
Identification of Nodes and Networks:
Robustness, Immunization, and

Explosive Synchronization

vorgelegt von
M.Eng.

Yang Liu

von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
-Dr.-Ing.-

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Dr. Manfred Opper
Gutachter: Prof. Dr. Klaus-Robert Müller
Gutachter: Prof. Dr. Jürgen Kurths
Gutachter: Prof. Dr. Ulrich Parlitz

Tag der wissenschaftlichen Aussprache: 18. March 2021

Berlin 2021

Zusammenfassung

In zahlreichen Studien hat es sich erwiesen, dass komplexe Systeme durch Netzwerke
charakterisiert werden können. Diverse Probleme wie Kaskadierungsfehler, Verbreitungsdy-
namik und Datenverarbeitung können durch Methoden der Netzwerkwissenschaft erforscht
bzw. verbessert werden. Der wesentliche Aspekt von solchen netzwerkwissenschaftlichen
Studien ist die Identifikation der Kanten, der Knoten oder des gesamten Netzwerks. Deshalb
erforschen wir das Problem in dieser Arbeit von zwei Aspekten aus – der eine ist die
Identifikation der Knoten, der andere die Identifikation des Netzwerks.

Das Ziel dieser Arbeit in Bezug auf den ersten Aspekt ist der Vorschlag fortgeschrittener
Ansätze zur Fragmentierung eines bestehenden Netzwerks. In Vergleich zu anderen
Methoden, geschieht dies mit weniger zu entfernenden Knoten. Als Resultat können wir
ein sichereres Netzwerk erreichen, in dem z.B. Epidemien besser eingedämmt werden
können, während dieselben Ressourcen (die gleiche Anzahl von Knoten) verwendet werden.
Davon profitieren Anwendungen wie die Verteilung von Impfstoffen, die Entscheidung,
welche Personengruppe unter Quarantäne gestellt werden soll, die Eindämmung von
Fehlinformationen in sozialen Netzwerken oder das Erkennen der Ausfallsicherheit
eines netzwerkbasierten Systems unter einem gezielten Angriff. Um dies zu erreichen,
integriert diese Arbeit Regeln aus der explosiven Perkolation mit Strategien aus der
Graphen-Partitionierung und Ideen aus evolutionären Algorithmen. Für über 20 empirische
Netzwerke sind unsere entwickelten Ansätze im Vergleich zum Stand der Technik wesentlich
effektiver bei der Erfassung der Schlüsselgruppe von Knoten, die für die Fragmentierung
verantwortlich sind.

In Bezug auf die Netzwerkidentifikation stellen wir uns die Frage, ob der sogenannte
Ordnungsparameter – hier ein Maß der Robustheit eines Netzwerks – eine Netzwerkstruktur
charakterisieren kann und untersuchen mögliche Wege die Robustheit eines bestimmten
Netzwerks zu verbessern oder zu schwächen. Insbesondere haben wir beim Phänomen
der explosiven Synchronisation festgestellt, dass der Ordnungsparameter in der Tat eine
zentrale Rolle beim Charakterisieren der Netzwerkstruktur spielt. Für den Einfluss auf die
Robustheit eines Netzwerks konnten jedoch nur indirekte Strategien gefunden werden. In
dieser Arbeit wird daher die Vorhersagbarkeit und Steuerbarkeit der Netzwerkrobustheit
mithilfe maschineller Lernwerkzeuge für den Datensatz aus der explosiven Synchronisation
weiter erörtert.

Die Hauptbeiträge und neue Methodik dieser Arbeit lassen sich daher wie folgt
zusammenfassen: die Methodik bestehend aus i) begrenzten und unbegrenzten Strategien
und ii) Ausarbeitung eines evolutionären Frameworks für die Untersuchung einflussreicher
Knoten; und mögliche Anwendungen umfassen iii) Identifikation der Auswirkungen der

Netzwerkrobustheit auf die explosive Synchronisation, iv) Entwicklung von Möglichkeiten
zur Verbesserung der Robustheit eines Netzwerks, v) Einflüsse von Bekannten auf die
Eindämmung von Epidemien und vi) Vorhersage der Hysterese bei der explosiven
Synchronisation.

iv

Abstract

Complex systems in a broad range of scientific domains have been shown to be well-
characterized by networks in an increasing number of studies. Problems such as cascading
failures, spreading dynamics and the extraction of leading factors from raw data through
the construction of networks can all be studied within the paradigm of network science.
Such problems concerning networks are usually directly or indirectly associated with the
identification of edges, nodes, and sometimes the entire network. Hence, it is mainly from
the two levels of network structure: nodes and networks, that we aim to study the problem
of network robustness (or immunization in the context of epidemics).

On the local level of nodes, the goal of this thesis is to propose advanced approaches
to fragment an existing network. Through such approaches we can achieve network
fragmentation with an attack on fewer nodes than exiting methods, or alternatively, we can
achieve a safer network which is more capable of containing epidemics while using the
same resources (i.e., same amount of nodes). These approaches could also be applied to
diverse problems such as to the distribution of a vaccine, to the decision over which group
of individuals should be quarantined first, to the containment of misinformation in social
networks, or to access the resilience of a network-based system under an intentional attack.
To achieve that, this thesis integrates rules from explosive percolation, strategies from graph
partition, and ideas from evolutionary computing. As a result, the developed approaches are
much more effective at acquiring the key group of nodes responsible for the fragmentation
when compared to the state-of-the-art methods.

On the level of entire networks, we attempt to ascertain whether the order parameter
– here a measure of network robustness – could be used to capture the network structure,
and further study potential ways that could be used to enhance or weaken the robustness
of a given network regarding such a parameter. In particular, we show that for the known
phenomenon of explosive synchronization, the order parameter indeed plays an important
role in capturing the network structure. In regard to the network robustness, however, only
indirect strategies could be found. Hence, this thesis further discusses the predictability and
controllability of the network robustness by the aid of machine learning methods on the
dataset from the explosive synchronization.

The main contributions of this thesis can therefore be summarized as follows: the
methodology consisting of i) bounded and unbounded strategies and ii) evolutionary
framework for the identification of influential nodes; and potential application include
iii) effects of network robustness on explosive synchronization, iv) ways to enhance the
robustness of a network, v) influences of acquaintances on the containment of epidemics,
and vi) prediction of the hysteresis in explosive synchronization.

To Xi

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my exceptional
supervisor at Potsdam Institute for Climate Impact Research (PIK), Prof. Dr. Jürgen Kurths,
for his continuous support, help, and encouragement throughout my whole postgraduate
study. I particularly appreciate his patient guidance, understanding, and warm care when
I encountered difficulties in both research and life. Without his endless help, this thesis
would not reach its present form. I would also like to express my sincere thanks to Prof.
Dr. Klaus-Robert Müller for giving me the invaluable opportunity to pursue my PhD at TU
Berlin and all the freedom to conduct my research at PIK.

Special thanks also go to my friends and colleagues at PIK, particularly to Paul Schultz,
Jingfang Fan, Frank Hellmann, Xiujing Han, and Yong Zhao for inspiring and fruitful
discussions. Meanwhile, I am also grateful to all my friends for filling my life with countless
joys in Potsdam.

Most importantly, I would like to dedicate my greatest appreciation to my parents, my
elder sister, my girlfriend, and all of my family members. Their unparalleled love, kind
understanding, and endless support help me conquer all the challenges and difficulties in
my PhD study.

Lastly, I would like to thank China Scholarship Council (CSC) scholarship and IRTG
1740 for generously supporting my work financially.

Table of Contents

Title Page i

Zusammenfassung iii

Abstract v

List of Figures xvii

List of Tables xxi

List of Algorithms xxiii

Abbreviations xxv

Symbols xxv

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Organization and Outline of the Thesis . 5
1.4 Relation to Previously Published Work . 6

2 Complex Network Theory and Network Percolation 7
2.1 Complex Network Theory . 7

2.1.1 Networks . 7
2.1.2 Adjacency matrix . 8
2.1.3 Essentials . 9

2.1.3.1 Nearest neighbor . 9
2.1.3.2 Degree, average degree, degree distribution 9
2.1.3.3 Walks, paths, connected components, and cycles 10
2.1.3.4 Clustering coefficient . 11

2.2 Measures of Nodes . 11
2.2.1 Degree centrality . 12
2.2.2 Eigenvector centrality . 12
2.2.3 Katz centrality . 12
2.2.4 PageRank . 13
2.2.5 Closeness centrality . 14

xi

TABLE OF CONTENTS

2.2.6 Betweenness centrality . 14
2.3 Measure of Networks . 14

2.3.1 Assortativity . 15
2.4 Percolation Theory . 16

2.4.1 Percolation on two-dimensional square lattice 16
2.4.2 Percolation on random network . 18

2.4.2.1 Random network . 18
2.4.2.2 Essentials . 18
2.4.2.3 Percolation on random graph 19

2.5 Explosive Percolation . 19
2.5.1 Basics . 20
2.5.2 Bohman and Frieze’s strategy . 21
2.5.3 Product rule, sum rule, and explosive percolation 21
2.5.4 Other rules . 23

3 Ways to Fragment Networks 25
3.1 Problems and Motivations . 25

3.1.1 Inverse percolation and network robustness 25
3.1.1.1 Inverse percolation . 25
3.1.1.2 Network robustness . 26
3.1.1.3 Overview of attack strategies 26
3.1.1.4 Scale-free network . 28
3.1.1.5 Configuration model . 28
3.1.1.6 Attacks on the configuration model network 29
3.1.1.7 Attacks on ER network . 30
3.1.1.8 Critical threshold regarding order parameter 30
3.1.1.9 Attacks on scale-free network 31

3.1.2 The connection between network robustness and immunization . . . 32
3.1.2.1 Susceptible-Infected-Recovered model 32
3.1.2.2 From SIR to percolation . 32
3.1.2.3 Network immunization . 33

3.2 Metrics to Methods . 35
3.3 State-of-the-art Approaches . 36

3.3.1 General methods . 36
3.3.2 Heuristic methods . 37
3.3.3 Decycling-based methods . 37
3.3.4 Collective influence approach . 38
3.3.5 Percolation-based methods . 39
3.3.6 Summary . 40

3.4 Bounded and Unbounded Strategies . 41
3.4.1 Union-Find Algorithm . 41
3.4.2 Bounded-size strategies . 42
3.4.3 Sum and product rules regarding nodes 43
3.4.4 The power of selections over choices . 44

xii

TABLE OF CONTENTS

3.4.5 Applications . 48
3.4.5.1 Data . 48
3.4.5.2 Configurations of associated methods 49
3.4.5.3 Percolation metrics . 51
3.4.5.4 FVS problem . 56
3.4.5.5 SIR results . 59
3.4.5.6 Running time . 60

3.5 Evolutionary Framework for the Identification of Influential Nodes 61
3.5.1 The advantage and disadvantage of ARRS 61
3.5.2 Pruning an existing method . 63

3.5.2.1 PruOrd . 64
3.5.2.2 PruGri . 66
3.5.2.3 PruRan and PruRang . 66
3.5.2.4 Summary . 67

3.5.3 Effects of the critical threshold on the average order parameter 67
3.5.4 Optimization of the critical threshold 68

3.5.4.1 Effects of the average order parameter on the critical threshold 68
3.5.4.2 Mutation operators . 71

3.5.5 Initialization based on graph partitioning 71
3.5.6 Evolutionary framework for the robustness and immunization problems 73
3.5.7 Applications . 74

3.5.7.1 Data . 74
3.5.7.2 Configurations of associated methods 74
3.5.7.3 Percolation metrics . 75
3.5.7.4 SIR results . 79

3.6 Fast Scheme for the Suppression of F . 82
3.7 Summary . 83

4 Functions of Order Parameter as Measure 85
4.1 Effects of Network Robustness on Explosive Synchronization 85

4.1.1 Model . 86
4.1.2 Rewiring strategy . 87
4.1.3 Results . 87
4.1.4 Discussions . 92
4.1.5 Summary . 94

4.2 Ways to Enhance the Robustness of a Network 94
4.2.1 The power of selection . 95
4.2.2 Applications . 101
4.2.3 Summary . 103

4.3 Influences of Acquaintances on the Containment of Epidemics 103
4.3.1 Ways to weaken the robustness of a network 103
4.3.2 The role of less connected acquaintance 105
4.3.3 Applications . 106
4.3.4 Summary . 107

xiii

TABLE OF CONTENTS

4.4 Prediction of the Hysteresis in Explosive Synchronization 107
4.4.1 Problems and motivations . 107
4.4.2 Basic idea . 108
4.4.3 Essentials . 109

4.4.3.1 Problems . 109
4.4.3.2 Baseline . 110
4.4.3.3 Data . 110
4.4.3.4 Experimental configurations 110

4.4.4 Results . 110
4.4.4.1 Method based on the eigenvalue 110
4.4.4.2 Method based on the graph kernel 112
4.4.4.3 Method based on the graph neural network 112
4.4.4.4 More validations . 113
4.4.4.5 Effects of network robustness on S 114

4.4.5 Summary . 115

5 Conclusion and Outlook 117
5.1 Conclusion . 117
5.2 Outlook . 121

References 123

Appendix A A1
A.1 Complex Network Theory and Network Percolation A1

A.1.1 Networks . A1
A.1.2 Eigenvector centrality . A2
A.1.3 Katz centrality . A2
A.1.4 Percolation on random graph . A3
A.1.5 BFW Algorithm . A5

A.2 Ways to Fragment Networks . A5
A.2.1 Molloy-Reed criterion . A5
A.2.2 Attacks on the configuration model network A6
A.2.3 Attacks on ER network . A6
A.2.4 Attacks on scale-free network . A7
A.2.5 Susceptible-Infected-Recovered model A9
A.2.6 From SIR to percolation . A10
A.2.7 Metrics to Methods . A12
A.2.8 General methods . A12
A.2.9 Heuristic methods . A14
A.2.10 Decycling-based methods . A15
A.2.11 Collective influence approach . A16
A.2.12 Percolation-based methods . A17
A.2.13 Bounded and Unbounded Strategies A18
A.2.14 Evolutionary Framework for the Identification of Influential Nodes . A20

xiv

TABLE OF CONTENTS

A.2.15 Fast Scheme for the Suppression of F A20
A.3 Functions of Order Parameter as Measure . A21

A.3.1 Influences of Acquaintances on the Containment of Epidemics A21
A.3.2 Prediction of the Hysteresis in Explosive Synchronization A24

xv

List of Figures

2.1 Example of nodes, edges, and networks. 8
2.2 Examples for Γ(i), ki, ⟨k⟩, and pk. 9
2.3 Examples of walks, paths, components, and cycles. 10
2.4 Percolation on a two-dimensional square lattice. 17
2.5 An example of the ProR. 22

3.1 Baran’s example. 26
3.2 An example regarding different attack strategies. 27
3.3 Random attack on ER networks . 30
3.4 The transition chain of the SIR model. 32
3.5 Behaviours of ⟨k′2⟩/⟨k′⟩ as a function of q . 34
3.6 An example of the distinct nearest neighbor set. 40
3.7 An example of external degree. 42
3.8 An example of the motivation to develop ARRS. 44
3.9 Performance of ASumRSp. 45
3.10 Performance of ARRSs and ARRS. 47
3.11 An example of external score. 48
3.12 Performance of ABonS1, ABonS2, APRSs1, APRSrr, and ARRS. 51
3.13 Comparisons among ACIS, ABPDS, AEIS, ABonS1, ABonS2, APRSs1, and

APRSrr. 52
3.14 Performance of ARRS validated by ACIS, ABPDS, and AEIS. 53
3.15 The power of product rule. 54
3.16 Performance of APRSrr and ARRS on model networks. 54
3.17 Performance of APRSrr on model networks regarding qc of ⟨k⟩. 55
3.18 qc and FVS of ⟨CC⟩. 57
3.19 SIR results considering the Email-Enron network. 58
3.20 SIR results considering the loc-Gowalla network. 59
3.21 Performance of APRSrr and ARRS over running time. 60
3.22 Effects of different initial sequences on F and qc. 62
3.23 Performance of PruOrd, PruGri, PruRan, and PruRang regarding F. 64
3.24 Influence of qc on F. 68
3.25 Performance of PruOrdq, PruGriq, PruRanq, and PruRangq regarding qc. . . 69
3.26 Influence of F on qc. 70

xvii

LIST OF FIGURES

3.27 Performance of PruGri, GruRan, and GruRang with initializations based on
AMetisS and AMetisSg. 73

3.28 Comparisons among Evolq, EvolF and many other methods. 75
3.29 Performance of AMetisS and AMetisSg on networks generated through the

configuration model. 76
3.30 Performance of EvolF(2) validated by ACIS, ABPDS, AEIS, and ARRS. 77
3.31 Tuning of F through the combination of ARRS and EvolF(2). 78
3.32 SIR results considering the global airline network. 81
3.33 Specific patterns of SIR results on the global airline network. 82

4.1 Example of the magnitude of synchronization ℜ versus the coupling strength λ. 88
4.2 The magnitude of synchronization ℜ versus the coupling strength λ regarding

different r and F. 88
4.3 The jump size J and hysteresis area S of F and r. 89
4.4 The magnitude of synchronization ℜ versus the coupling strength λ regarding

networks of size n = 104. 89
4.5 The magnitude of synchronization ℜ versus the coupling strength λ regarding

ξδ(F|r). 91
4.6 S versus the perturbations of r and F. 92
4.7 S and F (or r) of r (or F). 93
4.8 The magnitude of synchronization ℜ versus the coupling strength λ regarding

networks of different size. 93
4.9 Evolution of F under the cut-add strategy. 96
4.10 Illustration of the correlation matrix. 96
4.11 Coef as a function of T. 97
4.12 F of ARRS (with T = 103) on networks enhanced by varied strategies. 99
4.13 F of ARRS (with T = 103) on networks enhanced by WayEnhSrv1(ap). 100
4.14 F of ARRS (with T = 103) on networks enhanced by WayEnhS(ap). 100
4.15 F of ARRS (with T = 103) on networks enhanced by WayEnhS(ap) regarding

different T. 101
4.16 Performances of WayEnhS. 102
4.17 Performances of WayEnhSr. 102
4.18 Framework of the investigation of effects of the network structure on dynamic

systems. 108

A.1 Illustration regarding the giant component. A3
A.2 Intentional attack on hubs regarding ER networks A7
A.3 Attacks on SF networks . A9
A.4 An example of the SIR model . A10
A.5 Ga(q) and ⟨k′2⟩/⟨k′⟩ of q on ER networks regarding RanS and HubS. A13
A.6 Performance of HubS, EigS, KatS, PagS, CloS, BetS, and KshS. A13
A.7 An example of AHubS. A14
A.8 Performance of HubS, PagS, AHubS, APagS, and ABetS. A14
A.9 An example with respect to BetS and ABetS. A15

xviii

LIST OF FIGURES

A.10 Performance of ABetS, AMSRGS, and ABPDS. A15
A.11 An example of the collective influence strength. A16
A.12 Performance of ACIS. A16
A.13 Performance of AITS. A17
A.14 Performance of ACNS and AEIS. A17
A.15 An example of the Union-Find algorithm. A18
A.16 Performance of basic bounded-size rule. A19
A.17 Performance of ABonS1. A19
A.18 Performance of ABonS2. A20
A.19 Performance of ASumRS and AProRS. A21
A.20 Performance of APRSs1 and APRSrr. A22
A.21 Comparisons of qc between ARRS and ARRSq. A22
A.22 An example of the accepted probability Ap against a(Tp). A22
A.23 Effects of the manipulation of F on qc. A23
A.24 Computing time of GPEP. A23
A.25 F of mr/m regarding varied removal criteria. A25
A.26 F of mr/m regarding varied removal criteria from local perspective. A26
A.27 Contours of ⟨αinf⟩ regarding Prodi2 on the Email-Enron network. A27
A.28 Contours of ⟨αinf⟩ regarding Prodi2 on the loc-Gowalla network. A28
A.29 Contours of ⟨αinf⟩ regarding Prodi2 with different mr on the Email-Enron

network. A29
A.30 Examples regarding S . A29

xix

List of Tables

3.1 Basic information of the 18 real-world networks. 49
3.2 Results of F. 55
3.3 Results of qc . 56
3.4 Results of FVS. 57
3.5 Results regarding the mean of the order parameter. 79
3.6 Results regarding the critical threshold. 80

4.1 Performances of different strategies regarding weakening a network. 104
4.2 Performance of Prodi2 regarding RanS on the Email-Enron network. 106
4.3 Performance of Prodi2 regarding AcqI on the Email-Enron network. 106
4.4 Performance of Prodi2 regarding HubS on the Email-Enron network. 106
4.5 Experimental configurations. 110
4.6 Accuracy of EigRF(α) regarding varied feature dimensions α. 111
4.7 MAE of EigRF(α) regarding varied feature dimensions α. 111
4.8 Accuracy and MAE of WLsubK(t). 112
4.9 Accuracy and MAE of GIN and GIN-RK4. 113
4.10 MAE of networks from Figs. 4.4, 4.5, and 4.6 regarding varied methods. . . . 114
4.11 MAE of networks from Fig. 4.6 regarding GIN and GIN-RK4. 114
4.12 MAE regarding varied training sets of sizes b. 115

A.1 Examples of networks from the real world. A1
A.2 Results of GPEP regarding the mean of the order parameter. A21
A.3 Performance of GPEP regarding varied imbalances. A24
A.4 Performance of GPEP regarding varied τ̂. A24

xxi

List of Algorithms

2.1 Percolation . 20

3.1 Site percolation on an existing network . 41
3.2 One round of ARRS . 46

A.1 BFW . A5
A.2 Union-Find . A18

xxiii

Abbreviations

the number of 9

AcqI Acquaintance immunization 27

AP Achlioptas process 19

BA Barabási-Albert 28

BF Bohman and Frieze 21

ER Erdős and Rényi 18

ES Explosive synchronization 85

FVS Feedback vertex set 37

IIs Independent implementations 49

LCC Largest connected component (cluster) 19

ProR Product rule 21

RanS Random strategy 27

SF Scale-free 28

SIR Susceptible-Infected-Recovered 3

SumR Sum rule 21

Symbols

M The edges setM. 7

N The node set N . 7

m The number of edges. 7

n The number of nodes. 7

G(N ,M) A network (graph) consists of all nodes in
the node set N and all edges in the correspond-
ing edge setM. 7

G(n, m) A network (graph) consists of n nodes and
m edges. 7

eij A specific edge connecting nodes i and j. 8

A The adjacency matrix. 8

Γ(i) The nearest neighbor set of node i. 9

ki The degree of node i. 9

⟨k⟩ The average (mean) degree. 9

pk The degree distribution. 9

dij The length of the shortest path between node i
and node j. 10

dmax The diameter of a network. 10

⟨d⟩ The average shortest path of a network. 10

dc(i) The length of a cycle regarding node i. 11

CCi The clustering coefficient of node i. 11

⟨CC⟩ The average clustering coefficient. 11

λ1 The largest eigenvalue. A2

Hi The score (influence) of node i. This term would
be reused in several places. 12

vi The ith eigenvector. A2

λi The ith eigenvalue. A2

α A temporal variable to help explain concepts or
methods. This term would be reused in several
places. 13

r The assortativity coefficient. 16

p The occupied probability regarding site (node) or
bond (edge) percolation. 16

p∞ The order parameter. 17

Mc(t) The candidate edge set at t. 20

Mo(t) The occupied edge set at t. 20

Mu(t) The unoccupied edge set at t. 20

t The time step, number of occupied edge or number
of occupied nodes. 20

ξ(·) The local goal function regarding an edge or
node. 20

RS(·, ·) The random chosen function usually follow-
ing the uniform distribution. 20

ns The number of selections or candidates. 20

tc The critical step where a percolation transition
undergoes. 21

c(i) The component that node i belongs to. 21

Gp(t/n) The fraction of the LCC during a percolation
process. 22

γ The exponent regarding SF networks. 28

xxv

Symbols

Nc(t) The candidate node set at t. 29

No(t) The occupied (remaining) node set at t. 29

Nu(t) The unoccupied (removed) node set at t. 29

q The fraction of removed nodes. 29

Ga(q) The fraction of the LCC during an attack
process. 29

qc The critical threshold. 30

ηi The infection ratio (probability). 32

ηr The recovery ratio (probability). A10

η0 The basic reproductive number. 32

ηc The epidemic threshold regarding the SIR model
on networks. 33

F The average fraction of the LCC. 36

NFVS The feedback vertex set. 38

ℓ A control parameter regarding ACIS. 39

Γ̂(i) The distinct nearest neighbor set of node i. 40

K A control parameter regarding AEIS. 40

ru A control parameter regarding ARRS and APRSrr.
45

T A control parameter regarding ARRS and APRSrr.
45

δns A control parameter regarding ARRS and APRSrr.
46

δru A control parameter regarding ARRS and APRSrr.
46

ξg(·) The global goal function. 47

D(qc) The normalized qc difference. A22

Sp(t1, t′1) A slice of a sequence S. 63

F(Sp(t1, t′1)) The local F. 64

T̂p A control parameter regarding pruning strategies.
65

θi The phase of oscillator i. 86

ωi The natural frequency of oscillator i. 86

λ The coupling strength. 86

ℜ The order parameter regarding synchronization.
86

α−(eij) The cut procedure. 87

α+(σuv) The add procedure. 87

ξδ(g) The goal function regarding δ. 87

Je The maximal jump size regarding the forward
transition. 89

Jb The maximal jump size regarding the backward
transition. 89

S The hysteresis area. 90

xxvi

1
Introduction

1.1 Motivation

Network or graph as an effective approach has gained numerous attention from a
large range of domains, including physics, mathematics, computer science, neuroscience,
complexity science, social science, and many others [1, 2]. Usually, the reason that people
focus on networks is two-fold. On the one hand, a highly interacted system can be
appropriately modeled by a graph whose nodes represent the dynamic units and whose
edges capture their interactions. It is much easier to study the global properties of a system
from a network perspective, such as the stability of power grids [3] or the spreading dynamics
of messages or epidemics in communication or contact systems [4]. On the other hand,
studying the corresponding network provides a test bed for manipulation on real systems
and facilitates better solutions to control, predict, optimize, or reconstruct them [5, 6]. In
general, the solution of problems regarding networks converges to the identification of edges,
nodes or/and the entire network, no matter using networks to capture the leading factors
from raw data [7] or employing networks to study the spreading pattern of virus [8]. Hence,
this thesis focuses on the identification of nodes and networks, and particularly studies
problems of the network robustness (resilience) [5, 9, 10], the network immunization [11, 12],
and the explosive synchronization [13].

Network robustness. Errors and failures are ubiquitous in the human world [9]. The
failure of some components of our computer, like an unimportant key, would only have
limited influence on our work, and we can still keep using it as usual. However, the
breakdown of a critical component, such as the central processing unit, would possibly drive
us crazy. Besides, the traffic perhaps becomes normal again after a short jam caused by some
accident, even though that road is still blocked. But a similar incident on a different road
could turn the whole system into chaos [14]. Further, climate change continuously increases
the frequency and intensity of extreme events, which keeps challenging the resilience of
infrastructure and boosting the global supply chain risks [15]. There is evidence that 35%-85%
business losses were caused by the disruption to the transportation or electricity supplies and

1

1. Introduction

not by the flood itself [16]. Certainly, more roads or power lines could be built to improve
their robustness, but they always corresponds to the need of a lot of resources, which is
basically impossible in the short term. As an alternative, one can maybe widen some roads
to increase the capacity of transportation or develop a more stable power system. But we still
need to face other problems such as which road should we choose? Indeed, we cannot find
exact solutions to those problems, even in the near future. But the study of those problems
on networks might help us understand the principle of those problems and shine our road
to the right solutions.

Usually, studies regarding the network robustness aim to answer how the structure of a
network influences its robustness. For instance, decades ago, Paul Baran was assigned to
design a communication system that can survive a Soviet nuclear attack, and he thought a
robust network should be a network that most of its remaining nodes could still communicate
with each other after some nodes failed, which guided him to suggest that a network in
grid type would be robust against an intentional attack [17]. And he also concluded that the
denser a network is, the more robust would it be. But decades later after Baran’s suggestion
was ignored, the topology of the Internet grew into a scale-free distribution [2, 9, 18]. And
thus we have a network that is quite fragile under an intentional attack on hubs, though
it is very robust over the random failure [9]. Shortly later, Cohen et al. accordingly gave
the corresponding analytical explanations in refs. [19, 20]. And more related works could
be found in refs. [1, 2], such as the effects from the clustering coefficient, the length of the
average shortest path, the community structure, the assortativity, the network motifs, etc.

This thesis considers such problem, the network robustness, in a more practicable way.
That is, rather than study networks generated by specific models, we directly focus on those
drawn from real-world scenarios, such as email communication networks, Internet topology
networks, social networks, etc. In other words, we assume that a network already exists, and
aim to investigate its reactions to varied attacks, which guides us to a problem as to what
the real robustness of a given network is. And apparently, a network’s robustness would
be bounded by the most advanced attack strategy. Hence, the considered problem is then
equivalent to the search of the most advanced attack strategy, which forms one of the main
goals of this thesis. Some related works that achieve state-of-the-art attacks can be found in
refs. [21, 22, 23, 24, 25, 26].

Network immunization. Infectious diseases, as one of the biggest enemies to global
health, could cause rapid population declines or species extinction [27]. And there is never a
lack of examples, from the Black Death (probably bubonic plague) which is estimated to have
caused the death of as much as one-third of the population of Europe between 1346 and 1350
[28], to nowadays COVID-19 pandemic which might result in the largest global recession
in history [29], in particular, climate change keeps exacerbating the spread of diseases and
increasing the probability of global epidemics [30, 31, 32]. To tackle problems regarding
infectious diseases, the first thing is to figure out their transmission patterns. In tandem with
the fact that most infectious diseases are transmitted through direct or indirect contacts, the
network ultimately plays a key ingredient of the corresponding epidemic modelling [33, 34].
And a natural problem also arises as to the design of corresponding immunization strategies
on networks, i.e., network immunization [11, 12].

2

1.2 Contributions

Ways to contain an epidemic might include social distancing, cancellation of airlines,
quarantine, and closure of shops or public areas, etc. And the aim is to curb the basic
reproductive number (concept see Section 3.1.2.1) if the epidemic follows the Susceptible-
Infected-Recovered (SIR) model (which most epidemics obey). Sometimes, we are lucky.
The virus might vanish as, e.g., the temperature increases. Or it only has limited contagion
and could easily be wiped out. But sometimes, we have to let infected individuals recover
by themselves and wait for herd immunity. Or even worse, our body cannot produce an
antibody, like AIDS. Immunization strategies aim to those problems and study: i) if isolation
is needed, the quarantine of which group of individuals is more important to contain the
spread of an epidemic, such as officials or teachers? ii) if a vaccine is found but has a limited
amount, particularly in some developing countries where the resources are always limited,
who should be targeted for treatments first? iii) to prevent the outbreak of an epidemic,
which places, like airlines or airports, should we consider more intensively? In the context
of complex networks, the solution of those problems is equivalent to the identification of a
small group of key nodes that dominate the whole network. After the removal (deactivation,
immunization, or isolation) of such a group, the epidemic would be contained and only have
limited effects on the remaining network.

Therefore, finding a better way to immunize a network is like the other side of the same
coin of searching for the most advanced attack strategy, i.e., network robustness. Intuitively,
after the removal of a part of key nodes, the possible maximum spread is bounded by the
size of the largest connected component (concept in Section 2.4). That means, if there is
no giant component in the remaining network, then the virus would die out within only
a limited spread, no matter how large the infection rate or how small the recovery rate is.
Thus, the random immunization (or herd immunity) corresponds to the random failure
of nodes (network robustness), which requires us to remove sufficient nodes, i.e., at least
enough to fragment the entire network, to eliminate a virus.

Explosive synchronization. Explosive synchronization (ES) [13, 35, 36, 37] is a critical
phenomenon, which is observed when the coupled oscillators (e.g., of the Kuramoto system
[38]) are associated with a scale-free topology [13], i.e., the natural frequency of each oscillator
proportionally corresponds to its number of connections and they are coupled by the related
adjacency matrix. If the node degree sequence of networks is fixed, then the ES to some
extent only relies on the adjacency matrix, i.e., the network structure. Thus, based on it, we
could study whether the network robustness (particularly the mean of the order parameter
regarding percolation) could be used as a measure to capture the network structure, which
has potential applications in such as brain and climate networks [39, 40].

