durchzuführen und so enantiomerenreine trifluoromethylierte Amine zu erhalten, wäre dies besonders interessant.[96]

<table>
<thead>
<tr>
<th>Nr[a]</th>
<th>Hydrid-Donor</th>
<th>Ausbeute Sulfonamid 349 [%]</th>
<th>Ausbeute Keton 294 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LAH</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>DIBAL-H</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NaBH₄</td>
<td>0</td>
<td>90</td>
</tr>
</tbody>
</table>

[a] Reaktionsbedingungen: 1,0 Äquiv. 227a, 1 Äquiv. PhN₂BF₄ und wurde 1,5 Äquiv. Hydrid-Donor wurden für 20 Stunden bei RT in 1 ml DCM (0,1 M) unter Bestrahlung mit blauen LEDs gerührt.
Eine Voruntersuchung mit verschiedenen Hydrid-Donoren zur Hydrierung des Imins **312a** zeigte jedoch, dass unter den gegebenen Reaktionsbedingungen kein Umsatz zum entsprechenden Amid erreicht wurde (Einträge 1-3).

In der Folge wurde der Fokus auf eine Erweiterung des Radikalmechanismus gelegt (siehe Tabelle 24). Um zu überprüfen, ob eine solche Erweiterung der photoinduzierten Trifluoromethylierung von Vinyltriflimiden möglich ist wurden mehrere potentielle Reaktionspartner zur Reaktionsmischung zugegeben. Dabei wurde darauf geachtet, dass diese im Vergleich zu dem eingesetzten Vinyltriflimid eine erhöhte Elektronendichte aufweisen, da so die Addition des Trifluoromethylradikals an die zugegebenen Substrate bevorzugt ablaufen sollte. Die entstehenden Radikale sollten dann, wie schon im Cross-Over Experiment (siehe Schema 97) beschrieben, wiederum nukleophiler sein und an die elektronenarme Doppelbindung des Triflimids bevorzugt addieren.

Tabelle 24: Erweiterung der Radikalkette.

<table>
<thead>
<tr>
<th>Nr.[a]</th>
<th>Reagenz</th>
<th>Ausbeute Sulfonamid 350/351 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PhNO</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>PhNO</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Phenylacetylen</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Phenylacetylen</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Ethylacrylat</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Ethylacrylat</td>
<td>0</td>
</tr>
</tbody>
</table>

[a] Reaktionsbedingungen

Unter den gegebenen Reaktionsbedingungen konnte jedoch keine Erweiterung der Radikalkette beobachtet werden. Die Zugabe von Ethylacrylat als Reagenz führte zu dessen Oligomerisierung. Es scheint so als ob hier die radikalische Polymerisierung der elektronenreichen Doppelbindung bevorzugt zur Radikalkettenerweiterung abläuft. Eine genauere Abstimmung der beiden Reaktionspartner ist hier also nötig, falls dieser Ansatz weiterverfolgt werden soll.
3.7 Zusammenfassung und Ausblick

![Schema 102: Durchgeführtes Konzept zur Trifluoromethylierung von Vinyltriflimiden](image)

Das Potential der Kombination aus Stabilität des Imins unter den Reaktionsbedingungen und Reaktivität gegenüber Nukleophilen wird im zweiten Schritt durch die Reaktion von Cyanid-Anionen und Gringnard-Verbindungen mit dem Imin in mittelmäßigen bis sehr guten Ausbeuten demonstriert.

Durchgeführte Kontrollexperimente zum Mechanismus und ergänzende DFT-Rechnungen geben deutliche Hinweise auf einen Radikalkettenmechanismus, jedoch können hier nur weitere Untersuchungen eindeutig klären, ob bei dieser Reaktion nur ein Radikalketten- oder nicht zumindest teilweise parallel ein intramolekularer Mechanismus durchlaufen wird.

Um den Nutzen der Vinyltriflimide und der beschriebenen Reaktion weiter zu erhöhen, wäre es von großer Bedeutung, das erarbeitete Konzept (siehe Schema 103,1) zu einer generellen Anwendung zu erweitern. Unter den untersuchten Reaktionsbedingungen lassen sich bisher weder aliphatische, noch dreifach substituierte Vinyltriflimide in der Trifluoromethylierung umsetzen. Entsprechende Trifluoromethylierungen von Vinyltriflaten deuten jedoch darauf hin, dass dies mit grundlegend anderen Reaktionsbedingungen und einer anderen Initiierung erreicht werden kann.\[^{[77, 78b, d]}\]

![Erweitertes Konzept zur Trifluormethylierung von Vinyltriflimiden](image)

Die Wahrscheinlichkeit für eine erfolgreiche Durchführung ist hierbei mit Borohydriden wie beispielsweise Natriumcyanoborhydrid (N=11,5)103 höher als mit entsprechenden Alkylsilanen wie Triethyliamylsilan (N=3,6).101a Durch eine katalytische Aktivierung der Imin-Spezies (zum Beispiel mit Übergangsmetallkomplexen, Lewis-Säuren oder Organokatalysatoren) kann die Ausbeute dieser Reaktion zudem potentiell verbessert und das Produkt möglicherweise enantioselektiv erhalten werden.96d, 104 Indole, Heteroaromaten sowie Aromaten in Friedel-Crafts-artigen Additionen könnten mit dem Ziel, die Anwendungsbreite der Trifluoromethyliminie 312 zu erweitern ebenfalls mit einer höheren Wahrscheinlichkeit eingesetzt werden.

\textbf{Schema 104: Weitere Derivatisierungsmöglichkeiten von Trifluoromethylsulfonyliminen.}

Bei \textsc{Staudinger}-Reaktionen konnte durch den Austausch eines Tosyl-Substituenten am Stickstoff des Imin-Reaktanten durch einen Triflyl-Rest zu einer vollständigen Umkehr der Stereoselektivität unter...
Die Reaktion der Trifluorosulfonylimine mit Ketenen in [2+2]-Cycloadditionen sowie mit Dienen in [4+2]-Cycloadditionen könnte hier also möglicherweise zu neuartigen Produkten führen und eine sinnvolle Erweiterung der Cycloadditionen von Sulfonyliminen darstellen (siehe Schema 104, unten).

Schema 105: Konzept zur Aktivierung von γ-C-F Bindungen.

Experimenteller Teil

4.1 Allgemeine Arbeitsweise

4.2 Lösungsmittel und Reagenzien

Die Lösungsmittel n-Hexan, n-Pentan, Ethylacetat, Diethylether und Dichlormethan wurden in technischer Qualität erhalten und vor Gebrauch destilliert. Diethylether und THF wurden über Natrium getrocknet. Für empfindliche Reaktionen und Katalysen verwendete Lösungsmittel sowie für NMR-Experimente genutzte Lösungsmittel wurden vor Nutzung durch basisches Aluminium filtriert. Lösungsmittel für unter Schlenktechnik durchgeführte Reaktionen wurden durch eine MB-SPS-800 Trocknungsanlage der Firma M.Braun getrocknet. Alle kommerziell erworbenen Chemikalien wurden wie erhalten genutzt und von folgenden Herstellern erworben:

- ABCR GmbH & Co KG
- Acros Organics
- Alfa Aesar GmbH & Co KG
- Carbolution Chemicals
- J&K Scientific
- Sigma-Aldrich GmbH
- TCI Deutschland GmbH

4.3 Chromatographische Methoden

4.3.1 Dünnschichtchromatographie (DC)

Für die Analyse von Reaktionslösungen wurden Alugram Xtra SIL G/UV254 DC-Fertigplatten der Firma Macheney-Nagel verwendet. Zur Detektion wurde UV-Licht (Fluoreszenz-Lösung bei 254nm) und unterschiedliche Färbereagenzien genutzt.

- Ninhydrin-Lösung (1,5 g Ninhydrin und 3 ml Essigsäure gelöst in 100 ml n-Butanol)
- Vanillin-Lösung (15 g Vanillin und 2,5 ml konzentrierte Schwefelsäure gelöst in 250 ml Ethanol)
- Kaliumpermanganat-Lösung (1,5 g KMnO₄, 100 g K₂CO₃ und 1,25 ml wässrige NaOH-Lösung (10 %ig) gelöst in 235 ml H₂O
• Cer-Molybdat-Lösung (Hanessians Färbelösung: 12 g Ammoniummolybdat, 0,5 g Cerammoniummolybdat oder 0,4 g Cerammoniumnitrat und 15 ml konzentrierte Schwefelsäure gelöst in 235 ml H₂O
• p-Anisaldehyde-Lösung (3,7 ml p-Anisaldehyde, 1,3 ml konzentrierte Essigsäure und 5 ml konzentrierte Schwefelsäure gelöst in 135 ml Ethanol)

4.3.2 Präparative Säulenchromatographie

Für Aufreinigungen durch „Flash“-Säulenchromatographie wurde Kieselgel 60 (Korngröße 0,04-0,063 mm) der Firma Macheney-Nagel verwendet und das Lösungsmittel durch Druckluft durch das Kieselgelbett gepresst. Die Zusammensetzung binärer und ternärer Lösungsgemische für die säulenchromatographischen Aufreinigungen werden, sofern nicht anders beschrieben, als Volumenverhältnisse angegeben.

4.3.3 Semi-präparative Hochleistungsflüssigkeitschromatographie

Isolationen durch semi-präparative HPLC wurde an einem selbst zusammengestellten Gerät der Firma Knauer (Hibar®250-25 HPLC Säule, Smartline UV Detector 2500 und Smartline Pump 1000) durchgeführt. Wenn nicht anders beschrieben wird die Zusammensetzung binärer und ternärer Lösungsmittelgemische als Volumenverhältnisse angegeben.

4.4 Analytische Methoden

4.4.1 Kernresonanzspektroskopie (NMR)

¹H- und ³¹P-entkoppelte ¹³C-NMR- sowie alle weiteren ein- und zweidimensionalen (COSY,HSQC,HMBC,NOESY,NOE,¹³C u.a.) Spektren wurden auf Varian Mercury 300 (¹H-Resonanz 300 MHz), Agilent VNMRS-400 (¹H-Resonanz 400 MHz, ¹³C-Resonanz 101 MHz) und Agilent VNMRS 600 (¹H-Resonanz 600 MHz, ¹³C-Resonanz 151 MHz) Spektrometern im angegebenen deuterierten Lösungsmittel aufgenommen und anschließend mit dem Programm MestReNova bearbeitet. Chemische Verschiebungen (δ) sind in ppm, und in ¹H- und ¹³C-Spektren relativ zu Tetramethylsilan (0,00 ppm), angegeben. Hierzu wurde das Restprotonensignal des jeweiligen deuterierten Lösungsmittels zur Referenzierung verwendet. Die Multiplizität des jeweiligen Signals wird durch folgende Abkürzungen angegeben: s (Singulett), d (Dublett), dd (Dublett von Dubletts), t (Triplet), dt (Dublett von Triplets), td (Triplet von Dubletts), q (Quartett), quint (Quintett) und m (Multiplett). Bei Multipletts wurde Start- und Endverschiebung des Signals, bei allen anderen Signalen der Schwerpunkt angegeben.

4.4.2 Massenspektroskopie (MS)

Massenspektren wurden mit einem SSQ 7000 Massenspektroskop der Firma Finnigan sowohl mit Elektronenstoßionisation (MS-ESI) als auch chemischer Ionisation (MS-Cl) aufgenommen. Die detektierten Hauptmassen (relative Intensität >10% des größten Signals) werden als m/z-Verhältnisse angegeben. Die relative Intensität wird in Klammern hinter dem Signal aufgelistet. Die
hochauflösten Massenspektren (HRMS) wurden auf einem Finnigan MAT 95 oder einer LTQ Orbitrap XL gemessen.

4.4.3 Infrarotspektroskopie (IR)
Zur Aufnahme von IR-Spektren wurde ein Perkin Elmer 1760 Series FT-IR genutzt. Die Hauptsignale (Intensität > 20%) wurden in cm⁻¹ aufgelistet.
4.5 Analytik-Daten und Datensätze zu DFT-Rechnungen

4.5.1 Calcium-katalysierte Cycloisomerisierung von Diinolen

4.5.1.1 Darstellung der Diinole 150 mit Malonat-Rückgrad

Diethyl 2,2-di(prop-2-yn-1-yl)malonat (146)

Eine Lösung aus Malonsäurediethylester 144 (2418 mg, 15,1 mmol, 1,0 Äquiv.) und TBAI (558 mg, 45,3 mmol, 3,0 Äquiv.) in THF (80 ml) wurde auf 0 °C gekühlt. Anschließend wurde portionsweise NaH (60 wt%, 906 mg, 22,7 mmol, 1,5 Äquiv.) zugegeben und 30 Minuten gerührt. Nach Zugabe von Propargylbromid 145 (5389 mg, 45,3 mmol, 3,0 Äquiv.) wurde die Reaktionsmischung über Nacht bei Raumtemperatur gerührt. Die Reaktion wurde durch DC kontrolliert und nach vollständigem Umsatz durch Zugabe gesättigter NH₄Cl-Lösung beendet. Die wässrige Phase wurde dreimal mit DCM extrahiert. Anschließend wurden die vereinigte organische Phase mit Na₂SO₄ getrocknet, abfiltriert und am Rotationsverdampfer eingeengt. Das Produkt 146 wurde zuletzt durch Säulenchromatographie aufgearbeitet.

¹H NMR (600 MHz, Chloroform-d): δ = 4.23 (4H, q, J = 7.1 Hz, H-3), 2.99 (4H, d, J = 2.6 Hz), 2.03 (2H, t, J = 2.6 Hz), 1.26 (6H, t, J = 7.1 Hz).

¹³C NMR (151 MHz, Chloroform-d): δ = 168.6, 78.4, 71.6, 62.1, 56.2, 22.5, 14.0.

MS (EI): m/z (%) = 238.1 (11), 237.1 (83), 207.0 (11), 197.0 (59), 191.0 (35), 190.0 (100), 161.9 (18).

IR (KBr): ν = 3289, 2983, 2937, 2119, 1734, 1465, 1428, 1367, 1322, 1290, 1193, 1056, 1010, 954, 856 cm⁻¹.

Allgemeine Arbeitsvorschrift für die Addition von terminalen Alkinen an Carbonylverbindungen (AAV 1)

n-Buthyllithium (1,3 Äquiv.) wurde zu einer auf -78°C gekühlten Lösung aus HMDS (1,4 Äquiv.) in THF getropft und für 10 Minuten gerührt. Im Anschluss wurde THF zur Reaktionslösung hinzugefügt und das entsprechende Diin 146 (1,0 Äquiv.) hinzugegeben. Nach 15 Minuten rühren wurde die Carbonylverbindung 148 (1,2 Äquiv.) zugegeben und für eine Stunde bei -78°C gerührt. Die Reaktion wurde durch DC kontrolliert und nach vollständigem Umsatz durch Zugabe gesättigter NH₄Cl-Lösung beendet. Die wässrige Phase wurde dreimal mit DCM extrahiert. Anschließend wurden die vereinigte organische Phase mit Na₂SO₄ getrocknet, abfiltriert und am Rotationsverdampfer eingeengt. Das Rohprodukt wurde zuletzt durch Säulenchromatographie aufgearbeitet.

Allgemeine Arbeitsvorschrift für die Kupplung von Diinolen mit Arylhalogeniden (AAV 2)

Das jeweilige Alkinol 149 (1,0 Äquiv.) wurde in einer Argon-Atmosphäre mit dem entsprechenden Arylhalogenid (2,0 Äquiv.), PdCl₂(PPh₃)₂ (5 mol%) oder Pd(PPh₃)₄ (5 mol%) und CuI (5 mol%) in THF gelöst. Anschließend wurde Triethylamin (THF/NEt₃ = 1:1) zugegeben. Die Reaktionsmischung wurde über Nacht gerührt und nach Reaktionskontrolle durch DC durch Zugabe von gesättigter NH₄Cl-Lösung beendet. Die wässrige Phase wurde dreimal mit DCM extrahiert und die vereinigte organische Phase anschließend mit Na₂SO₄ getrocknet, abfiltriert und am Rotationsverdampfer eingeengt. Das Rohprodukt wurde zuletzt durch Säulenchromatographie aufgearbeitet.
Diethyl 2-(4-hydroxy-4-methylpent-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonat (149a)

Gemäß AAV 1 wurde Diin 146 (500 mg, 2,1 mmol, 1,0 Äquiv.) mit LiHMDS (in-situ hergestellt aus HMDS (0,6 ml, 2,9 mmol, 1,4 Äquiv.) und n-Buthyllithium (1,6 M in Hexan, 1,8 ml, 2,8 mmol, 1,3 Äquiv.) bei -78 °C in THF (13 ml) gelöst und anschließend mit Aceton (146 mg, 2,5 mmol, 1,2 Äquiv.) versetzt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 149a mit 59 % (365 mg, 1,24 mmol) Ausbeute als gelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 4.22 (q, J = 7.1 Hz, 4H), 2.95 (s,2H), 2.92 (d, J = 2.7 Hz, 2H), 1.99 (t, J = 2.7 Hz, 1H), 1.44 (s, 6H), 1.27 – 1.22 (t, J = 7.1 Hz, 6H).

13C NMR (151 MHz, Chloroform-d): δ = 168.7, 88.5, 78.5, 71.5, 65.1, 62.0, 56.5, 31.5, 22.6, 22.5, 14.0.

MS (EI): m/z (%) = 279,1 (40), 237,1 (26), 233,0 (17), 220,1 (23), 205,0 (80), 203,1 (100), 202,1 (73), 191,0 (22), 177,0 (84), 175,0 (79), 163,0 (35), 158,9 (38), 147,0 (83), 133,0 (47), 119,0 (35), 105,0 (47), 91,0 (53), 77,1 (45), 65,0 (28).

HRMS-ESI berechnet für C_{19}H_{22}NaO_{5}: 317,13594, gefunden: 317,13589 ([M]+).

IR (KBr): ν = 3474, 3288, 2981, 2322, 2103, 1733, 1445, 1367, 1294, 1198, 1061, 950, 855, 686 cm⁻¹.

Diethyl 2-(4-hydroxy-4-methylpent-2-yn-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonat (150a)

Gemäß AAV2 wurde Alkinol 149a (265 mg, 0,9 mmol, 1,0 Äquiv.), Iodbenzol (367 mg, 1,8 mmol, 2,0 Äquiv.), PdCl₂(PPh₃)₃ (32 mg, 0,045 mmol, 0,05 Äquiv.) und Cu (9 mg, 0,045 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt₃ (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 150a mit 97 % (323 mg, 0,87 mmol) Ausbeute als gelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.40 – 7.37 (2H, m), 7.31 – 7.28 (3H, m), 4.27 (4H, q, J = 7.1 Hz), 3.19 (2H, s), 3.05 (2H, s), 1.50 (6H, s), 1.30 (6H, t, J = 7.1 Hz).

13C NMR (151 MHz, Chloroform-d): δ = 168.9, 131.6, 128.3, 128.2, 123.1, 83.9, 79.7, 63.8, 62.0, 56.9, 55.1, 54.7, 51.7, 48.8, 14.1.

MS (EI): m/z (%) = 355,1 (18,2), 354,1 (22,9), 353,1 (100), 279,0 (14,6).

HRMS-ESI berechnet für C_{32}H_{28}NaO_{5}: 393,16725, gefunden: 393,16721 ([M]+).

IR (KBr): ν = 3483, 3281, 2981, 1730, 1441, 1369, 1290, 1195, 1058, 949, 856, 759, 692 cm⁻¹.

Diethyl 2-(4-hydroxyhex-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonat (149c)

Gemäß AAV 1 wurde Diin 146 (500 mg, 2,1 mmol, 1,0 Äquiv.) mit LiHMDS (in-situ hergestellt aus HMDS (0,6 ml, 2,9 mmol, 1,4 Äquiv.) und n-Buthyllithium (1,6 M in Hexan, 1,8 ml, 2,8 mmol, 1,3 Äquiv.) bei -78 °C in THF (13 ml) gelöst und anschließend mit Propionaldehyde (145 mg, 2,5 mmol, 1,2 Äquiv.) versetzt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 149c mit 38 % (235 mg, 0,8 mmol) Ausbeute als gelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.37 – 7.35 (m, 2H), 7.29 – 7.27 (m, 3H), 4.29 (t, J = 5.3 Hz, 1H), 4.27 – 4.21 (m, 4H), 3.17 (s, 2H), 3.07 (d, J = 1.9 Hz, 2H), 1.74 – 1.62 (m, 2H), 1.27 (t, J = 7.1 Hz, 6H), 0.99 (t, J = 7.4 Hz, 3H).

13C NMR (151 MHz, Chloroform-d): δ = 168.8, 131.6, 128.2, 128.0, 123.1, 83.9, 79.7, 63.8, 62.0, 56.9, 31.0, 23.6, 23.0, 14.1, 9.3.
Diethyl 2-(4-hydroxyhex-2-yn-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonat (150c)

Gemäß AAV2 wurde Alkinol 149c (265 mg, 0,9 mmol, 1,0 Äquiv.), Iodbenzol (367 mg, 1,8 mmol, 2,0 Äquiv.), PdCl₂(PPh₃)₂ (32 mg, 0,045 mmol, 0,05 Äquiv.) und Cul (9 mg, 0,045 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt₃ (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 150c mit 63 % (210 mg, 0,57 mmol) Ausbeute als gelbes Öl erhalten.

IR (KBr): ν = 3478, 2970, 1732, 1444, 1375, 1293, 1198, 1052, 855, 756, 691 cm⁻¹.

HRMS berechnet für C₂₂H₂₆O₃Na₃S: 393.16725, gefunden: 393.16730 ([M⁺]).

Diethyl 2-(4-hydroxy-4-phenylbut-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonat (149d)

Gemäß AAV1 wurde Dienol 149d (500 mg, 2,1 mmol, 1,0 Äquiv.) mit LiHMDS (in-situ hergestellt aus HMDS (0,6 ml, 2,9 mmol, 1,4 Äquiv.) und n-Butyllithium (1,6 M in Hexan, 1,8 ml, 2,8 mmol, 1,3 Äquiv.)) bei -78 °C in THF (13 ml) gelöst und anschließend mit Benzaldehyd (265 mg, 2,5 mmol, 1,2 Äquiv.) versetzt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 149d mit 28 % (201 mg, 0,59 mmol) Ausbeute als gelbes Öl erhalten.

IR (KBr): ν = 3478, 2970, 1732, 1444, 1375, 1293, 1198, 1052, 855, 756, 691 cm⁻¹.
IR (KBr): $\nu = 3469, 3289, 2978, 2309, 2096, 1910, 1731, 1449, 1375, 1293, 1201, 1057, 1004, 854, 696 \text{ cm}^{-1}$.

Diethyl 2-(4-hydroxy-4-phenylbut-2-yn-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonat (150d)

Gemäß AAV2 wurde Alkinol 149d (308 mg, 0,9 mmol, 1,0 Äquiv.), Iodbenzol (367 mg, 1,8 mmol, 2,0 Äquiv.), PdCl$_2$(PPh$_3$)$_2$ (32 mg, 0,045 mmol, 0,05 Äquiv.) und Cul (9 mg, 0,045 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt$_3$ (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 150d mit 73 % (275 mg, 0,66 mmol) Ausbeute als gelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): $\delta = 7.52$ (ddd, J = 6.1, 1.3, 0.6 Hz, 2H), 7.37 (ddd, J = 9.9, 5.2, 2.3 Hz, 4H), 7.34 – 7.30 (m, 1H), 7.29 – 7.26 (m, 3H), 4.26 – 4.18 (m, 4H), 3.19 (s, 2H), 3.14 (d, J = 2.0 Hz, 2H), 2.10 (d, J = 6.3 Hz, 1H), 1.25 (t, J = 7.1 Hz, 6H).

13C NMR (151 MHz, Chloroform-d): $\delta = 168.8, 140.6, 131.6, 128.6, 128.3, 128.2, 128.0, 126.6, 123.0, 83.9, 83.8, 83.3, 81.8, 64.7, 62.0, 56.8, 23.7, 23.1, 14.0.

MS (EI): m/z (%): 345.1 (28), 344.0 (39), 327.0 (18), 325.9 (15), 316.0 (13), 314.9 (51), 299.0 (19), 298.0 (13), 272.0 (18), 271.0 (83), 270.0 (38), 269.0 (18), 254.0 (13), 253 (27), 252.0 (14), 246.0 (13), 243.0 (24), 242.0 (16), 241.0 (22), 239.0 (31.53), 228.0 (14), 215.0 (10), 192.9 (13), 166.9 (21), 165.9 (11), 164.9 (31), 127.9 (22), 126.8 (13), 114.9 (50), 104.8 (100), 90.8 (14), 76.8 (21).

HRMS-ESI calcul. C$_{26}$H$_{26}$NaO$_5$: 441.16725, gefunden: 441.16727 ([M$^+$]).

IR (KBr): $\nu = 3471, 2982 1731, 1490, 1450, 1369, 1294, 1197, 1059, 1002, 916, 856, 756, 693 \text{ cm}^{-1}$.

Diethyl 2-(4-hydroxy-4-(4-methoxyphenyl)but-2-yn-1-yl)-2-(3-prop-2-yn-1-yl)malonat (149e)

Gemäß AAV1 wurde Diin 146 (500 mg, 2,1 mmol, 1,0 Äquiv.) mit LiHMDS (in-situ hergestellt aus HMDS (0,6 ml, 2,9 mmol, 1,4 Äquiv.) und n-Buthyllithium (1,6 M in Hexan, 1,8 ml, 2,8 mmol, 1,3 Äquiv.)) bei -78 °C in THF (13 ml) gelöst und anschließend mit Benzaldehyd (378 mg, 2,5 mmol, 1,2 Äquiv.) versetzt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 149e mit 7 % (57 mg, 0,15 mmol) Ausbeute als gelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): $\delta = 8.25 – 8.22$ (m, 2H), 7.68 (d, J = 8.5 Hz, 2H), 5.52 (d, J = 5.3 Hz, 1H), 4.25 – 4.17 (m, 4H), 3.08 (d, J = 2.0 Hz, 2H), 2.95 (d, J = 2.6 Hz, 2H), 2.42 (d, J = 5.9 Hz, 1H), 2.04 (t, J = 2.7 Hz, 1H), 1.24 (t, J = 7.1 Hz, 6H).

13C NMR (151 MHz, Chloroform-d): $\delta = 168.6, 147.7, 147.3, 127.3, 123.7, 82.8, 82.3, 78.2, 71.9, 63.5, 62.2, 56.3, 22.9, 22.8, 14.0.

MS (EI): m/z (%): 370.0 (11), 358.0 (10), 330.0 (13), 314.0 (17), 313.0(33), 311.9 (10), 297.0 (16), 296.0 (70), 295.0 (100), 286.0 (25), 284.0 (29), 269.0 (28), 268.0 (66), 266.9 (32), 255.9 (18), 241.0 (31), 240.0 (83), 239.0 (36), 224.0 (14), 223.0 (10), 222.0 (11), 212.0 (11), 200.0 (12), 195.0 (13), 194.0 (30), 192.9 (13), 177.9 (15), 175.9 (10), 167.0 (15), 166.0 (37) 164.9 (59), 163.9 (10), 162.9 (10), 152.9 (11), 151.9 (17), 150.9 (16), 149.9 (41), 126.9 (11), 114.9 (18), 104.9 (10), 103.8 (11), 76.9 (13).

HRMS-ESI calcul. C$_{26}$H$_{25}$NO$_5$: 410.12102, gefunden: 410.12112 ([M + Na$^+$]).

IR (KBr): $\nu = 3487, 3283, 2988, 1733, 1601, 1513, 1468, 1344, 1292, 1236, 1188, 1132, 1098, 1048, 1013, 955, 868, 824, 801, 742, 675 \text{ cm}^{-1}$.
Diethyl 2-(4-hydroxy-4-(4-nitrophenyl)but-2-yn-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonat (150e)

Gemäß AAV2 wurde Alkinol 149e (349 mg, 0,9 mmol, 1,0 Äquiv.), Iodbenzol (367 mg, 1,8 mmol, 2,0 Äquiv.), PdCl2(PPh3)2 (32 mg, 0,045 mmol, 0,05 Äquiv.) und CuL (9 mg, 0,045 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt3 (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 150e mit 43 % (179 mg, 0,39 mmol) Ausbeute als gelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 8.25 – 8.22 (m, 2H), 7.68 (d, J = 8.5 Hz, 2H), 5.52 (d, J = 5.3 Hz, 1H), 4.25 – 4.17 (m, 4H), 3.08 (d, J = 2.0 Hz, 2H), 2.95 (d, J = 2.6 Hz, 2H), 2.42 (d, J = 5.9 Hz, 1H), 2.04 (t, J = 2.7 Hz, 1H), 1.24 (t, J = 7.1 Hz, 6H).

13C NMR (151 MHz, Chloroform-d): δ = 168.6, 147.7, 147.3, 127.3, 123.7, 82.8, 82.3, 78.2, 71.9, 63.5, 62.5, 56.3, 22.9, 22.8, 14.0.

MS (EI): m/z (%) = 370.0 (11), 358.0 (10), 330.0 (13), 314.0 (17), 313.0 (33), 311.9 (10), 297.0 (16), 296.0 (70), 295.0 (100), 286.0 (25), 284.0 (29), 269.0 (28), 268.0 (66), 266.9 (32), 255.9 (18), 241.0 (31), 240.0 (83), 239.0 (36), 224.0 (14), 223.0 (10), 222.0 (11), 212.0 (11), 210.0 (12), 195.0 (10), 194.0 (30), 192.9 (13), 177.9 (15), 175.9 (10), 167.0 (15), 166.0 (37) 164.9 (59), 163.9 (10), 162.9 (10), 152.9 (11), 151.9 (17), 150.9 (16), 149.9 (41), 126.9 (11), 114.9 (18), 104.9 (10), 103.8 (11), 76.9 (13).

IR (KBr): ν = 3478, 3283, 2988, 1733, 1601, 1513, 1468, 1344, 1292, 1236, 1188, 1132, 1098, 1048, 1013, 955, 868, 824, 801, 742, 675 cm⁻¹.

Diethyl 2-(4-hydroxy-4-(4-methoxyphenyl)but-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonat (149f)

Gemäß AAV 1 wurde Diinol 146 (500 mg, 2,1 mmol, 1,0 Äquiv.) mit LiHMDS (in-situ hergestellt aus HMDS (0,6 ml, 2,9 mmol, 1,4 Äquiv.) und n-Buthyllithium (1,6 M in Hexan, 1,8 ml, 2,8 mmol, 1,3 Äquiv.)) bei -78 °C in THF (13 ml) gelöst und anschließend mit 4-Methoxybenzaldehyd (340 mg, 2,5 mmol, 1,2 Äquiv.) versetzt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 149f mit 23 % (180 mg, 0,48 mmol) Ausbeute als gelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.44 – 7.41 (m, 2H), 6.91 – 6.88 (m, 2H), 5.37 (dt, J = 6.2, 1.9 Hz, 1H), 4.23 – 4.19 (m, 4H), 3.81 (s, 3H), 3.08 (d, J = 2.0 Hz, 2H), 2.98 (d, J = 2.6 Hz, 2H), 2.03 (dd, J = 4.5, 1.9 Hz, 1H), 1.26 – 1.22 (m, 6H).

13C NMR (151 MHz, Chloroform-d): δ = 207.0, 168.7, 140.6, 128.5, 128.3, 126.6, 83.3, 81.5, 78.5, 71.7, 64.6, 62.1, 56.4, 30.9, 22.9, 22.7, 14.0.

MS (EI): m/z (%) = 373.1 (10), 371.9 (53), 356.0 (21), 355 (99), 299.0 (49), 297.9 (43), 282.0 (11), 281.0 (57), 279.9 (36), 271.0 (18), 270.0 (19), 268.9 (29), 254.0 (11), 252.9 (46), 252.0 (22), 250.9 (11), 240.9 (16), 226.0 (23), 225.0 (100), 224.0 (33), 209.0 (14), 208.0 (10), 199.9 (18), 198.0 (13), 196.9 (55), 195.9 (19), 194.9 (20), 193.9 (11), 182.9 (11), 180.8 (17), 173.9 (12), 166.9 (12), 165.9 (17), 164.8 (51), 162.9 (10), 160.8 (13), 158.9 (14), 157.9 (14), 152.9 (19), 151.9 (18), 148.7 (15), 144.8 (24) 134.8 (98), 126.9 (12), 120.7 (19), 114.7 (26), 108.9 (26), 107.9 (33), 106.7 (15), 104.8 (12), 90.8 (16), 88.7 (15), 76.7 (34), 64.9 (13), 62.8 (10).

IR (KBr): ν = 3474, 3286, 2979, 1731, 1607, 1510, 1451, 1291, 1197, 1013, 840 cm⁻¹.
Diethyl 2-(4-hydroxy-4-(4-methoxyphenyl)but-2-yn-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonat (150f)

Gemäß AAV2 wurde Alkinol 149f (335 mg, 0,9 mmol, 1,0 Äquiv.), iodobenznon (367 mg, 1,8 mmol, 2,0 Äquiv.), PdCl2(PPh3)2 (32 mg, 0,045 mmol, 0,05 Äquiv.) und Cul (9 mg, 0,045 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt3 (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt.Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/ETHOAc = 4:1) wurde Diinol 150f mit 57 % (230 mg, 0,51 mmol) Ausbeute als gelbes Öl erhalten.

\[\text{H NMR (600 MHz, Chloroform-d): } \delta = 7.46 - 7.42 (m, 2H), 7.37 - 7.35 (m, 2H), 7.29 - 7.26 (m, 4H), 6.90 - 6.87 (m, 2H), 5.38 (d, J = 6.3 Hz, 1H), 4.26 - 4.20 (m, 4H), 3.81 (s, 3H), 3.20 (s, 2H), 3.14 (d, J = 2.0 Hz, 2H), 2.04 - 2.00 (m, 1H), 1.25 (td, J = 7.1, 2.1 Hz, 6H).

\[\text{C NMR (151 MHz, Chloroform-d): } \delta = 168.9, 159.6, 133.0, 131.6, 128.2, 128.1, 128.0, 123.0, 113.9, 83.9, 83.7, 83.5, 81.5, 64.3, 62.0, 56.8, 55.3, 23.7, 23.1, 14.0.

MS (EI): m/z (%) = 448.0 (26), 446.9 (20), 445.9 (12), 431.0 (25), 375.0 (38), 374.1 (67), 373.0 (91), 357.0 (29), 355.9 (14), 346.0 (24), 344.9 (74), 343.0 (18), 329.0 (25), 327.9 (15), 326.9 (17), 302.0 (23), 301.0 (100), 290.0 (72), 289.4 (24), 285.0 (21), 284.0 (18), 282.9 (16), 276.0 (45), 274.0 (14), 273.0 (55), 272.0 (27), 271.0 (37), 270.0 (14), 268.9 (47), 268.0 (10), 267.0 (14), 265.9 (38), 258.0 (18), 257.0 (11), 244.9 (12), 242.0 (12), 241.0 (28), 240.0 (11), 239.0 (22), 236.9 (11), 228.0 (10), 227.0 (13), 215.0 (12), 196.9 (15), 194.9 (14), 192.9 (16), 184.9 (10), 164.8 (37), 157.9 (21), 144.9 (10), 134.8 (64), 126.9 (14), 120.8 (23), 114.9 (60), 106.9 (10), 104.8 (72), 90.9 (15), 76.9 (25).

IR (KBr): ν = 3476, 2980, 1732, 1601, 1510, 1443, 1369, 1292, 1247, 1197, 1026, 917, 846, 758, 691 cm⁻¹.

Diethyl (E)-2-(4-hydroxy-6-phenylhex-5-en-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonate (149g)

Gemäß AAV1 wurde Diinol 146 (500 mg, 2,1 mmol, 1,0 Äquiv.) mit LiHMDS (in-situ hergestellt aus HMDS (0,6 ml, 2,9 mmol, 1,4 Äquiv.) und n-Buthyllithium (1,6 M in Hexan, 1,8 ml, 2,8 mmol, 1,3 Äquiv.) bei -78 °C in THF (13 ml) gelöst und anschließend mit Cinnamaldehyde (330 mg, 2,5 mmol, 1,2 Äquiv.) versetzt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/ETHOAc = 4:1) wurde Diinol 149g mit 11 % (85 mg, 0,23 mmol) Ausbeute als gelbes Öl erhalten.

\[\text{H NMR (600 MHz, Chloroform-d): } \delta = 7.42 (d, J = 7.5 Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.26 (t, J = 7.3 Hz, 2H), 6.77 (d, J = 15.8 Hz, 1H), 6.26 (dd, J = 15.8, 5.7 Hz, 1H), 5.01 (s, 1H), 4.23 (q, J = 7.1 Hz, 4H), 3.09 (d, J = 1.9 Hz, 2H), 3.01 (d, J = 2.6 Hz, 2H), 2.04 (t, J = 2.7 Hz, 1H), 1.25 (t, J = 7.1 Hz, 6H).

\[\text{C NMR (151 MHz, Chloroform-d): } \delta = 168.7, 136.1, 131.9, 128.6, 128.1, 128.0, 126.8, 82.5, 81.4, 78.5, 71.8, 62.9, 62.1, 56.4, 22.9, 22.7, 14.0.

MS (EI): m/z (%) = 399.0 (12), 295.1 (17), 294.1 (17), 293.0 (15), 277.0 (11), 273.9 (21), 267.0 (19), 266.0 (28), 265.0 (56), 249.0 (29), 248.0 (21), 247.0 (17), 237.0 (27), 231.0 (10), 223.0 (10), 222.1 (24), 221.0 (100), 220.1 (46), 219.0 (41), 209.0 (18), 207.0 (14), 206.0 (10), 205.0 (27), 204.0 (18), 203.0 (49), 202.0 (24), 195.0 (13), 194.0 (17), 193.0 (63), 192.0 (37), 191.0 (48), 190.0 (25.0), 189.0 (32), 181.9 (17), 181.0 (21), 179.0 (31), 177.9 (56), 172.0 (15), 170.9 (42), 170.0 (17), 168.9 (15), 167.0 (11), 166.0 (12), 164.9 (41), 160.9 (18), 154.9 (10), 152.9 (24), 151.9 (27), 150.9 (21), 143.9 (11), 143.0 (13), 141.9 (15), 140.9 (34), 130.9 (34), 128.9 (11), 127.9 (27), 126.9 (16), 122.8 (12), 118.9 (29), 117.9 (27), 116.9 (14), 115.9 (13), 114.9 (43), 104.9 (27), 103.9 (25), 102.9 (29) 90.9 (66), 89.9 (12), 77.9 (12), 76.9 (26), 65.0 (10).

146
Diethyl (E)-2-(4-hydroxy-6-phenylhex-5-en-2-yn-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonat (150g)

Gesamt AAV2 wurde Alkinol 149g (332 mg, 0,9 mmol, 1,0 Äquiv.), Iodbenzol (367 mg, 1,8 mmol, 2,0 Äquiv.), PdCl2(PPh3)2 (32 mg, 0,045 mmol, 0,05 Äquiv.) und Cul (9 mg, 0,045 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt3 (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 150g mit 31 % (124 mg, 0,28 mmol) Ausbeute als gelbes Öl erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 7.44 – 7.40 (m, 2H), 7.38 – 7.35 (m, 2H), 7.32 (dd, J = 8.4, 6.8 Hz, 2H), 7.29 – 7.24 (m, 4H), 6.79 (dt, J = 15.8, 0.9 Hz, 1H), 6.27 (dd, J = 15.8, 5.6 Hz, 1H), 5.03 (ddq, J = 7.5, 5.8, 1.9 Hz, 1H), 4.25 (qt, J = 7.1, 1.3 Hz, 4H), 3.22 (s, 2H), 3.14 (d, J = 2.0 Hz, 2H), 1.90 (dd, J = 21.3, 6.6 Hz, 1H), 1.58 – 1.53 (m, 1H), 1.29 – 1.23 (m, 6H).

¹³C NMR (151 MHz, Chloroform-d): δ = 168.8, 136.1, 131.9, 131.6, 128.6, 128.2, 128.0, 128.0, 126.8, 123.0, 83.9, 83.8, 82.5, 81.7, 62.9, 62.0, 56.8, 23.7, 23.1, 14.1.

MS (EI): m/z (%) = 341.1 (29), 297.0 (22), 296.1 (14), 295.0 (11), 279.0 (29), 269.0 (19), 268.0 (14), 267.1 (17), 266.1 (10), 265.1 (16), 253.1 (11), 252.0 (12), 219.1 (11), 193.0 (12), 191.0 (17), 178. (15), 166.0 (10), 164.9 (41), 152.9 (26), 151.9 (26), 140.9 (18), 130.9 (14), 129.8 (10), 127.9 (25), 126.9 (21), 115.9 (13), 114.9 (100), 104.9 (69), 103.9 (10), 102.9 (25), 101.9 (11), 90.9 (55), 88.9 (11), 78.0 (10), 76.9 (29).

HRMS-ESI calcld. C₂₂H₂₆O₆Na+: 467.18290, gefunden: 467.18289 ([M + Na]+).

IR (KBr): ν = 3288, 2982, 2220, 2111, 1733, 1642, 1434, 1370, 1289, 1196, 1057, 964, 856 cm⁻¹.

Diethyl (E)-2-(4-hydroxy-5-en-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonate (149h)

Gemäß AAV 1 wurde Diin 146 (500 mg, 2,1 mmol, 1,0 Äquiv.) mit LiHMDS (in-situ hergestellt aus HMDS (0,6 ml, 2,9 mmol, 1,4 Äquiv.) und n-Buthyllithium (1,6 M in Hexan, 1,8 ml, 2,8 mmol, 1,3 Äquiv.)) bei -78 °C in THF (13 ml) gelöst und anschließend mit (E)-2-Butenyl (175 mg, 2,5 mmol, 1,2 Äquiv.) versetzt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 149h mit 13 % (83 mg, 0,27 mmol) Ausbeute als gelbes Öl erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 5.85 (ddq, J = 14.4, 6.6, 1.2 Hz, 1H), 5.57 (ddq, J = 15.2, 6.1, 1.6 Hz, 1H), 4.76 (d, J = 6.0 Hz, 1H), 4.22 (q, J = 7.1 Hz, 4H), 3.03 (dd, J = 1.9 Hz, 2H), 2.96 (d, J = 2.6 Hz, 2H), 2.02 (t, J = 2.7 Hz, 1H), 1.72 (dd, J = 7.1, 3.8, 2.8 Hz, 3H), 1.26 (t, J = 7.1 Hz, 6H).

¹³C NMR (151 MHz, Chloroform-d): δ = 168.7, 130.2, 128.7, 83.1, 80.5, 78.5, 71.7, 62.9, 62.0, 56.4, 22.8, 22.6, 17.4, 14.0.

MS (EI): m/z (%) = 306.1 (17), 305.0 (100), 289.1 (10), 277.0 (13), 259.0 (34), 258.0 (21), 247.0 (17), 232.1 (12), 231.1 (60), 230.1 (66), 229.1 (11), 219.0 (26), 215.0 (14), 212.0 (16), 203.0 (36), 202.0 (21), 201.0 (31), 191.0 (15), 189.0 (12), 187.0 (12), 186.0 (15), 185.0 (40), 184.0 (23), 175.0 (16), 173.0 (14), 160.9 (20), 159.0 (26), 158.0 (31), 157.0 (50), 156.0 (13), 146.9 (11), 144.9 (10), 142.9 (10), 131.0 (16), 130.0 (12), 129.0 (38), 127.9 (31), 126.9 (13), 116.9 (10), 115.9 (10), 114.9 (25), 104.9 (12), 90.9 (20), 88.9 (12), 76.9 (19), 68.9 (51), 65.0 (10).

HRMS-ESI calcld. C₂₀H₂₈NNaO₂: 410.12102, gefunden: 410.12112 ([M + Na]+).

IR (KBr): ν = 3283, 2982, 2220, 2111, 1733, 1642, 1434, 1370, 1289, 1196, 1057, 964, 856 cm⁻¹.
Diethyl (E)-2-(4-hydroxyhept-5-en-2-yn-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonat (150h)

Gemäß AAV2 wurde Alkinol 149h (275 mg, 0,9 mmol, 1,0 Äquiv.), lodbenzol (367 mg, 1,8 mmol, 2,0 Äquiv.), PdCl₂(PPh₃)₂ (32 mg, 0,045 mmol, 0,05 Äquiv.) und CuI (9 mg, 0,045 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt₃ (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 150h mit 39 % (134 mg, 0,35 mmol) Ausbeute als gelbes Öl erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 7.37 – 7.35 (m, 2H), 7.29 – 7.27 (m, 3H), 5.87 (d, d, J = 14.3, 6.6, 1.2 Hz, 1H), 5.59 (ddq, J = 15.2, 6.0, 1.6 Hz, 1H), 4.78 (t, J = 6.1 Hz, 1H), 4.27 – 4.21 (m, 4H), 3.17 (d, J = 7.5 Hz, 2H), 3.09 (d, J = 1.9 Hz, 2H), 1.74 – 1.71 (m, 4H), 1.27 (t, J = 7.1 Hz, 6H).

¹³C NMR (151 MHz, Chloroform-d): δ = 168.8, 131.6, 130.2, 128.8, 128.2, 128.0, 123.0, 83.9, 83.7, 83.0, 80.8, 62.9, 62.0, 56.8, 23.6, 23.0, 17.5, 14.1.

MS (El): m/z (%) = 365.1 (12), 309.1 (28), 308.1 (30), 307.1 (15), 291.1 (25), 280.1 (16), 279.0 (46), 263.1 (21), 262.1 (14), 236.1 (16), 235.1 (71), 234.1 (30), 233.1 (18), 221.0 (12), 220.1 (14), 219.1 (26), 218.1 (13), 217.1 (25), 208.1 (10), 207.0 (42), 206.1 (20), 205.0 (21), 204.0 (11), 203.0 (31), 202.0 (16), 193.0 (18), 192.0 (23), 191.0 (22), 179.0 (21); 178.0 (20), 167.0 (13), 164.9 (33), 130.9 (20), 128.9 (13), 126.9 (11), 114.9 (59), 104.8 (100), 90.9 (26), 76.9 (15), 68.9 (19).

HRMS-ESI calcd. C₂₆H₃₂O₅S: 382.17748, gefunden: 382.17663 ([M⁺]).

IR (KBr): ν = 3472, 2979, 1732, 1442, 1377, 1292, 1199, 1056, 970, 854, 757, 601 cm⁻¹.

Diethyl 2-(4-hydroxy-5-methylhex-5-en-2-yn-1-yl)-2-(3-prop-2-yn-1-yl)malonat (149i)

Gemäß AAV1 wurde Diinol 146 (500 mg, 2,1 mmol, 1,0 Äquiv.) mit LiHMDS (in-situ hergestellt aus HMDS (0,6 ml, 2,9 mmol, 1,4 Äquiv.) und n-Butyllithium (1,6 M in Hexan, 1,8 ml, 2,8 mmol, 1,3 Äquiv.)) bei -78 °C in THF (13 ml) gelöst und anschließend mit Methacrylaldehyde (175 mg, 2,5 mmol, 1,2 Äquiv.) versetzt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 149i mit 5 % (32 mg, 0,11 mmol) Ausbeute als gelbes Öl erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 5.13 (d, J = 0.8 Hz, 1H), 4.91 – 4.89 (m, 1H), 4.74 (s, 1H), 4.22 (q, J = 7.1 Hz, 4H), 3.04 (d, J = 2.0 Hz, 2H), 2.96 (d, J = 2.7 Hz, 2H), 2.02 (t, J = 2.7 Hz, 1H), 1.82 (s, 3H), 1.26 (t, J = 7.1 Hz, 6H).

¹³C NMR (151 MHz, Chloroform-d): δ = 168.7, 144.0, 112.3, 82.6, 80.6, 78.4, 71.7, 66.2, 62.1, 56.4, 22.8, 22.7, 18.0, 14.0.

MS (El): m/z (%) = 289.1 (10), 277.0 (17), 232.1 (14), 231.1 (17), 230.1 (23), 221.0 (11), 215.1 (23), 214.0 (14), 205.0 (21), 204.0 (26), 203.0 (51), 189.0 (16), 187.0 (46), 186.0 (29), 185.0 (17), 177.0 (10), 176.0 (10), 174.9 (33), 171.0 (16), 162.9 (13), 1610 (22), 160.0 (27), 159.0 (100), 158.0 (48), 156.9 (29), 150.9 (10), 146.9 (18), 144.9 (41), 144.0 (16), 142.9 (31), 142.0 (31), 140.9 (24), 134.9 (10), 132.9 (14), 132.0 (18), 130.9 (93), 130.0 (27), 128.9 (41), 127.9 (31), 126.8 (17), 122.8 (12), 118.9 (18), 117.9 (10), 116.9 (32), 115.9 (21), 114.9 (37), 110.9 (14), 108.9 (24), 106.9 (10), 104.9 (21), 92.9 (13), 92.0 (10), 90.9 (62), 88.8 (14), 78.9 (23), 76.9 (28), 68.9 (33), 64.9 (26), 62.9 (10), 54.9 (18), 53.0 (13), 51.0 (12).

HRMS-ESI calcd. C₁₇H₁₂O₅S: 306.14618, gefunden: 306.14540 ([M⁺]).

IR (KBr): ν = 3286, 2980, 1732, 1643, 1444, 1376, 1293, 1200, 1056, 1010, 905, 852 cm⁻¹.

Diethyl 2-(4-hydroxy-5-methylhex-5-en-2-yn-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonat (150i)

148
Gemäß AAV2 wurde Alkinol 149i (276 mg, 0,9 mmol, 1,0 Äquiv.), Iodbenzol (367 mg, 1,8 mmol, 2,0 Äquiv.), PdCl₂(PPh₃)₂ (32 mg, 0,045 mmol, 0,05 Äquiv.) und Cul (9 mg, 0,045 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt₃ (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 150i mit 55 % (189 mg, 0,50 mmol) Ausbeute als gelbes Öl erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 7.37 – 7.34 (m, 2H), 7.27 (d, J = 12.7 Hz, 3H), 5.14 (q, J = 1.1 Hz, 1H), 4.91 (dq, J = 2.2, 1.5 Hz, 1H), 4.75 (d, J = 6.1 Hz, 1H), 4.24 (qd, J = 7.1, 2.3 Hz, 4H), 3.17 (s, 2H), 3.09 (d, J = 2.1 Hz, 2H), 1.84 (t, J = 1.1 Hz, 3H), 1.81 (dd, J = 6.1, 1.6 Hz, 1H), 1.27 (t, J = 7.1 Hz, 6H).

¹³C NMR (151 MHz, Chloroform-d): δ = 168.8, 144.0, 131.6, 128.2, 128.0, 123.0, 112.3, 83.9, 83.7, 82.6, 80.8, 66.3, 62.0, 56.8, 23.6, 23.0, 18.1, 14.1.

MS (EI): m/z (%): 380.1 (11), 341.0 (30), 309.1 (23), 308.0 (27), 293.0 (13), 291.0 (13), 280.0 (19), 279.0 (56), 277.0 (11), 267.0 (15), 265.0 (14), 263.0 (21), 262.0 (13), 261.0 (11), 247.0 (14), 236.0 (18), 235.0 (83), 234.0 (32), 233.0 (22), 221.0 (21), 220.0 (16), 219.0 (32), 218.0 (13), 217.0 (25), 208.0 (12), 207.0 (45), 206.0 (22), 205.0 (21), 204.0 (14), 203.0 (49), 202.0 (21), 193.0 (26), 192.0 (33), 191.0 (24).

IR (KBr): ν = 3478, 2981, 2086, 1732, 1489, 1444, 1369, 1293, 1197, 1058, 1005, 908, 855, 757, 691 cm⁻¹.

