Contents

1 Graphene-Based Nanomembranes for Sustainable Water Purification Applications 1
 Uluvangada T. Uthappa, Dusan Losic, and Mahaveer D. Kurkuri
1.1 Introduction 1
1.2 Graphene and GO-Based Membrane Characteristics and Properties 2
1.3 Fabrication of Graphene-Based Nanomembranes for Water Treatment Applications 4
 1.3.1 Desalination 4
 1.3.2 Treatment for Dyes 5
 1.3.3 Graphene Nanomembranes for Salt and Dye Rejection 5
 1.3.4 Translation of Graphene Nanomembranes for Real Applications 23
1.4 Graphene Nanomembranes for Heavy Metals Treatment 24
 1.4.1 Heavy Metals 24
1.5 Conclusion and Future Perspectives 25
Acknowledgments 26
Important Websites 26
References 26

2 Magnetic Graphene Oxide and Its Composite Nanomaterials: Application in Environmental Decontamination 33
 Karan Chaudhary and Dhanraj T. Masram
2.1 Introduction 33
2.2 Synthesis of Magnetic Graphene Oxide and Its Composite Nanomaterials 35
2.3 Application of Magnetic Graphene Oxide and Its Composite Nanomaterials 36
 2.3.1 Removal of Toxic Metal Contaminants 36
 2.3.2 Removal of Toxic Organic Contaminants 41
 2.3.3 Removal of Other Contaminants 45
2.4 Conclusion 46
Further Reading 46
References 47
3 Biomass- or Biowaste-Derived Carbon Nanoparticles as Promising Materials for Electrochemical Sensing Applications

Anila R. Cherian, Vinay S. Bhat, Anitha Varghese, and Gurumurthy Hegde

3.1 Introduction 53
3.2 Electrochemical Sensors 54
3.3 The Choice of Electrode Materials 54
3.4 Biomass-Derived Porous Carbons 56
3.4.1 Synthesis 56
3.4.1.1 Hydrothermal Carbonization (HTC) 56
3.4.1.2 Pyrolysis 58
3.4.2 Structure and Properties 58
3.5 Biomass-Derived Carbons in Electrochemical Sensing 61
3.5.1 H₂O₂ Sensing from Okra-Derived Carbons 61
3.5.2 Acetaminophen (AC) Detection by Seaweed-Derived Carbons 62
3.5.3 4-Nitrophenol Detection from Mango Leave-Derived Carbons 65
3.5.4 Bisphenol-A (BPA) Detection Using Bamboo Fungi-Derived Carbon 67
3.5.5 Nitrite Ion Detection by Areca Nut-Derived Carbons 69
3.5.6 Catechin Sensing Using Bougainvillea spectabilis-Derived Carbons 72
3.5.7 Progesterone Sensing by Onion Peel-Derived Carbons 73
3.5.8 Butein Detection from Oil Palm Leave-Derived Carbons 75
3.6 Conclusion and Future Perspective 79

Acknowledgment 79
Website Links 80
References 80

4 Applications of Carbon-Based Nanomaterials for Wastewater Treatment 87

Ramesh K. Guduru, Anurag A. Gupta, Parwathi Pillai, and Swapnil Dharaskar

4.1 Introduction 87
4.2 Wastewater 88
4.3 Wastewater Treatment Methods 89
4.4 Nanomaterials 90
4.5 Carbon-Based Nanomaterials 92
4.6 Adsorption Mechanisms of CNTs and Graphene 93
4.6.1 Adsorption Through Physical and Chemical Methods 93
4.6.2 Adsorption Through Biological Methods 114
4.6.3 Adsorption Using Deep Eutectic Solvents (DESs) 114
4.6.4 CNT- and Graphene-Based Composite Adsorbents 114
4.7 Membrane-Based Filtration of Contaminants Using CNTs and Graphene-Based Materials 115
4.8 Use of CNTs and Derivative Materials as Disinfecting Agents for Water Purification 121
4.9 Commercial Use of CNMs in Wastewater Treatment 122
4.10 Conclusions 122
Recommendations 123
References 123