1.2 Contributions

The main contributions of this thesis are as follows.
Analysis of metrics, and thorough evaluation and comparison of existing approaches.

Aiming at the state of the art it is important to understand the underlying theory and have
unique metrics for comparisons of various methods. Hence, this thesis firstly reproduces
a few results regarding percolation, explosive percolation, network robustness, SIR model,

3

1. Introduction

and network immunization in Sections 2.4, 2.5, and 3.1, where the connections among them
are analyzed and studied too. Based on that, the reason why the critical threshold of the
percolation transition and the mean of the order parameter are chosen as ultimate metrics is
stated in Section 3.2.

Meanwhile, to verify the effectiveness of proposed methods more thoroughly and clearly,
over 20 existing well-known approaches are brought together and compared under the same
framework (i.e., the above metrics) on three rather small networks, including one scale-free
network and two empirical networks. The selection of these networks considers both the
density of edges and the variety of network structure. In such a manner one could thus have
global views of advantages and disadvantages in regard to those mentioned methods. These
comparisons can be found in Section 3.3.

Bounded and unbounded methods, and evolutionary framework. Following those
comparisons, the method that on average has the best performance can be acquired. By the
aid of it, this thesis then gradually studies approaches based on rules from the explosive
percolation (whose order parameter usually undergoes an irreversible transition). Specifically,
motivated by the fact that most percolation on regular networks are reversible (i.e., the order
parameters of the forward transition (percolation) and backward transition (attack) are in
principle equivalent to each other), we would like to know whether the rule leading to an
explosive percolation could also be used to attack an existing network. If it does, then those
rules could usually heavily delay the critical threshold, which is highly associated with the
solution of the robustness and immunization problems, that is, obtaining the minimum
node set whose removal would break down the entire network or whose immunization
could effectively contain an epidemic. Therefore, we accordingly evaluate both bounded
and unbounded rules from Section 2.5 in regard to nodes, and also propose a few strategies
particularly for existing networks. As a result, 5 bounded-size strategies and 2 unbounded-
size approaches are developed, which somewhat work for all kinds of networks, especially the
relate-relationship strategy (ARRS). Besides, similar to the explosive percolation, unbounded
methods are usually more capable of acquiring better solutions but they are also more
time-consuming than bounded. More details of analysis and comparisons can be found in
Section 3.4.

However, both bounded and unbounded strategies would suffer the problem of local
optimum. To tackle that, the effects of the initial sequence and also the corresponding
control variables in regard to ARRS are further discussed. Based on them, the evolutionary
framework for identification of influential nodes is built, where selection strategies, mutation
operators, and the ways to initialize and maintain a population (sequence) are studied and
included in Section 3.5. Meanwhile, Section 3.6 also shows a fast scheme to suppress the
order parameter.

Order parameter as a measure of the network topology. During the dynamic removal
of existing nodes, the order parameter keeps tracking the size of the largest connected
components. Such parameter, on the one hand, could effectively quantify the robustness of a
given network under a consecutive attack, and on the other hand, shows potential ability to
capture the network structure. In other words, if we view F (the mean of the order parameter
F (concept in Section 3.2), a scalar of 0 to 0.5) as a measure, then what role does F play in

4

1.3 Organization and Outline of the Thesis

such as brain or climate networks? To verify that, the explosive synchronization regarding
the Kuramoto model is considered in Section 4.1 where effects of both F and the assortativity
(concept in Section 2.3.1) as well as their combination are studied. Following that, ways to
enhance a network against the most advanced attack strategy are discussed in Section 4.2,
which might also play role in such as keeping the variety of network samples regarding
Section 4.4 where the effectiveness of machine learning tools on the same problem of Section
4.1 is investigated. Meanwhile, based on similar ideas, this thesis also studies the influences
of acquaintances on the containment of epidemics in 4.3.

1.3 Organization and Outline of the Thesis

In summary, Chapter 2 reviews basic concepts regarding complex networks and network
percolation. Chapter 3 discusses the network robustness and immunization problems mainly
from the perspective of the identification of nodes. And Chapter 4 follows that but in a
view of the identification of networks. Those two chapters constitute our main contributions,
which are summarized in Chapter 5, including the outlook.

In particular, Section 2.1 gives some basic definitions of complex networks, including
ways to represent a network, which is crucial for those who want to implement the related
algorithm of this thesis. From there, one can also find concepts with respect to the adjacency
matrix, component, cycle, clustering coefficient, etc. Following that, a few general approaches
to characterize nodes and networks are shown in Sections 2.2 and 2.3, such as PageRank
and assortativity. Section 2.4 briefly introduces the concept of percolation through the
example on a two-dimensional square lattice, followed by a more detailed explanation on the
random network. One can also find concepts such as critical threshold, subcritical regime,
supercritical regime, etc. in Section 2.4. Further, Section 2.5 reviews varied rules in regard to
the explosive percolation including bounded-size rules and unbounded-size rules, which
forms the basis of the proposed basic methods.

Then, Section 3.1 discusses the network robustness and immunization problems in
more detail, which also gives us the goals to optimize (i.e., metrics to methods in Section
3.2). By the aid of them, Section 3.3 reviews the existing state-of-the-art methods, where
comprehensive comparisons among them are also conducted. Section 3.4 shows our proposed
7 basic strategies, including 5 bounded and 2 unbounded. Basically, those strategies are
suitable for all kinds of networks, and any of them could acquire better or comparable
results than all of those methods in Section 3.3. Further, based on these basic methods, the
evolutionary framework for the identification of influential nodes is discussed in Section 3.5.
And Section 3.6 introduces a fast scheme to curb F.

Next, we move to the identification of networks. Focusing on that, Section 4.1 investigates
the effects of network robustness on explosive synchronization. Section 4.2 studies a few
ways to enhance the robustness of a network. Following that, Section 4.3 further discusses
approaches to boost the effectiveness of immunization strategies. In Section 4.4, a few
machine learning methods are also verified on data from Section 4.1 to demonstrate the
predictability and controllability of a specific behaviour of such a dynamic system from
Section 4.1.

5

1. Introduction

Lastly, the main contributions of this thesis are summarized in Section 5.1 followed by
the outlook in Section 5.2.

1.4 Relation to Previously Published Work

I thank my co-authors for allowing me to use material from our joint papers. Some of
results in this thesis have already been previously published in the following papers:

[L1] Yang Liu, Xi Wang, and Jürgen Kurths. “Optimization of targeted node set in complex
networks under percolation and selection”. In: Physical Review E 98.1 (2018), p.
012313.

[L2] Yang Liu, Xi Wang, and Jürgen Kurths. “Framework of evolutionary algorithm for
investigation of influential nodes in complex networks”. In: IEEE Transactions on
Evolutionary Computation 23.6 (2019), pp. 1049–1063.

[L3] Yang Liu and Jürgen Kurths. “Effects of network robustness on explosive synchroniza-
tion”. In: Physical Review E 100.1 (2019), p. 012312.

Additional research work not covered by the material in this thesis can be found in:

• Yong Zhao, Xiaoyan Sun, Yang Liu and Jürgen Kurths, “Phase synchronization
dynamics of coupled neurons with coupling phase in the electromagnetic field”. In:
Nonlinear Dynamics 93.3 (2018), pp. 1315–1324.

• Xiujing Han, Yang Liu, Qinsheng Bi and Jürgen Kurths, “Frequency-truncation
fast-slow analysis for parametrically and externally excited systems with two slow
incommensurate excitation frequencies”. In: Communications in Nonlinear Science
and Numerical Simulation 72 (2019), pp. 16–25.

• Jingfang Fan, Jun Meng, Yang Liu, Abbas Ali Saberi, Jürgen Kurths and Jan Nagler,
“Universal gap scaling in percolation”. In: Nature Physics 16.4 (2020), pp. 455–461.

6

2
Complex Network Theory and Network

Percolation

In this chapter we present underlying concepts regarding complex networks, attributes
and measures of nodes and networks, percolation theory, and explosive percolation.

2.1 Complex Network Theory

2.1.1 Networks

A network (graph1) G(N ,M) consists of a number of nodes (vertices) tied by a group of
edges (links) where N andM are accordingly the node set and the edge set. Let n = |N |
and m = |M| be the corresponding number of nodes and edges, respectively. Then we also
refer to a network as G(n, m) which indicates a network G constructed with n nodes and m
edges (see Fig. 2.1 for an example). In general, the node (see Table A.1) could be an agent in
a multi-agent system, an interaction in a road network, or an airport in the global airline
network. Such node could also have some properties, like the size, security, and location of
an airport. The edge could be a road connecting two interactions, an airline between two
airports, or friendships among individuals. In practice, different scenarios could share a
similar fundamental structure such as following similar macroscopic characteristics, even
though their node and edge have different meanings. Besides, the structure of a network
might also be far complicated, e.g., node and edge could have weights, or connections
between two nodes could be multiple (see Fig. 2.1). Among them, the most fundamental
and important structure in both network science and graph theory is the simple network [2,
41]. A simple network is an undirected and unweighted network without self-loops (Fig.
2.1). In this thesis, we will mainly consider simple networks and refer to a simple network
as a network if there is no special explanation.

1The difference between network and graph is from the difference of network science and graph theory. They
are actually interchangeable. Thus, we view network and graph as the same thing throughout this thesis, even
though there are some subtle differences [2].

7

2. Complex Network Theory and Network Percolation

Simple Network

Node Edge

Node {individual, protein, airport, …}

Edge

{i

 {Friendship, interaction, airline, …}

Weighted nodes

and edges

Multi-, self-, undirected,

and directed edges

1

2

3
4

5

6

Figure 2.1: Example of nodes, edges, and networks. A simple network is an unweighted and
undirected network without self-loops.

2.1.2 Adjacency matrix

The core to represent a network is to find an appropriate way which can fully capture
those interactions among nodes. For example, we can firstly label each node from the simple
network in Fig. 2.1, and then employ the following two arrays to represent that network,

adj = [2, 3, 4, 5, 1, 3, 6, 1, 2, 4, 1, 3, 1, 6, 2, 5],

idx = [0, 4, 7, 10, 12, 14, 16].

In this manner, one can obtain the nodes connecting to node i through2 adj[idx[i] + 1 :
idx[i + 1]], or get an edge eij where3 j = adj[idx[i] + 1]. This representation is actually very
useful in storing the network or for some calculation running on the network.

However, a better such way for mathematical calculations is the adjacency matrix that
could efficiently represent a network by the aid of a matrix. For a simple network like the
one in Fig. 2.1, the element of the adjacency matrix follows

Aij =

{︄
1, if node i and j are connected to each other,

0, otherwise.
(2.1)

Thus, the corresponding adjacency matrix A is written as

A =

0 1 1 1 1 0
1 0 1 0 0 1
1 1 0 1 0 0
1 0 1 0 0 0
1 0 0 0 0 1
0 1 0 0 1 0

.

2Here we follow the rules in computer programme but with a slight difference. That is, for instance,
considering node 3 in Fig. 2.1, idx[3] = 7 (not 10), idx[3] + 1 : idx[3 + 1], i.e., 8 : 10, denotes [8, 9, 10], and thus we
get adj[idx[i] + 1 : idx[i + 1]] = [1, 2, 4]. Note that we will use these symbols and rules through the whole thesis.

3We also use eij ∈ M to denote an edge starting from node i and ending at node j through the whole thesis.

8

2.1 Complex Network Theory

Apparently, here A is symmetrical because the network that we considered is an undirected
network. For a directed network, Aij = 1 indicates that there is an edge starting from node i
and ending at node j.

2.1.3 Essentials

1

2

3
4

5

6 Γ(1) = {2, 3, 4, 5}
k1 = 4, k2 = 3

〈k〉 = 4+3+3+2+2+2
6

= 16/6

p2 = 3/6, p3 = 2/6, p4 = 1/6

Figure 2.2: Examples for the nearest neighbor set Γ(i), node degree ki, average degree ⟨k⟩ and
degree distribution pk.

2.1.3.1 Nearest neighbor

The nearest neighbor set Γ(i) of a node i is a node set which contains all nodes directly
connecting to node i, that is (Fig. 2.2),

Γ(i) = {j|Aji = 1, ∀j ∈ N}. (2.2)

2.1.3.2 Degree, average degree, degree distribution

The degree ki (see Fig. 2.2 as an example) of node i is the sum of weights on edges
associated with all nodes in its nearest neighbors Γ(i). For a simple network where weights
of both node and edge are fixed to 1, the degree of i is equivalent to the number of nodes in
Γ(i), i.e.,

ki = ∑
j∈Γ(i)

Aji = |Γ(i)|. (2.3)

Obviously, the number of edges m = 1
2 ∑i∈N ki. Besides, one can also obtain ki through

idx[i + 1]− idx[i].
The average (mean) degree ⟨k⟩ is defined as

⟨k⟩ = 1
n ∑

i∈N
ki =

2m
n

, (2.4)

which corresponds to the first moment of the degree sequence.
Further, the degree distribution pk represents the probability that a randomly chosen node

has degree k. For a specific network, since pk has to follow ∑k pk = 1, it is usually defined as

pk =
#nodes with degree k

n
, (2.5)

where # means ‘the number of’. With this, the average degree can also be obtained through

⟨k⟩ = ∑
k

pk. (2.6)

9

2. Complex Network Theory and Network Percolation

2.1.3.3 Walks, paths, connected components, and cycles

1 2

3

4
5

6
7

Figure 2.3: Examples of walks, paths, components and cycles. Node 6 can reach 3 through one
of three walks [6, 5, 4, 3], [6, 7, 5, 4, 3] or [6, 5, 4, 5, 4, 3], in which [6, 5, 4, 3] and [6, 7, 5, 4, 3] are both
path and [6, 5, 4, 3] is the shortest path. Besides, none of 1, 2, and 3 can be reached by each other.
Thus, the network contains three connected components covered by independent gray shadows.
An example of a cycle could be [6, 5, 7, 6].

In graph theory, for a given network G(N ,M), a walk from node i ∈ N to node j ∈ N
is a sequence4 S starting from i and ending at j, in which S comprises nodes from G and
satisfies euv ∈ M if u = S[l] and v = S[l + 1] for ∀S[l] ̸= j (see Fig. 2.3 as an example5). It is
worth noting that both nodes and edges in S are repeatable. The length of the walk from i
to j is the number of edges in S, or |S| − 1 where |S| denotes the number of elements in S6.
One can also easily obtain how many walks with length |S| − 1 exist between any pair of
nodes as

A|S|−1,

where the ith-row-jth-column value is the number of walks with length |S| − 1 from i to j.
A path from i to j is a distinct sequence7 S starting from i and ending at j, in which

repetitions of nodes and edges are not allowed. A shortest path is a path with minimum |S|,
and the corresponding length dij can be obtained through

dij = min
S
|S| − 1, S[1] = i, S[|S|] = j. (2.7)

Note that it is possible to have multiple shortest paths between two nodes. The diameter dmax

of a network is the longest shortest path among all node pairs,

dmax = max dij, ∀i ̸= j. (2.8)

Further the average shortest path ⟨d⟩ is defined as

⟨d⟩ = 1
n(n− 1) ∑

i,j∈N ,i ̸=j
dij. (2.9)

Sometimes, it is also possible that node i cannot reach node j through existing edges,
i.e., there is no path from i to j. For such a case, we denote the length of the shortest path
between i and j with dij = d∞ = ∞. The meaning of this might be, for instance, that a virus

4Sequence is a well-defined collection of ordered objects where repetitions are allowed.
5Through the whole thesis, we use [...] instead of regular representation (...) to denote a sequence.
6View occurrences of the same node as different elements if there is.
7Distinct sequence means that the elements in the sequence are distinct, i.e., repetitions are not allowed.

10

2.2 Measures of Nodes

cannot transfer from an individual to another if those two do not have any direct or indirect
connections. The corresponding concept from network science to indicate whether two nodes
are reachable mutually is the connected component. A connected component in a network G is
a subnetwork of G, in which every node can be reached through at least one path by others
within the subnetwork but cannot be reached by those outside the subnetwork (see Fig. 2.3
as an example).

For a simple network, a cycle is a path ending with the start node, which means only the
start node is allowed to be repeatable once. Besides, we employ dc(i) to denote the length of
a cycle associated with node i,

dc(i) = #edges in the cycle. (2.10)

In particular, dc(i) = 0 means that there is no any cycle related to i in the given network.

2.1.3.4 Clustering coefficient

For a simple network, a triangle connection regarding node i is a cycle with length
dc(i) = 3, which characterizes three nodes are the nearest neighbors to each other. An
example of a triangle connection is that one’s friends are also friends to each other in such
as a social network. The local clustering coefficient CCi [42] is defined to capture the degree
(ratio) of triangle connections with respect to a specific node i,

CCi =
#triangle connections regarding i

(ki
2)

, (2.11)

where (ki
2) means how many edges could exist among the nearest neighbors of i. Thus, we

can also view the clustering coefficient as a measurement of local density: the more edges
among {i, Γ(i)}, the larger CCi. And apparently, CCi ∈ [0, 1]. For the whole network, one
can use the average clustering coefficient ⟨CC⟩ over all nodes to globally capture the status
of triangle connections,

⟨CC⟩ = 1
n ∑

i∈N
CCi, (2.12)

which could also serve as a measure of networks. Considering Fig. 2.2 as an example, we
have CC1 = 2/6, CC4 = 1/1, CC5 = 0/1, and ⟨CC⟩ = 7/18.

2.2 Measures of Nodes

As we mentioned in Table A.1, a lot of systems can be properly modeled by networks,
ranging from communications among human beings to protein interactions in a cell. And
basically, as long as there are communications or interactions, there would be some
individuals that are more influential than others, even for a function in which some
parameters are more important than others. Thus, a problem arises as to how can we
ascertain that a node is more influential than others? Indeed, this problem is associated
with a lot of realistic problems. For instance, during a pandemic, which group of people
should be isolated to suppress the spread instead of asking everyone to stay home? Who

11

2. Complex Network Theory and Network Percolation

is the true influencer whom one can rely on to spread their information, e.g., advertising?
Further, attacks on which group of proteins could effectively kill unwanted bacteria? Yet, we
are not able to answer these questions in this thesis, even in the near future. But the study of
these problems on networks might shine the path to the real answers. In what follows, a few
measures are introduced as the purpose of gaining the basic concepts. More other methods
can be found in Chapter 3 later.

2.2.1 Degree centrality

The degree centrality is perhaps the most straightforward and simplest way to measure a
node. It identifies nodes directly through their degree. Practically, one might easily convince
you that a paper is reliable if it is cited by a lot of papers. In a social network, celebrities
(usually owns a lot of connections), for example, cannot feel free to post or comment on
something while others with a few connections are possibly able to since they have more
influences and their opinions perhaps result in disasters. From the perspective of network
science, a node i is said to be more important than another one j if and only if ki > k j under
the degree centrality.

2.2.2 Eigenvector centrality

The main idea of the eigenvector centrality [43] is that a node connected to important
nodes might also be an important node, even though sometimes it only has a few connections.
Therefore, different from the degree centrality considering each node equally, the eigenvector
centrality measures the influence Hi of a node i through summing up the centralities from
its neighbors,

Hi =
1
λ ∑

j∈Γ(i)
Hj, (2.13)

where λ is a constant [43]. The solution of Eq. (2.13) could be well approximated by the
power method (see Appendix A.1.2). Hence, for the eigenvector centrality, a node i is more
influential than another one j if and only if Hi > Hj.

2.2.3 Katz centrality

From the way in which the eigenvector centrality employs to obtain H, we know that a
node i actually gets its score Hi by iteratively aggregating the information from its nearest
neighbors. In this manner, Hi could possibly contain all the information from the whole
network. This is a good strategy, but there is a problem that node i under the eigenvector
centrality views the information from other nodes equally, no matter whether those nodes
are its nearest neighbors or some others are far away from it. The Katz centrality [44] can
address this problem.

12

2.2 Measures of Nodes

The Katz centrality uses a parameter α to control the magnitude of the information that
it aggregates from different nodes,

Hi = ∑
j∈Γ(i)

Zji,

Z =
∞

∑
t=1

αt At.
(2.14)

Assuming that α < 1
λ1

, then the Katz centrality could be obtained through

H = αATH+ 1, (2.15)

where HT is the transpose of H and 1 represents a vector (1, 1, 1, ...) (detains see Appendix
A.1.3).

2.2.4 PageRank

Indeed, the Katz centrality can balance the information from nodes with different
distances. But still, it suffers from another problem: a node copies its centrality to all its
nearest neighbors. In other words, for example, a very important node i might connect to a
number of nodes in a network, and thus it makes those nodes influential. And because they
get i’s centrality directly, some of them would have larger centralities than other important
nodes in second or further layers even though those nodes are actually unimportant. Perhaps
we can overcome this problem through the adjustment of α in Eq.(2.15). But it is usually not
a preferable way because one cannot know which α is the best.

To overcome that, the PageRank [45] is presented, which initially is developed for the
ranking of web pages. Therefore, it mainly considers the problem in directed networks,

Hi =
1− α

n
+ α ∑

j∈Γ(i)

Hj

kout
j

, (2.16)

where α is a constant parameter called residual probability8, which is usually set to 0.85,
and kout

j is the outdegree of node j. In this manner, the centrality Hi of node i is equally
divided and assigned. Note that the nearest neighbor set Γ(i) defined for undirected network
corresponds to the in-neighbors here. Eq. (2.16) has a problem that a node i cannot give its
score Hi out if kout

i = 0, which means that i would ‘absorb’ centralities from other nodes
and make ∑jHj smaller and smaller with the increase of iteration. One way to tackle this
problem is to let those nodes with kout

i = 0 connect to all other nodes in the network. Thus,
we have a modified adjacency matrix, say A′, and also the corresponding degree sequence
k′out. Then, in matrix notation, we have

H = αA′TD−1H+
1− α

n
1, (2.17)

8Here 1− α can be understood as that a visit might start from any pages.

13

2. Complex Network Theory and Network Percolation

in which D is the diagonal matrix of k′out. Rearranging it, one can exactly get the centrality
through

H =
1− α

n
(I − αA′TD−1)−11. (2.18)

If letting H follow ∑i |Hi| = 1, then Eq. (2.17) can be rewritten as

H = (αA′TD−1 +
1− α

n
Z)H, (2.19)

where Z is a n× n matrix with all entries equal to 1, i.e., ZH = 1. Therefore, we can still
employ the power method to get the PageRank centrality.

2.2.5 Closeness centrality

The basic idea of the closeness centrality is that an important node should be close to as
many other nodes as possible. Thus, it calculates the centrality [46] through

Hi =
n

∑j∈N dij
, (2.20)

which indicates that a node is more important if it has a smaller average length of shortest
paths to other nodes. Note that Eq. (2.20) has a normalized term compared to the original
definition in ref. [46], which makes it have the capability to compare two nodes from different
networks.

2.2.6 Betweenness centrality

The betweenness centrality [47] also relies on the shortest path in a network, but is
calculated by counting the number of shortest paths that a node locates at instead of the
average length of shortest paths. In this way, compared to the closeness centrality, the
betweenness centrality is usually more capable of identifying the importance of a node,
like a node with large betweenness centrality might be associated with the ‘bottleneck’ of a
communication system. Specifically, the betweenness centrality obtains the centrality Hi of a
node i by

Hi = ∑
u,v∈N ,u ̸=i ̸=v

#shortest paths containing i from u to v
#shortest paths from u to v

, (2.21)

which can be further normalized through H = H−minH
maxH−minH .

2.3 Measure of Networks

The degree centrality tells us that a node with a large degree is more important than
another one with a small degree. But what about two nodes in different networks? It is
not too difficult to find an instance that two nodes with the same degree might have totally
different influences in different networks, e.g., one in a dense network and the other one
in a sparse network. Besides, almost all centralities in the previous section reveal that the
function of a node is highly associated with the network structure. Thus, how could we
globally characterize a network? Some straightforward measures could be those in Section

14

2.3 Measure of Networks

2.1.3, like the degree distribution, the average degree, the average shortest path, or the
average clustering coefficient. For example, one can easily verify that the denser a network
is, the more robust it would be [9]. More details regarding the measure of networks will be
discussed later in Section 4 except for the following one since some associated definitions
will be employed to explain percolation.

2.3.1 Assortativity

It is common to think that people might be more likely to develop their relationship
with those who are more famous than themselves, like collaborations in the film or academic
field. In a network, if we divide the nodes into two groups: one contains nodes with large
degrees and the other with small degrees. One might think about a question regarding:
what do the majority of edges connect (two nodes both have a large or small degree, or one
with large and the other one with small)?

To answer it, we first define a conditional probability P(k′|k) which characterizes the
probability that a node with degree k connects to a node with degree k′. Besides, recalling
that the degree distribution of a network is pk, then we have9

Pk =
kpk

⟨k⟩ , (2.22)

where Pk is the degree distribution of a node located at the end of a randomly chosen edge.
Therefore, for the independent case, P(k′|k) = Pk′ . But for other cases, it is usually difficult
to get P(k′|k) directly [48]. As an alternative, we can achieve a similar goal through

knn(k) = ∑
k′

k′P(k′|k), (2.23)

which characterizes the mean degree knn(k) of nodes adjoined by nodes with degree k. Back
to the independent case, knn(k) = ∑k′ k′Pk′ = ∑k′ k′

k′pk′
⟨k⟩ = ⟨k2⟩

⟨k⟩ indicates that it only depends
on ⟨k2⟩ and ⟨k⟩. For a given network, one can estimate knn(k) by

knn(k) =
∑ki=k ∑j∈Γ(i) k j

∑ki=k k
. (2.24)

In this way, if knn(k) increases with k for a particular network, i.e., nodes with large degrees
tend to have nearest neighbors with large degrees, then the network is thought to be
assortative [48]. On the contrary, a network is disassortative if knn(k) decreases with k. And
in a neutral network, knn(k) is independent of k.

If we want to employ a single number to measure the assortativity of the network, there
are two ways to achieve it. The first one employs the trend of knn(k) [48],

knn(k) ∼ kα, (2.25)

9Supposing Pk = αkpk in a view of the truth that Pk should be proportional to the node degree k and its
corresponding probability pk, one can get α = 1

⟨k⟩ following the fact ∑k Pk = 1.

15

2. Complex Network Theory and Network Percolation

where α > 0, α = 0, and α < 0 accordingly correspond to assortative, neutral, and
disassortative networks.

The other one is the assortativity coefficient r [49] defined as

r =
1
m ∑eij∈M kik j − [1

m ∑eij∈M
1
2 (ki + k j)]

2

1
m ∑eij∈M

1
2 (k

2
i + k2

j)− [1
m ∑eij∈M

1
2 (ki + k j)]2

, (2.26)

where eij represents the edge between node i and node j. Eq. (2.26) actually gives the Pearson
correlation coefficient of the two degree sequences associated with all edges. Thus, r ∈ [−1, 1]
and networks with r > 0, r = 0 and r < 0 are assortative, neutral, and disassortative,
respectively.

2.4 Percolation Theory

Depending on different scenarios, percolation on networks mainly includes site (node)
percolation and bond (edge) percolation. In what follows, to help gain the basic concept,
the percolation on a two-dimensional square lattice is briefly introduced as an example of
site percolation, and the one on the random network as an instance of bond percolation.
Note that even though site percolation is our main concern, bond percolation would also be
presented to some extent, in particular strategies associated with the explosive percolation
because the ideas from them will be used and studied in our framework.

2.4.1 Percolation on two-dimensional square lattice

In a large system, a phase transition is considered to be occurring if the system undergoes
an abrupt transition of its status after a tiny change of the controlling variable, such as water
turning into ice or steam. In networks, like a square lattice where one site only connects to
its nearest 4 neighbors (Fig. 2.4), if each site (node or vertex) is occupied with a statistically
independent probability p, then at some point of p one can observe a path relying only on
the occupied nodes starting (percolating) from one side of the lattice to the corresponding
opposite side. More generally, with the increase of p, more and more sites merge together
into some clusters in each of which one site can reach all others in the cluster through
occupied nodes. For a specific p, the one with the most sites is the largest cluster. And there
are always a few clusters with the same size as the largest one when p is small, but only
one exists when p is large. Regarding this, people are usually interested in two problems:
the expected size of the largest cluster and the average size of clusters. Apparently, both of
them increase with the rise of p (Fig. 2.4). But as we mentioned, when p is small (see Fig.
2.4a), large clusters rarely exist, and they are far away from each other. Therefore, the largest
cluster grows very slowly with p increases. However, if p approaches some critical point
(Fig. 2.4b), say pc where the network undergoes a percolation transition, the large clusters
will be connected by a small fraction of sites. According to percolation theory [50, 2], when
p is larger than pc, the fraction of the largest cluster, namely, the probability of a randomly
chosen site located in the largest (or infinite) cluster follows that

p∞ ∼ (p− pc)
βp , (2.27)

16

2.4 Percolation Theory

(a) p = 0.1 (b) p = 0.55 (c) p = 0.65

0.0 0.2 0.4 0.6 0.8 1.0
p

101

102

103
⟨α
⟩

0.0

0.2

0.4

0.6

0.8

1.0

p ⟨

pc

⟨α⟩
p⟨

(d)

Figure 2.4: Percolation on a two-dimensional square lattice. The solid circles are occupied sites,
and the largest cluster, i.e., the one with the most occupied sites, is colored orange. (a) When p is
small, the majority are isolated nodes, which means all their nearest neighbors are unoccupied
sites. In this case, the largest cluster is quite small. (b) The isolated nodes merge into clusters
and further larger clusters as p increases. (c) Almost all occupied nodes are in the largest cluster,
but still several small clusters exist. (d) The correlation length ⟨α⟩ and the order parameter p∞ as
functions of the occupied probability p. The filled red circle and the dashed line correspond to
the critical point pc.

where p∞ is known as the order parameter, which is zero when p < pc. The average size
of finite clusters is given by ⟨s⟩ ∼ |p− pc|−γ [50]. Around pc, i.e., when p approaches pc,
the percolation transition can also be characterized by the correlation length ⟨α⟩, which is
defined as the mean distance between two sites in the same finite cluster

⟨α⟩ ∼ |p− pc|−ν. (2.28)

Obviously (see Fig. 2.4d), when p approaches pc from below, ⟨α⟩ diverges, which indicates
the existence of a percolation cluster. From percolation theory [50], we have pc ∼= 0.592746,
βp = 5/36, γ = 43/18, and ν = 4/3 in the two-dimensional square lattice.

It is worth mentioning that the purpose of this part is to show some basic concepts
about percolation. Hence we only introduce one of the simplest cases regarding percolation
on regular graphs and give those associated conclusions directly. One can find more details
and other interesting topics from ref. [50].

17

2. Complex Network Theory and Network Percolation

2.4.2 Percolation on random network

2.4.2.1 Random network

The basic concept of random graph originates from several early works finished by
Gilbert and Erdős et al. [51, 52, 53, 54], and the goal is to study the probability properties
over graphs controlled by some fixed variables, like the probability of observing a connected
network. Usually, there are two ways to construct a random network: the Gilbert model [52]
and the Erdős and Rényi (ER) model [53]. Given a network consisting of n isolated nodes,
the Gilbert model, say G(n, p), checks every pair of nodes and builds an edge between those
two nodes with an independent probability p. Thus the expected number of edges m follows

m = (n
2)p = pn(n− 1)/2 (2.29)

and all graphs with n nodes and m edges can be obtained with an equal probability of

pm(1− p)(
n
2)−m, which coincides with the ER model G(n, m). Note that (n

2) represents the
combinational factor. The ER model also considers n isolated nodes but forms the edge
set by exactly choosing m edges uniformly from (n

2) candidates. Studies have shown that
networks obtained through those two models share many graph properties [55], in particular
when n→ ∞.