Diethyl 2-{{(tert-butyldimethylsilyl)oxy}-4-hydroxy-4-methylhept-2-yn-1-yl}-2-prop-2-yn-1-yl]malonat (149j)

Gemäß AAV 1 wurde Diin 146 (500 mg, 2,1 mmol, 1,0 Äquiv.) mit LiHMDS (in-situ hergestellt aus HMDS (0,6 ml, 2,9 mmol, 1,4 Äquiv.) und n-Butyllithium (1,6 M in Hexan, 1,8 ml, 2,8 mmol, 1,3 Äquiv.)) bei -78 °C in THF (13 ml) gelöst und anschließend mit 5-{{(tert-butyldimethylsilyl)oxy}pentan-2-on (541 mg, 2,5 mmol, 1,2 Äquiv.) versetzt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 149j mit 60 % (570 mg, 1,3 mmol) Ausbeute als gelbes Öl erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 4.21 (q, J = 7.1 Hz, 4H), 3.73 (dt, J = 10.3, 5.3 Hz, 1H), 3.62 (ddd, J = 10.3, 8.0, 4.0 Hz, 1H), 2.98 (s, J = 4.9 Hz, 2H), 2.95 (d, J = 2.2 Hz, 2H), 2.00 (t, J = 2.7 Hz, 1H), 1.84 – 1.75 (m, 2H), 1.71 – 1.63 (m, 2H), 1.44 (s, 3H), 1.26 (t, J = 7.1 Hz, 6H), 0.91 (s, 9H), 0.08 (s, 3H), 0.08 (s, 3H).

¹³C NMR (151 MHz, Chloroform-d): δ = 168.7, 87.7, 78.6, 77.4, 71.5, 67.4, 63.6, 61.9, 56.5, 41.52, 30.4, 28.3, 25.9, 22.7, 22.6, 18.3, 14.0, -5.4, -5.5.

MS (EI): m/z (%): 436.2 (15), 435.2 (48), 395.0 (26), 349.0 (22), 303.1 (41), 279.0 (19), 275.0 (17), 257.0 (13), 247.0 (11), 230.1 (13), 229.1 (73), 205.0 (12), 203.0 (11), 201.0 (24), 197.0 (20), 182.9 (23), 176.9 (11), 172.9 (11), 160.0 (10), 158.9 (76), 157.0 (23), 156.0 (15), 154.9 (39), 144.9 (12), 142.9 (12), 142.0 (16), 140.9 (17), 132.0 (10), 130.9 (15), 128.9 (22), 127.9 (14), 122.9 (28), 116.9 (17), 114.9 (20), 104.9 (26), 102.9 (11), 100.9 (19), 92.9 (10), 90.9 (24), 84.9 (22), 78.9 (14), 76.9 (20), 74.9 (100), 72.9 (38), 57.1 (24).

HRMS-ESI calcd. C₂₅H₄₆O₃Si: 452.25887, gefunden: 452.25826 ([M⁺]).

IR (KBr): ν = 3475, 3294, 2942, 2103, 1735, 1460, 1373, 1293, 1199, 1089, 947, 836, 777 cm⁻¹.
Diethyl 2-(7-((tert-butyldimethylsilyl)oxy)-4-hydroxy-4-methylhept-2-yn-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonat (150j)

Gemäß AAV2 wurde Alkinol 149j (407 mg, 0,9 mmol, 1,0 Äquiv.), Iodbenzol (367 mg, 1,8 mmol, 2,0 Äquiv.), PdCl₂(PPh₃)₂ (32 mg, 0,045 mmol, 0,05 Äquiv.) und Cul (9 mg, 0,045 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt₃ (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 150j mit 86 % (409 mg, 0,77 mmol) Ausbeute als gelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.37 – 7.34 (m, 2H), 7.27 (dd, J = 5.2, 2.0 Hz, 3H), 4.23 (qt, J = 7.1, 1.6 Hz, 4H), 3.73 (dt, J = 10.3, 5.2 Hz, 1H), 3.63 (ddd, J = 10.2, 7.9, 4.0 Hz, 1H), 3.16 (d, J = 1.2 Hz, 2H), 3.04 (s, 2H), 1.89 – 1.76 (m, 2H), 1.73 – 1.63 (m, 2H), 1.45 (s, 3H), 1.27 (t, J = 7.1 Hz, 6H), 0.90 (s, 9H).

13C NMR (151 MHz, Chloroform-d): δ = 168.9, 131.6, 128.2, 128.0, 123.1, 87.6, 84.1, 83.6, 77.6, 67.4, 63.7, 56.9, 41.6, 30.4, 28.3, 25.9, 23.5, 22.9, 18.3, 14.1.

MS (EI): m/z (%) = 471.1 (18), 396.6 (16), 379.0 (17), 356.1 (23), 355.0 (100), 306.1 (12), 305.0 (47), 279.1 (21), 278.1 (24), 233.0 (12), 231.0 (19), 217.0 (12), 205.0 (15), 158.9 (24), 114.9 (23), 104.9 (18), 90.9 (13), 84.9 (19), 79.4 (28), 72.9 (11), 57.1 (10).

IR (KBr): ν = 3485, 2939, 2860, 2326, 2086, 1735, 1464, 1369, 1294, 1249, 1196, 1092, 945, 836, 766, 690 cm⁻¹.

Diethyl 2-(7-acetoxy-4-hydroxy-4-methylhept-2-yn-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonat (149k)

Gemäß AAV1 wurde Diin 146 (500 mg, 2,1 mmol, 1,0 Äquiv.) mit LiHMDS (in-situ hergestellt aus HMDS (0,6 ml, 2,9 mmol, 1,4 Äquiv.) und n-Buthyllithium (1,6 M in Hexan, 1,8 ml, 2,8 mmol, 1,3 Äquiv.)) bei -78 °C in THF (13 ml) gelöst und anschließend mit 4-Oxopentylacetat (360 mg, 2,5 mmol, 1,2 Äquiv.) versetzt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 149k mit 67 % (535 mg, 1,41 mmol) Ausbeute als gelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 4.22 (q, J = 7.1 Hz, 4H), 4.10 (td, J = 6.5, 1.7 Hz, 2H), 2.99 (s, 2H), 2.94 (d, J = 2.6 Hz, 2H), 2.06 (s, 3H), 2.02 (t, J = 2.7 Hz, 1H), 1.91 (s, 1H), 1.86 – 1.75 (m, 2H), 1.71 – 1.62 (m, 2H), 1.45 (s, 3H), 1.26 (t, J = 7.1 Hz, 6H).

13C NMR (151 MHz, Chloroform-d): δ = 171.1, 168.6, 87.0, 78.4, 78.2, 71.7, 67.8, 64.4, 62.0, 56.4, 39.9, 30.2, 24.2, 22.6, 22.6, 21.0, 14.0.

MS (EI): m/z (%) = 364.2 (22), 363.1 (100), 303.0 (11), 279.0 (27), 275.0 (12), 229.1 (13), 205.0 (12).

IR (KBr): ν = 2979, 1732, 1450, 1367, 1291, 1198, 1045, 856 cm⁻¹.
Gemäß AAV2 wurde Alkinol 149k (342 mg, 0,9 mmol, 1,0 Äquiv.), Iodbenzol (367 mg, 1,8 mmol, 2,0 Äquiv.), PdCl2/(PPh3)2 (32 mg, 0,045 mmol, 0,05 Äquiv.) und CuI (9 mg, 0,045 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt3 (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 150k mit 75 % (308 mg, 0,68 mmol) Ausbeute als gelbes Öl erhalten.

\(^1H \text{ NMR (600 MHz, Chloroform-}\text{d}): \delta = 7.37 - 7.35 (m, 2H), 7.29 - 7.25 (m, 3H), 4.24 (qd, J = 7.1, 2.1 Hz, 4H), 4.10 (td, J = 6.5, 1.9 Hz, 2H), 3.15 (s, 2H), 3.04 (s, 2H), 2.05 (s, 3H), 1.92 (s, 1H), 1.88 - 1.77 (m, 2H), 1.72 - 1.63 (m, 2H), 1.46 (s, 3H), 1.27 (t, J = 7.1 Hz, 6H). \)

\(^1H \text{ NMR (600 MHz, Chloroform-}\text{d}): \delta = 7.36 - 7.35 (m, 2H), 7.30 - 7.26 (m, 1H), 4.53 (d, J = 2.0 Hz, 2H), 4.21 (q, J = 7.1 Hz, 4H), 3.56 (dt, J = 9.6, 5.6 Hz, 1H), 3.50 (ddd, J = 9.4, 7.8, 4.6 Hz, 1H), 3.03 (s, 1H), 2.99 (s, 2H), 2.95 (d, J = 2.6 Hz, 2H), 2.00 (t, J = 2.7 Hz, 1H), 1.94 - 1.87 (m, 1H), 1.80 - 1.73 (m, 2H), 1.71 - 1.67 (m, 1H), 1.44 (s, J = 4.8 Hz, 3H), 1.25 (t, J = 7.1 Hz, 6H). \)

\(^13C \text{ NMR (151 MHz, Chloroform-}\text{d}): \delta = 168.7, 138.1, 128.4, 127.7, 127.6, 87.5, 78.6, 77.7, 72.9, 71.6, 70.5, 67.6, 62.0, 56.5, 41.2, 30.3, 25.2, 22.7, 22.6, 14.0. \)

\(\text{MS (EI): } m/z \% = 412.2 (13), 411.1 (53), 279.0 (17), 92.0 (11), 90.9 (100), 84.9 (30). \)

IR (KBr): \(\nu = 3476, 2974, 2329, 1731, 1447, 1370, 1204, 855, 757, 691 \text{ cm}^{-1}. \)

Diethyl 2-(7-benzyloxy)-4-hydroxy-4-methylhept-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonat (149l)

Gemäß AAV1 wurde Diinol 146 (500 mg, 2,1 mmol, 1,0 Äquiv.) mit LiHMDS (0,6 ml, 2,9 mmol, 1,4 Äquiv.) und n-Buthyllithium (1,6 M in Hexan, 1,8 ml, 2,8 mmol, 1,3 Äquiv.) bei -78 °C in THF (13 ml) gelöst und anschließend mit 5-(benzyloxy)pentan-2-on (481 mg, 2,5 mmol, 1,2 Äquiv.) versetzt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 149l mit 49 % (441 mg, 1,0 mmol) Ausbeute als gelbes Öl erhalten.

\(^1H \text{ NMR (600 MHz, Chloroform-}\text{d}): \delta = 7.36 - 7.33 (m, 4H), 7.30 - 7.26 (m, 1H), 4.53 (d, J = 2.0 Hz, 2H), 4.21 (q, J = 7.1 Hz, 4H), 3.56 (dt, J = 9.6, 5.6 Hz, 1H), 3.50 (ddd, J = 9.4, 7.8, 4.6 Hz, 1H), 3.03 (s, 1H), 2.99 (s, 2H), 2.95 (d, J = 2.6 Hz, 2H), 2.00 (t, J = 2.7 Hz, 1H), 1.94 - 1.87 (m, 1H), 1.80 - 1.73 (m, 2H), 1.71 - 1.67 (m, 1H), 1.44 (s, J = 4.8 Hz, 3H), 1.25 (t, J = 7.1 Hz, 6H). \)

\(^13C \text{ NMR (151 MHz, Chloroform-}\text{d}): \delta = 168.7, 138.1, 128.4, 127.7, 127.6, 87.5, 78.6, 77.7, 72.9, 71.6, 70.5, 67.6, 62.0, 56.5, 41.2, 30.3, 25.2, 22.7, 22.6, 14.0. \)

\(\text{MS (EI): } m/z \% = 412.2 (13), 411.1 (53), 279.0 (17), 92.0 (11), 90.9 (100), 84.9 (30). \)

IR (KBr): \(\nu = 3286, 2979, 2935, 2862, 2114, 1733, 1452, 1366, 1292, 1197, 1094, 1055, 1011, 951, 913, 856, 740, 697 \text{ cm}^{-1}. \)

Diethyl 2-(4-hydroxy-4-(4-methoxyphenyl)but-2-yn-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonat (150l)
Diethyl 2-(4-hydroxy-6-phenylhex-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonat (149m)

\[
\text{EtO}_2\text{C} \quad \text{CO}_2\text{Et} \\
\text{H} \quad \text{Ph} \\
\text{149m}
\]

Gemma AAV 1 wurde Diinol 146 (500 mg, 2,1 mmol, 1,0 Äquiv.) mit LiHMDS (in-situ hergestellt aus HMDS (0,6 ml, 2,9 mmol, 1,4 Äquiv.) und n-Butyllithium (1,6 M in Hexan, 1,8 ml, 2,8 mmol, 1,3 Äquiv.)) bei -78 °C in THF (13 ml) gelöst und anschließend mit 3-Phenylpropional (335 mg, 2,5 mmol, 1,2 Äquiv.) versetzt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 149m mit 53 % (412 mg, 1,1 mmol) Ausbeute als gelbes Öl erhalten.

\[
\text{EtO}_2\text{C} \quad \text{CO}_2\text{Et} \\
\text{Ph} \quad \text{OH} \\
\text{150m}
\]

Gemma AAV2 wurde Alkinol 149m (333 mg, 0,9 mmol, 1,0 Äquiv.), Iodbenzol (367 mg, 1,8 mmol, 2,0 Äquiv.), PdCl\textsubscript{2}(PPh\textsubscript{3})\textsubscript{2} (32 mg, 0,045 mmol, 0,05 Äquiv.) und Cul (9 mg, 0,045 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, \textit{Ne}\textit{t}\textsubscript{3} (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 150m mit 76 % (305 mg, 0,68 mmol) Ausbeute als gelbes Öl erhalten.
Diethyl 2-(4-hydroxy-6-phenylhexa-2,5-diyn-1-yl)-2-(prop-2-yn-1-yl)malonate (149n)

Gemäß AAV 1 wurde Diin 146 (500 mg, 2,1 mmol, 1,0 Äquv.) mit LiHMDS (in-situ hergestellt aus HMDS (0,6 ml, 2,9 mmol, 1,4 Äquv.) und n-Buthyllithium (1,6 M in Hexan, 1,8 ml, 2,8 mmol, 1,3 Äquv.)) bei -78 °C in THF (13 ml) gelöst und anschließend mit 3-Phenylpropionaldehyd (325 mg, 2,5 mmol, 1,2 Äquv) versetzt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 149n mit 19 % (146 mg, 0,40 mmol) Ausbeute als gelbes Öl erhalten.

\(^1\)H NMR (600 MHz, Chloroform-d): δ = 7.47 – 7.44 (m, 2H), 7.36 – 7.29 (m, 3H), 5.28 (d, J = 7.5 Hz, 1H), 4.27 – 4.20 (m, 4H), 3.07 (d, J = 2.0 Hz, 2H), 3.00 (d, J = 2.6 Hz, 2H), 2.03 (t, J = 2.7 Hz, 1H), 1.26 (t, J = 7.1 Hz, 6H).

\(^13\)C NMR (151 MHz, Chloroform-d): δ = 166.8, 131.8, 128.8, 128.3, 121.9, 86.0, 84.2, 80.8, 79.8, 78.5, 71.7, 62.1, 56.4, 52.7, 22.8, 22.7, 14.0.

MS (EI): m/z (%) = 369.2 (23), 339.1 (14), 323.1 (19), 296.1 (21), 295.1 (100), 294.1 (30), 293.1 (13), 279.1 (12), 278.1 (15), 277.1 (16), 276.1 (17), 270.1 (14), 268.1 (14), 267.1 (43), 266.1 (26), 265.1 (45), 263.1 (18), 262.1 (20), 253.1 (14), 252.1 (24), 241.1 (11), 239.1 (12), 191.1 (10), 189.0 (18), 183.0 (15), 165.0 (22), 152.0 (29), 139.0 (13), 129.0 (19), 127.0 (12), 126.0 (10), 115.0 (56), 105.0 (82), 77.1 (16).

IR (KBr): ν = 3468, 2981, 1732, 1443, 1297, 1201, 1026, 856, 756, 545 cm\(^{-1}\).
4.5.1.2 Darstellung der Diinole 154 ohne Malonat-Rückgrad

4-Methyl-\(N,N \)-di(prop-2-yn-1-yl)benzolsulfonamid (151a)

Eine Lösung aus p-Tolusulfonylamid (8,3 g, 48,5 mmol, 1,0 Äquiv.) und TBAI (mg, 4,9 mmol, 0,1 Äquiv.) in THF (80 ml) wurde auf 0 °C gekühlt. Anschließend wurde portionsweise NaH (60 wt%, 4,3 g, 107 mmol, 2,2 Äquiv.) zugegeben und 30 Minuten gerührt. Nach Zugabe von Propargylbromid 145 (80 wt%, 12,7 g, 45,3 mmol, 3,0 Äquiv.) wurde die Reaktionsmischung über Nacht bei Raumtemperatur gerührt. Die Reaktion wurde durch DC kontrolliert und nach vollständigem Umsatz durch Zugabe gesättigter NH₄Cl-Lösung beendet. Die wässrige Phase wurde dreimal mit DCM extrahiert. Anschließend wurden die vereinigte organische Phase mit Na₂SO₄ getrocknet, abfiltriert und am Rotationsverdampfer eingeengt. Das Produkt 151a wurde zuletzt durch Säulenchromatographie (n-Hexan/EtOAc = 10:1) aufgereinigt und mit 97 % (11,6 g, 47 mmol) Ausbeute als gelblich-weißer Feststoff erhalten.

\(^{1}\)H NMR (600 MHz, Chloroform-d): \(\delta = 4.23 \) (4H, q, J = 7.1 Hz, H-3), 2.99 (4H, d, J = 2.6 Hz), 2.03 (2H, t, J = 2.6 Hz), 1.26 (6H, t, J = 7.1 Hz).

\(^{13}\)C NMR (151 MHz, Chloroform-d): \(\delta = 168.6, 78.4, 71.6, 62.1, 56.2, 22.5, 14.0. \)

MS (EI): \(\text{m/z} = 238.1 (11), 237.1 (83), 207.0 (11), 197.0 (59), 191.0 (35), 190.0 (100), 161.9 (18). \)

IR (KBr): \(\nu = 3289, 2983, 2937, 2119, 1734, 1465, 1428, 1367, 1322, 1290, 1193, 1056, 1010, 954, 856 \text{ cm}^{-1}. \)

N-(4-hydroxy-4-methylpent-2-yn-1-yl)-4-methyl-N-(prop-2-yn-1-yl)benzolsulfonamid (153)

Gemäß AAV 1 wurde Diin 151a (3710 mg, 15 mmol, 1,5 Äquiv.) mit LiHMDS (in-situ hergestellt aus HMDS (2,9 ml, 14 mmol, 1,4 Äquiv.) und n-Butyllithium (1,6 M in Hexan, 9,6 ml, 15 mmol, 1,5 Äquiv.)) bei -78 °C in THF (70 ml) gelöst und anschließend Aceton (581 mg, 10 mmol, 1,0 Äquiv) versetzt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 153 mit 49 % (1496 mg, 4,9 mmol) Ausbeute als gelber Feststoff erhalten.

\(^{1}\)H NMR (600 MHz, Chloroform-d): \(\delta = 7.73 \) (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 4.20 (s, 2H), 4.13 (d, J = 2.4 Hz, 2H), 2.43 (s, 3H), 2.16 (t, J = 2.5 Hz, 1H), 1.34 (s, 6H).

\(^{13}\)C NMR (151 MHz, Chloroform-d): \(\delta = 143.9, 135.4, 129.6, 128.0, 90.6, 76.4, 74.3, 73.9, 64.9, 36.5, 36.3, 31.0, 21.5. \)

MS (EI): \(\text{m/z} \) (%) = 290.0 (57), 288.0 (17), 287.0 (12), 240.0 (14), 226.0 (21), 208.0 (17), 154.8 (60), 149.9 (23), 138.8 (30), 133.9 (26), 132.9 (12), 131.9 (91), 121.9 (10), 116.9 (17), 107.9 (11), 106.9 (19), 105.9 (10), 104.9 (14), 103.9 (12), 92.9 (18), 91.9 (31), 90.9 (100), 79.9 (22), 78.9 (12), 76.9 (11), 64.9 (28).

HRMS-ESI berechnet für \(\text{C}_{19}\text{H}_{20}\text{O}_{2}\text{NNaS} \): 328.09779, gefunden: 328.09781 ([M]^+).

IR (KBr): \(\nu = 3506, 3285, 2980, 1597, 1439, 1342, 1235, 1151, 946, 895, 815, 750, 666 \text{ cm}^{-1}. \)

N-(4-hydroxy-4-methylpent-2-yn-1-yl)-4-methyl-N-(3-phenylprop-2-yn-1-yl)benzolsulfonamid (154a)

Gemäß AAV2 wurde Alkinol 153 (300 mg, 1,0 mmol, 1,0 Äquiv.), Iodbenzol (408 mg, 2,0 mmol, 2,0 Äquiv.), PdCl₂(PPh₃)₂ (35 mg, 0,05 mmol, 0,05 Äquiv.) und Cu (10 mg, 0,05 mmol, 0,05 Äquiv.) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt₃ (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-
Hexan/EtOAc = 4:1) wurde Diinol 154a mit 91 % (347 mg, 0,91 mmol) Ausbeute als gelber Feststoff erhalten.

\[^1H \text{ NMR (600 MHz, Chloroform-}d) \]: \(\delta = 7.72 – 7.69 \) (m, 2H), 7.30 – 7.27 (m, 3H), 7.20 (dd, J = 8.1, 1.2 Hz, 2H), 7.11 (t, J = 7.8 Hz, 2H), 4.37 (s, 2H), 4.23 (s, 2H), 2.37 (s, 3H), 1.37 (s, 6H).

\[^13 \text{C NMR (151 MHz, Chloroform-}d) \]: \(\delta = 143.8, 135.6, 131.6, 129.6, 128.5, 128.2, 128.0, 122.1, 90.5, 85.7, 81.5, 74.7, 64.9, 37.3, 36.8, 31.1, 21.4. \)

MS (EI): m/z (%) = 367.0 (20), 366.0 (88), 276.0 (20), 226.1 (33), 225.1 (17), 224.1 (10), 211.1 (16), 210.0 (100), 208.1 (27), 198.0 (11), 197.0 (12), 193.0 (13), 183.0 (15), 182.0 (22), 181.0 (10), 168.0 (28), 167.0 (28), 166.0 (10), 154.9 (28), 139.8 (15), 114.9 (51), 104.9 (33), 90.9 (47), 65.1 (11), 59.2 (10).

HRMS-ESI berechnet für C_{12}H_{19}O_3N_2S: 404.12909, gefunden: 404.12897 ([M + Na]^+).

IR (KBr): \(\nu = 2982, 1597, 1490, 1349, 1239, 1159, 1092, 952, 897, 854, 812, 752, 685, 659 \text{ cm}^{-1}. \)

N-(4-hydroxy-4-methylpent-2-yn-1-yl)-N-(3-(4-hydroxyphenyl)prop-2-yn-1-yl)-4-methylbenzolsulfonamid (154b)

\[154b \]

Gemäß AAV2 wurde Alkinol 153 (300 mg, 1,0 mmol, 1,0 Äquiv.), 4-Iodphenol (440 mg, 2,0 mmol, 2,0 Äquiv.), PdCl\(_2\)(PPh\(_3\))\(_2\) (35 mg, 0,05 mmol, 0,05 Äquiv.) und Cu (10 mg, 0,05 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt\(_3\) (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 154b mit 73 % (290 mg, 0,73 mmol) Ausbeute als gelber Feststoff erhalten.

\[^1H \text{ NMR (600 MHz, Chloroform-}d) \]: \(\delta = 7.76 \) (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.13 – 7.10 (m, 2H), 6.74 – 6.71 (m, 2H), 4.34 (s, 2H), 4.22 (s, 2H), 2.39 (s, 3H), 1.36 (s, 6H).

MS (EI): m/z (%) = 242.1 (12), 226.1 (55), 198.1 (11), 184.1 (17), 183.0 (24), 155.0 (25), 139.1 (13), 131.1 (57), 122.1 (14), 121.1 (77), 120.1 (13), 92.1 (18), 91.2 (100), 77.2 (24), 65.2 (23), 59.3 (27).

HRMS-ESI berechnet für C_{22}H_{23}O_4N_2S: 397.23423, gefunden: 397.13249 ([M]^+).

IR (KBr): \(\nu = 3425, 2982, 1602, 1510, 1439, 1341, 1230, 1152, 1093, 949, 897, 829, 747, 669 \text{ cm}^{-1}. \)

N-(4-hydroxy-4-methylpent-2-yn-1-yl)-N-(3-(3-hydroxyphenyl)prop-2-yn-1-yl)-4-methylbenzolsulfonamid (154c)

\[154c \]

Gemäß AAV2 wurde Alkinol 153 (300 mg, 1,0 mmol, 1,0 Äquiv.), 3-Iodphenol (440 mg, 2,0 mmol, 2,0 Äquiv.), PdCl\(_2\)(PPh\(_3\))\(_2\) (35 mg, 0,05 mmol, 0,05 Äquiv.) und Cu (10 mg, 0,05 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt\(_3\) (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 154c mit 71 % (282 mg, 0,71 mmol) Ausbeute als gelber Feststoff erhalten.

\[^1H \text{ NMR (600 MHz, Chloroform-}d) \]: \(\delta = 7.79 – 7.74 \) (m, 2H), 7.29 (d, J = 7.6 Hz, 2H), 7.13 (t, J = 7.9 Hz, 1H), 6.80 – 6.76 (m, 2H), 6.70 (s, 1H), 4.36 (s, 2H), 4.22 (s, 2H), 2.38 (s, 3H), 1.37 (s, J = 1.5 Hz, 6H).

\[^13 \text{C NMR (151 MHz, Chloroform-}d) \]: \(\delta = 155.3, 143.9, 135.6, 129.6, 129.5, 128.0, 124.0, 123.3, 118.4, 116.0, 90.3, 85.4, 81.6, 74.9, 65.1, 37.4, 36.9, 31.1, 29.7, 21.4. \)
MS (EI): m/z (%) = 379.3 (11), 301.3 (19), 300.3 (100), 242.3 (39), 226.3 (22), 225.3 (11), 224.3 (70), 208.3 (21), 198.3 ((18), 197.3 (28), 196.3 (10), 184.3 (13), 183.3 (19), 155.2 (29), 139.3 (10), 132.3 (10), 131.3 (89), 91.3 (18).

HRMS-ESI berechnet für C$_{22}$H$_{22}$O4N$_4$S$_2$Na: 420.12400, gefunden: 420.12354 ([M + Na]$^+$.)

IR (KBr): ν = 3001, 1739, 1366, 1214, 1079 cm$^{-1}$.

N-(4-hydroxy-4-methylpent-2-yn-1-yl)-N-(3-(2-hydroxyphenyl)prop-2-yn-1-yl)-4-methylbenzolsulfonamid (154d)

Gemäß AAV2 wurde Alkinol 153 (300 mg, 1,0 mmol, 1,0 Äquiv.), 2-Iodphenol (440 mg, 2,0 mmol, 2,0 Äquiv.), PdCl$_2$(PPh$_3$)$_2$ (35 mg, 0,05 mmol, 0,05 Äquiv.) und CuI (10 mg, 0,05 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt$_3$ (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 154d mit 53 % (211 mg, 0,53 mmol) Ausbeute als gelber Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.79 (d, J = 8.3 Hz, 1H), 7.52 (dd, J = 7.6, 1,3 Hz, 1H), 7.40 (d, J = 8.2 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.29 – 7.24 (m, 1H), 7.21 (td, J = 7.5, 1,0 Hz, 1H), 6.67 (s, 1H), 4.57 (s, 2H), 4.13 (s, 2H), 2.43 (s, 3H), 1.26 (s, 6H).

13C NMR (151 MHz, Chloroform-d): δ = 155.1, 151.6, 143.7, 136.2, 129.5, 127.9, 127.9, 124.5, 122.9, 121.0, 111.3, 106.5, 90.7, 74.6, 64.7, 43.7, 36.9, 31.0, 29.7, 29.5, 21.5.

MS (EI): m/z (%): 397.3 (11), 301.3 (19), 300.3 (100), 242.3 (39), 226.3 (22), 225.3 (11), 224.3 (70), 208.3 (21), 198.3 ((18), 197.3 (28), 196.3 (10), 184.3 (13), 183.3 (19), 159.2 (29), 139.3 (10), 132.3 (10), 131.3 (89), 91.3 (18).

HRMS-ESI berechnet für C$_{22}$H$_{22}$O4N$_4$S$_2$Na: 420.12400, gefunden: 420.12354 ([M + Na]$^+$.)

IR (KBr): ν = 3524, 2923, 2316, 2095, 1739, 1603, 1448, 1349, 1223, 1150, 915, 820, 747, 672 cm$^{-1}$.

N-(4-hydroxy-4-methylpent-2-yn-1-yl)-N-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamid (154e)

Gemäß AAV2 wurde Alkinol 153 (300 mg, 1,0 mmol, 1,0 Äquiv.), 1-Iod-Methylbenzol (468 mg, 2,0 mmol, 2,0 Äquiv.), PdCl$_2$(PPh$_3$)$_2$ (35 mg, 0,05 mmol, 0,05 Äquiv.) und CuI (10 mg, 0,05 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt$_3$ (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 154e mit 87 % (358 mg, 0,87 mmol) Ausbeute als gelber Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.76 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.17 – 7.14 (m, 2H), 6.80 – 6.78 (m, 2H), 4.35 (s, 2H), 4.22 (s, 2H), 3.80 (s, 3H), 3.80 (s, 3H), 2.39 (s, 3H), 2.39 (s, 3H), 1.36 (s, 6H).

13C NMR (151 MHz, Chloroform-d): δ = 159.7, 143.7, 135.7, 133.1, 129.5, 128.0, 114.2, 113.8, 90.4, 85.6, 80.1, 74.8, 64.9, 55.3, 37.4, 36.7, 31.1, 21.5.

MS (EI): m/z (%): 397.0 (23), 396.0 (100), 276.1 (17), 256.1 (25), 242.1 (17), 240.1 (88), 197.1 (11), 155.0 (13).

HRMS-ESI berechnet für C$_{22}$H$_{22}$O$_4$N$_4$S$_2$: 396.12641, gefunden: 396.12632 ([M]$^+$.)

IR (KBr): ν = 3512, 2980, 2932, 2842, 2224, 1604, 1569, 1509, 1445, 1351, 1294, 1249, 1163, 1096, 1030, 950, 900, 834, 751, 669, 574, 545, 493 cm$^{-1}$.

156
N-(4-hydroxy-4-methylpent-2-yn-1-yl)-4-methyl-N-(3-(p-tolyl)prop-2-yn-1-yl)benzolsulfonamid (154f)

Gemäß AAV2 wurde Alkinol 153 (300 mg, 1,0 mmol, 1,0 Äquiv.), 1-Iod-4-Methylbenzol (436 mg, 2,0 mmol, 2,0 Äquiv.), PdCl₂(PPh₃)₂ (35 mg, 0,05 mmol, 0,05 Äquiv.) und CuI (10 mg, 0,05 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt₃ (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 154f mit 95 % (375 mg, 0,95 mmol) Ausbeute als gelber Feststoff erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 7.76 (dd, J = 8.1, 2.1 Hz, 2H), 7.29 (d, J = 6.2 Hz, 2H), 7.11 – 7.05 (m, 4H), 4.36 (d, J = 2.3 Hz, 2H), 4.22 (d, J = 2.3 Hz, 2H), 2.38 (d, J = 2.2 Hz, 3H), 2.33 (d, J = 2.3 Hz, 3H), 1.36 (s, J = 3.3 Hz, 6H).

¹³C NMR (151 MHz, Chloroform-d): δ = 143.8, 138.7, 135.6, 131.5, 129.6, 128.9, 128.0, 119.1, 90.4, 85.8, 80.8, 74.7, 64.9, 37.3, 36.7, 31.1, 29.7, 21.4.

MS (EI): m/z (%) = 381.2 (24), 380.2 (100), 276.1 (20), 240.2 (32), 239.2 (15), 225.1 (18), 224.1 (98), 222.2 (14), 207.1 (32), 197.1 (16), 196.1 (18), 182.1 (24), 181.1 (25), 180.1 (11), 167.1 (13), 155.1 (22), 139.1 (10), 129.1 (39), 128.1 (21), 119.1 (41), 115.1 (11), 91.2 (100), 65.2 (28), 59.2 (25).

IR (KBr): ν = 2981, 1598, 1509, 1439, 1348, 1237, 1158, 1093, 1042, 949, 898, 854, 814, 749, 668 cm⁻¹.

N-(3-(4-chlorophenyl)prop-2-yn-1-yl)-N-(4-hydroxy-4-methylpent-2-yn-1-yl)-4-benzolsulfonamid (154g)

Gemäß AAV2 wurde Alkinol 153 (300 mg, 1,0 mmol, 1,0 Äquiv.), 1-Iod-Chlorbenzol (477 mg, 2,0 mmol, 2,0 Äquiv.), PdCl₂(PPh₃)₂ (35 mg, 0,05 mmol, 0,05 Äquiv.) und CuI (10 mg, 0,05 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt₃ (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 154g mit 93 % (387 mg, 0,93 mmol) Ausbeute als gelber Feststoff erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 7.76 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.5 Hz, 2H), 4.35 (s, 2H), 4.22 (s, 2H), 2.38 (s, 3H), 1.37 (s, 6H).

¹³C NMR (151 MHz, Chloroform-d): δ = 143.8, 135.6, 134.6, 132.8, 129.6, 128.5, 128.0, 120.6, 90.6, 84.5, 82.7, 74.6, 64.9, 37.2, 36.8, 31.1, 21.4.

MS (EI): m/z (%) = 243.9 (14), 250.1 (32), 154.9 (31), 150.9 (14), 148.9 (40), 139.1 (33), 114.0 (13), 92.1 (17), 91.1 (100), 65.2 (28), 59.2 (25).

HRMS-ESI berechnet für C₁₉H₁₆O₂NNa₂S: 400.07687, gefunden: 400.07683 ([M]⁺).

IR (KBr): ν = 3515, 3063, 2982, 2930, 2244, 1913, 1649, 1597, 1489, 1436, 1352, 1240, 1162, 1094, 1043, 1015, 950, 900, 828, 750, 663, 579, 547 cm⁻¹.

N-(4-hydroxy-4-methylpent-2-yn-1-yl)-4-methyl-N-(3-(4-nitrophenyl)prop-2-yn-1-yl)benzolsulfonamid (154h)
Gemäß AAV2 wurde Alkinol 153 (300 mg, 1,0 mmol, 1,0 Äquiv.), 1-Iod-4-Nitrobenzol (498 mg, 2,0 mmol, 2,0 Äquiv.), PdCl2(PPh3)2 (35 mg, 0,05 mmol, 0,05 Äquiv.) und CuI (10 mg, 0,05 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NET3 (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 154h mit 74 % (316 mg, 0,74 mmol) Ausbeute als gelber Feststoff erhalten.

\[\text{IR (KBr)}: \nu = 3511, 2981, 2928, 2289, 2238, 2153, 1594, 1517, 1339, 1238, 1157, 1094, 949, 898, 852, 813, 747, 663 \text{ cm}^{-1}. \]

N-(4-hydroxy-4-methylpent-2-yn-1-yl)-4-methyl-N-(3-(thiophen-3-yl)prop-2-yn-1-yl)benzolsulfonamid (154i)

- Ausbeute als gelber Feststoff erhalten.

- Ausbeute als gelber Feststoff erhalten.

N-(4-hydroxy-4-methylpent-2-yn-1-yl)-4-methyl-N-(3-(naphthalen-1-yl)prop-2-yn-1-yl)benzolsulfonamid (154j)

Gemäß AAV2 wurde Alkinol 153 (300 mg, 1,0 mmol, 1,0 Äquiv.), 1-Iod-naphthalen (508 mg, 2,0 mmol, 2,0 Äquiv.), PdCl2(PPh3)2 (35 mg, 0,05 mmol, 0,05 Äquiv.) und CuI (10 mg, 0,05 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NET3 (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 154j mit 53 % (229 mg, 0,53 mmol) Ausbeute als gelber Feststoff erhalten.
1H NMR (600 MHz, Chloroform-d): δ = 8.02 (dd, J = 6.2, 3.4 Hz, 1H), 7.85 – 7.77 (m, 4H), 7.53 – 7.49 (m, 2H), 7.45 (d, J = 7.1 Hz, 1H), 7.38 (dd, J = 8.1, 7.2 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 4.54 (s, 2H), 4.31 (s, 2H), 2.27 (s, 3H), 1.39 (s, 6H).

13C NMR (151 MHz, Chloroform-d): δ = 143.9, 135.4, 133.0, 130.7, 129.6, 129.1, 128.3, 127.9, 126.8, 126.4, 125.8, 125.0, 119.8, 90.6, 86.3, 83.9, 74.7, 37.5, 36.9, 31.1, 29.7, 21.4.

MS (EI): m/z (%) = 417.3 (11), 416.3 (42), 277.3 (17), 276.3 (100), 275.3 (22), 274.3 (11), 261.3 (19), 260.3 (87), 258.3 (28), 248.3 (16), 247.3 (22), 243.3 (17), 242.3 (29), 234.3 (11), 233.3 (25), 232.3 (23), 231.3 (17), 219.3 (19), 218.3 (68), 217.3 (67), 216.3 (24), 215.3 (15), 205.3 (15), 204.3 (24), 203.3 (12), 190.3 (14), 189.3 (20), 179.3 (10), 178.3 (14), 166.3 (11), 165.3 (61), 164.3 (19), 163.3 (15) 155.3 (34), 152.3 (34).

IR (KBr): ν = 4399, 2922, 2668, 2316, 2096, 1747, 1595, 1351, 1154, 906, 774, 677 cm⁻¹.

(3-(prop-2-yn-1-yloxy)prop-1-yn-1-yl)benzol (153b)

Eine Lösung aus Propargylalkohol (600 mg, 4,5 mmol, 1,0 Äquiv.) in THF (23 ml) wurde auf 0 °C gekühlt. Anschließend wurde portionsweise NaH (60 wt%, 218 mg, 5,5 mmol, 1,2 Äquiv.) zugegeben und 30 Minuten gerührt. Nach Zugabe von Propargylbromid (80 wt%, 810 mg, 5,5 mmol, 1,2 Äquiv.) wurde die Reaktionsmischung über Nacht bei Raumtemperatur gerührt. Die Reaktion wurde durch DC kontrolliert und nach vollständigem Umsatz durch Zugabe gesättigter NH₄Cl-Lösung beendet. Die wässrige Phase wurde dreimal mit DCM extrahiert. Anschließend wurden die vereinigten organischen Phase mit Na₂SO₄ getrocknet, abfiltriert und am Rotationsverdampfer eingeengt. Das Produkt 153b wurde zuletzt durch Säulenchromatographie (n-Hexan/EtOAc = 20:1) aufgereinigt und mit 56 % (429 mg, 2,5 mmol) Ausbeute als gelblich-weißer Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.47 – 7.44 (m, 2H), 7.35 – 7.29 (m, 3H), 4.50 (s, 2H), 4.33 (d, J = 2.4 Hz, 2H), 2.48 (t, J = 2.4 Hz, 1H).

13C NMR (151 MHz, Chloroform-d): δ = 131.8, 128.6, 128.3, 122.4, 86.8, 84.0, 79.0, 75.0, 57.3, 56.5.

MS (EI): m/z (%) = 140.9 (47), 139.9 (100), 138.9 (53), 128.8 (10), 114.8 (65), 102.9 (10), 76.9 (13).

IR (KBr): ν = 3290, 2900, 2854, 2223, 2118, 1992, 1944, 1720, 1598, 1489, 1443, 1352, 1280, 1228, 1168, 1077, 923, 881, 757, 690 cm⁻¹.

2-Methyl-5-((3-phenyl-2-propyn-1-yl)oxy)pent-3-yn-2-ol (154k)

Gemäß AAV 1 wurde Diin 153b (1494 mg, 8,8 mmol, 1,5 Äquiv.) mit LiHMDS (in-situ hergestellt aus HMDS (1,7 ml, 8,2 mmol, 1,4 Äquiv.) und n-Buthyllithium (1,6 M in Hexan, 5,6 ml, 8,8 mmol, 1,5 Äquiv.)) bei -78 °C in THF (40 ml) gelöst und anschließend Aceton (1370 mg, 6 mmol, 1,0 Äquiv.) versetzt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 154k mit 41 % (562 mg, 2,5 mmol) Ausbeute als gelber Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.46 – 7.44 (m, 2H), 7.34 – 7.30 (m, 3H), 4.46 (s, 2H), 4.34 (s, 2H), 1.91 (br s, 1H), 1.54 (s, 6H).

13C NMR (151 MHz, Chloroform-d): δ = 131.8, 128.6, 128.3, 122.4, 91.5, 86.8, 84.2, 77.3, 65.2, 57.4, 56.9, 31.3.

MS (EI): m/z (%) = 214.0 (16), 213.0 (100), 197.0 (10), 185.0 (64), 184.0 (14), 182.9 (22), 180.9 (34), 164.9 (10), 154.9 (20), 140.9 (12), 128.8 (20), 115.9 (10), 114.8 (69), 104.8 (24), 102.9 (11), 94.9 (10), 76.9 (15).

IR (KBr): ν = 3396, 2981, 2931, 2856, 2224, 2105, 1715, 1597, 1490, 1444, 1358, 1236, 1161, 1078, 948, 851, 756, 690 cm⁻¹.

2-methylnona-3,8-diyn-2-ol (153i)

Gemäß AAV 1 wurde Diin 151b (117 mg, 1,3 mmol, 1,5 Äquiv.) mit LiHMDS (in-situ hergestellt aus HMDS (0,3 ml, 1,2 mmol, 1,4 Äquiv.) und n-Buthyllithium (1,6 M in Hexan, 0,8 ml, 1,3 mmol, 1,5 Äquiv.)) bei -78 °C in THF (9 ml) gelöst und anschließend Aceton (49 mg, 0,85 mmol, 1,0 Äquiv.) versetzt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 8:1) wurde Diinol 153i mit 48 % (61 mg, 0,41 mmol) Ausbeute als gelber Feststoff erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 2.33 – 2.28 (m, 4H), 1.96 (t, J = 2.7 Hz, 1H), 1.72 (p, J = 7.1 Hz, 2H), 1.49 (s, 6H).

¹³C NMR (151 MHz, Chloroform-d): δ = 85.8, 83.5, 81.3, 68.8, 65.3, 31.7, 27.5, 17.7, 17.5.

MS (EI): m/z (%) = 189.0 (11), 176.0 (13), 175.0 (100), 148.9 (44), 147.0 (34), 142.0 (10), 134.9 (25), 133.0 (40), 132.0 (12), 131.0 (27), 128.9 (11), 121.0 (21), 118.9 (45), 116.9 (41), 114.9 (18), 108.9 (10), 106.9 (18), 104.9 (63), 94.9 (36), 92.9 (46), 90.9 (68), 88.9 (10), 82.9 (17), 81.9 (65), 80.9 (22), 80.0 (10), 78.9 (51), 78.0 (15), 76.9 (51), 69.0 (13), 67.0 (22), 66.0 (15), 65.0 (25), 63.0 (11), 59.2 (27), 55.0 (40), 53.1 (40), 52.1 (12), 51.1 (22).

IR (KBr): ν = 3297, 2956, 2307, 2104, 1437, 1359, 1234, 1149, 941, 850 cm⁻¹.

2-Methyl-9-phenylnona-3,8-diyn-2-ol (154i)

Gemäß AAV2 wurde Alkinol 153i (300 mg, 1,0 mmol, 1,0 Äquiv.), Iodbenzol (408 mg, 2,0 mmol, 2,0 Äquiv.), PdCl₂(PPh₃)₂ (35 mg, 0,05 mmol, 0,05 Äquiv.) und CuI (10 mg, 0,05 mmol, 0,05 mmol) unter Argon Atmosphäre in THF (3 ml) gelöst, NEt₃ (3 ml) zugegeben und über Nacht bei Raumtemperatur gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Hexan/EtOAc = 4:1) wurde Diinol 154i mit 77 % (174 mg, 0,77 mmol) Ausbeute als gelbes Öl erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 7.72 – 7.69 (m, 2H), 7.41 – 7.38 (m, 2H), 7.33 (t, J = 7.5 Hz, 1H), 7.30 – 7.27 (m, 3H), 7.11 (t, J = 7.8 Hz, 1H), 2.51 (t, J = 7.0 Hz, 2H), 2.37 (t, J = 7.1 Hz, 2H), 1.84 – 1.77 (m, 3H), 1.51 (s, 6H).

¹³C NMR (151 MHz, Chloroform-d): δ = 137.5, 131.5, 130.2, 128.2, 127.6, 127.4, 123.8, 89.1, 85.7, 81.5, 81.2, 65.3, 31.7, 27.9, 18.6, 17.9.

MS (EI): m/z (%) = 212.0 (15), 211.1 (100), 209.1 (12), 128.0 (10), 114.9 (16).

IR (KBr): ν = 3355, 2979, 2935, 2868, 2840, 2106, 1598, 1489, 1436, 1362, 1311, 1237, 1161, 1068, 944, 856, 755, 691 cm⁻¹.

4.5.1.3 Untersuchung des Substituenten Rₙ

Allgemeine Arbeitsvorschrift für die Ca/CSA-cokatalysierte Cycloisomerisierung von Diinolen (AAV 3)

Benzaldehyd (1,0 Äquiv.), Ca(NTf₂)₂ (0,05 Äquiv.), CSA (0,1 mol%), PhMe₂HNB(C₆F₅)₄ (0,05 Äquiv.) und das entsprechende Diinol 150/154 (0,1 mmol, 1,0 Äquiv.) wurden in DCE (1 ml) gelöst und bei 40 °C gerührt. Nach Reaktionskontrolle mittels DC wurde die Reaktion durch Zugabe von gesättigter NaHCO₃-Lösung beendet. Die wässrige Phase wurde dreimal mit DCM extrahiert und die vereinigte
organische Phase mit Na$_2$SO$_4$ getrocknet, abfiltriert und am Rotationsverdampfer eingeengt. Das Rohprodukt wurde mittels semi-präparativer HPLC aufgereinigt.

Diethyl 3,3-dimethyl-1-phenyl-3,5-dihydrocyclopenta[c]pyran-6,6(7H)-dicarboxylat (155a)

Gemäß AAV3 wurden Benzaldehyd (11 mg, 0,1 mmol, 1,0 Äquiv.), Ca(NTf$_2$)$_2$ (3 mg, 0,005 mmol, 0,05 Äquiv.), CSA (2 mg, 0,01 mmol, 0,1 Äquiv.), PhMe$_2$HNB(C$_6$F$_5$)$_4$ (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol 150a (37 mg, 0,1 mmol, 1,0 Äquiv.) für 4 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparativer HPLC (n-Hexan/EtOAc = 4:1) wurde Dienon 155a mit 81 % (30,0 mg, 0,081 mmol) Ausbeute als gelbliches Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.60 (d, J = 7.5 Hz, 2H), 7.36 (dd, J = 7.5, 7.9 Hz, 2H), 7.27 (dd, J = 7.2, 7.9 Hz, 1H), 5.61 (s, 1H), 4.20 (q, J = 7.1 Hz, 4H), 3.46 (s, 2H), 2.48 (s, 2H), 1.34 (s, 6H), 1.25 (t, J = 7.1 Hz, 6H).

13C NMR (151 MHz, Chloroform-d): δ = 171.1, 142.9, 141.8, 135.8, 128.1, 127.8, 126.6, 121.6, 116.2, 75.1, 65.5, 61.6, 36.6, 36.0, 26.3, 14.0.

MS (EI): m/z (%) = 385.2 (10), 371.2 (13), 370.2 (28), 344.2 (17), 297.1 (53), 281.1 (26), 251.1 (22), 225.0 (17), 105.0 (100), 77.1 (39).

HRMS-ESI calcd. C$_{22}$H$_{26}$O$_5$Na: 393.16725, gefunden: 393.16742 ([M + Na]$^+$).

IR (KBr): ν = 3451, 2978, 1727, 1638, 1452, 1370, 1250, 1177, 1059, 1007, 909, 862, 764, 697 cm$^{-1}$.

Diethyl 3,3-dimethyl-1-(p-tolyl)-3,5-dihydrocyclopenta[c]pyran-6,6(7H)-dicarboxylat (155b)

Gemäß AAV3 wurden Benzaldehyd (11 mg, 0,1 mmol, 1,0 Äquiv.), Ca(NTf$_2$)$_2$ (3 mg, 0,005 mmol, 0,05 Äquiv.), CSA (2 mg, 0,01 mmol, 0,1 Äquiv.), PhMe$_2$HNB(C$_6$F$_5$)$_4$ (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol (38 mg, 0,1 mmol, 1,0 Äquiv.) für 4 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparativer HPLC (n-Hexan/EtOAc = 8:1) wurde Dienon 155b mit 67 % (25,7 mg, 0,067 mmol) Ausbeute als gelbliches Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.49 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 5.58 (s, 1H), 4.22 – 4.16 (m, 4H), 3.44 (s, 2H), 2.47 (s, J = 13.3 Hz, 2H), 2.35 (s, 3H), 1.32 (s, 6H), 1.25 (t, J = 7.1 Hz, 6H).

13C NMR (151 MHz, Chloroform-d): δ = 171.3, 143.1, 142.1, 137.9, 133.2, 129.6, 129.1, 129.0, 126.7, 121.3, 115.7, 75.1, 65.7, 61.8, 36.8, 36.2, 26.5, 21.4, 14.2.

MS (EI): m/z (%) = 385.2 (2), 165.0 (6), 119.9 (9), 118.9 (100), 90.9 (45), 65.0 (8), 59.0 (30).

HRMS-ESI calcd. C$_{23}$H$_{29}$O$_5$: 385.20095, gefunden: 385.20047 ([M + H]$^+$).

IR (KBr): ν = 3461, 2976, 1727, 1451, 1374, 1247, 1177, 1080, 833, 751 cm$^{-1}$.

Diethyl 1-(4-methoxyphenyl)-3,3-dimethyl-3,5-dihydrocyclopenta[c]pyran-6,6(7H)-dicarboxylat (155c)
Gemäß AAV3 wurden Benzaldehyd (11 mg, 0,1 mmol, 1,0 Äquiv.), Ca(NTf₂)₂ (3 mg, 0,005 mmol, 0,05 Äquiv.), PhMe₂HNB(C₆F₅)₄ (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol (40 mg, 0,1 mmol, 1,0 Äquiv.) für 7 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Hexan/EtOAc = 4:1) wurde Dienon 155c mit 71 % (28,4 mg, 0,071 mmol) Ausbeute als gelbliches Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.54 (d, J = 9.0 Hz, 2H), 6.89 (d, J = 9.0 Hz, 2H), 5.55 (s, 1H), 4.20 (q, J = 7.1 Hz, 4H), 3.82 (s, 3H), 3.43 (s, 2H), 2.46 (s, 2H), 1.33 (s, 6H), 1.26 (t, J = 7.1 Hz, 6H).

13C NMR (151 MHz, Chloroform-d): δ = 171.3, 159.4, 142.8, 142.1, 128.7, 128.2, 120.8, 114.8, 113.7, 75.1, 65.7, 61.8, 55.5, 36.7, 36.1, 26.5, 14.2.

MS (EI): m/z (%) = 417.2 (12), 416.1 (25), 402.2 (22), 401.2 (88), 400.2 (100), 399.0 (10), 386.1 (19), 385.1 (72), 374.0 (17), 327.0 (84), 281.0 (35), 151.9 (14), 134.9 (85).

HRMS - ESI calcd. C₂₃H₂₈O₆: 400.18804, gefunden: 400.18798 ([M⁺]+).

IR (KBr): ν = 3463, 2975, 1727, 1599, 1509, 1454, 1371, 1246, 1169, 1097, 1024, 845, 766 cm⁻¹.