5 Electrochemical Determination of Indigotine
Based on Poly(Gibberellic Acid)-Modified Carbon
Nanotube Paste Electrode 135
Girish Tigari, Jamballi G. Manjunatha, and Chenthattil Raril

5.1 Introduction 135
5.2 Experimental 136
5.2.1 Chemicals 136
5.2.2 Bare Carbon Nanotube Paste Electrode (BCNTPE) Preparation 136
5.3 Results and Discussion 136
5.3.1 Electropolymerization of BCNTPE with GA 136
5.3.2 FE-SEM Characterization of BCNTPE and PGAMCNTPE 137
5.3.3 EIS Characterization for PGAMCNTPE and BCNTPE 137
5.3.4 CV Behavior of IT at PGAMCNTPE and BCNTPE 137
5.3.5 Variation of IT Behavior at Different pHS 137
5.3.6 Effect of Voltage Sweep Rate 139
5.3.7 Calibration Curve 140
5.3.8 Reproducible and Stable Sensor 141
5.3.9 Interference Analysis 141
5.3.10 Water Sample Analysis 141
5.4 Conclusion 142
Acknowledgment 143
Important Websites for Reference 143
References 143

6 Toxicity of Carbon Nanomaterials 147
Arpita Adhikari and Joydip Sengupta

6.1 Introduction 147
6.2 Carbon Nanomaterials 149
6.2.1 Fullerene 149
6.2.2 Carbon Nanotube 149
6.2.3 Graphene and Graphene Derivatives 149
6.3 Nanotoxicology and Resulting Cytotoxicity or Cellular Toxicity 151
6.4 Assessment of Nanocytotoxicity 155
6.4.1 Respiratory or Pulmonary Toxicity 155
6.4.2 Dermal or Skin Toxicity 157
6.4.3 Cardiovascular Toxicity 158
6.4.4 Reproductive and Developmental Toxicity 158
6.4.5 Hepatotoxicity or Liver Toxicity 159
6.4.6 Ocular Toxicity 160
7
Fundamentals of Functionalized Carbon Nanomaterials (CNMs) for Environmental Devices and Techniques
Kiran Soni and Rekha Yadav

7.1 Introduction
7.2 Synthesis
7.2.1 Carbon Nanotubes
7.2.2 Graphene
7.2.3 Fullerenes
7.2.4 Carbon Nanocones
7.2.5 Functionalization of Nanomaterials
7.3 Applications
7.3.1 Nanowires
7.3.1.1 Carbon Nanotube as Environmental Sensor
7.3.1.2 Carbon Nanotubes in Wastewater Treatment
7.3.1.3 Carbon Nanotubes in Green Nanocomposite Design
7.3.1.4 CNT as Biological Sensor
7.3.1.5 CNT as Filler
7.3.2 Graphene
7.3.2.1 Graphene as Environmental Sensors
7.3.2.2 Graphene in Wastewater Treatment
7.3.2.3 Graphene as Biological Sensors
7.3.2.4 Graphene for Removing Organic Pollutants
7.3.3 Fullerenes
7.3.3.1 Fullerene as Environmental Sensor
7.3.3.2 Fullerene in Wastewater Treatment
7.3.3.3 Fullerene as Biological Sensor
7.3.3.4 Fullerene in Agriculture
7.3.4 Carbon Nanocones
7.3.4.1 Carbon Nanocones as Environmental Sensors
7.4 Conclusion

8
Fundamental of Functionalized Carbon Nanomaterials for Environmental Devices and Techniques
Baskaran Ganesh Kumar, P. PonSathieshkumar, and K.S. Prakash