2.4.2.2 Essentials

Since G(n, p) strictly connects two nodes independently, many conclusions are derived
based on this model, like the average degree follows

⟨k⟩ = p(n− 1) ≈ pn, n→ ∞, (2.30)

which means that a node will connect to more nodes as the increase of p. As a node i has
an independent probability p to build edges with any other remaining nodes, the degree
distribution pk, i.e., the probability that a randomly chosen node has degree k, follows the
binomial distribution given by

pk = (n−1
k)pk(1− p)n−k−1. (2.31)

From Eq. (2.30) we know p = ⟨k⟩
n−1 , thus,

pk = (n−1
k)(

⟨k⟩
n− 1

)k(1− ⟨k⟩
n− 1

)n−k−1

≈ ⟨k⟩
k

k!
e−⟨k⟩

(2.32)

following the Poisson distribution when n→ ∞, where k! denotes the factorial of k. Eq. (2.32)
shows us the fundamental essential, the degree distribution, of the random network. Another
property that can be directly obtained is the clustering coefficient. Since two nodes have
an edge with probability p and every node has expected degree ⟨k⟩, the expected average
clustering coefficient of a random graph is equal to the expected clustering coefficient of a

18

2.5 Explosive Percolation

randomly chosen node i,

⟨CC⟩ = CCi = p =
⟨k⟩

n− 1
. (2.33)

Besides, as we mentioned above, the network becomes denser and denser with the
increase of p and finally becomes a fully connected network (p = 1). If considering the size
of the largest connected component (cluster)10 (LCC) p∞, one can easily get p∞ ∼ O(1) when
p is small (e.g., p = 0) and p∞ ∼ O(n) when p is large enough (e.g., p = 1), which indicates
that p∞ also undergoes a percolation transition as the one on the two-dimensional square
lattice. To more clearly distinguish the status of p∞, we here employ the term from ref. [54],
the giant component, which is a connected component of size proportional to n. Thus, a
natural question arises as to under what condition is there a giant component?

2.4.2.3 Percolation on random graph

According to refs. [54, 56, 1], the following results hold:

• if ⟨k⟩ < 1 (recall that ⟨k⟩ = 2m/n = p(n− 1)), i.e., the subcritical regime, the network
with high probability does not have connected components whose sizes are larger than
O(log n);

• if ⟨k⟩ = 1, the network with high probability has a largest connected component with
a size of order n2/3;

• if ⟨k⟩ > 1, i.e., the supercritical regime, the network with high probability has a unique
giant component whose size is proportional to n.

Therefore, there is a giant component with high probability in network G(n, p) if p > 1/(n−
1). Full proofs regarding those conclusions refer to refs. [54, 56]. Here a straightforward
explanation of the critical threshold can be found in Appendix A.1.4.

2.5 Explosive Percolation

From above we know that the Gilbert model G(n, p) and the ER model G(n, m) undergo
a phase transition around ⟨k⟩ = 1, recalling that G(n, m) constructs a network by repeatedly
adding (occupying) edges until the number of edges reaches m. And each edge is randomly
chosen from all the remaining edges. But at a workshop in 2000, Dimitris Achlioptas instead
asked whether it could be possible to delay the onset of the giant component by choosing an
edge to add from randomly selected two based on some given function, which he called “the
power of two choices”11 [57]. From then on, this problem and the corresponding process,
later called Achlioptas process (AP), have attracted a large number of researchers and grown
into a large area of research [58, 59, 60, 61].

10Usually, for a simple network, the largest connected component (network science) and the largest cluster
(graph theory) represent the same thing.

11Motivated by the design of hash function from computer science.

19

2. Complex Network Theory and Network Percolation

2.5.1 Basics

For the convenience of description and also the purpose of unifying the later strategies,
we first define a few variables and functions as follows. Assuming that there is a distinct
sequence S with random order regarding all edges in a complete network of size n, we
define sets

Mc(t): candidate edge set,

Mo(t): occupied edge set, and

Mu(t): unoccupied edge set

obeying a) t is the number of edges that has been added in an empty network G(n,M = ∅),
i.e., t = |Mo(t)|; b)Mo(t) ∪Mu(t) = {S[i], ∀i}; and c)Mo(t) ∩Mu(t) = ∅. Recall that a
distinct sequence represents that the elements in the sequence are distinct, i.e., repetitions
are not allowed. Further, a goal function ξ(·) takes a node or edge as input, and a random
chosen function12 RS(·, ·) relies on a given set and integer. For example,

ξ(i) = ki

means that the goal function returns us the degree of a node i. Similarly,

RS(Mu(t), 2)

indicates that two edges are randomly selected from the unoccupied edge setMu(t). With
those, we have a common algorithm framework for percolation strategies in Algorithm
2.1. Taking ER network G(n, m) as an example, we can construct one through Algorithm
2.1 by setting ns = 1, initializingMu(0) = {i|S[i], ∀i} andMo(0) = ∅13, and formulating
ξ(eij) = 1.

Algorithm 2.1: Percolation

Input: n, m, ns // ns is the number of selections

Output: G(n, m)

1 Initialize G(n,M = ∅),Mu(t) andMo(t)
2 t← 0
3 while t < m do
4 t← t + 1
5 Get candidate set,Mc(t)← RS(Mu(t), ns)

6 Choose the new edge, euv ← arg mineij
ξ(eij), ∀eij ∈ Mc(t)

7 Mu(t)←Mu(t) \ {euv}
8 Mo(t)←Mo(t) ∪ {euv}

9 M←Mo(t)

12If there is no special explanation, it follows the uniform distribution to choose edges or nodes.
13Mu(t) andMo(t) will all be initialized in this way except for an explicit explanation somewhere.

20

2.5 Explosive Percolation

2.5.2 Bohman and Frieze’s strategy

Bohman and Frieze (BF) first answered the question posted by Achlioptas with a simple
strategy to show that it is possible to suppress the emergence of a giant component, which
shifts the critical threshold (step) tc = 0.5n to tc = 0.535n [62]. The BF strategy is similar to
the basic ER process but with an extra candidate: each time it randomly selects two edges,
say eij and euv, from Mu(t), and chooses eij to add if both node i and node j are isolated,
otherwise chooses euv. In the way of Algorithm 2.1, it corresponds to a process of ns = 2 and
ξ(eij) = 2 if both i and j are isolated, otherwise ξ(eij) = ∞.

The BF strategy is also referred to as a bounded-size rule [63] since it is bounded by
1, namely, it views components with size larger than 1 as the same. For a new edge, it
either unites two independent components or connects two nodes in the same component.
Supposing that the new edge is eij, we employ c(i) to represent the component that node
i belongs to, and |c(i)| to denote the associated size. In addition, reformulating the goal
function ξ(eij) as

ξ(eij) =

|c(i)|, if c(i) = c(j) and |c(i)| ⩽ α,

|c(i)|+ |c(j)|, if c(i) ̸= c(j) and |c(i)| ⩽ α and |c(j)| ⩽ α,

∞, otherwise,

(2.34)

where α is a constant or a function α(t) of t, then we have the bounded-size rule family that
chooses the new edge leading to a smaller connected component under the constraint of α.
For instance, the BF strategy corresponds to the setting of α = 1. Further, α(t), e.g., can be
the size of the largest connected component. It is worth noting that in the subcritical regime,
i.e., t < tc, it is almost impossible to have c(i) = c(j). In other words, for t < tc, the size of
the largest connected component is of order logarithmic in n, which means |c(i)|2/n2 → 0
when n→ ∞. In Eq. (2.34), both c(i) = c(j) and c(i) ̸= c(j) are given for the purpose of an
example. But for the rest of the thesis, one should know that it does not matter whether we
have the term c(i) = c(j) in the subcritical regime that we mainly focus on.

2.5.3 Product rule, sum rule, and explosive percolation

Ref. [63] proves that all bounded-size rules, i.e., Eq. (2.34), result in a continuous
percolation phase transition. The first unbounded-size rule was introduced by Achlioptas
et al. in ref. [58] where they call it the product rule (ProR). The ProR also considers two
randomly selected edges at each step t but chooses the one with smaller product of the
corresponding components (see Fig. 2.5a as an example). In the manner of Algorithm 2.1,
we only need to redefine the goal function ξ(eij) compared to the BF strategy,

ξ(eij) = |c(i)||c(j)|. (2.35)

Note again that it does not matter so much whether c(i) = c(j) for the subcritical regime.
Instead, the sum rule (SumR) accepts the edge having a smaller sum of the two associated
components, i.e.,

ξ(eij) = |c(i)|+ |c(j)|. (2.36)

21

2. Complex Network Theory and Network Percolation

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t/n

0.0

0.2

0.4

0.6

0.8

1.0

p(
t/n

)

ER
BF
SumR
ProR

(b)

Figure 2.5: An example of the ProR. (a) At each step t, two candidates (edges) are selected,
but only the one with a smaller product of the corresponding components is added. Here, the
considered four components are covered by gray shadows, and the two dashed lines with red
color are associated with the two candidates. Even though eij leads to a connect component with
smaller size (|c(i)|+ |c(j)| = 4 + 4 = 8, compared to euv having |c(u)|+ |c(v)| = 2 + 7 = 9), the
ProR will choose euv because it has smaller product, 2× 7 = 14, than eij, 4× 4 = 16. On the
contrary, SumR, however, will choose eij which has 4 + 4 = 8 smaller than euv with 9. Besides,
in this network, the LCC is the one that node v belongs to. (b) The evolution of ER, BF, SumR,
and ProR on networks with size n = 106, where Gp(t/n) is the fraction of the LCC. Note that the
number of nodes between two marks along each specific curve is 104.

Fig. 2.5b shows the evolution of the classical ER model, BF strategy, SumR, and ProR, where
Gp(t/n) denotes the fraction of the LCC of the network at step t, namely, the fraction of
number of nodes in the LCC. Indeed, compared to bounded-size rules14, SumR and ProR
significantly delay the emergence of the giant component. Besides, another notable difference
between the bounded-size rule and the unbounded-size rule is that, from the subcritical
regime, SumR and ProR almost immediately, i.e., by the aid of a very few edges added, reach
the configuration whose LCC has the similar size to the ER model and BF strategy (see the
abrupt jump of Gp(t/n) led by 104 edges in Fig. 2.5b).

To analyze that abrupt jump more precisely, the scaling window ∆n(a, b) as a function of
network size n is defined in refs. [58, 60]. Specifically, during a percolation process, ∆n(a, b)
is used to count the fraction of the number of new edges from the last moment t0 where
the network has Gp(t0/n) < na−1 to the earliest moment t1 where the network satisfies
Gp(t0/n) > b, i.e.,

∆n(a, b) = (t1 − t0)/n, (2.37)

where a and b are two given parameters. Ref. [58] studied ∆n(a, b) regarding ProR under
a = b = 1/2 which means that how many edges are needed to have a transition of the order
parameter from n−1/2 to 0.5. However, not like the bounded-size rule, it was really difficult
to get the analytical solution for an unbounded-size process. Thus, they considered networks
with size up to 226 and numerically got

∆n(1/2, 1/2) ∝ n−1/3, (2.38)

14ER model could be viewed as a bounded-size rule with constraint α = 0 in Eq. (2.34).

22

2.5 Explosive Percolation

which, on the other hand, indicates the existence of the abrupt transition, i.e.,

∆n(1/2, 1/2)→ 0 (2.39)

when n→ ∞, and t0 and t1 converges to tc ≈ 0.888n. Compared to ∆n(1/2, 1/2) of the ER
model where they got ∆n(1/2, 1/2)n > 0.193n linear to n, they call the transition in ProR
process the explosive percolation. That means the ER model undergoes a second order transition
and ProR undergoes a first order transition. In fact, they stated that other unbounded-size
rules also yield a discontinuous transition [58], such as SumR (with ∆n(1/2, 1/2) ∝ n−0.4

[64]).

2.5.4 Other rules

Since then, a lot of related works have emerged, ranging from the consideration of
different network models [65, 66] to the development of varied rules [64, 59, 67, 68], further to
the proof of the discontinuous transition [69, 70]. The most straightforward rule is to extend
SumR and ProR through increasing the number of candidates (ns-R) [64], namely, increasing
ns in Algorithm 2.1. Ref. [64] also introduces a function PK(t, α) which represents the
number of nodes in components with sizes equal or larger than α at time step t, i.e., t edges
have been added into the network. Based on this function, they further give 1

n RK(t(na), n1−b)

accounting for a fraction of nodes containing in the components with size ranging from n1−b

to na where t(na) is the earliest moment when the network has a component with size na.
And the set of those components is called powder keg. Further, one can easily observe that
the number of components in the powder keg is at most nb. Thus we have ∆n(a, 1/2) ∼ nb if
the powder keg exists, i.e., 1

n RK(t(na), n1−b) is proportional to the network size. Therefore,
they conclude that the explosive percolation is guaranteed by the existence of powder keg,
no matter what rules are conducted. This provides us a numerical way to detect which
type of percolation is. For example, RK(t(n0.5), n0.4)/n approaches 0 in ER network while it
converges to some constant under SumR.

Another strategy [69] is called dCDGM which firstly independently selects two groups
with ns/2 nodes and then builds an edge between two nodes i and j with the smallest |c(i)|
and |c(j)|, where i and j comes from the two groups, respectively. We can also achieve this
through Algorithm 2.1 by modifying line 5,

Mc(t)← eij, ∀i, j ∈ RS(N , ns), i ̸= j,

which is actually stronger to suppress the giant component than dCDGM. It is worth
mentioning that N is the node set, and RS(N , ns) means that randomly selecting ns nodes
from N . The goal function ξ(eij) is the same as SumR, and ns = 4 is conducted in ref. [69].
In addition, one interesting conclusion given by ref. [69] is that dCDGM (with ns = 4) only
leads to a continuous transition, which indicates that SumR is also continuous. Actually, a
rigorous proof from ref. [70] shows that all ns-R and dCDGM processes (i.e., AP) on random
networks are continuous if ns is fixed, but a discontinuous transitions can be observed if ns

is proportion to n, namely, ns → ∞ when n→ ∞.

23

2. Complex Network Theory and Network Percolation

If the process relies on the BFW model [71, 72], then one can also get a discontinuous
transition. The BFW model achieves this through the suppression of the LCC. Specifically, it
gradually increases a boundary regarding the LCC, and a new edge can only be added if
it meets the boundary (details see Algorithm A.1). In this way, multiple large components
appear simultaneously and then are merged together by a few edges so that a strongly
discontinuous percolation transition is observed [72].

Another family are probability-based rules [73, 74, 59]. In the cluster aggregation model
[73], an edge eij is accepted as a new edge with probability (|c(i)||c(j)|)α/ ∑∀i,j(|c(i)||c(j)|)α,
where they showed that α > 0.5 corresponds to a continuous transition and α < 0.5 a
discontinuous transition. Another case is to control the LCC by adding a new edge if it does
not increase the size of the LCC, otherwise with a probability from a Gaussian distribution,

min{1, e−α(|c(i,add)|−⟨|c|⟩
⟨|c|⟩)2

}, (2.40)

in which |c(i, add)| represents the size of the LCC after the chosen candidate i is added, and
⟨|c|⟩ is the average size of all components.

24

3
Ways to Fragment Networks

This chapter is mainly based on results in our previously published papers [L1] and
[L2].

3.1 Problems and Motivations

3.1.1 Inverse percolation and network robustness

As we mentioned in Section 1.1, errors and failures are everywhere in the human world,
from a tiny chip to the entire climate system. Besides, From Section 2.1, we also learned that
many real-world systems can directly or indirectly be modeled into networks, such as World
Wide Web, social network, brain networks, and climate networks. In the terminology of
network science, the failure of a component can be associated with the failure of a node. In
networks, the failure of a single node would always have only limited damage to a network’s
function. The failure of several nodes (i.e., collective influence [23]), however, can bring the
network to the brink of collapse. Basically, the more nodes fail, the higher probability would
the network collapse, in tandem with the fact that the removal of different nodes might
damage the network in different magnitude, motivating us to ask: how many or which
group of nodes do we need to target to turn the network into independent components?
That is, for example, what fraction of proteins should we remove from the protein-protein
interaction network to fragment the network into isolated small groups so that the network
would lose its function? Further, given the global airline network, which group of airports
should we choose to consider more intensively so that a particular airport can be blocked
from the majority. Both of those two examples, from the network science perspective, are
related to the network robustness problem which this section focuses on.

3.1.1.1 Inverse percolation

For the percolation transition on the two-dimensional square lattice, one can also observe
the similar behavior of the order parameter through repeated removal of nodes from a full

25

3. Ways to Fragment Networks

occupied lattice. In other words, assuming that all sites are occupied in the beginning, we
then check every site and remove them from the lattice with an independent probability
p′. In this manner, at some value of p′, one cannot find any path, which only relies on the
remaining sites, from one side of the lattice to the other side. Compared to the percolation
process, we can easily know that their order parameters are exactly consistent with each
other at p = 1− p′. Thus, this process is also called inverse percolation [2].

One can also conduct the inverse process to get an ER random network. That is: starting
with a fully connected network, each edge has a probability p′ = 1− p to be removed from
the network. It is worth mentioning that only the classic ER model is reversible among all
those processes in Sections 2.4 and 2.5. But it does not matter so much since we are mainly
interested in existing networks. More details will be discussed later.

3.1.1.2 Network robustness

(a) (b) (c)

Figure 3.1: Baran’s example [17]. (a) Centralized – star network. (b) Decentralized – scale-free
network. (c) Distributed – grid network.

Given Baran’s prototypes [17] as an example (see Fig. 3.1), obviously, the star network is
extremely fragile under an intentional attack on the central node1. However, it is also quite
robust against a random attack: the attack on leaf nodes only leads to a very limited damage,
and the probability that the attack happens on the central node is 1/n. The scale-free network
can ease the damage from an intentional attack, but it would still collapse under an attack
on a few nodes simultaneously. The grid network, on the contrary, is robust to both random
and intentional attacks. However, compared to the star network and the scale-free network,
it has a finite threshold under random attack. In what follows, we are going to focus on how
a network response to those general attacks.

3.1.1.3 Overview of attack strategies

The meaning of the study on different attack strategies is two-fold. On the one hand,
from the perspective of attack, an efficient attack strategy could possibly help us develop
more efficient methods to, for instance, disrupt the functioning of criminal or corrupt
organizations [77], or offer avenues to design drugs that kill unwanted bacteria [2]. On the

1In this thesis, we refer to this problem as the term robustness from refs. [9, 5] instead of survivability or
reliability in ref. [17].

26

3.1 Problems and Motivations

(a) (b) (c)

Figure 3.2: Illustrations of different attack strategies on a protein-protein interaction network
with n = 2375 and m = 11693 [75, 76]. The nodes colored red are those to be removed, and the
black are the remaining. After the removal of red nodes, the remaining network would only have
components of size less than 1%n. (a) The random strategy needs to remove 90.44% nodes. (b)
A basic strategy based on the degree centrality needs 43.07%. And (c) a heuristic strategy only
needs 16.08%.

one hand, from the preventing side, an efficient attack strategy might provide us new insight
into the solution to prevent, e.g., the spread of misinformation which has become one of the
top threats to our society, or the prevalence of an epidemic [11], especially climate change
exacerbates the spread of diseases [30, 31, 32].

One of the simplest attack strategies is random failure, which is widely existing in real-
world systems, such as the breakdown of a router or the cancellation of a flight. Assuming
that there is a distinct sequence S each of whose item is associated with a unique node in a
network G(N ,M), the random strategy (RanS) removes nodes2 one by one from G following
the order from a random permutation of S. Recall that a distinct sequence means that its
elements are distinct, i.e., repetition is not allowed. If a certain demand is given, e.g., remove
part of nodes to let the remaining network without a component whose size is larger than
1%n, then RanS coincides with an inverse site percolation to remove each node with an
independent probability p.

RanS also belongs to the local strategy family. Another local strategy we would like to
introduce is the acquaintance immunization (AcqI)3 [11, 6]. AcqI firstly randomly selects a
group of nodes and then remove one of their corresponding nearest neighbors. In this way,
AcqI can efficiently target hubs (those nodes with a large degree in a network) without having
to know precisely which individuals are hubs [11]. Considering this, a group [6] recently
shows that social network fragmentation might be a good strategy to target individuals for
medical treatment in low-incoming counties.

But basically, if we know the network topology information, targeted methods are
always much more efficient than the local ones. For example, the scale-free network is
quite fragile under intentional attack, even though its critical threshold approaches 1 against

2If there is no special explanation, the removal of a node means the removal of both the node and the
incidental edges.

3A strategy is mainly designed to immunize a network. But attacking and immunizing a network are
really two sides of the same coin. Thus here we also refer AcqI as an attack strategy. More details regarding
immunization will be discussed later.

27

3. Ways to Fragment Networks

random failure. The basic targeted methods aim to measure the importance of nodes firstly
and then based on which attack or remove the most influential ones. For example, one can
identify a node based on its degree centrality, eigenvalue centrality, betweenness centrality,
and so forth (see Section 2.2 for details).

More powerful strategies are mainly based on the heuristic idea (see comparisons in
Fig. 3.2). One category is to design heuristic methods based on those basic strategies,
like to repeatedly remove the node with the largest degree from the remaining network
after the removal of the largest-degree node. More recently advanced strategies including
the collective influence method [23], the explosive immunization strategy [24], and the
decycling-based methods [25, 26] will be discussed in detail later.

3.1.1.4 Scale-free network

A network is said to be a scale-free (SF) network if its degree distribution follows a
power-law distribution, i.e.,

pk ∼ k−γ, (3.1)

where γ is a controlling variable. One of such models to construct a network which has
a power-law degree distribution is the Barabási-Albert (BA) model [18]. Given n and α, a
BA network can be obtained through: i) generate a small initial network G(N ,M) of size
larger than α; ii) add a new node i and let N = N ∪ {i}; iii) choose a node j ∈ N \ {i} with
probability k j

∑u∈N\{i} ku
, and then connect i and j, i.e., M = M∪ {eij}; iv) add other α− 1

edges in the way of iii) (multi-edges are not allowed); v) repeat ii), iii), and iv) until |N | = n.
Note that the scale-free network from the BA model has an exponent γ ≈ 3 [18].

3.1.1.5 Configuration model

Different from the ER model generating a network whose degree distribution strictly
follows the Poisson distribution, the configuration model allows us to generate a random
network with any degree distribution that we give beforehand [78]. Specifically, assuming
that we have a degree sequence in which ki corresponds to the degree of node i regarding a
network G(N ,M = ∅), the configuration model constructsM through: i) uniformly choose
a node i from node set {u|ku > 0, ∀u ∈ N} and then let ki = ki − 1; ii) choose another node
j following i), and then build a new edge eij, further letM =M∪{eij}; iii) repeat i) and ii)
until ki = 0, ∀i ∈ N . Since an edge relies on two nodes, the sum of the given degree sequence
has to be even. In addition, self-loops and multi-edges are allowed in the configuration
model. But it does not matter so much because their probability approaches 0 when n→ ∞
[1].

By the aid of the configuration model, we can study networks that have arbitrary degree
distributions, such as networks following scale-free distribution with different exponents
(see Eq. (3.1)). We can also construct a network based on the degree sequence from a
real-world network, and then compare the difference between them. In addition, as each
edge is built uniformly, the probability that there is an edge between node i and node j is
equal to 2|M|/n2, which is the fundamental for the later derivations.

28

3.1 Problems and Motivations

3.1.1.6 Attacks on the configuration model network

We first consider the random attack on networks generated through the configuration
model, i.e., remove nodes following RanS. Following Section 2.5.1, we further define

Nc(t): candidate node set,

No(t): occupied (remaining) node set, and

Nu(t): unoccupied (removed) node set,

where t is the number of occupied nodes4, namely t = |No(t)|. Apparently, No(t) ∪Nu(t) =
N and No(t) ∩Nu(t) = ∅ hold. Since the removal of nodes indicates that both the nodes
and incident edges are removed from the network, we have

Mo(t) = {eij|∀i, j ∈ No(t)},

Mu(t) = {eij|∀i ∈ Nu(t) or ∀j ∈ Nu(t)} orM\Mo(t).

Further, letting

q =
n− t

n
(3.2)

be the fraction of removed nodes and

Ga(q) =
#nodes in the LCC of G(No(t),Mo(t))

n
(3.3)

the fraction of the LCC, then we can describe an attack process in a percolation way. That is,

Ga(q) ≡ Gp(t/n), (3.4)

recalling that Gp(t/n) is the ratio of nodes in the LCC at step t. It is also worth mentioning
the differences between the LCC and the giant component p∞. The giant component is
a component of size proportional to the network size n so that it only exists in a part of
a process, while LCC exists for the whole process. In addition, the percolation process
associated with an attack process is always on a finite network, which makes it no sense to
talk about the giant component. In other words, it is unreasonable to scale p∞ by a fixed
n. Due to this, the LCC is usually viewed as an approximate representation of the giant
component [2, 1], e.g., Ga(q) < 0.01 corresponds to p∞ = 0, when we talk about real-world
networks which are always finite.

The Molloy-Reed criterion [78] gives the condition that networks generated through the
configuration model with high probability have a giant component if (see Appendix A.2.1
for details)

⟨k2⟩
⟨k⟩ > 2, (3.5)

4Throughout this thesis, t corresponds to the number of nodes in a site percolation and the number of edges
in a bond percolation.

29

3. Ways to Fragment Networks

which can help us acquire the critical threshold qc [19, 79, 2] of a network under the random
attack,

qc = 1− 1
⟨k2⟩
⟨k⟩ − 1

, (3.6)

where qc represents the least fraction of nodes whose removal would result in a remaining
network almost surely without a giant component (Appendix A.2.2).

3.1.1.7 Attacks on ER network

103 104 105 106

n
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

q c

√n /n on ER
√n /n on CM
0.01 on ER
0.01 on CM

⟨k ′⟨⟩
⟨k ′⟩ ⟩⟨ on ER
⟨k ′⟨⟩
⟨k ′⟩ ⟩⟨ on CM
Analytic

(a)

103 104 105 106
n

0.70

0.72

0.74

0.76

0.78

0.80

0.82

q c

(b)

103 104 105 106
n

0.78

0.80

0.82

0.84

0.86

0.88

q c

(c)

Figure 3.3: The critical threshold qc as a function of network size n under the random attack on ER
networks and the associated configuration model networks (CM). The dashed line corresponds
to the analytic solution (Eq. (3.7)) regarding different average degree (a) ⟨k⟩ = 3.0, (b) ⟨k⟩ = 3.5,
and (c) ⟨k⟩ = 5.0.

Since an ER network follows the Poisson distribution, we have the second moment
⟨k2⟩ = ⟨k⟩(⟨k⟩+ 1). Substituting it into Eq. (3.5), one can get the condition ⟨k⟩ > 1 for the
existence of a giant component, which coincides with the previous result in Section 2.4.2.3.
In addition, because a network generated through the ER model and a one through the
configuration model with a Poisson distribution sequence are quite similar to each other [1]
(also see Fig. 3.3), one can also easily obtain the critical threshold of an ER network under
the random attack based on the result from Eq. (3.6) as

qc = 1− 1
⟨k⟩ , (3.7)

which indicates that the denser a network is, the more robust would it be against random
failure (see Fig. 3.3). Besides, since ⟨k⟩ is some constant, an ER network usually has a finite
critical threshold.

For the critical threshold of ER networks under the intentional attack on hubs, it has a
similar behavior as the one under random failure, i.e., qc can be obtained at ⟨k′2⟩/⟨k′⟩ = 2
(see also Fig. A.2a in Appendix A.2.3), because each node expectedly has the same degree [2,
9].

3.1.1.8 Critical threshold regarding order parameter

Fig. 3.3 shows the results of the critical threshold qc as a function of the network size
n with respect to the random attack on networks accordingly constructed through the ER
model (with G(n, m)) and the configuration model. Specifically, given n and m, an ER

30

3.1 Problems and Motivations

network G is firstly generated. Then, a random attack process is conducted on G, during
which we trace ⟨k′2⟩/⟨k′⟩ of the corresponding subnetwork G′ and obtain the threshold qc at
⟨k′2⟩/⟨k′⟩ = 2. This attack and tracing process is also conducted on a configuration model
network building upon the degree sequence same as the one of G. Each data point in Fig.
3.3 is the average of 50 independent simulations.

As we can see from Fig. 3.3, both qc of networks generated through the ER model and
the configuration model are subject to the analytic solution given by Eq. (3.7), in particular
when the network size n is large. However, the Molloy-Reed criterion only applies for
randomly wired networks5.

For a network under an intentional attack, this criterion would become invalid in
most cases (see Fig. A.2b in Appendix A.2.3 where we improve the robustness of an ER
network against the intentional attack under the constraint of keeping the degree sequence
unchanged). Besides, recall that our main goal is to trace the order parameter and obtain qc

at where the giant component disappears. Hence, here we choose to approximate the critical
threshold qc through a given parameter α,

qc = min q, s.t. Ga(q) < α, ∀q. (3.8)

Throughout this thesis, if there is no specific explanation, we employ α = 0.01 suggested by
ref. [2] to obtain qc, which assumes that a giant component is a connected component of size
at least 0.01n. More intuitively, Fig. 3.3 shows the comparisons of qc under varied metrics,
α = 0.01, α =

√
n/n, and the Molloy-Reed criterion. As we can see from there, if n is small,

qc under α = 0.01 is actually much worse than the one under α =
√

n/n to approximate the
analytic solution. But it is better when n is large. Besides, the results regarding different
average degree (see Fig. 3.3b and 3.3c) suggests that we cannot use some constant to scale qc

under α =
√

n/n. And it is meaningless to talk about a giant component when networks are
quite small. Moreover, most real-world networks we considered in this thesis have a size of
n > 104. Meanwhile, since qc would be as a criterion to quantify different attack strategies,
we actually only need to know the basic trend of qc over those compared strategies rather
than the exact moment where the giant component vanishes.

3.1.1.9 Attacks on scale-free network

For a network constructed through the configuration model based on a power-law-
distribution degree sequence, one can easily verify that ⟨k⟩ = ∑∞

k kpk ∼ ∑∞
k k1−γ diverges

when γ ⩽ 2 (p-seires). Similarly, ⟨k2⟩ → ∞ if γ ⩽ 3. In reality, most networks have γ between
2 and 3 [1], which means that ⟨k⟩ is finite and ⟨k2⟩ is infinite. Putting them into Eq. (3.6),
we have qc → 1 for 2 < γ ⩽ 3. In other words, not like a Poisson distribution network,
most real-world networks have infinite critical threshold, and a random attack has to remove
almost all nodes to break down a scale-free network if n→ ∞ (see Appendix A.2.4 for more

5We also tested: for a given random network G, we keep its degree sequence fixed and increase or decrease
its assortativity (see Eq. (2.26), and method to tune them in Section 4.1) or robustness against the intentional
attack on hubs. In those cases, qc of those networks keeps unchanged under random attack, which arises as to
another question: how to improve or weaken the network robustness against random failures if we would like to
keep the degree sequence same.

31

3. Ways to Fragment Networks

details). For the intentional attack on hubs [20], the critical threshold qc can be obtained
through numerically solving

q(2−γ)/(1−γ)
c − 2 =

2− γ

3− γ
kmin(q

(3−γ)/(1−γ)
c − 1). (3.9)

An example can be found in Fig. A.3 in Appendix A.2.4.

3.1.2 The connection between network robustness and immunization

3.1.2.1 Susceptible-Infected-Recovered model

The Susceptible-Infected-Recovered (SIR) model was originally introduced by Kermack
and McKendrick [80]. In the basic SIR model, each individual belongs to one of the following
three states: the susceptible (S) state, the infected (I) state, and the recovered or removed
(R) state. A susceptible individual can be infected by those infected ones and then become
infectious. Meanwhile, an infected individual could recover or die (be removed). And if that
happens, then it turns into the recovered state, which means that it cannot transmit or get
infected by a pathogen again. One can find the transition chain shown in Fig. 3.4.

Infection Recovery

Figure 3.4: The transition chain of the SIR model. Individuals in S state can be infected and then
turn into I. At the same time, infected individuals (I) would recover and then change into R.

For individuals in a fully mixed population of size n, i.e., each individual could reach
all others, they undergo two phases of transition at each time step t. Assuming that S(t), I(t)
and R(t) accordingly represent the fraction of susceptible, infected and recovered individuals
at t, we then have

S(t) + I(t) + R(t) = 1. (3.10)

Further, let a be the number of individuals that per person can contact, and ηi be the
probability that an infected one can successfully transmit its pathogen, that is, the number
of individuals that per infectious individual can really contact and infect is ηia. It is worth
mentioning that ηia is viewed as a given constant in the classic SIR model. Following them,
the basic reproductive number η0 is defined as (Appendix A.2.5)

η0 =
ηia
ηr

>
1

S(t)
. (3.11)

At the beginning of an epidemic, S(0) ≈ 1 usually holds. Thus, an epidemic can outbreak
only if η0 > 1. An example is shown in Fig. A.4 in Appendix A.2.5. Note that ηi and ηr

could be estimated based on some real data.