Diethyl 1-(4-chlorophenyl)-3,3-dimethyl-3,5-dihydrocyclopenta[c]pyran-6,6(7H)-dicarboxylat (155d)

Gemäß AAV3 wurden Benzaldehyd (11 mg, 0,1 mmol, 1,0 Äquiv.), Ca(NTf₂)₂ (3 mg, 0,005 mmol, 0,05 Äquiv.), PhMe₂HNB(C₆F₅)₄ (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol (40 mg, 0,1 mmol, 1,0 Äquiv.) für 4 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Hexan/EtOAc = 8:1) wurde Dienon 155d mit 91 % (36,8 mg, 0,091 mmol) Ausbeute als gelbliches Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.53 (d, J = 8.6 Hz, 2H), 7.32 (d, J = 8.6 Hz, 2H), 5.63 (s, 1H), 4.20 (q, J = 7.1 Hz, 4H), 3.42 (s, 2H), 2.47 (s, 2H), 1.32 (s, 6H), 1.26 (t, J = 7.1 Hz, 6H).

13C NMR (151 MHz, Chloroform-d): δ = 171.1, 142.0, 141.8, 134.4, 133.6, 128.4, 128.0, 122.3, 116.9, 75.4, 65.7, 61.9, 36.6, 36.1, 26.5, 14.2.

MS (EI): m/z (%) = 407.1 (11), 406.1 (30), 405.2 (32), 404.1 (88), 389.0 (11), 333.1 (35), 332.1 (24), 331.0 (100), 285.0 (29), 140.9 (12), 138.9 (37).

IR (KBr): ν = 3468, 2975, 2323, 1729, 1642, 1470, 1375, 1245, 1182, 830, 715 cm⁻¹.

Diethyl 3,3-dimethyl-1-(4-nitrophenyl)-3,5-dihydrocyclopenta[c]pyran-6,6(7H)-dicarboxylat (155e)

Gemäß AAV3 wurden Benzaldehyd (11 mg, 0,1 mmol, 1,0 Äquiv.), Ca(NTf₂)₂ (3 mg, 0,005 mmol, 0,05 Äquiv.), PhMe₂HNB(C₆F₅)₄ (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol (42 mg, 0,1 mmol, 1,0 Äquiv.) für 3 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Hexan/EtOAc = 4:1) wurde Dienon 155e mit 56 % (23,2 mg, 0,056 mmol) Ausbeute als gelbliches Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 8.26 – 8.17 (d, J = 9.1 Hz, 2H), 7.77 – 7.72 (d, J = 9.1, 2H), 5.77 (s, 1H), 4.21 (q, J = 7.1 Hz, 4H), 3.49 (s, 2H), 2.51 (s, 2H), 1.35 (s, 6H), 1.27 (t, J = 7.1 Hz, 6H).
13C NMR (151 MHz, Chloroform-d): $\delta = 170.5, 146.6, 142.0, 141.4, 141.0, 126.9, 124.5, 123.4, 120.5, 75.6, 65.7, 61.9, 36.4, 36.2, 26.3, 14.0.

MS (EI): m/z (%) = 415.2 (60), 343.2 (30), 342.1 (100), 297.1 (16), 296.1 (73), 268.1 (11), 150.0 (69), 104.0 (13), 76.0 (5).

IR (KBr): $\nu = 2979, 2928, 1724, 1589, 1512, 1455, 1332, 1255, 1182, 1059, 851, 754, 693$ cm$^{-1}$.

Diethyl 1-(4-hydroxyphenyl)-3,3-dimethyl-3,5-dihydrocyclopenta[c]pyran-6,6(7H)-dicarboxylat (155f)

Gemäß AAV3 wurden Benzaldehyd (11 mg, 0,1 mmol, 1,0 Äquiv.), Ca(NTf$_2$)$_2$ (3 mg, 0,005 mmol, 0,05 Äquiv.), CSA (2 mg, 0,01 mmol, 0,1 Äquiv.), PhMe$_2$HNBC$_6$F$_5$$_4$ (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol (39 mg, 0,1 mmol, 1,0 Äquiv.) für 7 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Hexan/EtOAc = 5:1) wurde Dienon 155f mit 67 % (25,9 mg, 0,067 mmol) Ausbeute als gelbliches Öl erhalten.

1H NMR (600 MHz, Chloroform-d): $\delta = 7.48$ (d, $J = 8.5$ Hz, 2H), 6.82 (d, $J = 8.5$ Hz, 2H), 5.55 (s, 1H), 4.20 (q, $J = 7.1$ Hz, 4H), 3.42 (s, 2H), 2.46 (s, 2H), 1.32 (s, 6H), 1.26 (t, $J = 7.1$ Hz, 6H).

13C NMR (151 MHz, Chloroform-d): $\delta = 171.3, 155.4, 142.7, 142.0, 128.5, 128.2, 120.6, 115.0, 114.5, 75.0, 65.5, 61.7, 36.5, 36.0, 26.3, 14.0.

MS (EI): m/z (%) = 387.2 (17), 386.2 (11), 71.2 (10), 313.1 (31), 281.1 (10), 267.0 (13), 121.0 (100), 93.0 (9), 65.1 (6).

HRMS-ESI calcd. C$_{22}$H$_{26}$O$_6$Na: 409,16216, gefunden: 409,16211 ([M + Na]$^+$).

IR (KBr): $\nu = 3431, 2977, 1724, 1593, 1446, 1371, 1241, 1168, 1077, 910, 844, 728$ cm$^{-1}$.

Diethyl 1-(3-hydroxyphenyl)-3,3-dimethyl-3,5-dihydrocyclopenta[c]pyran-6,6(7H)-dicarboxylat (155g)

Gemäß AAV3 wurden Benzaldehyd (11 mg, 0,1 mmol, 1,0 Äquiv.), Ca(NTf$_2$)$_2$ (3 mg, 0,005 mmol, 0,05 Äquiv.), CSA (2 mg, 0,01 mmol, 0,1 Äquiv.), PhMe$_2$HNBC$_6$F$_5$$_4$ (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol (39 mg, 0,1 mmol, 1,0 Äquiv.) für 4 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Hexan/EtOAc = 3:1) wurde Dienon 155g mit 88 % (34,0 mg, 0,088 mmol) Ausbeute als gelbliches Öl erhalten.

1H NMR (600 MHz, Chloroform-d): $\delta = 8.26 – 8.17$ (d, $J = 9.1$, 2H), 7.77 – 7.72 (d, $J = 9.1$, 2H), 5.77 (s, 1H), 4.21 (q, $J = 7.1$, 4H), 3.49 (s, 2H), 2.51 (s, 2H), 1.35 (s, 6H), 1.27 (t, $J = 7.1$ Hz, 6H).

13C NMR (151 MHz, Chloroform-d): $\delta = 171.2, 155.6, 142.5, 142.0, 137.6, 129.5, 122.1, 119.5, 116.8, 115.0, 113.5, 75.27, 65.7, 61.9, 36.7, 36.2, 26.5, 14.2.

MS (EI): m/z (%) = 387.1 (12), 386.0 (43), 314.1 (16), 313 (83), 267 (25), 120.8 (100), 92.9 (15).

HRMS-ESI calcd. C$_{22}$H$_{26}$O$_6$Na: 409,16216, gefunden: 409,16174 ([M + Na]$^+$).

IR (KBr): $\nu = 3431, 2975, 1722, 1592, 1451, 1370, 1245, 1064, 863, 792, 722$ cm$^{-1}$.

Diethyl 3-[2-hydroxybenzoyl]-4-[2-methylprop-1-en-1-yl]cyclopent-3-ene-1,1-dicarboxylat (157a)
Gemäß AAV3 wurden Benzaldehyd (11 mg, 0,1 mmol, 1,0 Äquiv.), Ca(NTf₂)₂ (3 mg, 0,005 mmol, 0,05 Äquiv.), CSA (2 mg, 0,01 mmol, 0,1 Äquiv.), PhMe₂HNB(C₅F₃)₄ (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol (39 mg, 0,1 mmol, 1,0 Äquiv.) für 4 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Hexan/EtOAc = 3:1) wurde Dienon **157a** mit 90 % (34,7 mg, 0,090 mmol) Ausbeute als gelbliches Öl erhalten.

157a

\[^1^H\]NMR (600 MHz, Chloroform-d): δ = 12.04 (s, 1H), 7.62 (dd, J = 8.0, 1.7 Hz, 1H), 7.45 (ddd, J = 8.8, 7.2, 1.7 Hz, 1H), 7.00 – 6.94 (m, 1H), 6.84 (ddd, J = 8.0, 7.2, 1.1 Hz, 1H), 5.69 (s, 1H), 4.25 (q, J = 7.1 Hz, 4H), 3.45 (s, 2H), 3.39 (s, 2H), 1.75 (s, 3H), 1.63 (s, 3H), 1.28 (t, J = 7.1 Hz, 6H).

13C NMR (151 MHz, Chloroform-d): δ = 201.3, 171.5, 162.7, 142.6, 140.6, 136.7, 133.2, 133.0, 119.7, 119.3, 119.0, 118.0, 62.1, 58.4, 44.7, 42.5, 27.6, 20.4, 14.2.
MS (EI): m/z (%) = 187.1 (32), 386.1 (36), 372.2 (21), 371.1 (100), 297.0 (13), 120.8 (14).
HRMS-ESI calcd. C_{22}H_{26}O_{2}Na: 409,16219, gefunden: 409,16216 ([M + Na]⁺).
IR (KBr): ν = 2978, 2326, 2100, 1731, 1608, 1457, 1362, 1241, 1069, 858, 811, 759 cm⁻¹.

Diethyl 3,3-dimethyl-1-(thiophen-2-yl)-3,5-dihydrocyclopenta[c]pyran-6,6(7H)-dicarboxylat (155h)

Gemäß AAV3 wurden Benzaldehyd (11 mg, 0,1 mmol, 1,0 Äquiv.), Ca(NTf₂)₂ (3 mg, 0,005 mmol, 0,05 Äquiv.), CSA (2 mg, 0,01 mmol, 0,1 Äquiv.), PhMe₂HNB(C₅F₃)₄ (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol (38 mg, 0,1 mmol, 1,0 Äquiv.) für 4 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Hexan/EtOAc = 5:1) wurde Dienon **155h** mit 95 % (36,7 mg, 0,095 mmol) Ausbeute als gelbliches Öl erhalten.

155h

\[^1^H\]NMR (600 MHz, Chloroform-d): δ = 7.28 (d, J = 4.9 Hz, 1H), 7.23 (d, J = 3.6 Hz, 1H), 7.06 (dd, J = 4.9, 3.6 Hz, 1H), 5.63 (s, 1H), 4.26 – 4.17 (m, 4H), 3.42 (s, 2H), 2.47 (s, 2H), 1.33 (s, 6H), 1.27 (t, J = 7.1 Hz, 6H).

13C NMR (151 MHz, Chloroform-d): δ = 171.1, 141.4, 139.8, 138.9, 127.6, 125.3, 124.6, 122.8, 115.5, 75.7, 66.0, 61.9, 36.6, 35.8, 26.4, 14.2.
MS (EI): m/z (%) = 377.1 (20), 376.0 (69), 361.0 (10), 304.0 (20), 303.0 (100), 257.0 (29), 110.8 (59).
HRMS-ESI calcd. C_{22}H_{26}O_{2}SNa: 399.12367, gefunden: 399.12366 ([M + Na]⁺).
IR (KBr): ν = 2978, 2936, 1728, 1608, 1444, 1372, 1247, 1176, 1058, 1010, 905, 589, 824, 702 cm⁻¹.

Diethyl 3,3-dimethyl-1-(naphthalen-1-yl)-3,5-dihydrocyclopenta[c]pyran-6,6(7H)-dicarboxylat (155i)

Gemäß AAV3 wurden Benzaldehyd (11 mg, 0,1 mmol, 1,0 Äquiv.), Ca(NTf₂)₂ (3 mg, 0,005 mmol, 0,05 Äquiv.), CSA (2 mg, 0,01 mmol, 0,1 Äquiv.), PhMe₂HNB(C₅F₃)₄ (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol (42 mg, 0,1 mmol, 1,0 Äquiv.) für 4 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Hexan/EtOAc = 6:1) wurde Dienon **155i** mit 94 % (39,5 mg, 0,094 mmol) Ausbeute als gelbliches Öl erhalten.

155i

\[^1^H\]NMR (600 MHz, Chloroform-d): δ = 8.09 (d, J = 8.2 Hz, 1H), 7.84 (dd, J = 12.7, 7.9 Hz, 2H), 7.52 (ddd, J = 5.5, 4.4, 1.1 Hz, 2H), 7.50 – 7.46 (m, 3H), 5.63 (s, 1H), 4.19 – 4.14 (q, J = 7.1 Hz, 4H), 2.97 (s, 2H), 2.60 (s, 2H), 1.45 (s, 7H), 1.22 (t, J = 7.1 Hz, 6H).

13C NMR (151 MHz, Chloroform-d): δ = 171.1, 143.2, 141.0, 133.8, 133.2, 130.9, 129.0, 128.3, 127.4, 126.2, 125.9, 125.8, 125.2, 121.4, 117.8, 75.9, 65.2, 61.5, 36.6, 34.7, 26.6, 14.0.
MS (EI): m/z (%) = 421.2 (24), 420.1 (87), 405.1 (11), 348.1 (23), 347.1 (100), 301.0 (14), 154.9 (44), 127 (13).

HRMS-ESI calcd. C_{26}H_{26}O_{2}S: 421.20095, gefunden: 421.20044 ([M + H]^+).
IR (KBr): ν = 2977, 2936, 1728, 1445, 1368, 1247, 1174, 1108, 1056, 1011, 915, 862, 799, 777, 730 cm^{-1}.

4.5.1.4 Untersuchung der Substituenten R^1/R^6

Diethyl 3-benzoyl-4-(2-phenylprop-1-en-1-y)cyclopent-3-ene-1,1-dicarboxylat (157b)

Gemäß AAV3 wurden Benzaldehyde (11 mg, 0,1 mmol, 1,0 Äquiv.), Ca(NTf_2)_2 (3 mg, 0,005 mmol, 0,05 Äquiv.), CSA (2 mg, 0,01 mmol, 0,1 Äquiv.), PhMe_3HNBO(CF_3)_4 (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol 150b (43 mg, 0,1 mmol, 1,0 Äquiv.) für 4 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Hexan/EtOAc = 9:1) wurde Dienon 157b mit 79 % (34,1 mg, 0,079 mmol, E/Z = 63:37) Ausbeute als gelbliches Öl erhalten.

^1H NMR (600 MHz, Chloroform-d): δ = 7.82 – 7.79 (m, 2H), 7.77 (dd, J = 8.2, 1,1 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.49 (dd, J = 10.5, 4.3 Hz, 1H), 7.45 (dd, J = 14.6, 7.0 Hz, 2H), 7.40 (t, J = 7.7 Hz, 2H), 7.35 – 7.27 (m, 4H), 7.19 – 7.13 (m, 5H), 7.00 – 6.96 (m, 2H), 6.19 (d, J = 1.1 Hz, 1H), 6.11 (s, 1H), 4.29 – 4.23 (m, 4H), 4.16 – 4.10 (m, 4H), 3.54 (s, 2H), 3.49 (s, 2H), 3.28 (s, 2H), 2.69 (s, 2H), 2.11 (s, 3H), 1.93 (s, 3H), 1.29 (t, J = 7.1 Hz, 6H), 1.18 (t, J = 7.1 Hz, 6H).

^13C NMR (151 MHz, Chloroform-d): δ = 195.6, 195.3, 171.4, 171.3, 144.7, 144.5, 143.7, 143.4, 141.8, 140.9, 138.5, 136.1, 132.6, 132.6, 129.1, 128.4, 128.1, 128.1, 127.8, 127.6, 127.4, 125.8, 122.3, 121.5, 61.9, 61.56, 58.0, 57.7, 45.3, 42.2, 42.1, 27.3, 18.2, 14.1, 14.0.

MS (EI): m/z (%) = 432.2 (14), 418.2 (29), 417.2 (100), 104.9 (27).

HRMS-ESI calcd. C_{26}H_{26}O_{2}Na: 441.16725, gefunden: 441.16687 ([M + Na]^+).
IR (KBr): ν = 2983, 1726, 1634, 1445, 1356, 1256, 1177, 1073, 1002, 857, 762, 696 cm^{-1}.

Diethyl 3-benzoyl-4-styrylcyclopent-3-ene-1,1-dicarboxylat (157c)

Gemäß AAV3 wurden Benzaldehyde (11 mg, 0,1 mmol, 1,0 Äquiv.), Ca(NTf_2)_2 (3 mg, 0,005 mmol, 0,05 Äquiv.), CSA (2 mg, 0,01 mmol, 0,1 Äquiv.), PhMe_3HNBO(CF_3)_4 (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol 150d (42 mg, 0,1 mmol, 1,0 Äquiv.) für 0,5 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Hexan/EtOAc = 9:1) wurde Dienon 157c mit 90 % (37,6 mg, 0,090 mmol, E/Z = 6:94) Ausbeute als gelbliches Öl erhalten.

Diethyl (Z)-3-benzoyl-4-styrylcyclopent-3-ene-1,1-dicarboxylat

^1H NMR (600 MHz, Chloroform-d): δ = 7.79 – 7.76 (m, 2H), 7.55 – 7.51 (m, 1H), 7.42 (dd, J = 10.8, 4.7 Hz, 2H), 7.32 (dd, J = 10.0, 4.5 Hz, 2H), 7.29 – 7.25 (m, 1H), 7.19 (d, J = 7.5 Hz, 2H), 6.45 (d, J = 12.2 Hz, 1H), 6.07 (d, J = 12.2 Hz, 1H), 4.23 – 4.15 (m, 4H), 3.40 (d, J = 1.5 Hz, 2H), 3.08 (d, J = 1.5 Hz, 2H), 1.23 (t, J = 7.1 Hz, 6H).

^13C NMR (151 MHz, Chloroform-d): δ = 195.2, 171.5, 144.1, 138.5, 137.5, 137.2, 134.1, 132.9, 129.3, 129.0, 128.5, 128.3, 127.9, 124.3, 61.9, 57.7, 43.5, 42.4, 14.2.

MS (EI): m/z (%) = 419.2 (26), 418.1 (77), 345.1 (31), 344.1 (23), 299.1 (11), 271.1 (17) 165.0 (12), 104.9 (100), 77.0 (25).

HRMS-ESI calcd. C_{26}H_{26}O_{2}Na: 441.16725, gefunden: 441.16687 ([M + Na]^+).
Diethyl (E) 3-benzoyl-4-styrylcyclopent-3-ene-1,1-dicarboxylat

\(^1\)H NMR (600 MHz, Chloroform-d): \(\delta = 7.84 – 7.79\) (m, 2H), 7.61 – 7.55 (m, 1H), 7.50 – 7.45 (m, 2H), 7.25 – 7.21 (m, 3H), 7.17 (dd, \(J = 13.1\), 6.4 Hz, 2H), 6.86 (d, \(J = 16.2\) Hz, 1H), 6.68 (d, \(J = 16.2\) Hz, 1H), 4.30 – 4.22 (m, 4H), 3.54 (s, 4H), 1.30 (t, \(J = 7.1\) Hz, 6H).

\(^13\)C NMR (151 MHz, Chloroform-d): \(\delta = 195.0, 171.5, 144.8, 139.1, 136.5, 135.7, 134.7, 132.9, 129.3, 128.8, 128.7, 128.7, 127.1, 122.5, 62.1, 57.4, 43.4, 41.7, 14.2.

MS (EI): \(m/z\) (%) = 419.2 (32), 418.1 (100), 345.1 (38), 344.1 (27), 299.1 (16), 271.1 (21) 165.0 (12), 104.9 (84), 77.0 (21).

HRMS-ESI calcd. \(C_{26}H_{28}O_{3}Na\): 441.16725, gefunden: 441.16684 \([\text{M + Na}]^+\).

IR (KBr): 7.80 (d, \(J = 7.1\) Hz, 2H), 7.76 (d, \(J = 7.6\) Hz, 2H), 7.58 (d, \(J = 7.4\) Hz, 1H), 7.52 (t, \(J = 7.4\) Hz, 1H), 7.47 (t, \(J = 7.7\) Hz, 2H), 7.40 (t, \(J = 7.7\) Hz, 2H), 7.28 (d, \(J = 7.3\) Hz, 1H), 7.15 – 7.10 (m, 3H), 6.94 (d, \(J = 8.9\) Hz, 1H), 6.85 (d, \(J = 8.7\) Hz, 2H), 6.78 (d, \(J = 8.8\) Hz, 2H), 6.75 (d, \(J = 16.1\) Hz, 1H), 6.64 (d, \(J = 16.1\) Hz, 1H), 6.37 (d, \(J = 12.2\) Hz, 1H), 5.97 (d, \(J = 12.1\) Hz, 1H), 4.30 – 4.21 (m,

Diethyl (E)-3-benzoyl-4-(4-nitrostyryl)cyclopent-3-ene-1,1-dicarboxylat (157d)

Gemäß AAV3 wurden Benzaldehyd (11 mg, 0,1 mmol, 1,0 Äquiv.), Ca(NTf\(_2\))\(_2\) (3 mg, 0,005 mmol, 0,05 Äquiv.), CSA (2 mg, 0,01 mmol, 0,1 Äquiv.), PhMe\(_2\)HNB(C\(_6\)F\(_5\))\(_4\) (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol 150e (46 mg, 0,1 mmol, 1,0 Äquiv.) für 4 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Hexan/ETOAc = 4:1) wurde Dienon 157d mit 41 % (19,0 mg, 0,041 mmol, E/Z = 99:1) Ausbeute als gelbliches Öl erhalten.

IR (KBr): 7.80 (d, \(J = 7.1\) Hz, 2H), 7.76 (d, \(J = 7.6\) Hz, 2H), 7.58 (d, \(J = 7.4\) Hz, 1H), 7.52 (t, \(J = 7.4\) Hz, 1H), 7.47 (t, \(J = 7.7\) Hz, 2H), 7.40 (t, \(J = 7.7\) Hz, 2H), 7.28 (d, \(J = 7.3\) Hz, 1H), 7.15 – 7.10 (m, 3H), 6.94 (d, \(J = 8.9\) Hz, 1H), 6.85 (d, \(J = 8.7\) Hz, 2H), 6.78 (d, \(J = 8.8\) Hz, 2H), 6.75 (d, \(J = 16.1\) Hz, 1H), 6.64 (d, \(J = 16.1\) Hz, 1H), 6.37 (d, \(J = 12.2\) Hz, 1H), 5.97 (d, \(J = 12.1\) Hz, 1H), 4.30 – 4.21 (m,
Diethyl (E)-3-benzoyl-4-(but-1-en-1-yl)cyclopent-3-ene-1,1-dicarboxylat (157h)

\[
\begin{align*}
\text{H NMR (600 MHz, Chloroform-d):} & \quad \delta = 7.77 - 7.74 \text{ (m, 2H)}, 7.54 \text{ (dd, J = 7.0, 2.6, 1.3 Hz, 1H)}, 7.47 - 7.43 \text{ (m, 2H)}, 6.42 \text{ (d, J = 16.0 Hz, 1H)}, 6.23 \text{ (d, J = 15.9 Hz, 1H)}, 5.08 \text{ (s, 1H)}, 5.06 \text{ (s, 1H)}, 4.27 - 4.22 \text{ (m, 4H)}, 1.52 \text{ (s, 3H)}, 1.28 \text{ (t, J = 7.1 Hz, 6H)}. \\
\text{C NMR (151 MHz, Chloroform-d):} & \quad \delta = 194.8, 171.4, 145.0, 141.8, 139.1, 137.4, 135.2, 132.6, 129.1, 129.0, 128.5, 122.8, 119.9, 61.9, 57.1, 43.1, 41.6, 30.6, 17.8, 14.0. \\
\text{MS (EI):} & \quad m/z (%) = 105.0 (100), 77.1 (34). \\
\text{HRMS-ESI calcd.} & \quad C_{28}H_{28}O_5Na: 405.16725, \text{ gefunden: 405.16858 ([M + Na]^+).} \\
\text{IR (KBr):} & \quad \nu = 2980, 1728, 1655, 1448, 1367, 1251, 1178, 1071, 861, 708 \text{ cm}^{-1}.
\end{align*}
\]
Gemäß AAV3 wurden Benzaldehyd (11 mg, 0,1 mmol, 1,0 Äquiv.), Ca(NTf₂)₂ (3 mg, 0,005 mmol, 0,05 Äquив.), CSA (2 mg, 0,01 mmol, 0,1 Äquiv.), PhMe₂HNB(C₆F₅)₄ (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol 150c (37 mg, 0,1 mmol, 1,0 Äquiv.) für 4 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Hexan/EtOAc = 8:1) wurde Dienon 157h mit 52 % (19,2 mg, 0,052 mmol, E/Z = 99:1) Ausbeute als gelbliches Öl erhalten.

H NMR (600 MHz, Chloroform-d): δ = 7.79 – 7.74 (m, 2H), 7.57 – 7.50 (m, 1H), 7.47 – 7.40 (m, 2H), 6.12 (d, J = 15.9 Hz, 1H), 5.93 (dt, J = 15.9, 6.5 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.46 (s, 2H), 3.39 (s, 2H), 2.02 (dq, J = 6.5, 7.6 Hz, 1H), 1.28 (t, J = 7.1 Hz, 2H), 0.87 (t, J = 7.4 Hz, 2H).

13C NMR (151 MHz, Chloroform-d): δ = 195.0, 171.5, 144.8, 139.7, 132.8, 132.6, 129.1, 129.0, 128.7, 128.4, 123.4, 78.4, 75.6, 62.3, 61.9, 57.1, 43.1, 41.7, 29.7, 26.0, 14.0, 12.9.

MS (EI): m/z (%) = 164.9 (10), 115.0 (12), 105.0 (100), 77.1 (59), 51.2 (10).

HRMS-ESI calcd. C₃H₂NaO₄Na: 393.16725, gefunden: 393.16693 ([M + Na⁺]).

IR (KBr): ν = 2967, 1736, 1457, 1372, 1236, 1016, 927, 851, 759 cm⁻¹.

Diethyl 3-(3-(benzoxyl)propyl)-3-methyl-1-phenyl-3,5-dihydrocyclopenta[c]pyran-6,6(7H)-dicarboxylat (155j)

Gemäß AAV3 wurden Benzaldehyd (11 mg, 0,1 mmol, 1,0 Äquiv.), Ca(NTf₂)₂ (3 mg, 0,005 mmol, 0,05 Äquival.), CSA (2 mg, 0,01 mmol, 0,1 Äquival.), PhMe₂HNB(C₆F₅)₄ (4 mg, 0,005 mmol, 0,05 Äquival.) und das Diinol 150l (50 mg, 0,1 mmol, 1,0 Äquival.) für 4 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Hexan/EtOAc = 5:1) wurde Dienon 155j mit 73 % (36,8 mg, 0,073 mmol) Ausbeute als gelbliches Öl erhalten.

H NMR (600 MHz, Chloroform-d): δ = 7.61 (dd, J = 5.3, 3.3 Hz, 2H), 7.38 – 7.30 (m, 5H), 7.30 – 7.24 (m, 3H), 5.61 (s, 1H), 4.49 (s, 2H), 4.25 – 4.14 (m, 4H), 3.56 – 3.38 (m, 5H), 2.55 – 2.39 (m, 2H), 1.88 – 1.74 (m, 3H), 1.25 (m, 9H).

13C NMR (151 MHz, Chloroform-d): δ = 171.0, 142.5, 141.6, 138.5, 135.8, 132.5, 129.1, 128.3, 128.1, 127.8, 127.6, 127.5, 126.6, 121.8, 119.8, 116.4, 72.9, 72.7, 70.7, 69.6, 65.6, 61.8, 61.6, 45.1, 42.2, 37.2, 36.3, 36.1, 35.3, 27.6, 24.2, 23.0, 18.6, 14.1, 14.0.

MS (EI): m/z (%) = 371.1 (11), 355.1 (14), 105.1 (100), 91.2 (86), 85.2 (28), 77.2 (30).

HRMS-ESI calcd. C₂H₂NaO₄Na: 527.24041, gefunden: 527.23993 ([M + Na⁺]).

IR (KBr): ν = 3453, 2950, 1727, 1449, 1368, 1250, 1088, 858, 710 cm⁻¹.

4.5.1.5 Untersuchung des Diinol-Rückgrunds

Diethyl 3,3-dimethyl-1-phenyl-4,6-dihydro-3H-isochromene-7,7(8H)-dicarboxylat (165)

Gemäß AAV3 wurden Benzaldehyd (11 mg, 0,1 mmol, 1,0 Äquival.), Ca(NTf₂)₂ (3 mg, 0,005 mmol, 0,05 Äquival.), CSA (2 mg, 0,01 mmol, 0,1 Äquival.), PhMe₂HNB(C₆F₅)₄ (4 mg, 0,005 mmol, 0,05 Äquival.) und das Diinol (38 mg, 0,1 mmol, 1,0 Äquival.) für 7 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Hexan/EtOAc = 5:1) wurde Dienon 165 mit 63 % (24,2 mg, 0,063 mmol) Ausbeute als gelbliches Öl erhalten.
1H NMR (600 MHz, Chloroform-d): $\delta = 7.41 - 7.38$ (d, $J = 7.2$ Hz, 2H), 7.35 (dd, $J = 7.5, 7.2$ Hz, 2H), 7.30 (dd, $J = 7.2, 7.3$ Hz, 1H), 5.34 (t, $J = 4.1$ Hz, 1H), 4.12 – 4.03 (m, 4H), 2.93 (s, 2H), 2.70 (d, $J = 4.1$ Hz, 2H), 2.30 (s, 2H), 1.28 (s, 6H), 1.12 (t, $J = 7.1$ Hz, 6H).

13C NMR (151 MHz, Chloroform-d): $\delta = 171.4, 148.0, 135.9, 129.3, 129.1, 128.3, 128.0, 117.8, 103.8, 90.4, 75.6, 61.4, 54.7, 40.8, 31.5, 31.3, 26.3, 14.1.

MS (EI): m/z (%) = 171.4, 148.0, 135.9, 129.3, 129.1, 128.3, 128.0, 117.8, 103.8, 90.4, 75.6, 61.4, 54.7, 40.8, 31.5, 31.3, 26.3, 14.1.

HRMS-ESI calcld. $C_{23}H_{22}O_2$: 384.19313, gefunden: 384.19362 ([M]+)

IR (KBr): $\nu = 3462, 2971, 1727, 1448, 1372, 1239, 1050, 861, 759, 700$ cm$^{-1}$.

Diethyl 3,3-dimethyl-1-phenyl-3,5,7,8-tetrahydro-6H-isochromene-6,6-dicarboxylat (166)

![Diagram of compound 166]

Gemäß AAV3 wurden Benzaldehyd (11 mg, 0.1 mmol, 1,0 Äquiv.), $\text{Na}(\text{NTf}_2)_2$ (3 mg, 0,005 mmol, 0,05 Äquiv.), CSA (2 mg, 0,01 mmol, 0,1 Äquiv.), PhMe$_2$HN$\text{B}(\text{CF}_3)_2$ (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol (38 mg, 0,1 mmol, 1,0 Äquiv.) für 7 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparativen HPLC (n-Hexan/ Ethanoll = 5:1) wurde Dienen 166 mit 91% (34,9 mg, 0,091 mmol) Ausbeute als gelbliches Öl erhalten.

1H NMR (600 MHz, Chloroform-d): $\delta = 7.41$ (d, $J = 7.3$ Hz, 2H), 7.34 (dd, $J = 7.3, 7.1$ Hz, 2H), 7.32 – 7.28 (m, 1H), 5.50 (s, 1H), 4.23 – 4.17 (m, 2H), 2.53 (t, $J = 6.5$ Hz, 2H), 2.41 (s, 2H), 2.11 (t, $J = 6.5$ Hz, 2H), 1.35 (s, 6H), 1.26 (t, $J = 7.2$ Hz, 6H).

13C NMR (151 MHz, Chloroform-d): $\delta = 171.3, 147.6, 136.0, 132.7, 129.0, 128.4, 128.0, 116.7, 105.4, 75.5, 61.6, 55.3, 41.3, 29.9, 26.2, 23.2, 14.2.

MS (EI): m/z (%) = 385.1 (26), 384.1 (86), 312.1 (24), 311.1 (100), 104.9 (21).

IR (KBr): $\nu = 2973, 1729, 1618, 1450, 1377, 1230, 1096, 926, 857, 762, 699$ cm$^{-1}$.

(3-[2-methylprop-1-en-1-yl]-1H-inden-2-yl)[phenyl]methanone (167)

![Diagram of compound 167]

Gemäß AAV3 wurden Benzaldehyd (11 mg, 0,1 mmol, 1,0 Äquiv.), $\text{Na}(\text{NTf}_2)_2$ (3 mg, 0,005 mmol, 0,05 Äquiv.), CSA (2 mg, 0,01 mmol, 0,1 Äquiv.), PhMe$_2$HN$\text{B}(\text{CF}_3)_2$ (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol (27 mg, 0,1 mmol, 1,0 Äquiv.) für 7 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparativen HPLC (n-Hexan/Ethanoll = 10:1) wurde Dienen 167 mit 72% (19,7 mg, 0,072 mmol) Ausbeute als gelbliches Öl erhalten.

1H NMR (600 MHz, Chloroform-d): $\delta = 7.73 - 7.70$ (m, 2H), 7.56 – 7.54 (m, 1H), 7.50 – 7.47 (m, 1H), 7.43 – 7.41 (m, 1H), 7.40 – 7.35 (m, 4H), 5.88 (s, 1H), 3.93 (d, $J = 2.2$ Hz, 2H), 1.55 (d, $J = 1.0$ Hz, 3H), 1.45 (d, $J = 1.0$ Hz, 3H).

13C NMR (151 MHz, Chloroform-d): $\delta = 196.0, 148.4, 145.0, 143.8, 140.9, 139.6, 139.4, 132.0, 129.2, 127.9, 127.7, 126.8, 124.3, 118.2, 40.0, 25.7, 20.6.

MS (EI): m/z (%) = 260.1 (20), 259.1 (100), 216.1 (13), 215.1 (27), 105.0 (26).

HRMS-ESI calcld. $C_{23}H_{23}NaO$: 297.12499, gefunden: 297.12482 ([M + Na]+)

IR (KBr): $\nu = 3060, 2920, 1629, 1448, 1352, 1256, 1181, 1133, 1027, 954, 867, 750, 707, 625, 567$ cm$^{-1}$.

(4-[2-methylprop-1-en-1-yl]-1-tosyl-2,5-dihydro-1H-pyrrol-3-yl)[phenyl]methanone (168a)
Gemäß AAV3 wurden Benzaldehyd (11 mg, 0,1 mmol, 1,0 Äquiv.), Ca(NTf₂)₂ (3 mg, 0,005 mmol, 0,05 Äquiv.), CSA (2 mg, 0,01 mmol, 0,1 Äquiv.), PhMe₂HNB(C₆F₅)₄ (4 mg, 0,005 mmol, 0,05 Äquiv.) und das Diinol 154a (38 mg, 0,1 mmol, 1,0 Äquiv.) für 7 h bei 40 °C in DCE gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Hexan/EtOAc = 10:1) wurde Dienon 169a mit 51 % (19,4 mg, 0,051 mmol) Ausbeute als gelblicher Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.80 – 7.73 (m, 4H), 7.58 (ddt, J = 8.7, 7.0, 1.3 Hz, 1H), 7.49 – 7.44 (m, 2H), 7.42 (d, J = 2.2 Hz, 1H), 7.33 – 7.29 (m, 2H), 7.11 (dd, J = 2.3, 0.9 Hz, 1H), 6.42 (dq, J = 2.8, 1.4 Hz, 1H), 2.42 (s, 3H), 1.88 (d, J = 1.4 Hz, 3H), 1.83 (d, J = 1.3 Hz, 3H).

13C NMR (151 MHz, Chloroform-d): δ = 191.1, 145.8, 139.1, 136.9, 135.2, 132.4, 130.3, 129.3, 128.4, 127.1, 126.7, 126.6, 126.2, 119.2, 115.6, 26.8, 20.2.

MS (EI): m/z (%) = 224.2 (56), 155.1 (10), 105.1 (100), 91.2 (58), 77.2 (44), 65.3 (24).

IR (KBr): ν = 2976, 2065, 1737, 1646, 1596, 1497, 1446, 1373, 1285, 1236, 1170, 1066, 965, 908, 812, 726, 701, 670 cm⁻¹.

4.5.2 Synthese von Vinyltriflimiden durch Assistierte Vinylkationenbildung

4.5.2.1 Darstellung der Vinyltriflimide

Allgemeine Arbeitsvorschrift für die Addition von HNTf₂ an Acetylene (AAV 4)

LiNTf₂ (1,5 Äquiv.), Bu₄NPF₆ (0,3 Äquiv.) und LiPF₆ wurden in DCN (0,66 ml, 0,33 M) gelöst und für 24 Stunden bei Raumtemperatur gerührt. Das entsprechende Acetylen wurde anschließend zur Reaktionslösung gegeben und diese für weitere 21 Stunden bei Raumtemperatur gerührt. Nach Reaktionskontrolle mittels DC wurde die Reaktion durch Zugabe gesättigter wässriger NH₄Cl-Lösung beendet. Die wässrige Phase wurde dreimal mit DCN extrahiert und die vereinigte organische Phase danach mit MgSO₄ getrocknet, abfiltriert und am Rotationsverdampfer eingeengt. Das Rohprodukt wurde entweder mittels Säulenchromatographie oder semi-präparativer HPLC aufgereinigt.
N-{(1-(butylphenyl)vinyl)-1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)methansulfonamid (227a)}

Gemäß AVV4 wurden LiN\textsubscript{2}F\textsubscript{2} (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu\textsubscript{4}NPF\textsubscript{6} (23 mg, 0.06 mmol, 0.3 Äquiv.) und LiPF\textsubscript{6} (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0,66 ml) gelöst und 24 h bei Raumtemperatur gerührt. Phenylacetylen 207a (20 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 227a mit 99% (76 mg, 0,198 mmol) Ausbeute als hellgrüner Feststoff erhalten.

\[^1H\text{NMR (600 MHz, Chloroform-d): } \delta = 7.54 - 7.51 (m, 2H), 7.46 - 7.41 (m, 3H), 6.18 (d, J = 2.6 Hz, 1H), 5.76 (d, J = 2.8 Hz, 1H). \]

\[^13C\text{NMR (151 MHz, Chloroform-d): } \delta = 140.5, 133.6, 130.3, 128.8, 126.7, 123.7, 119.1 (q, J = 325.4 Hz). \]

\[^19F\text{NMR (564 MHz, Chloroform-d): } \delta = -69.7. \]

IR (KBr): \[\nu = 2672, 2341, 2094, 1807, 1633, 1428, 1214, 1117, 914, 693 \text{ cm}^{-1}. \]

MS (EI): \[m/z (%) = 383.0 (12), 352.1 (23), 250.0 (53), 218.1 (100), 191.1 (27), 117.0 (35), 115.0 (33), 103.0 (20), 91.1 (67), 89.1 (12), 89.1 (13), 77.1 (49), 69.1 (38), 51.2 (19). \]

HRMS berechnet für C\textsubscript{19}H\textsubscript{18}O\textsubscript{2}N\textsubscript{2}F\textsubscript{6}S: 382.97152, gefunden: 382.97156 ([M]+).

1,1,1-Trifluoro-N-(1-(p-tolyl)vinyl)-N-((trifluoromethyl)sulfonyl)methansulfonamid (227c)

Gemäß AVV4 wurden LiN\textsubscript{2}F\textsubscript{2} (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu\textsubscript{4}NPF\textsubscript{6} (23 mg, 0.06 mmol, 0.3 Äquiv.) und LiPF\textsubscript{6} (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0,66 ml) gelöst und 1 h bei Raumtemperatur gerührt. 1-ethyl-4-methylbenzol 207c (23 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 227c mit 94% (74 mg, 0,188 mmol) Ausbeute als brauner Feststoff erhalten.

\[^1H\text{NMR (600 MHz, Chloroform-d): } \delta = 7.41 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 6.13 (s, 1H), 5.69 (d, J = 2.7 Hz, 1H), 2.39 (s, 3H). \]
\[^{13}C \text{NMR (151 MHz, Chloroform-}d) \]: \(\delta = 140.6, 140.5, 130.8, 129.5, 126.6, 122.6, 118.1 \) (q, \(J = 325.8 \) Hz), 21.3.

MS (EI): \(m/z \) (%) = 264.2 (14), 131.3 (42), 130.2 (10), 117.2 (22), 116.2 (17), 105.2 (100), 103.3 (11), 91.3 (63), 77.3 (15), 69.3 (84), 65.3 (29).

HRMS-ESI berechnet für C₁₅H₁₈O₃N₂F₁₂S₂: 396.98717, gefunden: 396.98789 ([M \(^+\))].

IR (KBr): \(\nu = 1739, 1620, 1426, 1210, 1111, 999, 909, 819, 732, 665 \) cm\(^{-1}\).

1,1,1-trifluoro-N-(1-(thiophen-3-yl)vinyl)-N-((trifluoromethyl)sulfonyl)methansulfonamid (227d)

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.) und LiPF₆ (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0,66 ml) gelöst und 1 h bei Raumtemperatur gerührt. 3-ethylthiophen 207d (22 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (n- Pentan/EtOAc = 100:1) wurde Vinyltriflimid 227d mit 75% (58 mg, 0,15 mmol) Ausbeute als hellgrüner Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): \(\delta = 7.45 \) (d, \(J = 3.9 \) Hz, 1H), 7.38 – 7.35 (m, 1H), 7.22 (d, \(J = 5.2 \) Hz, 1H), 6.10 (d, \(J = 2.7 \) Hz, 1H), 5.68 (d, \(J = 2.6 \) Hz, 1H).

13C NMR (151 MHz, Chloroform-d): \(\delta = 135.9, 135.6, 127.1, 125.7, 125.3, 122.7, 119.2 \) (q, \(J = 325.6 \) Hz).

MS (EI): \(m/z \) (%) = 389.0 (11), 256.1 (60), 123.1 (68), 122.1 (38), 109.1 (25), 97.1 (100), 96.1 (23), 69.2 (61), 45.3 (15).

HRMS-ESI berechnet für C₁₃H₁₀O₃N₂F₁₂S₂: 388.92794, gefunden: 388.92793 ([M \(^+\))].

IR (KBr): 1626, 1431, 1212, 1111, 1001, 912, 783, 702 cm\(^{-1}\).

1,1,1-trifluoro-N-(1-(thiophen-2-yl)vinyl)-N-((trifluoromethyl)sulfonyl)methansulfonamid (227e)

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.) und LiPF₆ (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0,66 ml) gelöst und 1 h bei Raumtemperatur gerührt. Trimethyl((thiophen-2-ylethenyl)silan 207e (36 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (n- Pentan/EtOAc = 100:1) wurde Vinyltriflimid 227e mit 72% (56 mg, 0,144 mmol) Ausbeute als grünbrauner Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): \(\delta = 7.36 \) (d, \(J = 5.2 \) Hz, 1H), 7.19 (d, \(J = 3.6 \) Hz, 1H), 7.04 (t, \(J = 4.2 \) Hz, 1H), 6.08 (d, \(J = 2.8 \) Hz, 1H), 5.61 (d, \(J = 2.7 \) Hz, 1H).

13C NMR (151 MHz, Chloroform-d): \(\delta = 137.5, 134.3, 128.1, 128.1, 127.8, 122.4, 119.2 \) (q, \(J = 325.2 \) Hz).

MS (EI): \(m/z \) (%) = 256.0 (44), 179.1 (10), 123.1 (56), 122.1 (31), 109.1 (26), 97.1 (100), 96.1 (43), 70.2 (11), 69.2 (76), 45.3 (13).

HRMS-ESI berechnet für C₁₃H₁₀O₃N₂F₁₂S₂: 411.91771, gefunden: 411.91705 ([M + Na \(^+\)]).**

IR (KBr): 1620, 1432, 1352, 1210, 1115, 1003, 909, 849, 719 cm\(^{-1}\).

N-1-[(1,1'-biphenyl)-4-yl]vinyl)-1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)-methansulfonamid (227f)

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.) und LiPF₆ (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0,66 ml) gelöst und 24 h bei Raumtemperatur gerührt. 4-ethyl-1,1'-biphenyl 207f (36 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch
Säulen chromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 227f mit 92% (84 mg, 0,184 mmol) Ausbeute als hellgelber Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): $\delta = 7.67$ (d, J = 8.2 Hz, 2H), 7.63 – 7.59 (m, 4H), 7.47 (t, J = 7.7 Hz, 2H), 7.40 (t, J = 7.4 Hz, 1H), 6.24 (d, J = 2.4 Hz, 1H), 5.78 (d, J = 2.1 Hz, 1H).

13C NMR (151 MHz, Chloroform-d): $\delta = 143.0, 140.2, 139.6, 132.3, 128.9, 128.1, 127.4, 127.1, 123.4, 119.2$ (d, J = 326.0 Hz).

MS (EI): m/z (%) = 196.3 (12), 193.3 (57), 181.3 (25), 179.3 (16), 168.3 (13), 167.3 (100), 165.3 (22), 153.3 (26), 152.3 (78), 151.3 (20), 69.4 (50).

HRMS-ESI berechnet für $C_{16}H_{13}O_2NF_5S_2$: 459.00282, gefunden: 459.00235 ([M $^+$]).

IR (KBr): $\nu = 3023, 2068, 1920, 1740, 1424, 1212, 1115, 996, 909, 840, 771, 731, 670$ cm$^{-1}$.

1,1,1-trifluoro-N-[1-(4-methoxyphenyl)vinyl]-N-[(trifluoromethyl)sulfonyl)methansulfonamid (227g)

Gemäß AVV4 wurden LiNTf$_2$ (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu$_4$NPF$_6$ (23 mg, 0.06 mmol, 0.3 Äquiv.) und LiPF$_6$ (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0,66 ml) gelöst und 1 h bei Raumtemperatur gerührt. 1-ethylthiophenylbenzol 207g (36 mg, 0,2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 227g mit 53% (44 mg, 0,106 mmol) Ausbeute als brauner Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): $\delta = 7.45$ (d, J = 9.1 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 6.04 (d, J = 2.7 Hz, 1H), 5.63 (d, J = 2.7 Hz, 1H), 3.84 (s, 3H).

13C NMR (151 MHz, Chloroform-d): $\delta = 161.1, 140.2, 128.3, 126.1, 121.6, 119.1$ (q, J = 326.0 Hz), 114.1, 55.4.

MS (EI): m/z (%) = 413.2 (29), 280.2 (24), 147.2 (82), 133.2 (24), 132.2 (42), 121.2 (100), 77.2 (26), 69.3 (28).

HRMS-ESI berechnet für $C_{16}H_{13}O_2NF_5S_2$: 412.98209, gefunden: 412.98217 ([M $^+$]).

IR (KBr): $\nu = 1740, 1605, 1513, 1426, 1300, 1212, 1113, 997, 913, 829, 737, 667$ cm$^{-1}$.

1,1,1-trifluoro-N-[1-(3-methoxyphenyl)vinyl]-N-[(trifluoromethyl)sulfonyl)methansulfonamid (227h)

Gemäß AVV4 wurden LiNTf$_2$ (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu$_4$NPF$_6$ (23 mg, 0.06 mmol, 0.3 Äquiv.) und LiPF$_6$ (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0,66 ml) gelöst und 1 h bei Raumtemperatur gerührt. 1-ethylthiophenylbenzol 207h (36 mg, 0,2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 227h mit 18% (14 mg, 0,036 mmol) Ausbeute als brauner Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): $\delta = 7.34$ (t, J = 8.1 Hz, 1H), 7.11 (d, J = 8.1 Hz, 1H), 7.03 (t, J = 2.0 Hz, 1H), 6.97 (dd, J = 8.3, 2.7 Hz, 1H), 6.18 (d, J = 3.5 Hz, 1H), 5.75 (d, J = 2.6 Hz, 1H), 3.84 (s, 3H).

13C NMR (151 MHz, Chloroform-d): $\delta = 159.7, 140.3, 134.9, 129.9, 123.9, 119.2, 119.1$ (q, J = 326.0 Hz), 115.7, 112.4, 55.3 (d, J = 2.8 Hz).

MS (EI): m/z (%) = 414.9 (11) 413.9 (15), 412.9 (100), 279.9 (67), 147.0 (62), 133.0 (24), 121.0 (88), 92.0 (10), 77.1 (18), 69.1 (20).

HRMS-ESI berechnet für $C_{16}H_{13}O_3NF_5NaS_2$: 427.95660, gefunden: 427.95755 ([M + Na] $^+$).

IR (KBr): $\nu = 1594, 1422, 1338, 1210, 1111, 1041, 1000, 900, 849, 793, 715, 675$ cm$^{-1}$.
N-{1-{4-Chlorophenyl}vinyl}-1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)methan-sulfonamid (227j)

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0,3 mmol, 1,5 Äquiv.), Bu₄NPF₆ (23 mg, 0,06 mmol, 0,3 Äquiv.) und LiPF₆ (15 mg, 0,1 mmol, 0,5 Äquiv.) in DCM (0,66 ml) gelöst und 1 h bei Raumtemperatur gerührt. 1-chloro-4-ethynybenzol 207j (27 mg, 0,2 mmol, 1,0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 227j mit 97% (82 mg, 0,194 mmol) Ausbeute als hellgelber Feststoff erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 7.46 (d, J = 9.0 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H), 6.16 (d, J = 2.7 Hz, 1H), 5.78 (d, J = 3.7 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-d): δ = 139.5, 136.5, 132.2, 129.1, 128.1, 124.3, 119.1 (q, J = 326.0 Hz).

MS (EI): m/z (%) = 419.1 (17), 417.0 (40), 286.1 (41), 285.1 (12), 284.1 (100), 153.2 (19), 151.1 (59), 139.2 (15), 137.2 (39), 127.2 (31), 125.2 (94), 116.2 (32), 113.1 (13), 111.2 (38), 89.3 (19), 75.3 (23), 69.3 (45).

HRMS-ESI berechnet für C₁₅H₁₁O₆NClF₂S₂: 416.93255, gefunden: 416.93143 ([M⁺]).
IR (KBr): ν = 2262, 2089, 1905, 1743, 1629, 1594, 1492, 1432, 1316, 1119, 1004, 910, 831, 696 cm⁻¹.

N-{1-{3-Chlorophenyl}vinyl}-1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)methan-sulfonamid (227k)

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0,3 mmol, 1,5 Äquiv.), Bu₄NPF₆ (23 mg, 0,06 mmol, 0,3 Äquiv.) und LiPF₆ (15 mg, 0,1 mmol, 0,5 Äquiv.) in DCM (0,66 ml) gelöst und 1 h bei Raumtemperatur gerührt. 1-chloro-3-ethynybenzol 207k (27 mg, 0,2 mmol, 1,0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 227k mit 98% (82 mg, 0,196 mmol) Ausbeute als braungelbes Öl erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 7.51 (d, J = 2.6 Hz, 1H), 7.44 – 7.36 (m, 3H), 6.20 (d, J = 2.8 Hz, 1H), 5.82 (d, J = 2.6 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-d): δ = 139.2, 135.4, 135.0, 130.3, 130.1, 127.0, 125.1, 124.9, 119.1 (q, J = 325.6 Hz).

MS (EI): m/z (%) = 151.0 (11), 125.0 (23), 116.0 (13), 111.0 (22), 89.1 (17), 75.1 (23), 69.1 (100), 50.2 (10).

HRMS-ESI berechnet für C₁₄H₁₀NClF₂Na₂S₂: 439.92232, gefunden: 439.92294 ([M + Na⁺]).
IR (KBr): ν = 1570, 1435, 1217, 1119, 1004, 906, 846, 788, 709, 669 cm⁻¹.