8.1 Introduction
8.2 Results and Discussion
8.2.1 What Are Carbon Nanomaterials?
8.2.1.1 Fullerene
8.2.1.2 Carbon Nanotubes
9 Functionalized Magnetic Carbon Nanomaterials for Environmental Remediation
Ambika and Pradeep Pratap Singh
9.1 Introduction 227
9.2 Types of Carbon-Based Magnetic Nanocomposites Used in Pollutants Removal from Environment 228
9.2.1 Carbon Nanotubes Based Magnetic Nanocomposites 228
9.2.2 Graphene and Its Derivative Based Magnetic Nanocomposites 228
9.2.3 Fullerenes Based Magnetic Nanocomposites 229
9.2.4 Nanodiamond-Filled Magnetic Nanocomposites 229
9.2.5 Graphitic Carbon Nitride Based Magnetic Nanocomposites 229
9.3 Different Processing Methods for Magnetic Carbon-Based Nanocomposites 229
9.3.1 Melt Blending 229
9.3.2 Hydrothermal Method 230
9.3.3 Co-Precipitation Method 230
9.3.4 In Situ Polymerization 230
9.3.5 Sol–Gel Method 231
9.4 Applications of Magnetic Carbon-Based Nanocomposites 231
9.4.1 Adsorption of Heavy Metals 231
9.4.2 Adsorption of Organic Dye 234
9.4.3 Other Organic Pollutants 236
9.5 Future Prospects 237
9.6 Conclusions 238
Important Websites 238
References 238
Contents

10 Functionalized Carbon Nanotubes for Ammonia Sensors 251

Rakshith K. Srinivasreddy and Ravi-Kumar Kadeppagari

10.1 Introduction 251

10.2 Ammonia Sensors 251

10.3 Types and Synthesis of Carbon Nanotubes 253

10.4 Carbon Nanotube-Based Ammonia Sensors 254

10.5 Functionalization of Carbon Nanotubes 257

10.6 Functionalized Carbon Nanotubes for Ammonia Sensors 258

10.7 Conclusions and Future Perspectives 259

Acknowledgments 259

Websites 259

References 259

11 Functionalized Carbon Nano Lab-on-a-Chip Devices for Environment 265

RaviPrakash Magisetty, Naga Srilatha Cheekuramelli, and Radhamanohar Aepuru

11.1 Introduction 265

11.2 Need for Carbon Nano Lab-on-a-Chip Devices for Environment, and Its Advancement 266

11.3 Carbon Nano Lab-on-a-Chip Devices for Environment 267

11.3.1 Renewable Energy Applications 267

11.3.2 Agriculture Applications 268

11.3.3 Biomedical Applications 270

11.3.4 Ocean and Atmospheric Applications 274

11.4 Conclusion 278

Important Websites 279

References 279

12 Functionalized Carbon Nanotubes (FCNTs) as Novel Drug Delivery Systems: Emergent Perspectives from Applications 283

Shikha Gulati, Sanjay Kumar, Ayush Mongia, Anchita Diwan, and Parinita Singh

12.1 About the Chapter 283

12.2 Introduction 284

12.3 Carbon Nanotubes (CNTs) 284

12.4 Classification of CNTs 286

12.4.1 Advantages of Carbon Nanotubes (CNTs) 287

12.4.2 Disadvantages of Carbon Nanotubes (CNTs) 287

12.5 Synthetic Methodologies of CNTs 288

12.5.1 Laser Ablation (LA) Method 288

12.5.2 Electric Arc Discharge (EAD) Method 289

12.5.3 Catalytic Chemical Vapor Deposition (CCVD) Method 289

12.5.4 Electrolysis Method 289

12.6 Purification Techniques of CNTs 290

12.6.1 Vacuum Oven Treatment 291

12.6.2 Microwave Treatment 291
12.6.3 Chemical Oxidation 291
12.6.4 Piranha Treatment 291
12.6.5 Annealing 292
12.6.6 Ultrasonication 292
12.6.7 Magnetic Purification 292
12.6.8 Cutting 292
12.6.9 Chromatography 292
12.7 Need of Functionalization of Carbon Nanotubes (CNTs) 293
12.8 Functionalization Strategies of CNTs 293
12.8.1 Covalent Functionalization 293
12.8.2 Non-covalent Functionalization 295
12.9 Advantages of Functionalized Carbon Nanotubes (FCNTs) 296
12.10 Medicinal Applications of Functionalized Carbon Nanotubes (FCNTs) 296
12.10.1 FCNTs in Drug Delivery 296
12.10.2 FCNTs in Drug Loading 298
12.10.3 FCNTs in Drug Targeting 301
12.10.3.1 Cancer Targeting 301
12.10.3.2 Brain Targeting 302
12.10.3.3 Lymphatic Targeting 302
12.10.3.4 Tuberculosis Targeting 303
12.11 Biocompatibility and Toxicity Considerations of FCNTs 303
12.12 Conclusion and Future Perspective 305
Some Important Websites 306
References 306