3.1.2.2 From SIR to percolation

The classic SIR model ignores the true connections among individuals, i.e., the
assumption of a. In practice, the spread of an epidemic usually contains a lot of local
patterns, that is, an individual is likely to transmit the virus to its acquaintances. In the term

32

3.1 Problems and Motivations

of network science, where a node could represent an individual and edges characterize its
contacts with others, such transmission means an infectious node can only infect its nearest
neighbors. For this case, a is actually the average degree ⟨k⟩. Thus, we have the spread of an
epidemic on networks, and the classic SIR model can be thought of as a spread on a fully
connected network.

Different from the classic SIR model, nodes in a network might have different degrees,
which means that they possibly have different spreading capacities, or on the other hand,
the different probability of getting infected. Thus, a question arises as to in what condition
an epidemic can outbreak regarding a given network. Similar to the network robustness, we
only have analytical solution on networks generated through the configuration model [2, 81,
82], which follows

ηc =
ηi

ηr
=

1
⟨k2⟩
⟨k⟩ − 1

, (3.12)

where ηc is the corresponding epidemic threshold (details refer to Appendix A.2.6).
In the above process, an infected node keeps transmitting a virus to its nearest neighbors

with independent probability ηi until it recovers. Now focusing on one of its neighbors and
considering that process as a Poisson process with mean ηi/ηr [81, 2], then during the period
of time 0 to time tr (the time that the infected node takes to recover), the probability that the
virus is not successfully passed is e−ηitr . On the contrary, the probability that the virus is
successfully passed is 1− e−ηitr . Refs. [4, 2, 1] show that this process actually coincides with
a bond percolation on the same network G with an occupied probability 1− e−ηitr (see also
Appendix A.2.6).

3.1.2.3 Network immunization

The outbreak of an epidemic, especially a global one, always inflicts a heavy toll and
huge losses on all aspects of our lives [83, 84, 85, 86], in particular nowadays climate change
exacerbates the spread of disease [32]. Ways to contain an epidemic might include social
distancing, cancellation of airlines, quarantine, and closure of shops or public areas, etc. And
the aim is to curb the basic reproductive number (see Eq. (3.11)) if the epidemic follows the
SIR model (which most epidemics follow). Here we consider such problem on networks, i.e.,
network immunization.

To immune a network is actually equivalent to attack a network, i.e., network robustness
(see also Section 3.1.1). Intuitively, after the removal of part nodes (corresponding to
vaccination or isolation of those nodes), the possible maximum spread is bounded by the
size of the LCC. That means, if there is no giant component in the remaining network, then
the virus would die out within only a limited spread, no matter how large the infection rate
ηi or how small the recovery rate ηr is. Thus, the random immunization (or herd immunity)
corresponds to the random attack, which asks us to remove many enough nodes, i.e., at least
qc (see Eq. (3.6)), to eliminate a virus.

Now considering the way that we obtain Eq. (A.44), we can actually get a similar result
if the occupation of an edge is replaced with the occupation of a node. Specifically, the
probability α that a node i connect to the giant component through a particular neighbor
node j also consists of two parts: i) the probability that j is removed from the network, i.e., q;

33

3. Ways to Fragment Networks

ii) the probability that node j does not belong to the giant component if j is not removed,
which follows (1− q)αk j−1. Then, we reach a formula as

α = q + (1− q)∑
k

kpkαk−1

⟨k⟩ . (3.13)

Again, following ref. [1], one can get the critical threshold qc which is exactly same as Eq.
(3.6). Thus, we can use those conclusions from Section 3.1.1 to measure the behavior of the
epidemic threshold ηc against immunization.

For instance, suppose that there is a random network G constructed through the
configuration model, and q fraction of nodes are randomly removed from it. Here for
simplification, we further assume that the removed nodes are still in the network, but the
associated edges are removed (or those nodes become immune regarding the SIR model).
According to Eqs. (A.19) and (A.20), one can get

⟨k′2⟩
⟨k′⟩ =

⟨k2⟩
⟨k⟩ + (1− ⟨k

2⟩
⟨k⟩)q (3.14)

of the remaining network. Supposing that ⟨k2⟩/⟨k⟩ is a constant and larger than 1 (this is
the case we are interested in), then ⟨k′2⟩/⟨k′⟩ is a monotonically decreasing function of q.
Adding it into Eq. (3.12), one can easily conclude that η′c would increase as the rise of q. In
other words, if ηi and ηr keep unchanged, the virus would die out once η′c > ηi/ηr, i.e., at
some point of q. For example, regarding a network whose degree sequence following the
Poisson distribution, ⟨k′2⟩/⟨k′⟩ = (1− q)⟨k⟩+ 1 means that we can always find some q less
than 1 to have η′c > ηi/ηr since ⟨k⟩ is a constant (see Fig. 3.5).

0.0 0.2 0.4 0.6 0.8 1.0
q

100

101

102

⟨k
′2
⟩⟩⟨
k′
⟩

2

γ=2.1
γ=2.5
γ=2.9
Random⟨on⟨ER

Figure 3.5: ⟨k′2⟩/⟨k′⟩ as a function of q for different γ regarding Eq. (A.32) with kmin = 1. The
dashed line corresponds to ⟨k′2⟩/⟨k′⟩ = 2. Random on ER is obtained through ⟨k′2⟩/⟨k′⟩ =
(1− q)⟨k⟩+ 1 where ⟨k⟩ = 3.0.

From Section 3.1.1.9 we know that scale-free networks are usually robust against random
failure but quite fragile under intentional attacks, in particular for 2 < γ < 3 that most
real-world networks have. For a scale-free network G with 2 < γ < 3, ⟨k2⟩/⟨k⟩ → ∞
indicates that ηc → 0 (see Eqs. (A.24) (A.24) and (3.12)). That is, any kind of epidemics could
outbreak on G, no matter how small ηi or how large ηr is. Rewriting Eq. (3.14) as

⟨k′2⟩
⟨k′⟩ =

⟨k2⟩
⟨k⟩ (1− q) + q (3.15)

34

3.2 Metrics to Methods

and considering random immunization, obviously we need to remove almost all nodes
to possibly have finite ⟨k′2⟩/⟨k′⟩. For an intentional removal on hubs, according to Eq.
(A.32) (also see Fig. 3.5), we know that ⟨k′2⟩/⟨k′⟩ would be finite. Therefore, as the random
immunization on ER networks (note that again here we view a network whose degree
sequence following the Poisson distribution as an ER network), we can also find some q less
than 1 to eliminate an epidemic from a scale-free network through a targeted immunization
on hubs (i.e., intentional removal on hubs). Besides, Fig. 3.5 also tells us that ηc on scale-free
networks increases much faster than the one on ER networks as q increases.

3.2 Metrics to Methods

As discussed in the previous sections, the removal of nodes (including the incident
edges) would change the network structure. Meanwhile, different strategies would bring
about different magnitude of influences on the network structure, like the differences resulted
in by random and targeted removals. Further, for a specific strategy, networks constructed
through different models would have different reactions to an attack. The ER network has a
finite critical threshold qc under the random failure, but it is also robust against an intentional
attack. The scale-free network6 generally has a very large qc (approach 1) to the random
failure; however, it is also quite fragile if attacks occur on its hubs. Indeed, how robust a
network is depends on both the network structure and which attack strategy that we choose.
But usually, the main problem that we face in reality is to protect an existing network rather
than building a new one. Once considering a specific network, the influence of the degree
distribution becomes useless. Further, for example, even though two networks have the same
degree distribution, they might have totally different capabilities to survive from an attack
(see Fig. A.2b in Appendix A.2.3). Hence, thereafter, assuming that a network is given, we
mainly focus on different attack strategies to: i) unveil the true robustness that the studied
network has; ii) provide some ideas about how to design a more effective way to prevent
the outbreak of an epidemic; and iii) further enhance the network’s robustness. But first,
we should decide what criteria that we are going to employ for the fair comparison with
existing methods.

In addition to the LCC [9, 79, 25, 26, 23, 87, 1], there are also other ways to qualify a
network’s resilience or robustness, such as the network diameter dmax (see Eq. (2.8)) or the
average shortest path (see Eq. (2.9)) [9], the clustering coefficient (see Eq. (2.12)) [42], the
assortativity (see Eq. (2.26)) [49], the redundancy level7 [17], and the network motifs 8 [88,
89]. For a network under an attack, the average shortest path of the LCC (see also Eq. (2.28))
would firstly increase, which is due to the removal of redundant edges, and then decrease,
since it becomes smaller and smaller, after the giant component vanishes as the rise of q (the

6We mainly consider 2 < γ < 3 that most real-world networks hold.
7For a given network, the redundancy level one corresponds to the minimum spanning tree. If the number

of edges in the network is twice as many as that of level one, then the network has the redundancy level two.
Three times correspond to level three and so forth. To some extent, this measurement is actually equivalent to
the average degree ⟨k⟩.

8For a given number of nodes from a network, one might connect them through a different way. Enumerating
them, then each configuration corresponds to a motif. The aim is usually to count the frequency of a specific
motif.

35

3. Ways to Fragment Networks

fraction of removed nodes). In other words, the change of the average shortest path can be
represented by the size of the LCC. Besides, the clustering coefficient, the assortativity, the
redundancy level, the network motifs, and others [87, 12] have the similar behaviors and
partly or fully rely on the LCC (see Fig. A.5 in Appendix A.2.7 as an example). Hence, we
here choose to still consider the most widely used metrics, i.e., the LCC.

Specifically, for a given network G, regarding Ga(q) (see Eq. (3.3)), on the one hand,
we will verify a strategy through the performance of Ga(q) as a function of q. Basically, for
a fixed q, a method is said to be more effective than another one if it has smaller Ga(q),
that is, it is more capable of finding the fatal part of G or of isolating G. The other aspect
of this verification is to compare the number of removed nodes for a certain Ga(q), which
corresponds to achieve the same goal by using fewer resources, like targeting individuals
for medical treatment or collapsing a criminal organization [6]. But sometimes one method
works better at some q but worst at some other q. Thus, on the other hand, we also consider
the whole order parameter, that is, F.

In short, we have two criteria to demonstrate the effectiveness of a peculiar method. The
first one is the critical threshold qc (see Eq. (3.8)). The second one is the average fraction of
the LCC, F, which characterizes the performance of a method responding to all q,

F =
1
n ∑

q
Ga(q). (3.16)

One might find examples regarding F, such as gradually conduce a measure to curb a
spread9 or improve a network’s robustness step by step. For those cases, we need to consider
all q aiming at a global optimization, i.e., F.

3.3 State-of-the-art Approaches

Over the past decades, a lot of methods have already been developed to tackle the
robustness or immunization problem10 [79, 2, 87, 12, 1]. Here we give a brief review
regarding part of them. And some of them have actually been introduced in previous
sections (mainly see Sections 2.2 and 3.1.1.3).

3.3.1 General methods

The attack on hubs is also referred to as a strategy based on the degree centrality (see
Section 2.2.1). That is, one firstly ranks the nodes in descending order based on their degree
centrality, and then remove them one by one following that order. Thus, in a similar way,
we can rank nodes based on the Eigenvector centrality (EigS), the Katz centrality (KatS), the
PageRank (PagS), the Closeness centrality (CloS) and the Betweenness centrality (BetS) (see
the related definitions in Section 2.2). Indeed, like HubS, these methods are also based on
the idea that a node should be attacked or immunized if it has a large score, even though
they calculate the score in different ways. For example, EigS, KatS, and PagS measure a
node by repeatedly gaining information from its neighbors while CloS and BetS count on

9Note that spread is not limited to disease but also related to information or rumor.
10As we mentioned, they are equivalent to each other.

36

3.3 State-of-the-art Approaches

the shortest path. Another similar method that we would like to mention is the K-shell
strategy (KshS) [90], which has led to another area of studies. Instead of only considering
the degree of a node itself, KshS thinks that the location of that node is also very important.
That is, hubs in a hubs cluster are more influential than those surrounded by small-degree
nodes. Specifically, starting with the minimum degree kmin of a given network G and letting
a = kmin, i) iteratively remove nodes from G until the minimum degree k′min of the remaining
network is larger than a; ii) score those removed nodes by a; iii) considering the remaining
network and letting a = k′min, repeat i) and ii) until all nodes are removed and scored. As
ref. [90] indicates, a node with a larger a is more capable of spreading an epidemic or
information. Thus, on the contrary, that kind of node should also be important for the
containment of an epidemic.

Comparisons among these methods can be found in Appendix A.2.8.

3.3.2 Heuristic methods

No matter which methods, they have to identify nodes based on the network structure.
But usually, the network structure would change once some nodes are removed. In other
words, for example, after the node with the highest degree is removed from the given network,
its nearest neighbors’ degrees would decrease since the disappearance of its associated edges.
For this case, some other node which has smaller degree than those neighbors in the original
network possibly becomes a hub in the remaining network (see Fig. A.7), in particular for the
real-world network where there are always a number of communities, and degrees among
nodes have rich correlations (see Section 2.3.1). Thus, an intuitive way to improve those
methods that we studied in the previous section is to recalculate the score of each node
again on the remaining network after the removal of the one with the highest score. That
is, starting with a given network G and letting G′ is a subnetwork consisting of all nodes
and edges in the LCC, we then conduct the following adaptive processes to obtain a new
sequence based on a specifical method: i) score each node in G′ based on the considering
method; ii) remove the one with the largest score and obtain G′ of the remaining network; iii)
repeat the previous steps until all nodes are removed; and iv) obtain the associated sequence
according to the order of removal. To distinguish from the original one, here ‘A’ is employed
to mark the ‘adaptive’ new sequence, e.g., AHubS means that the new sequence is obtained
based on HubS.

Comparisons among these methods refer to Appendix A.2.9.

3.3.3 Decycling-based methods

Decycling-based methods, the belief propagation-guided decimation (ABPDS) [25] and
the min-sum and reverse-greedy strategy (AMSRGS) [26], are developed based on the
observation on general model networks (such as the ER random network) where there are
only limited number of cycles (see Sections 2.1.3.3 and 2.4). Thus, they think that one might
optimize the critical threshold qc by the aid of tackling the feedback vertex set (FVS) problem

37

3. Ways to Fragment Networks

(i.e., the decycling problem in ref. [26]11). Specifically, for a given network G(N ,M), letting
Nu andMu accordingly be the unoccupied node set and edge set (see also Section 3.1.1.6),
the feedback vertex set problem aims to find a minimal node set NFVS whose removal would
make the network acyclic, i.e.,

NFVS = arg min
Nu

|Nu|, s.t. dc(i) = 0, ∀i ∈ G(N \Nu,M\Mu), (3.17)

where dc(i) = 0 means that there is no any cycle regarding node i (see also Eq. (2.10)). To
tackle the FVS problem, which is an NP-complete problem [91], both ABPDS and AMSRGS
employ a variant, but different, of the belief propagation algorithm12 (or message-passing
algorithm) to approach the optimalNFVS. After the previous process, we can easily verify that
G(N \Nu,M\Mu) would be a forest, in which some components might have size larger
than the given demand α× n (see Eq. (3.8)). Hence, one needs to break those components
further. Indeed, breaking of them is quite a simple problem since those components are
trees. But usually, rather than disintegrate the forest into a subnetwork whose LCC is a
little bit smaller than α× n, the decycling-based methods choose to collapse it into a one
whose LCC is much smaller than α× n. And then, they greedily reintroduce13 the removed
nodes (including those in NFVS) until meeting the demand. To sum up, the processes of
the decycling-based methods are as follows14: i) obtain NFVS and remove them from the
given network; ii) continue to remove nodes from the remaining network to break it into a
subnetwork where the LCC has a fraction of nodes α1 much less than α, i.e., α1 ≪ α; and iii)
greedily add the removed nodes back to the remaining network until we get qc.

Performance of ABPDS and AMSRGS can be found in Appendix A.2.10.

3.3.4 Collective influence approach

The collective influence method (ACIS) is also based on the observation on general
model networks but from the perspective that those kinds of networks always have a tree-like
structure [23]. Thus, they think that there should be a connection between the breaking of
a tree and a real-world network. Specifically, considering the site percolation (see Section
2.4.1 as an example) on a tree, ACIS holds its approximately optimal solution through
repeatedly removing the node which has the largest collective influence strength in the
remaining network G′(N \Nu,M\Mu). For G′, node i’s collective influence strength CIℓ(i)
is obtained in the following way,

CIℓ(i) = (k′i − 1) ∑
j∈∂Ball(i,ℓ)

(k′j − 1), (3.18)

11One can find more explanation regarding the connection of the network dismantling problem and the
decycling problem in ref. [26]. Note that the dismantling problem is exactly equivalent to the optimization of the
critical threshold qc.

12Details of this algorithm are out of the scope of this thesis.
13We will show this strategy later.
14They are the basic processes of AMSRGS. ABPDS is a little bit different but follows a similar framework.

38

3.3 State-of-the-art Approaches

where ℓ is the radius of the ball Ball(i, ℓ), k′i is the corresponding degree of i of G′ and k′i − 1
accounts for the out degree (see Section 3.1.2.2), and ∂Ball(i, ℓ) is a node set consisting of all
nodes with ℓ-length shortest path to node i (see also Eq. (2.7) where dij is equivalent to ℓ).

An example about how to calculate the collective influence strength is shown in Fig. A.11
in Appendix A.2.11, where the influence of ℓ on ACIS and the corresponding comparisons
with ABetS and AHubS are also reported.

3.3.5 Percolation-based methods

ACIS can also be categorized as a percolation-based method since it is derived based
on site percolation. But here we are going to mainly focus on those which share ideas
from explosive percolation (see also Section 2.5), including the inverse targeting strategy
(AITS) [21], the critical node detection method (ACNS) [22], and the explosive immunization
method (AEIS) [24].

AITS employs a strategy similar to ns-R with ns = |Nu(t)| (see Section 2.5.4), and it is
bounded by the LCC Gp(t/n) (see Eq. (3.4) for the connection between Ga(q) and Gp(t/n)).
In detail, for a given network G(N ,M), AITS obtains a new sequence through the following
percolation process: starting with t = 1 and Gp(0/n) = 0, i) at time step t, calculate

ai = Gp(t/n)− Gp((t− 1)/n) and

bi = ki − k′i

for each node i in the unoccupied node set Nu(t− 1), where Gp(t/n) is the fraction of the
LCC over the assumption that node i is occupied, ki is the degree of node i in the full network
G, and k′i is the degree of i in G′(No(t),Mo(t)) assuming that i is occupied; ii) occupy node
v if it is unique or randomly choose one to occupy if there are several v, given the condition

bv = min bu, ∀u ∈ {i|ai = min aj, ∀j ∈ Nu(t− 1)};

and iii) repeat steps i) and ii) until all nodes are occupied. In other words, AITS repeatedly
occupies the node which makes the least contribution to the LCC and keeps the occupied
network as dense as possible.

ACNS, instead, considers the node which leads the largest ‘jump’15 of the LCC during a
percolation process. In detail, from Section 2.4.2, we know that the order parameter Gp(t/n)
is a non-decreasing function of t. Now regarding the change of magnitude of Gp(t/n) at
each time step, that is,

a(t) = Gp(t/n)− Gp((t− 1)/n), (3.19)

we then obtain the critical node i at t′ satisfying (recall that one node is occupied at each t)

t′ = arg max
t

a(t). (3.20)

15Usually, this ‘jump’ happens at the maximization of the second LCC, which is a very popular measure
regarding percolation, such as refs. [14, 61].

39

3. Ways to Fragment Networks

Next, remove i from the network and repeat the previous process on the remaining network
until all nodes are removed from the given network. Sometimes, one might get several nodes
owning the same a(t). In this case, remove the one with the largest degree, or randomly
remove one if several share the same largest degree.

Figure 3.6: An example of the distinct nearest neighbor set Γ̂. The filled circles and solid line are
accordingly the occupied nodes and edge, i.e., No(t) andMo(t). On the contrary, those unfilled
circles and dashed lines correspond to the unoccupied, that is, Nu(t) andMu(t), respectively.
Considering node 1, we have Γ̂(1) = {2, 4} or Γ̂(1) = {3, 4} since c(2) = c(3).

The third method is AEIS that conducts a similar process of AITS but with two extra
restraints. One is that it uses a fixed ns of ns-R rather than let ns = |Nu(t)|. This strategy
could speed up the algorithm compared to AITS. The other one is that it scores each node
before the percolation process. Specifically, for a given network G(N ,M), letting c(i) be the
component that node i belongs to and |c(i)| be the corresponding size (see also Eq. (2.34)),
AEIS obtains the score ai of node i through

ai = k(eff)
i + ∑

j∈Γ̂(i)

(
√︂
|c(j)| − 1), (3.21)

where Γ̂(i) is the distinct nearest neighbor set of i in the occupied network G′(No(t),Mo(t)),
that is, Γ̂(i) only contains nodes in different components (see Fig. 3.6). k(eff)

i is used to
characterize the potential spreading ability of node i [24], that is, a node with large k(eff)

i

indicates that it is more likely to transmit an epidemic out,

k(eff)
i = ki + Li − α({k(eff)

j |j ∈ Γ(i)}) (3.22)

in which Li is the number of leaves (nodes with degree 1), Γ(i) is the i’s nearest neighbor
set and α({k(eff)

j |j ∈ Γ(i)}) is the number of strong hubs (nodes with k(eff)
j ≥ K, K is a given

parameter, usually K = 6 [24]). Note that k(eff)
i is calculated before the percolation process.

Thus all parameters in Eq. (3.22) are associated with the original network G. To sum up,
AEIS gets a new sequence through: i) calculating k(eff)

i for each node based on Eq. (3.22); ii)
randomly selecting ns nodes from Nu(t) and obtaining their related ai following Eq. (3.21);
iii) occupying the one with minimal ai; iv) repeating steps ii) and iii) until all nodes are
occupied.

Appendix A.2.12 gives comparison among these approaches.

3.3.6 Summary

Basically, targeted methods have better performance than local ones (see Fig. (A.3) as an
example). For targeted methods, most heuristic methods surpass the corresponding general
ones (see Figs. A.6 and A.8 in Appendixes A.2.8 and A.2.9). Amid those heuristic methods,

40

3.4 Bounded and Unbounded Strategies

decycling-based methods (ABPDS and AMSRGS) can always obtain a very small critical
threshold qc (see Fig. A.10 in Appendix A.2.10), and percolation-based methods are usually
capable of getting a small F (see Fig. A.13 in Appendix A.2.12). However, all of them are
less effective than ABetS in almost all cases.

3.4 Bounded and Unbounded Strategies

Though ABetS works well in most cases, it is too time-consuming to be possible for
large networks. Thus, our first aim is to develop new methods that could surpass ABetS over
both performance and time consumption, or at least obtain similar results using much less
time16.

3.4.1 Union-Find Algorithm

A basic algorithm that our methods rely on is the Union-Find (UF) algorithm, which
is designed for the union-find set [92]. The union-find set is a data structure that can
track disjoint subsets when the elements are partitioned into several groups. Roughly, the
UF algorithm can help us, within nearly constant time (for ER-type networks), to merge
components (Union) or to determine whether any two nodes are in the same component
(Find). Following the notation in Section 2.1.2, we employ a[i] to denote the root of node i.
Then, we can use the Root function in Algorithm A.2 (Appendix A.2.13) to find the root of a
given node i, the Find function to check whether i and j are in the same component, and
the Union function to merge two components. Fig. A.15 (Appendix A.2.13) also gives an
illustration regarding this algorithm.

Algorithm 3.1: Site percolation on an existing network
Input: G(N ,M)

Output: S
1 Initialize Nu(0)← N and No(0)← {}
2 t← 0
3 while t ⩽ n do
4 t← t + 1
5 Get candidate set, Nc(t)← RS(Nu(t), ns)

6 Choose the new occupied node
i← arg minj ξ(j), ∀j ∈ Nc(t)

7 Nu(t)← Nu(t) \ {i}
8 No(t)← No(t) ∪ {i}
9 S[t]← i

16This section is mainly based on results from our previously punished paper [L1] where only unbounded
strategies are reported. Here, the detailed routine to reach methods of ref. [L1] is also presented.

41

3. Ways to Fragment Networks

3.4.2 Bounded-size strategies

From Section 3.3, we know that those percolation-based methods always have good
performance. And basically, both AITS and AEIS share a similar strategy to SumR (i.e., the
sum rule, see also Section 2.5.3), and ACNS could also be viewed as an adaption of the rule
in refs. [67, 68], where they consider the effect of a single edge on explosive percolation.
Thus we are naturally to ask how about other strategies? Could they help us find better
solutions?

Following Section 2.5, we start with the bounded-size rule (recall that the BF strategy is
a special case of it). Since mainly considering the site percolation on existing networks, we
here rewrite Algorithm 2.1 as Algorithm 3.1. For the bounded-size rule, we further rewrite
Eq. (2.34) as

ξ(i) =

b, if ∑

j∈Γ̂(i)

|c(j)| ⩽ α

∞, otherwise,
(3.23)

where b is a constant. Note that Eq. (3.23) is a variant of the bounded-size rule. Then, the
BF strategy corresponds to the case of α = 2. Eq. (3.23) is apparently not a good strategy
to suppress either qc or F since it views components of size less than α as same (see also
Fig. A.16 in Appendix A.2.13). But it is truly much better than RanS. Besides, ns = 200 and
ns = 2000 share similar results in both networks.

Figure 3.7: An example of external degree where black filled circles and solid edges represent
occupied nodes and edges, and blue dashed and unfilled are those unoccupied, respectively.
Considering candidate node 3, the corresponding component contains two nodes, i.e., c(3) =
{3, 4}, and its external degree is kout

c(3) = k3 − k′3 + k4 − k′4 = 2. Similarly, one can have kout
c(1) = 2.

Because of the low effectiveness of Eq. (3.23), we further introduce two variants
regarding the bounded-size rule. The first one aims to contain the growth of external degree
of components, which we name ABonS1. For a given network G(N ,M), we define the
external degree kout

c(i) of the component c(i) regarding a candidate node i as

kout
c(i) = ∑

j∈c(i)
(k j − k′j), (3.24)

where k j is the degree of node j in G, and k′j is the one in G′(No(t),Mo(t)) assuming that
the candidate i is occupied (see Fig. 3.7 as an example). Then, starting with α = 1, α0 = α

and b > 1, ABonS1 obtains a new sequence through: i) at step t, choose node i ∈ Nu(t)
to occupy if it has kout

c(i) ⩽ α; ii) repeat i) until there are no any unoccupied nodes having
external degree less than α, i.e., kout

c(i) > α, ∀i ∈ Nu(t); iii) let α = b×min kout
c(i), ∀i ∈ Nu(t) and

α0 = α if at least one new node is occupied during steps i) and ii), otherwise, α = b× α0 and

42

3.4 Bounded and Unbounded Strategies

α0 = α; iv) repeat i), ii) and iii) until all nodes are occupied. Note that b can be a constant or
a function of t but it has to be larger than 1 to ensure the convergence of the algorithm (see
its performance in Appendix A.2.13).

The second variant (ABonS2) is a further extension of ABonS1, which constrains both
the external degree and the component size. Supposing bc > 1, bo > 1, αc = 1 and α2 = αc,
ABonS2 conducts the following processes to get a new sequence:

i) let αo =
√

αc and α1 = αo;

ii) at time step t, choose node i ∈ Nu(t) to occupy if it satisfies kout
c(i) ⩽ αo and |c(i)| ⩽ αc;

iii) repeat ii) until kout
c(i) > αo or |c(i)| > αc, ∀i ∈ Nu(t);

iv) let αo = bo ×min kout
c(i), ∀i ∈ Nu(t) and α1 = αo if at least one new node is occupied

during steps ii) and iii), otherwise, αo = bo × α1 and α1 = αo;

v) repeat ii), iii) and iv) until αo > αc(⟨k⟩ − 2);

vi) let αc = bc ×min |c(i)|, ∀i ∈ Nu(t) and α2 = αc if at least one new node is occupied
during steps ii) and iii), otherwise, αc = bc × α2 and α2 = αc;

vii) repeat the previous steps until αc ⩾ n, and the employ ABonS1 to occupy the remaining
unoccupied nodes.

The effectiveness of ABonS2 verified by ABonS1 can be found in Fig. A.18 in Appendix
A.2.13.

3.4.3 Sum and product rules regarding nodes

As Section 2.5.3, we further consider sum and product rules, in particular unbounded-
size rule ns-R. Following Algorithm 3.1, the sum rule corresponds to a goal function as

ξ(i) = ∑
j∈Γ̂(i)

|c(j)|, (3.25)

where, note that again, Γ̂(i) is the distinct nearest neighbor set of i (see also Fig. 3.6) regarding
the occupied network G′(No(t),Mo(t)). Similarly, the product rule has

ξ(i) = ∏
j∈Γ̂(i)

|c(j)|. (3.26)

Further, the associated ns-R simply increases the number of candidates. Here we refer ns-R
regarding the sum rule as ASumRS, and the product rule as AProRS. The corresponding
performance can be found in Fig. A.19 (Appendix A.2.13).

Indeed, one can also design other strategies17. For example, considering ABonS2 in
the previous section, at time step t, node i is directly occupied if it satisfies kout

c(i) ⩽ αo and
|c(i)| ⩽ αc, otherwise, it is occupied following

min{1, e−(((αc−|c(i)|)/ac)2+((αo−kout
c(i))/ao)2)}, (3.27)

17They are important for the later evolutionary framework.

43

3. Ways to Fragment Networks

where ac and ao could be given constants or vary with the time step t. One can also extend
ABonS1 in a similar way. The reason why we choose Eq. (3.27) can be found in ref. [59]. But
it is worth mentioning that the introduction of Eq. (3.27) would heavily slow down ABonS2.

3.4.4 The power of selections over choices

Figure 3.8: Given the demanded case of isolating every node in this network (consisting of filled
circles and solid lines), almost all existing methods would remove the central node, i.e., node 1,
and hence fail to get the optimal solution which is actually the eight nodes on the two dashed
squares (L1 and L2). Now if we randomly remove two of those on L1, then, for example, both
HubS and AHubS can get the optimum.

Though those strategies (especially ABonS1 and ABonS2) have similar performance
to ABetS in some networks and could always obtain good solutions very fast18, none of
them can certainly surpass ABetS in the effectiveness. Thus, we might need to change our
thought to search for more powerful methods. When looking into those heuristic methods,
one can easily observe that almost all of them belong to the greedy family, that is, greedily
remove (occupy) the most (least) important node from the remaining (occupied) network,
including decycling-based methods. In other words, they only consider one-step influence
among nodes. But the fact is that those impacts might also be long-term. For example, the
random removal of two nodes on L1 of the network in Fig. 3.8, on the one hand, weakens
the importance of the central node (node 1), on the other hand, relatively strengthens the
influence of nodes on L2. One could also think that the random removal directly affects the
central node and indirectly influences those on L2. And more importantly, such random
removal could successfully help us find the optimal solution. Note that even ABetS would
fail on the example in Fig. 3.8, which indeed gives us a powerful motivation, that is, there is
some possibility to find a method that can overtake ABetS. And therefore, a natural question
arises as to how can we model those influences?

A straightforward extension of a one-step influence is to check the influence of failures
from several nodes simultaneously. For instance, considering the percolation process, we can
occupy no nodes at each step t and check their contribution to Gp(q). But this strategy needs
∼ (|Nu|

no
) times to find the optimal configuration, which is unacceptable for most cases. Hence,

as an alternative, per time ns nodes are randomly selected from Nu, and then one of them is
chosen to be occupied based on some goal function ξ(·). This occupation would be repeated
no times, which accounts for ns|Nu| compared to ∼ (|Nu|

no
). The alternative strategy actually

18Actually, except for ABetS, those developed approaches surpass almost all methods that we discussed in
Section 3.3, in both performance and time consumption.

44

3.4 Bounded and Unbounded Strategies

coincides with ASumRS and AProRS. And again, it might converge to local optimum. Thus,
we have to make some compensation for them.