N-{1-{2-Chlorophenyl}vinyl}-1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)methan-sulfonamid (227l)

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0,3 mmol, 1,5 Äquiv.), Bu₄NPF₆ (23 mg, 0,06 mmol, 0,3 Äquiv.) und LiPF₆ (15 mg, 0,1 mmol, 0,5 Äquiv.) in DCM (0,66 ml) gelöst und 1 h bei Raumtemperatur gerührt. 1-chloro-2-ethynybenzol 207l (27 mg, 0,2 mmol, 1,0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 227l mit 85% (72 mg, 0,17 mmol) Ausbeute als braunes Öl erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 7.57 (dd, J = 5.7, 3.6 Hz, 1H), 7.51 – 7.46 (m, 1H), 7.38 – 7.31 (m, 2H), 6.16 (d, J = 3.1 Hz, 1H), 6.11 (d, J = 2.3 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-d): δ = 135.5, 133.6, 132.4, 131.0, 130.9, 129.9, 129.7, 127.0, 119.1 (q, J = 325.0 Hz).
MS (EI): m/z (%): 286.1 (37), 285.1 (11), 284.1 (100), 153.2 (13), 151.2 (38), 139.2 (13), 137.2 (36), 127.2 (27), 125.2 (78), 116.2 (25), 111.2 (15), 89.3 (21), 75.3 (14), 69.3 (29).

HRMS-ESI berechnet für C_{13}H_{33}O_;NClF_{5};S_{2}: 416.93255, gefunden: 416.93390 ([M]^+).

IR (KBr): ν = 2326, 2093, 1638, 1432, 1217, 1117, 1003, 905, 763, 676 cm⁻¹.

1,1,Trifluoro-1,3,5-tris((trifluoromethyl)sulfonyl)methan-sulfonamid (227m)

Gemäß AVV4 wurden LiNtf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.) und LiPF₆ (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0.66 ml) gelöst und 24 h bei Raumtemperatur gerührt. 1-ethyl-4-fluorbenzol 207m (24 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 227m mit 96% (78 mg, 0,192 mmol) Ausbeute als hellbrauner Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.54 – 7.50 (m, 2H), 7.12 (t, J = 8.6 Hz, 2H), 6.10 (d, J = 3.5 Hz, 1H), 5.75 (d, J = 3.6 Hz, 1H).

13C NMR (151 MHz, Chloroform-d): δ = 164.6, 162.9, 139.6, 129.9 (d, J = 3.5 Hz), 129.0 (d, J = 9.2 Hz), 123.9, 119.1 (q, J = 326.0 Hz), 115.9 (d, J = 22.2 Hz).

MS (EI): m/z (%): 401.1 (34), 268.2 (100), 135.2 (61), 134.1 (14), 121.2 (44), 109.2 (92), 108.2 (15), 107.2 (13), 95.2 (34), 75.3 (17), 69.3 (40)

HRMS-ESI berechnet für C_{13}H_{33}O_;NClF_{5};S_{2}: 400.96210, gefunden: 400.96113 ([M]^+).

IR (KBr): ν = 2330, 2093, 1740, 1604, 1510, 1435, 1217, 1120, 1004, 911, 839, 743, 670 cm⁻¹.

1,1,Trifluoro-1,3,5-tris((trifluoromethyl)phenyl)methan-sulfonamid (227n)

Gemäß AVV4 wurden LiNtf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.), CSA (23 mg, 0.1 mmol, 0.5 Äquiv.) und LiPF₆ (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0.66 ml) gelöst und 24 h bei Raumtemperatur gerührt. 1-ethyl-4-fluorbenzol 207n (34 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 227n mit 71% (64 mg, 0,142 mmol) Ausbeute als hellbrauner Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.70 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 8.3 Hz, 2H), 6.29 (d, J = 2.8 Hz, 1H), 5.89 (d, J = 2.7 Hz, 1H).

13C NMR (151 MHz, Chloroform-d): δ = 139.3, 137.0, 132.2 (q, J = 33.0 Hz), 127.1, 125.9, 125.9 (d, J = 5.6 Hz), 123.5 (q, J = 271.9 Hz), 119.1 (q, J = 325.4 Hz).

MS (EI): m/z (%): 431.9 (11), 319.0 (12), 317.9 (100), 185.0 (53), 171.0 (34), 159.0 (56), 145.0 (45), 116.0 (13), 69.1 (47)

HRMS-ESI berechnet für C_{13}H_{33}O_;NClF_{5};NaS: 473.94867, gefunden: 473.94867 ([M +Na]^+).

IR (KBr): 1440, 1325, 1214, 1174, 1115, 1005, 942, 907, 843, 749, 682 cm⁻¹.

N-[1-(3,5-bis(trifluoromethyl)phenyl)vinyl]-1,1,1-trifluoro-N- ((trifluoromethyl)sulfonyl)methansulfonamid (227o)

Gemäß AVV4 wurden LiNtf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.), CSA (23 mg, 0.1 mmol, 0.5 Äquiv.) und LiPF₆ (15 mg, 0.1 mmol, 0.5 Äquiv.) in 1,2-Dichlorethan (0,66 ml) gelöst und 24 h bei Raumtemperatur gerührt. 1-ethyl-3,5-bis(trifluoromethyl)benzol 207o (48 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h bei 85 °C gerührt. Nach Aufarbeitung und Aufreinigung durch
Säulenchromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 227o mit 50% (52 mg, 0,1 mmol) Ausbeute als hellbrauner Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.96 (d, J = 6.9 Hz, 3H), 6.37 (d, J = 2.8 Hz, 1H), 6.01 (d, J = 3.7 Hz, 1H).

13C NMR (151 MHz, Chloroform-d): δ = 137.8, 135.9, 132.6 (q, J = 33.7 Hz), 127.4, 126.8, 123.9 – 123.8 (m), 122.7 (q, J = 272.9 Hz), 119.1 (q, J = 325.9 Hz).

MS (EI): m/z (%) = 386.9 (11), 385.8 (84), 271.9 (11), 252.9 (48), 238.9 (26), 233.9 (15), 226.9 (45), 212.9 (27), 183.9 (10), 162.9 (15), 143.9 (10), 69.1 (100)

IR (KBr): ν = 1439, 1370, 1278, 1220, 1109, 895, 690 cm⁻¹.

N-(1-(4-Bromophenyl)vinyl)-1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)methan-sulfonamid (227p)

Gemäß AVV4 wurden LiNTf2 (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu4NF (23 mg, 0.06 mmol, 0.3 Äquiv.) und LiPF6 (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0,66 ml) gelöst und 1 h bei Raumtemperatur gerührt. 1-bromo-4-ethylnitrobenzol 207p (36 mg, 0,2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 227p mit 97% (90 mg, 0,194 mmol) Ausbeute als braunes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.57 (d, J = 8.3 Hz, 3H), 7.39 (d, J = 8.2 Hz, 3H), 6.18 (d, J = 2.7 Hz, 1H), 5.79 (d, J = 2.7 Hz, 1H).

13C NMR (151 MHz, Chloroform-d): δ = 139.6, 132.6, 132.1, 128.3, 124.8, 124.4, 119.1 (q, J = 326.0 Hz).

MS (EI): m/z (%) = 463.0 (38), 461.0 (39), 331.1 (11), 330.0 (93), 329.0 (11), 328.1 (100), 197.1 (45), 195.1 (49), 183.1 (31), 181.1 (30), 171.1 (96), 169.1 (93), 157.1 (42), 155.0 (42), 133.1 (11), 116.1 (52), 102.2 (13), 90.3 (22), 89.2 (36), 76.3 (29), 75.2 (29), 69.3 (91), 50.3 (14)

HRMS-ESI berechnet für C10H8O4NBrF3S2: 460.88203, gefunden: 460.88428 ([M + H]+).

IR (KBr): ν = 1487, 1438, 1212, 1110, 1004, 939, 905, 827, 733, 689 cm⁻¹.

1,1,1-trifluoro-N-(1-(4-nitrophenyl)vinyl)-N-((trifluoromethyl)sulfonyl)methan-sulfonamid (227q)

Gemäß AVV4 wurden LiNTf2 (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu4NF (23 mg, 0.06 mmol, 0.3 Äquiv.), CSA (23 mg, 0.1 mmol, 0.5 Äquiv.) und LiPF6 (15 mg, 0.1 mmol, 0.5 Äquiv.) in 1,2-Dichlorethan (0.66 ml) gelöst und 24 h bei Raumtemperatur gerührt. 1-ethyl-4-nitrobenzol 207q (29 mg, 0,2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h bei 85 °C gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 227q mit 58% (50 mg, 0,116 mmol) Ausbeute als hellgelber Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 8.30 (d, J = 9.1 Hz, 2H), 7.71 (d, J = 9.2 Hz, 2H), 6.36 (d, J = 2.7 Hz, 2H), 5.98 (d, J = 2.8 Hz, 1H).

13C NMR (151 MHz, Chloroform-d): 148.6, 139.6, 138.6, 127.7, 127.4, 124.1, 119.1 (q, J = 325.1 Hz).

MS (EI): m/z (%) = 296.0 (11), 294.9 (100), 116.1 (26), 90.1 (10), 89.1 (24), 69.2 (44)

IR (KBr): ν = 2922, 1600, 1530, 1440, 1348, 1210, 1118, 1000, 954, 908, 853, 800, 691 cm⁻¹.

Ethyl-4-((1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)methyl)sulfonamido)vinyl)-benzoat (227r)
Gemäß AVV4 wurden LiNTf₂ (86 mg, 0,3 mmol, 1,5 Äquiv.), Bu₄NPF₆ (23 mg, 0,06 mmol, 0,3 Äquiv.) und LiPF₆ (15 mg, 0,1 mmol, 0,5 Äquiv.) in DCM (0,66 ml) gelöst und 24 h bei Raumtemperatur gerührt. Ethyl 4-ethynylbenzoat 207r (35 mg, 0,2 mmol, 1,0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 227r mit 84% (76 mg, 0,168 mmol) Ausbeute als hellgelber Feststoff erhalten.

\(^1\)H NMR (600 MHz, Chloroform-d): δ = 8.10 (d, J = 8.5 Hz, 2H), 7.59 (d, J = 8.3 Hz, 2H), 6.29 (d, J = 2.8 Hz, 1H), 5.87 (d, J = 2.5 Hz, 1H), 4.40 (q, J = 7.0 Hz, 2H), 1.41 (t, J = 7.3 Hz, 3H).

\(^{13}\)C NMR (151 MHz, Chloroform-d): δ = 165.6, 139.7, 137.5, 132.0, 130.0, 126.6, 125.5, 119.1 (q, J = 325.7 Hz), 61.4, 14.3.

MS (EI): m/z (%) = 409.9 (10), 322.0 (100), 208.0 (22), 163.0 (34), 161.0 (22), 144.0 (27), 135.0 (10), 116.0 (15), 69.1 (21)

HRMS-ESI berechnet für C\textsubscript{13}H\textsubscript{15}ClO\textsubscript{4}N\textsubscript{1}F\textsubscript{1}F\textsubscript{6}Na\textsubscript{2}: 477.98242, gefunden: 477.98242 ([M + Na]⁺).

IR (KBr): 1717, 1620, 1439, 1277, 1210, 1109, 1005, 907, 859, 773, 706 cm-1.

(E)-1,1,1-trifluoro-N-(1-phenylprop-1-en-1-yl)-N-((trifluoromethyl)sulfonyl)methanesulfonamid (229a)

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0,3 mmol, 1,5 Äquiv.), Bu₄NPF₆ (23 mg, 0,06 mmol, 0,3 Äquiv.) und LiPF₆ (15 mg, 0,1 mmol, 0,5 Äquiv.) in DCM (0,66 ml) gelöst und 24 h bei Raumtemperatur gerührt. Prop-1-yn-1-ylbenzol 228a (23 mg, 0,2 mmol, 1,0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Pentan) wurde Vinyltriflimid (E)-229a mit 42% (33 mg, 0,08 mmol) Ausbeute als hellgelber Feststoff erhalten.

\(^1\)H NMR (600 MHz, Chloroform-d): δ = 7,45 – 7,42 (m, 2H), 7,39 (dt, J = 7,3, 3,2 Hz, 3H), 6,64 (q, J = 7,3 Hz, 1H), 2,05 (d, J = 7,3 Hz, 3H).

\(^{13}\)C NMR (151 MHz, Chloroform-d): δ = 137,3, 135,5, 133,6, 129,2, 128,6, 126,9, 122,4 – 115,7 (m), 15,6.

MS (EI): m/z (%) = 445,9 (39), 445,0 (14), 444,0 (92), 398,0 (22), 396,9 (33), 382,0 (40), 382,0 (14), 380,0 (100), 265,0 (11), 264,0 (87), 216,1 (21), 214,1 (34), 201,0 (19), 199,0 (31), 178,1 (20), 130,1 (17), 105,1 (41), 103,1 (11), 85,1 (22), 83,1 (35), 69,2 (20).

HRMS-ESI berechnet für C\textsubscript{13}H\textsubscript{14}O\textsubscript{4}N\textsubscript{1}F\textsubscript{1}F\textsubscript{6}S\textsubscript{2}: 396,98717, gefunden: 396,98812 ([M]⁺).

IR (KBr): ν = 2969, 2675, 2339, 2092, 1740, 1372, 1218, 1123, 917 cm-1.

(Z)-1,1,1-trifluoro-N-(1-phenylbut-1-en-1-yl)-N-((trifluoromethyl)sulfonyl)methanesulfonamid (229a)

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0,3 mmol, 1,5 Äquiv.), Bu₄NPF₆ (23 mg, 0,06 mmol, 0,3 Äquiv.) und LiPF₆ (15 mg, 0,1 mmol, 0,5 Äquiv.) in DCM (0,66 ml) gelöst und 24 h bei Raumtemperatur gerührt. But-1-yn-1-ylbenzol 228a (23 mg, 0,2 mmol, 1,0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Pentan) wurde Vinyltriflimid (Z)-229a mit 18% (14 mg, 0,04 mmol) Ausbeute als hellgelber Feststoff erhalten.

\(^1\)H NMR (600 MHz, Chloroform-d): δ = 7.45 – 7.42 (m, 2H), 7.39 (dt, J = 7.3, 3.2 Hz, 3H), 6.64 (q, J = 7.3 Hz, 1H), 2.05 (d, J = 7.3 Hz, 3H).

\(^{13}\)C NMR (151 MHz, Chloroform-d): δ = 137,3, 135,5, 133,6, 129,2, 128,6, 126,9, 122,4 – 115,7 (m), 15,6.
MS (EI): m/z (%) = 445.9 (39), 445.0 (14), 444.0 (92), 398.0 (22), 396.9 (33), 382.0 (40), 382.0 (14), 380.0 (100), 265.0 (11), 264.0 (87), 216.1 (21), 214.1 (34), 201.0 (19), 199.0 (31), 178.1 (20), 130.1 (17), 105.1 (41), 103.1 (11), 85.1 (22), 83.1 (35), 69.2 (20).

HRMS-ESI berechnet für $C_{13}H_{13}O_{6}NF_{2}S_2$: 396.98717, gefunden: 396.98812 ([M $^+$]).

IR (KBr): ν = 2969, 2675, 2339, 2092, 1740, 1372, 1218, 1123, 917 cm$^{-1}$.

(E)-1,1,1-trifluoro-N-(1-phenylbut-1-en-1-yl)-N-[(trifluoromethyl)sulfonyl]methansulfonamid (229b)

Gemäß AVV4 wurden LiNTf$_2$ (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu$_3$NPF$_6$ (23 mg, 0.06 mmol, 0.3 Äquiv.) und LiPF$_6$ (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0.66 ml) gelöst und 24 h bei Raumtemperatur gerührt. But-1-yn-1-ylbenzol 228b (26 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Pentan) wurde Vinyltriflimid 229b mit 60% (49 mg, 0.12 mmol) Ausbeute als hellgelber Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.45 – 7.39 (m, 5H), 6.22 (t, J = 7.8 Hz, 1H), 2.19 (p, J = 7.8 Hz, 2H), 1.05 (t, J = 7.8 Hz, 3H).

13C NMR (151 MHz, Chloroform-d): δ = 145.1, 132.7, 132.1, 129.7, 129.6, 128.6, 119.1 (q, J = 326.0 Hz), 23.0, 13.0.

19F NMR (564 MHz, Chloroform-d): δ = -69.7.

MS (EI): m/z (%) = 425.0 (23), 293.0 (15), 292.0 (100), 249.9 (13), 172.0 (22), 159.1 (1), 158.0 (36), 144.1 (21), 143.0 (73), 131.1 (20), 130.0 (54), 128.0 (13), 104.1 (43), 103.0 (12), 91.1 (35), 77.1 (35), 69.2 (48), 55.5 (12).

HRMS-ESI berechnet für $C_{12}H_{13}O_{6}NF_{2}S_2$: 425.01757, gefunden: 425.01847 ([M $^+$]).

IR (KBr): ν = 3433, 1212, 1120, 1056, 1002, 928, 851, 759, 696 cm$^{-1}$.

(E)-1,1,1-trifluoro-N-(1-phenylpent-1-en-1-yl)-N-[(trifluoromethyl)sulfonyl]methansulfonamid (229c)

Gemäß AVV4 wurden LiNTf$_2$ (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu$_3$NPF$_6$ (23 mg, 0.06 mmol, 0.3 Äquiv.) und LiPF$_6$ (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0.66 ml) gelöst und 24 h bei Raumtemperatur gerührt. Pent-1-yn-1-ylbenzol 228c (29 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Pentan) wurde Vinyltriflimid 229c mit 55% (47 mg, 0.11 mmol) Ausbeute als hellgelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.45 – 7.39 (m, 5H), 6.23 (t, J = 7.9 Hz, 1H), 2.16 (q, J = 7.4 Hz, 2H), 1.48 (h, J = 7.4 Hz, 2H), 0.89 (t, J = 7.4 Hz, 3H).

13C NMR (151 MHz, Chloroform-d): δ = 143.8, 132.8, 132.6, 129.8, 129.6, 128.5, 119.1 (q, J = 326.0 Hz), 31.3, 21.9, 13.4.

19F NMR (564 MHz, Chloroform-d): δ = -69.7.

MS (EI): m/z (%) = 425.0 (23), 293.0 (15), 292.0 (100), 249.9 (13), 172.0 (22), 159.1 (1), 158.0 (36), 144.1 (21), 143.0 (73), 131.1 (20), 130.0 (54), 128.0 (13), 104.1 (43), 103.0 (12), 91.1 (35), 77.1 (35), 69.2 (48), 55.5 (12).

HRMS-ESI berechnet für $C_{13}H_{13}O_{6}NF_{2}S_2$: 425.01757, gefunden: 425.01847 ([M $^+$]).

IR (KBr): ν = 3426, 1215, 1120, 1020, 934, 876, 825, 761, 696 cm$^{-1}$.

(E)-1,1,1-trifluoro-N-(1-phenylhex-1-en-1-yl)-N-[(trifluoromethyl)sulfonyl]methanesulfonamid (229d)
Gemäß AVV4 wurden LiNTf₂ (86 mg, 0,3 mmol, 1,5 Äquiv.), Bu₄NPF₆ (23 mg, 0,06 mmol, 0,3 Äquiv.) und LiPF₆ (15 mg, 0,1 mmol, 0,5 Äquiv.) in DCM (0,66 ml) gelöst und 24 h bei Raumtemperatur gerührt. Hex-1-yn-1-ylbenzol 228d (32 mg, 0,2 mmol, 1,0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparativen HPLC (n-Pentan) wurde Vinyltriflimid (E)-229d mit 57% (50 mg, 0,114 mmol) Ausbeute als hellgelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.45 – 7.39 (m, 5H), 6.23 (t, J = 7.8 Hz, 1H), 2.18 (q, J = 7.6 Hz, 2H), 1.42 (p, J = 7.7 Hz, 2H), 1.29 (m, 2H), 0.84 (t, J = 7.4 Hz, 3H).

13C NMR (151 MHz, Chloroform-d): δ = 144.0, 132.8, 132.4, 129.8, 129.6, 128.5, 119.1 (q, J = 326.0 Hz), 30,6, 29,1, 22,0, 13,7.

19F NMR (564 MHz, Chloroform-d): δ = 7.42 (m, 2H), 7.40 (m, 2H), 7.39 (m, 5H), 6.23 (t, J = 7.8 Hz, 1H), 2.17 (q, J = 7.4 Hz, 2H), 1.47 – 1.40 (m, 2H), 1.27 – 1.20 (m, 4H), 0.88 – 0.82 (m, 2H).

IR (KBr): v = 2956, 1432, 1215, 1120, 1064, 918, 837, 761, 696 cm⁻¹.

(G)-1,1,1-trifluoro-N-(1-phenyleth-1-en-1-yl)-N-(trifluoromethyl)sulfonyl)methansulfonamid (G)-229e

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0,3 mmol, 1,5 Äquiv.), Bu₄NPF₆ (23 mg, 0,06 mmol, 0,3 Äquiv.) und LiPF₆ (15 mg, 0,1 mmol, 0,5 Äquiv.) in DCM (0,66 ml) gelöst und 24 h bei Raumtemperatur gerührt. Hept-1-yn-1-ylbenzol 228e (35 mg, 0,2 mmol, 1,0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparativer HPLC (n-Pentan) wurde Vinyltriflimid (G)-229e mit 57% (50 mg, 0,114 mmol) Ausbeute als hellgelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.45 – 7.42 (m, 2H), 7.40 – 7.36 (m, 3H), 6.52 (t, J = 7.4 Hz, 1H), 2.37 (q, J = 7.8 Hz, 2H), 1.58 – 1.51 (m, 2H), 1.44 – 1.33 (m, 4H), 0.93 (t, J = 6.9 Hz, 3H).

(Z)-1,1,1-trifluoro-N-(1-phenyleth-1-en-1-yl)-N-(trifluoromethyl)sulfonyl)methansulfonamid (Z)-229e

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0,3 mmol, 1,5 Äquiv.), Bu₄NPF₆ (23 mg, 0,06 mmol, 0,3 Äquiv.) und LiPF₆ (15 mg, 0,1 mmol, 0,5 Äquiv.) in DCM (0,66 ml) gelöst und 24 h bei Raumtemperatur gerührt. Hept-1-yn-1-ylbenzol 228e (35 mg, 0,2 mmol, 1,0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparativer HPLC (n-Pentan) wurde Vinyltriflimid (Z)-229e mit 4% (4 mg, 0,008 mmol) Ausbeute als hellgelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.45 – 7.42 (m, 2H), 7.40 – 7.36 (m, 3H), 6.52 (t, J = 7.4 Hz, 1H), 2.37 (q, J = 7.8 Hz, 2H), 1.58 – 1.51 (m, 2H), 1.44 – 1.33 (m, 4H), 0.93 (t, J = 6.9 Hz, 3H).
\[1^3\text{C NMR (151 MHz, Chloroform-}\text{d}): \delta = 142.8, 135.6, 131.9, 129.1, 128.6, 127.1, 119.1 (q, J = 325.8 Hz), \]
\[31.5, 29.6, 28.0, 22.4, 13.9. \]
\[1^9\text{F NMR (564 MHz, Chloroform-}\text{d}): \delta = -69.4. \]
\[\text{MS (El: } m/z (\%): 130.1 (16), 104.1 (18), 91.1 (15), 77.2 (23), 69.2 (100), 55.6 (18). \]
\[\text{HRMS-ESI berechnet für } C_{16}H_{19}O_3NF_S_2: 453.04977, \text{ gefunden: 453.04945 ([M}^+]). \]
\[\text{IR (KBr): } \nu = 2932, 2865, 2328, 1745, 1432, 1215, 1119, 1002, 912, 867, 757, 678 \text{ cm}^{-1}. \]

\[
\text{\((E)-1,1,1\text{-trifluoro-N-(1-phenyloct-1-en-1-yl)-N-((trifluoromethyl)sulfonyl)methansulfonamid (\((E)-229f)\))}

\[
\text{\((Z)-1,1,1\text{-trifluoro-N-(1-phenyloct-1-en-1-yl)-N-((trifluoromethyl)sulfonyl)methansulfonamid (\((Z)-229f)\))}

Gemäß AV4 wurden LiNTf\(_2\) (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu\(_3\)NPF\(_6\) (23 mg, 0.06 mmol, 0.3 Äquiv.) und LiPF\(_6\) (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0.66 ml) gelöst und 24 h bei Raumtemperatur gerührt. Oct-1-yn-1-ylbenzol x228f (38 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Pentan) wurde Vinyltriflimid (E)-229f mit 48% (45 mg, 0.096 mmol) Ausbeute als hellgelbes Öl erhalten.

\[1^1\text{H NMR (600 MHz, Chloroform-}\text{d): } \delta = 7.44 – 7.39 (m, 5H), 6.23 (t, J = 7.7 Hz, 1H), 2.17 (q, J = 7.7 Hz, 2H), 1.43 (p, J = 7.5 Hz, 2H), 1.29 – 1.22 (m, 4H), 1.22 – 1.15 (m, 2H), 0.85 (t, J = 7.0 Hz, 3H). \]
\[1^3\text{C NMR (151 MHz, Chloroform-}\text{d): } \delta = 13C NMR (151 MHz, Chloroform-\text{d): } \delta = 144.0, 132.8, 132.4, 129.8, 129.6, 128.5, 119.1 (q, J = 326.0 Hz), 31.4, 29.4, 28.5, 22.4, 13.9. \]
\[1^9\text{F NMR (564 MHz, Chloroform-}\text{d): } \delta = -69.7. \]
\[\text{MS (El: } m/z (\%): 467.1 (45), 334.1 (18), 264.0 (27), 250.0 (33), 238.0 (22), 200.1 (16), 186.1 (10), 185.1 (52), 172.0 (18), 144.1 (19), 143.1 (22), 131.1 (15), 130.1 (48), 129.1 (31), 117.1 (21), 115.1 (13), 104.1 (33), 91.1 (32), 83.2 (56), 81.2 (11), 77.2 (22), 69.2 (23), 55.5 (32). \]
\[\text{HRMS-ESI berechnet für } C_{16}H_{19}O_3NF_S_2: 467.06542, \text{ gefunden: 467.06543 ([M}^+]). \]
\[\text{IR (KBr): } \nu = 2930, 2862, 1433, 1215, 1121, 1063, 931, 832, 762, 696, \text{ cm}^{-1}. \]
(E)-1,1,1-trifluoro-N-(1-(p-tolyl)oct-1-en-1-yl)-N-((trifluoromethyl)sulfonyl)methanesulfonamide (229g)

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.) und LiPF₆ (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0,66 ml) gelöst und 24 h bei Raumtemperatur gerührt. Oct-1-yn-1-ylbenzol 228g (38 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Pentan) wurde Vinyltriflimid (E)-229h mit 55% (55 mg, 0,11 mmol) Ausbeute als hellgelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = δ = 7.30 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 7.9 Hz, 2H), 6.18 (t, J = 7.8 Hz, 1H), 2.38 (s, 3H), 2.16 (q, J = 7.4 Hz, 2H), 1.42 (p, J = 7.3 Hz, 2H), 1.28 – 1.16 (m, 6H), 0.85 (t, J = 7.3 Hz, 3H).

13C NMR (151 MHz, Chloroform-d): δ = 143.6, 139.7, 132.5, 129.9, 129.6, 129.2, 119.1 (q, J = 326.1 Hz), 31.4, 29.4, 28.6, 28.6, 22.4, 21.3, 13.9.

19F NMR (564 MHz, Chloroform-d): δ = -69.7.

MS (EI): m/z (%) = 482.1 (14), 481.1 (58), 349.1 (21), 348.1 (100), 278.1 (19), 264.0 (27), 252.0 (14), 214.2 (18), 199.1 (37), 186.1 (17), 158.1 (15), 157.1 (12), 145.1 (11), 144.1 (36), 143.1 (21), 131.1 (15), 118.1 (23), 105.1 (35), 91.1 (17), 83.2 (20), 69.2 (12), 55.6 (12).

HRMS-ESI berechnet für C₇H₇O₃ClNClF₆S₂: 481.08107, gefunden: 481.08137 ([M +]).

IR (KBr): ν = 2929, 2823, 2331, 2097, 1432, 1216, 1121, 1043, 930, 824, 722 cm⁻¹.

(Z)-N-(1-(4-chlorophenyl)oct-1-en-1-yl)-1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)methanesulfonamid ((Z)-229h)

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.) und LiPF₆ (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0,66 ml) gelöst und 24 h bei Raumtemperatur gerührt. 1-chloro-4-(oct-1-yn-1-yl)benzol 228h (41 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Pentan) wurde Vinyltriflimid (Z)-229h mit 49% (47 mg, 0,098 mmol) Ausbeute als hellgelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = δ = 7.40 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 8.9 Hz, 2H), 6.25 (t, J = 7.8 Hz, 49), 6.18 (t, J = 7.8 Hz, 1H), 2.38 (s, 3H), 2.16 (q, J = 7.4 Hz, 2H), 1.42 (p, J = 7.3 Hz, 2H), 1.28 – 1.16 (m, 6H), 0.85 (t, J = 7.3 Hz, 3H).

13C NMR (151 MHz, Chloroform-d): δ = 145.0, 135.9, 131.3, 128.9, 119.1 (q, J = 325.8 Hz), 31.3, 29.4, 28.5, 28.4, 22.4, 13.9.

19F NMR (564 MHz, Chloroform-d): δ = -69.7.

MS (EI): m/z (%) = 503.1 (31), 502.1 (14), 501.1 (67), 370.1 (38), 369.1 (20), 368.1 (100), 300.0 (11), 298.0 (28), 286.0 (15), 284.0 (37), 272.0 (21), 234.1 (17), 221.1 (24), 219.1 (48), 206.0 (16), 179.0 (11), 178.0 (15), 177.0 (13), 166.0 (18), 165.0 (17), 164.0 (43), 163.0 (15), 153.0 (16), 151.0 (22), 140.0 (11), 139.1 (15), 138.0 (30), 127.0 (12), 125.0 (35), 111.0 (11), 83.2 (49), 69.2 (22), 55.5 (22).

HRMS-ESI berechnet für C₇H₇O₃ClNClF₆S₂: 501.02645, gefunden: 501.02653 ([M +]).

IR (KBr): ν = 2931, 2823, 1491, 1434, 1215, 1120, 932, 836, 712 cm⁻¹.
Gemäß AVV4 wurden LiNTf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.) und LiPF₆ (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0,66 ml) gelöst und 24 h bei Raumtemperatur gerührt. 1-chloro-4-(oct-1-yn-1-yl)benzol 228h (41 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch semi-präparative HPLC (n-Pentan) wurde Vinyltriflimid \((Z)-229h\) mit 5% (5 mg, 0.01 mmol) Ausbeute als hellgelbes Öl erhalten.

\(^{1}\)H NMR (600 MHz, Chloroform-d): \(\delta = 7.38 – 7.34 (m, 4H), 6.49 (t, J = 7.5 Hz, 1H), 2.36 (q, J = 7.6 Hz, 2H), 1.53 (q, J = 7.8 Hz, 2H), 1.41 (p, J = 7.3 Hz, 2H), 1.35 – 1.30 (m, 4H), 0.91 (t, J = 6.8 Hz, 3H).

\(^{13}\)C NMR (151 MHz, Chloroform-d): \(\delta = 143.6, 135.4, 134.2, 130.8, 128.8, 128.5, 119.1 (q, J = 326.1 Hz), 31.5, 29.7, 29.0, 28.2, 22.5, 14.0.

\(^{19}\)F NMR (564 MHz, Chloroform-d): \(\delta = -69.43.

HRMS-ESI berechnet für C₁₉H₁₉O₄NClF₅S₂: 501.02645, gefunden: 501.02583 ([M + HI].

IR (KBr): \(\nu = 2931, 2863, 1592, 1489, 1436, 1348, 1214, 1123, 1051, 1013, 932, 881, 831, 738, 713 \text{ cm}^{-1}.

\((E)-N\)-(1,2-diphenylyvinyl)-1,1,1-trifluoro-N-[(trifluoromethyl)sulfonylimethyl]methanesulfonamide (229i)

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.), Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.) und LiPF₆ (15 mg, 0.1 mmol, 0.5 Äquiv.) in DCM (0,66 ml) gelöst und 24 h bei Raumtemperatur gerührt. 1,2-diphenylethen 228i (36 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 229i mit 89% (82 mg, 0.178 mmol) Ausbeute als hellgelbes Öl erhalten.

\(^{1}\)H NMR (600 MHz, Chloroform-d): \(\delta = 7.48 (d, J = 7.5 Hz, 2H), 7.42 (t, J = 7.3 Hz, 1H), 7.39 – 7.35 (m, 4H), 7.26 (t, J = 7.3 Hz, 2H), 7.21 (t, J = 7.7 Hz, 2H), 7.08 (d, J = 7.9 Hz, 2H), 7.03 (s, 1H).

\(^{13}\)C NMR (151 MHz, Chloroform-d): \(\delta = 140.4, 133.4, 132.7, 132.3, 130.3, 130.3, 130.2, 129.8, 129.7, 129.9, 128.5, 119.1 (q, J = 326.1 Hz).

MS (EI): \(m/z\) (%): 459.0 (27), 360.0 (34), 194.1 (16), 193.1 (100), 192.0 (24), 167.0 (47), 165.0 (26), 89.1 (14).

HRMS-ESI berechnet für C₁₉H₁₉O₄NClF₅S₂: 459.00282, gefunden: 459.00272 ([M + HI].

IR (KBr): \(\nu = 1429, 1364, 1220, 1114, 1022, 928, 853, 762, 694 \text{ cm}^{-1}.

\((E)-N\)-(2-bromo-1-phenylyvinyl)-1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyimethyl]methanesulfonimid (231a)

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.) und Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.) in DCM (0,66 ml) gelöst. Bromoethynylbenzol 230a (36 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan) wurde Vinyltriflimid \((E)-231a\) mit 51% (47 mg, 0.102 mmol) Ausbeute als gelbes Öl erhalten.

\(^{1}\)H NMR (600 MHz, Chloroform-d): \(\delta = 7.60 – 7.54 (m, 2H), 7.49 – 7.43 (m, 3H), 7.19 (s, 1H).

\(^{13}\)C NMR (151 MHz, Chloroform-d): \(\delta = 136.2, 131.0, 130.8, 129.9, 128.9, 120.2, 119.2 (q, J = 326.2 Hz).
MS (EI): m/z (%) = 51.6 (21), 63.3 (15), 69.1 (78), 77.1 (37), 89.1 (72), 90.1 (16), 102.1 (11), 103.1 (20), 104.1 (15), 116.0 (100), 117.1 (11), 135.0 (10), 169.0 (40), 170.0 (12), 171.0 (44) 172.0 (12), 185.0 (25), 194.9 (18), 196.9 (18), 220.0 (14), 327.9 (39), 329.9 (43), 460.9 (19), 462.9 (19).

HRMS-ESI berechnet für $\text{C}_{18}\text{H}_{30}\text{O}_4\text{NBrF}_5\text{S}_2$: 460.88203, gefunden: 460.88192 ([M $^+$]).

IR (KBr): $\nu = 3092, 1616, 1491, 1441, 1297, 1223, 1122, 1053, 1026, 906, 872, 813, 768, 696, 605, 502 \text{ cm}^{-1}$.

\[(E)-N-\{(1,1'-biphenyl)-4-yl\}-2-bromovinyl\}-1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)methansulfonamid (x)\]

Gemäß AVV4 wurden LiNTf$_2$ (86 mg, 0.3 mmol, 1.5 Äquival.) und Bu$_4$NPF$_6$ (23 mg, 0.06 mmol, 0.3 Äquival.) in DCM (0,66 ml) gelöst. 1-(bromomethoxy)benzol 230c (42 mg, 0.2 mmol, 1.0 Äquival.) wurde hinzugegeben und die Reaktionslösung für 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan) wurde Vinyltriflimid \((E)-231b\) mit 40% (43 mg, 0,08 mmol) Ausbeute als hellgelbes Öl erhalten.

\[\text{IR (KBr): } \nu = 3092, 1616, 1491, 1441, 1297, 1223, 1122, 1053, 1026, 906, 872, 813, 768, 696, 605, 502 \text{ cm}^{-1} .\]
Gemäß AVV4 wurden LiNTf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.) und Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.) in DCM (0,66 ml) gelöst. 2-(bromomethyl)thiophen 230d (37 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan) wurde Vinyltriflimid (E)-231d mit 29% (27 mg, 0,058 mmol) Ausbeute als hellgelbes Öl erhalten.

[H NMR (600 MHz, Chloroform-d):] δ = 7.80 (dd, J = 2.9, 1.4 Hz, 1H), 7.42 – 7.35 (m, 2H), 7.12 (s, 1H).

¹³C NMR (151 MHz, Chloroform-d): δ = 132.6, 131.5, 129.4, 127.9, 126.4, 119.5, 119.2 (q, J = 325.9 Hz).

MS (EI): m/z (%) = 69.2 (65), 95.1 (30), 96.1 (10), 109.1 (20), 110.1 (14), 122.0 (100), 173.9 (11), 174.9 (56), 176.9 (56), 178.0 (11), 191.0 (19), 200.9 (10), 202.9 (11), 226.0 (13), 333.9 (30), 335.9 (32), 466.9 (27), 468.9 (30).

HRMS-ESI berechnet für C₄H₄O₄NBrF₆S₂: 466.83846, gefunden: 466.83774 ([M †]).

IR (KBr): ν = 1433, 1218, 1118, 1053, 902, 790, 716, 663 cm⁻¹.

\[\text{(E)-N-(2-bromo-1-(4-chlorophenyl)vinyl)-1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)methansulfonamid (231e)} \]

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.) und Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.) in DCM (0,66 ml) gelöst. 1-(bromomethyl)-4-chlorobenzol 230e (43 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan) wurde Vinyltriflimid (E)-231e mit 35% (34,8 mg, 0,07 mmol) Ausbeute als hellgelbes Öl erhalten.

[H NMR (600 MHz, Chloroform-d):] δ = 7.53 – 7.49 (m, 2H), 7.46 – 7.42 (m, 2H), 7.21 (s, 1H).

¹³C NMR (151 MHz, Chloroform-d): δ = 137.1, 135.1, 131.3, 130.5, 129.3, 121.2, 119.2 (q, J = 326.2 Hz).

MS (EI): m/z (%) = 69.2 (100), 75.1 (21), 111.0 (11), 123.0 (39), 125.0 (13), 137.0 (18), 138.0 (10), 150.0 (54), 152.0 (18), 203.0 (19), 205.0 (25), 219.1 (12), 362.0 (12), 364.0 (16).

HRMS-ESI berechnet für C₈H₄O₄NBrClF₆S₂: 494.84306, gefunden: 494.84217 ([M †]).

IR (KBr): ν = 1592, 1487, 1439, 1302, 1202, 1113, 1050, 1012, 893, 832, 797, 746, 699 cm⁻¹.

\[\text{(E)-N-(2-bromo-1-(cyclohex-1-en-1-yl)vinyl)-1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)methansulfonamid (231i)} \]

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.) und Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.) in DCM (0,66 ml) gelöst. 1-(bromomethyl)cyclohex-1-en 230i (37 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan) wurde Vinyltriflimid (E)-231i mit 39% (36,4 mg, 0,078 mmol) Ausbeute als gelbes Öl erhalten.

[H NMR (600 MHz, Chloroform-d):] δ = 6.82 (s, 1H), 6.23 (m, 1H), 2.17 (m, 4H), 1.73 – 1.59 (m, 4H).

¹³C NMR (151 MHz, Chloroform-d): δ = 138.3, 138.2, 130.0, 119.3 (q, J = 326.1 Hz), 117.2, 26.0, 25.7, 22.2, 21.3.

MS (EI): m/z (%) = 65.3 (11), 69.1 (100), 77.2 (27), 79.2 (31), 81.2 (12), 91.1 (27), 93.1 (20), 105.1 (22), 119.1 (10), 120.1 (19), 161.1 (13).

HRMS-ESI berechnet für C₄H₄O₄NBrF₆S₂: 464.91333, gefunden: 464.91296 ([M †]).

IR (KBr): ν = 3095, 2939, 2867, 1646, 1600, 1440, 1221, 1123, 1056, 1021, 960, 903, 825, 797, 713, 613, 503 cm⁻¹.
N-(1-(cyclohex-1-en-1-yl)vinyl)-1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)methanesulfonamide (232a)

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.) und Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.) in DCM (0,66 ml) gelöst und 24 h bei Raumtemperatur gerührt. 1-ethynylcyclohex-1-en 202a (21 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan) wurde Vinyltriflimid 232a mit 55% (42 mg, 0,11 mmol) Ausbeute als braunes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 6.13 – 6.10 (m, 1H), 5.69 (s, 1H), 5.44 (s, 1H), 2.26 – 2.21 (m, 2H), 2.21 – 2.17 (m, 2H), 1.76 – 1.69 (m, 2H), 1.65 – 1.57 (m, 2H).

13C NMR (151 MHz, Chloroform-d): δ = 141.1, 131.4, 131.2, 119.7, 119.2 (q, J = 326.0 Hz), 25.8, 25.7, 22.1, 21.3.

**MS (El): m/z (%) = 387.1 (18), 254.0 (100), 121.3 (24), 120.3 (47), 107.3 (12), 106.3 (33), 105.2 (45), 95.4 (29), 93.3 (20), 91.3 (21), 81.3 (26), 80.3 (18), 79.3 (70), 77.3 (26), 69.3 (52), 67.4 (16), 65.4 (10), 53 (24).

HRMS-ESI berechnet für C_{14}H_{12}O_{3}NF_{6}S_{2}: 387.00282, gefunden: 387.00160 ([M⁺]).

IR (KBr): ν = 2935, 1435, 1211, 1122, 1001, 916, 857, 690 cm⁻¹.

N-(1-cyclopropylvinyl)-1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)methanesulfonamide (232b)

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.) und Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.) in DCM (0,66 ml) gelöst und 1 h bei Raumtemperatur gerührt. Ethynylcyclopropan 202b (13 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 232b mit 18% (12 mg, 0,036 mmol) Ausbeute als braunes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 5.44 (d, J = 2.0 Hz, 1H), 5.38 (d, J = 1.8 Hz, 1H), 1.59 – 1.54 (m, 1H), 0.94 – 0.90 (m, 2H), 0.77 – 0.74 (m, 2H).

13C NMR (151 MHz, Chloroform-d): δ = 143.9, 120.7, 119.2 (q, J = 325.2 Hz), 16.5, 8.5.

**MS (El): m/z (%) = 197.1 (19), 169.3 (15), 155.2 (26), 153.2 (10), 149.1 (21), 141.3 (19), 139.3 (16), 135.2 (25), 133.3 (12), 131.3 (12), 129.2 (12), 128.2 (10), 127.3 (22), 125.3 (24), 123.3 (24), 121.2 (10), 119.2 (14), 117.2 (10), 115.2 (11), 113.3 (24), 112.3 (16), 111.3 (37), 110.2 (11), 109.2 (29), 107.2 (16), 105.2 (23), 99.3 (25), 98.3 (14), 97.3 (55), 96.3 (16), 95.3 (35), 93.3 (13), 91.3 (31), 85.3 (61), 84.3 (16), 83.3 (55), 82.3 (15), 81.3 (35), 79.3 (16), 77.3 (13), 71.4 (63), 70.3 (21), 69.3 (90), 67.3 (25), 57.4 (100), 56.3 (17), 55.3 (57).

HRMS-ESI berechnet für C_{8}H_{5}O_{2}NF_{6}S_{2}: 369.96129, gefunden: 369.96078 ([M + Na⁺]).

IR (KBr): ν = 2328, 2092, 1648, 1433, 1214, 1120, 1000, 921, 680 cm⁻¹.

1,1,1-trifluoro-N-(3-methylbuta-1,3-dien-2-yl)-N-((trifluoromethyl)sulfonyl)methanesulfonamide (232c)

Gemäß AVV4 wurden LiNTf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.) und Bu₄NPF₆ (23 mg, 0.06 mmol, 0.3 Äquiv.) in DCM (0,66 ml) gelöst und 24 h bei Raumtemperatur gerührt. 2-methylbuta-1-en-3-in 202c (13 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan/EtOAc = 100:1) wurde Vinyltriflimid 232c mit 31% (22 mg, 0,062 mmol) Ausbeute als braunes Öl erhalten.
1H NMR (600 MHz, Chloroform-d): δ = 5.87 (d, J = 2.6 Hz, 1H), 5.63 (s, 1H), 5.37 (s, 1H), 5.32 (s, 1H), 2.01 (s, 3H).
13C NMR (151 MHz, Chloroform-d): δ = 140.5, 137.5, 123.5, 119.2 (q, J = 325.0 Hz), 118.4, 20.5.
MS (EI): m/z (%) = 91.1 (10), 69.2 (100), 67.2 (12), 65.2 (11), 57.2 (14), 53.1 (32), 51.2 (12), 48.1 (10)
IR (KBr): ν = 1602, 1436, 1211, 1122, 1006, 909, 804, 670 cm⁻¹.

1,1,1-trifluoro-N-(pent-1-en-2-yl)-N-((trifluoromethyl)sulfonyl)methansulfonamid (232d)
Gemäß AVV4 wurden LiNTf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.) und Bu₄NF (23 mg, 0.06 mmol, 0.3 Äquiv.) in DCM (0.66 ml) gelöst und 1 h bei Raumtemperatur gerührt. Pent-1-in 202d (14 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan) wurde Vinyltriflimid 232d mit 21% (14 mg, 0.042 mmol) Ausbeute als grünes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 5.62 (d, J = 2.9 Hz, 1H), 5.54 (s, 1H), 2.30 (t, J = 7.7 Hz, 2H), 1.60 (h, J = 7.5 Hz, 2H), 1.00 (t, J = 7.3 Hz, 3H).
13C NMR (151 MHz, Chloroform-d): δ = 142.0, 123.3, 119.2 (q, J = 325.6 Hz), 37.5, 20.0, 13.2.
MS (EI): m/z (%) = 229.5 (12), 216.4 (12), 204.5 (39), 189.4 (18), 175.4 (42), 161.4 (51), 159.4 (13), 147.4 (22), 145.4 (17), 133.4 (29), 131.4 (14), 129.3 (12), 128.3 (14), 119.4 (22), 117.3 (17), 115.3 (13), 107.4 (12), 105.4 (16), 91.4 (32), 83.4 (17), 81.4 (12), 79.4 (12), 77.4 (21), 71.5 (14), 69.4 (100), 67.5 (13), 57.4 (30), 55.4 (52).
IR (KBr): ν = 2954, 1435, 1215, 1122, 1002, 902, 683 cm⁻¹.

1,1,1-trifluoro-N-(hex-1-en-2-yl)-N-((trifluoromethyl)sulfonyl)methansulfonamid (232e)
Gemäß AVV4 wurden LiNTf₂ (86 mg, 0.3 mmol, 1.5 Äquiv.) und Bu₄NF (23 mg, 0.06 mmol, 0.3 Äquiv.) in DCM (0.66 ml) gelöst und 24 h bei Raumtemperatur gerührt. Hex-1-in 202e (16 mg, 0.2 mmol, 1.0 Äquiv.) wurde hinzugegeben und die Reaktionslösung für weitere 21 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (n-Pentan) wurde Vinyltriflimid 232e mit 18% (14 mg, 0.036 mmol) Ausbeute als grünes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 5.62 (d, J = 2.1 Hz, 1H), 5.53 (s, 1H), 2.32 (t, J = 7.8 Hz, 2H), 1.54 (p, J = 7.7 Hz, 2H), 1.40 (h, J = 7.2 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H).
13C NMR (151 MHz, Chloroform-d): δ = 142.3, 123.2, 119.2 (q, J = 325.1 Hz), 35.3, 28.8, 21.8, 13.8.
MS (EI): m/z (%) = 410.7 (12), 328.6 (25), 299.6 (12), 285.6 (12), 271.5 (23), 259.5 (10), 257.5 (16), 247.5 (15), 246.5 (25), 245.5 (12), 243.5 (13), 231.5 (15), 229.5 (18), 227.5 (11), 217.5 (20), 215.5 (14), 204.5 (12), 203.5 (25), 201.4 (14), 199.4 (11), 189.4 (30), 187.4 (18), 185.4 (14), 183.4 (13), 175.4 (19), 173.4 (16), 171.4 (13), 169.4 (11), 165.4 (14), 161.4 (24), 159.4 (21), 157.4 (18), 155.4 (16), 153.4 (11), 147.4 (23), 145.4 (27), 143.4 (15), 141.4 (12), 133.4 (19), 129.3 (17), 128.3 (15), 123.4 (10), 121.4 (10), 119.4 (25), 117.3 (15), 115.3 (13), 111.4 (16), 109.4 (20), 107.4 (16), 105.4 (17), 97.4 (20), 95.4 (24), 93.4 (15), 91.4 (22), 85.4 (22), 83.4 (32), 81.4 (32), 79.4 (20), 71.5 (41), 70.5 (15), 69.4 (67), 57.4 (100), 56.4 (28), 55.4 (87).
IR (KBr): ν = 2934, 2872, 2328, 2107, 1436, 1215, 1123, 1002, 910, 683 cm⁻¹.

4.5.2.2 Physikalische Daten der Voruntersuchungen zur Reaktivität von Vinyltriflimiden
Phenyl(pyrrolidin-1-yl)methanon (251a)
Zu einer Lösung aus Pyrrolidin (17,8 mg, 0,25 mmol, 5,0 Äquiv.) in getrocknetem DCE (1,0 ml) wurde Vinyltriflimid 227a (19,2 mg, 0,05 mmol, 1,0 Äquiv.) zugegeben und die Reaktionslösung anschließend für 17 h bei Raumtemperatur gerührt. Nach Reaktionskontrolle mittels DC wurde die Reaktion durch Zugabe gesättigter wässriger NH₄Cl-Lösung beendet. Die wässrige Phase wurde dreimal mit DCM extrahiert, die vereinigte organische Phase anschließend mit Na₂SO₄ getrocknet, abfiltriert und am Rotationsverdampfer eingeengt. Das Amid 251a wurde durch Aufreinigung mittels Säulenchromatographie (n-Pentan/EtOAc = 1:1) mit 66% (5,8 mg, 0,033 mmol) Ausbeute als gelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.53 – 7.50 (m, 2H), 7.41 – 7.37 (m, 3H), 3.65 (t, J = 7.1 Hz, 2H), 3.42 (t, J = 6.7 Hz, 2H), 1.96 (p, J = 6.8 Hz, 2H), 1.88 (q, J = 6.5 Hz, 2H).
13C NMR (151 MHz, Chloroform-d): δ = 137.3, 129.7, 128.2, 127.1, 49.6, 46.2, 26.4, 24.5.
MS (EI): m/z (%) = 176.3 (14), 175.2 (30), 174.2 (13), 105.2 (63), 77.3 (100), 51.4 (44), 50.3 (18).
IR (KBr): ν = 3477, 2955, 2876, 2326, 2099, 1907, 1616, 1421, 1182, 791, 712 cm⁻¹.