13 Adsorptive Removal of Fluoride by Carbon Nanomaterials 313
Tanvir Arfin
13.1 Introduction 313
13.2 Geochemistry of Fluoride 314
13.3 Fluoride in Water 314
13.3.1 Dynamics of Fluoride in Groundwater 315
13.4 Fluoride Solubility and Temperature 316
13.5 Sources of Fluoride in the Environment 316
13.6 Health Effects of Fluoride 316
13.7 Removal Technologies 316
13.8 Classification of Adsorbents 317
13.9 Carbon-Based Adsorbents 317
13.9.1 Carbon Nanomaterials (CNM) 318
13.9.1.1 Carbon Nanotube (CNT) 319
13.9.1.2 Graphene 319
13.10 Conclusion 320
Acknowledgment 321
Important Websites 321
References 321
Contents

14 Functionalized Carbon Nano-Membranes Based Devices for Water Purification Technology 331
 Lindomar Cordeiro A. de Araújo and Luiz Pereira da Costa

14.1 Introduction 331
14.2 Desalination 333
14.3 Removal of Particles (Ions, Heavy Metals) 335
14.4 Removal of Microorganisms 336
14.5 Final Considerations 339
 Websites on the Topic 339
 References 339

15 Functionalized Bio-carbon Nanomaterials for Environmental Utilizations 347
 Mahtabin R. Rozbu, Ahmedul Kabir, and Paulraj M. Selvakumar

15.1 Introduction 347
15.2 Carbon Nanomaterial 349
15.3 Synthesis of Fullerenes 349
15.4 Synthesis of CNTs 350
15.5 Synthesis of Graphenes 350
15.6 Bio-carbon Nanomaterials 351
15.7 Functionalization of Nanomaterials 351
15.7.1 Importance of Functionalization 352
15.8 Nanocellulose 352
15.8.1 Synthesis of Nanocellulose (NC) 352
15.8.2 Synthesis of CNCs 353
15.8.3 Synthesis of CNFs 353
15.8.4 Synthesis of DCCs 354
15.8.5 Synthesis of BNC 354
15.8.6 Applications 354
15.8.6.1 NC in Purification Technology as Films and Foams 354
15.8.7 NC as Solar Cells 355
15.8.8 NC as Stabilizing Agent 355
15.8.9 NC in Biomedicine 355
15.9 Nitrogen and Sulfur Co-doped Bio-carbon 356
15.9.1 Application Co-doped Bio-carbon 356
15.10 Biochar 356
15.10.1 Application of Biochar 357
15.10.1.1 Application of Bio-carbon Derived from Sisal Leaves 357
15.11 Biopolymers 357
15.11.1 Biopolymers in “Green” Synthesis of Nanoparticles 357
15.11.2 Biopolymers in Waste Water Treatments 358
15.11.3 Biopolymers as Bioplastics 358
15.11.4 Nanocomposites 358
15.11.5 Peptide Nanoparticles 359
15.11.5.1 Dipeptides 359
18 Functionalized Carbon Nanomaterials for Impending Pharmaceutical Applications: A Green and Sustainable Vision | 423

 Vaneet Kumar, Saruchi, and Harsh Kumar

18.1 Introduction | 423

18.2 Carbon Nanotubes: Functionalization for Biomedical Applications | 424

18.2.1 Applications of Functionalization Carbon Nanotubes in the Pharmaceutical Field | 426

18.2.2 Treatments of Tumors by Functionalized CNT | 428

18.2.3 Treatment of Infectious Diseases by Functionalized CNT | 428

18.2.4 Functionalized CNT as Antioxidants | 429

18.2.5 Functionalized CNTs as Diagnostics | 429

18.2.6 Solid Phase Extraction of Drugs and Biochemical’s with CNTs | 430

18.2.7 Toxicity Contemplation of CNTs | 431

18.3 Conclusion and Future Perspectives | 432

Important Websites about the Topic | 433

References | 433

Index | 439