0.0 0.1 0.2 0.3 0.4 0.5
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

) ASumRS
1
2
4
8
16

(a)

0.0 0.1 0.2 0.3 0.4 0.5
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

0.0 0.1 0.2 0.3 0.4 0.5
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(c)

0.0 0.1 0.2 0.3 0.4 0.5
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(d)

Figure 3.9: Performance of ASumRSp (with ru = 0.2 and T = 1, 2, 4, ...) compared to ASumRS
(with ns = 2) on (a) and (c) an ER network with n = 105 and ⟨k⟩ = 3.5, and (b) and (d) a BA
network with n = 105 and ⟨k⟩ = 4.0. ns = 2 is conducted for ASumRSp in (a) and (b), and
ns = 10 in (c) and (d).

Specifically, starting with a distinct sequence S regarding a given network G(N ,M),
we assume that No(t) ≡ {S[j]|j < t} and Nu(t) ≡ {S[j]|j ⩾ t} hold for all t. Further, letting
N p

u (t) be a subset of Nu(t) and follow

N p
u (t) = {S[j]|j ∈ [t, min(⌊t + ru × n⌋, n)]}, (3.28)

where ru ∈ (0, 1] is a controlling parameter to determine which part of nodes could be
candidates, then we construct the candidate set Nc(t) through ns times of selections on
N p

u (t), i.e., modify line 5 in Algorithm 3.1 as

Nc(t)← RS(N p
u (t), ns).

Now let us have a glance at the function that ru plays. Obviously, ru = 1 corresponds to
ASumRS or AProRS depending on which goal function ξ(·) is considered. ru < 1 means that
we construct the candidate only considering part of those unoccupied nodes. In this case,
what would happen if we repeat the percolation process a number of times T under the
constraint that S is reused? That is, another round of percolation process is conducted based
on the new S(T) from the previous round. For the ease of description, we call this process

45

3. Ways to Fragment Networks

as ASumRSp or AProRSp. Indeed, as shown in Fig. 3.9, for the first round, ASumRSp is
worse than ASumRS but soon becomes much better than ASumRS as the increase of T.

From Fig. 3.9, we can also conclude that the effectiveness of AProRSp relies on both ns

and ru as well as T. And to some extent, we could say that S(T) becomes more and more
orderly as T increases. Considering this as an assumption, we can then further let ns and ru

associated with T. Basically, a large ns in tandem with a small ru indicates an enhancement
of one-step influence so that it is more likely to help find local optimizations. On the contrary,
a small ns complete with a large ru gives more freedom to the possible configuration and
hence is more likely to result in global optimums. And roughly, the time complexity of the
whole procedure is O(Tnsn⟨k⟩) which is associated with both T and ns. Therefore, we here
let

ns(T) = ns(0) + ⌊Tδns + 0.5⌋ and

ru(T) =
ru(0)

Tδru + 1
,

(3.29)

where δns and δru represent the increase rate of ns(T) and the decrease rate of ru(T),
respectively. Usually, one should start with a small ns(0) and a large ru(0), that is, firstly try
to globally rank S(T) and then further locally optimize it through large ns(T) and ru(T). But
we still face another problem that the random selection might result in some bad solutions.
To overcome this, we then measure F or qc for each S(T), say F(S(T)) or qc(S(T)), and let
S(T) = S(T − 1) if F(S(T)) > F(S(T − 1)) or qc(S(T)) > qc(S(T − 1)).

Algorithm 3.2: One round of ARRS
Input: G(N ,M), S(T − 1)
Output: S(T)

1 Initialize Nu(0)← N and No(0)← {}
2 t← 0, S′ ← S(T − 1)
3 while t ⩽ n do
4 t← t + 1
5 Get N p

u (t) based on S′ and ru(T)
6 Get candidate set, Nc(t)← RS(N p

u (t), ns(T))
7 Choose the new occupied node

i← arg minj ξ(j), ∀j ∈ Nc(t)

8 Nu(t)← Nu(t) \ {i}
9 No(t)← No(t) ∪ {i}

10 S′[t]← i

11 if ξg(S′) < ξg(S(T − 1)) then
12 S(T)← S′

13 else
14 S(T)← S(T − 1)

We call the above processes as the relationship related method (ARRS). To sum up,
ARRS obtains a new sequence S(T) through:

i) Given S(0) (could be a randomly ordered sequence), ns(0), δns , ru(0), δru and the
maximal iteration T̂;

46

3.4 Bounded and Unbounded Strategies

ii) at iteration T, obtaining S(T) based on Algorithm 3.2 where ξg(·) corresponds to F(·),
qc(·), or other possible global goal function;

iii) repeating ii) until T = T̂.

With respect to the local goal function ξ(·), one can choose the sum rule, the product rule, or
others that we have mentioned such as in Sections 3.4.2 and 3.4.3. Here we consider a hybrid
of the sum and product rules. That is, if the sum rule is chosen at T and makes a positive
contribution to ξg(·), i.e., ξg(S(T)) < ξg(S(T − 1)), then as(T) = as(T − 1) + 1, otherwise,
as(T) = as(T− 1). Similarly, for the product rule, ap(T) = ap(T− 1) + 1 if it obtains a better
solution, otherwise, ap(T) = ap(T − 1). During each iteration T, either the sum rule or the
product rule is conducted. The sum rule is chosen with probability as(T−1)

as(T−1)+ap(T−1) starting
with as(0) = ap(0) = 1, otherwise, the product rule is considered.

0.0 0.1 0.2 0.3
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

AHubS
ACIS
ABonS1
ARRSs
ARRS

(a)

0.0 0.1 0.2 0.3
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

Figure 3.10: Performance of ARRSs and ARRS compared to AHubS, ACIS (with ℓ = 4), and
ABonS1 (with b = 1.2) on (a) an ER network with n = 105 and ⟨k⟩ = 3.5 and (b) a BA network
with n = 105 and ⟨k⟩ = 4.0. S(0) = RanS, ns(0) = 10, δns = 0.01, ru(0) = F(RanS), δru = 0.01,
T̂ = 1000 and ξg(·) = F(·) are conducted for both ARRSs and ARRS, as well as the sum rule and
the hybrid are considered for ARRSs and ARRS, respectively.

Fig. 3.10 shows the performance of ARRSs (only the sum rule is conducted) and ARRS
on the two model networks. Apparently, both ARRSs and ARRS can obtain smaller F than
AHubS, ACIS and ABonS1, in particular (F(ACIS)− F(ARRS))/F(ACIS) = 5.29% for the
ER network and 6.43% for the BA network. In respect to the critical threshold qc, ARRS with
ξg(·) = qc(·) is only slightly better than ARRS with ξg(·) = F(·) (in the BA network around
2.23%) and sometimes even worse (in the ER network around −0.32%), which indicates that
ABonS1 still has advantage over qc.

Here, we further extend ABonS1 by considering more information instead of viewing
each node equally. Specifically, one straightforward way is to replace kout

c(i) (see also Eq. (3.24))
with

Hout
c(i) = ∑

j∈c(i)
∑

v∈Γ(j)∩Nu(t)
Hv, (3.30)

where Γ(j) ∩Nu(t) represent the unoccupied neighbors of node j and H is the node score
sequence (see Fig. 3.11 for an instance). Apparently, Eq. (3.30) is equivalent to Eq. (3.24) if

47

3. Ways to Fragment Networks

Figure 3.11: Considering the candidate node 1 colored blue, the shadow marks the component
that it would lead to. For this example, Hout

c(1) accounts for the sum of scores from the three nodes
that red arrows point to.

H = 1. Here we choose to score each node based on the degree distribution, that is,

Hi = ∑
k⩾ki

pk, (3.31)

which indicates that a node with a large degree would have a small score. In this manner,
each occupied component would only have a few unoccupied neighbors in the subcritical
regime, and thus the corresponding percolation is delayed. Indeed, the basic idea of Eq.
(3.30) is to try to keep an occupied component only associated with a few influential nodes
which are identified by H. Therefore, we can also construct H based on, e.g., all kinds of
centralities (see Section 2.2) where a potential way is to use the corresponding reciprocal of
those centralities.

One can also employ the framework from ARRS by simply rewriting the local goal
function ξ(i) as

ξ(i) = Hout
c(i). (3.32)

We here call the method relaying on Eq. (3.30) the predict relationship method (APRS).
More clearly, we refer to the one integrated with ABonS1 as APRSs1 and the one with the
ARRS framework as APRSrr. The corresponding performance can be found in Fig. A.20 in
Appendix A.2.13.

3.4.5 Applications

3.4.5.1 Data

Except for the two-type model networks, i.e., networks generated through the ER
model and the BA model, the following real-world networks from a large range of domains
are also considered to more thoroughly demonstrate the effectiveness of those developed
methods. For the network robustness, as we mentioned in Section 3.1.1, climate change
continuously increases the frequency and intensity of extreme events and keeps challenging
the resilience of infrastructure and boosting the global supply chain risks. Thus, the first
category is the infrastructure network [5, 14] including: a Power Grid network [42, 18]
(Power) and two Road networks [93] (PAroad and Txroad). Another group of networks
are constructed or extracted from communication systems, which are associated with both
network robustness and immunization [2, 94, 8, 95]. For instance, considering the Internet
network, one might have to find and protect the most important routers or hosts against the

48

3.4 Bounded and Unbounded Strategies

Networks n m Networks n m

Power 4941 6594 Email-Enron 36692 183831

CA-GrQc 5242 14490 p2p-Gnutella31 62586 147892

p2p-Gnutella08 6301 20777 loc-Gowalla 196591 950327

as-733 6474 12572 Email-EuAll 265214 364481

Scottish 7228 24784 com-Amazon 334863 925872

CA-AstroPh 18771 198050 web-Google 875713 4322051

CA-CondMat 23133 93439 PAroad 1088092 1541898

hep-th 27240 341923 Txroad 1379917 1921660

Cit-HepPh 34546 420877 as-Skitter 1696415 11095298

Table 3.1: Basic information of the 18 real-world networks.

breakdown of the whole system from malicious attacks. At the same time, antivirus softwares
are installed to prevent or eliminate digital viruses. Here this type of networks include: two
autonomous system graphs [96] (as-733 and as-Skitter), two Internet peer-to-peer networks
[97, 98] (p2p-Gnutella08 and p2p-Gnutella31), three Collaboration networks [97] (ca-GrQc,
ca-AstroPh and ca-CondMat), two citation networks [99, 96] (hep-th and cit-HepTh), the
Scottish cattle movements network [24] (possible spread of virus), and two communication
networks (email-Enron [100, 93] and email-EuAll [97]). Regarding misinformation19, we
choose one location-based online social network [101] (loc-Gowalla), the Amazon product
co-purchasing network [102] (com-Amazon) and the Google web graph [93] (web-Google).
Some basic information regarding these networks can be found in TABLE 3.120. Note that
for all networks considered here, the directed edges are simply replaced with undirected
ones, and all self-loops and isolated nodes are entirely removed.

3.4.5.2 Configurations of associated methods

• RanS: average over at least 20 independent implementations (20 IIs).

• HubS: NONE.

• EigS: α = 0.1.

• KatS: α varies from network to network and is smaller than the reciprocal of the largest
eigenvalue of the adjacent matrix.

• PagS: α = 0.85.

• CloS: NONE.

• BetS: NONE.

• KshS: NONE.

• AHubS: HubS on the whole remaining network.

19To some extent, it is equivalent to the immunization problem.
20The source data of these networks is either from http://snap.stanford.edu/data or http://konect.

uni-koblenz.de/networks/opsahl-powergrid

49

http://snap.stanford.edu/data
http://konect.uni-koblenz.de/networks/opsahl-powergrid
http://konect.uni-koblenz.de/networks/opsahl-powergrid

3. Ways to Fragment Networks

• APagS: PagS with α = 0.85 on the LCC.

• ABetS: BetS on the LCC.

• AMSRGS: α1 = 3/n and α = 0.01 if there is no particular explanation.

• ABPDS: x = 12 and α = 0.01 if there is no particular explanation.

• ACIS: ℓ = 4 if there is no particular explanation.

• AITS: 20 IIs.

• ACNS: 20 IIs.

• AEIS: K = 6 and ns = 2000 if there is no particular explanation. 20 IIs.

• ABonS1: b = 1.2 and HubS as initial sequence if there is no particular explanation (default). If
initial sequence is random, then 20 IIs.

• ABonS1q: b = 1.2 and HubS as initial sequence if there is no particular explanation (default). If
initial sequence is random, then 20 IIs.

• ABonS2: bc = 1.1, bo = 1.2 and HubS as initial sequence if there is no particular explanation
(default). If initial sequence is random, then 20 IIs.

• ASumRS: ns relies on networks. 20 IIs.

• AProRS: ns relies on networks. 20 IIs.

• ARRS: if there is no particular explanation, S(0) = HubS, ns(0) = 10, ru(0) = F(HubS),
ξg(·) = F(·), ξ(·) is a hybrid of ASumRS and AProRS with as(0) = ap(0) = 1, δns = 0.001 and
δru = 0.01 for n ⩽ 104, δns = 0.01 and δru = 0.01 for 104 < n ⩽ 105, δns = 0.1 and δru = 0.1 for
105 < n ⩽ 106, and δns = 0.5 and δru = 0.5 for n > 106. 20 IIs.

• APRSs1: b = 1.2, H is based on the corresponding degree distribution and HubS as initial
sequence if there is no particular explanation (default). If initial sequence is random, then 20
IIs.

• APRSs1q: b = 1.2, H is based on the corresponding degree distribution and HubS as initial
sequence if there is no particular explanation (default). If initial sequence is random, then 20
IIs.

• APRSrr: same as ARRS and APRSs1 if there is no particular explanation. 20 IIs.

NONE means that there is no controlling parameter regarding the corresponding method.
ABonS1q and APRSs1q accordingly correspond to ABonS1 and APRSs1 with an extra
constraint before qc is reached, that is, for example, we firstly run ABonS1 bounded by α

(see Eq. (3.8)) until all unoccupied node would lead to Gp(q) > α, then pure ABonS1 is
conducted until all nodes are occupied.

50

3.4 Bounded and Unbounded Strategies

3.4.5.3 Percolation metrics

As we mentioned in Section 3.2, we will frequently consider the order parameter Ga(q)
as a function of q, the critical threshold qc, and the average fraction F of the LCC as criteria
to validate our developed methods. Besides, when specifically comparing two methods, e.g.,
S1 and S2, we say that S1 has an improvement of a% compared to S2 regarding F, simply
representing that

F(S2)− F(S1)
F(S2)

= a%, (3.33)

where a is some number. The similar way is also conducted for qc. Note that a% would be
negative if S1 is worse than S2. For this case, we refer to it as ‘a% regression’.

0.00 0.05 0.10 0.15 0.20
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

ABetS
ABonS1
ABonS2
APRSs1
APRSrr
ARRS

(a)

0.000 0.025 0.050 0.075 0.100
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

0.0 0.1 0.2 0.3
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(c)

Figure 3.12: Performance of ABonS1, ABonS2, APRSs1, APRSrr, and ARRS compared to ABetS
considering the same networks as Fig. A.6, i.e., (a) the BA network, (b) the power grid network,
and (c) the yeast network.

We first verify those basic methods considering the networks used in Figs. A.6, A.8,
A.10, A.12, A.13 and A.14. As we can see from those results, order parameter curves are
tangled with each other, which indicates that those basic methods truly have comparable
performance as ABetS. More specifically, for the BA network (Fig. 3.12a), all five basic
methods could obtain smaller F than ABetS, especially ARRS which is also much better
than ABetS in the power grid network (21.18% improvement) but slightly worse in the yeast
network (−4.95% regression). Thus, we have achieved our first goal: new methods which
are capable of obtaining at least similar results to ABetS. Note that ABetS accounts for the
best among those approaches that we studied in Section 3.3.

We further consider the so-called state-of-the-art strategies, mainly including ACIS,
ABPDS, and AEIS. Note again that we choose ABPDS instead of AMSRGS since they have
similar performance, and ABPDS is faster than AMSRGS. Even though they are, slightly
or heavily, less effective than ABetS, they have the advantage of lower time complexity.
Therefore, we further verify the proposed approaches through comparisons with those
methods on the following networks.

• CA-AstroPh: a collaboration network regarding Astro Physics in Arxiv [97]. Here
we are interested in a question about which group of researchers promote the
communication of this field. An imaginary scenario is what would happen if those
researchers are held by a country. In this network, nodes represent scientists, and their
collaborations (e.g., coauthor a scientific paper) are characterized by edges.

51

3. Ways to Fragment Networks

0.0 0.1 0.2 0.3 0.4
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)
ACIS
ABPDS
AEIS
ABonS1
ABonS2
APRSs1
APRSrr

(a)

0.0 0.1 0.2 0.3 0.4 0.5
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

0.000 0.025 0.050 0.075 0.100
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(c)

0.000 0.025 0.050 0.075 0.100
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(d)

Figure 3.13: Comparisons among ACIS, ABPDS, AEIS, ABonS1, ABonS2, APRSs1, and APRSrr
regarding Ga(q) of q on (a) the CA-AstroPh network, (b) the Cit-HepPh network, (c) the web-
Google network, and (d) the as-Skitter network (where ℓ = 2 is conducted for ACIS since it
would take over one week to get the result for ℓ = 3 in our system).

• Cit-HepPh: a citation network of Arxiv HepPh (high energy physics phenomenology)
[96] where papers are denoted by nodes and a direct edge is put between two nodes if
one of the corresponding papers cite the other one. For the convenience of comparisons
with other methods, those directed edges are simply replaced by undirected ones. For
this network, we would like to know which part of the papers are the most important
ones.

• web-Google: a network of Google web where nodes represent web pages, and edges
indicate hyperlinks among them [93]. Except for the robustness and immunization
problem, the network is also possibly related to a problem that one should choose
which group of webs to, like, advertise.

• as-Skitter: an Internet topology network on Autonomous systems by Skitter [96], which,
as we mentioned, are associated with both network robustness and immunization.

Figs. 3.13 and 3.14 illustrate the performance of the basic methods compared to ACIS,
ABPDS and AEIS on these networks. As we can see from Fig. 3.13, the advantages of
proposed methods are not so prominent with respect to F since some methods hold smaller
Ga(q) in the early stage (i.e., when q is small) while others have in the late. But one conclusion
which could be drawn is that APRSrr is better than others, like in CA-AstroPh where APRSrr
accordingly has 12.43%, 20.81%, and 13.37% improvement compared to ACIS, ABPDS, and

52

3.4 Bounded and Unbounded Strategies

0.0 0.1 0.2 0.3 0.4
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

ACIS
ABPDS
AEIS
ARRS

(a)

0.0 0.1 0.2 0.3 0.4 0.5
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

0.000 0.025 0.050 0.075 0.100
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(c)

0.000 0.025 0.050 0.075 0.100
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(d)

Figure 3.14: Performance of ARRS validated by ACIS, ABPDS, and AEIS on (a) the CA-AstroPh
network, (b) the Cit-HepPh network, (c) the web-Google network, and (d) the as-Skitter network
(ACIS with ℓ = 2).

AEIS. ARRS pushes those advantages further, which has improvements of 23.20%, 30.55%,
and 24.02%, respectively, while 12.30% over APRSrr. With regard to the critical threshold
qc, APRSrr is only slightly worse (−0.68%) than AEIS in the web-Google network and has
2.67% ∼ 59.00% improvement in other cases compared to ACIS, ABPDS, and AEIS. ARRS,
again, is better than APRSrr in CA-AstroPh, Cit-HepPh, and web-Google but slightly worse
in as-Skitter.

Significant performance of both APRSrr and ARRS further demonstrate ‘the power of
selections over choices’. Regarding this, another question arises as to what function the
product rule plays. The reasons that we consider this are two-fold. On the one hand, it
provides potential applications of those studies on the explosive percolation [62, 63, 58, 60]
(see Section 2.5 for many others). On the other hand, it also demonstrates that there are
some differences between real problems and explosive percolation. That is, for example,
theoretically the most delayed critical threshold is obtained if all unoccupied edges are
considered as candidates per step, and the system evolves following the sum rule instead of
the product rule [70]. Apparently, as we can see from Fig. 3.15, the product rule accounts for
the main contribution to the optimization of F. Actually, ARRS-p is usually more effective
than ARRS-r in large networks but less in small networks, which is also the reason that we
choose to consider the hybrid rule for ARRS.

Moreover, we also report comparisons regarding F and qc in Tables 3.2 and 3.3,
respectively. As we can see from Table 3.2, ARRS holds minimal F in all networks,

53

3. Ways to Fragment Networks

0.0 0.1 0.2 0.3 0.4
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)
APRSrr-s
ARRS-r
APRSrr-p
ARRS-p
APRSrr
ARRS

(a)

0.0 0.1 0.2 0.3 0.4 0.5
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

Figure 3.15: Comparisons of APRSrr-s (APRSrr with the sum rule), ARRS-r (ARRS with the sum
rule), APRSrr-p (APRSrr with the product rule), ARRS-p (ARRS with the product rule), APRSrr
(with the hybrid rule), and ARRS (with the hybrid rule) on (a) the CA-AstroPh network, (b) the
Cit-HepPh network.

and it is certainly much better than others. For instance, compared to ACIS, ARRS has
an improvement of 1.18% ∼ 97.95% (with a median of 35.00% and a mean of 44.95%).
Meanwhile, it also has an advantage of 10.31% ∼ 69.57% (with a median of 25.90% and a
mean of 30.70%) against AEIS. Regarding other basic methods, even the worst one among
them, ABonS1, still outperforms both AHubS and ACIS in a mean of 19.53% and 24.70%,
respectively. And it is only slightly worse than AEIS (−3.27% on average). Nevertheless,
all ABonS1q, ABonS2, APRSs1, APRSs1q, and APRSrr are better than AHubS, ACIS, and
AEIS. With respect to the critical threshold qc (see Table 3.3), ARRS is still more effective
than others in most networks, particularly in the four large networks. Other basic methods
except for the two bounded-size, i.e., ABonS1 and APRSs1, are also much more effective
than AHubS, ACIS, ABPDS, and AEIS. Meanwhile, a light constraint could compensate
ABonS1 and APRSs1, and make them much more powerful than the compared methods,
e.g., ABonS1q has improvements of 45.11%, 35.85%, 6.49%, and 10.52% compared to AHubS,
ACIS, ABPDS, and AEIS, respectively.

0.0 0.1 0.2 0.3
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

ACIS
ABPDS
AEIS
APRSrr
ARRS

(a)

0.0 0.1 0.2 0.3
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

Figure 3.16: Performance of APRSrr and ARRS compared to ACIS, ABPDS, and AEIS on (a) ER
networks (20 different configurations) with ⟨3.5⟩ and n = 106 and (b) BA networks (20 different
configurations) with ⟨4.0⟩ and n = 106.

However, surprisingly, ABPDS has minimums of qc in p2p-Gnutella08 and p2p-
Gnutella31. As we know, ABPDS is developed based on the message-passing algorithm

54

3.4 Bounded and Unbounded Strategies

Networks AHubS ACIS AEIS ABonS1 ABonS1q ABonS2 APRSs1 APRSs1q APRSrr ARRS

Power 0.0524 0.0449 0.0149 0.0151 0.0130 0.0107 0.0128 0.0115 0.0154 0.0076
CA-GrQc 0.0685 0.0527 0.0345 0.0385 0.0361 0.0381 0.0368 0.0360 0.0356 0.0289
p2p-Gnutella08 0.1574 0.1414 0.1627 0.1555 0.1554 0.1542 0.1544 0.1543 0.1486 0.1386
as-733 0.0125 0.0150 0.0097 0.0104 0.0102 0.0095 0.0105 0.0102 0.0117 0.0087
Scottish 0.0272 0.0542 0.0259 0.0272 0.0272 0.0256 0.0254 0.0254 0.0256 0.0231
CA-AstroPh 0.2084 0.1562 0.1583 0.1597 0.1606 0.1602 0.1608 0.1579 0.1368 0.1200
CA-CondMat 0.1103 0.0832 0.0765 0.0776 0.0777 0.0784 0.0782 0.0782 0.0694 0.0625
hep-th 0.3048 0.2541 0.2728 0.2660 0.2650 0.2678 0.2665 0.2663 0.2437 0.1915
Cit-HepPh 0.3062 0.2645 0.2878 0.2727 0.2706 0.2781 0.2725 0.2629 0.2533 0.2056
Email-Enron 0.0380 0.0292 0.0316 0.0335 0.0325 0.0317 0.0324 0.0319 0.0263 0.0217
p2p-Gnutella31 0.1143 0.1015 0.1172 0.1121 0.1121 0.1112 0.1112 0.1113 0.1084 0.1003
loc-Gowalla 0.1142 0.0868 0.0913 0.0943 0.0932 0.0959 0.0909 0.0921 0.0812 0.0625
Email-EuAll 0.0009 0.0056 0.0018 0.0030 0.0018 0.0009 0.0009 0.0009 0.0011 0.0008
com-Amazon 0.1184 0.0793 0.0620 0.0618 0.0610 0.0616 0.0628 0.0634 0.0583 0.0424
web-Google 0.0886 0.0526 0.0312 0.0370 0.0376 0.0397 0.0375 0.0371 0.0312 0.0227
PAroad 0.0714 0.0417 0.0034 0.0032 0.0027 0.0039 0.0030 0.0033 0.0019 0.0011
Txroad 0.0651 0.0342 0.0023 0.0015 0.0020 0.0022 0.0019 0.0023 0.0011 0.0007
as-Skitter 0.0487 0.0394 0.0285 0.0269 0.0315 0.0297 0.0280 0.0318 0.0239 0.0214

Table 3.2: Results of F on the 18 real-world networks. CI is with ℓ = 3 for the Email-EuAll
network and ℓ = 2 for the as-Skitter network. An item in bold represents the corresponding F is
smaller than all of AHubS, ACIS, and AEIS. One in italic means that the associated method has
the best performance on the related network among all those mentioned methods.

which is actually sensitive to local cycles. Thus one possible reason is that those two networks
only have a few local cycles, which could be characterized by the clustering coefficient (see
Section 2.1.3.4). Indeed, both p2p-Gnutella08 and p2p-Gnutella31 has a relatively small
average clustering coefficient, accordingly 0.0109 and 0.0055. To further verify that, we
consider networks generated through the ER model and BA model, where the number of
cycles approaches a constant when n → ∞ (Section 2.4.2). Fig. 3.16 shows comparisons
among ACIS, ABPDS, AEIS, APRSrr, and ARRS in regard of Ga(q) of q. Again, APRSrr can
obtain much smaller F than others even against ACIS. With respect to qc, APRSrr outperforms
both ACIS and AEIS, but it is slightly worse than ABPDS (−2.32% in ER networks and
−0.1.23% in BA networks), which is in line with our previous speculation. Besides, the
critical threshold qc as a function of average degree ⟨k⟩ is illustrated in Fig. 3.17. Apparently,

3 4 5 6 7 8
⟨k⟩

⟩⟨⟩

⟩⟨2

⟩⟨4

⟩⟨6

q c

ACIS
ABPDS
AEIS
AEIS2
APRSrr

(a)

4 6 8 10 12
⟨k⟩

0⟨0

0⟨2

0⟨4

0⟨6

q c

(b)

Figure 3.17: The critical threshold qc versus the average degree ⟨k⟩ regarding ACIS, ABPDS,
AEIS, AEIS2 (with K = ⟨k⟩ + 2), and APRSrr on (a) ER networks with n = 105 and (b) BA
networks n = 105. Each data point is drawn from 20 different networks.

55

3. Ways to Fragment Networks

Networks AHubS ACIS ABPDS AEIS ABonS1 ABonS1q ABonS2 APRSs1 APRSs1q APRSrr ARRS

Power 762 570 316 332 505 285 301 657 292 440.9 282.55
CA-GrQc 820 1760 398 423 624 390 502 500 371 390.2 372.1
p2p-Gnutella08 1584 1444 1300 1470 1355 1338 1344 1343 1332 1331.2 1372.55
as-733 248 192 162 168 205 154 153 209 153 187.8 152.85
Scottish 603 2036 434 465 453 441 441 454 445 432.85 442.7
CA-AstroPh 6274 4865 4198 4286 4445 4102 4157 4273 4130 4055.6 4013.1
CA-CondMat 4500 3217 2569 2680 2575 2512 2516 2571 2552 2559.3 2534.35
hep-th 12092 11184 10294 10959 10162 10004 10153 10059 10032 9913.35 9732.1
Cit-HepPh 15297 14164 13455 14405 13191 13136 13204 13115 13089 13089.05 12982.9
Email-Enron 4262 3074 2621 2753 2674 2562 2568 2612 2553 2619 2572.9
p2p-Gnutella31 12424 10995 9287 10109 9643 9630 9667 9596 9585 9811.25 10193.5
loc-Gowalla 40168 31386 26951 26851 25982 25913 26197 25783 25654 25703.1 25015.3
Email-EuAll 1282 1193 1064 6374 16102 1057 1061 1194 1077 1104.3 1077.2
com-Amazon 68527 42108 29572 27387 27484 27464 27444 27817 27699 28056.55 26342.1
web-Google 171550 82525 50861 41538 46598 46128 47412 46000 45776 41175.95 33573.35
PAroad 246270 71134 21172 16171 17222 15223 18169 17030 15388 11150.15 10124.8
Txroad 320991 82744 20873 16351 16912 14079 18073 16503 14978 10676.5 9365.95
as-Skitter 201670 151846 74286 70258 65546 63344 69437 66667 64280 62059.25 63977.35

Table 3.3: Results of qc × n on the 18 real-world networks. CI is with ℓ = 3 for the Email-EuAll
network and ℓ = 2 for the as-Skitter network. An item in bold represents the corresponding qc
is smaller than all four compared methods, i.e., AHubS, ACIS, ABPDS, and AEIS. One in italic
means that the associated method has the best performance on the related network among all
those mentioned methods.

ABPDS is slightly better than APRSrr, and then AEIS2 follows up. Note that, when tied by
K = 6 (see Eq. (3.22)), AEIS performs worse and worse with the increase of ⟨k⟩. The reason
why this happens is ascribed to the fact that k(eff)

vi is harder and harder to identify nodes
with similar degrees as ⟨k⟩ rises. In other words, more and more nodes have degrees larger
than K when the network becomes dense. Thus, we also show results of AEIS2 in which
we simply replace K with K = ⟨k⟩+ 2. But one should know that our tests show that this
strategy does not work for real-world networks.

3.4.5.4 FVS problem

From Section 3.3.3 we know decycling-based methods firstly tackle the feedback vertex
set (FVS) problem. Here we show that those basic methods are also capable of handling
the FVS problem after a tiny modification. Specifically, for a candidate node i at time step t
during a percolation on a given network G(N ,M), one can easily verify that there is at least
one cycle in the corresponding component c(i) if its distinct nearest-neighbor Γ̂(i) (see also
Eq. (3.25)) has a size less than |Γ(i) ∩No(t)| (i.e., the number of occupied neighbors of i).
Thus, we only need to further constrain the candidate set. For example, considering ABonS1
(see Section 3.4.2), one can achieve that by replacing ii) with: repeat i) until there are no any
unoccupied nodes having external degree less than α, satisfying |Γ(i) ∩No(t)| − |Γ̂(i)| ≡ 0
and kout

c(i) > α, ∀i ∈ Nu(t). For ARRS and APRSrr, we only need to get

N ′c (t) = {i|i = arg min
j

(|Γ(j) ∩No(t)| − |Γ̂(j)|), ∀j ∈ Nc(t)} (3.34)

and choose the new occupied node throughN ′c (t) (see also line 7 in Algorithm 3.2). Obviously,
there is no any cycle in the occupied network if all occupied nodes satisfying |Γ(i)∩No(t)| −

56

3.4 Bounded and Unbounded Strategies

|Γ̂(i)| = 0. Besides, another strategy adopted for ARRS and APRSrr regarding the FVS
problem is: if the new occupied node i has |Γ(i) ∩ No(t)| − |Γ̂(i)| = 1, which means that
there would be one and only one cycle, then we swap places of i and one of its neighbors
which are in the same component before the occupation of i. Obviously, the number of
such neighbors is 2. Note that for bounded-size methods, we here only show ABonS1 as
an example. One can employ the same strategy to extend ABonS1q, ABonS2, APRSs1, and
APRSs1q for the FVS problem.