Phenyl(piperidin-1-yl)methanon (251b)

Zu einer Lösung aus Piperidin (12,8 mg, 0,15 mmol, 3,0 Äquiv.) und Cs₂CO₃ (48,9 mg, 0,15 mmol, 3,0 Äquiv.) in getrocknetem DCE (1,0 ml) wurde Vinyltriflimid 227a (19,2 mg, 0,05 mmol, 1,0 Äquiv.) zugegeben und die Reaktionslösung anschließend für 24 h bei Raumtemperatur gerührt. Nach Reaktionskontrolle mittels DC wurde die Reaktion durch Zugabe gesättigter wässriger NH₄Cl-Lösung beendet. Die wässrige Phase wurde dreimal mit DCM extrahiert, die vereinigte organische Phase anschließend mit Na₂SO₄ getrocknet, abfiltriert und am Rotationsverdampfer eingeengt. Das Amid 251b wurde durch Aufreinigung mittels Säulenchromatographie (n-Pentan/EtOAc = 2,5:1) mit 43% (12,3 mg, 0,065 mmol) Ausbeute als hellgelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.39 (m, 5H), 3.71 (s, 2H), 3.34 (s, 2H), 1.67 (m, 4H), 1.52 (m, 2H).
13C NMR (151 MHz, Chloroform-d): δ = 170.3, 136.5, 129.3, 128.4, 126.8, 48.8, 43.1, 26.5, 25.6, 24.6.
MS (EI): m/z (%) = 189.1 (38), 188.1 (100), 105.0 (37), 77.2 (15).
IR (KBr): ν = 3477, 2955, 2876, 2326, 2099, 1907, 1616, 1421, 1182, 791, 712 cm⁻¹.

N-benzyl-N-methylbenzamide (251c)

Zu einer Lösung aus N-Methylbenzylamin (30,3 mg, 0,25 mmol, 5 Äquiv.) in getrocknetem DCE (1,0 ml) wurde Vinyltriflimid 227a (19,2 mg, 0,05 mmol, 1,0 Äquiv.) zugegeben und die Reaktionslösung anschließend für 19 h bei Raumtemperatur gerührt. Nach Reaktionskontrolle mittels DC wurde die Reaktion durch Zugabe gesättigter wässriger NH₄Cl-Lösung beendet. Die wässrige Phase wurde dreimal mit DCM extrahiert, die vereinigte organische Phase anschließend mit Na₂SO₄ getrocknet, abfiltriert und am Rotationsverdampfer eingeengt. Das Amid 251c wurde durch Aufreinigung mittels Säulenchromatographie (n-Pentan/EtOAc = 2,5:1) mit 50% (5,6 mg, 0,025 mmol) Ausbeute als gelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.48 – 7.44 (m, 4H), 7.41 – 7.34 (m, 12H), 7.35 – 7.27 (m, 2H), 7.18 (m, 2H), 4.77 (s, 2H), 4.52 (s, 2H), 3.04 (s, 3H), 2.87 (s, 3H).
13C NMR (151 MHz, Chloroform-d): δ = 172.3, 171.6, 137.0, 136.6, 136.2, 136.2, 129.6, 128.8, 128.8, 128.5, 128.4, 128.2, 127.6, 127.5, 127.0, 126.8, 126.7, 55.2, 50.8, 37.0, 33.2.

MS (EI): m/z (%) = 281.1 (16), 254.2 (12), 227.2 (18), 226.2 (100), 225.2 (16), 105.1 (11).

IR (KBr): ν = 2924, 2334, 2100, 1724, 1624, 1489, 1446, 1399, 1335, 1263, 1210, 1125, 1070, 918 cm⁻¹.

(E)-N-(2-bromo-1-(4-chlorophenyl)vinyl)-1,1,1-trifluoro-N-methylmethanesulfonamide (264)

NaH (60 wt%, 0,45 mmol, 1,5 Äquiv.) wurde portionsweise zu einer Lösung aus Methanol (0,1 mmol, 1 Äquiv.) und DCM (1 ml) gegeben und diese anschließend für 10 min bei Raumtemperatur gerührt. Anschließend wurde Vinyltriflimid 227a (0,1 mmol, 1,0 Äquiv.) zugegeben und für 24 Stunden gerührt. Nach Reaktionskontrolle durch DC wurde die Reaktionsmischung am Rotationsverdampfer eingeengt. Das Sulfonamid 264 wurde nach Aufreinigung durch Säulenchromatographie (Pentan/EtOAc: 100:1) mit 62% (0,06 mmol) als gelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.54 – 7.46 (m, 2H), 7.45 – 7.36 (m, 3H), 5.75 (s, 1H), 5.48 (s, 1H), 3.25 (s, 3H).

13C NMR (151 MHz, Chloroform-d): δ = 145.3, 134.7, 129.5, 128.9, 126.1, 120.2 (q, J = 324.1 Hz), 114.8, 39.2.

MS (EI): m/z (%) = 234.4 (33), 233.4 (28), 221.4 (43), 220.4 (78), 219.4 (45), 196.3 (50), 118.2 (66), 115.2 (63), 103.2 (26).

HRMS-ESI berechnet für C₁₄H₁₀O₃NF₃SNa: 288.0277, gefunden: 288.0278 ([M + Na]+).

IR (KBr): ν = 1388, 1188, 1123, 961, 913, 776, 694 cm⁻¹.

(E)-N-(2-bromo-1-(4-chlorophenyl)vinyl)-1,1,1-trifluoro-N-methylmethanesulfonamid (266)

NaH (60 wt%, 14 mg, 0,45 mmol, 1,5 Äquiv.) wurde portionsweise zu einer Lösung aus Allylalkohol (52,2 mg, 0,9 mmol, 3,0 Äquiv.) gegeben und diese anschließend für 10 min bei Raumtemperatur gerührt. Anschließend wurde Vinyltriflimid 227a (115 mg, 0,3 mmol, 1,0 Äquiv.) zugegeben und für 4 Stunden gerührt. Nach Reaktionskontrolle durch DC wurde die Reaktionsmischung am Rotationsverdampfer eingeengt. Das Sulfonamid 266 wurde nach Aufreinigung durch Säulenchromatographie (Pentan) mit 30% (26,2 mg, 0,09 mmol) als gelbes Öl erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.48 – 7.44 (m, 2H), 7.42 – 7.36 (m, 3H), 5.84 – 5.75 (m, 2H), 5.43 (d, J = 1.4 Hz, 1H), 5.22 – 5.19 (m, 1H), 5.08 (dd, J = 17.0, 1.3 Hz, 1H), 4.12 (d, J = 6.9 Hz, 2H).

13C NMR (151 MHz, Chloroform-d): δ = 142.5, 134.9, 130.9, 129.4, 128.8, 126.3, 121.0, 120.1 (q, J = 322.9 Hz), 117.0, 53.6.

MS (EI): m/z (%) = 291.0 (21), 159.1 (12), 158.0 (100), 156.0 (12), 117.0 (18), 104.0 (48), 102.9 (37), 91 (22), 77.1 (26), 69.1 (13), 55.2 (66).

HRMS-ESI berechnet für C₁₃H₁₀O₃NF₃S: 291.05459, gefunden: 291.053541 ([M + Na]+).

IR (KBr): ν = 3440, 2921, 2852, 1713, 1631, 1578, 1542, 1446, 1390, 1312, 1260, 1222, 1193, 1134, 1071, 932, 905, 807, 774, 705, 660, 522, 490 cm⁻¹.

(Z)-2-((2-bromocyclohexylidene)amino)-2,2-bis((trifluoromethyl)sulfonyl)acetalddehyde (292)

Vinyltriflimid 231i (0,1 mmol, 1 eq) und 10-Methyl-9-mesitylacridinium-BF₄ (0,005 mmol, 5 mol%) wurden in MeCN (1 ml) gelöst. Anschließend wurde das Reaktionsgemisch unter Bestrahlung mit blauem LED-Licht für 24 Stunden bei Raumtemperatur gerührt. Nach Entfernung des Lösungsmittels unter vermindertem Druck, erfolgte eine Aufreinigung des Rückstandes durch HPLC (Pentan/EtOAc: 20:1). Aldehyde 292 wurde als farbloses Öl (17.6 mg, 0,04 mmol, 36%) erhalten.
H NMR (600 MHz, Chloroform-d): δ = 9.98 (s, 1H), 5.95 (dd, J= 3.2, 1.9 Hz, 1H), 3.00 (td, J= 11.6, 2.6 Hz, 1H), 2.10 –2.02 (m, 3H), 1.83 –1.76 (m, 1H), 1.57 (ttt, J= 12.8, 9.1, 3.6 Hz, 1H).

13C NMR (151 MHz, Chloroform-d): δ = 181.3, 168.6, 127.1, 119.2 (q, J= 325.7 Hz), 119.0(q, J= 325.4 Hz), 43.7, 35.3, 28.8, 26.2, 20.1.

MS (EI): m/z (%): 350.0 (31), 348.0 (33), 269.1 (27), 217.1 (13), 201.0 (17), 199.0 (19), 176.1 (14), 136.1 (52), 119.1 (12), 109.2 (12), 108.2 (52), 107.2 (27), 106.2 (32), 92.2 (13), 91.2 (29), 81.2 (54), 80.2 (25), 79.2 (95), 78.2 (15), 72.2 (45), 69.2 (100), 67.3 (13), 66.2 (32), 56.3 (39), 52.6 (16), 51.7 (13).

IR (KBr): ν = 2949, 1696, 1603, 1436, 1209, 1116, 1000, 962, 877, 821, 675 cm⁻¹.

4.5.3 Photoinduzierte Trifluoromethylierung von Vinyltriflimiden

4.5.3.1 Carbotrifluoromethylierung von Vinyltriflimiden x

Allgemeine Arbeitsvorschrift für die Carbotrifluoromethylierung von Vinyltriflimiden (AAV 5)

Das entsprechende Vinyltriflimid (1 Äquival.) und PhN₂BF₄ (0,15 Äquival.) wurden in DCM gelöst und bei Raumtemperatur in blauem LED-Licht gerührt. Nach Reaktionskontrolle (via DC und ¹H-NMR-Spektroskopie) wurde TMSCN (5 Äquival.) zugegeben und für weitere 24 Stunden gerührt. Nach Reaktionskontrolle mittels DC wurde die Reaktion Zugabe gesättigter wässriger NH₄Cl-Lösung beendet. Die wässrige Phase wurde dreimal mit DCM extrahiert und die vereinigte organische Phase danach mit MgSO₄ getrocknet, abfiltriert und am Rotationsverdampfer eingeengt. Das Rohprodukt wurde entweder mittels Säulenchromatographie oder semi-präparativer HPLC aufgereinigt.

1,1,1-trifluoro-N-(3,3,3-trifluoro-1,1-diphenylpropyl)methanesulfonamide (327a)

Vinylltriflimid 227a (38 mg, 0,1 mmol, 1 Äquival.) und PhN₂BF₄ (2,9 mg, 0,015 mmol, 0,15 Äquival.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und ¹H-NMR-Spektroskopie) wurde PhMgBr (0,5 ml, 0,5 mmol, 1 Äquival., 1,0 M in THF) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (3:1 Pentan/DCM + 1 % EtOAc) wurde Sulfonamid 327a mit 69 % (27,4 mg, 0,069 mmol) Ausbeute als gelblicher Feststoff erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 7.40 – 7.32 (m, 6H), 7.30 – 7.24 (m, 4H), 5.97 (s, 1H), 3.61 (q, J = 9.8 Hz, 2H).

¹3C NMR (151 MHz, Chloroform-d): δ = 141.2, 128.6, 128.5, 127.1, 125.2 (q, J = 278.5 Hz), 118.7 (q, J = 321.6 Hz), 65.7, 43.1 (q, J = 26.9 Hz).

¹¹F NMR (564 MHz, Chloroform-d): δ = -58.2 (tr, J = 9.8 Hz, 3F), -77,0 (s, 3F).

IR (KBr): ν = 3300, 3061, 1737, 1594, 1492, 1439, 1365, 1261, 1201, 1121, 1000, 945, 836, 744, 695 cm⁻¹.

1,1,1-trifluoro-N-(4,4,4-trifluoro-2-phenylbutan-2-yl)methanesulfonamide (327b)
Vinyltriflimid 227a (38 mg, 0.1 mmol, 1 Äquiv.) und PhN₂BF₄ (2.9 mg, 0.015 mmol, 0.15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und ¹H-NMR-Spektroskopie) wurde MeMgBr (0.17 ml, 0.5 mmol, 5.0 Äquiv., 3.0 M in Et₂O) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (3:1 Pentan/DCM + 1 % EtOAc) wurde Sulfonamid 327b mit 77 % (25.8 mg, 0.077 mmol) Ausbeute als gelblicher Feststoff erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 7.45 (d, J = 0.8 Hz, 2H), 7.44 – 7.43 (m, 2H), 7.40 – 7.36 (m, 1H), 3.08 (dq, J = 15.6, 10.2 Hz, 1H), 2.91 (dq, J = 15.6, 10.3 Hz, 1H), 1.98 (s, 3H).

¹³C NMR (151 MHz, Chloroform-d): δ = 142.1, 129.1, 128.7, 124.8 (q, J = 278.4 Hz), 119.0 (q, J = 321.0 Hz), 61.6, 45.3 (q, J = 27.0 Hz), 26.1.

¹⁹F NMR (564 MHz, Chloroform-d): δ = -59.4 (tr; J = 10,3 Hz; 3F), -77.6 (s, 3F).

MS (EI): m/z = 252.0 (17), 188.1 (14), 187.0 (100).

HRMS-ESI berechnet für C₁₀H₁₀O₂NF₅S: 335.04092, gefunden: 335.04084 ([M⁺]).

IR (KBr): ν = 3296, 1600, 1495, 1439, 1367, 1310, 1260, 1194, 1135, 1085, 1049, 989, 936, 849, 763, 697 cm⁻¹.

N-(1-cyano-3,3,3-trifluoro-1-phenylpropyl)-1,1,1-trifluoromethanesulfonamide (328a)

Vinyltriflimid 227a (38 mg, 0.1 mmol, 1 Äquiv.) und PhN₂BF₄ (2.9 mg, 0.015 mmol, 0.15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und ¹H-NMR-Spektroskopie) wurde TMSCN (0.06 ml, 49.6 mg, 0.5 mmol, 5.0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (3:1 Pentan/DCM + 1 % EtOAc) wurde Sulfonamid 328a mit 73 % (25.3 mg, 0.073 mmol) Ausbeute als gelblicher Feststoff erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 7.66 – 7.63 (m, 2H), 7.56 – 7.53 (m, 3H), 3.45 (dq, J = 15.3, 9.0 Hz, 1H), 3.05 (dq, J = 15.4, 9.1 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-d): δ = 134.0, 131.0, 129.9, 125.5, 122.9 (q, J = 278.7 Hz), 118.8 (q, J = 321.1 Hz), 115.3, 57.3, 44.6 (q, J = 29.4 Hz).

¹⁹F NMR (564 MHz, Chloroform-d): δ = -60.6 (tr; J = 9.0 Hz; 3F), -76.7 (s, 3F).

MS (EI): m/z % = 345.8 (52), 263.0 (100), 198.2 (26), 134.2 (22), 104.2 (40), 77.3 (18), 69.3 (15).

HRMS-ESI berechnet für C₁₀H₁₀O₂F₃SNa: 369.01029, gefunden: 369.01004 ([M + Na⁺]).

IR (KBr): ν = 3157, 1473, 1451, 1429, 1380, 1309, 1252, 1201, 1140, 1086, 1050, 963, 926, 869, 834, 758, 699, 671 cm⁻¹.

N-(1-(4-butylphenyl)-1-cyano-3,3,3-trifluoropropyl)-1,1,1-trifluoromethanesulfonamide (328b)

Vinyltriflimid 227b (43.9 mg, 0.1 mmol, 1 Äquiv.) und PhN₂BF₄ (2.9 mg, 0.015 mmol, 0.15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und ¹H-NMR-Spektroskopie) wurde TMSCN (0.06 ml, 49.6 mg, 0.5 mmol, 5.0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (3:1 Pentan/DCM + 1 % EtOAc) wurde Sulfonamid 328b mit 94 % (37.8 mg, 0.094 mmol) Ausbeute als gelblicher Feststoff erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 7.52 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 3.44 (dq, J = 15.1, 8.9 Hz, 1H), 3.03 (dq, J = 15.5, 9.2 Hz, 1H), 2.68 – 2.64 (m, 2H), 1.61 (p, J = 7.9, 7.5 Hz, 2H), 1.35 (h, J = 7.5 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-d): δ = 146.3, 131.0, 129.8, 125.4, 123.0 (q, J = 278.5 Hz), 118.8 (q, J = 320.9 Hz), 115.4, 57.2, 44.5 (q, J = 29.2 Hz), 35.2, 33.2, 22.2, 13.9.

190
MS (EI): \(m/z \) (%) = 403.1 (14), 402.1 (80), 376.1 (54), 375.1 (11), 359.0 (12), 320.1 (16), 319.1 (96), 255.1 (10), 254.1 (49), 253.2 (12), 242.1 (10), 228.1 (12), 212.1 (20), 211.1 (100), 200.1 (24), 199.1 (11), 198.0 (11), 160.1 (24), 143.1 (19), 142.1 (18), 91.2 (26).

HRMS-ESI berechnet für \(C_{12}H_{13}O_{2}N_{2}F_{6}S \): 402.08312, gefunden: 402.08304 ([M]+).

IR (KBr): \(\nu = 3206, 2934, 2867, 1683, 1438, 1379, 1211, 1138, 973, 924, 834 \text{ cm}^{-1} \).

\[\text{N-(1-cyano-3,3,3-trifluoro-1-(p-tolyl)propyl)-1,1,1-trifluoromethanesulfonamide (328c)} \]

\[
\text{Vinyltriflimid 227c (49,7 mg, 0,1 mmol, 1 Äquiv.) und PhNBF}_{3} \text{ (2,9 mg, 0,015 mmol, 0,15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und }^{1} \text{H-NMR-Spektroskopie) wurde TMSN (0,06 ml, 49,6 mg, 0,5 mmol, 5,0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (3:1 Pentan/DCM + 1 % EtOAc) wurde Sulfonamid 328c mit 99 % (35,6 mg, 0,09 mmol) Ausbeute als gelblicher Feststoff erhalten.} \]

\[\text{1H NMR (600 MHz, Chloroform-}d\text{): } \delta = 7.51 \text{ (d, } J = 8,2 \text{ Hz, 2H), 7,32 (d, } J = 7,8 \text{ Hz, 2H), 3,42 (dq, } J = 15,5, 9,0 \text{ Hz, 1H), 3,02 (dq, } J = 15,4, 9,1 \text{ Hz, 1H), 2,41 (s, 3H).} \]

\[\text{13C NMR (151 MHz, Chloroform-}d\text{): } \delta = 141,4, 131,0, 130,4, 125,4, 123,0 (q, } J = 278,7 \text{ Hz), 118,8 (q, } J = 321,1 \text{ Hz), 115,5, 57,2, 44,5 (q, } J = 29,4 \text{ Hz), 21,2.} \]

\[\text{MS (EI): } m/z \text{ (%) = 360,0 (53), 278,1 (13), 277,0 (100), 213,1 (12), 212,1 (57), 186,0 (12), 148,0 (11), 118,1 (32), 91,1 (16).} \]

\[\text{HRMS-ESI berechnet für } C_{12}H_{12}O_{2}N_{2}F_{6}SNa: 383,02594, gefunden: 383,02496 ([M + Na]+).} \]

IR (KBr): \(\nu = 3170, 1739, 1458, 1377, 1210, 1140, 1043, 962, 926, 869, 807, 727 \text{ cm}^{-1} \).

\[\text{N-(1-cyano-3,3,3-trifluoro-1-(thiophen-3-yl)propyl)-1,1,1-trifluoromethanesulfonamide (328d)} \]

\[
\text{Vinyltriflimid 227d (38,9 mg, 0,1 mmol, 1 Äquiv.) und PhNBF}_{3} \text{ (2,9 mg, 0,015 mmol, 0,15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und }^{1} \text{H-NMR-Spektroskopie) wurde TMSN (0,06 ml, 49,6 mg, 0,5 mmol, 5,0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (3:1 Pentan/DCM + 1 % EtOAc) wurde Sulfonamid 328d mit 77 % (27,1 mg, 0,077 mmol) Ausbeute als gelblicher Feststoff erhalten.} \]

\[\text{1H NMR (600 MHz, DMSO-}d\text{): } \delta = 7,73 (d, } J = 2,7 \text{ Hz, 1H), 7,68 (dd, } J = 4,8, 3,1 \text{ Hz, 2H), 7,29 (d, } J = 4,8 \text{ Hz, 1H), 3,61 – 3,50 (m, 1H), 3,29 (dq, } J = 15,6, 9,7 \text{ Hz, 1H).} \]

\[\text{13C NMR (151 MHz, DMSO-}d\text{): } \delta = 138,9, 129,1, 125,6, 124,9, 124,4 (q, } J = 278,4 \text{ Hz), 119,5 (q, } J = 321,1 \text{ Hz), 116,7, 53,3, 43,6 (q, } J = 28,5 \text{ Hz).} \]

\[\text{MS (EI): } m/z \text{ (%) = 352,9 (10), 351,9 (75), 336,9 (11), 325,9 (27), 270,9 (10), 269,9 (10), 268,9 (100), 241,9 (14), 205,0 (14), 203,9 (94), 177,8 (19), 139,9 (28), 134,8 (22), 111,0 (13), 109,9 (59), 82,9 (17), 69,1 (29).} \]

\[\text{HRMS-ESI berechnet für } C_{12}H_{12}O_{2}N_{2}F_{6}S: 351,97694, gefunden: 351,97524 ([M + Na]+).} \]

IR (KBr): \(\nu = 3135, 1672, 1379, 1137, 1056, 948, 850, 876, 688 \text{ cm}^{-1} \).

1,1,1-trifluoro-N-(4,4,4-trifluoro-2-(thiophen-2-yl)butan-2-yl)methanesulfonamide (329)
Vinyltriflimid 227e (38,9 mg, 0.1 mmol, 1 Äquiv.) und PhN$_2$BF$_4$ (2,9 mg, 0,015 mmol, 0,15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und 1H-NMR-Spektroskopie) wurde TMSCN (0,06 ml, 49,6 mg, 0,5 mmol, 5,0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (3:1 Pentan/DCM + 1 % EtOAc) wurde Sulfonamid 329 mit 55 % (18,8 mg, 0,055 mmol) Ausbeute als gelblicher Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d$_2$): δ = 7.34 (dd, J = 5.2, 1.2 Hz, 1H), 7.11 (dd, J = 3.7, 1.2 Hz, 1H), 7.01 (dd, J = 5.1, 3.7 Hz, 1H), 5.34 (s, 1H). 3.19 (dq, J = 15.5, 10.1 Hz, 1H). 2.95 (dq, J = 15.5, 10.2 Hz, 1H). 2.05 (s, 3H).

13C NMR (151 MHz, Chloroform-d$_2$): δ = 146.6, 127.3, 126.1, 125.3, 124.6 (d, J = 278.8 Hz), 118.9 (d, J = 319.4 Hz), 59.4, 46.0 (q, J = 27.8 Hz), 27.3.

IR (KBr): ν = 3190, 2927, 1711, 1429, 1368, 1306, 1260, 1197, 1133, 1072, 1027, 988, 932, 852, 812, 705, 663 cm$^{-1}$.

N-(1-[(1,1'-biphenyl)-4-yl]-1-cyano-3,3,3-trifluoropropyl)-1,1,1-trifluoromethanesulfonamide (328e)

Vinyltriflimid 227f (45,9 mg, 0.1 mmol, 1 Äquiv.) und PhN$_2$BF$_4$ (2,9 mg, 0,015 mmol, 0,15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und 1H-NMR-Spektroskopie) wurde TMSCN (0,06 ml, 49,6 mg, 0,5 mmol, 5,0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (3:1 Pentan/DCM + 1 % EtOAc) wurde Sulfonamid 328e mit 76 % (32,1 mg, 0,076 mmol) Ausbeute als gelblicher Feststoff erhalten.

1H NMR (600 MHz, DMSO-d$_6$): δ = 7.80 (d, J = 8.0 Hz, 2H), 7.73 – 7.69 (m, 4H), 7.48 (t, J = 7.4 Hz, 2H), 7.39 (t, J = 7.5 Hz, 1H). 3.48 – 3.39 (m, 1H). 3.27 – 3.18 (m, 1H).

13C NMR (151 MHz, DMSO-d$_6$): δ = 141.3, 139.4, 129.5, 128.4, 127.6, 127.3, 126.4, 125.5 – 121.7 (m), 56.8, 44.9 (br).

MS (EI): m/z (%) = 423.0 (21), 422.0 (100), 407.0 (14), 396.0 (11), 395.0 (15), 342.0 (16), 339.0 (44), 275.1 (16), 274.0 (85), 262.1 (13), 248.0 (12), 206.1 (39), 205.1 (20), 180.1 (11), 153.1 (11), 152.1 (21). HRMS-ESI berechnet für C$_{32}$H$_{22}$O$_2$N$_2$F$_6$: 697.105128, gefunden: 697.107269 (M$^+$).

IR (KBr): ν = 3165, 2932, 1740, 1375, 1176, 972, 732 cm$^{-1}$.

N-(1-cyano-3,3,3-trifluoro-1-(4-methoxyphenyl)propyl)-1,1,1-trifluoromethanesulfonamide (328f)

Vinyltriflimid 227g (41,3 mg, 0.1 mmol, 1 Äquiv.) und PhN$_2$BF$_4$ (2,9 mg, 0,015 mmol, 0,15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und 1H-NMR-Spektroskopie) wurde TMSCN (0,06 ml, 49,6 mg, 0,5 mmol, 5,0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (3:1 Pentan/DCM + 1 % EtOAc) wurde Sulfonamid 328f mit 83 % (31,2 mg, 0,083 mmol) Ausbeute als gelblicher Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d$_2$): δ = 7.55 (d, J = 9.2 Hz, 2H), 6.99 (d, J = 9.0 Hz, 2H), 3.85 (s, 3H), 3.45 (dq, J = 15.3, 9.1 Hz, 1H), 3.00 (dq, J = 15.4, 9.1 Hz, 1H).
N-{(1-cyano-3,3,3-trifluoro-1-[(3-methoxyphenyl)propyl]-1,1,1-trifluoromethanesulfonamide (328g)

Vinyltriflimid 227h (41,3 mg, 0,1 mmol, 1 Äquiv.) und PhN₂BF₄ (2,9 mg, 0,015 mmol, 0,15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und ¹H-NMR-Spektroskopie) wurde TMSCN (0,06 ml, 49,6 mg, 0,5 mmol, 5,0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (3:1 Pentan/DCM + 1% EtOAc) wurde Sulfonamid 328g mit 65 % (24,5 mg, 0,065 mmol) Ausbeute als gelblicher Feststoff erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 7.44 (t, J = 8.1 Hz, 1H), 7.21 – 7.18 (m, 1H), 7.15 (t, J = 2.2 Hz, 1H), 7.04 – 7.01 (m, 1H), 3.86 (s, 3H), 3.39 (dq, J = 15.4, 9.0 Hz, 1H), 3.02 (dq, J = 15.4, 9.1 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-d): δ = 160.4, 135.6, 131.0, 117.3, 115.8, 111.8, 57.2, 55.6, 44.7 (q, J = 29.3 Hz).

HRMS (EI): m/z (%) = 377.1 (14), 293.1 (37), 266.1 (11), 229.1 (11), 228.0 (62), 216.0 (11), 202.0 (34), 164.0 (18), 161.1 (13), 160.0 (48), 159.0 (33), 133.9 (69), 130.1 (10), 107.0 (15), 103.1 (10), 92.1 (17), 77.1 (23), 69.1 (41), 64.2 (13), 63.0 (14).

IR (KBr): ν = 3175, 2925, 2847, 1598, 1436, 1377, 1201, 1045, 939, 866, 779, 688 cm⁻¹.

N-{(1-(4-chlorophenyl)-1-cyano-3,3,3-trifluoropropyl]-1,1,1-trifluoromethanesulfonamide (328h)

Vinyltriflimid 227j (41,8 mg, 0,1 mmol, 1 Äquiv.) und PhN₂BF₄ (2,9 mg, 0,015 mmol, 0,15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und ¹H-NMR-Spektroskopie) wurde TMSCN (0,06 ml, 49,6 mg, 0,5 mmol, 5,0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (3:1 Pentan/DCM + 1% EtOAc) wurde Sulfonamid 328h mit 97 % (36,9 mg, 0,097 mmol) Ausbeute als gelblicher Feststoff erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 7.58 (d, J = 9.0 Hz, 2H), 7.51 (d, J = 9.0 Hz, 2H), 3.36 (dq, J = 15.3, 8.9 Hz, 1H), 3.00 (dq, J = 15.0, 9.2 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-d): δ = 137.3, 132.7, 130.1, 127.0, 122.8 (q, J = 278.3 Hz), 121.8 – 115.5 (m), 115.0, 56.8, 44.7 (q, J = 29.4 Hz).

MS (EI): m/z (%) = 382.0 (18), 380.0 (52), 299.0 (39), 298.0 (11), 297.0 (100), 234.0 (16), 233.1 (10), 232.0 (47), 220.0 (18), 168.0 (19), 163.0 (11), 140.0 (13), 138.0 (40), 111.0 (14), 69.1 (19).

IR (KBr): ν = 3190, 2922, 1739, 1463, 1377, 1311, 1210, 1134, 1050, 1015, 962, 926, 857, 819, 739, 688 cm⁻¹.

N-{(1-(3-chlorophenyl)-1-cyano-3,3,3-trifluoropropyl]-1,1,1-trifluoromethanesulfonamide (328i)

Vinyltriflimid 227k (41,8 mg, 0,1 mmol, 1 Äquiv.) und PhN₂BF₄ (2,9 mg, 0,015 mmol, 0,15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und ¹H-NMR-Spektroskopie) wurde TMSCN (0,06 ml, 49,6 mg, 0,5 mmol, 5,0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und
Aufreinigung durch Säulen chromatographie (3:1 Pentan/DCM + 1 % EtOAc) wurde Sulfonamid 328i mit 89 % (33,9 mg, 0,089 mmol) Ausbeute als gelblicher Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 7.62 (d, J = 2.2 Hz, 1H), 7.56 – 7.53 (m, 1H), 7.49 (p, J = 7.8 Hz, 2H), 3.34 (dq, J = 15.8, 9.0 Hz, 1H), 3.06 – 2.95 (m, 1H).

13C NMR (151 MHz, Chloroform-d): δ = 136.36, 135.98, 131.15, 131.05, 125.76, 123.69, 122.75 (q, J = 257.5 Hz), 118.77 (q, J = 321.0 Hz), 114.86, 56.72, 44.79 (q, J = 29.5 Hz).

MS (EI): m/z (%): 382.1 (19), 380.1 (53), 354.1 (18), 299.0 (35), 298.1 (11), 297.0 (96), 234.1 (17), 233.1 (15), 232.1 (51), 220.2 (11), 170.1 (15), 168.1 (43), 163.0 (17), 140.1 (32), 139.1 (15), 138.1 (100), 137.1 (16), 111.1 (26), 102.1 (10), 75.2 (20), 69.2 (42).

HRMS-ESI berechnet für C$_7$H$_5$NO$_2$F$_3$: 379.98155, gefunden: 379.98135 ([M]$^+$.).

IR (KBr): ν = 3194, 1583, 1427, 1380, 1312, 1202, 1137, 935, 787, 688 cm$^{-1}$.

N-(1-(2-chlorophenyl)-1-cyano-3,3,3-trifluoropropyl)-1,1,1-trifluoromethanesulfonamide (328j)

1H NMR (600 MHz, Chloroform-d): δ = 7.58 (d, J = 9.0 Hz, 2H), 7.51 (d, J = 9.0 Hz, 2H), 3.36 (dq, J = 15.3, 8.9 Hz, 1H), 3.00 (dq, J = 15.0, 9.2 Hz, 1H).

13C NMR (151 MHz, Chloroform-d): δ = 137.3, 132.7, 130.1, 127.0, 122.8 (q, J = 278.3 Hz), 121.8 – 115.5 (m), 115.0, 56.8, 44.7 (q, J = 29.4 Hz).

MS (EI): m/z (%): 416.9 (10), 390.0 (11), 379.9 (25), 354.0 (10), 317.9 (18), 298.9 (34), 298.0 (11), 296.9 (96), 285.9 (41), 284.9 (12), 283.9 (100), 232.0 (20), 220.0 (22), 206.0 (19), 204.9 (22), 192.9 (14), 184.9 (11), 176.0 (11), 162.9 (13), 153.0 (12), 142.9 (11), 141.0 (10), 140.0 (24), 139.0 (27), 138.0 (77), 136.9 (30), 127.0 (24), 125.0 (69), 115.9 (29), 113.0 (15), 110.0 (43), 102.0 (25), 89.0 (29), 77.1 (13), 76.2 (11), 75.0 (48), 69.1 (96), 51.2 (18).

IR (KBr): ν = 3125, 1436, 1381, 1212, 1133, 1046, 960, 911, 759 cm$^{-1}$.

N-(1-cyano-3,3,3-trifluoro-1-(4-fluorophenyl)propyl)-1,1,1-trifluoromethanesulfonamide (328k)

1H NMR (600 MHz, Chloroform-d): δ = 7.65 (d, J = 8.5, 5.0 Hz, 2H), 7.23 (t, J = 8.6 Hz, 2H), 3.41 (dq, J = 15.0, 8.9 Hz, 1H), 3.06 – 2.95 (m, 1H).

MS (EI): m/z (%): 364.0 (34), 338.0 (13), 282.0 (12), 281.0 (100), 217.1 (12), 216.1 (47), 152.1 (19), 147.1 (12), 122.1 (38), 121.1 (11).

HRMS-ESI berechnet für C$_7$H$_5$NO$_2$F$_3$: 364.0110, gefunden: 364.01038 ([M]$^+$).

IR (KBr): ν = 3145, 2928, 2317, 1741, 1472, 1378, 1209, 938, 848 cm$^{-1}$.

194
N-(1-cyano-3,3,3-trifluoro-1-(4-(trifluoromethyl)phenyl)propyl)-1,1,1-trifluoromethanesulfonamide (328I)

Vinyltriflimid **227n** (45,1 mg, 0.1 mmol, 1 Äquiv.) und PhN₂BF₄ (2,9 mg, 0,015 mmol, 0,15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und ¹H-NMR-Spektroskopie) wurde TMS CN (0,06 ml, 49,6 mg, 0.5 mmol, 5.0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (3:1 Pentan/DCM + 1 % EtoAc) wurde Sulfonamid **328I** mit 90 % (37,3 mg, 0,09 mmol) Ausbeute als gelblicher Feststoff erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 7.90 (d, J = 8.5 Hz, 2H), 7.86 (d, J = 8.4 Hz, 2H), 3.52 – 3.39 (m, 1H), 3.32 – 3.21 (m, 1H).

¹³C NMR (151 MHz, Chloroform-d): δ = 144.07 – 143.61 (m), 130.43 – 129.61 (m), 126.99, 126.43, 127.45 – 121.49 (m), 123.35 – 116.62 (m), 117.24 – 116.91 (m), 56.75, 45.16 – 44.20 (m).

MS (EI): m/z (%) = 364.0 (34), 338.0 (13), 282.0 (12), 281.0 (100), 217.1 (12), 216.1 (47), 152.1 (19), 147.1 (12), 122.1 (38), 121.1 (11).

HRMS-ESI berechnet für C₁₃H₁₇F₃N₂OS: 414.00791, gefunden: 414.00901 ([M⁺]).

IR (KBr): ν = 3192, 1698, 1381, 1324, 1181, 1131, 968, 926, 853, 736 cm⁻¹.

N-(1-cyano-3,3,3-trifluoro-1-(4-(trifluoromethyl)phenyl)propyl)-1,1,1-trifluoromethanesulfonamide (328m)

Vinyltriflimid **227o** (41,9 mg, 0.1 mmol, 1 Äquiv.) und PhN₂BF₄ (2,9 mg, 0,015 mmol, 0,15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und ¹H-NMR-Spektroskopie) wurde TMS CN (0,06 ml, 49,6 mg, 0.5 mmol, 5.0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (3:1 Pentan/DCM + 1 % EtoAc) wurde Sulfonamid **328m** mit 87 % (42,0 mg, 0,087 mmol) Ausbeute als gelblicher Feststoff erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 8.11 (s, 2H), 8.04 (s, 1H), 3.36 – 3.25 (m, 1H), 3.04 (dt, J = 15.4, 9.0 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-d): δ = 137.9, 133.4 (q, J = 34.4 Hz), 126.9, 126.1, 126.0, 125.1, 124.76, 123.6, 123.3, 121.7, 121.5, 119.7 (d, J = 12.8 Hz), 117.7, 114.3, 56.4, 45.0 (q, J = 29.9 Hz), 29.7.

MS (EI): m/z (%) = 481.9 (10), 463.0 (21), 398.9 (66), 335.0 (15), 334.0 (38), 269.9 (59), 265.0 (10), 247.0 (12), 241.0 (29), 240.0 (100), 238.9 (10), 212.9 (25), 193.7 (12), 162.9 (10), 69.1 (49).

HRMS-ESI berechnet für C₁₃H₁₇F₃N₂S: 480.98856, gefunden: 480.98889 ([M - H]).

IR (KBr): ν = 1453, 1371, 1278, 1133, 911, 846, 684 cm⁻¹.

N-(1-4-bromophenyl)-1-cyano-3,3,3-trifluoropropyl)-1,1,1-trifluoromethanesulfonamide (328n)

Vinyltriflimid **227p** (46,2 mg, 0.1 mmol, 1 Äquiv.) und PhN₂BF₄ (2,9 mg, 0,015 mmol, 0,15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und ¹H-NMR-Spektroskopie) wurde TMS CN (0,06 ml, 49,6 mg, 0.5 mmol, 5.0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulen chromatographie (3:1 Pentan/DCM + 1 % EtoAc) wurde Sulfonamid **328n** mit 74 % (31,5 mg, 0,074 mmol) Ausbeute als gelblicher Feststoff erhalten.
1H NMR (600 MHz, Chloroform-d): δ = 7.67 (d, J = 9.0 Hz, 2H), 7.51 (d, J = 8.3 Hz, 2H), 3.39 – 3.31 (m, 1H), 3.00 (dq, J = 15.4, 9.1 Hz, 1H).

13C NMR (151 MHz, Chloroform-d): δ = 133.30, 133.03, 127.14, 125.46, 122.82 (q, J = 278.5 Hz), 119.90 – 117.49 (m), 114.95, 56.85, 44.60 (q, J = 29.3 Hz).

MS (El): m/z (%) = 425.9 (60), 424.0 (64), 349.0 (12), 343.0 (98), 342.0 (12), 340.9 (100), 279.9 (10), 278.0 (47), 277.0 (10), 276.0 (47), 265.9 (13), 263.9 (13), 214.0 (18), 212.0 (19), 209.0 (11), 206.9 (13), 184.0 (39), 182.9 (11), 182.0 (38), 156.9 (11), 154.9 (19).

HRMS-ESI berechnet für C_{11}H_{19}O_{2}N_{2}BrF_{3}SNa: 446.92080, gefunden: 446.91956 ([M + Na]+)

IR (KBr): ν = 3181, 1739, 1378, 1202, 1137, 920, 825, 733 cm⁻¹.

N-(1-cyano-3,3,3-trifluoro-1-(4-nitrophenyl)propyl)-1,1,1-trifluoromethanesulfonamide (328o)

Vinyltriflimid 227q (42.8 mg, 0.1 mmol, 1 Äquiv.) und PhN₂BF₄ (2.9 mg, 0.015 mmol, 0.15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und 1H-NMR-Spektroskopie) wurde TMSCN (0.06 ml, 49.6 mg, 0.5 mmol, 5.0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (3:1 Pentan/DCM + 1 % EtOAc) wurde Sulfonamid 328o mit 61 % (23.9 mg, 0.061 mmol) Ausbeute als gelblicher Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 8.44 – 8.32 (m, 2H), 7.97 – 7.76 (m, 2H), 3.32 (dq, J = 15.7, 8.8 Hz, 1H), 3.04 (dq, J = 15.6, 8.9 Hz, 1H).

13C NMR (151 MHz, Chloroform-d): δ = 149.12, 141.04, 126.94, 124.86, 70.73, 56.67, 44.86 (q, J = 29.7 Hz).

MS (El): m/z (%) = 392.0 (13), 391.0 (28), 309.0 (12), 307.9 (100), 243.0 (24), 231.0 (10), 196.0 (12), 185.0 (18), 175.9 (17), 149.0 (79), 103.1 (11), 102.0 (12), 76.1 (20), 75.1 (10), 69.1 (45), 50.2 (11).

HRMS-ESI berechnet für C_{11}H_{19}O_{2}ClF_{3}SNa: 391.00560, gefunden: 391.00455 ([M + Na]+)

IR (KBr): ν = 3188, 1609, 1528, 1353, 1199, 1136, 971, 924, 854, 695 cm⁻¹.

Ethyl 4-(1-cyano-3,3,3-trifluoro-1-((trifluoromethyl)sulfonamido)propyl)benzoat (328p)

Vinyltriflimid 227r (45.5 mg, 0.1 mmol, 1 Äquiv.) und PhN₂BF₄ (2.9 mg, 0.015 mmol, 0.15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und 1H-NMR-Spektroskopie) wurde TMSCN (0.06 ml, 49.6 mg, 0.5 mmol, 5.0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (3:1 Pentan/DCM + 1 % EtOAc) wurde Sulfonamid 328p mit 99 % (41.4 mg, 0.099 mmol) Ausbeute als gelblicher Feststoff erhalten.

1H NMR (600 MHz, Chloroform-d): δ = 8.13 – 8.07 (m, 2H), 7.73 – 7.69 (m, 2H), 4.39 (q, J = 7.1 Hz, 2H), 3.39 (dq, J = 15.3, 8.9 Hz, 1H), 3.03 (dq, J = 15.3, 9.0 Hz, 1H), 1.41 (t, J = 7.1 Hz, 3H).

13C NMR (151 MHz, Chloroform-d): δ = 165.6, 139.0, 132.5, 130.8, 125.7, 122.8 (d, J = 278.7 Hz), 118.8 (d, J = 321.0 Hz), 115.0, 61.9, 57.0 (d, J = 2.6 Hz), 44.6 (q, J = 29.6 Hz), 29.7, 14.2.

MS (El): m/z (%) = 419.0 (44), 418.0 (28), 392.0 (10), 390.0 (32), 374.0 (15), 373.0 (100), 334.9 (14), 306.9 (65), 270.0 (26), 269.0 (10), 258.0 (10), 242.0 (10), 225.0 (31), 212.0 (14), 177.0 (10), 176.0 (18), 157.0 (25), 156.0 (20), 149.0 (12), 147.9 (16), 69.1 (13).

HRMS-ESI berechnet für C_{11}H_{12}O_{2}F_{3}S: 418.04165, gefunden: 418.04246 ([M]+)

IR (KBr): ν = 3170, 1700, 1381, 1290, 1198, 1132, 1019, 974, 924, 859, 771, 703 cm⁻¹.

N-(1-cyano-1-(cyclohex-1-en-1-yl)-3,3,3-trifluoropropyl)-1,1,1-trifluoromethanesulfonamide (328q)
Vinyltriflimid 232a (38,7 mg, 0.1 mmol, 1 Äquiv.) und PhN₂BF₄ (2,9 mg, 0,015 mmol, 0,15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und ¹H-NMR-Spektroskopie) wurde TMSCN (0,06 ml, 49,6 mg, 0,5 mmol, 5,0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (3:1 Pentan/DCM + 1 % EtOAc) wurde Sulfonamid 328q mit 73 % (25,6 mg, 0,073 mmol) Ausbeute als gelblicher Feststoff erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 6.47 – 6.44 (m, 1H), 3.17 (dq, J = 15.5, 9.0, 8.2 Hz, 1H), 2.87 (dq, J = 15.4, 9.1 Hz, 1H), 2.21 (dq, J = 6.4, 3.4 Hz, 2H), 2.11 – 2.07 (m, 2H), 1.79 – 1.61 (m, 4H).

¹³C NMR (151 MHz, Chloroform-d): δ = 131.9, 129.8, 124.2, 118.8 (q, J = 321.3 Hz), 115.1, 58.8, 40.3 (q, J = 29.3 Hz), 25.3, 23.3, 22.1, 21.1.

MS (EI): m/z (%) = 201.3 (18), 190.2 (16), 132.1 (14), 118.2 (105.2), 91.2 (11), 81.2 (84), 80.2 (16), 79.2 (59), 77.2 (24), 69.2 (100), 65.2 (11), 53.3 (30), 51.3 (10)

HRMS-ESI berechnet für C₁₁H₁₂O₂N₂F₆S: 350.05182, gefunden: 350.05169 ([M⁺]).

IR (KBr): ν = 3159, 2941, 1739 1467, 1376, 1308, 1203, 1153, 957, 866 cm⁻¹.

N-(1-cyano-1-cyclopropyl-3,3,3-trifluoropropyl)-1,1,1-trifluoromethanesulfonamide (328r)

Vinyltriflimid 232b (34,7 mg, 0,1 mmol, 1 Äquiv.) und PhN₂BF₄ (2,9 mg, 0,015 mmol, 0,15 Äquiv.) wurden in DCM (1 ml) gelöst und 24 h bei Raumtemperatur unter Bestrahlung mit einer blauen LED gerührt. Nach Reaktionskontrolle (via DC und ¹H-NMR-Spektroskopie) wurde TMSCN (0,06 ml, 49,6 mg, 0,5 mmol, 5,0 Äquiv.) hinzugegeben und die Reaktionslösung für weitere 24 h gerührt. Nach Aufarbeitung und Aufreinigung durch Säulenchromatographie (3:1 Pentan/DCM + 1 % EtOAc) wurde Sulfonamid 328r mit 60 % (18,6 mg, 0,06 mmol) Ausbeute als gelblicher Feststoff erhalten.

¹H NMR (600 MHz, Chloroform-d): δ = 5.72 (s, 1H), 3.27 – 3.08 (m, 1H), 2.99 (dq, J = 15.5, 9.6 Hz, 1H), 1.81 (s, 1H), 1.52 – 1.32 (m, 1H), 1.03 – 0.81 (m, 3H).