Networks ABPDS ABonS1fvs APRSrrfvs ARRSfvs

Power 516 491 485.6 487.65
CA-GrQc 1449 1434 1426.2 1427
p2p-Gnutella08 1256 1289 1276.85 1281
as-733 216 209 208 208.6
Scottish 444 445 436.35 438
CA-AstroPh 8626 8549 8529.65 8525.8
CA-CondMat 8323 8245 8230.2 8228.4
hep-th 12344 12196 12097.45 12103.15
Cit-HepPh 15405 15235 15133.45 15139.8
Email-Enron 7853 7771 7748.7 7746.35
p2p-Gnutella31 9279 9594 9459.35 9492.95
loc-Gowalla 38841 37911 37690.2 37739
Email-EuAll 1187 1226 1182.8 1193.65
com-Amazon 85274 82839 82364.55 82263.8
web-Google 208876 205964 205231.85 205435.45
PAroad 194443 181268 176535 177536.8
Txroad 239909 222446 217066.25 217823.05
as-Skitter 228775 228191 224356.65 225329.9

Table 3.4: Results of FVS on the 18 real-world networks. An item in bold represents that the
corresponding method can find a smaller FVS set than ABPDS. One in italic means that the
associated method has the best performance on the related network among all those mentioned
methods.

0.0 0.1 0.2 0.3
⟨CC⟩

0.10

0.15

0.20

0.25

FV
S⟨
or
⟨q

c

FVS⟩ABPDS)
FVS⟩APRSrr)
qc⟩ABPDS)
qc⟩APRSrr)

(a)

0.0 0.1 0.2 0.3
⟨CC⟩

0.08

0.10

0.12

0.1⟩

0.16

FV
S⟨
or
⟨q

c

(b)

Figure 3.18: The critical threshold qc and the fraction FVS versus the average clustering coefficient
⟨CC⟩ for ABPDS and APRSrr in (a) ER networks with ⟨k⟩ = 3.5 and n = 104, and (b) BA networks
with ⟨k⟩ = 4.0 and n = 104.

Following the mark used in ABonS1q and APRSs1q, we here refer the associated
methods for the FVS problem as ABonS1fvs, APRSrrfvs, and ARRSfvs. Table 3.4 represents
their performance compared to ABPDS. As we can see, all three methods surpass ABPDS to
have smaller FVS sets in most networks, especially APRSrrfvs which is better in 16 out of 18

57

3. Ways to Fragment Networks

0.02 0.04 0.06 0.08
q

0.05

0.10

0.15

0.20

η i

0.001
0.010

0.1
00

(a)

0.02 0.04 0.06 0.08
q

0.05

0.10

0.15

0.20

η i

0.0
010.

01
0

0.
10
0

(b)

0.02 0.04 0.06 0.08
q

0.05

0.10

0.15

0.20

η i

0.
00

1

0.
01

0

0.1
00

(c)

0.02 0.04 0.06 0.08
q

0.05

0.10

0.15

0.20

η i

0.
00

1

0.
01
0

0.
10
0

(d)

Figure 3.19: Contours of the average infected frequency ⟨αinf⟩ as a function of the immunized
fraction q and the infected probability ηi on the Email-Enron network regarding (a) HubS, (b)
ACIS, (c) AEIS, and (d) ARRS. In each figure, color from deep dark (i.e., top left) to light purple
(bottom right) indicates that ⟨αinf⟩ changes from large to small. In addition, ⟨αinf⟩ = 0.001, 0.01
and 0.1 are marked by the three solid curves, respectively.

networks than ABPDS and holds the minimum in 12 among those methods. Besides, even
ABonS1fvs also has better performance than ABPDS in 14 networks.

The different effectiveness of ABPDS on model networks and real-world networks (see
Tables 3.3 and 3.4, and Figs. 3.16 and 3.17) motivates us to ask another question: how do local
cycles influence the performance of ABPDS? To verify this, we consider the following way
to enhance the clustering coefficients of both ER and BA networks: i) a network G(N ,M)

is generated based on the ER model or BA model; ii) randomly choose a node i and its
two nearest neighbors u and v satisfying euv = 0, i.e., there is no edge between u and v;
iii) further randomly select a node u′ from Γ(u) \ {i} and another one v′ from Γ(v) \ {i},
where u′ ̸= v′ and eu′v′ = 0 must hold; iv) remove euu′ and evv′ from G, and add two new
euv and eu′v′ at the same time; v) repeat steps ii), iii), and iv) until the desired clustering
coefficient is reached. In other words, we randomly select two nodes from ∂Ball(i, 1) and
further their corresponding neighbors from ∂Ball(i, 2), and then replace old edges between
those two layers with new edges in the same layer (refer to Fig. A.11). Apparently, during
this enhanced process, the degree distribution would keep unchanged. Fig. 3.18 shows the
related results, which again agree with our previous speculation, that is, comparing ABPDS
with APRSrr, ABPDS is better in networks with rare local cycles while APRSrr has more
advantage in those with a lot which most real-world networks own.

58

3.4 Bounded and Unbounded Strategies

3.4.5.5 SIR results

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
q

0.05

0.10

0.15

0.20

η i

0.001
0.010

0.1
00

(a)

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
q

0.05

0.10

0.15

0.20

η i

0.
00

1

0.
01

0

0.1
00

(b)

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
q

0.05

0.10

0.15

0.20

η i

0.
00

1

0.
01
0

0.
10

0

(c)

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
q

0.05

0.10

0.15

0.20

η i

0.
00

1

0.
01

0

0.
10

0
(d)

Figure 3.20: Contours of the average infected frequency ⟨αinf⟩ as a function of the immunized
fraction q and the infected probability ηi on the loc-Gowalla network regarding (a) HubS, (b)
ACIS, (c) AEIS, and (d) ARRS. In each figure, color from deep dark (i.e., top left) to light purple
(bottom right) indicates that ⟨αinf⟩ changes from large to small. In addition, ⟨αinf⟩ = 0.001, 0.01
and 0.1 are marked by the three solid curves, respectively.

We further validate the ability of ARRS to contain epidemics modeled by the SIR model
(see also Section 3.1.2.1). In particular, we consider the following processes: i) for a given
network G(N ,M) and a sequence S (i.e., a specific method), we first remove (or immunize)
q fraction of nodes from the network and assume that the epidemic could not occur on or
pass through that group of nodes (see Section 3.1.2.3); ii) a node i is randomly chosen as
the infectious source from those unimmunized nodes; iii) we then run SIR model on the
remaining network until the epidemic dies out; iv) repeat ii) and iii) b times and count the
number of times that a node gets infected, say bj for node j; v) get the corresponding infected
frequency αinf(j) = bj/b of j and the average one

⟨αinf⟩ =
1
n ∑

j∈N
αinf(j)

over the whole network as well. Here b = 105 and ηr = 0.05 are conducted. Besides, we also
verify the effective of ARRS by comparing with HubS, ACIS and AEIS. The associated results
can be found in Figs. 3.19 and 3.20 where the Email-Enron network and the loc-Gowalla
network are considered,

59

3. Ways to Fragment Networks

10
0

10
1

10
2

2

4

6

8

10
x 10

4

Time(s)

q c
×

n

ABPDS(164.3s)

ACIS(16.9s)ℓ=4

ACIS(44.5s)ℓ=8

3.6s 12.7s

APRSrr
ARRS

(a)

10
0

10
1

10
2

0.5

1

1.5

2
x 10

5

Time(s)

q c
×

n

ABPDS(525.8s)

ACIS(573.3s)ℓ=1

ACIS(33783.0s)ℓ=2

19.9s 40.9s

(b)

Figure 3.21: The running time (measured by second (s)) of ACIS, ABPDS, APRSrr (with ns(0) = 5)
and ARRS (with ns(0) = 10) regarding critical threshold qc on (a) the TXroad network and (b)
the as-Skitter network. Thresholds of ACIS and ABPDS are characterized by the horizontal
dashed lines, and the corresponding time is suspended around them. The values marked
beside the vertical dashed lines are the point in time when APRSrr or ARRS begins to have
smaller thresholds than both ACIS and ABPDS. All the results are obtained by averaging 20
implementations.

• Email-Enron: a network in which a node represents an email address, and an edge
denotes that there is at least one mail transferred between the two addresses [93]. We
choose it since some digital viruses may spread relying on it, which has bothered
hundreds of thousands of people nowadays.

• loc-Gowalla: a location-based social network where misinformation might spread out.

As we can see from both Figs. 3.19 and 3.20, ARRS is much better than those compared
methods, that is: i) for a specific q and ηi, nodes under the protection of ARRS have lower
frequency to get infected, such as in the Email-Enron network where ARRS has improvements
of 66.02%, 44.45%, and 63.74% accordingly against HubS, ACIS, and AEIS (obtained in the
way similar to Eq. (3.33) by replacing F with ⟨αinf⟩) at q = 0.042 and ηi = 0.100; ii) for a
specific q, networks under the protection of ARRS are more capable of resisting an epidemic,
e.g., in the loc-Gowalla network where ⟨αinf⟩ = 0.050 is reached at 0.020 < ηi < 0.030 under
HubS, 0.020 < ηi < 0.030 under ACIS, 0.050 < ηi < 0.060 under AEIS, and 0.190 < ηi < 0.200
under ARRS when q = 0.101; iii) for a specific ηi, ARRS needs much less resource (i.e., the
number of nodes) to immunize a network, for example, again in the Email-Enron network
where ⟨αinf⟩ < 0.050 under ηi = 0.100 is achieved by immunizing around q = 0.066, 0.052,
0.055, and 0.0380 fraction of nodes through HubS, ACIS, AEIS, and ARRS, respectively.

3.4.5.6 Running time

Since it is hard to explicitly analyze the computational complexity of those proposed
methods, we here put APRSrr and ARRS 21 as well as CI and BPD (open-source codes written

21If viewing the time complexity of UF algorithm (see Algorithm A.2) as O(1), then the time complexity of
APRSrr and ARRS roughly follow O(T̂nsn⟨k⟩)

60

3.5 Evolutionary Framework for the Identification of Influential Nodes

by either C or C++ program) in the same simulated environment 22 and compare their time
consumptions considering the two largest networks, i.e., the TXroad network (with maximal
degree 12) and the as-Skitter network (with maximal degree 35455). As illustrated in Fig.
3.21, both APRSrr and ARRS acquire smaller thresholds than CI and BPD within quite a
short time, in particular, for example, RR only takes 3.6s to obtain a better result than ACIS
and ABPDS in the TXroad network. Note that the running time of CI and BPD reported here
may be as a reference but not as a standard. With respect to those bounded-size methods,
i.e., ABonS1, ABonS1q, ABonS2, APRSs1, and APRSs1q, they are of course very fast too. For
instance, ABonS1q with b = 3.0 achieve qc × n = 62665 within 7s in the as-Skitter network
and gets qc× n = 15638 for the TXroad network within 2s. Meanwhile, in the same condition,
APRSs1q has 62302 and 15636 within 8s and 2s, respectively.

3.5 Evolutionary Framework for the Identification of Influential
Nodes

The results from the previous section (Section 3.4) have shown us how effective those
basic methods are. That is, on the one hand, ARRS has the capability to obtain comparable
results to ABetS. Meanwhile, it needs much less time (see Fig. 3.12). On the other hand,
compared to several state-of-the-art strategies which have their own advantages in different
networks and over different metrics, almost all basic methods could surpass them in both
performance and time consumption on almost all networks (see Tables 3.2 and 3.3, and Fig.
3.21), in particular APRSrr and ARRS. Yet, results in Fig. 3.12 also show that even ARRS
still cannot outperform ABetS in some networks, which motivates us to further investigate
why and how. That is, why are those basic methods still less effective than ABetS? And how
can we improve those methods again, at least some of them, to truly approach or overtake
ABetS in all kinds of networks? The first question might be ascribed to the fact that the
related problem is a NP-hard problem23. But it is not such easy to answer how. Thus in
what follows, we will mainly focus on how and give the answer of whether it is possible to
develop better strategies [L2].

3.5.1 The advantage and disadvantage of ARRS

It is not very difficult to observe that all those basic methods in Section 3.4 rely on an
initial sequence. This sequence could be random but also could be a one drawn from an
existing method. Hence, we first need to figure out what function the initial sequence plays.
Fig. 3.22 shows the effects of initial sequences on the proposed basic methods (see Section
3.4), and gives us the following observations. With regard to F (Fig. 3.22a), all those basic
methods could benefit from a better initial sequence (e.g., comparing the results regarding
AHubS and ABetS). But ABonS1, ABonS1q, ABonS2, APRSs1, and APRSs1q are easy to
saturate (comparing the results among APagS, ACIS, and ABetS), that is, the improvement

22Lenovo NeXtScale nx360M5, Xeon E5-2667v3 8C 3.2GHz, Infiniband FDR14 with 8 threads.
23One can think about a special case regarding qc that after the removal of part of nodes the remaining network

only contains isolated nodes, which corresponds to the minimum vertex cover problem, a famous NP-hard
problem.

61

3. Ways to Fragment Networks

AB
on
S1

AB
on
S1
q

AB
on
S2

AP
RS
s1

AP
RS
s1q
AP
RS
rr
AR
RS
q
AR
RS

0.06

0.08

0.10

0.12

0.14

F

AHubS

APagS

ACIS

ABetS

AHubS
APagS
ACIS
ABetS

(a)

AB
on
S1

AB
on
S1
q

AB
on
S2

AP
RS
s1

AP
RS
s1q
AP
RS
rr
AR
RS
q
AR
RS

0.15

0.20

0.25

0.30

0.35

0.40

0.45

q c

AHubS

APagS

ACIS

ABetS

AHubS
APagS
ACIS
ABetS

(b)

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

0.06

0.07

0.08

0.09

F

ABetS

APRSrr
ARRSq
ARRS

(c)

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

0.17

0.18

q c ABetS

ARRSq
ARRS

(d)

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

0.06

0.07

F

ABetS
ARRS
ABonS1q+ARRS
ARRSq+ARRS

(e)

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

0.17q c

ABetS

ARRSq
ABonS1q+ARRSq
ARRS+ARRSq

(f)

Figure 3.22: Effects of different initial sequences on F and qc on the protein-protein interaction
network. (a) F of the proposed basic methods over different initial sequences, i.e., HbuS, APagS,
ACIS, and ABetS., where the dashed line marks F obtained based on the related initial sequence
directly. (b) qc. (c) F of different initial sequences regarding ARRSrr, ARRSq, and ARRS. (d) qc of
different initial sequences regarding ARRSq and ARRS. (e) and (f) Combinational results of the
basic methods. Each error bar is obtained by calculation the standard deviation over 20 IIs.

of the initial sequence could not boost them again. On the contrary, APRSrr, ARRSq, and
ARRS are only slightly influenced by the differences of AHubS, APagS, and ACIS and could
be further improved by ABetS, where ARRSq is a method by simply replacing the global
goal function of ARRS with ξg(·) = qc. Basically, for example, if ARRS can outperform a
method with a random initial sequence, then the sequence based on that method would
only have a very limited impact on ARRS. With respect to qc (Fig. 3.22b), it seems to depend
only on those basic methods themselves. But the results in Fig. 3.22d surprisingly show that
the best qc is obtained based on AHubS instead of ABetS. In fact, when initializing with

62

3.5 Evolutionary Framework for the Identification of Influential Nodes

ABetS, ARRSq would be stuck at some value and has qc even worse than the one based
on RanS. Meanwhile, however, comparisons among other initial sequences illustrate that a
start of smaller qc is more likely to guide ARRSq to find a better qc. Further regarding F of
ARRS (Fig. 3.22c and 3.22e), obviously, an initial sequence with a smaller F conduces to a
better result of F. Besides, the results (Fig. 3.22e) of the combination of ARRSq and ARRS
shows that ARRSq could truly slightly improve the performance of ARRS, which indicates
that ARRS might benefit from ARRSq. By contrast, as we observed in Fig. 3.22d, Fig. 3.22f
again shows that an initial sequence with a small F might be not good to optimizing qc.
Moreover, Fig. A.21 (Appendix A.2.14) gives the comparisons of qc obtained through ARRS
and ARRSq on the 18 real-world networks (see Table 3.1). Obviously, in some networks,
ARRS has smaller qc than ARRSq, but ARRSq holds the best in most.

To sum up, we reach the following assumptions and problems:

(APa) Both ARRS and ARRSq can benefit from the initial sequence.

(APb) Usually, a better start would guide ARRS to find a smaller F.

(APc) But shallow strategies only have a limited impact on ARRS. Thus, problems arise
as to why is the F based on ABetS much better than those based on others? And
could we find a way to, at least, shorten the gap between them?

(APd) Meanwhile, a sequence with a smaller qc might guide ARRS to find a better F.

(APe) By contrast, ARRSq would benefit more from a sequence with a larger F.

(APf) But still, a smaller F sometimes could result in a better qc. Therefore, how should
we balance F while optimizing qc?

3.5.2 Pruning an existing method

We first consider (APc). From Section 3.4.4 we know that ARRS keeps or eliminates
a new sequence S′ based on the global goal function ξg(·) (see also Algorithm 3.2). This
strategy, to some extent, is inefficient since it considers the whole sequence. That is, during
an iteration, one part of S′ maybe lead to a better result while another part might make the
result worse. And if the worse one weighs more on F, then S′ would be eliminated. Actually,
such conflict becomes more and more frequent as T increases24. Indeed, the combination of
ns and ru could overcome that and facilitate ARRS to have the ability to optimize a sequence
locally (such as, a large ns in tandem with a small ru). But that ability is always limited.

Now assuming that there is a sequence S regarding a given network G(N ,M) where
each element of S corresponds to a unique node in N , we define a slice of S as

Sp(t1, t′1) = S[t1 : t′1], (3.35)

24It is also the main reason that ARRS is stuck in some local optimization if it is initialized by some shallow
strategies.

63

3. Ways to Fragment Networks

where t1 ⩽ t′1 are two given integers (refer to Section 2.1.2 for the definition of S[t1 : t′1]). The
corresponding local average of Gp(q) follows

F(Sp(t1, t′1)) =
t′1/n

∑
q=t1/n

Gp(q). (3.36)

Then, one can easily observe that Sp(t1, t′1) would be independent of Sp(t2, t′2) if t′1 < t2 or
t′2 < t1, that is, F(Sp(t1, t′1)) would keep unchanged, no matter what permutations Sp(t2, t′2)
takes, vice versa. Note that here those elements in both Sp(t1, t1;) and Sp(t2, t′2) are fixed,
namely, they only change their orders internally.

Holding the above property, we can then try the following processes to prune a given
sequence S, i.e., locally optimize an existing method. That is, i) randomly pick up two
integers, and assign the small one to t1 and the other one to t′1, respectively; ii) run ARRS on
Sp(t1, t′1); and iii) repeat those two steps a number of times. Now another problem arises as
to how should we choose those two integers?

3.5.2.1 PruOrd

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

F

ARRS
PruOrd(0,0)
PruOrd(1,0)
PruOrd(0,1)
PruOrd(1,1)

(a)

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

F

ARRS
PruGri(0,0)
PruGri(1,0)
PruGri(0,1)
PruGri(1,1)

(b)

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

F

ARRS
PruRan(0,0)
PruRan(1,0)
PruRan(0,1)
PruRan(1,1)

(c)

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

F

ARRS
PruRang(0,0)
PruRang(1,0)
PruRang(0,1)
PruRang(1,1)

(d)

Figure 3.23: Performance of PruOrd, PruGri, PruRan and PruRang regarding F of different initial
sequences compared to ARRS and ABetS (dashed lines). (a) PruOrd. (b) PruGri. (c) PruRan
with uniformly random selection of t1. (d) PruRang considering Eq. (3.38). The difference of F
between every two ticks is 0.002. Each result is the mean of 20 IIs.

64

3.5 Evolutionary Framework for the Identification of Influential Nodes

The first strategy still follows a routine similar to ARRS and we call it prune orderly
(PruOrd). Specifically, letting T̂p be the total pruning times and Tp be the current pruning
iteration, PruOrd considers the following steps to achieve one round of pruning25:

1) set a(Tp) = ⌊a(0)nTp⌋, b1(Tp) = ⌊b1(0)(1− δb1)
Tp⌋ and b2(Tp) = ⌊b2(0)(1− δb2)

Tp⌋;

2) let t1 = a(Tp) and t′1 = t1 + b2(Tp);

3) run ARRS on Sp(t1, t′1);

4) let a(Tp) = a(Tp) + b1(Tp);

5) repeat 2), 3), and 4) until the termination is reached.

Then, let us look into the reason that we have those control parameters. From Section 3.1
and 3.4 we know that the order parameter Gp(q) decrease as q increases and approaches 0
after the critical threshold qc, i.e., q > qc. Hence, when S becomes more and more orderly,
the effect of a node from the subcritical regime on F would be less and less, especially those
at the beginning of S26. Therefore, we use a(Tp) to lock those nodes, and the number of
such nodes increases as the rise of Tp. With respect to b1(Tp) and b2(Tp) which satisfies
b1(Tp) < b2(Tp), their combination ensures the interactions among different groups, whose
significance have been demonstrated in Section 3.4. And similar to ARRS, we let both of
them decrease along with the increase of Tp.

To validate the effectiveness of PruOrd, T̂p = 104, a(0) = 0.9/T̂p, b1(0) = 0.1n, δb1 =

0.0001, b2(0) = 0.3n and δb2 = 0.0005 are conducted. Besides, since ARRS only runs on part of
S, the following changes of its configuration are also considered: T̂ = 20, ru(0) = (t′1 − t1)/n
and δru = δns = 0.5. Fig. 3.23a shows the corresponding results, where different combinations
of ru(T) and ns(T) are studies as well. That is, for example, PruOrd(α1, α2) in which α1 = 1
corresponds to ru(T) = ru(0) and α2 = 1 represents that ns(T) is randomly chosen from
[1, ns(0)], otherwise, they follow the strategies same as ARRS. Moreover, if α2 = 1, we
also associate ns(0) with Tp, e.g., here we let ns(0) = ns(0) + 1 if F does not have any
improvement for 10 rounds.

As we can see from Fig. 3.23a, PruOrd truly works, in particular PruOrd(0,1). And its
performance relies on both α1 and α2. Through comparing PruOrd(0,1) or PruOrd(1,0) with
PruOrd(1,1), one can easily find that either α1 = 0 or α2 = 1 facilitates better results and
PruOrd(0,1) accounts for the best. Besides, better performance could also be achieved by
tuning those control parameters. But it is usually difficult to find the optimal configuration,
and different networks might need a different one. Nevertheless, PruOrd converges very fast
and could have a better result within 10 iterations than those compared methods that we
mentioned in Section 3.4.

25Note that again a(Tp), b1(Tp) and b2(Tp) are temporal parameters that we employ to help explain a method
or strategy. Hence, one should refer to the specific place to check their associated meanings.

26Note that here a percolation process is considered instead of an attack process.

65

3. Ways to Fragment Networks

3.5.2.2 PruGri

The difficulty in managing those control parameters motivates us to simplify PruOrd.
Hence, we have another strategy which prunes S based on a grid search (PruGri). In detail,
PruGri conducts a round of pruning in the following ways:

1) given boundaries b′l and b′u satisfying b′u − b′l > 0, b′l > 0 and b′u < n;

2) let a(Tp) = 0 and get b2(Tp) by randomly picking up an integer from [b′l , b′u];

3) set t1 = a(Tp) and t′1 = t1 + b2(Tp);

4) run ARRS on Sp(t1, t′1);

5) let a(Tp) = a(Tp) + b2(Tp);

6) repeat 3), 4) and 5) until the termination is reached.

In this manner, we only need to tune b′l and b′u excluding those of ARRS. Note that the
random selection of b2(Tp) achieves the similar goal that the combination of b1(Tp) and
b2(Tp) has in PruOrd. And one can of course let a(Tp) follow the way same as PruOrd.
But here our purpose is to make PruGri as simple as possible. Besides, another advantage
that PruGri has is that it could be paralleled since b2(Tp) is fixed for each round and a(Tp)

increases in steps of b2(Tp). As illustrated in Fig. 3.23b where b′l = 100 and b′u = 0.2n are
employed, PruGri(1,1) has the best performance on average. And compared to PruOrd (Fig.
3.23a), PruGri could benefit more from existing strategies except for a random sequence
(i.e., RanS). Besides, considering ABetS, all four can find smaller F than ARRS. One can also
compare PruOrd and PruGri directly, that is, count the number of ticks regarding F since the
difference between every pair of ticks is same.

3.5.2.3 PruRan and PruRang

Though PruGri could find a really good result, it is sometimes inefficient in time
consumption because it takes a grid search. Thus, we reach the third strategy which prunes
a sequence by repeatedly conducting ARRS on a random slice of S (PruRan). Specifically,

1) give the boundary b′u satisfying 0 < b′u < n;

2) assign a random integer a(Tp) drawn from [1, n] to t1 and another one b2(Tp) from
[1, b′u] for t′1 = t1 + b2(Tp), where t′1 < n must hold;

3) run ARRS on Sp(t1, t′1);

4) repeat 2) and 3) until the termination is reached.

Indeed, PruRan is similar to PruGri but it gives us the freedom to control t1. For instance,
rather than randomly choose t1 uniformly, we here consider a strategy similar to Eq. (3.27),
that is, repeatedly sample a random integer a(Tp) ∈ [1, n] until it is successfully assigned to
t1, which follows

t1 = a(Tp) if a(Tp) > b1(Tp) or with a probability Ap = e
−[a(Tp)−b1(Tp)]2

2[b2(Tp)]2 . (3.37)

66

3.5 Evolutionary Framework for the Identification of Influential Nodes

As we mentioned during the introduction of PruOrd, the supercritical region makes the
main contribution to F, which is also the reason that we have Eq. (3.37). For example, if
letting b1(Tp) = qc, then Eq. (3.37) is less likely to consider nodes that is in the beginning
of S. Further, if b2(Tp) → 0, then Eq. (3.37) degenerates to the original PruRan. Here we
consider the settings of

b1(Tp) = qcn and b2(Tp) =
qcn

b2(0)αTp
(3.38)

with α > 1 to ensure that a(Tp) gradually converges to qc from the subcritical regime as Tp

increases. Note that qc would also change with the rise of Tp.
To distinguish the one considering Eq. (3.37) from the original PruRan, we mark it

with a ‘g’, namely, PruRang. Figs. 3.23c and 3.23d illustrate the comparisons of PruRan
(with b′u = 0.2n), PruRang (with b′u = 0.2n and using Eq. (3.38) with b2(0) = 0.01 and
α = 1.001) and other methods. As we can see from them, both PruRan and PruRang hold
the best performance on average by setting α1 = α2 = 1. And PruRang is more capable of
approaching PruGri.

3.5.2.4 Summary

To sum up, considering the performance based on different initial sequences, those
strategies could be truly possible to shorten the gap between ABetS and other shallow
methods, such as PruGri(1,1) initialized with HubS. Besides, it is worth mentioning that all
those 4 tested strategies have the ability to surpass ABetS, even though they are based on a
shallow initial sequence. For instance, PruGri(1,1) has better performance in 10 out of 20
results than ABetS for the case of the initial sequence drawn based on HubS. In addition, in
what follows, if there is no specific explanation, all those 4 strategies are considered with
α1 = α2 = 1 where PruGri, PruRan, and PruRang have their best performance on average.
Moreover, in the below sections, since we only aim to detect whether a new strategy works,
ns(0) = ns(0) + 1 would be processed if 10 rounds of pruning result in no change of F, and
a method terminates if either ns(0) > 50 or T̂p is reached. These two changes would speed
up those strategies but reduce their effectiveness certainly.

3.5.3 Effects of the critical threshold on the average order parameter

We then consider (APd). From Fig. 3.22c we know that APRSrr is better than ARRSq,
and ARRS has the best among them with respect to F. But the results in Fig. 3.24b show
that ARRSq brings about comparable performance as ARRS does. And PruGri armed with
ARRSq even has the ability to really approach ABetS (see Fig. 3.24a). Indeed, ARRSq ignores
F when optimizing qc, and thus always leads to a disordered sequence to F. In this case,
those pruning strategies would work very well. Nevertheless, if qc truly has a positive impact
on F, then the pruning strategies would benefit a lot from some basic methods such as
ABonS1q and APRSs1q, which are usually very fast to get a result. Another reason might be
that the disorder of a sequence plays some role. We will discuss this later.

67

3. Ways to Fragment Networks

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

F

ARRS
ARRSq+PruOrd
ARRSq+PruGri
ARRSq+PruRan
ARRSq+PruRang

(a)

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

F

ARRSq+PruGri
APRSrr+PruGri
ARRS+PruGri
ARRSq+PruRang
APRSrr+PruRang
ARRS+PruRang

(b)

Figure 3.24: Influence of qc on F considering that (a) has the configuration same as the one used
in Fig. 3.23 and (b) conducts the new one, i.e., the pruning process would terminates when either
ns(0) > 50 or T̂p is reached.

3.5.4 Optimization of the critical threshold

We further study (APe) and (APf). Similar to Fig. 3.23, the performance regarding
those four pruning strategies are exhibited in Fig. 3.25. Compared to PruOrd, PruOrdq
uses ξg(·) = qc instead of F on the slice where critical threshold is, otherwise, still considers
ξg(·) = F. Others take the same change except for PruRangq. Since we are trying to optimize
the threshold qc, the condition a(Tp) > b1(Tp) of Eq. (3.37) would become useless. Hence, it
is removed in PruRangq, that is, PruRangq chooses all a(Tp) following some probability. In
addition, we conduct Eq. (3.38) in the below way

b1(Tp) = qcn + b1(0)− α3Tp and b2(Tp) =
b1(Tp)

b2(0)αTp
(3.39)

to ensure that a(Tp) has more chances choosing a value larger than qc, where α3 > 1. As
illustrated in Fig. 3.23 where b1(0) = 0.1n and α3 = (b1(0)− 100)/T̂p are conducted for
PruRangq, all those four strategies share similar performance to ARRSq, which means that
they do not really work, at least when they are initialized with those shallow methods.
But surprisingly, ABetS guides them to have much better results than the one of ARRSq.
Meanwhile, the optimal configurations regarding α1 and α2 are accordingly 0 and 1.

3.5.4.1 Effects of the average order parameter on the critical threshold

Now we further study the influence of F on qc. Results from Table 3.3 tell us that the
optimization of F truly conduces to the acquirement of really good qc. Meanwhile, we also
learn that ARRSq has a smaller qc in most networks than ARRS from Fig. A.21. Moreover,
ABetS would lock ARRSq (see Fig. 3.22d) and AHubS results in the best qc. Besides, even
RanS leads to a better result than ABetS. Therefore, we naturally ask what would happen
regarding qc if we change the way to control F.

A straightforward try is to ignore F, i.e., only the slice which qc belongs to is dealt
with. Since having to ensure that every node has the possibility to be checked, we here
mainly consider an variant of PruRangq, say PruRangqv1, that is, choose t1 and t′1 following

68

3.5 Evolutionary Framework for the Identification of Influential Nodes

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

q c

ARRSq
PruOrdq(0,0)
PruOrdq(1,0)
PruOrdq(0,1)
PruOrdq(1,1)

(a)

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

q c

ARRSq
PruGriq(0,0)
PruGriq(1,0)
PruGriq(0,1)
PruGriq(1,1)

(b)

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

q c

ARRSq
PruRanq(0,0)
PruRanq(1,0)
PruRanq(0,1)
PruRanq(1,1)

(c)

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

q c

ARRSq
PruRangq(0,0)
PruRangq(1,0)
PruRangq(0,1)
PruRangq(1,1)

(d)

Figure 3.25: Performance of PruOrdq, PruGriq, PruRanq, and PruRangq regarding qc of different
initial sequences compared to ARRSq and ABetS (dashed lines). (a) PruOrdq. (b) PruGriq. (c)
PruRanq with uniformly random selection of t1. (d) PruRangq considering Eq. (3.38). The
difference of qc between every two ticks is 0.002. Each result is the mean of 20 IIs.

t1 < qc < t′1, and t1 = a(Tp) (see Eqs. (3.37) and (3.38)) holding

b1(Tp) = qcn and b2(Tp) =
n

b2(0)Tp
. (3.40)

Apparently, b2(Tp) decreases as Tp increases (see Fig. A.22 in Appendix A.2.14), which
indicates that a(Tp) has higher probability to have a value closed to qc with the rise of Tp

(based on the assumption that the sequence becomes more and more orderly). Besides,
one can tune b2(0) > 0 to control the convergence rate of a(Tp). Since the whole sequence
is likely to be considered in the beginning, PruRangqv1 with α1 = 0 always has better
performance than the one with α1 = 1. But still, this strategy with high probability has a
local optimal solution because it could not effectively mix the whole sequence (i.e., the tail
and head might not be visited often). Nevertheless, PruRangqv1 converges very fast and
could obtain a better result than most state-of-the-art methods (those in Section 3.3) using
much less time.