MS (EI): m/z (%) = 77.1 (11), 69.0 (100), 68.1 (11), 53.1 (15)

IR (KBr): ν = 3204, 1435, 1384, 1208, 1131, 1047, 923, 844, 756, 680 cm⁻¹.
4.6 Datensätze zu DFT-Rechnungen

4.6.1 Berechnete stationäre Punkte in Kapitel 2.5

Struktur: Bromovinyltrilimide

M06-2X/6-31+G(d,p)

HF = -4706.8621361 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.173254 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X (Ångström)</th>
<th>Y (Ångström)</th>
<th>Z (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>-3.735541</td>
<td>-1.303146</td>
<td>2.370609</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-2.69151</td>
<td>-0.809215</td>
<td>2.944886</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-1.636787</td>
<td>-0.171912</td>
<td>2.351932</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-1.640952</td>
<td>-0.420636</td>
<td>0.775569</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-2.693569</td>
<td>-1.145763</td>
<td>0.20955</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-3.748677</td>
<td>-1.580704</td>
<td>1.004745</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-4.579385</td>
<td>-1.643573</td>
<td>2.989839</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-2.681355</td>
<td>-0.408958</td>
<td>4.011156</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-0.797272</td>
<td>0.34419</td>
<td>2.605733</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-2.673875</td>
<td>-1.386071</td>
<td>-0.84862</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-4.560205</td>
<td>-2.14546</td>
<td>0.557676</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.512868</td>
<td>0.026182</td>
<td>-0.070721</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>-0.567741</td>
<td>0.620289</td>
<td>-1.269802</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0.325522</td>
<td>0.847707</td>
<td>-1.839404</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0.806235</td>
<td>-0.177255</td>
<td>0.496875</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>1.933128</td>
<td>1.085058</td>
<td>0.438034</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>1.37434</td>
<td>-1.787405</td>
<td>0.557332</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>1.249409</td>
<td>-2.290628</td>
<td>-1.241227</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0.916989</td>
<td>2.611422</td>
<td>0.710235</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>1.717261</td>
<td>3.487584</td>
<td>1.294743</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>0.49529</td>
<td>3.106819</td>
<td>-0.43933</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>-0.110861</td>
<td>2.35528</td>
<td>1.504412</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>-0.010823</td>
<td>-2.535689</td>
<td>-1.569004</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>9</td>
<td>1.731387</td>
<td>-1.323201</td>
<td>-2.08615</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>1.970467</td>
<td>-3.388168</td>
<td>-1.398494</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>2.809785</td>
<td>0.966372</td>
<td>1.616145</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>2.541683</td>
<td>1.210274</td>
<td>-0.892075</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>2.777231</td>
<td>-1.741997</td>
<td>0.873839</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>8</td>
<td>0.407047</td>
<td>-2.585756</td>
<td>1.260655</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>35</td>
<td>-2.128329</td>
<td>1.268926</td>
<td>-2.049048</td>
<td></td>
</tr>
</tbody>
</table>
Struktur: PhNTf₂CCHPr

M06-2X/6-31+G(d,p)
HF = -2253.56288608 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.268080 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0.521879</td>
<td>0.804733</td>
<td>-0.284959</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1.694645</td>
<td>0.935224</td>
<td>-0.913542</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2.13313</td>
<td>0.032763</td>
<td>-1.34052</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>-0.034784</td>
<td>-0.537024</td>
<td>-0.164782</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>0.489246</td>
<td>-1.563038</td>
<td>1.075579</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>-1.284788</td>
<td>-0.978235</td>
<td>-1.237926</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>-2.845636</td>
<td>-0.53414</td>
<td>-0.289221</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>1.880809</td>
<td>-2.510645</td>
<td>0.269667</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>-1.205584</td>
<td>-0.052284</td>
<td>-2.340366</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>-1.288654</td>
<td>-2.409148</td>
<td>-1.390516</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>1.106619</td>
<td>-0.735765</td>
<td>2.083777</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>-0.539146</td>
<td>-2.528509</td>
<td>1.360612</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>2.970887</td>
<td>-1.754697</td>
<td>0.218812</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>2.120871</td>
<td>-3.581253</td>
<td>1.009068</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>1.54025</td>
<td>-2.874748</td>
<td>-0.955916</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>-2.711463</td>
<td>-0.826767</td>
<td>0.984198</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>-3.10366</td>
<td>0.754402</td>
<td>-0.497444</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-3.834076</td>
<td>-1.245511</td>
<td>-0.82014</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>-0.325191</td>
<td>1.892778</td>
<td>0.26255</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>-0.817285</td>
<td>1.840526</td>
<td>1.571837</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>-0.686483</td>
<td>2.960787</td>
<td>-0.566133</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>-1.645908</td>
<td>2.852564</td>
<td>2.04686</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>-0.536972</td>
<td>1.016696</td>
<td>2.221142</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>-1.515406</td>
<td>3.972065</td>
<td>-0.08775</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>-0.338141</td>
<td>2.974153</td>
<td>-1.595306</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>-1.996704</td>
<td>3.918914</td>
<td>1.219206</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>-2.018384</td>
<td>2.807634</td>
<td>3.065254</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>-1.797906</td>
<td>4.792108</td>
<td>-0.74012</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>-2.649507</td>
<td>4.702708</td>
<td>1.590366</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>2.513625</td>
<td>2.180264</td>
<td>-1.012202</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>2.604952</td>
<td>2.471997</td>
<td>-2.067683</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>2.021453</td>
<td>3.005558</td>
<td>-0.483391</td>
</tr>
<tr>
<td>33</td>
<td>6</td>
<td>3.917056</td>
<td>1.954868</td>
<td>-0.430313</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>3.819666</td>
<td>1.647579</td>
<td>0.617554</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>4.398297</td>
<td>1.121255</td>
<td>-0.956858</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>4.78531</td>
<td>3.205863</td>
<td>-0.533606</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>4.32768</td>
<td>4.043576</td>
<td>0.002229</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>5.776992</td>
<td>3.039233</td>
<td>-0.106564</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>4.919474</td>
<td>3.907552</td>
<td>-1.57808</td>
</tr>
</tbody>
</table>
Struktur: Diphenylvinyltriflimide

![M06-2X/6-31+G(d,p)
HF = -2366.63292866 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.264245 (Hartree/Teilchen)
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td></td>
<td>-1.74747</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td></td>
<td>-0.79789</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td></td>
<td>-0.285527</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td></td>
<td>-0.751003</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
<td>-1.690264</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
<td>-2.189997</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td></td>
<td>-2.134983</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
<td>-0.424456</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td></td>
<td>0.481856</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td></td>
<td>-2.023248</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td></td>
<td>-2.915245</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td></td>
<td>-0.227412</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td></td>
<td>-0.903735</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td></td>
<td>-0.324042</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td></td>
<td>1.192331</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td></td>
<td>1.748553</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td></td>
<td>2.29647</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td></td>
<td>1.782069</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td></td>
<td>0.373859</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td></td>
<td>0.950128</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td></td>
<td>-0.611572</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td></td>
<td>-0.094929</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td></td>
<td>0.647484</td>
</tr>
<tr>
<td>24</td>
<td>9</td>
<td></td>
<td>1.635048</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td></td>
<td>2.745721</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td></td>
<td>2.912368</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td></td>
<td>1.704237</td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td></td>
<td>3.605849</td>
</tr>
<tr>
<td>29</td>
<td>8</td>
<td></td>
<td>1.990418</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td></td>
<td>2.363853</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td></td>
<td>2.895889</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td></td>
<td>-3.238801</td>
</tr>
<tr>
<td>33</td>
<td>6</td>
<td></td>
<td>-4.271494</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td></td>
<td>-2.221477</td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td></td>
<td>-4.611001</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td></td>
<td>2.836552</td>
</tr>
<tr>
<td>37</td>
<td>6</td>
<td></td>
<td>-5.132316</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td></td>
<td>-4.669187</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td></td>
<td>-5.276941</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td></td>
<td>-6.204627</td>
</tr>
</tbody>
</table>
Struktur: Vinyltriflimide

M06-2X/6-31+G(d,p)

HF = -2135.67028499 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.182518 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>-4.370535</td>
<td>-1.299639</td>
<td>0.673516</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-3.094306</td>
<td>-1.229668</td>
<td>1.223921</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-1.97086</td>
<td>-1.141387</td>
<td>0.394259</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-2.146292</td>
<td>-1.099689</td>
<td>-0.99336</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-3.423214</td>
<td>-1.169804</td>
<td>-1.541021</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-4.537834</td>
<td>-1.27164</td>
<td>-0.710028</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-5.235553</td>
<td>-1.356892</td>
<td>1.326408</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-2.966402</td>
<td>-1.208829</td>
<td>2.302165</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1.287734</td>
<td>-1.026009</td>
<td>-1.654738</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-3.546556</td>
<td>-1.144564</td>
<td>-2.618222</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-5.537341</td>
<td>-1.319649</td>
<td>-1.138737</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.619302</td>
<td>-1.073024</td>
<td>0.993754</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0.32957</td>
<td>-0.20698</td>
<td>0.30974</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>0.419588</td>
<td>1.422933</td>
<td>0.739512</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>1.401395</td>
<td>-0.859226</td>
<td>-0.844637</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>3.071843</td>
<td>-0.802938</td>
<td>0.030903</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>-0.84064</td>
<td>2.240493</td>
<td>-0.364938</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-2.059601</td>
<td>1.920931</td>
<td>0.038007</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>-0.665972</td>
<td>3.55034</td>
<td>-0.263548</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>-0.665395</td>
<td>1.858517</td>
<td>-1.612927</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>2.894386</td>
<td>-0.687109</td>
<td>1.342271</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>3.790223</td>
<td>0.200126</td>
<td>-0.420845</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>3.685163</td>
<td>-1.947845</td>
<td>-0.22835</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>-0.217197</td>
<td>-1.704131</td>
<td>2.095922</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0.780501</td>
<td>-1.55812</td>
<td>2.493168</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>-0.884068</td>
<td>-2.388345</td>
<td>2.608544</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>1.716803</td>
<td>1.889714</td>
<td>0.312164</td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>-0.084807</td>
<td>1.558893</td>
<td>2.081619</td>
</tr>
<tr>
<td>29</td>
<td>8</td>
<td>1.489385</td>
<td>0.015709</td>
<td>-1.984004</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>1.042573</td>
<td>-2.25296</td>
<td>-0.944013</td>
</tr>
</tbody>
</table>
4.6.2 Berechnete stationäre Punkte in Kapitel 2.6.1

Struktur: PhNTf2CCHHex_E

M06-2X/6-31+G(d,p)

\[HF = -2371.44964725 \text{ Hartree/Teilchen} \]

imaginäre Frequenzen: keine gefunden

Nullpunktkorrektur = 0.353902 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>-0.041687</td>
<td>0.517908</td>
<td>-0.213727</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1.079185</td>
<td>0.140396</td>
<td>-0.837707</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.092778</td>
<td>-0.854525</td>
<td>-1.281842</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>-1.117553</td>
<td>-0.461292</td>
<td>-0.11897</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>-1.093679</td>
<td>-1.627369</td>
<td>1.107235</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>-2.37211</td>
<td>-0.38282</td>
<td>-1.272243</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>3.665888</td>
<td>0.560442</td>
<td>-0.412543</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>-0.125078</td>
<td>-0.023916</td>
<td>0.333368</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>-1.867707</td>
<td>0.420044</td>
<td>-2.358617</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>-2.941441</td>
<td>-1.693294</td>
<td>-1.443371</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>-0.263226</td>
<td>-1.115314</td>
<td>2.170246</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>-2.428501</td>
<td>-2.124031</td>
<td>1.310902</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>1.173502</td>
<td>-2.754001</td>
<td>0.38119</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>-0.37232</td>
<td>-4.1229</td>
<td>1.027189</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>-0.493423</td>
<td>-3.193591</td>
<td>-0.927087</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>-3.772209</td>
<td>0.30829</td>
<td>0.857896</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>-3.34002</td>
<td>1.938408</td>
<td>-0.498241</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-4.817575</td>
<td>0.452219</td>
<td>-1.034447</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>-0.353386</td>
<td>1.860228</td>
<td>0.33366</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>-0.883918</td>
<td>2.019535</td>
<td>1.619484</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>-0.170874</td>
<td>2.98462</td>
<td>-0.478449</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>-1.208174</td>
<td>3.289106</td>
<td>2.08801</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>-1.027409</td>
<td>1.151783</td>
<td>2.25618</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>-0.497371</td>
<td>4.253474</td>
<td>-0.007204</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0.198241</td>
<td>2.851295</td>
<td>-1.491655</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>-1.01608</td>
<td>4.407356</td>
<td>1.277363</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>-1.613494</td>
<td>3.404796</td>
<td>3.086127</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>-0.361158</td>
<td>5.118449</td>
<td>-0.648574</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>-1.277492</td>
<td>5.395278</td>
<td>1.643336</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>2.353169</td>
<td>0.91952</td>
<td>-0.932035</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>2.512895</td>
<td>1.22489</td>
<td>-1.975854</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>2.290203</td>
<td>1.833895</td>
<td>-0.334446</td>
</tr>
<tr>
<td>33</td>
<td>6</td>
<td>3.544472</td>
<td>0.06736</td>
<td>-0.473586</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>3.382303</td>
<td>-0.244695</td>
<td>0.566266</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>3.583241</td>
<td>-0.852852</td>
<td>-1.072577</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>4.876242</td>
<td>0.804669</td>
<td>-0.590436</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>4.84244</td>
<td>1.718151</td>
<td>0.019048</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>5.022075</td>
<td>1.13074</td>
<td>-1.629937</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>6.06542</td>
<td>-0.050319</td>
<td>-0.15722</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>6.098273</td>
<td>-0.962516</td>
<td>-0.769549</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>5.91597</td>
<td>-0.381661</td>
<td>0.87998</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>7.40424</td>
<td>0.677027</td>
<td>-0.266182</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>7.549397</td>
<td>1.012458</td>
<td>-1.301289</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>7.373416</td>
<td>1.584195</td>
<td>0.350822</td>
</tr>
</tbody>
</table>
Struktur: PhNTf2CCHHex_Z

M06-2X/6-31+G(d,p)
HF = -2371.45061961 Hartree/Teilchen
imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.354536 Hartree/Teilchen
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>8.58173</td>
<td>-0.196573</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>8.646761</td>
<td>-1.094581</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>9.531562</td>
<td>0.33877</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>4.68704</td>
<td>-0.521854</td>
</tr>
</tbody>
</table>

203
4.6.3 Berechnete stationäre Punkte in Kapitel 2.7

Struktur: Alkin – Bistriflimidanion – 2 Li⁺ - 3 H₂O

M06-2X/6-31+G(d,p)
HF = -2379.135384 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.24698 Hartree/Teilchen
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>8</td>
<td>-0.999443</td>
<td>1.611508</td>
<td>-1.798146</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>0</td>
<td>0.061856</td>
<td>1.513771</td>
<td>-0.831217</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>-1</td>
<td>-0.084802</td>
<td>0.148159</td>
<td>0.005566</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1</td>
<td>1.446645</td>
<td>1.736512</td>
<td>-1.259794</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>2</td>
<td>1.040457</td>
<td>-0.625052</td>
<td>0.77581</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>3</td>
<td>2.403056</td>
<td>-0.060406</td>
<td>0.705736</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>4</td>
<td>0.973848</td>
<td>-2.070052</td>
<td>0.47492</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>5</td>
<td>0.548743</td>
<td>-0.53432</td>
<td>2.557726</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>6</td>
<td>1.496801</td>
<td>-1.113482</td>
<td>3.27689</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>7</td>
<td>0.428692</td>
<td>0.735262</td>
<td>2.900624</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>8</td>
<td>-0.598084</td>
<td>-1.164573</td>
<td>2.722249</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>9</td>
<td>-0.246929</td>
<td>2.844533</td>
<td>0.422159</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>10</td>
<td>0.767505</td>
<td>2.875312</td>
<td>1.278703</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>11</td>
<td>-1.368885</td>
<td>2.578534</td>
<td>1.06655</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>12</td>
<td>-0.342232</td>
<td>4.003304</td>
<td>-0.203883</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>13</td>
<td>1.232442</td>
<td>-1.039033</td>
<td>-2.29351</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>14</td>
<td>2.049774</td>
<td>-2.744365</td>
<td>-0.877403</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>15</td>
<td>2.896822</td>
<td>0.597569</td>
<td>-0.992049</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>16</td>
<td>2.188884</td>
<td>-1.149448</td>
<td>-2.076434</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>17</td>
<td>2.654058</td>
<td>-1.110513</td>
<td>-2.924746</td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>18</td>
<td>4.211483</td>
<td>1.531896</td>
<td>-1.950211</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>19</td>
<td>5.164216</td>
<td>1.639013</td>
<td>-1.850826</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>20</td>
<td>3.864134</td>
<td>2.366602</td>
<td>-2.281448</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>21</td>
<td>-0.56101</td>
<td>-1.941223</td>
<td>-2.954253</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>22</td>
<td>-0.020552</td>
<td>-2.320512</td>
<td>-3.795612</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>23</td>
<td>-1.427591</td>
<td>-1.63769</td>
<td>-2.156773</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>24</td>
<td>-2.500557</td>
<td>-1.297039</td>
<td>-1.267312</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>25</td>
<td>-2.74527</td>
<td>-2.066276</td>
<td>-0.120598</td>
</tr>
<tr>
<td>29</td>
<td>6</td>
<td>26</td>
<td>-3.35688</td>
<td>-0.239901</td>
<td>-1.59688</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>27</td>
<td>-3.844542</td>
<td>-1.780035</td>
<td>0.681334</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>28</td>
<td>-2.077812</td>
<td>-2.885867</td>
<td>0.127127</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>29</td>
<td>-4.451024</td>
<td>0.044782</td>
<td>-0.785875</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>30</td>
<td>-3.157341</td>
<td>0.355528</td>
<td>-2.483088</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>31</td>
<td>-4.699038</td>
<td>-0.727768</td>
<td>0.348433</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>32</td>
<td>-4.040017</td>
<td>-2.381025</td>
<td>1.563306</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>33</td>
<td>-5.115372</td>
<td>0.862339</td>
<td>-1.044866</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>34</td>
<td>-5.56004</td>
<td>-0.512004</td>
<td>0.972882</td>
</tr>
</tbody>
</table>
B

M06-2X/6-31+G(d,p)

HF = -2379.115003 Hartree/Teilchen

Imaginäre Frequenzen: eine (-642.43 cm⁻¹)

Nullpunktskorrektur = 0.242598 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>-1.055908</td>
<td>1.593339 -1.76261</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>0.025898</td>
<td>1.51773 -0.80756</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>-0.095777</td>
<td>0.119916 -0.014889</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1.391491</td>
<td>1.821927 -1.25444</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>1.079037</td>
<td>-0.617211 0.742111</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>2.401438</td>
<td>0.018478 0.664987</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>1.052152</td>
<td>-2.061562 0.438517</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0.565782</td>
<td>-0.561402 2.52086</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1.515447</td>
<td>-1.123239 3.251988</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.391827</td>
<td>0.695374 2.88984</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>-0.567417</td>
<td>-1.232587 2.663635</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.34498</td>
<td>2.80893 0.46959</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>0.653944</td>
<td>2.867599 1.340271</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>-1.467024</td>
<td>2.492424 1.099057</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>-0.481735</td>
<td>3.976646 -0.135051</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0.846301</td>
<td>-1.31317 -2.40336</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>2.334657</td>
<td>-2.522843 -0.913174</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>2.791686</td>
<td>0.508087 -1.234021</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>2.223843</td>
<td>-1.111228 -2.078413</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>2.643447</td>
<td>-1.113599 -2.94103</td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>4.136906</td>
<td>1.704965 -1.845748</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>5.095265</td>
<td>1.771477 -1.779542</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>3.790675</td>
<td>2.599972 -1.952067</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>-0.285116</td>
<td>-1.726463 -2.751662</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>-0.278566</td>
<td>-2.312186 -3.69364</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>-1.324369</td>
<td>-1.532212 -2.059815</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>-2.459263</td>
<td>-1.322197 -1.285696</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>-2.710873</td>
<td>-2.166575 -0.176266</td>
</tr>
<tr>
<td>29</td>
<td>6</td>
<td>-3.34231</td>
<td>-0.261873 -1.603391</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>-3.830127</td>
<td>-1.943461 0.60383</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>-2.009685</td>
<td>-2.962356 0.053748</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>-4.465885</td>
<td>-0.062672 -0.819175</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>-3.115313</td>
<td>0.383847 -2.443728</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>-4.701923</td>
<td>-0.895637 0.279124</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>-4.033695</td>
<td>-2.573851 1.462155</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>-5.154263</td>
<td>0.742308 -1.503036</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>-5.580003</td>
<td>-0.726226 0.895157</td>
</tr>
<tr>
<td>38</td>
<td>8</td>
<td>3.077222</td>
<td>-4.161309 -0.343684</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>3.771856</td>
<td>-4.738627 -0.683609</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2.808289</td>
<td>-4.510323 0.513594</td>
</tr>
</tbody>
</table>
M06-2X/6-31+G(d,p)

HF = -2379.10784 Hartree/Teilchen

Imaginäre Frequenzen: eine (∓243.65 cm⁻¹)

Nullpunktskorrektur = 0.247383 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>Zentrum</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>X: 0.679599</td>
<td>Y: -1.84264</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>X: -0.3085</td>
<td>Y: -1.565276</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>X: 0.014547</td>
<td>Y: -0.072148</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>X: -1.72694</td>
<td>Y: -1.783488</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>X: -1.006498</td>
<td>Y: 0.771127</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>X: -2.310822</td>
<td>Y: 0.144837</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>X: -0.978767</td>
<td>Y: 2.183062</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>X: -0.107046</td>
<td>Y: 0.80602</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>X: -0.938093</td>
<td>Y: 1.473176</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>X: 0.017636</td>
<td>Y: -0.42734</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>X: 0.999489</td>
<td>Y: 1.418685</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>X: 0.081134</td>
<td>Y: -2.727887</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>X: -0.855703</td>
<td>Y: -2.609359</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>X: 1.277625</td>
<td>Y: -2.439413</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>X: 0.074501</td>
<td>Y: -3.959774</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>X: -0.745787</td>
<td>Y: 1.203142</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>X: -2.403881</td>
<td>Y: 2.648669</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>X: -3.113532</td>
<td>Y: -0.377988</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>X: -2.63887</td>
<td>Y: 1.130779</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>X: -3.063073</td>
<td>Y: 1.105592</td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>X: -4.524424</td>
<td>Y: -1.651945</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>X: -5.477759</td>
<td>Y: 0.69748</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>X: -4.239199</td>
<td>Y: -2.572185</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>X: 0.327478</td>
<td>Y: 1.421163</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>X: 0.663406</td>
<td>Y: 1.981731</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>X: 1.258163</td>
<td>Y: 1.069492</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>X: 2.516214</td>
<td>Y: 0.900218</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>X: 2.994196</td>
<td>Y: 1.87147</td>
</tr>
<tr>
<td>29</td>
<td>6</td>
<td>X: 3.305287</td>
<td>Y: -0.220677</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>X: 4.259019</td>
<td>Y: 1.724754</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>X: 2.361277</td>
<td>Y: 2.714495</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>X: 4.570332</td>
<td>Y: -0.347924</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>X: 2.900457</td>
<td>Y: -0.960258</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>X: 5.039637</td>
<td>Y: 0.617901</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>X: 4.645171</td>
<td>Y: 2.460833</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>X: 5.192557</td>
<td>Y: -1.196319</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>X: 6.030568</td>
<td>Y: 0.507321</td>
</tr>
<tr>
<td>38</td>
<td>8</td>
<td>X: -2.882317</td>
<td>Y: 4.453021</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>X: -3.578387</td>
<td>Y: 4.984111</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>X: -2.535101</td>
<td>Y: 4.948131</td>
</tr>
</tbody>
</table>
HF = -2379.142721 Hartree/Teilchen

Imaginäre Frequenzen: keine

Nullpunktskorrektur = 0.251595 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer Zentrum</th>
<th>Atomzahl</th>
<th>X (Ångström)</th>
<th>Y (Ångström)</th>
<th>Z (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>-0.614283</td>
<td>2.126266</td>
<td>-1.696936</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>-0.124296</td>
<td>1.801861</td>
<td>-0.38826</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>0.054339</td>
<td>0.075455</td>
<td>-0.315492</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1.017727</td>
<td>2.463913</td>
<td>0.215003</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>1.430571</td>
<td>-0.666584</td>
<td>0.321548</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>2.241682</td>
<td>0.296132</td>
<td>1.041084</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>2.040747</td>
<td>-1.581952</td>
<td>-0.632519</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0.73129</td>
<td>-1.79309</td>
<td>1.627025</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1.759845</td>
<td>-2.359392</td>
<td>2.226733</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.033313</td>
<td>-1.079512</td>
<td>2.491626</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>-0.027495</td>
<td>-2.70723</td>
<td>1.054766</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-1.50082</td>
<td>2.107123</td>
<td>0.846004</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>-1.300661</td>
<td>1.34717</td>
<td>1.911897</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>-2.664666</td>
<td>1.848902</td>
<td>0.296938</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>-1.423691</td>
<td>3.381643</td>
<td>1.18044</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0.848294</td>
<td>-0.509825</td>
<td>-2.713188</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>3.240923</td>
<td>-0.724772</td>
<td>-1.965465</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>2.871416</td>
<td>1.853719</td>
<td>-0.147521</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>2.69831</td>
<td>0.942687</td>
<td>-1.708878</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>2.62444</td>
<td>1.544487</td>
<td>-2.456226</td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>3.806108</td>
<td>3.273728</td>
<td>0.703872</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>4.736005</td>
<td>3.523546</td>
<td>0.719711</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>3.322134</td>
<td>3.941492</td>
<td>1.223802</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>-0.142661</td>
<td>-0.894882</td>
<td>-2.503336</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>-0.660105</td>
<td>-1.465875</td>
<td>-3.265266</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>-0.730064</td>
<td>-0.647054</td>
<td>-1.331377</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>-2.135901</td>
<td>-0.946605</td>
<td>-0.978974</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>-2.551516</td>
<td>-1.137361</td>
<td>0.943154</td>
</tr>
<tr>
<td>29</td>
<td>6</td>
<td>-3.088431</td>
<td>-1.02079</td>
<td>-2.005731</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>-3.879915</td>
<td>-1.43629</td>
<td>0.630712</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>-1.848459</td>
<td>-1.040627</td>
<td>1.161092</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>-4.41385</td>
<td>-1.324064</td>
<td>-1.717231</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>-2.797826</td>
<td>-0.808001</td>
<td>-3.029552</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>-4.812811</td>
<td>-1.538811</td>
<td>-0.398238</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>-4.185308</td>
<td>-1.585948</td>
<td>1.66102</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>-5.140774</td>
<td>-1.373307</td>
<td>-2.52102</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>-5.849128</td>
<td>-1.768045</td>
<td>-0.17331</td>
</tr>
<tr>
<td>38</td>
<td>8</td>
<td>3.982556</td>
<td>-2.1902</td>
<td>-2.90948</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>4.610028</td>
<td>-2.204536</td>
<td>-3.641124</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>3.80201</td>
<td>-3.107575</td>
<td>-2.67194</td>
</tr>
</tbody>
</table>
Struktur: Alkin – HNTf₂

M06-2X/6-31+G(d,p)
HF = -2135.486623 Hartree/Teilchen
Imaginäre Frequenzen: keine
Nullpunktskorrektur = 0.178007 Hartree/Teilchen
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>2.018029</td>
<td>-0.312881</td>
<td>2.104394</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1.391732</td>
<td>0.329377</td>
<td>2.97975</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.666247</td>
<td>1.1078</td>
<td>2.344185</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>-0.155394</td>
<td>2.041338</td>
<td>1.683282</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>-0.729974</td>
<td>1.632138</td>
<td>0.365066</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>-0.553061</td>
<td>0.057725</td>
<td>0.281172</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>-1.982446</td>
<td>2.236866</td>
<td>-0.019771</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>2.613548</td>
<td>-0.925631</td>
<td>1.005367</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>3.843813</td>
<td>-0.437089</td>
<td>0.003342</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>4.390882</td>
<td>-1.025338</td>
<td>-0.620834</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>3.712624</td>
<td>-2.077755</td>
<td>-1.252764</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2.493505</td>
<td>-2.556042</td>
<td>-0.768774</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>1.939909</td>
<td>-1.991155</td>
<td>0.369165</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-1.416653</td>
<td>-0.859421</td>
<td>-0.746561</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>-0.68391</td>
<td>-2.100507</td>
<td>-0.941525</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>-1.97808</td>
<td>-0.147303</td>
<td>-1.875217</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>-2.852036</td>
<td>-1.334554</td>
<td>0.325735</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-3.45623</td>
<td>-0.248194</td>
<td>0.790969</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>-3.717485</td>
<td>-2.050003</td>
<td>-0.383494</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>-2.427626</td>
<td>-2.066579</td>
<td>1.35556</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0.55346</td>
<td>2.277548</td>
<td>-0.806546</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>1.757248</td>
<td>1.833872</td>
<td>-0.424266</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>0.561358</td>
<td>3.603699</td>
<td>-0.787486</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>9</td>
<td>0.310527</td>
<td>1.850959</td>
<td>-2.035704</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>4.329722</td>
<td>0.39614</td>
<td>1.000176</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5.33092</td>
<td>-0.664725</td>
<td>-1.02314</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>4.140158</td>
<td>-2.520783</td>
<td>-2.147394</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>1.961155</td>
<td>-3.344989</td>
<td>-1.287525</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0.977905</td>
<td>-2.318897</td>
<td>0.744432</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1.326977</td>
<td>0.245982</td>
<td>4.05764</td>
<td></td>
</tr>
</tbody>
</table>
M06-2X/6-31+G(d,p)
HF = -2135.466141 Hartree/Teilchen
Imaginäre Frequenzen: eine (-563.26 cm⁻¹)
Nullpunktskorrektur = 0.174216 Hartree/Teilchen
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>2.018029</td>
<td>-0.312881</td>
<td>2.104394</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1.391732</td>
<td>0.329377</td>
<td>2.97975</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.666247</td>
<td>1.1078</td>
<td>2.344185</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>-0.155394</td>
<td>2.041338</td>
<td>1.683282</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>-0.729974</td>
<td>1.632138</td>
<td>0.350066</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>-0.553061</td>
<td>0.057725</td>
<td>0.28112</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>-1.982446</td>
<td>2.236866</td>
<td>-0.019771</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>2.613548</td>
<td>-0.925631</td>
<td>1.005367</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>3.843813</td>
<td>-0.437089</td>
<td>0.503342</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>4.390882</td>
<td>-1.025338</td>
<td>-0.620834</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>3.712624</td>
<td>-2.077755</td>
<td>-1.252764</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2.493505</td>
<td>-2.556042</td>
<td>-0.768774</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>1.999999</td>
<td>-1.991155</td>
<td>0.369165</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-1.416653</td>
<td>-0.859421</td>
<td>-0.746561</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>-0.68391</td>
<td>-2.100507</td>
<td>-0.941525</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>-1.97808</td>
<td>-0.147303</td>
<td>-1.875217</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>-2.852036</td>
<td>-1.334554</td>
<td>0.325735</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-3.45623</td>
<td>-0.248194</td>
<td>0.790969</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>-3.717485</td>
<td>-2.050003</td>
<td>-0.383494</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>-2.427626</td>
<td>-2.066579</td>
<td>1.35556</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0.55346</td>
<td>2.277548</td>
<td>-0.806546</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>1.757248</td>
<td>1.833872</td>
<td>-0.424266</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>0.561358</td>
<td>3.603699</td>
<td>-0.787486</td>
</tr>
<tr>
<td>24</td>
<td>9</td>
<td>0.310537</td>
<td>1.850959</td>
<td>-2.035704</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>4.329722</td>
<td>0.39614</td>
<td>1.000176</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5.33092</td>
<td>-0.664725</td>
<td>-1.02314</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>4.140158</td>
<td>-2.520783</td>
<td>-2.147394</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>1.961155</td>
<td>-3.344989</td>
<td>-1.287525</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0.977905</td>
<td>-2.319897</td>
<td>0.744432</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1.326977</td>
<td>0.343082</td>
<td>4.05764</td>
</tr>
</tbody>
</table>
M06-2X/6-31+G(d,p)

HF = -2135.471636 Hartree/Teilchen
Imaginäre Frequenzen: keine
Nullpunktskorrektur = 0.178181 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X (Ångström)</th>
<th>Y (Ångström)</th>
<th>Z (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>1.851654</td>
<td>-0.404441</td>
<td>2.37124</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1.303134</td>
<td>-0.098149</td>
<td>3.493221</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.601603</td>
<td>0.735307</td>
<td>3.510314</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0.600931</td>
<td>1.745725</td>
<td>1.422332</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>-0.318549</td>
<td>1.492671</td>
<td>0.31459</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>-0.375746</td>
<td>-0.092253</td>
<td>0.144814</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>-1.568915</td>
<td>2.217847</td>
<td>0.238488</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>2.455068</td>
<td>-0.794616</td>
<td>1.211974</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>3.672174</td>
<td>-0.173436</td>
<td>0.797818</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>4.222623</td>
<td>-0.528466</td>
<td>-0.41058</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>3.567053</td>
<td>-1.478087</td>
<td>-1.218517</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2.374504</td>
<td>-2.091259</td>
<td>-0.831383</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>1.807898</td>
<td>-1.76041</td>
<td>0.386832</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-1.46151</td>
<td>-0.905311</td>
<td>-0.723183</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>-0.857855</td>
<td>-2.195125</td>
<td>-1.039011</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>-2.183239</td>
<td>-0.150951</td>
<td>-1.741011</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>-2.726221</td>
<td>-1.313627</td>
<td>0.567635</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-3.231779</td>
<td>-0.20424</td>
<td>1.091798</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>-3.70693</td>
<td>-2.031465</td>
<td>0.030148</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>-2.160171</td>
<td>-2.028107</td>
<td>1.546163</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0.673208</td>
<td>2.037527</td>
<td>-1.153403</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>1.866466</td>
<td>1.424366</td>
<td>-1.139676</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>0.874945</td>
<td>3.350163</td>
<td>-1.103281</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>9</td>
<td>0.056875</td>
<td>1.729889</td>
<td>-2.284942</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>4.122927</td>
<td>0.58056</td>
<td>1.434598</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5.140492</td>
<td>-0.065788</td>
<td>-0.754557</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>4.001321</td>
<td>-1.7324</td>
<td>-2.181487</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>1.866891</td>
<td>-2.793339</td>
<td>-1.482682</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0.874523</td>
<td>-2.206771</td>
<td>0.707995</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1.533829</td>
<td>-0.663946</td>
<td>4.393117</td>
<td></td>
</tr>
</tbody>
</table>
4.6.4 Berechnete stationäre Punkte in Kapitel 2.8.1

Struktur: Vinyltriflimide

HF = -2135.67028499 Hartree/Teilchen
imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.182518 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>-4.370535</td>
<td>-1.299639 0.673516</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-3.094306</td>
<td>-1.229668 1.223921</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-1.97086</td>
<td>-1.141387 0.394259</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-2.146292</td>
<td>-1.099689 -0.99336</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-3.423214</td>
<td>-1.169804 -1.541021</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-4.537634</td>
<td>-1.27164 -0.710028</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-5.235553</td>
<td>-1.356892 1.326408</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-2.966402</td>
<td>-1.208829 2.302165</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1.287734</td>
<td>-1.026009 -1.654738</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-3.546556</td>
<td>-1.144564 -2.618822</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-5.533741</td>
<td>-1.319849 -1.197837</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.619302</td>
<td>-1.073024 0.993754</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0.32957</td>
<td>-0.20698 0.30974</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>0.419588</td>
<td>1.422933 0.739512</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>1.401395</td>
<td>-0.859525 -0.844637</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>3.071843</td>
<td>-0.802938 0.030903</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>-0.84064</td>
<td>2.240493 -0.364938</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-2.059601</td>
<td>1.920931 0.038007</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>-0.665972</td>
<td>3.55034 -0.263548</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>-0.665395</td>
<td>1.856517 -1.617297</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>2.894386</td>
<td>-0.687109 1.342271</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>3.790223</td>
<td>0.200126 -0.420845</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>3.685163</td>
<td>-1.947845 -0.22835</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>-0.217197</td>
<td>-1.704131 2.095922</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0.780501</td>
<td>-1.55812 2.493168</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>-0.884068</td>
<td>-2.388345 2.608544</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>1.716803</td>
<td>1.889714 0.912164</td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>-0.08407</td>
<td>1.558893 2.081619</td>
</tr>
<tr>
<td>29</td>
<td>8</td>
<td>1.480385</td>
<td>0.015709 -1.984004</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>1.042573</td>
<td>-2.25296 -0.944013</td>
</tr>
</tbody>
</table>
Struktur: VinylNHTf

M06-2X/6-31+G(d,p)

HF = -2135.486623 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktsskorrektur = 0.167918 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>3.615782</td>
<td>-0.253286</td>
<td>0.984951</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2.657872</td>
<td>0.726316</td>
<td>0.739657</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1.703731</td>
<td>0.540407</td>
<td>-0.265678</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1.708836</td>
<td>-0.644295</td>
<td>-1.009207</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2.668244</td>
<td>-1.621471</td>
<td>-0.763654</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>3.624264</td>
<td>-1.427405</td>
<td>0.232785</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>4.347571</td>
<td>-0.106399</td>
<td>1.772828</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2.625494</td>
<td>1.628399</td>
<td>1.343452</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.963494</td>
<td>-0.790756</td>
<td>1.785684</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2.669854</td>
<td>-2.534664</td>
<td>-1.350168</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>4.369119</td>
<td>-2.192518</td>
<td>0.427665</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0.721297</td>
<td>1.605688</td>
<td>-0.57014</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-0.610944</td>
<td>1.157975</td>
<td>-0.872216</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-1.606241</td>
<td>0.650278</td>
<td>0.360655</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>-1.823657</td>
<td>-1.15047</td>
<td>-0.027338</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>-0.706707</td>
<td>-1.823228</td>
<td>0.205273</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>-2.792237</td>
<td>-1.627225</td>
<td>0.744006</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-2.167132</td>
<td>-1.296121</td>
<td>-1.303859</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>1.02316</td>
<td>2.903879</td>
<td>-0.652976</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0.261501</td>
<td>3.653537</td>
<td>-0.841193</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>2.051583</td>
<td>3.231466</td>
<td>-0.555961</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>-2.91388</td>
<td>1.227811</td>
<td>0.128406</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>-0.908031</td>
<td>0.708767</td>
<td>1.623097</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>-1.13936</td>
<td>1.751047</td>
<td>-1.507116</td>
<td></td>
</tr>
</tbody>
</table>
Struktur: VinylNHTs

M06-2X/6-31+G(d,p)

HF = -1183.61674472 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.271439 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0.528255</td>
<td>3.151223</td>
<td>0.876036</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-0.704353</td>
<td>2.51872</td>
<td>0.716257</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-0.916284</td>
<td>1.653611</td>
<td>-0.359853</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0.12277</td>
<td>1.421523</td>
<td>-1.269934</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1.349988</td>
<td>2.054373</td>
<td>-1.110965</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1.556592</td>
<td>2.920244</td>
<td>-0.035578</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.688215</td>
<td>3.815213</td>
<td>1.719983</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-1.498163</td>
<td>2.665549</td>
<td>1.443132</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-0.040655</td>
<td>0.731917</td>
<td>-2.092856</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2.148736</td>
<td>1.866325</td>
<td>-1.822492</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2.51819</td>
<td>3.407863</td>
<td>0.093968</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>-2.219816</td>
<td>0.962219</td>
<td>-0.53073</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-2.119501</td>
<td>-0.413002</td>
<td>-0.89699</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-1.600202</td>
<td>-1.523514</td>
<td>0.286125</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>-3.401257</td>
<td>1.577383</td>
<td>-0.422428</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>-4.334813</td>
<td>1.030821</td>
<td>-0.507722</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>-3.447949</td>
<td>2.649482</td>
<td>-0.269731</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>-1.99723</td>
<td>-2.810793</td>
<td>-0.267983</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>-2.04474</td>
<td>-1.093703</td>
<td>1.603414</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>-2.970021</td>
<td>-0.800266</td>
<td>-1.300308</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0.165763</td>
<td>-1.37381</td>
<td>0.238634</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0.810794</td>
<td>-0.677621</td>
<td>1.256117</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0.860568</td>
<td>-1.908583</td>
<td>-0.84017</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>2.186344</td>
<td>-0.498692</td>
<td>1.171708</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0.23266</td>
<td>-0.276322</td>
<td>2.08228</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>2.236985</td>
<td>-1.716689</td>
<td>-0.907297</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0.327544</td>
<td>-2.457972</td>
<td>-1.610403</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>2.913959</td>
<td>-1.003225</td>
<td>0.088196</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>2.702668</td>
<td>0.052679</td>
<td>1.953114</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>2.794922</td>
<td>-2.12738</td>
<td>-1.744437</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>4.395828</td>
<td>-0.751445</td>
<td>-0.010333</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>4.889466</td>
<td>-0.923688</td>
<td>0.9499</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>4.861887</td>
<td>-1.396752</td>
<td>-0.768196</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>4.580011</td>
<td>0.289263</td>
<td>-0.295919</td>
<td></td>
</tr>
</tbody>
</table>
Struktur: VinylNHAc

![Diagram of VinylNHAc structure](image)

M06-2X/6-31+G(d,p)

\[HF = -517.465815937 \text{ Hartree/Teilchen} \]

- Imaginäre Frequenzen: keine gefunden
- Nullpunktskorrektur = 0.189992 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>2.839973</td>
<td>0.235796</td>
<td>0.779103</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1.618678</td>
<td>0.902128</td>
<td>0.71503</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0.62987</td>
<td>0.485004</td>
<td>-0.181526</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0.877454</td>
<td>-0.621399</td>
<td>-1.002938</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2.098624</td>
<td>-1.285961</td>
<td>-0.938794</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>3.083714</td>
<td>-0.859314</td>
<td>-0.047935</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3.596781</td>
<td>0.564951</td>
<td>1.484346</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1.416076</td>
<td>1.737768</td>
<td>1.379155</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.107971</td>
<td>-0.953159</td>
<td>-1.694683</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2.282544</td>
<td>-2.138222</td>
<td>-1.585607</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>4.033152</td>
<td>-1.362611</td>
<td>0.06203</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.660988</td>
<td>1.2171</td>
<td>-0.276167</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-1.818263</td>
<td>0.444701</td>
<td>-0.532699</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>-0.73276</td>
<td>2.554304</td>
<td>-0.232892</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>-1.687536</td>
<td>3.06665</td>
<td>-0.287203</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0.168665</td>
<td>3.153556</td>
<td>-0.183897</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>-2.495709</td>
<td>0.815367</td>
<td>-1.187465</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>-2.292186</td>
<td>-0.643663</td>
<td>0.177073</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>-3.341912</td>
<td>-1.166257</td>
<td>-0.151718</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>-1.480408</td>
<td>-1.12882</td>
<td>1.356513</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>-0.641994</td>
<td>-1.741128</td>
<td>1.013682</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>-1.070542</td>
<td>-0.299212</td>
<td>1.937603</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>-2.138097</td>
<td>-1.737961</td>
<td>1.975337</td>
</tr>
</tbody>
</table>

4.6.5 Berechnete stationäre Punkte in Kapitel 3.2

Struktur: NTiCF3Imine

M06-2X/6-31+G(d,p)

HF = -1587.22086742 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.172686 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>X: -0.256816</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Y: 3.017044</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Z: -1.280833</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>X: 0.072378</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Y: 1.65094</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Z: -1.475394</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>X: 0.486673</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Y: 0.875999</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Z: -0.453082</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>X: 0.864568</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Y: 1.469128</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Z: 0.755446</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>X: 0.661879</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Y: 2.83192</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Z: 0.944634</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>X: 0.10374</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>Y: 3.606176</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Z: -0.07131</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>X: -0.694806</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Y: 3.615638</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Z: 2.072601</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>X: 1.291816</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Y: 0.8673</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>Z: 1.550968</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>X: 0.93993</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>Y: 3.288096</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>Z: 1.889241</td>
</tr>
</tbody>
</table>

null

null
Struktur: NTfImine

M06-2X/6-31+G(d,p)
HF = -1250.27333724 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.166557 Hartree/Teilchen
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>2.617448</td>
<td>-0.736728</td>
<td>1.478862</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1.613494</td>
<td>0.211142</td>
<td>1.29633</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1.340902</td>
<td>0.689734</td>
<td>0.010728</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2.08549</td>
<td>0.228953</td>
<td>-1.081001</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3.069215</td>
<td>-0.736197</td>
<td>-0.893308</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>3.337471</td>
<td>-1.217461</td>
<td>0.87869</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2.826912</td>
<td>-1.106397</td>
<td>2.477257</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1.035615</td>
<td>0.566753</td>
<td>2.141874</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.873487</td>
<td>0.600399</td>
<td>-2.079838</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3.627034</td>
<td>-1.109868</td>
<td>-1.745782</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>4.108906</td>
<td>-1.966424</td>
<td>0.53451</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0.306318</td>
<td>1.742651</td>
<td>-0.203921</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-0.958709</td>
<td>1.664721</td>
<td>0.010179</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-1.740356</td>
<td>0.283316</td>
<td>0.567338</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>-1.219474</td>
<td>-1.118271</td>
<td>-0.583324</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>-0.224035</td>
<td>-1.826871</td>
<td>-0.073147</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>-2.267137</td>
<td>-1.909445</td>
<td>-0.754642</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-0.848794</td>
<td>-0.626922</td>
<td>-1.767346</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>-3.137009</td>
<td>0.476155</td>
<td>0.256938</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>-1.296691</td>
<td>-0.073398</td>
<td>1.902263</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0.808801</td>
<td>3.060619</td>
<td>-0.720276</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>1.560773</td>
<td>3.454301</td>
<td>-0.029349</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>1.309085</td>
<td>2.910386</td>
<td>-1.682643</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>-0.014036</td>
<td>3.765189</td>
<td>-0.833829</td>
</tr>
</tbody>
</table>
Struktur: NTsImine

M06-2X/6-31+G(d,p)

HF = -1.183.61599175 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.270920 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0.177113</td>
<td>2.763401</td>
<td>-1.471153</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1.138167</td>
<td>1.916901</td>
<td>-0.920709</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0.961779</td>
<td>1.420805</td>
<td>0.373596</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-0.169439</td>
<td>1.779884</td>
<td>1.113704</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-1.139006</td>
<td>2.600936</td>
<td>0.547</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-0.963951</td>
<td>3.098236</td>
<td>-0.744648</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.317568</td>
<td>3.152067</td>
<td>-2.474861</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2.009258</td>
<td>1.622027</td>
<td>-1.496778</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-0.307454</td>
<td>1.387008</td>
<td>2.117812</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-2.029633</td>
<td>2.853676</td>
<td>1.113818</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-1.715413</td>
<td>3.747993</td>
<td>-1.182503</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2.000699</td>
<td>0.540835</td>
<td>0.994657</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>2.297571</td>
<td>-0.62441</td>
<td>0.674397</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>1.485859</td>
<td>-1.521651</td>
<td>-0.559508</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>1.792451</td>
<td>-2.910384</td>
<td>-0.273526</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>1.83236</td>
<td>-0.925652</td>
<td>-1.84539</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>2.788971</td>
<td>1.16467</td>
<td>2.113576</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>3.31016</td>
<td>2.051005</td>
<td>1.737281</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>2.107805</td>
<td>1.506873</td>
<td>2.899996</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>3.504144</td>
<td>0.449471</td>
<td>2.518845</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>-0.256628</td>
<td>-1.285049</td>
<td>-0.272613</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>-1.01951</td>
<td>-0.588835</td>
<td>-1.201554</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>-0.816151</td>
<td>-1.794596</td>
<td>0.896898</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>-2.37078</td>
<td>-0.382853</td>
<td>0.938704</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>-0.549562</td>
<td>-0.203012</td>
<td>-2.100708</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>-2.164599</td>
<td>-1.567453</td>
<td>1.148127</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>-0.201937</td>
<td>-2.35889</td>
<td>1.592989</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>-2.958086</td>
<td>-0.858145</td>
<td>0.237444</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>-2.974929</td>
<td>0.17047</td>
<td>-1.653097</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>-2.611946</td>
<td>-1.952479</td>
<td>2.050891</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>-4.424027</td>
<td>-0.693764</td>
<td>0.509835</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>-5.006847</td>
<td>-1.514346</td>
<td>0.202097</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>-4.608638</td>
<td>-0.478255</td>
<td>1.575083</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>-4.803932</td>
<td>0.224178</td>
<td>-0.040915</td>
</tr>
</tbody>
</table>
Struktur: Acetophenone

M06-2X/6-31+G(d,p)
HF = -384.74459927 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktsskorrektur = 0.139297 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>1.963607</td>
<td>-1.135094</td>
<td>0.000096</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0.578409</td>
<td>-1.221665</td>
<td>0.000083</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-0.2022</td>
<td>-0.058934</td>
<td>0.000037</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0.424834</td>
<td>1.190531</td>
<td>-0.000048</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1.815466</td>
<td>1.277075</td>
<td>-0.0001</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2.584734</td>
<td>0.115118</td>
<td>-0.00001</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2.563486</td>
<td>-2.039642</td>
<td>0.000168</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.068652</td>
<td>-2.181056</td>
<td>0.000132</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-0.165067</td>
<td>2.102051</td>
<td>-0.000077</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2.29741</td>
<td>2.249601</td>
<td>-0.000222</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>3.668317</td>
<td>0.183022</td>
<td>-0.000042</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-1.696631</td>
<td>-0.203829</td>
<td>-0.000019</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>-2.54815</td>
<td>1.047288</td>
<td>0.000147</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>-2.336219</td>
<td>1.65703</td>
<td>0.883909</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>-2.336609</td>
<td>1.657071</td>
<td>-0.883678</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>-3.597179</td>
<td>0.75372</td>
<td>0.000328</td>
</tr>
<tr>
<td>17</td>
<td>8</td>
<td>-2.2089</td>
<td>-1.305667</td>
<td>-0.000205</td>
</tr>
</tbody>
</table>
Struktur: NAcImine

M06-2X/6-31+G(d,p)

\[
\text{HF} = -517.46123964 \text{Hartree/Teilchen}
\]

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.188808 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X (Ångström)</th>
<th>Y (Ångström)</th>
<th>Z (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2.803702</td>
<td>0.263364</td>
<td>0.73082</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1.608524</td>
<td>0.965655</td>
<td>0.607092</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0.556687</td>
<td>0.447498</td>
<td>-0.158904</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0.732291</td>
<td>-0.772056</td>
<td>-0.82056</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1.936743</td>
<td>-1.463006</td>
<td>-0.713386</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2.970524</td>
<td>-0.952469</td>
<td>0.068981</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3.605599</td>
<td>0.666932</td>
<td>1.340948</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1.489621</td>
<td>1.913207</td>
<td>1.123718</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-0.067953</td>
<td>-1.167393</td>
<td>-1.443498</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2.065795</td>
<td>-2.402587</td>
<td>-1.241125</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>3.905885</td>
<td>-1.496093</td>
<td>0.15807</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.732689</td>
<td>1.199995</td>
<td>-0.262205</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-1.884333</td>
<td>0.661971</td>
<td>-0.182059</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>-0.649639</td>
<td>2.68931</td>
<td>-0.472343</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>-0.193706</td>
<td>3.177024</td>
<td>0.395217</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>-0.023188</td>
<td>2.917344</td>
<td>-1.339672</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>-1.651379</td>
<td>3.09258</td>
<td>-0.61808</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>-2.129788</td>
<td>-0.691634</td>
<td>0.078814</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>-2.391324</td>
<td>-1.481818</td>
<td>-0.802517</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>-2.155403</td>
<td>-1.041037</td>
<td>1.548236</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>-1.150549</td>
<td>-0.909232</td>
<td>1.964534</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>-2.830229</td>
<td>-0.36886</td>
<td>2.084036</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>-2.474665</td>
<td>-2.075898</td>
<td>1.86713</td>
<td></td>
</tr>
</tbody>
</table>
Struktur: NCbzImine

M06-2X/6-31+G(d,p)
HF = -823.63258502 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.277258 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>2.071533</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1.731922</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2.706055</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>4.024417</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>4.357682</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>3.38262</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1.311186</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.71276</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>4.790231</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>5.379682</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>3.644825</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2.343951</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>1.296832</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>3.268729</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>3.462284</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>4.232518</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>2.830298</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0.474992</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>0.744046</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>-0.712852</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>-1.65642</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>-1.888564</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>-1.201744</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>-2.889904</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>-3.255859</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>-3.707539</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>-4.427111</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>-2.616095</td>
</tr>
<tr>
<td>29</td>
<td>6</td>
<td>-4.881211</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>-3.422811</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>-5.24364</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>-4.701532</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>-5.507011</td>
</tr>
</tbody>
</table>
Struktur: NTfMethylAldimine

M06-2X/6-31+G(d,p)
HF = -1019.30582948 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.084976 (Hartree/Teilchen)
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>-2.24425</td>
<td>1.06387</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>-0.968001</td>
<td>1.050696</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>-0.198051</td>
<td>0.214157</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1.531179</td>
<td>0.997959</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>1.684148</td>
<td>0.894139</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>2.355873</td>
<td>-0.821885</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>1.803389</td>
<td>0.894139</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>-0.319549</td>
<td>-1.177841</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>-0.452471</td>
<td>1.09817</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-2.679574</td>
<td>2.056072</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>-3.195776</td>
<td>-0.08059</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>-3.405241</td>
<td>-0.206023</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>-4.136281</td>
<td>0.149207</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>-2.794472</td>
<td>-1.020915</td>
</tr>
</tbody>
</table>
Struktur: NTsAlkylAldimine

![M06-2X/6-31+G(d,p)
HF = -952.63976144 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktsskorrektur = 0.189312 (Hartree/Teilchen)
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X (Ångström)</th>
<th>Y (Ångström)</th>
<th>Z (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>2.296605</td>
<td>1.204505</td>
<td>1.247468</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>2.126369</td>
<td>-0.05481</td>
<td>1.128306</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>1.519508</td>
<td>-0.73634</td>
<td>-0.321933</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1.71528</td>
<td>-2.164307</td>
<td>-0.164261</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>2.046182</td>
<td>-0.042785</td>
<td>-1.494795</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-0.218938</td>
<td>-0.385963</td>
<td>-0.191248</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>-0.777704</td>
<td>0.63871</td>
<td>-0.948004</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>-0.988892</td>
<td>-1.153666</td>
<td>0.680273</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>-2.139056</td>
<td>0.902067</td>
<td>-0.817253</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-0.156527</td>
<td>1.199519</td>
<td>-1.639833</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>-2.344165</td>
<td>-0.870832</td>
<td>0.801415</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>-0.525096</td>
<td>-1.960264</td>
<td>1.239829</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>-2.936898</td>
<td>0.156467</td>
<td>0.056409</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>-2.590357</td>
<td>1.694356</td>
<td>-1.408415</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>-2.956493</td>
<td>-1.461719</td>
<td>1.477159</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>-4.415086</td>
<td>0.425491</td>
<td>0.167626</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>-4.974151</td>
<td>-0.225613</td>
<td>-0.512783</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>-4.776128</td>
<td>0.233153</td>
<td>1.180986</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>-4.650999</td>
<td>1.46004</td>
<td>-0.092355</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>2.682986</td>
<td>1.494158</td>
<td>2.229893</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>2.009068</td>
<td>2.335109</td>
<td>0.302382</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>0.954675</td>
<td>2.617222</td>
<td>0.423139</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>2.616073</td>
<td>3.201076</td>
<td>0.570599</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>2.178002</td>
<td>2.058593</td>
<td>-0.737399</td>
<td></td>
</tr>
</tbody>
</table>
Struktur: Acetaldehyde

M06-2X/6-31+G(d,p)
HF = -153.76449062 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.056042 (Hartree/Teilchen)
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>-0.23273</td>
<td>0.401794</td>
<td>0.000063</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>-1.229454</td>
<td>-0.27914</td>
<td>-0.000015</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-0.317817</td>
<td>1.508584</td>
<td>0.00003</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1.16616</td>
<td>-0.14785</td>
<td>-0.000039</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1.703493</td>
<td>0.218473</td>
<td>0.88115</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1.145577</td>
<td>-1.238056</td>
<td>-0.001024</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1.7038</td>
<td>0.220456</td>
<td>-0.880176</td>
</tr>
</tbody>
</table>
Struktur: NTfAldimine

M06-2X/6-31+G(d,p)
HF = -1210.96581375 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.139163 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>2.671336</td>
<td>0.469445</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-1.559481</td>
<td>-0.303387</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-1.457524</td>
<td>-0.859978</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-2.488602</td>
<td>-0.660055</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-3.577416</td>
<td>0.140273</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-3.669298</td>
<td>0.703802</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-2.755258</td>
<td>0.890162</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-0.786002</td>
<td>-0.481198</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-2.42176</td>
<td>-1.122479</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-4.358695</td>
<td>0.311547</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-4.527616</td>
<td>1.314943</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.356894</td>
<td>-1.742914</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0.912501</td>
<td>-1.736917</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>1.787026</td>
<td>-0.564436</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>1.261001</td>
<td>1.082578</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>0.379846</td>
<td>1.702299</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>2.337193</td>
<td>1.840832</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>0.72452</td>
<td>0.884466</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>3.155406</td>
<td>-0.725186</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>1.43146</td>
<td>-0.521263</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>-0.682304</td>
<td>-2.578943</td>
</tr>
</tbody>
</table>
Struktur: NTsArylAldimine