Another way of ignoring F is to disturb those groups which qc does not belong to. Recall
that the local goal function ξ(·) is designed to minimize Gp(q) (see Eq. (3.25)). Hence, the
disorder of those groups is in a way equivalent to ignoring F. To achieve that, we only need

69

3. Ways to Fragment Networks

to slightly modify PruRangq, that is, randomly permute a slice where qc does not locate,
which we call PruRangqv2.

The third way is loosing F on those groups which qc does not belong to. From the design
of ARRS we know that a small ns cannot further optimize a sequence locally regarding F.
Therefore, if ns is fixed at a small value on all groups excluding the one that qc belongs to,
then somehow this strategy could benefit from both order and disorder of F, and the order
of F is weaker than PruRangq, which we name PruRangqv3.

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

q c

PruGriq
PruRangqv1
PruRangqv2
PruRangqv3
PruRangqv4

(a)

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

q c

PruGriq
PruRangqv4
PruRangqv5
PruGriqv4
PruGriqv5

(b)

Figure 3.26: Performance of PruRangqv1, PruRangqv2, PruRangqv3, PruRangqv4, PruRangqv5,
PruGriqv4 and PruGriqv5 regarding qc of different initial sequences compared to PruGriq and
ABetS (dashed lines). The difference of qc between every two ticks is 0.002. Each result is the
mean of 20 IIs.

The forth way still focuses on F of those groups that qc does not belong to but chooses
a group with some probability relying on F. Considering ARRS on a slice Sp(t1, t′1) that qc

does not locate, one can accept a new slice with a probability following either

Sp(T − 1)
Sp(T − 1) + Sp(T)

or
Sp(T)

Sp(T − 1) + Sp(T)
, (3.41)

and we accordingly call them PruRangqv4 and PruRangqv5. Obviously, PruRangqv4 would
be more likely to choose a new slice if it has smaller F than the old one, while PruRangqv5
would reject it with a higher probability.

The corresponding results with respect to these strategies are shown in Fig. 3.26, in
which the early termination is conducted, and PruGriqv4 and PruGriqv5 are two strategies
based on PruGriq and Eq. (3.41), respectively. Besides, to verify them, PruGriq is chosen
as a comparison, which accounts for the best on average in Fig. 3.25. Obviously, all those
strategies based on PruRangq heavily rely on the initial sequence (comparing RanS and
others). Specifically, in Fig. 3.26a, only PruRangqv4 has better performance than PruGriq,
which indicates that F truly has influence on qc. Meanwhile, from Fig. 3.26b, we learn that
both PruRangq and PruGriq based on Eq. (3.41) are more effective than PruGriq, which
means that the disorder of F also has an impact on qc. It is worth noting that PruGriqv5
is better than PruGriqv4 if the initial sequence is based on HubS, which is very important
because HubS is much easier to compute compared to APagS, ACIS, ABetS, and many others.
This is also the reason that we choose PruGriqv5 in [L2].

70

3.5 Evolutionary Framework for the Identification of Influential Nodes

3.5.4.2 Mutation operators

The influence of disorder of F on qc motivates us to further introduce the mutation
operators from the genetic algorithm. We conduct them on both Sp and S, i.e., local and global
mutations. In detail, both of them, at each time, equally choose one with some probabilities
from the following six mutation operators to produce the corresponding sequence:

i) the displacement mutation (DM) operator [103] usually randomly selects a fragment
that would be moved from the sequence and eventually inserted in a random place;

ii) the exchange mutation (EM) operator [104] aims at choosing two nodes in the sequence
at random and then exchanging them (a similar strategy could be found in ref. [5]);

iii) as for the insertion mutation (ISM) operator [103, 105], one random node is moved
out the sequence and placed at a random position afterwards;

iv) the simple inversion mutation (SIM) operator [106] selects randomly two cut points in
the sequence, and then reverses the fragment between these two cut points;

v) on the basis of SIM, we slightly change it by narrowing the cut points (S-SIM). Namely,
the random selection happens in a narrow range;

vi) the inversion mutation (IVM) [107] operator works similarly to the DM. It also
randomly selects a fragment, removes it from the sequence, and then inserts it in a
randomly selected position, however, in the reversed order.

The corresponding performance can be found in Fig. A.23 in Appendix A.2.14.

3.5.5 Initialization based on graph partitioning

We now focus on (APa) and (APb). Those verifications in Figs. 3.22, 3.24, 3.25 and 3.26
have shown that the initial sequence truly plays an important role for both optimizations
of F and qc, especially ABetS. Therefore, here we further introduce another initial strategy
based on graph partitioning regarding nodes [108], i.e., node (vertex) separator, which could
achieve really good results particularly in networks of large size. Specifically, for a given
network G(N ,M), METIS27 [109] obtains a node separator through the following steps.

1) Coarsen G to G1 and further to G2, ..., Gi, Gj by merging nodes in G, G1, ..., Gi,
respectively. The coarsening strategy could be: i) randomly choosing an edge euv; ii)
merging u and v if neither of them has been merged with other nodes; iii) updating
the corresponding node set and edge set; and iv) repeating i)-iii) until there is no
possibility for a new mergence. One can find more strategies from ref. [108], which
basically follow the similar routine of i)-iv). Besides, it might also be possible to
coarsen a graph based on those basic methods that we mentioned in Section 3.4, such
as ABonS128.

27Particularly, we use metis-5.1.0 which one can find at http://glaros.dtc.umn.edu/gkhome/views/metis.
28Details regarding this are out of the scope of this thesis.

71

http://glaros.dtc.umn.edu/gkhome/views/metis

3. Ways to Fragment Networks

2) A graph partitioning algorithm is conducted on Gj(Nj,Mj). The algorithm could be
Kernighan-Lin algorithm29 (KL) [110], which achieves a bisection of a network by:
i) given the size of two groups, randomly assign nodes in Nj to the two groups; ii)
considering a node u from one of the two groups and v from the other one, calculate
the weight difference between before and after the interchanges of u and v, where the
weight is the sum of all weights of edges connecting those two groups; iii) enumerate
all such node pairs and interchange the one leading to the maximum difference; iv)
repeat ii) and iii) until there is no difference larger than 0. Of course, KL is quite a
simple strategy, but it is very effective [108]. One can also find some variants of it in
ref. [108].

3) Uncoarsen Gj(Nj,Mj) back to Gi(Ni,Mi) by keeping the nodes in the two groups
fixed (just simply expand merging nodes in the same group). After that, the KL
strategy is conducted again on the two new groups. As ref. [108] mentioned, this
round of KL would converge very fast.

4) Let j = j− 1 and i = i− 1, and repeat 2) and 3) until Gi = G. And then we have an
edge separator, which is exactly the edge set of edges between the two groups.

5) The minimum vertex cover of the edge separator is considered as the node separator
of G.

Since minimizing F is one of our main goals, we here acquire the new sequence S by
repeatedly obtaining the node separator on the LCC. That is, i) obtain the LCC of the
remaining network (which is usually the whole network in the beginning) as a subnetwork;
ii) find the node separator of the subnetwork and remove them from the remaining network;
and iii) repeat i) and ii) until the size of the LCC is less than 3.

We name the above strategy AMetisS since it is developed based on METIS. But AMetisS
adds each node separator into S in random order, which obviously lacks effectiveness.
Therefore, a straightforward way to overcome that drawback is to employ a greedy strategy
similar to ABondS2 to reorder the node separator. In detail, one can achieve it through: i)
remove the node separator from the given network; ii) a percolation process is conducted on
the remaining network, e.g., greedily occupy those removed nodes following the sum rule,
which we call AMetisSg. However, as we mentioned in Section 3.4, AMetisSg would easily
result in local optimum and also locks the sequence, which means that the sequence could
not jump out of the local optimal solution even using those pruning strategies. Therefore,
AMetisS always guides such as PruGri to find a better final result than AMetisSg. In addition,
from our testing results, both AMetisS and AMetisSg could sometimes obtain better results
based on our basic method ABonS1q.

Fig. 3.27 shows the associated performance of AMetisS and AMetisSg as well as
their combinations with PruGri, GruRan, and GruRang, etc., where GruRan and GruRang
accordingly work in tandem with AMetisS and AMetisSg since AMetisS is locally disordered.
As we can see from Figs. 3.27a and 3.27b, PruGri armed with ABetS still holds the smallest
F among those methods. Besides, even though AMetisSg is more effective than AMetisS,

29This algorithm is also used for the community detection problem [1].

72

3.5 Evolutionary Framework for the Identification of Influential Nodes

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

F

PruGri
AMetisS
AMetisS+PruGri
AMetisS+PruRan

(a)

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

F

PruGri
AMetisS+PruGri
AMetisSg
AMetisSg+PruGri
AMetisSg+PruRang

(b)

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

q c

PruGriq
AMetisS
AMetisS+PruGriq
AMetisS+PruRanq

(c)

Ra
nS

Hu
bS

AH
ub
S

AP
ag
S

AC
IS

AB
etS

q c

PruGriq
AMetisS+PruGriq
AMetisSg
AMetisSg+PruGriq
AMetisSg+PruRangq

(d)

Figure 3.27: Performance of PruGri, GruRan, and GruRang regarding F and qc of different initial
sequences compared to PruGri, PruGriq, and ABetS (dashed lines). The difference of F and qc
between every two ticks is 0.002. Each result is the mean of 20 IIs.

their combinations with PruGri share similar results. Nevertheless, we finally achieve our
goal: design strategies that could outperform ABetS. And more importantly, either RanS or
HubS could guide these methods to achieve the goal. With respect qc (see Figs. 3.27c and
3.27d), the minimum is also acquired by PruGriq with ABetS30. It is worth mentioning that
PruRan and PruRang are much faster than PruGri if PruGri does not run in parallel, which
is also the reason that we exhibit the results regarding PruRan and PruRang in Fig. 3.27.
Nevertheless, both of them have comparable performance in most cases.

3.5.6 Evolutionary framework for the robustness and immunization problems

By now, we have verified and answered the assumptions and problems arisen in Section
3.5.1. The associated studies and strategies facilitate an evolutionary framework for the
robustness and immunization problems, where we have finished

i) the initialization of populations, e.g., based on our basic methods or AMetisS;

ii) the introduction of mutation operators (see Section 3.5.4);

iii) the strategies for selections, e.g., Eq. (3.41);

30Note that one might get a good result of qc through k-way partitioning, which is also out of the scope of this
thesis.

73

3. Ways to Fragment Networks

iv) the management of diversity of populations, e.g., the sum and product rules.

Indeed, since there are several approaches to maintain the diversity of the sequence, we
do not further introduce crossover operators. In what follows, we will first demonstrate
the performance of the proposed framework in the way same as that we verify our basic
methods. And more applications will be shown in the next chapter.

3.5.7 Applications

3.5.7.1 Data

Refer to Section 3.4.5.1.

3.5.7.2 Configurations of associated methods

• ARRS: the same parameters as those in Section 3.4.5.2 are conducted except that T̂ = 20, ru(0) =
(t′1 − t1)/n and δru = δns = 0.5. Besides, ru(T) = ru(0) if α1 = 1 and ns(T) is randomly chosen
from [1, ns(0)] if α2 = 1. In addition, when α2 = 1, we also associate ns(0) with Tp, e.g., here
we let ns(0) = ns(0) + 1 if F or qc does not have any improvement for 10 rounds.

• PruOrd: T̂p = 104, a(0) = 0.9/T̂p, b1(0) = 0.1n, δb1 = 0.0001, b2(0) = 0.3n and δb2 = 0.0005.

• PruGri: b′l = 100 and b′u = 0.2n.

• PruRan: b′u = 0.2n.

• PruRang: b′u = 0.2n, b2(0) = 0.01 and α = 1.001.

• PruRangq: same as PruRang and with b1(0) = 0.1n and α3 = (b1(0)− 100)/T̂p.

• PruRangqv1, PruRangqv2, PruRangqv3, PruRangqv4 and PruRangqv5: same as PruRang.

• PruGriq, PruGriqv4 and PruGriqv5: same as PruGri.

• PruRangqv4m and PruRangqv5m: same as PruRang, and the local and global mutation
probabilities are accordingly 0.1 and 0.3.

• PruGriqv4m and PruGriqv5m: same as PruGri, and the local and global mutation probabilities
are accordingly 0.1 and 0.3.

• AMetisS and AMetisSg: NONE.

• EPruGri(·): PruGri with a specific initial sequence, e.g., EPruGri(HubS) means that we run
PruGri starting from HubS.

• EPruGriqv5m(·): EPruGriqv5m with a specific initial sequence, e.g., EPruGriqv5m(HubS)
means that we run EPruGriqv5m starting from HubS.

• Evolq(·): EPruGriqv5m(·) with b′u = 0.1n followed by PruGriq.

• EvolF(·): EPruGri(·) with b′u = 0.1n.

The defaults of α1 and α2 are both taken 1, and all results regarding the above methods are
the mean of 20 IIs if necessary.

74

3.5 Evolutionary Framework for the Identification of Influential Nodes

AI
TS

AC
NS

AC
IS

AB
PD

S
AM

SR
GS AE
IS

AR
RS

q
AR

RS
AM

et
isS

AM
et
isS

g
Ev
ol q

(1
)

Ev
ol F

(1
)

0.08

0.10

0.12

F

(a)

AI
TS

AC
NS

AC
IS

AB
PD

S
AM

SR
GS AE
IS

AR
RS

q
AR

RS
AM

et
isS

AM
et
isS

g
Ev
ol q

(1
)

Ev
ol F

(1
)

0.12

0.14

0.16

q c

(b)

AI
TS

AC
NS

AC
IS

AB
PD

S
AM

SR
GS AE
IS

AR
RS

q
AR

RS
AM

et
isS

AM
et
isS

g
Ev
ol q

(1
)

Ev
ol F

(1
)

Ev
ol q

(2
)

Ev
ol F

(2
)

0.06

0.08

0.10

0.12

0.14

F

(c)

AI
TS

AC
NS

AC
IS

AB
PD

S
AM

SR
GS AE
IS

AR
RS

q
AR

RS
AM

et
isS

AM
et
isS

g
Ev
ol q

(1
)

Ev
ol F

(1
)

Ev
ol q

(2
)

Ev
ol F

(2
)

0.2

0.3

0.4

q c

(d)

AI
TS

AC
NS

AC
IS

AB
PD

S
AM

SR
GS AE
IS

AR
RS

q
AR

RS
AM

et
isS

AM
et
isS

g
Ev
ol q

(1
)

Ev
ol F

(1
)

Ev
ol q

(2
)

Ev
ol F

(2
)

0.01

0.02

0.03

0.04

F

(e)

AI
TS

AC
NS

AC
IS

AB
PD

S
AM

SR
GS AE
IS

AR
RS

q
AR

RS
AM

et
isS

AM
et
isS

g
Ev
ol q

(1
)

Ev
ol F

(1
)

Ev
ol q

(2
)

Ev
ol F

(2
)

0.06

0.09

q c

(f)

Figure 3.28: Comparisons among Evolq, EvolF and many other methods on the three networks
same as Fig. 3.12, i.e., (a) and (b) the BA network, (c) and (d) the power grid network, and (e) and
(f) the yeast network, where dashed lines are associated with the results of ABetS. Evolq(1) and
Evolq(2) correspond to Evolq(AMetisSg) and Evolq(AMetisS), respectively. EvolF(1) and EvolF(2)
follow the same representations.

3.5.7.3 Percolation metrics

We still firstly consider the three small networks as we did in Section 3.4.5.3. Here rather
than illustrate the order parameter Ga(q), we report more readable results regarding both
F and qc in Fig. 3.28. For the BA network (Figs. 3.28a and 3.28b), AMetisS and AMetisSg
perform much worse than other methods with respect to both F and qc. By contrast, EvolF(1)
acquires the best F, and Evolq(1) has a smaller critical threshold than ABetS even though qc

75

3. Ways to Fragment Networks

of AMetisSg in much larger than the one of ABetS. But ABPDS still accounts for the smallest.
For the two real-world networks, however, both AMetisS and AMetisSg work very well,
where AMetisSg even has smaller F than ABetS in both two networks. Meanwhile, Evolq

and EvolF based on AMetisS are slightly better than those based on AMetisSg, respectively
for qc and F. Specifically, for F, EvolF(2) has improvements (see Eq. (3.33)) of 10.51% and
28.17% accordingly in the power grid network and the yeast network compared to ABetS,
while EvolF(1) holds 9.39% and 28.15%, respectively. In addition, regarding qc, Evolq(1)
also surpasses ABetS with margins of 6.58% and 5.85% for the two networks and Evolq(2)
gains 6.28% and 5.31%. Note that ABetS outperforms almost all existing methods that we
considered in this thesis (see also Section 3.3).

AI
TS

AC
IS

AB
PD

S
AE

IS
AR

RS
q

AR
RS

AM
et
isS

AM
et
isS

g
Ev

ol q
(1
)

Ev
ol F

(1
)

0.060

0.065

0.070

0.075

F

(a)

AI
TS

AC
IS

AB
PD

S
AE

IS
AR

RS
q

AR
RS

AM
et
isS

AM
et
isS

g
Ev

ol q
(1
)

Ev
ol F

(1
)

0.095

0.100

0.105

0.110

0.115

q c

(b)

AI
TS

AC
IS

AB
PD

S
AE

IS
AR

RS
q

AR
RS

AM
et
isS

AM
et
isS

g
Ev

ol q
(1
)

Ev
ol F

(1
)

0.14

0.15

0.16

F

(c)

AI
TS

AC
IS

AB
PD

S
AE

IS
AR

RS
q

AR
RS

AM
et
isS

AM
et
isS

g
Ev

ol q
(1
)

Ev
ol F

(1
)

0.22

0.23

0.24

0.25

q c

(d)

Figure 3.29: Performance of AMetisS and AMetisSg on networks generated through the
configuration model based on degree sequences of (a) and (b) the power grid network, and (c)
and (d) the yeast network, where dashed lines are associated with the results of ABetS. Evolq(1)
and EvolF(1) correspond to Evolq(AMetisSg) and EvolF(AMetisSg), respectively.

The dramatic differences of results that AMetisS and AMetisSg have on the BA network
and on the two real-world networks motivate us to further investigate their performance on
networks constructed through the configuration model (see also Section 3.1.1.5). Specifically,
we first draw a degree sequence based on either the power grid network or the yeast network,
and then the configuration model is used to generate a network based that degree sequence.
In this manner, we would have a new network which follows the similar degree distribution
to either of the two networks but usually lacks community structure, degree correlation and
local cycles as well (e.g., the network used in Fig. 3.29a has an assortativity of 0.0028 and

76

3.5 Evolutionary Framework for the Identification of Influential Nodes

a clustering coefficient of 0.0012). Fig. 3.29 shows the corresponding results. Apparently,
AMetisS and AMetisSg fail in both networks for both F and qc. And ABetS is also less
effective than it does in the two real-world networks. In other words, for example, it is
surpassed even by AITS and AEIS in Fig. 3.29a, and AITS and ACIS in Fig. 3.29c with
regard to F. Since these networks are lack of local cycles, ABPDS is predictable to have really
good performance regarding qc (see Section 3.4.5.4). Nevertheless, EvolF(1) and Evolq(1) still
accordingly acquire better F and qc than almost all other methods. Based on those results,
we could conclude that:

• if AMetisS or AMetisSg works well, Evolq and EvolF could benefit from them and
further boost the performance of the corresponding sequence (see Fig. 3.28);

• if AMetisS or AMetisSg fails, Evolq and EvolF still have the ability to reorder the
sequence and facilitate a really good result (see Figs. 3.28a, 3.28b and 3.29), which is
actually usually better than almost all existing methods.

Note that the one constructed based on the power grid network only has the largest degree
of 19, which is very small against its size (n = 4941)31.

0.0 0.1 0.2 0.3 0.4
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

ACIS
ABPDS
AEIS
ARRS
EvolF(2)

(a)

0.0 0.1 0.2 0.3 0.4 0.5
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

0.000 0.025 0.050 0.075 0.100
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(c)

0.000 0.025 0.050 0.075 0.100
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(d)

Figure 3.30: Performance of EvolF(2) validated by ACIS, ABPDS, AEIS, and ARRS on (a) the
CA-AstroPh network, (b) the Cit-HepPh network, (c) the web-Google network, and (d) the
as-Skitter network (ACIS with ℓ = 2). EvolF(2) corresponds to EvolF(AMetisS).

We further consider the order parameter Ga(q) of q regarding the four networks that
we conducted in Fig. 3.14. Though our basic method ARRS already has better performance

31One can further study the influence of the network structure on AMetisS and AMetisSg. But it is out of the
scope of this thesis.

77

3. Ways to Fragment Networks

0.0 0.1 0.2 0.3 0.4 0.5
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

ACIS
ABPDS
AEIS
ARRS
EvolF

Figure 3.31: Tuning of F through the combination of ARRS and EvolF(2), which is represented
by EvolF, on the Cit-HepPh network. Here we only show this as an example. One can of course
further tune them for a better result. EvolF(2) corresponds to EvolF(AMetisS).

than ACIS, ABPDS, and AEIS in those networks, here Fig. 3.30 still gives the results of ACIS,
ABPDS, and AEIS for the purpose of direct comparisons with EvolF. As we can see from
Fig. 3.30, indeed, only in the CA-AstroPh network EvolF(2) has smaller Ga(q) than all other
methods for the whole rage of q, i.e., for q ∈ (0, 1), which might be a problem for some cases.
But it could be eased by combining with ARRS or other suitable methods, that is, we run
EvolF based on some strategy and fix part of the sequence at the same time (see Fig. 3.31).
Nevertheless, for most cases of q, EvolF is much better than other methods, including ARRS.
For instance, in the CA-AstroPh network (Fig. 3.30a), EvolF(2) accordingly has advantages of
29.33%, 36.09%, 30.08%, and 7.97% compared to ACIS, ABPDS, AEIS, and ARRS. For the
web-Google network (Fig. 3.30c), the margins are even much larger, 81.92%, 81.78%, 70.49%,
and 58.14%, respectively.

More comparisons can be found in Table 3.5 and Table 3.6, where both results of F
and qc are reported accordingly. As we can see from Table 3.5, indeed, the greedy strategy
(AMetisSg) works very well in some cases, like in the p2p-Gnutella08 network in which
AMetisSg has much smaller F than AMetisS. But as we mentioned in Section 3.5.5, this
greedy strategy is not so good for EvolF, that is, EvolF(2) has better performance than
EvolF(3) in 11 out of 18 networks. Nevertheless, the improvements in regard with EvolF(2)
against EvolF(3) are very small (−0.96% ∼ 1.03%), which indicates that EvolF(2) would be
a better choice compared to EvolF(3). EvolF(2) also outperforms EvolF(1) in 15 networks,
though EvolF(1) is actually better than AMetisSg in 10 networks. To sum up, EvolF(2) has
average improvements of 60.62%, 54.83%, 54.49%, 43.23%, 21.69%, 14.09%, and 8.89% over
HubS, AHubS, ACIS, AEIS, ARRS, AMetisS, and AMetisSg, respectively.

Now we move to the critical threshold qc (Table 3.6). For this case, AMetisS and
AMetisSg share almost the same value of qc in each network. But Evolq(2) has smaller qc than
Evolq(3) in 14 out of 18 networks. Regarding Evolq(1), it has almost equal performance in
small networks but is much worse in the four large networks compared to Evolq(2). Besides,
it also has better results than AMetisSg in 14 networks. To summarize, Evolq(2) accordingly
has mean advantages of 59.21%, 49.39%, 42.77%, 20.58%, 27.68%, 13.81%, 14.44%, 15.16%,
and 13.26% over HubS, AHubS, ACIS, ABPDS, AEIS, ARRSq, ARRS, AMetisS, and AMetisSg.

78

3.5 Evolutionary Framework for the Identification of Influential Nodes

Networks HubS AHubS ACIS AEIS ARRS AMetisS AMetisSg

Power 0.0636‡‡ 0.0524‡‡ 0.0449‡‡ 0.0112‡‡ 0.0076† 0.0076† 0.0075†

CA-GrQc 0.0825‡‡ 0.0685‡‡ 0.0527‡‡ 0.0347‡ 0.0289 0.0346‡ 0.0304†

p2p-Gnutella08 0.1993‡‡ 0.1574‡ 0.1415† 0.1651‡ 0.1386 0.2007‡‡ 0.1486‡

as-733 0.0128‡‡ 0.0125‡‡ 0.0150‡‡ 0.0097‡ 0.0087 0.0109‡† 0.0101‡

Scottish 0.0321‡† 0.0272‡ 0.0542‡‡ 0.0259‡ 0.0231 0.0281‡† 0.0270‡

CA-AstroPh 0.2508‡‡ 0.2084‡‡ 0.1562‡† 0.1579‡‡ 0.1200† 0.1476‡† 0.1224†

CA-CondMat 0.1238‡‡ 0.1103‡‡ 0.0832‡† 0.0774‡† 0.0625 0.0659† 0.0639†

hep-th 0.3751‡‡ 0.3048‡‡ 0.2541‡‡ 0.2742‡‡ 0.1915‡† 0.1539 0.1524
Cit-HepPh 0.3665‡‡ 0.3062‡‡ 0.2645‡‡ 0.2860‡‡ 0.2056‡‡ 0.1380 0.1372
Email-Enron 0.0393‡‡ 0.0380‡‡ 0.0292‡‡ 0.0314‡‡ 0.0217† 0.0242‡ 0.0226‡

p2p-Gnutella31 0.1287‡† 0.1143‡ 0.1015† 0.1172‡ 0.1003 0.1169‡ 0.1101‡

loc-Gowalla 0.1329‡‡ 0.1142‡‡ 0.0868‡‡ 0.0916‡‡ 0.0625‡‡ 0.0460† 0.0446†

Email-EuAll 0.0009‡ 0.0009† 0.0056‡‡ 0.0019‡‡ 0.0008 0.0012‡‡ 0.0011‡†

com-Amazon 0.1224‡‡ 0.1184‡‡ 0.0793‡‡ 0.0619‡‡ 0.0424‡‡ 0.0250 0.0247
web-Google 0.1141‡‡ 0.0886‡‡ 0.0526‡‡ 0.0322‡‡ 0.0227‡‡ 0.0103† 0.0101†

PAroad 0.1148‡‡ 0.0715‡‡ 0.0417‡‡ 0.0034‡‡ 0.0012‡‡ 0.0006 0.0006
Txroad 0.0859‡‡ 0.0652‡‡ 0.0342‡‡ 0.0019‡‡ 0.0007‡‡ 0.0003† 0.0003
as-Skitter 0.0706‡‡ 0.0487‡‡ 0.0394‡‡ 0.0287‡‡ 0.0215‡‡ 0.0138‡ 0.0135‡

Networks AMetisSg(1) EvolF(1) EvolF(2) EvolF(3) Evolq(1) Evolq(2) Evolq(3)

Power 0.0076† 0.0070 0.0069 0.0069 0.0076† 0.0075† 0.0075†

CA-GrQc 0.0317‡ 0.0275 0.0283 0.0284 0.0284 0.0282 0.0283
p2p-Gnutella08 0.1495‡ 0.1327 0.1326 0.1326 0.1356 0.1356 0.1355
as-733 0.0099‡ 0.0085 0.0084 0.0085 0.0088 0.0088 0.0087
Scottish 0.0271‡ 0.0226 0.0225 0.0225 0.0227 0.0226 0.0226
CA-AstroPh 0.1222† 0.1130 0.1104 0.1109 0.1244‡ 0.1256‡ 0.1247‡

CA-CondMat 0.0651† 0.0599 0.0597 0.0600 0.0645† 0.0655† 0.0661†

hep-th 0.1523 0.1836‡ 0.1516 0.1510 0.2133‡† 0.1992‡† 0.1892‡

Cit-HepPh 0.1372 0.2011‡‡ 0.1367 0.1363 0.2316‡‡ 0.1822‡† 0.1773‡†

Email-Enron 0.0232‡ 0.0206 0.0198 0.0198 0.0224‡ 0.0225‡ 0.0224‡

p2p-Gnutella31 0.1121‡ 0.0959 0.0961 0.0964 0.0992 0.0994 0.1143‡

loc-Gowalla 0.0450† 0.0530‡† 0.0416 0.0417 0.0575‡† 0.0458† 0.0463‡

Email-EuAll 0.0010‡ 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008
com-Amazon 0.0250 0.0352‡† 0.0247 0.0244 0.0423‡‡ 0.0313‡† 0.0310‡†

web-Google 0.0099 0.0178‡‡ 0.0095 0.0096 0.0190‡‡ 0.0101† 0.0102†

PAroad 0.0006† 0.0010‡‡ 0.0006 0.0006 0.0011‡‡ 0.0007‡ 0.0007‡

Txroad 0.0003 0.0005‡‡ 0.0003 0.0003 0.0005‡‡ 0.0004‡† 0.0004‡

as-Skitter 0.0137‡ 0.0180‡‡ 0.0114 0.0115 0.0236‡‡ 0.0131‡ 0.0133‡

Table 3.5: Results of F on the 18 real-world networks, where AMetisSg(1) is the combination
of ABondS1 and AMetisSg, EvolF(1) is EvolF(HubS), EvolF(2) is EvolF(AMetisS), EvolF(3)
is EvolF(AMetisSg), Evolq(1) is Evolq(HubS), Evolq(2) is Evolq(AMetisS), and Evolq(3) is
Evolq(AMetisSg). An item in bold represents that the corresponding method has the minimal F
among all those mentioned methods in the associated network. Besides, †, ‡, ‡† or ‡‡ indicates
that EvolF(2) has an improvement of over 5%, 10%, 20%, or 30% compared to the corresponding
strategies, respectively. Note that these improvements are calculated based on the related real
values instead of the approximate results that are shown in this table (see also Eq. (3.33)).

3.5.7.4 SIR results

Similar to Section 3.4.5.5, we further verify the evolutionary framework by the SIR
model, mainly considering EvolF. But here, instead of the Email-Enron network and the
loc-Gowalla network, we run the model on the global airline network which we collect
from OpenFlights (https://openflights.org), where a node represents an airport and
an edge between two nodes indicates that there is at least one airline between those two
corresponding airports. We choose this network because it might be the main factor to
facilitate a pandemic nowadays.