M06-2X/6-31+G(d,p)
HF = -1144.30868080 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.243025 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Nummer</th>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>-0.285357</td>
<td>2.949081</td>
<td>-1.074281</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>0.779773</td>
<td>2.281093</td>
<td>-0.47351</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>0.600527</td>
<td>1.6813</td>
<td>0.776665</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>-0.634783</td>
<td>1.76927</td>
<td>1.427394</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>-1.702679</td>
<td>2.409552</td>
<td>0.806556</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>-1.527224</td>
<td>3.002135</td>
<td>-0.444838</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>-0.144529</td>
<td>3.419164</td>
<td>-2.042474</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>1.738954</td>
<td>2.205368</td>
<td>-0.974417</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>-0.765093</td>
<td>1.310985</td>
<td>2.404441</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>-2.668317</td>
<td>2.451831</td>
<td>1.30047</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>12</td>
<td>6</td>
<td>-0.285357</td>
<td>2.949081</td>
<td>-1.074281</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>13</td>
<td>7</td>
<td>1.722791</td>
<td>0.984886</td>
<td>1.461623</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>14</td>
<td>16</td>
<td>2.39425</td>
<td>-0.043814</td>
<td>1.118244</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>15</td>
<td>8</td>
<td>2.027192</td>
<td>-0.305722</td>
<td>-0.304248</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>16</td>
<td>8</td>
<td>2.666992</td>
<td>-2.217188</td>
<td>-0.08045</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>17</td>
<td>6</td>
<td>2.39425</td>
<td>-0.043814</td>
<td>1.118244</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>18</td>
<td>6</td>
<td>0.265233</td>
<td>-1.188946</td>
<td>-0.254695</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>19</td>
<td>6</td>
<td>-0.546191</td>
<td>-0.605743</td>
<td>-1.22062</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>20</td>
<td>6</td>
<td>-0.264646</td>
<td>-1.963176</td>
<td>0.774088</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>21</td>
<td>6</td>
<td>-1.923182</td>
<td>-0.789912</td>
<td>-1.197248</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>22</td>
<td>6</td>
<td>-0.099976</td>
<td>-0.009365</td>
<td>-2.009711</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>23</td>
<td>1</td>
<td>-1.643668</td>
<td>-2.12789</td>
<td>0.846167</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>24</td>
<td>6</td>
<td>0.395527</td>
<td>-2.427222</td>
<td>1.501324</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>25</td>
<td>6</td>
<td>-2.48965</td>
<td>-1.544496</td>
<td>-0.104622</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>26</td>
<td>1</td>
<td>-2.568943</td>
<td>-0.33191</td>
<td>-1.881961</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>27</td>
<td>6</td>
<td>-2.070985</td>
<td>-2.724685</td>
<td>1.647607</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>28</td>
<td>1</td>
<td>-3.980205</td>
<td>-1.753603</td>
<td>-0.038069</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>29</td>
<td>1</td>
<td>-4.272284</td>
<td>-2.62069</td>
<td>-0.639952</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>30</td>
<td>1</td>
<td>-4.310177</td>
<td>-1.935275</td>
<td>0.987643</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>31</td>
<td>1</td>
<td>-4.518136</td>
<td>-0.884757</td>
<td>-0.425798</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Struktur: Benzaldehyde

![Benzaldehyde Molecule](image)

M06-2X/6-31+G(d,p)

HF = -345.43907061 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.110766 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atom Nummer</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>-1.324223</td>
<td>-1.328226</td>
<td>0.000038</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0.046509</td>
<td>-1.100778</td>
<td>0.000143</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0.529896</td>
<td>0.211686</td>
<td>0.000125</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-0.357177</td>
<td>1.2894</td>
<td>-0.000003</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-1.731349</td>
<td>1.06019</td>
<td>-0.000117</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-2.211693</td>
<td>-0.248279</td>
<td>-0.000072</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-1.707164</td>
<td>-2.343728</td>
<td>-0.000038</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.760171</td>
<td>-1.919314</td>
<td>0.000334</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.031118</td>
<td>2.305516</td>
<td>-0.00015</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-2.423977</td>
<td>1.895508</td>
<td>-0.000141</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-3.282133</td>
<td>-0.429851</td>
<td>-0.000109</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>1.990892</td>
<td>0.469704</td>
<td>0.000252</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>2.835535</td>
<td>-0.396415</td>
<td>-0.000348</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>2.280634</td>
<td>1.541006</td>
<td>0.000681</td>
</tr>
</tbody>
</table>
4.6.6 Berechnete stationäre Punkte in Kapitel 3.4

Struktur: Cyclohexenylvinyltriflimide

M06-2X/6-31+G(d,p)

HF = -2138.0649191 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktsskorrektur = 0.228775 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0.892181</td>
<td>-0.741611</td>
<td>0.908779</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0.625027</td>
<td>-1.511697</td>
<td>1.969096</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.416879</td>
<td>-2.028306</td>
<td>2.497253</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-0.389576</td>
<td>-1.832849</td>
<td>2.32283</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>-0.247759</td>
<td>-0.090613</td>
<td>0.269076</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>-0.896173</td>
<td>1.307901</td>
<td>1.022159</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>-1.090661</td>
<td>-0.872093</td>
<td>-0.95046</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>-2.108841</td>
<td>-2.169545</td>
<td>-0.071964</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>-0.91118</td>
<td>2.6071</td>
<td>-0.350528</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>-2.027073</td>
<td>0.096626</td>
<td>-1.469437</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>-0.150076</td>
<td>-1.601634</td>
<td>-1.761141</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>-2.270676</td>
<td>1.087172</td>
<td>1.392098</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>0.118655</td>
<td>1.724297</td>
<td>1.958162</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>-2.134175</td>
<td>2.764854</td>
<td>-0.805645</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>-0.492444</td>
<td>3.736019</td>
<td>0.202181</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>-0.090978</td>
<td>2.273188</td>
<td>-1.337063</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>-2.655382</td>
<td>-1.662523</td>
<td>1.021626</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-3.057428</td>
<td>-2.56472</td>
<td>-0.90683</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>-1.343736</td>
<td>-3.201695</td>
<td>0.252569</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>3.401002</td>
<td>-1.050708</td>
<td>1.104833</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>4.735954</td>
<td>-0.485791</td>
<td>0.615367</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>3.39908</td>
<td>-2.146444</td>
<td>1.011284</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>3.276846</td>
<td>-0.828167</td>
<td>2.171096</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>3.708915</td>
<td>0.412902</td>
<td>-1.478425</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>4.799254</td>
<td>-0.494312</td>
<td>-0.90989</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>5.559326</td>
<td>-1.063522</td>
<td>1.046419</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>4.843943</td>
<td>0.545944</td>
<td>0.974061</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>3.590715</td>
<td>0.253067</td>
<td>-2.556092</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>3.994246</td>
<td>1.468526</td>
<td>-1.360591</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>5.783112</td>
<td>-0.170823</td>
<td>-1.261024</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>4.844188</td>
<td>-1.518529</td>
<td>-1.272958</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>2.224777</td>
<td>-0.485906</td>
<td>0.339191</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>6</td>
<td>2.38215</td>
<td>0.191652</td>
<td>-0.809011</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>1.510124</td>
<td>0.592185</td>
<td>-1.315394</td>
<td></td>
</tr>
</tbody>
</table>
Struktur: Vinyltriflimide

M06-2X/6-31+G(d,p)
HF = -2135.6702899 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.182518 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>-4.370535</td>
<td>-1.299639</td>
<td>0.673516</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-3.094306</td>
<td>-1.229668</td>
<td>1.223921</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-1.97086</td>
<td>-1.141387</td>
<td>0.394259</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-2.146292</td>
<td>-1.099689</td>
<td>-0.99336</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-3.423214</td>
<td>-1.169804</td>
<td>-1.541021</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-4.537834</td>
<td>-1.27164</td>
<td>-0.710028</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-5.235553</td>
<td>-1.356892</td>
<td>1.326408</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-2.966402</td>
<td>-1.208829</td>
<td>2.302165</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1.287734</td>
<td>-1.026009</td>
<td>-1.654738</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-3.546556</td>
<td>-1.144564</td>
<td>-2.618822</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-5.533741</td>
<td>-1.319849</td>
<td>-1.138737</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.619302</td>
<td>-1.073024</td>
<td>0.993754</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0.32957</td>
<td>-0.20698</td>
<td>0.30974</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>0.419588</td>
<td>1.422933</td>
<td>0.739512</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>1.401395</td>
<td>-0.859526</td>
<td>-0.844637</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>3.071843</td>
<td>-0.802938</td>
<td>0.030903</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>-0.84064</td>
<td>2.240493</td>
<td>-0.364938</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-2.059601</td>
<td>1.920931</td>
<td>0.038007</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>-0.665972</td>
<td>3.55034</td>
<td>-0.263548</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>-0.665395</td>
<td>1.858517</td>
<td>-1.617297</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>2.894386</td>
<td>-0.687109</td>
<td>1.342271</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>3.790223</td>
<td>0.200126</td>
<td>-0.420845</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>3.685163</td>
<td>-1.947845</td>
<td>-0.22835</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>-0.217197</td>
<td>-1.704131</td>
<td>2.095922</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0.780501</td>
<td>-1.55812</td>
<td>2.493168</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>-0.884068</td>
<td>-2.388345</td>
<td>2.608544</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>1.716803</td>
<td>1.889714</td>
<td>0.312164</td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>-0.084807</td>
<td>1.558893</td>
<td>2.081619</td>
</tr>
<tr>
<td>29</td>
<td>8</td>
<td>1.489385</td>
<td>0.015709</td>
<td>-1.984004</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>1.042573</td>
<td>-2.25296</td>
<td>-0.944013</td>
</tr>
</tbody>
</table>
Struktur: Cyclopropylvinyltriflimide

M06-2X/6-31+G(d,p)

HF = -2021.36147403 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.163959 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>19</td>
<td>20</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>25</td>
<td>26</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

Koord. (Ångström):

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.741499</td>
<td>0.38534</td>
<td></td>
</tr>
<tr>
<td>2.46576</td>
<td>1.370079</td>
<td></td>
</tr>
<tr>
<td>3.511169</td>
<td>1.481139</td>
<td></td>
</tr>
<tr>
<td>2.029636</td>
<td>2.079211</td>
<td></td>
</tr>
<tr>
<td>0.346856</td>
<td>0.285043</td>
<td></td>
</tr>
<tr>
<td>-0.82793</td>
<td>1.02726</td>
<td></td>
</tr>
<tr>
<td>-0.069201</td>
<td>-0.857394</td>
<td></td>
</tr>
<tr>
<td>0.005628</td>
<td>0.155386</td>
<td></td>
</tr>
<tr>
<td>-1.57794</td>
<td>-0.402979</td>
<td></td>
</tr>
<tr>
<td>-1.452708</td>
<td>-1.212489</td>
<td></td>
</tr>
<tr>
<td>1.001685</td>
<td>-1.818651</td>
<td></td>
</tr>
<tr>
<td>-1.922881</td>
<td>1.491113</td>
<td></td>
</tr>
<tr>
<td>-0.174417</td>
<td>1.883277</td>
<td></td>
</tr>
<tr>
<td>-2.788218</td>
<td>-0.69472</td>
<td></td>
</tr>
<tr>
<td>-1.627763</td>
<td>-0.004621</td>
<td></td>
</tr>
<tr>
<td>-0.792165</td>
<td>-1.468065</td>
<td></td>
</tr>
<tr>
<td>-0.778261</td>
<td>1.212218</td>
<td></td>
</tr>
<tr>
<td>-0.399613</td>
<td>-0.604532</td>
<td></td>
</tr>
<tr>
<td>1.25516</td>
<td>0.548538</td>
<td></td>
</tr>
<tr>
<td>2.170415</td>
<td>-0.625951</td>
<td></td>
</tr>
<tr>
<td>1.956916</td>
<td>-0.35761</td>
<td></td>
</tr>
<tr>
<td>3.342875</td>
<td>-0.367277</td>
<td></td>
</tr>
<tr>
<td>2.014026</td>
<td>-1.651999</td>
<td></td>
</tr>
<tr>
<td>1.537246</td>
<td>0.604543</td>
<td></td>
</tr>
<tr>
<td>1.644293</td>
<td>-1.195447</td>
<td></td>
</tr>
<tr>
<td>3.990748</td>
<td>3.850213</td>
<td>0.587666</td>
</tr>
</tbody>
</table>
Struktur: Diphenylvinyltriflimide

M06-2X/6-31+G(d,p)
HF = -2366.63292866 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.264245 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X (Ångström)</th>
<th>Y (Ångström)</th>
<th>Z (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>33</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>34</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>35</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>36</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>37</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>38</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>39</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Struktur: Bromovinyltrilimide

M06-2X/6-31+G(d,p)
HF = -4706.86213961 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.173254 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
<td>-3.755541</td>
<td>-1.303146</td>
<td>2.370609</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
<td>-2.69151</td>
<td>-0.609215</td>
<td>2.944886</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
<td>-1.636787</td>
<td>-0.171912</td>
<td>2.151932</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>4</td>
<td>-1.640592</td>
<td>-0.420636</td>
<td>0.775569</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>5</td>
<td>-2.693569</td>
<td>-1.145763</td>
<td>0.209555</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>-3.748677</td>
<td>-1.580704</td>
<td>1.004745</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>-4.579385</td>
<td>-1.643573</td>
<td>2.989839</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
<td>-2.681355</td>
<td>-0.408958</td>
<td>4.011156</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>9</td>
<td>-0.797272</td>
<td>0.34419</td>
<td>2.605733</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>10</td>
<td>-2.673875</td>
<td>-1.386071</td>
<td>-0.848862</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>11</td>
<td>-4.560205</td>
<td>-2.14546</td>
<td>0.557676</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>12</td>
<td>-0.512868</td>
<td>0.026182</td>
<td>-0.070721</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>13</td>
<td>-0.567741</td>
<td>0.620289</td>
<td>-1.269802</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>14</td>
<td>0.325522</td>
<td>0.847707</td>
<td>-1.839404</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>15</td>
<td>0.806235</td>
<td>-0.177295</td>
<td>0.496875</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
<td>1.993128</td>
<td>1.080558</td>
<td>0.438034</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>17</td>
<td>1.37434</td>
<td>-1.787405</td>
<td>0.557332</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>18</td>
<td>1.249409</td>
<td>-2.290628</td>
<td>-1.241227</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>19</td>
<td>0.916989</td>
<td>2.611422</td>
<td>0.710235</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>20</td>
<td>1.717261</td>
<td>3.487584</td>
<td>1.294743</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>21</td>
<td>0.49529</td>
<td>3.106819</td>
<td>-0.43933</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>22</td>
<td>-0.110861</td>
<td>2.35528</td>
<td>1.504412</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>23</td>
<td>-0.010823</td>
<td>-2.535689</td>
<td>-1.569004</td>
</tr>
<tr>
<td>24</td>
<td>9</td>
<td>24</td>
<td>1.731367</td>
<td>-1.323201</td>
<td>-2.008615</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>25</td>
<td>1.970467</td>
<td>-3.388168</td>
<td>-1.398494</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>26</td>
<td>2.809785</td>
<td>0.966372</td>
<td>1.616145</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>27</td>
<td>2.541683</td>
<td>1.210274</td>
<td>-0.892075</td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>28</td>
<td>2.777231</td>
<td>-1.741997</td>
<td>0.873839</td>
</tr>
<tr>
<td>29</td>
<td>8</td>
<td>29</td>
<td>0.407047</td>
<td>-2.585756</td>
<td>1.260655</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
<td>30</td>
<td>-2.128329</td>
<td>1.268926</td>
<td>-2.049048</td>
</tr>
</tbody>
</table>
Struktur: PhNTf2CCHPr

M06-2X/6-31+G(d,p)

HF = -2253.56288608 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.268080 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0.521879</td>
<td>0.804733</td>
<td>-0.284059</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1.694645</td>
<td>0.932243</td>
<td>-0.913542</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2.13313</td>
<td>0.032763</td>
<td>-1.344052</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>-0.034784</td>
<td>-0.537024</td>
<td>-0.164782</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>0.489246</td>
<td>-1.563038</td>
<td>1.075579</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>-1.284788</td>
<td>-0.978235</td>
<td>-1.237926</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>-2.845636</td>
<td>-0.53414</td>
<td>-0.289921</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>1.880809</td>
<td>-2.510645</td>
<td>0.269667</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>-1.205584</td>
<td>-0.052284</td>
<td>-2.340366</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>-1.288654</td>
<td>-2.409418</td>
<td>-1.390516</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>1.106619</td>
<td>-0.735765</td>
<td>2.083777</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>-0.539146</td>
<td>-2.528509</td>
<td>1.360612</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>2.970887</td>
<td>-1.754697</td>
<td>0.218812</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>2.120871</td>
<td>-3.581253</td>
<td>1.009068</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>1.54025</td>
<td>-2.874748</td>
<td>-0.955916</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>-2.711463</td>
<td>-0.82676</td>
<td>0.984198</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>-3.10366</td>
<td>0.754402</td>
<td>-0.437444</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-3.834076</td>
<td>-1.245511</td>
<td>-0.82014</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>-0.325191</td>
<td>1.892778</td>
<td>0.26255</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>-0.817285</td>
<td>1.840526</td>
<td>1.571837</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>-0.886483</td>
<td>2.960787</td>
<td>-0.566133</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>-1.645908</td>
<td>2.852564</td>
<td>2.04868</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>-0.536972</td>
<td>1.016696</td>
<td>2.221142</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>-1.515406</td>
<td>3.972065</td>
<td>-0.08775</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>-0.338141</td>
<td>2.974153</td>
<td>-1.595306</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>-1.996704</td>
<td>3.918914</td>
<td>1.219206</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>-2.018384</td>
<td>2.807634</td>
<td>3.065254</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>-1.797906</td>
<td>4.792108</td>
<td>-0.74012</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>-2.649507</td>
<td>4.702708</td>
<td>1.590366</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>2.513625</td>
<td>2.180264</td>
<td>-1.012202</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>2.604952</td>
<td>2.471997</td>
<td>-2.067683</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>2.021453</td>
<td>3.060558</td>
<td>-0.48391</td>
</tr>
<tr>
<td>33</td>
<td>6</td>
<td>3.917056</td>
<td>1.954868</td>
<td>-0.430313</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>3.819666</td>
<td>1.647579</td>
<td>0.617554</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>4.398297</td>
<td>1.121255</td>
<td>-0.956858</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>4.78531</td>
<td>3.205863</td>
<td>-0.533606</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>4.32768</td>
<td>4.043576</td>
<td>0.002229</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>5.776992</td>
<td>3.035923</td>
<td>-0.105564</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>4.916474</td>
<td>3.907552</td>
<td>-1.57908</td>
</tr>
</tbody>
</table>
Struktur: Propylvinyltriflimide

M06-2X/6-31+G(d,p)

HF = -2022.59032490 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.186325 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X (Ångström)</th>
<th>Y (Ångström)</th>
<th>Z (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>-2.763263</td>
<td>1.879198</td>
<td>0.002151</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-2.864665</td>
<td>0.79393</td>
<td>-0.027401</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-2.971473</td>
<td>2.104041</td>
<td>1.12715</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-1.327573</td>
<td>2.315733</td>
<td>-0.253457</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-1.249464</td>
<td>3.402506</td>
<td>-0.136408</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-1.095878</td>
<td>2.089268</td>
<td>-1.300393</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>-3.773092</td>
<td>2.573726</td>
<td>-0.834622</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-3.585927</td>
<td>2.328861</td>
<td>-1.885183</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-4.794954</td>
<td>2.269547</td>
<td>-0.594554</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-3.712389</td>
<td>3.661957</td>
<td>-0.729432</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>-0.290546</td>
<td>1.683237</td>
<td>0.629259</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0.258399</td>
<td>2.226367</td>
<td>1.712499</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>-0.016875</td>
<td>3.231173</td>
<td>2.015327</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0.975953</td>
<td>1.684083</td>
<td>2.319146</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0.125188</td>
<td>0.325481</td>
<td>0.282054</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>-0.617046</td>
<td>-1.021615</td>
<td>1.022914</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>1.287711</td>
<td>0.106613</td>
<td>-0.51084</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>2.878516</td>
<td>0.271489</td>
<td>0.044714</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>-1.618423</td>
<td>-1.77939</td>
<td>-0.392009</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>1.205593</td>
<td>-1.267299</td>
<td>-1.342915</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>1.238799</td>
<td>1.236517</td>
<td>-1.804487</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>0.378753</td>
<td>-1.990277</td>
<td>1.397881</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>-1.571496</td>
<td>-0.464968</td>
<td>1.949183</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>9</td>
<td>-1.068688</td>
<td>-2.911595</td>
<td>-0.769214</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>-2.840326</td>
<td>-2.005674</td>
<td>0.06815</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>-1.689217</td>
<td>-0.939715</td>
<td>-1.418547</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>9</td>
<td>2.840009</td>
<td>-0.498545</td>
<td>1.118726</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>9</td>
<td>3.870656</td>
<td>-0.105208</td>
<td>-0.747108</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>9</td>
<td>3.053682</td>
<td>1.534332</td>
<td>0.409958</td>
<td></td>
</tr>
</tbody>
</table>
4.6.7 Berechnete stationäre Punkte in Kapitel 3.5.2

Struktur: Min1_Start

uM06-2X/6-31+G(d,p)

HF = -2473.13697429 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktkorrektur = 0.195856 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>-3.529722</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>-2.631236</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>-1.317319</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>6</td>
<td>-0.928</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>6</td>
<td>-1.828431</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>6</td>
<td>-3.130717</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>6</td>
<td>-4.546227</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>6</td>
<td>-2.963545</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>6</td>
<td>0.079885</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>6</td>
<td>-1.508303</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>6</td>
<td>-3.833898</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>6</td>
<td>-0.369886</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>6</td>
<td>0.718512</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>6</td>
<td>0.562873</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>6</td>
<td>2.18921</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>6</td>
<td>3.396388</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>6</td>
<td>-0.247483</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>6</td>
<td>-1.499394</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>6</td>
<td>-0.224479</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>6</td>
<td>0.414535</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>6</td>
<td>2.727659</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>6</td>
<td>4.179242</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>6</td>
<td>4.121491</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>6</td>
<td>1.901395</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>6</td>
<td>-0.403253</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>6</td>
<td>2.645371</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>6</td>
<td>1.976765</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>6</td>
<td>-2.924652</td>
</tr>
<tr>
<td>29</td>
<td>9</td>
<td>6</td>
<td>-3.485757</td>
</tr>
<tr>
<td>30</td>
<td>9</td>
<td>6</td>
<td>-2.578064</td>
</tr>
<tr>
<td>31</td>
<td>9</td>
<td>6</td>
<td>-3.736415</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>6</td>
<td>-0.427146</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>6</td>
<td>0.299664</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>6</td>
<td>-1.195547</td>
</tr>
</tbody>
</table>
Struktur: TS1_CF3add_ecl

uM06-2X/6-31+G(d,p)
HF = -2473.13228001 Hartree/Teilchen
Imaginäre Frequenzen: eine (-348.22 cm⁻¹)
Nullpunktskorrektur = 0.195482 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>-3.784996</td>
<td>2.081578</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-2.869104</td>
<td>1.047934</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-1.956349</td>
<td>1.170767</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-1.210574</td>
<td>2.349881</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-2.131246</td>
<td>3.382332</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-3.419875</td>
<td>3.255015</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-4.790774</td>
<td>1.964836</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-3.184766</td>
<td>0.132195</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-0.215303</td>
<td>2.477585</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-1.836755</td>
<td>4.282575</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-4.198367</td>
<td>4.099234</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.600979</td>
<td>0.069323</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0.587205</td>
<td>0.109985</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>0.718975</td>
<td>-0.85235</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>1.926717</td>
<td>1.039963</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>3.209192</td>
<td>-0.266727</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>-0.136405</td>
<td>0.16877</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-1.422582</td>
<td>0.263828</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>0.014182</td>
<td>-0.44208</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>0.407192</td>
<td>1.373099</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>2.618938</td>
<td>-1.44858</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>4.148282</td>
<td>-0.333667</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>3.734419</td>
<td>0.102578</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>2.119522</td>
<td>-0.893652</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>-0.094823</td>
<td>-2.026643</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>2.454597</td>
<td>1.800443</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>1.498553</td>
<td>1.63474</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>-2.305152</td>
<td>-2.461587</td>
</tr>
<tr>
<td>29</td>
<td>9</td>
<td>-2.785084</td>
<td>-1.858611</td>
</tr>
<tr>
<td>30</td>
<td>9</td>
<td>-1.831711</td>
<td>-3.654756</td>
</tr>
<tr>
<td>31</td>
<td>9</td>
<td>-3.251096</td>
<td>-2.557551</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>-0.740606</td>
<td>-0.981106</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>0.038302</td>
<td>-1.732609</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>-1.510087</td>
<td>-0.976254</td>
</tr>
</tbody>
</table>
Struktur: Min2_CF3add_ecl

\[\text{uM06-2X/6-31+G(d,p)} \]
\[\text{HF} = -2473.20372035 \text{ Hartree/Teilchen} \]
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.199071 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>3.925497</td>
<td>-1.918674</td>
<td>-1.01591</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3.006488</td>
<td>-0.88377</td>
<td>-1.131061</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1.732166</td>
<td>-0.984923</td>
<td>-0.519853</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1.428237</td>
<td>-2.163312</td>
<td>0.20687</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2.354815</td>
<td>-3.186062</td>
<td>0.313504</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>3.608211</td>
<td>-3.072313</td>
<td>-0.294787</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>4.897221</td>
<td>-1.822795</td>
<td>-1.489088</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>3.277509</td>
<td>0.000013</td>
<td>-1.692377</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.462167</td>
<td>-2.275107</td>
<td>0.689729</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2.100736</td>
<td>-4.07528</td>
<td>0.874101</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>4.331834</td>
<td>-3.875813</td>
<td>-0.202235</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0.794672</td>
<td>0.081981</td>
<td>-0.645366</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-0.500486</td>
<td>-0.080061</td>
<td>-0.070549</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-0.97302</td>
<td>0.887488</td>
<td>1.228246</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>-1.642585</td>
<td>-1.144667</td>
<td>-0.811835</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>-2.988282</td>
<td>0.007866</td>
<td>-1.471042</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>-0.247263</td>
<td>-0.03475</td>
<td>2.669837</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>1.068345</td>
<td>-0.087789</td>
<td>2.533516</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>-0.562102</td>
<td>0.61126</td>
<td>3.780928</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>-0.746116</td>
<td>-1.25989</td>
<td>2.703104</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>-2.508394</td>
<td>1.243413</td>
<td>-1.570566</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>-4.042644</td>
<td>-0.015688</td>
<td>-0.689491</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>-3.311512</td>
<td>-0.432807</td>
<td>-2.676551</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>-2.408677</td>
<td>0.786664</td>
<td>1.330543</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>-0.257202</td>
<td>2.13923</td>
<td>1.136081</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>-2.239922</td>
<td>-1.98802</td>
<td>0.190835</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>-0.956824</td>
<td>-1.649992</td>
<td>-1.978043</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>2.096248</td>
<td>2.284238</td>
<td>-0.82935</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>9</td>
<td>2.524089</td>
<td>1.906552</td>
<td>0.382118</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>9</td>
<td>1.627147</td>
<td>3.533596</td>
<td>-0.72648</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>9</td>
<td>3.191761</td>
<td>2.349923</td>
<td>-1.622132</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>1.042855</td>
<td>1.338594</td>
<td>-1.428863</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>0.115156</td>
<td>1.907215</td>
<td>-1.50128</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>1.370385</td>
<td>1.096345</td>
<td>-2.444786</td>
<td></td>
</tr>
</tbody>
</table>
Struktur: TS2_CF3add_stag

uM06-2X/6-31+G(d,p)

HF = -2473.2036258 Hartree/Teilchen
Imaginäre Frequenzen: eine (-25.05 cm⁻¹)
Nullpunktkorrektur = 0.198850 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
<td>X: 4.236541 Y: -0.527181 Z: -1.57339</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
<td>X: 3.205070 Y: 0.25889 Z: -1.087373</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1</td>
<td>X: 1.914387 Y: -0.288112 Z: -0.878289</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1</td>
<td>X: 1.714946 Y: -1.857395 Z: -1.182721</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1</td>
<td>X: 2.75324 Y: -2.431954 Z: -1.673265</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1</td>
<td>X: 4.018984 Y: -1.874999 Z: -1.870599</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>X: 5.21861 Y: -0.089622 Z: -1.719447</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>X: 3.403009 Y: 1.298015 Z: -0.847598</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>X: 0.73701 Y: -2.108845 Z: -1.049167</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>X: 2.573832 Y: -3.47582 Z: -1.909067</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>X: 4.82936 Y: -2.486202 Z: -2.25393</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>1</td>
<td>X: 0.848958 Y: 0.535498 Z: -0.403056</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>1</td>
<td>X: -0.413043 Y: -0.07788 Z: -0.130643</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>1</td>
<td>X: -0.887708 Y: -0.402025 Z: 1.457695</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>1</td>
<td>X: -1.517391 Y: -0.327187 Z: -1.429587</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>1</td>
<td>X: -2.923062 Y: 0.889668 Z: -1.097184</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>1</td>
<td>X: -0.244957 Y: -2.119852 Z: 1.772345</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>1</td>
<td>X: 1.078952 Y: -2.10736 Z: 1.763554</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>1</td>
<td>X: -0.683193 Y: -2.497471 Z: 2.963114</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>1</td>
<td>X: -0.691941 Y: -2.949761 Z: 0.843843</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>1</td>
<td>X: -2.498821 Y: 1.857796 Z: -0.291551</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>1</td>
<td>X: -3.958662 Y: 0.27448 Z: -0.576677</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>1</td>
<td>X: -3.253838 Y: 1.413188 Z: -2.267915</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>1</td>
<td>X: -2.327835 Y: -0.500144 Z: 1.447051</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>1</td>
<td>X: -0.133083 Y: 0.467094 Z: 2.321445</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>1</td>
<td>X: -2.06998 Y: -1.654935 Z: -1.357557</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>1</td>
<td>X: -0.818922 Y: 0.191623 Z: -2.582242</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>1</td>
<td>X: 1.561991 Y: 2.650752 Z: 0.880303</td>
</tr>
<tr>
<td>29</td>
<td>9</td>
<td>1</td>
<td>X: 2.432103 Y: 1.82432 Z: 1.477581</td>
</tr>
<tr>
<td>30</td>
<td>9</td>
<td>1</td>
<td>X: 0.65491 Y: 3.02093 Z: 1.79129</td>
</tr>
<tr>
<td>31</td>
<td>9</td>
<td>1</td>
<td>X: 2.246065 Y: 3.763065 Z: 0.538125</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>1</td>
<td>X: 0.921518 Y: 2.032736 Z: -0.366819</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>1</td>
<td>X: -0.079806 Y: 2.460943 Z: -0.453669</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>1</td>
<td>X: 1.503829 Y: 2.383993 Z: -1.223924</td>
</tr>
</tbody>
</table>
Struktur: Min3_CF3add_stag

![Molekülstruktur](image)

\[uM06-2X/6-31+G(d,p) \]
\[HF = -2473.20856185 \text{ Hartree/Teilchen} \]
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.198521 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>-4.524264</td>
<td>-0.451145</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-3.323211</td>
<td>-0.762528</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-2.123839</td>
<td>-0.104512</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-2.196925</td>
<td>0.868829</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-3.402633</td>
<td>1.168679</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-4.574642</td>
<td>0.514929</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-5.428636</td>
<td>-0.968691</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-3.307593</td>
<td>-1.530436</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1.300992</td>
<td>1.390246</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-3.432145</td>
<td>1.915049</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-5.517782</td>
<td>0.752834</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.887895</td>
<td>-0.416585</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0.290397</td>
<td>0.270353</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>1.006011</td>
<td>1.42569</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>1.066822</td>
<td>-0.165279</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>2.651757</td>
<td>-1.024082</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0.089127</td>
<td>2.984841</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-1.186832</td>
<td>2.847034</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>0.625969</td>
<td>3.979183</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>0.191846</td>
<td>3.227442</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>2.609132</td>
<td>-1.238051</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>3.685918</td>
<td>-0.268149</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>2.732582</td>
<td>-2.178326</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>2.368775</td>
<td>1.596725</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>0.630006</td>
<td>1.126428</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>1.455721</td>
<td>1.034537</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>0.219707</td>
<td>-1.177962</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>-0.716928</td>
<td>-1.452345</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0.165297</td>
<td>-1.229519</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>-1.578022</td>
<td>-1.470138</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>-0.538585</td>
<td>-2.861134</td>
</tr>
<tr>
<td>32</td>
<td>9</td>
<td>-1.57693</td>
<td>-3.258413</td>
</tr>
<tr>
<td>33</td>
<td>9</td>
<td>-0.415067</td>
<td>-3.738007</td>
</tr>
<tr>
<td>34</td>
<td>9</td>
<td>0.566308</td>
<td>-2.96848</td>
</tr>
</tbody>
</table>
Struktur: TS3_NS_bondbreak

uM06-2X/6-31+G(d,p)

HF = -2473.19486306 Hartree/Teilchen

Imaginäre Frequenzen: eine (-313.45 cm⁻¹)

Nullpunktkorrektur = 0.197352 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>-4.585507</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-3.503909</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-2.252975</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-2.126985</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-3.215174</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-4.447821</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-5.538732</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-3.62337</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1.171409</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-3.104137</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-5.298352</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-1.106781</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0.100236</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>1.357316</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>0.729328</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>2.333802</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0.942237</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-0.275507</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>1.827278</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>0.971665</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>2.495578</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>3.357927</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>2.180977</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>2.558478</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>1.269962</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>1.004728</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>-0.352057</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>-1.233695</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>-0.522432</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>-2.238695</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>-0.938535</td>
</tr>
<tr>
<td>32</td>
<td>9</td>
<td>-1.811503</td>
</tr>
<tr>
<td>33</td>
<td>9</td>
<td>-0.995692</td>
</tr>
<tr>
<td>34</td>
<td>9</td>
<td>0.290649</td>
</tr>
</tbody>
</table>
Struktur: Min4_Imin+SO2CF3

$\text{uM06-2X/6-31+G(d,p)}$

HF = -2473.2213177 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.197409 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>-4.590133</td>
<td>-0.431344</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-3.543769</td>
<td>-0.472472</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-2.343658</td>
<td>0.194514</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-2.205281</td>
<td>0.886867</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-3.249602</td>
<td>0.920587</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-4.447619</td>
<td>0.267174</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-5.517653</td>
<td>-0.948469</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-3.66657</td>
<td>-1.038525</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1.277515</td>
<td>1.404355</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-3.13326</td>
<td>1.459908</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-5.270191</td>
<td>0.300095</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-1.225389</td>
<td>0.241943</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-0.144751</td>
<td>0.775133</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>1.177643</td>
<td>1.405167</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>0.924597</td>
<td>-0.927362</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>2.539744</td>
<td>-1.822446</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0.819872</td>
<td>3.096309</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-0.418204</td>
<td>3.442231</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>1.676317</td>
<td>3.980353</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>0.906486</td>
<td>3.064492</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>2.583898</td>
<td>-1.924278</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>3.564444</td>
<td>-1.125905</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>2.537497</td>
<td>-3.033486</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>2.360407</td>
<td>0.907945</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>1.115472</td>
<td>1.50311</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>1.177228</td>
<td>-0.227207</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>-0.125642</td>
<td>-1.943615</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>-1.352355</td>
<td>-0.315774</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>-0.698884</td>
<td>0.235832</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>-2.379895</td>
<td>-0.252902</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>-0.928394</td>
<td>-1.775446</td>
</tr>
<tr>
<td>32</td>
<td>9</td>
<td>-1.716868</td>
<td>-2.566</td>
</tr>
<tr>
<td>33</td>
<td>9</td>
<td>-0.991039</td>
<td>-2.21921</td>
</tr>
<tr>
<td>34</td>
<td>9</td>
<td>0.330941</td>
<td>-1.939579</td>
</tr>
</tbody>
</table>

240
Struktur: TS4_CS_bondbreak

uM06-2X/6-31+G(d,p)
HF = -2473.2045579 Hartree/Teilchen
imaginäre Frequenzen: eine (-141.78 cm⁻¹)
Nullpunktskorrektur = 0.196063 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>6</td>
<td>-4.585507</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6</td>
<td>-3.503909</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>6</td>
<td>-2.252975</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6</td>
<td>-2.126985</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6</td>
<td>-3.215174</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td>-4.447821</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1</td>
<td>-5.538732</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1</td>
<td>-3.62337</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1</td>
<td>-1.171409</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
<td>-3.104137</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1</td>
<td>-5.298352</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>6</td>
<td>-1.106781</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>7</td>
<td>0.100236</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>16</td>
<td>1.357316</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>16</td>
<td>0.729328</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>6</td>
<td>2.333802</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>6</td>
<td>0.942237</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>9</td>
<td>-0.275507</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>9</td>
<td>1.827278</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>9</td>
<td>0.971665</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>9</td>
<td>2.495578</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>9</td>
<td>3.357927</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>9</td>
<td>2.180977</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>8</td>
<td>2.558478</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>8</td>
<td>1.269962</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>8</td>
<td>1.004728</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>8</td>
<td>-0.352057</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>6</td>
<td>-1.233695</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>1</td>
<td>-0.522432</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1</td>
<td>-2.238895</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>6</td>
<td>-0.938535</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>9</td>
<td>-1.811503</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>9</td>
<td>-0.995692</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>9</td>
<td>0.290649</td>
</tr>
</tbody>
</table>
Struktur: Min5_Ende

uM06-2X/6-31+G(d,p)
HF = - 2473.2096812 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.195951 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>4.775336</td>
<td>-1.527512</td>
<td>0.24615</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3.555113</td>
<td>-1.297355</td>
<td>-0.382569</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2.819654</td>
<td>-0.141781</td>
<td>-0.089216</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>3.327227</td>
<td>0.781214</td>
<td>0.839011</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>4.555278</td>
<td>0.555374</td>
<td>1.450336</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5.278071</td>
<td>-0.600878</td>
<td>1.156221</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5.330454</td>
<td>-2.432622</td>
<td>0.024378</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>3.169191</td>
<td>-2.043167</td>
<td>-1.068157</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2.752717</td>
<td>1.673999</td>
<td>1.063785</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>4.944103</td>
<td>1.279515</td>
<td>2.156869</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>6.234656</td>
<td>-0.777831</td>
<td>1.637755</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>1.504763</td>
<td>0.113503</td>
<td>-0.718406</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0.760114</td>
<td>0.989814</td>
<td>-0.135473</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-0.752587</td>
<td>1.45739</td>
<td>-0.613783</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>-0.558471</td>
<td>-0.591766</td>
<td>2.427482</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>-3.330842</td>
<td>-1.361554</td>
<td>0.385035</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>-0.521606</td>
<td>3.263259</td>
<td>-0.265134</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>0.461539</td>
<td>3.744167</td>
<td>-1.018923</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>-1.651855</td>
<td>3.887926</td>
<td>-0.560482</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>-0.230033</td>
<td>3.454683</td>
<td>1.013776</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>-3.554356</td>
<td>-1.011417</td>
<td>-0.868186</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>-4.160797</td>
<td>-0.738961</td>
<td>1.197441</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>-3.422093</td>
<td>-2.671741</td>
<td>0.527686</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>-1.697993</td>
<td>0.977453</td>
<td>0.379879</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>-1.032139</td>
<td>1.361099</td>
<td>-2.033964</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>-1.840481</td>
<td>-0.990519</td>
<td>2.968916</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>0.085896</td>
<td>-1.505087</td>
<td>1.501962</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>1.140809</td>
<td>-0.629399</td>
<td>-1.98984</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0.589453</td>
<td>0.03204</td>
<td>-2.660635</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>2.040293</td>
<td>-0.977451</td>
<td>-2.497595</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>0.256817</td>
<td>-1.838571</td>
<td>-1.74205</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>9</td>
<td>0.876133</td>
<td>-2.769389</td>
<td>-1.00092</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>9</td>
<td>-0.072441</td>
<td>-2.411073</td>
<td>-2.908866</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>9</td>
<td>-0.876601</td>
<td>-1.503521</td>
<td>-1.114729</td>
<td></td>
</tr>
</tbody>
</table>
berechnete Bindungsenergien

Geometrien wurden zunächst mit Gaussian 9 mit der M06-2X DFT-Methode und dem Basissatz 6-31+G(d,p) optimiert. Um die Validität der Methode zu verifizieren wurden bestimmte Strukturen anschließend mit dem auf-CC-pVTZ Basissatz und dem 6-311(++)G(dp) Basissatz mit D3 Dispersionskorrektur sowie mit der B3LYP-Methode optimiert und die nach der Gleichung

\[BDE = \sum (E_0 + H_{corr})_{Produkte} - \sum (E_0 + H_{corr})_{Edukte} \]

berechneten Bindungsenergien mit denen der beschriebenen Methode verglichen.
Der Vergleich zeigt, dass die B3LYP-Methode die Bindungsenergie systematisch zu gering berechnet und das der 6-31+G(d,p) Basissatz nur geringfügig von den höherwertigen Basissätzen abweicht. Daher wurde er für alle weiteren Berechnungen der Bindungsenergie verwendet.

BDE [kcal·mol⁻¹]

<table>
<thead>
<tr>
<th>Bindung</th>
<th>B3LYP/6-31+(+)G(d,p)</th>
<th>M06-2X/6-31+(+)G(d,p)</th>
<th>M06-2X/aug-CC-pVTZ</th>
<th>M06-2X/6-311(++)G(d,p) + GD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-N</td>
<td>18.83</td>
<td>40.9</td>
<td>41.85</td>
<td>43.65</td>
</tr>
<tr>
<td>S-CF₃</td>
<td>43.65</td>
<td>58.6</td>
<td></td>
<td>60.05</td>
</tr>
</tbody>
</table>

ₓ₀ + Hcorr [Hartree/particle]

<table>
<thead>
<tr>
<th>Struktur</th>
<th>B3LYP/6-31+(+)G(d,p)</th>
<th>M06-2X/6-31+(+)G(d,p)</th>
<th>M06-2X/aug-CC-pVTZ</th>
<th>M06-2X/6-311(++)G(d,p) + GD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTF₂</td>
<td>-2136.017719</td>
<td>-2135.46565</td>
<td>-2136.10117</td>
<td>-2135.88031</td>
</tr>
<tr>
<td>NTF</td>
<td>-1249.82926</td>
<td>-1249.458867</td>
<td>-1249.835489</td>
<td>-1249.70210</td>
</tr>
<tr>
<td>O₂S₂O</td>
<td>-886.158447</td>
<td>-885.941635</td>
<td>-886.198981</td>
<td>-886.10865</td>
</tr>
<tr>
<td>CF₃</td>
<td>-1798.385738</td>
<td>-1797.929812</td>
<td></td>
<td>-1798.24424</td>
</tr>
<tr>
<td>CF₃</td>
<td>-337.56242</td>
<td>-337.442385</td>
<td></td>
<td>-337.54037</td>
</tr>
<tr>
<td>TF<·N<·TF</td>
<td>-1826.577526</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph<·N<·Ph</td>
<td>-308.719688</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Struktur</td>
<td>$\varepsilon_0 + H_{\text{corr}}$ [Hartree/particle]</td>
<td>Struktur</td>
<td>$\varepsilon_0 + H_{\text{corr}}$ [Hartree/particle]</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Ph^+</td>
<td>-1269.960371</td>
<td>Ph</td>
<td>-1289.351703</td>
<td></td>
</tr>
<tr>
<td>$\hat{\text{OTf}}$</td>
<td>-961.081299</td>
<td>Ph</td>
<td>-403.323612</td>
<td></td>
</tr>
<tr>
<td>O^+</td>
<td>-932.420241</td>
<td>Ph</td>
<td>-1250.091045</td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>-383.949312</td>
<td>Ph</td>
<td>-364.064160</td>
<td></td>
</tr>
<tr>
<td>NTf_2</td>
<td>-2472.984175</td>
<td>Ph</td>
<td>-1250.091165</td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>-1587.029445</td>
<td>Ph</td>
<td>-364.069268</td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>-2135.444814</td>
<td>Ph</td>
<td>-1587.029445</td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>-2135.463487</td>
<td>Ph</td>
<td>-701.011077</td>
<td></td>
</tr>
</tbody>
</table>
Struktur: Vinyltriflimide

M06-2X/6-31+G(d,p)
HF = -2135.6702899 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.182518 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>-4.370535</td>
<td>-1.299639</td>
<td>0.673516</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-3.094306</td>
<td>-1.229668</td>
<td>1.223921</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-1.97086</td>
<td>-1.141387</td>
<td>0.394259</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-2.146292</td>
<td>-1.099689</td>
<td>-0.99336</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-3.423214</td>
<td>-1.169804</td>
<td>-1.541021</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-4.537834</td>
<td>-1.27164</td>
<td>-0.710028</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-5.235553</td>
<td>-1.356892</td>
<td>1.326408</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-2.966402</td>
<td>-1.208829</td>
<td>2.302165</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1.287734</td>
<td>-1.026009</td>
<td>-1.654738</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-3.546556</td>
<td>-1.144564</td>
<td>-2.618822</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-5.537341</td>
<td>-1.319849</td>
<td>-1.138737</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.619302</td>
<td>-1.073024</td>
<td>0.993754</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0.32957</td>
<td>-0.20698</td>
<td>0.30974</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>0.419588</td>
<td>1.422933</td>
<td>0.739512</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>1.401395</td>
<td>-0.859526</td>
<td>-0.844637</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>3.071843</td>
<td>-0.802938</td>
<td>0.030903</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>-0.84064</td>
<td>2.240493</td>
<td>-0.364938</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-2.059601</td>
<td>1.920931</td>
<td>0.038007</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>-0.665972</td>
<td>3.55034</td>
<td>-0.263548</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>-0.665395</td>
<td>1.858517</td>
<td>-1.617297</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>2.894386</td>
<td>-0.687109</td>
<td>1.342271</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>3.790223</td>
<td>0.200126</td>
<td>-0.420845</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>3.685163</td>
<td>-1.947845</td>
<td>-0.22835</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>-0.217197</td>
<td>-1.704131</td>
<td>2.095922</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0.780501</td>
<td>-1.55812</td>
<td>2.493168</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>-0.884068</td>
<td>-2.388345</td>
<td>2.608544</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>1.716803</td>
<td>1.889714</td>
<td>0.312164</td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>-0.084087</td>
<td>1.558893</td>
<td>2.081619</td>
</tr>
<tr>
<td>29</td>
<td>8</td>
<td>1.489385</td>
<td>0.015709</td>
<td>-1.984004</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>1.042573</td>
<td>-2.25296</td>
<td>-0.944013</td>
</tr>
</tbody>
</table>
Struktur: Vinyltriflimide

B3LYP/6-31+G(d,p)

HF = -2136.2185900 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden

Nullpunktkorrektur = 0.177933 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>-4.41155</td>
<td>-1.398056</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-3.12261</td>
<td>-1.279899</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-2.01267</td>
<td>-1.165904</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-2.23024</td>
<td>-1.14782</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-3.52066</td>
<td>-1.265211</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-4.61535</td>
<td>-1.393395</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-5.25736</td>
<td>-1.47689</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-2.97428</td>
<td>-1.245997</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1.39315</td>
<td>-1.065397</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-3.66862</td>
<td>-1.259777</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-5.61943</td>
<td>-1.479765</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.64976</td>
<td>-1.085777</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0.29872</td>
<td>-1.189194</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>0.380467</td>
<td>1.45733</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>1.429192</td>
<td>-0.824036</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>3.109525</td>
<td>-0.925821</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>-0.78551</td>
<td>2.394518</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-2.05170</td>
<td>2.085281</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>-0.58629</td>
<td>3.697238</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>-0.51773</td>
<td>2.103452</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>2.913806</td>
<td>-1.02145</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>3.855152</td>
<td>0.133755</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>3.721107</td>
<td>-2.029015</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>-0.23974</td>
<td>-1.753315</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0.752082</td>
<td>-1.616555</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>-0.89681</td>
<td>-2.464805</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>1.725346</td>
<td>1.931314</td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>-0.240634</td>
<td>1.541184</td>
</tr>
<tr>
<td>29</td>
<td>8</td>
<td>1.608394</td>
<td>0.130034</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>1.016957</td>
<td>-2.202538</td>
</tr>
</tbody>
</table>
Struktur: Vinyltriflimide

uM06-2X/Aug-CC-pVTZ
HF = -2136.30560410 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.182425 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>-4.362829</td>
<td>-1.406815</td>
<td>0.646726</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-3.10169</td>
<td>-1.307803</td>
<td>1.2083</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-1.981554</td>
<td>-1.103391</td>
<td>0.4039</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-2.153465</td>
<td>-0.977997</td>
<td>-0.973139</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-3.416895</td>
<td>-1.077806</td>
<td>-1.53412</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-4.524027</td>
<td>-1.294806</td>
<td>-0.727665</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-5.223218</td>
<td>-1.5565</td>
<td>1.284249</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-2.99611</td>
<td>-1.357911</td>
<td>2.283584</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1.305038</td>
<td>-0.805302</td>
<td>-1.62201</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-3.534105</td>
<td>-0.984284</td>
<td>-2.604851</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-5.509815</td>
<td>-1.366786</td>
<td>-1.166051</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.642189</td>
<td>-1.011998</td>
<td>1.018136</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0.321866</td>
<td>-0.182299</td>
<td>0.310083</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>0.473836</td>
<td>1.436213</td>
<td>0.714152</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>1.353647</td>
<td>-0.892499</td>
<td>-0.830938</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>3.045156</td>
<td>-0.863815</td>
<td>0.010157</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>-0.809763</td>
<td>2.279967</td>
<td>-0.341413</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-2.014715</td>
<td>1.997352</td>
<td>0.113757</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>-0.595934</td>
<td>3.579691</td>
<td>-0.254759</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>-0.70116</td>
<td>1.89054</td>
<td>-1.594588</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>2.901187</td>
<td>-0.691568</td>
<td>1.314745</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>3.7909</td>
<td>0.085874</td>
<td>-0.494866</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>3.606046</td>
<td>-2.036448</td>
<td>-0.214195</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>-0.251406</td>
<td>-1.59959</td>
<td>2.138898</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0.742343</td>
<td>-1.445186</td>
<td>2.53225</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>-0.920697</td>
<td>-2.254198</td>
<td>2.677359</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>1.753371</td>
<td>1.867106</td>
<td>0.235757</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>0.039714</td>
<td>1.603866</td>
<td>2.06581</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>8</td>
<td>1.443453</td>
<td>-0.086015</td>
<td>-1.993039</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>0.956325</td>
<td>-2.261783</td>
<td>-0.886284</td>
<td></td>
</tr>
</tbody>
</table>
Struktur: Vinyltriflimide

![Chemical structure image]

\[\text{M06-2X(D3)/6-311++G(d,p)} \]

HF = -2136.08446643 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.182001 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>[-4.343191, -1.326259, 0.670844]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>[-3.064031, -1.283221, 1.209723]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>[-1.950728, -1.170886, 0.373811]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>[-2.137331, -1.082545, -1.077999]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>[-3.417704, -1.125512, -1.543642]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>[-4.522544, -1.248159, -0.706777]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>[-5.201057, -1.402412, 1.327661]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>[-2.924626, -1.301894, 2.284433]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>[-1.286466, -0.99023, -1.673282]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>[-3.551403, -1.062514, -2.616846]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>[-5.520931, -1.272189, -1.126583]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>[-0.595496, -1.125173, 0.952257]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>[0.339594, -0.224591, 0.304181]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>[0.378664, 1.396526, 0.76696]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>[1.429716, -0.820773, -0.861127]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>[3.096928, -0.748927, 0.029205]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>[-0.887393, 2.209303, -0.345341]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>[-2.101089, 1.910797, 0.073779]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>[-0.696987, 3.514014, -0.266024]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>[-0.727307, 1.806442, -1.588328]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>[2.905521, -0.685563, 1.338283]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>[3.791282, 0.282391, -0.379634]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>[3.738428, -1.865258, -0.263276]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>[-0.177862, -1.800444, 2.026441]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>[0.822211, -1.666194, 2.416898]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>[-0.834613, -2.510339, 2.512595]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>[1.665765, 1.903599, 0.377946]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>[-0.146621, 1.490204, 2.097432]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>8</td>
<td>[1.499602, 0.082082, -1.971487]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>[1.105391, -2.211835, -1.002814]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Struktur: PhNTfCCH2_radical

uM06-2X/6-31+G(d,p)

HF = -1249.62791973 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.153664 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer Zentrum</th>
<th>Atom Nummer</th>
<th>X (Angstrom)</th>
<th>Y (Angstrom)</th>
<th>Z (Angstrom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>4.523452</td>
<td>0.28618</td>
<td>0.557231</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3.281722</td>
<td>0.911919</td>
<td>0.500588</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2.179243</td>
<td>0.241207</td>
<td>-0.04031</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2.33326</td>
<td>-1.064779</td>
<td>-0.519273</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3.578065</td>
<td>-1.682221</td>
<td>-0.47304</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4.674609</td>
<td>-1.009202</td>
<td>0.065619</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5.370233</td>
<td>0.80738</td>
<td>0.991737</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>3.189898</td>
<td>1.911425</td>
<td>0.910311</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.471382</td>
<td>-1.579117</td>
<td>-0.93148</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3.693246</td>
<td>-2.690045</td>
<td>-0.858375</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>5.644735</td>
<td>-1.494542</td>
<td>0.10525</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0.841128</td>
<td>0.889956</td>
<td>-0.097539</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-0.189249</td>
<td>0.073964</td>
<td>-0.043676</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-1.729149</td>
<td>0.669898</td>
<td>-0.187617</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>-2.604474</td>
<td>-0.902385</td>
<td>0.2441</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>-2.281119</td>
<td>-1.290021</td>
<td>1.470123</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>-3.910724</td>
<td>-0.666797</td>
<td>0.18789</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-2.295232</td>
<td>-1.859579</td>
<td>-0.620355</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0.759803</td>
<td>2.303832</td>
<td>-0.233203</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>-0.189604</td>
<td>2.823354</td>
<td>-0.204837</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1.660321</td>
<td>2.882395</td>
<td>-0.389218</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>-2.04859</td>
<td>0.957547</td>
<td>-1.573466</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>-2.057205</td>
<td>1.618504</td>
<td>0.863161</td>
</tr>
</tbody>
</table>
Struktur: PhNTfCCH2_radical

uB3LYP/6-31+G(d,p)
HF = -1249.99588973 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.150923 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>4.568333</td>
<td>0.269688</td>
<td>0.487084</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3.336644</td>
<td>0.921032</td>
<td>0.439808</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2.1949</td>
<td>0.252799</td>
<td>-0.035396</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2.313657</td>
<td>-1.082832</td>
<td>-0.45691</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3.548287</td>
<td>-1.727523</td>
<td>-0.417758</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4.679677</td>
<td>-1.054188</td>
<td>0.054169</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5.440433</td>
<td>0.794584</td>
<td>0.867197</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>3.265014</td>
<td>1.941357</td>
<td>0.802909</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.433206</td>
<td>-1.60102</td>
<td>-0.820046</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3.628401</td>
<td>-2.755789</td>
<td>-0.757109</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>5.640791</td>
<td>-1.558713</td>
<td>0.085707</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0.868073</td>
<td>0.930316</td>
<td>-0.085351</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-0.184263</td>
<td>0.121055</td>
<td>-0.010978</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-1.746118</td>
<td>0.706314</td>
<td>-0.144844</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>-2.611718</td>
<td>-0.931769</td>
<td>0.202268</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>-2.294373</td>
<td>-1.388262</td>
<td>1.417435</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>-3.931128</td>
<td>-0.712424</td>
<td>0.146602</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-2.282024</td>
<td>-1.846537</td>
<td>-0.715092</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0.799832</td>
<td>2.337943</td>
<td>-0.22987</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>-0.145662</td>
<td>2.865663</td>
<td>-0.217366</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1.701133</td>
<td>2.919808</td>
<td>-0.374723</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>-2.065048</td>
<td>1.057736</td>
<td>-1.530761</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>-2.104948</td>
<td>1.602002</td>
<td>0.958138</td>
<td></td>
</tr>
</tbody>
</table>
Struktur: PhNTfCCH2_radical

uM06-2X/Aug-CC-pVTZ
HF = -1250.00426152 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.153422 (Hartree/Teilchen)
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>4.537332</td>
<td>0.306439</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3.302373</td>
<td>0.932546</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2.178584</td>
<td>0.231908</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2.306893</td>
<td>-1.104736</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3.543899</td>
<td>-1.723715</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4.66096</td>
<td>-1.020132</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5.401715</td>
<td>0.853809</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>3.214731</td>
<td>1.959998</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.430183</td>
<td>-1.64456</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3.636054</td>
<td>-2.757342</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>5.626104</td>
<td>-1.506482</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0.844617</td>
<td>0.882124</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-0.189791</td>
<td>0.088294</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-1.714823</td>
<td>0.690348</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>-2.611725</td>
<td>-0.908717</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>-2.322747</td>
<td>-1.422607</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>-3.908705</td>
<td>-0.655487</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-2.287826</td>
<td>-1.772683</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0.764638</td>
<td>2.282018</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>-0.182476</td>
<td>2.79918</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1.658715</td>
<td>2.852066</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>-2.01536</td>
<td>1.122573</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>-2.048797</td>
<td>1.523712</td>
</tr>
</tbody>
</table>
Struktur: PhNTfCCH2_radical

\(\text{uM06-2X(D3)/6-311++G(d,p)} \)

\(\text{HF = -1249.87072795 Hartree/Teilchen} \)

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.153223 (Hartree/Teilchen)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>4.526135</td>
<td>0.28596</td>
<td>0.524572</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3.289412</td>
<td>0.91696</td>
<td>0.471027</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2.177558</td>
<td>0.24063</td>
<td>-0.03695</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2.317175</td>
<td>-1.07418</td>
<td>-0.485538</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3.556631</td>
<td>-1.696989</td>
<td>-0.442948</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4.662669</td>
<td>-1.018422</td>
<td>0.061696</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5.380836</td>
<td>0.811862</td>
<td>0.931948</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>3.189913</td>
<td>1.924997</td>
<td>0.855994</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.448505</td>
<td>-1.593578</td>
<td>-0.871463</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3.66085</td>
<td>-2.712857</td>
<td>-0.803946</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>5.628928</td>
<td>-1.507129</td>
<td>0.097667</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0.842047</td>
<td>0.892889</td>
<td>-0.092668</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-0.18848</td>
<td>0.083739</td>
<td>-0.015771</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-1.726128</td>
<td>0.681295</td>
<td>-0.155903</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>-2.603625</td>
<td>-0.90978</td>
<td>0.216425</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>-2.289158</td>
<td>-1.335762</td>
<td>1.42698</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>-3.905518</td>
<td>-0.676166</td>
<td>0.157863</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-2.284296</td>
<td>-1.832154</td>
<td>-0.675075</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0.765235</td>
<td>2.302471</td>
<td>-0.255954</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>-0.180363</td>
<td>2.826566</td>
<td>-0.225149</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1.664826</td>
<td>2.874549</td>
<td>-0.428785</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>-2.034175</td>
<td>1.014623</td>
<td>-1.527693</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>-2.05892</td>
<td>1.592155</td>
<td>0.916587</td>
<td></td>
</tr>
</tbody>
</table>
Struktur: SO$_2$CF$_3$ radical

uM06-2X/6-31+G(d,p)

HF = -885.97204561 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.022780 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>16</td>
<td>1.015065</td>
<td>0</td>
<td>-0.333879</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>-0.863611</td>
<td>0.000002</td>
<td>0.006291</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
<td>-1.388508</td>
<td>-1.083781</td>
<td>-0.535893</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>9</td>
<td>-1.388509</td>
<td>1.083788</td>
<td>-0.535886</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>9</td>
<td>-1.066909</td>
<td>-0.000004</td>
<td>1.310368</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>8</td>
<td>1.471003</td>
<td>1.287588</td>
<td>0.197314</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>1.470993</td>
<td>-1.287593</td>
<td>0.197312</td>
</tr>
</tbody>
</table>
Struktur: SO₂CF₃_radical

uB3LYP/6-31+G(d,p)

HF = -886.18776842 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.021505 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>X: -1.035335 Y: -0.000004 Z: -0.332932</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>X: 0.886806 Y: -0.000036 Z: 0.006121</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>X: 1.409872 Y: 1.091235 Z: -0.546005</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>X: 1.409041 Y: -1.090965 Z: -0.546449</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>X: 1.111161 Y: -0.000288 Z: 1.318362</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>X: -1.507214 Y: -1.299703 Z: 0.2028</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>X: -1.507029 Y: 1.29976 Z: 0.202826</td>
</tr>
</tbody>
</table>
Struktur: SO2CF3_radical

uM06-2X/Aug-CC-pVTZ
HF = -886.22909968
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.022624 Hartree/Teilchen
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td></td>
<td>1.015065</td>
<td>0</td>
<td>-0.333879</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td></td>
<td>-0.863611</td>
<td>0.000002</td>
<td>0.006291</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td></td>
<td>-1.388508</td>
<td>-1.083782</td>
<td>-0.535893</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td></td>
<td>-1.388511</td>
<td>1.083787</td>
<td>-0.535886</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td></td>
<td>-1.066909</td>
<td>0.000004</td>
<td>1.310368</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td></td>
<td>1.471002</td>
<td>1.287589</td>
<td>0.197314</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
<td>1.470993</td>
<td>-1.287592</td>
<td>0.197312</td>
</tr>
</tbody>
</table>
Struktur: SO2CF3_radical

uM06-2X(D3)/6-31++G(d,p)
HF = -886.13900519 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktsskorrektur = 0.022740 Hartree/Teilchen
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>1.017161</td>
<td>0</td>
<td>-0.330095</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-0.870678</td>
<td>0</td>
<td>0.00658</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>-1.388874</td>
<td>-1.080194</td>
<td>0.535676</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>-1.388874</td>
<td>1.080195</td>
<td>-0.535676</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>-1.074287</td>
<td>0</td>
<td>1.090677</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>1.476113</td>
<td>1.280932</td>
<td>0.196163</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>1.476112</td>
<td>-1.280932</td>
<td>0.196163</td>
</tr>
</tbody>
</table>
Struktur: VinylNTfSO₂_radical

![Molekülstruktur von VinylNTfSO₂_radical](image)

\(\text{HF} = -1798.1134277 \text{ Hartree/Teilchen} \)

Imaginäre Frequenzen: keine gefunden

\(\text{Nullpunktskorrektur} = 0.165230 \text{ Hartree/Teilchen} \)

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>-4.524689</td>
<td>-0.461305</td>
<td>0.571787</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-3.281321</td>
<td>-0.33155</td>
<td>1.178656</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-2.108661</td>
<td>-0.373744</td>
<td>0.413797</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-2.209407</td>
<td>-0.516663</td>
<td>-0.975239</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-3.457246</td>
<td>-0.641013</td>
<td>-1.58169</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-4.616753</td>
<td>-0.619322</td>
<td>-0.811197</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-5.424865</td>
<td>-0.421477</td>
<td>1.176593</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-3.217118</td>
<td>-0.164544</td>
<td>2.249369</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1.320904</td>
<td>-0.548904</td>
<td>-1.599861</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-3.51862</td>
<td>-0.758872</td>
<td>-2.658638</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-5.588186</td>
<td>-0.714496</td>
<td>-1.285498</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.794029</td>
<td>-0.25439</td>
<td>1.085455</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0.291062</td>
<td>0.319883</td>
<td>0.316489</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>0.034468</td>
<td>1.968913</td>
<td>-0.263285</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>1.232742</td>
<td>-0.71062</td>
<td>-0.64198</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>2.869051</td>
<td>-0.569026</td>
<td>0.227354</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>2.725735</td>
<td>-0.95854</td>
<td>1.489103</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>3.304901</td>
<td>0.675398</td>
<td>0.194141</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>3.729225</td>
<td>-1.36686</td>
<td>-0.387698</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>-0.514053</td>
<td>-0.63135</td>
<td>2.334016</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>0.469578</td>
<td>-0.463521</td>
<td>2.755752</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>-1.256185</td>
<td>-1.144556</td>
<td>2.934728</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>1.352247</td>
<td>2.513982</td>
<td>-0.570459</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>-0.835494</td>
<td>2.562188</td>
<td>0.747724</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>1.389692</td>
<td>-0.125756</td>
<td>-1.952414</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>0.784482</td>
<td>-2.064217</td>
<td>-0.427496</td>
</tr>
</tbody>
</table>
Struktur: VinylNTfSO2_radical

![Diagram of VinylNTfSO2_radical](image)

\[uB3LYP/6-31+G(d,p) \]

HF = -1798.56611016 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.161016 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>X: -4.560497, Y: -0.552974, Z: 0.588192</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>X: -3.319393, Y: -0.372036, Z: 1.191603</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>X: -2.139733, Y: -0.341933, Z: 0.422723</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>X: -2.251245, Y: -0.471653, Z: -0.973156</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>X: -3.497495, Y: -0.648681, Z: -1.576859</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>X: -4.655744, Y: -0.69528, Z: -0.800719</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>X: -5.457292, Y: -0.566507, Z: 1.200283</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>X: -3.263208, Y: -0.222715, Z: 2.26496</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>X: -1.37083, Y: -0.451493, Z: -1.605093</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>X: -3.557106, Y: -0.753177, Z: -2.655831</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>X: -5.624881, Y: -0.830965, Z: -1.271087</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>X: -0.828119, Y: -0.159218, Z: 1.088046</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>X: 0.282263, Y: 0.341361, Z: 0.310931</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>X: 0.09975, Y: 2.074696, Z: -0.323304</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>X: 1.204785, Y: -0.749305, Z: -0.633059</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>X: 2.881121, Y: -0.664054, Z: 0.247895</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>X: 2.736179, Y: -1.036906, Z: 1.525537</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>X: 3.385629, Y: 0.564215, Z: 0.199114</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>X: 3.704299, Y: -1.514835, Z: -0.36976</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>X: -0.56316, Y: -0.411544, Z: 2.382191</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>X: 0.410721, Y: -0.189588, Z: 2.800284</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>X: -1.297472, Y: -0.878656, Z: 3.027957</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>X: 1.457294, Y: 2.577389, Z: -0.599458</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>X: -0.758586, Y: 2.724361, Z: 0.68331</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>X: 1.399945, Y: -0.190849, Z: -1.964675</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>X: 0.712383, Y: -2.099739, Z: -0.402389</td>
</tr>
</tbody>
</table>
Struktur: VinylNTfSO₂_radical

uM06-2X(D3)/6-311++G(d,p)
HF = -1798.427559 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktksorrektur = 0.164689 Hartree/Teilchen
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>-4.514514</td>
<td>-0.475085</td>
<td>0.57414</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-3.272117</td>
<td>-0.355909</td>
<td>1.179162</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-2.103606</td>
<td>-0.388064</td>
<td>0.412423</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-2.207286</td>
<td>-0.510768</td>
<td>-0.975626</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-3.454115</td>
<td>-0.627177</td>
<td>-1.579669</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-4.609381</td>
<td>-0.614297</td>
<td>-0.807966</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-5.411852</td>
<td>-0.440945</td>
<td>1.179956</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-3.205671</td>
<td>-0.203445</td>
<td>2.249756</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1.323054</td>
<td>-0.535659</td>
<td>-1.602877</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-3.518089</td>
<td>-0.730733</td>
<td>-2.655982</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-5.580132</td>
<td>-0.700587</td>
<td>-1.280771</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.787839</td>
<td>-0.278176</td>
<td>1.080426</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0.289465</td>
<td>0.315406</td>
<td>0.314426</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>0.025259</td>
<td>1.971512</td>
<td>-0.243454</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>1.238557</td>
<td>-0.689982</td>
<td>-0.657079</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>2.674457</td>
<td>-0.568428</td>
<td>0.224189</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>2.722994</td>
<td>-0.976815</td>
<td>1.474981</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>3.314602</td>
<td>0.669399</td>
<td>0.212676</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>3.728961</td>
<td>-1.359478</td>
<td>-0.393835</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>-0.498885</td>
<td>-0.68284</td>
<td>2.313736</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>0.484901</td>
<td>-0.52242</td>
<td>2.733412</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>-1.235642</td>
<td>-1.211159</td>
<td>2.904564</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>1.336061</td>
<td>2.546629</td>
<td>-0.485457</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>-0.89488</td>
<td>2.527495</td>
<td>0.73378</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>1.400589</td>
<td>-0.076277</td>
<td>-1.946991</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>0.793597</td>
<td>-0.042952</td>
<td>-0.482485</td>
</tr>
</tbody>
</table>

Struktur: Trifluoromethylradical

![Trifluoromethylradical](image)

\(uM06-2X/6-31+G(d,p) \)

HF = -337.45921985 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.012470 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>-1.087131</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>1.087131</td>
</tr>
</tbody>
</table>
Struktur: Trifluoromethylradical

uB3LYP/6-31+G(d,p)

HF = -337.57869940 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.011867 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.330356</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>0</td>
<td>1.266676</td>
<td>-0.633338</td>
<td>-0.073413</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>-1.096974</td>
<td>-0.633338</td>
<td>-0.073413</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>1.096974</td>
<td>-0.633338</td>
<td>-0.073413</td>
<td></td>
</tr>
</tbody>
</table>
Struktur: Trifluoromethylradical

![Trifluoromethylradical Structure](image)

\[
u^0M06-2X(D3)/6-311++G(d,p)
\]

HF = -337.55719256 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.012471 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0.326923</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>0</td>
<td>1.251387</td>
<td>-0.072649</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>-1.083733</td>
<td>-0.625693</td>
<td>-0.072649</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>1.083733</td>
<td>-0.625693</td>
<td>-0.072649</td>
</tr>
</tbody>
</table>
Struktur: Triflimide_radical

uM06-2X/6-31+G(d,p)

HF = -1826.64734243 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.054153 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0.169177</td>
<td>0.867357</td>
<td>-0.151541</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>1.061176</td>
<td>-0.52587</td>
<td>0.219225</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>-1.514833</td>
<td>1.03427</td>
<td>0.033367</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-2.263408</td>
<td>-0.671279</td>
<td>-0.111203</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2.732225</td>
<td>0.198944</td>
<td>-0.164494</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>2.959272</td>
<td>1.231072</td>
<td>0.625036</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>3.624816</td>
<td>-0.751996</td>
<td>0.060272</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>2.774663</td>
<td>0.570543</td>
<td>-1.430491</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>-1.736821</td>
<td>-1.468563</td>
<td>0.802646</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>-2.042708</td>
<td>-1.14886</td>
<td>-1.320082</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>-3.561027</td>
<td>-0.536779</td>
<td>0.087902</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>0.788107</td>
<td>-1.539598</td>
<td>-0.769419</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>0.996485</td>
<td>-0.74916</td>
<td>1.641358</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>-1.95866</td>
<td>1.763612</td>
<td>-1.123201</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>-1.688739</td>
<td>1.471318</td>
<td>1.395756</td>
</tr>
</tbody>
</table>
Struktur: Styrene_radical

\(\text{uM06-2X/6-31+G(d,p)} \)

HF = -308.84713654 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.119539 Hartree/Teilchen
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1.573295</td>
<td>1.210132</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0.190755</td>
<td>1.22494</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-0.54441</td>
<td>0.000343</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0.190358</td>
<td>-1.224655</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1.572816</td>
<td>-1.210463</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2.277944</td>
<td>-0.000246</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2.116042</td>
<td>2.150539</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-0.355642</td>
<td>2.162275</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-0.356685</td>
<td>-2.16161</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2.115207</td>
<td>-2.15107</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>3.362596</td>
<td>-0.000381</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-1.920429</td>
<td>-0.000058</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>-3.221483</td>
<td>-0.000025</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>-3.796513</td>
<td>0.000194</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>-3.797899</td>
<td>0.000248</td>
</tr>
</tbody>
</table>
Struktur: Vinyltriflate

M06-2X/6-31+G(d,p)
HF = -1270.13086320 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.155532 Hartree/Teilchen
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>-3.746363</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-2.590715</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-1.63934</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-1.85601</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-3.013654</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-3.962221</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-4.474437</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-2.415126</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1.119711</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-3.172302</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-4.862517</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.42314</td>
</tr>
<tr>
<td>13</td>
<td>16</td>
<td>1.982591</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>1.403356</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>0.51599</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>2.450963</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>0.848649</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>-0.235193</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0.715242</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>-1.039819</td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>2.818274</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>2.410635</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>0.606901</td>
</tr>
</tbody>
</table>
Struktur: Triflate_radical

uM06-2X-6-31+G(d,p)
HF = -961.11637957 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.026540 Hartree/Teilchen
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>-0.863366</td>
<td>-0.000464</td>
<td>-0.098239</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0.985337</td>
<td>0.000964</td>
<td>0.005133</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>1.388066</td>
<td>-1.080204</td>
<td>0.654232</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>1.387889</td>
<td>1.085374</td>
<td>0.64588</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>1.476062</td>
<td>-0.004661</td>
<td>-1.224357</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>-1.257059</td>
<td>1.271582</td>
<td>-0.652445</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>-1.256683</td>
<td>-1.275292</td>
<td>-0.646026</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>-1.282047</td>
<td>0.004017</td>
<td>1.409576</td>
</tr>
</tbody>
</table>
Struktur: VinylOSO2_radical

HF = -932.56930130 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.137461 Hartree/Teilchen
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zentrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 6</td>
<td>3.086294</td>
<td>0.327333</td>
<td>0.830668</td>
<td></td>
</tr>
<tr>
<td>2 6</td>
<td>1.902931</td>
<td>1.066099</td>
<td>0.556292</td>
<td></td>
</tr>
<tr>
<td>3 6</td>
<td>0.946578</td>
<td>0.438408</td>
<td>-0.239372</td>
<td></td>
</tr>
<tr>
<td>4 6</td>
<td>1.182898</td>
<td>-0.825904</td>
<td>-0.848973</td>
<td></td>
</tr>
<tr>
<td>5 6</td>
<td>2.366811</td>
<td>-1.503234</td>
<td>-0.568715</td>
<td></td>
</tr>
<tr>
<td>6 6</td>
<td>3.320379</td>
<td>-0.928033</td>
<td>0.26864</td>
<td></td>
</tr>
<tr>
<td>7 1</td>
<td>3.817136</td>
<td>0.769819</td>
<td>1.498843</td>
<td></td>
</tr>
<tr>
<td>8 1</td>
<td>1.702651</td>
<td>1.965342</td>
<td>1.023996</td>
<td></td>
</tr>
<tr>
<td>9 1</td>
<td>0.447726</td>
<td>-1.264206</td>
<td>-1.517753</td>
<td></td>
</tr>
<tr>
<td>10 1</td>
<td>2.544432</td>
<td>-2.479341</td>
<td>-1.008524</td>
<td></td>
</tr>
<tr>
<td>11 1</td>
<td>4.240922</td>
<td>-1.458339</td>
<td>0.490424</td>
<td></td>
</tr>
<tr>
<td>12 6</td>
<td>-0.308196</td>
<td>1.156067</td>
<td>-0.598659</td>
<td></td>
</tr>
<tr>
<td>13 16</td>
<td>-1.94182</td>
<td>-0.618768</td>
<td>0.360414</td>
<td></td>
</tr>
<tr>
<td>14 6</td>
<td>-0.49051</td>
<td>2.472479</td>
<td>-0.675415</td>
<td></td>
</tr>
<tr>
<td>15 1</td>
<td>-1.475866</td>
<td>2.877825</td>
<td>-0.870194</td>
<td></td>
</tr>
<tr>
<td>16 1</td>
<td>0.349831</td>
<td>3.148859</td>
<td>-0.578031</td>
<td></td>
</tr>
<tr>
<td>17 8</td>
<td>-3.024453</td>
<td>-1.39332</td>
<td>-0.231387</td>
<td></td>
</tr>
<tr>
<td>18 8</td>
<td>-2.149902</td>
<td>0.24093</td>
<td>1.524993</td>
<td></td>
</tr>
<tr>
<td>19 8</td>
<td>-1.399999</td>
<td>0.33352</td>
<td>-0.896877</td>
<td></td>
</tr>
</tbody>
</table>
Struktur: VinylO_radical

uM06-2X/6-31+G(d,p)

HF = -384.08346931 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.125699 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X (Ångström)</th>
<th>Y (Ångström)</th>
<th>Z (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td></td>
<td>-1.830114</td>
<td>1.235326</td>
<td>-0.09614</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td></td>
<td>-0.437201</td>
<td>1.207725</td>
<td>-0.106067</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td></td>
<td>0.244249</td>
<td>-0.009312</td>
<td>-0.00913</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td></td>
<td>-0.485272</td>
<td>-1.198534</td>
<td>0.090079</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
<td>-1.875394</td>
<td>-1.169867</td>
<td>0.107808</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
<td>-2.55049</td>
<td>0.04793</td>
<td>0.015687</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td></td>
<td>-2.351448</td>
<td>2.18363</td>
<td>-0.179857</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
<td>0.107005</td>
<td>2.141137</td>
<td>-0.210594</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td></td>
<td>0.060322</td>
<td>-2.134677</td>
<td>0.151687</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td></td>
<td>-2.434284</td>
<td>-2.096624</td>
<td>0.191605</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td></td>
<td>-3.635787</td>
<td>0.070684</td>
<td>0.027123</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td></td>
<td>1.74249</td>
<td>-0.106458</td>
<td>-0.025903</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td></td>
<td>2.550516</td>
<td>1.065223</td>
<td>0.205271</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td></td>
<td>3.625067</td>
<td>0.94472</td>
<td>0.152995</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td></td>
<td>2.138263</td>
<td>2.030122</td>
<td>0.468671</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td></td>
<td>2.292269</td>
<td>-1.198399</td>
<td>-0.211408</td>
</tr>
</tbody>
</table>

269
Struktur: PNNTf2Ch2CF3_radical

\[
\text{uM06-2X/6-31+G(d,p)} \\
\text{HF = -2473.19486306 Hartree/Teilchen} \\
\text{Imaginäre Frequenzen: eine (-313.45 cm\(^{-1}\))} \\
\text{Nullpunktskorrektur = 0.197352 Hartree/Teilchen}
\]

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>X (Ångström)</th>
<th>Y (Ångström)</th>
<th>Z (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>-4.585507</td>
<td>0.01698</td>
<td>-0.755496</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-3.503909</td>
<td>-0.258716</td>
<td>0.067278</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-2.252975</td>
<td>0.350398</td>
<td>-0.169399</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-2.126985</td>
<td>1.237063</td>
<td>-1.262807</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-3.215174</td>
<td>1.50939</td>
<td>-2.076127</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-4.447821</td>
<td>0.902937</td>
<td>-1.829944</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-5.538732</td>
<td>-0.466224</td>
<td>-0.568765</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-3.62337</td>
<td>-0.975505</td>
<td>0.871444</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1.171409</td>
<td>1.712199</td>
<td>-1.460174</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-3.104137</td>
<td>2.197035</td>
<td>-2.907691</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-5.298352</td>
<td>1.117305</td>
<td>-2.465111</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-1.106781</td>
<td>0.084955</td>
<td>0.674016</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0.100236</td>
<td>0.434223</td>
<td>0.175016</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>1.357316</td>
<td>1.118166</td>
<td>1.000522</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>0.729328</td>
<td>-0.629076</td>
<td>-1.474072</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>2.333802</td>
<td>-1.65635</td>
<td>-1.271593</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0.942237</td>
<td>2.89833</td>
<td>0.6747</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-0.275507</td>
<td>3.155709</td>
<td>1.143147</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>1.827278</td>
<td>3.665466</td>
<td>1.291591</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>0.971665</td>
<td>3.135693</td>
<td>-0.626763</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>2.495578</td>
<td>-2.00267</td>
<td>-0.00985</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>3.357927</td>
<td>-0.956745</td>
<td>-1.702125</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>2.180977</td>
<td>-2.741726</td>
<td>-2.015005</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>2.558478</td>
<td>0.82328</td>
<td>0.251563</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>1.269962</td>
<td>0.956178</td>
<td>2.435819</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>1.004729</td>
<td>0.36604</td>
<td>-2.496089</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>-0.352057</td>
<td>-1.587585</td>
<td>-1.574203</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>-1.233695</td>
<td>-0.646352</td>
<td>1.984813</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>-0.522432</td>
<td>-0.253673</td>
<td>2.714121</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>-2.238695</td>
<td>-0.542498</td>
<td>2.395145</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>-0.938535</td>
<td>-2.12769</td>
<td>1.844675</td>
</tr>
<tr>
<td>32</td>
<td>9</td>
<td>-1.811503</td>
<td>-2.748392</td>
<td>1.037921</td>
</tr>
<tr>
<td>33</td>
<td>9</td>
<td>-0.995692</td>
<td>-2.735101</td>
<td>3.040088</td>
</tr>
<tr>
<td>34</td>
<td>9</td>
<td>0.290649</td>
<td>-2.33297</td>
<td>1.344473</td>
</tr>
</tbody>
</table>
Struktur: NTfCF₃Imine

M06-2X/6-31+G(d,p)

HF = -1587.22086742 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.172686 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>-0.2556816</td>
<td>3.017044</td>
<td>-1.280833</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-0.072378</td>
<td>1.65094</td>
<td>-1.475394</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0.48567</td>
<td>0.87599</td>
<td>-0.453082</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0.864568</td>
<td>1.469128</td>
<td>0.755446</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0.661879</td>
<td>2.83192</td>
<td>0.944834</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.10374</td>
<td>3.606176</td>
<td>-0.07131</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-0.69406</td>
<td>3.615638</td>
<td>-2.072601</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-0.38026</td>
<td>1.183378</td>
<td>-2.405058</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.291816</td>
<td>0.8673</td>
<td>1.550968</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.93993</td>
<td>3.288096</td>
<td>1.889241</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0.051975</td>
<td>4.669347</td>
<td>0.081745</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0.679817</td>
<td>-0.584876</td>
<td>-0.689134</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-0.224716</td>
<td>-1.488349</td>
<td>-0.764753</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-1.887115</td>
<td>-1.196856</td>
<td>-0.629933</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>-2.160875</td>
<td>-0.204549</td>
<td>0.947048</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>-2.216926</td>
<td>1.093671</td>
<td>0.700206</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>-3.313557</td>
<td>-0.595205</td>
<td>1.466974</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-1.18317</td>
<td>-0.457162</td>
<td>1.816229</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>-2.470028</td>
<td>-2.483481</td>
<td>-0.32866</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>-2.337055</td>
<td>-0.383686</td>
<td>-1.740534</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>2.076862</td>
<td>-1.100399</td>
<td>-0.984744</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>2.465143</td>
<td>-0.590203</td>
<td>-1.872953</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>2.012511</td>
<td>-2.173217</td>
<td>-1.178458</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>3.084937</td>
<td>-0.89549</td>
<td>0.128199</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>4.160935</td>
<td>-1.669269</td>
<td>-0.07307</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>3.520334</td>
<td>0.371043</td>
<td>0.213563</td>
</tr>
<tr>
<td>27</td>
<td>9</td>
<td>2.569794</td>
<td>-1.222981</td>
<td>1.327527</td>
</tr>
</tbody>
</table>
Struktur: Vinylethylsulfonamid

M06-2X/6-31+G(d,p)

HF = -1289.56422928 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.195490 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>4.509711</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3.230193</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2.102232</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2.278445</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3.557815</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4.676693</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5.376057</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>3.100555</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.413597</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3.680479</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>5.673815</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0.793311</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-0.274328</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-1.300745</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>-2.898027</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>-2.786265</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>-3.215398</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-3.860738</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0.41786</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>-0.58967</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1.154232</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>-1.530224</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>-0.959236</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>-0.028076</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>-0.949846</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0.751587</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0.281596</td>
</tr>
</tbody>
</table>
Struktur: Vinylethylradical

\[uM06-2X/6-31+G(d,p) \]

HF = -403.49929211 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.165556 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>-2.450579</td>
<td>1.000694</td>
<td>-0.27355</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-1.093264</td>
<td>1.181206</td>
<td>-0.240252</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-0.216616</td>
<td>0.105189</td>
<td>0.024493</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>-0.771327</td>
<td>-1.16027</td>
<td>0.242926</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-2.150938</td>
<td>-1.339764</td>
<td>0.21597</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-2.995809</td>
<td>-0.259688</td>
<td>-0.039901</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-3.098988</td>
<td>1.844027</td>
<td>-0.490484</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-0.655631</td>
<td>2.164313</td>
<td>-0.447425</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-0.103183</td>
<td>-1.994244</td>
<td>0.430441</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-2.569342</td>
<td>-2.32569</td>
<td>0.394421</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-4.07186</td>
<td>-0.401468</td>
<td>-0.062764</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>1.27046</td>
<td>0.280287</td>
<td>0.065278</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>1.988988</td>
<td>-0.76667</td>
<td>-0.276755</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>1.800112</td>
<td>1.515928</td>
<td>0.492203</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>2.866198</td>
<td>1.699117</td>
<td>0.512799</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1.152458</td>
<td>2.305652</td>
<td>0.850151</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>3.432496</td>
<td>-0.658307</td>
<td>-0.243801</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>3.864321</td>
<td>-1.603244</td>
<td>-0.57618</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>3.801294</td>
<td>0.137637</td>
<td>-0.905054</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>3.80066</td>
<td>-0.451052</td>
<td>0.770584</td>
<td></td>
</tr>
</tbody>
</table>
Struktur: VinylNHTf

M06-2X/6-31+G(d,p)
HF = -2135.486623 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktkorrektur = 0.167918 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X (Ångström)</th>
<th>Y (Ångström)</th>
<th>Z (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>6</td>
<td>3.615782</td>
<td>-0.253286</td>
<td>0.984951</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6</td>
<td>2.657872</td>
<td>0.726316</td>
<td>0.739657</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>6</td>
<td>1.703731</td>
<td>0.540407</td>
<td>-0.265678</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6</td>
<td>1.708836</td>
<td>-0.644295</td>
<td>-1.009207</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6</td>
<td>2.668244</td>
<td>-1.621471</td>
<td>-0.763654</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td>3.624264</td>
<td>-1.427405</td>
<td>0.232785</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1</td>
<td>4.347571</td>
<td>-0.106399</td>
<td>1.77282</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1</td>
<td>2.625494</td>
<td>1.628399</td>
<td>1.343452</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1</td>
<td>0.963494</td>
<td>-0.790756</td>
<td>-1.785668</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
<td>2.669854</td>
<td>-2.534664</td>
<td>-1.350168</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1</td>
<td>4.369119</td>
<td>-2.192518</td>
<td>0.427665</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>6</td>
<td>0.721297</td>
<td>1.605688</td>
<td>-0.57014</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>7</td>
<td>-0.610944</td>
<td>1.157975</td>
<td>-0.872216</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>16</td>
<td>-1.606241</td>
<td>0.650273</td>
<td>0.360555</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>6</td>
<td>-1.823657</td>
<td>-1.15047</td>
<td>-0.027338</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>9</td>
<td>-0.706707</td>
<td>-1.823228</td>
<td>0.205273</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>9</td>
<td>-2.792237</td>
<td>-1.627225</td>
<td>0.744006</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>9</td>
<td>-2.167132</td>
<td>-1.296121</td>
<td>-1.303859</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>6</td>
<td>1.02316</td>
<td>2.903879</td>
<td>-0.852976</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>1</td>
<td>0.261501</td>
<td>3.653537</td>
<td>-0.841193</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>1</td>
<td>2.051593</td>
<td>3.231466</td>
<td>-0.553961</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>8</td>
<td>-2.91388</td>
<td>1.227811</td>
<td>0.128406</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>8</td>
<td>-0.908031</td>
<td>0.708767</td>
<td>1.623097</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>1</td>
<td>-1.13936</td>
<td>1.751047</td>
<td>-1.507116</td>
</tr>
</tbody>
</table>
Struktur: VinylNHTf.radical

uM06-2X/6-31+G(d,p)

HF = -364.21092245 Hartree/Teilchen

Imaginäre Frequenzen: keine gefunden

Nullpunktkorrektur = 0.138315 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer Zentrum</th>
<th>Atomzahl</th>
<th>Koordinaten (Ångström)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>X: -1.828057 Y: 1.199188 Z: -0.264409</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>X: -0.43547 Y: 1.17385 Z: -0.266695</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>X: 0.252805 Y: -0.015224 Z: -0.005719</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>X: -0.477455 Y: -1.17653 Z: 0.266985</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>X: -1.869614 Y: -1.150052 Z: 0.278477</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>X: -2.548254 Y: 0.03771 Z: 0.010107</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>X: -2.351084 Y: 2.125334 Z: -0.481344</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>X: 0.122146 Y: 2.077903 Z: -0.495762</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>X: 0.049336 Y: -2.099491 Z: 0.495425</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>X: -2.424367 Y: -2.055431 Z: 0.503925</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>X: -3.653426 Y: 0.058346 Z: 0.016489</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>X: 1.750482 Y: -0.058263 Z: -0.031024</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>X: 2.429471 Y: -1.038575 Z: -0.568466</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>X: 2.474073 Y: 1.004453 Z: 0.564791</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>X: 3.555581 Y: 0.978544 Z: 0.525815</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>X: 1.975924 Y: 1.815458 Z: 1.080999</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>X: 1.788481 Y: -1.721433 Z: -0.980958</td>
</tr>
</tbody>
</table>
Struktur: NTfImine

![M06-2X/6-31+G(d,p)]

\[
\text{HF} = -1.250,27333724 \text{ Hartree/Teilchen}
\]

Imaginäre Frequenzen: keine gefunden

Nullpunktskorrektur = 0.166557 Hartree/Teilchen

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>2.617448</td>
<td>-0.736728</td>
<td>1.478862</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1.613494</td>
<td>0.211142</td>
<td>1.29633</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1.340902</td>
<td>0.689734</td>
<td>0.010728</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2.08549</td>
<td>0.228953</td>
<td>-1.081001</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3.069215</td>
<td>-0.736197</td>
<td>-0.893308</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>3.337471</td>
<td>-1.217461</td>
<td>0.387869</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2.826912</td>
<td>-1.106397</td>
<td>2.477257</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1.036615</td>
<td>0.566753</td>
<td>2.141884</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.873487</td>
<td>0.600399</td>
<td>-2.079838</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3.627034</td>
<td>-1.109868</td>
<td>-1.745782</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>4.109006</td>
<td>-1.966424</td>
<td>0.53451</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0.306318</td>
<td>1.742651</td>
<td>-0.203921</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-0.958709</td>
<td>1.664721</td>
<td>0.010179</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-1.740356</td>
<td>0.283316</td>
<td>0.567338</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>-1.219474</td>
<td>-1.118271</td>
<td>-0.583324</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>-0.224035</td>
<td>-1.826871</td>
<td>-0.073147</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>-2.267137</td>
<td>-1.909445</td>
<td>-0.754642</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-0.848794</td>
<td>-0.626922</td>
<td>-1.767346</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>-3.137009</td>
<td>0.476155</td>
<td>0.256938</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>-1.296691</td>
<td>-0.073398</td>
<td>1.902263</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0.806801</td>
<td>3.060619</td>
<td>-0.720279</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>1.560773</td>
<td>3.454301</td>
<td>-0.029349</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>1.309085</td>
<td>2.910386</td>
<td>-1.682643</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>-0.014036</td>
<td>3.765189</td>
<td>-0.833829</td>
</tr>
</tbody>
</table>
Struktur: NTfImine_radical

\[\text{uM06-2X/6-31+G(d,p)} \]
\[\text{HF} = -364.21664909 \text{ Hartree/Teilchen} \]
\[\text{Imaginäre Frequenzen: keine gefunden} \]
\[\text{Nullpunktskorrektur} = 0.138640 \text{ Hartree/Teilchen} \]

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>1.75292</td>
<td>1.290391</td>
<td>-0.000163</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0.364012</td>
<td>1.165955</td>
<td>-0.00009</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>-0.231176</td>
<td>-0.097942</td>
<td>0.00007</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0.583113</td>
<td>-1.238644</td>
<td>0.000186</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1.966346</td>
<td>-1.111912</td>
<td>0.00014</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2.556149</td>
<td>0.153741</td>
<td>-0.000053</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2.203954</td>
<td>2.277722</td>
<td>-0.000283</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-0.248956</td>
<td>2.061554</td>
<td>-0.000111</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.119364</td>
<td>-2.220335</td>
<td>0.000393</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2.588201</td>
<td>-2.001498</td>
<td>0.000247</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>3.637227</td>
<td>0.251186</td>
<td>-0.000103</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-1.721353</td>
<td>-0.24747</td>
<td>0.000014</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-2.266968</td>
<td>-1.381591</td>
<td>-0.000436</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>-2.600855</td>
<td>0.989432</td>
<td>0.000245</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>-2.398076</td>
<td>1.593953</td>
<td>0.88874</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>-2.399063</td>
<td>1.594226</td>
<td>-0.88808</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>-3.649812</td>
<td>0.693024</td>
<td>0.00015</td>
</tr>
</tbody>
</table>
Struktur: NTfCF₃Imine

M06-2X/6-31+G(d,p)

HF = -1587.22086742 Hartree/Teilchen
Imaginäre Frequenzen: keine gefunden
Nullpunktskorrektur = 0.172686 Hartree/Teilchen
Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>-0.255816</td>
<td>3.017044</td>
<td>-1.280833</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>6</td>
<td>-0.072378</td>
<td>1.65094</td>
<td>-1.475394</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0.485673</td>
<td>0.875999</td>
<td>-0.453082</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0.864568</td>
<td>1.469128</td>
<td>0.755446</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0.661879</td>
<td>2.83192</td>
<td>0.944834</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.10374</td>
<td>3.606176</td>
<td>-0.07131</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-0.694806</td>
<td>3.615538</td>
<td>-2.072601</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-0.38026</td>
<td>1.183378</td>
<td>-2.405058</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.291816</td>
<td>0.8673</td>
<td>1.550968</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.93993</td>
<td>3.288096</td>
<td>1.889241</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-0.051975</td>
<td>4.669347</td>
<td>0.081745</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0.679817</td>
<td>-0.584876</td>
<td>-0.689134</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-0.224716</td>
<td>-1.488349</td>
<td>-0.764753</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>-1.887115</td>
<td>-1.198556</td>
<td>-0.629693</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>-2.160875</td>
<td>-0.204549</td>
<td>0.947048</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>-2.216926</td>
<td>1.093671</td>
<td>0.700206</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>-3.313557</td>
<td>-0.595205</td>
<td>1.466974</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-1.18317</td>
<td>-0.457162</td>
<td>1.816229</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>-2.470028</td>
<td>-2.483481</td>
<td>-0.32866</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>-2.337055</td>
<td>-0.383686</td>
<td>-1.740534</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>2.076862</td>
<td>-1.100399</td>
<td>-0.984744</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>2.465143</td>
<td>-0.592020</td>
<td>-1.872953</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>2.012511</td>
<td>-2.172317</td>
<td>-1.178458</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>3.084937</td>
<td>-0.89549</td>
<td>0.128199</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>4.160935</td>
<td>-1.669269</td>
<td>-0.07307</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>3.520334</td>
<td>0.371043</td>
<td>0.213563</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>9</td>
<td>2.569794</td>
<td>-1.222981</td>
<td>1.327527</td>
<td></td>
</tr>
</tbody>
</table>
Struktur: NTfCF3Imine_radical

\[uM06-2X/6-31+G(d,p) \]
\[HF = -701.1677795 \text{ Hartree/Teilchen} \]
\[\text{Imaginäre Frequenzen: keine gefunden} \]
\[\text{Nullpunktskorrektur} = 0.144805 \text{ Hartree/Teilchen} \]

Koordinaten (von letzter Standardorientierung):

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Zentrum</th>
<th>Atomzahl</th>
<th>(X)</th>
<th>(Y)</th>
<th>(Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>2.471065</td>
<td>-1.497528</td>
<td>-0.442742</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1.246651</td>
<td>-0.880143</td>
<td>-0.690194</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1.024098</td>
<td>0.433482</td>
<td>-0.270436</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2.039744</td>
<td>1.120469</td>
<td>0.407973</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3.258576</td>
<td>0.500706</td>
<td>0.655082</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>3.478318</td>
<td>-0.809527</td>
<td>0.228263</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2.633181</td>
<td>-2.518514</td>
<td>-0.772728</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.471329</td>
<td>-1.437228</td>
<td>-1.204866</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.860544</td>
<td>2.137309</td>
<td>0.743167</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>4.038176</td>
<td>1.038755</td>
<td>1.184649</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>4.43041</td>
<td>-1.292956</td>
<td>0.42292</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-0.261791</td>
<td>1.140872</td>
<td>-0.556408</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>-0.356005</td>
<td>2.394218</td>
<td>-0.484286</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>-1.515667</td>
<td>0.379641</td>
<td>-0.972475</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>-1.296672</td>
<td>-0.354675</td>
<td>-1.751348</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>-2.245743</td>
<td>1.090758</td>
<td>-1.363935</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>-2.175061</td>
<td>-0.342673</td>
<td>0.182416</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>-3.295786</td>
<td>-0.960392</td>
<td>-0.233339</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>-1.382407</td>
<td>-1.283491</td>
<td>0.722573</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>-2.521228</td>
<td>0.50002</td>
<td>1.164462</td>
<td></td>
</tr>
</tbody>
</table>
5. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>Acetyl</td>
</tr>
<tr>
<td>Alk</td>
<td>Alkyl</td>
</tr>
<tr>
<td>Am</td>
<td>Amyl</td>
</tr>
<tr>
<td>Äquiv</td>
<td>Äquivalent</td>
</tr>
<tr>
<td>Ar</td>
<td>Aryl</td>
</tr>
<tr>
<td>Å</td>
<td>Ångström 10^{-10} m</td>
</tr>
<tr>
<td>B</td>
<td>Base</td>
</tr>
<tr>
<td>BBN</td>
<td>Borabicyclo[3.3.1]nonan</td>
</tr>
<tr>
<td>Bn</td>
<td>Benzyl</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-Butyloxy carbonyl</td>
</tr>
<tr>
<td>br</td>
<td>broad</td>
</tr>
<tr>
<td>Bu</td>
<td>Butyl</td>
</tr>
<tr>
<td>CAM</td>
<td>Cerammoniummolybdat</td>
</tr>
<tr>
<td>Cbz</td>
<td>Benzoyloxycarbonyl</td>
</tr>
<tr>
<td>Cl</td>
<td>Chemische Ionisation</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlated Spectroscopy</td>
</tr>
<tr>
<td>CSA</td>
<td>Camphersulfonsäure</td>
</tr>
<tr>
<td>d $	frac{1}{2}$</td>
<td>Doublett 0_{SP}</td>
</tr>
<tr>
<td>dd</td>
<td>Doublett von Doubletts</td>
</tr>
<tr>
<td>DCE</td>
<td>Dichlorethan</td>
</tr>
<tr>
<td>DCM $\tfrac{1}{2}$</td>
<td>Dichlormethan 0_{SP}</td>
</tr>
<tr>
<td>dd</td>
<td>Doublett von Dublett</td>
</tr>
<tr>
<td>DFT</td>
<td>Dichtefunktionaltheorie</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamid</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DTBP</td>
<td>Di-tert-butylperoxid</td>
</tr>
<tr>
<td>d.r. $\tfrac{1}{2}$</td>
<td>Diastereoisomerenverhältnis</td>
</tr>
<tr>
<td>dt</td>
<td>Doublett von Tripletts</td>
</tr>
<tr>
<td>E</td>
<td>Elektrophil</td>
</tr>
<tr>
<td>EI</td>
<td>Elektronenstoß Ionisation</td>
</tr>
<tr>
<td>Et</td>
<td>Ethyl</td>
</tr>
<tr>
<td>ET</td>
<td>Electron Transfer</td>
</tr>
<tr>
<td>EWG</td>
<td>elektronenziehende Gruppe</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier-Transform-Infrarot</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>GC</td>
<td>Gaschromatographie</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>Hal</td>
<td>Halogen</td>
</tr>
<tr>
<td>HAT</td>
<td>Hydrogen Atom Transfer</td>
</tr>
<tr>
<td>HMDS</td>
<td>Hexamethyldisilazan</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest Occupied Molecular Orbital</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-Performance Liquid Chromatographie</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HSAB</td>
<td>Hard-Soft-Acid-Base</td>
</tr>
<tr>
<td>HSQC</td>
<td>Heteronuclear Single Quantum Correlation</td>
</tr>
<tr>
<td>i</td>
<td>iso</td>
</tr>
<tr>
<td>iPr</td>
<td>Iso-Propyl</td>
</tr>
<tr>
<td>IR</td>
<td>Infrarot</td>
</tr>
<tr>
<td>IRC</td>
<td>Intrinsic Reaction Coordinate</td>
</tr>
<tr>
<td>J</td>
<td>Kopplungskonstante</td>
</tr>
<tr>
<td>Kat</td>
<td>Katalysator</td>
</tr>
<tr>
<td>kcal</td>
<td>Kilokalorie</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>LA</td>
<td>Lewissäure</td>
</tr>
<tr>
<td>LUMO</td>
<td>Lowest Unoccupied Molekular Orbital</td>
</tr>
<tr>
<td>m</td>
<td>Multiplett</td>
</tr>
<tr>
<td>m-</td>
<td>meta</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>Me</td>
<td>Methyl</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>M</td>
<td>Metall</td>
</tr>
<tr>
<td>MO</td>
<td>Molekülorbital</td>
</tr>
<tr>
<td>MS</td>
<td>Massenspektroskopie</td>
</tr>
<tr>
<td>MS</td>
<td>Molekularsieb</td>
</tr>
<tr>
<td>m/z</td>
<td>Verhältnis Masse/Ladung</td>
</tr>
<tr>
<td>µ</td>
<td>Mikro</td>
</tr>
<tr>
<td>NBO</td>
<td>Natural Bond Orbital</td>
</tr>
<tr>
<td>nBu</td>
<td>n-Butyl</td>
</tr>
<tr>
<td>nHex</td>
<td>n-Hexyl</td>
</tr>
<tr>
<td>NIS</td>
<td>N-Iodsuccinimid</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOE</td>
<td>Nuclear Overhauser effect</td>
</tr>
<tr>
<td>NOESY</td>
<td>Nuclear Overhauser Effect Spectroscopy</td>
</tr>
<tr>
<td>nPr</td>
<td>n-Propyl</td>
</tr>
<tr>
<td>NTf₂</td>
<td>Bistriflimid</td>
</tr>
<tr>
<td>Nu</td>
<td>Nukleophil</td>
</tr>
<tr>
<td>o-</td>
<td>ortho</td>
</tr>
<tr>
<td>OTf</td>
<td>Triflat</td>
</tr>
<tr>
<td>PC</td>
<td>Photokatalysator</td>
</tr>
<tr>
<td>Ph</td>
<td>Phenyl</td>
</tr>
<tr>
<td>p-</td>
<td>para</td>
</tr>
<tr>
<td>pKₗH</td>
<td>Hydrolyse-Konstante</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per Million</td>
</tr>
<tr>
<td>Pr</td>
<td>Propyl</td>
</tr>
<tr>
<td>pTSA</td>
<td>para-Toluolsulfonamid</td>
</tr>
<tr>
<td>q</td>
<td>Quartett</td>
</tr>
</tbody>
</table>
6. Literaturverzeichnis

A. Scott, B. C. DeMier, H. R. Morgan, J. A. Macgruder, A. A. Lamar, Ruano, J. Aleman, M. Belen Cid, A. Parra, H. Zhang, E. B. Hay, S. J. Geib, D. P. Curran,

Th-Geyer Webseite am 20.05.2019 (https://thgeyer.com).