79

https://openflights.org

3. Ways to Fragment Networks

Networks HubS AHubS ACIS ABPDS AEIS ARRSq ARRS AMetisS

Power 975‡‡ 762‡‡ 570‡‡ 316‡ 337.1‡† 275.85† 284.1† 327‡†

CA-GrQc 912‡‡ 820‡‡ 1760‡‡ 398‡ 428.25‡ 363.65 377.55† 474‡†

p2p-Gnutella08 2045‡‡ 1584‡ 1444† 1300 1508.95‡ 1343.7 1375.35 1925‡‡

as-733 243‡‡ 248‡‡ 192‡† 162† 169.35‡ 151.95 153.1 186‡

Scottish 877‡‡ 603‡† 2036‡‡ 434 471.05† 437.05 443.6 512‡

CA-AstroPh 8544‡‡ 6274‡‡ 4865‡† 4198† 4320.6‡ 4031.9 4018.45 4669‡

CA-CondMat 5726‡‡ 4500‡‡ 3217‡† 2569 2700.8† 2539.05 2538.8 2971‡

hep-th 18097‡‡ 12092‡ 11184‡ 10294† 11002.85‡ 9817.85 9741.8 10031
Cit-HepPh 22533‡‡ 15297‡† 14164‡ 13455† 14498.9‡ 13011.95† 12999.2† 13429†

Email-Enron 4097‡‡ 4262‡‡ 3074‡ 2621† 2764.35† 2566.35 2578.25 2876‡

p2p-Gnutella31 14111‡‡ 12424‡† 10995‡ 9287 10127.2 9915.95 10196.3 11790‡

loc-Gowalla 53828‡‡ 40168‡‡ 31386‡† 26951‡ 26916.7‡ 25316† 25023.7 27002‡

Email-EuAll 1431‡† 1282‡ 1193‡ 1064 6985.8‡‡ 1067.45 1081.25 1230‡

com-Amazon 78308‡‡ 68527‡‡ 42108‡‡ 29572‡† 27471.15‡ 27426.25‡ 26358.95‡ 25411†

web-Google 253099‡‡ 171550‡‡ 82525‡‡ 50861‡‡ 41948.85‡‡ 40326.2‡‡ 33679.6‡‡ 19256‡†

PAroad 273899‡‡ 246270‡‡ 71134‡‡ 21172‡‡ 17204.05‡‡ 9576.25‡‡ 10124.85‡‡ 5583
Txroad 307413‡‡ 320991‡‡ 82744‡‡ 20873‡‡ 16800.1‡‡ 8505.6‡‡ 9373.65‡‡ 4720
as-Skitter 322128‡‡ 201670‡‡ 151846‡‡ 74286‡‡ 70901‡‡ 63547.4‡‡ 64164.8‡‡ 46291‡

Networks AMetisSg AMetisSg(1) EvolF(1) EvolF(2) EvolF(3) Evolq(1) Evolq(2) Evolq(3)

Power 327‡† 325‡ 284.65† 292.55‡ 293.5‡ 263.4 260.8 262.3
CA-GrQc 443‡† 416‡ 364.1† 374.9† 394.45‡ 348 345.8 347.95
p2p-Gnutella08 1551‡ 1559‡ 1393.6† 1392.1† 1394.7† 1318.85 1319.75 1318.05
as-733 186‡ 180‡ 153.55 154.85 156.8 151.55 151.5 151.6
Scottish 508‡ 520‡ 444.85 440.85 442.55 427.5 426.35 426.45
CA-AstroPh 4420‡ 4385‡ 4023.5 4072.95 4171.3† 3882.55 3873 3875.2
CA-CondMat 2970‡ 2936‡ 2548.45 2744.05‡ 2785.4‡ 2436.05 2445.3 2445.6
hep-th 10030 9921 9825.45 9880.2 9881.9 9518.05 9752.3 9163
Cit-HepPh 13426† 13431† 13025.15† 13337.7† 13338.2† 12690.25 12217.3 12237
Email-Enron 2871‡ 2848‡ 2590.65 2653.95† 2663.05† 2478.55 2487.95 2491.05
p2p-Gnutella31 11304‡ 11325‡ 10300.95† 10331.45† 10312.25† 9714.4 9701.1 11894.25‡

loc-Gowalla 26999‡ 27094‡ 24807.9 25918† 25978.1† 24283.05 24014.5 24059.75
Email-EuAll 1183‡ 1178‡ 1065.25 1064.4 1063.05 1041.15 1040.45 1040.3
com-Amazon 25411† 25609† 25951† 24924.05† 24917.5† 25360.55† 23380.9 23420.35
web-Google 19255‡† 20330‡‡ 27584.9‡‡ 15462.1‡ 15473.2‡ 21759‡‡ 13528 13596.1
PAroad 5583 5752 8717.75‡‡ 5551.95 5547.55 8785.5‡‡ 5502.75 5506.7
Txroad 4718 4797 7769.75‡‡ 4686.8 4693.95 7828.3‡‡ 4632.8 4635.75
as-Skitter 46287‡ 46633‡ 58889.35‡‡ 41120.6 41335.05 54455.5‡† 39986.6 39693.05

Table 3.6: Results of qc × n on the 18 real-world networks, where AMetisSg(1) is the combination
of ABondS1 and AMetisSg, EvolF(1) is EvolF(HubS), EvolF(2) is EvolF(AMetisS), EvolF(3)
is EvolF(AMetisSg), Evolq(1) is Evolq(HubS), Evolq(2) is Evolq(AMetisS), and Evolq(3) is
Evolq(AMetisSg). An item in bold represents that the corresponding method has the minimal qc
among all those mentioned methods in the associated network. Besides, †, ‡, ‡† or ‡‡ indicates
that Evolq(2) has an improvement of over 5%, 10%, 20%, or 30% compared to the corresponding
strategies, respectively. Note that these improvements are calculated based on the related real
values instead of the approximate results that are shown in this table.

Fig. 3.32 shows the contours of the average infected frequency ⟨αinf⟩ (see also Section
3.4.5.5 for its definition) of the infected probability ηi and the immunized fraction q with
respect to RanS, HubS, ACIS, AEIS, ARRS and EvolF, where ηr = 0.05 and b = 104

independent simulations are conducted for every pair of ηi and q. As we can see from
there, the network under the immunization of RanS is apparently much worse than it under
targeted methods. For instance, even 20% nodes are immunized based on RanS. The network
still cannot sustain an epidemic with ηi = 0.01. Amid those targeted methods, HubS is
surprisingly better than ACIS when q is large, e.g., HubS has a larger margin of ηi to keep

80

3.5 Evolutionary Framework for the Identification of Influential Nodes

0.05 0.10 0.15 0.20
q

0.05

0.10

0.15

0.20

η i

0.100

(a)

0.05 0.10 0.15 0.20
q

0.05

0.10

0.15

0.20

η i

0.00
1

0.
01

0

0.
10

0

(b)

0.05 0.10 0.15 0.20
q

0.05

0.10

0.15

0.20

η i

0.
01

0

0.
10

0

(c)

0.05 0.10 0.15 0.20
q

0.05

0.10

0.15

0.20

η i

0.
00

1

0.
01

0

0.
10

0
(d)

0.05 0.10 0.15 0.20
q

0.05

0.10

0.15

0.20

η i

0.
00

1

0.
01

0

0.
10

0

(e)

0.05 0.10 0.15 0.20
q

0.05

0.10

0.15

0.20

η i

0.
00

1

0.
01

00.
10

0

(f)

Figure 3.32: Contours of the average infected frequency ⟨αinf⟩ as a function of the immunized
fraction q and the infected probability ηi on the global airline network regarding (a) RanS, (b)
HubS, (c) ACIS, (d) AEIS, (e) ARRS, and (f) EvolF. In each figure, color from deep dark (i.e.,
top left) to light purple (i.e., bottom right) indicates that ⟨αinf⟩ changes from large to small. In
addition, ⟨αinf⟩ = 0.001, 0.01, and 0.1 are marked by the three solid curves, respectively.

⟨αinf⟩ less than 0.01 compared to ACIS. EvolF has similar behaviour. Namely, it only slightly
outperforms AEIS and ARRS if q is large enough. Nevertheless, it is much more powerful
than others to contain the spreading if the number of nodes that are allowed to be immunized
is quite limited. For example, Fig. 3.33 shows the comparisons among those methods in
regard to a specific case of ηi = 0.2 and q = 0.05. Obviously, EvolF is much better than other
methods including ARRS, that is, ⟨αinf⟩ = 0.07 against ⟨αinf⟩ = 0.13. It is worth mentioning
that one can always find a better result through Evolq if q is fixed.

81

3. Ways to Fragment Networks

(a) (b)

(c) (d)

(e)

0.0

0.1

0.2

0.3

0.4

(f)

Figure 3.33: Specific patterns of SIR results on the global airline network regarding varied
immunization methods, where ηi and q are fixed to 0.2 and 0.05, respectively. In particular, (a)
RanS has ⟨αinf⟩ = 0.79, (b) HubS has ⟨αinf⟩ = 0.50, (c) ACIS has ⟨αinf⟩ = 0.29, (d) AEIS has
⟨αinf⟩ = 0.28, (e) ARRS has ⟨αinf⟩ = 0.13, and (f) EvolF has ⟨αinf⟩ = 0.07. The color bar shows the
magnitude of ⟨αinf⟩ for each node.

3.6 Fast Scheme for the Suppression of F

Based on Sections 3.4 and 3.5, we could further have the following fast scheme for the
suppression of F, which consists of three steps.

1) Repeatedly acquire the vertex separator, followed by a group reorder on the LCC.
Since minimizing F is our main goal, the vertex separator can be obtained in the way
same as AMetisS (Section 3.5.5). Meanwhile, on each separator, ARRS is conducted
to achieve the local rank (Section 3.4.4), which should be much fater than the greedy
strategy (see Fig. A.24).

2) Organize the tail. After a number of iterations of step 1), the related network transfers
into a subnetwork containing a lot of small components. In this case, it would be very
expensive to continue step 1) until the size of the LCC smaller than 3 (i.e., AMetisS
and AMetisSg, see also Fig. A.24 in Appendix A.2.15). To overcome that problem, we

82

3.7 Summary

choose to stop step 1) when G(q) is less than a given threshold α (see also Eq. (3.8)).
Now, if α is small, then the remaining network would be a network consisting of a
number of small components. For this case, the probability that τ nodes randomly
chosen from the remaining network belong to the same component would be bounded
by (α

1−q)
τ, which approaches 0 even τ is small. Therefore, we can also directly use

the ARRS method to organize the tail, which is usually terminated within such as 5
rounds.

3) Prune the whole sequence. Neither steps 1) nor 2) considers nodes from other groups.
This step therefore copes with nodes from different groups, which could be achieved
by those strategies in Section 3.5. Besides, if letting b(i) be the component size that
node i leads to regarding a percolation process over a given sequence S (obtained
based on steps 1) and 2)), then F could also benefit from the direct sort of S over b(i).

Since the combination of steps 1) and 2), as well as the direct rank of phase 3), is enough to
have a good result, we here particularly use GPEP to represent such combination and verify
it as our main purpose. The corresponding performance can be found in Fig. A.24, Tables
A.2, A.3, and A.4 in Appendix A.2.15.

3.7 Summary

Aiming at the proposal of advanced solutions for the network robustness and
immunization problems on existing networks, we have profoundly studied and also
developed a bunch of methods that are basically suitable for all kinds of networks.
Specifically, we borrow ideas from the explosive percolation, and firstly demonstrated that
rules delaying the percolation transition truly facilitate better solutions for the considered
problems. In particular, based on the Bohman and Frieze’s rule, bounded-size strategies
including ABonS1, ABonS1q, ABonS2, APRSs1, and APRSs1q are designed, where ABonS1,
ABonS2, and APRSs1 are for the minimization of F (Eq. (3.16)), and ABonS1q and APRSs1q
are for the optimization of the critical threshold qc. These approaches are very fast and
usually have comparable results compared to the state of the art regarding both F and qc

(see Tables 3.2 and 3.3), e.g., ABonS1 and ABonS1q could accordingly obtain smaller F and
qc within 10 seconds in the as-Skitter network (with over 1.6 million nodes) than almost
all existing methods32 that we mentioned in Section 3.3. Besides, APRSs1 and APRSs1q
give the option to score each node so that one can tune the score based on varied scenarios
and further acquire a better result. But those bounded approaches could only outperform
such as AEIS in a few networks especially in regard to F. Hence, we further considered
and studied unbounded-size rules, particularly sum and product rules, based on which
ARRS and APRSrr are proposed. Surprisingly, different from the explosive percolation, we
found that ARRS with the product rule can always acquire better F comparing to the one
with the sum rule. Besides, we also studied other unbounded rules but they are usually too
time-consuming. In short, APRSrr is more capable of handling model or model-like networks,
where there are usually a lack of community structures, short cycles, and correlations, such

32They are perhaps only less effective than ABetS. But it is almost impossible for ABetS to tackle a network of
such size.

83

3. Ways to Fragment Networks

as the p2p-Gnutella08 network. ARRS instead has a good performance in most real-world
networks regarding both F and qc, and on average, surpasses all other basic methods. More
importantly, ARRS also paves the way for the evolutionary framework. Note that both
bounded and unbounded methods could be easily extended for the FVS problem. And either
of them has a better performance than ABPDS in almost all networks that we considered in
this thesis (Table 3.4).

For the evolutionary framework, we have introduced selection strategies, mutation
operators, and the ways to initialize and maintain a population (sequence) as well. In
particular, with respect to F, we firstly study PruOrd, which is yet effective enough to
outperform ARRS. But it also faces a problem of the difficulty of the management of control
parameters. To overcome that, PruGri is developed and takes a much easier way that only
two parameter needs to be given beforehand. Usually, PruGri could obtain better results
than PruOrd if we fail to give PruOrd the optimal configuration of the related parameters.
However, the grid search strategy means that PruGri would be time-consuming if we do not
have a parallel environment. Hence, we further have PruRan and PruRang, where PruRan
chooses the slice simply following the uniform distribution, while PruRang does that by
taking some probability from a variant of the Gaussian distribution. And therefore, PruRang
is usually more capable of approximating PruGri. Note that one can also try other strategies
of that probability. We then further study the effects of qc on F and also the influences of F on
qc, and find that there is some conflict between the optimization of qc and the optimization
of F. And this conflict guides us to have PruRangqv4 and PruRangqv5, and further those
mutation operators. In addition, through these investigations, we also find that the initial
sequence plays an important role, especially one having advanced performance. Thus, we
have another way based on graph partitioning to provide initial sequences for our framework,
i.e., AMetisS and AMetisSg. And finally, we reach the evolutionary framework, that is, EvolF

and Evolq accordingly for F and qc.
All in all, for a given network, compared to a number of existing methods, including

the state-of-the-art ones, the proposed approaches are much more capable of:

• identifying the fatal nodes, which is possibly related to, e.g., collapsing a criminal
or corrupt organization, or offering an avenue to design new drugs to kill unwanted
bacteria;

• revealing the true robustness of the network and then facilitating better ways to protect
it, e.g., for a communication network against an intentional attack;

• preventing a possible outbreak of epidemics, e.g., taking more considerations on part
of global airports;

• and preventing the spread of misinformation, which, as we mentioned before, has
become one of the top threats to our society.

Besides, more applications will be found in the following Chapter.

84

4
Functions of Order Parameter as

Measure

This chapter mainly discusses the following problems. Firstly, we are going to
demonstrate whether F could be used as a measure to capture the network structure
particularly considering the explosive synchronization. Then, viewing F as the goal, a few
strategies are studies aiming to enhance or weaken the robustness of a given network (i.e.,
F), which is usually bounded by the most advanced attack strategy. Following that, we
further investigate the role that F plays in the explosive synchronization dataset by the aid
of machine learning methods.

The connections of this chapter and our previously published works are as follows.
Section 4.1 is mainly based on the paper [L3]. Sections 4.2 and 4.3 are partly based on
ideas and/or results from refs. [L1], [L2], and [L3]. Section 4.4 relies on the data generated
through the method in ref. [L3].

4.1 Effects of Network Robustness on Explosive Synchronization

We particularly take the explosive synchronization (ES) as an example to study whether
F (see also Eq. (3.16)) could be viewed as a measure to capture the network structure [L3].
The ES is another critical phenomenon that is observed when the coupled oscillators (e.g.,
the Kuramoto system [38]) are associated with a scale-free topology [13], i.e., the natural
frequency of each oscillator proportionally corresponds to its number of connections, and
they are coupled by the related adjacency matrix. The reasons that we choose ES are twofold.
One the one hand, similar to the explosive percolation, the abrupt transition could also be
found in the ES process. On the other hand, to some extent, the ES only relies on the network
structure [111, 112, 113, 114], which is crucial for our verification in Section 4.4, since we
could study and know more regarding the network structure compared to real dataset.

Specifically, we employ F to represent a network’s robustness and view it as a global
attribute of such network, and further study its influence on ES. Following the assumption

85

4. Functions of Order Parameter as Measure

of refs. [13, 113], we mainly find that ES depends not only on the network assortativity
r (see also Eq. (2.26)) but also on the network robustness. In particular, there might exist
a maximization of the hysteresis area, which can be achieved by adjusting the network
assortativity while keeping F constant. However, this process cannot be inverted, i.e., a
similar goal could not be achieved through the tuning of F over a fixed network assortativity.
In addition, we further discuss the response of F and r to the change of each other, which
results in a gap between the enhancement and weakness. We also find that this gap actually
plays an important role regarding the ES.

4.1.1 Model

The reason that we choose F instead of qc is as follows. As we studied in Section 3, for a
given network G(N ,M), there are usually two ways to measure its robustness, i.e., F and
qc, where F considers the whole order parameter Ga(q) while qc only captures the moment
of the disappearance of the giant component. From this point of view, F is obviously more
capable of globally measuring the change of the order parameter. Thus, we here choose to
mainly consider F instead of qc. But there is still another problem. That is, from the results
of Section 3 we know that G would have varied reactions of F if it is attacked by different
strategies. Besides, so far we have studied over 20 attack strategies, which means that it is
almost impossible to consider all of them. However, here we only need to know whether
F could be viewed as a measure of the network structure. Namely, we could actually only
study one of them, and others can follow the same way. Hence, we choose the simplest one,
i.e., F under the attack of HubS.

Besides, following the assumption of ref. [13] viewing the dynamics of the nodes of G
as phase oscillators coupled by the associated edges, we still employ the Kuramoto model
[38] to govern the dynamics of the coupled oscillators:

θ̇i = ωi + λ ∑
j∈N

Aij sin(θj − θi), (4.1)

where i ∈ N , θi is the phase of oscillator i, and ωi denotes the corresponding natural
frequency. A is the associated adjacency matrix (see Section 2.1.2). For a simple network,
Aij is a binary symbol, i.e., Aij = 1 if eij ∈ M, otherwise, Aij = 0. Now if we control the
coupling strength λ, the coherence (usually measured by the order parameter ℜ) among the
oscillators could be controlled, which follows, e.g.,

ℜ(t)eiψ(t) =
1
n ∑

j∈N
eiθj(t), (4.2)

where i =
√
−1, e is Euler’s number, and ψ(t) = ⟨θ(t)⟩ denotes the phase of the mean field

of the system under the evolution of time t.

86

4.1 Effects of Network Robustness on Explosive Synchronization

4.1.2 Rewiring strategy

To tune the values of F and r of G, we first define the following procedures:

α−(eij) := cut the edge between nodes i and j,

α+(σuv) := add an edge between nodes u and v,

where σuv means that there is no direct connection between nodes u ∈ N and v ∈ N , i.e.,
eij ∈ M and σuv /∈ M. Further, letting

α−(eij, euv) := α−(eij) and α−(euv),

α+(σiu, σjv) := α+(σiu) and α+(σjv),

we have the following observations:

i) the average degree ⟨k⟩ keeps constant if α−(eij) and α+(σuv) appear in a pair;

ii) the node degree distribution keeps unchanged if α−(eij, euv) and α+(σiu, σjv) appear
in a pair;

iii) r keeps constant if ki = kv or/and k j = ku under the condition of observation ii).

Note that both eij and euv are randomly selected from G in this thesis. Besides, for convenience
of description, we define the goal function ξδ(g) based on the cut-add strategy, i.e., α−(eij, euv)

and α+(σiu, σjv) appear in a pair, where g is the metric associated with a certain property
of G, like r or F, and δ is a symbol corresponding to either the enhancement (+) or the
reduction (−) of g. Moreover, we employ ξδ(g|ag) to represent the evolution of ξδ(g) under
the condition of ag. For example, ξ+(F0|r ≡ r0) means that the robustness F of G is enhanced
to F0, while its assortativity r is fixed to r0, where both F0 and r0 are given values. In addition,
when we specify a certain value, e.g., r = 0.000, it means that the difference between the
given value and the real value is within 1× 10−5. In this case, we use ξδ(g) instead of ξ+(g)
or ξ−(g) because both of them are employed to adjust the network in a small region around
the given value. In other words, for instance, we first use either ξ+(r0) or ξ−(r0) to make the
network assortativity close to r0, and then employ both ξ+(r0) and ξ−(r0) to further adjust
the network which finally has r = r0 ± 10−5.

In particular, for a given network and g0 (assuming g0 > g), one procedure α−(eij, euv)

and α+(σiu, σjv) is accepted if it increases g, otherwise, is ignored. Similarly, when g0 < g,
we adopt the exchange α−(eij, euv) and α+(σiu, σjv) if it decreases g. Then, repeat those two
procedures until desired g0 is reached, which corresponds to ξδ(g). During the process to
g0, we may capture some points (say g′0), where g only undergoes an enhancement or a
reduction. This case is associated with ξ+(g′0) or ξ−(g′0), respectively. Moreover, if there
is no special explanation, we also relate g0 > g to the enhancement of the attribute g and
g0 < g to the reduction.

4.1.3 Results

In this section, we will numerically demonstrate the effects of F as well as the
combinations of F and r on the system of Eq. (4.1), in which the natural frequency ωi

87

4. Functions of Order Parameter as Measure

1.0 1.25 1.5 1.75 2.0
0.0

0.2

0.4

0.6

0.8

1.0

λ

ℜ Je
Jb S

(a)

1.0 1.5 2 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

λ

ℜ ξδ(r)

ξδ(F)

(b)

1.5 2 2.5 3 3.5
0.0

0.2

0.4

0.6

0.8

1.0

λ

ℜ

(c)

0.5 1 1.5 2 2.5
0.0

0.2

0.4

0.6

0.8

1.0

λ

ℜ

(d)

Figure 4.1: The magnitude of synchronization ℜ versus the coupling strength λ for the forward
and backward transitions in networks with n = 103 and ⟨k⟩ = 6.0. (a) The initial SF network
constructed using the BA model with F = 0.197 and r = −0.067. The solid and dashed lines
respectively correspond to the forward and backward transitions, between which is the hysteresis
area represented by S . Besides, the maximal jump sizes are accordingly denoted by Je and
Jb. (b) r = 0.000 with F = 0.278 adjusted by ξδ(r) (red circle) and F = 0.250 with r = −0.033
through ξδ(F) (blue square) on the initial SF network. (c) r = 0.050 with F = 0.354 and F = 0.300
with r = −0.006. (d) r = −0.050 with F = 0.213, and F = 0.150 with r = −0.077.

0.0

0.2

0.4

0.6

0.8

1.0
(a)

r

0.000
F

0.200

ℜ

(b)

r
−0.050

F
0.200

(c)
r

0.150
F

0.200

(d)

r
−0.200

F
0.200

0.5 1.5 2.5
0.0

0.2

0.4

0.6

0.8
(e)

r

0.000
F

0.350

0.5 1.5 2.5

(f)

r

0.000
F

0.100

0.5 1.5 2.5

(g)

r
−0.050

F
0.350

λ

0.5 1.5 2.5 3.5

(h)

r
−0.050

F
0.100

ξ
δ(
r|F

)

Figure 4.2: The magnitude of synchronization ℜ versus the coupling strength λ for forward
and backward transition on networks with n = 103 and ⟨k⟩ = 6.0 under different assortativity
r and robustness F. (a-d) ξδ(r|ξδ(F) ≡ 0.20). (e) and (g) ξδ(r|ξδ(F) ≡ 0.35). (f) and (h)
ξδ(r|ξδ(F) ≡ 0.10).

of each oscillator is fixed to the associated node degree ki. In addition, the order parameter
ℜ (Eq. (4.2)) is calculated by simulating the system long enough until it is stable using the
adaptive Runge-Kutta-Fehlberg method (Fehlberg’s 4(5) method) [115] with error tolerance
1× 10−4, respectively for the forward and backward evolutions of the coupling strength
λ(τ) := λ0 + τ∆λ, ∀τ ∈ [0, L], τ, L ∈ N, where λ0, ∆λ and L are given values. In other

88

4.1 Effects of Network Robustness on Explosive Synchronization

0.1 0.15 0.2 0.25 0.3 0.35
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

F

r

(a)

0.2

0.4

0.6

0.8

0.1 0.15 0.2 0.25 0.3 0.35
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

F

r

(b)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.15 0.2 0.25 0.3 0.35
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

F

r

(c)

0

0.2

0.4

0.6

Figure 4.3: The jump size J and hysteresis area S of the network robustness F and assortativity r.
(a) The forward synchronization Je. (b) The backward synchronization Jb. (c) S . The solid and
dashed curves correspond to F of r with ξδ(r) and r of F with ξδ(F), respectively. Each result is
the average of 20 network realizations.

words, each λ(τ) corresponds to a steady state of ℜ(λ(τ)), and the forward transition of ℜ
evolves with an ascending order of τ and the backward transition with a descending order of
τ. Note that ∆λ = 0.02 is considered here and all of the initial SF networks are constructed
using the BA model [18]. Besides, For a convenient description, the symbols ‘e’ and ‘b’ are
accordingly used to mark the forward and backward evolutions of λ.

0.0

0.2

0.4

0.6

0.8

1.0
(a)

r
−0.029

F
0.187

(b)

r

0.000
F

0.200

(c)

r

0.050
F

0.200

(d)

r
−0.050

F
0.200

ξ
δ(
r|F

)

0.0

0.2

0.4

0.6

0.8
(e)

r
−0.034

F
0.100

ℜ

(f)

r
−0.003

F
0.150

(g)

r

0.019
F

0.250

λ

(h)

r

0.037
F

0.300

ξ
δ(
F
)

0.5 1.5 2.5 3.5
0.0

0.2

0.4

0.6

0.8
(i)

r

0.000
F

0.100

0.5 1.5 2.5 3.5

(j)

r

0.000
F

0.300

0.5 1.5 2.5 3.5

(k)

r
−0.100

F
0.200

λ

0.5 1.5 2.5 3.5

(l) r

0.100
F

0.200

ξ
δ(
r|F

)

Figure 4.4: The magnitude of synchronization ℜ versus the coupling strength λ for forward and
backward transition on networks with n = 104 and ⟨k⟩ = 6.0 for different r and F. The result of
the paradigm network from the BA model is reported in (a).

We first investigate the effects of the network robustness F and assortativity r on ES
through ξδ(F) and ξδ(r) on networks with ⟨k⟩ = 6.0, respectively. Fig. 4.1a shows the order
parameter ℜ dependent on the coupling strength λ for the forward and backward transitions
on the initial BA network, where Je and Jb accordingly represent the maximal jump size of
ℜ of the forward and backward transitions. Mathematically, they are obtained through the

89

4. Functions of Order Parameter as Measure

following ways,

Je = ℜe(λ(τe + 1))−ℜe(λ(τe)), τe := arg max
τ

(ℜe(λ(τ + 1))−ℜe(λ(τ))),

Jb = ℜb(λ(τb))−ℜb(λ(τb − 1))), τb := arg max
τ

(ℜb(λ(τ))−ℜb(λ(τ − 1))).
(4.3)

And

S = ∆λ
τe

∑
τ′=τb

[ℜb(λ(τ
′))−ℜe(λ(τ

′))] (4.4)

denotes the hysteresis area, in which τ′ ∈ N. Indeed (see the red circle in Fig. 4.1(b-d)),
on the one hand, both S and J vary over the network assortativity and are suppressed by
either a large or a small r, which is in line with the results in refs. [112, 113]. On the other
hand, a similar change of S and J could be achieved through the adjustment of the network
robustness (see the blue square in Fig. 4.1(b-d)). That is, there is also a specific range of F
where both S and J could reach larger values than those that do not belong to that region.
But in general, we also have: no matter which one of r and F is adjusted, the other one
would positively increase or decrease.

Thus, we next fix either F or r, and then vary the other one to separately verify the
dependence of ES on the network robustness and assortativity. Fig. 4.2 illustrates the forward
and backward synchronization on networks with different r and F of 0.100, 0.200 and 0.350.
Note that ξδ(r|ξδ(F)) means that we first enhance or weaken the network robustness F
and then adjust the network assortativity r to a certain value by keeping F constant. As
manifested in Fig. 4.2(a-d), though r can narrow the hysteresis area S and decrease the jump
size J , both S and J still exist even r taking a much large or small values (0.150 and −0.200)
if F is fixed to 0.200. In contrast (Fig. 4.2(e-h)), the change of F sharply decreases the size of
S and J , and in some cases, they even disappear, which indicates that we could certainly
control S and J through the interaction of r and F.

Fig. 4.3 shows the results of the impacts of the interaction of the network assortativity
and robustness on the jump size and hysteresis area of ES, as well as F of r with ξδ(r) and
r of F with ξδ(F). Without loss of generality, we also consider the cases of BA networks
with n = 103 and ⟨k⟩ = 6.0. Due to the limitation of n, networks constructed by the BA
model are a little disassortative and their F is slightly less than 0.200. Therefore, we employ
ξδ(r|ξδ(F) ≡ 0.200) to reconstruct the paradigmatic BA networks and then generate our
experimental networks. As a result, all networks used for further study in this simulation
are with ⟨k⟩ = 6.0, F = 0.200 and r = 0.000 (the differences of both F and r among those
networks are within 1× 10−5). Finally, based on those networks, we derive Fig. 4.3 through
ξδ(r|ξδ(F)), which means that ξδ(F) and ξδ(r|F) are successively used to adjust the network
structure.

From Fig. 4.3, the following conclusions could be drawn:

1) the explosive synchronization is more likely in assortative networks with an
enhancement of robustness compared to those with disassortativity and weak
robustness;

2) extreme values of r and/or F would suppress the jump size J and hysteresis area S ;

90

4.1 Effects of Network Robustness on Explosive Synchronization

0.0

0.2

0.4

0.6

0.8

1.0
(a)

r

0.000
F

0.200

ℜ

(b)

r
−0.050

F
0.200

(c)
r

0.150
F

0.200

(d)

r
−0.200

F
0.200

0.5 1.5 2.5
0.0

0.2

0.4

0.6

0.8
(e)

r

0.000
F

0.350

0.5 1.5 2.5

(f)
r

0.000
F

0.100

0.5 1.5 2.5

(g)

r
−0.050

F
0.350

λ

0.5 1.5 2.5 3.5

(h)

r
−0.050

F
0.100

ξ
δ(
F
|r)

Figure 4.5: The magnitude of synchronization ℜ versus the coupling strength λ for forward and
backward transitions on networks with n = 103 and ⟨k⟩ = 6.0 under different assortativity r
and robustness F. (a, e, f) ξδ(F|ξδ(r) ≡ 0.000). (b, g, h) ξδ(F|ξδ(r) ≡ −0.050). (c) ξδ(F|ξδ(r) ≡
+0.150). (d) ξδ(F|ξδ(r) ≡ −0.200).

3) the existence range of J is much larger than that of S ;

4) Je is larger than Jb in assortativity networks but smaller in disassortativity networks;

5) there is an area within which both J and S reach peaks under the interaction of r
and F.

In detail, the solid curve in Fig. 4.3 represents the influence of r on J and S without the
control of F, which is related to refs. [112, 113, 114]. In addition, F shoots up with the
increase of r for r > 0, but slowly falls when r decreases if r < 0. This means that J actually
remains in a similar range of assortativity and disassortativity if F is unfixed. With respect to
S , we have results similar to ref. [113], namely, S reaches its maximum in weak assortativity
networks and vanishes quickly as networks become disassortative. A contrary trend of r is
observed in the process of ξδ(F) (see the dashed lines in Figs. 4.3), under which J and S
disappear dramatically with the decrease of F and stay in a large range of increasing F.

From Fig. 4.3, the following conclusions could be drawn: 1) the explosive synchroniza-
tion is more likely in assortative networks with an enhancement of robustness compared to
those with disassortativity and weak robustness; 2) extreme values of r and/or F will refrain
the jump size J and hysteresis area S ; 3) the existence range of J is much larger than that of
S ; 4) Je is larger than Jb in assortativity networks but smaller in disassortativity networks;
5) there is an area within which both J and S reach peaks under the interaction of r and
F. In detail, the solid curve in Fig. 4.3 represents the influence of r on J and S without
the control of F, which is related to refs. [112, 113, 114]. In addition, F shoots up with the
increase of r for r > 0, but slowly falls when r decreases if r < 0. This means that J actually
remains in a similar range of assortativity and disassortativity if F is unfixed. With respect to
S , we have results similar to ref. [113], namely, S reaches its maximum in weak assortativity
networks and vanishes quickly as networks become disassortative. A contrary trend of r is
observed in the process of ξδ(F) (see the dashed lines in Figs. 4.3), under which J and S
disappear dramatically with the decrease of F and stay in a large range of increasing F.

91

4. Functions of Order Parameter as Measure

−0.1

0.2

0.5

0.8 (a) S

F

r

(b) (c) (d)

0 4 8 12 16 20
−0.1

0.2

0.5

(e)

0 4 8 12 16 20

(f)

0 4 8 12 16 20

(g)

Pt

0 4 8 12 16 20

(h)

Figure 4.6: The hysteresis area S versus the perturbations of network assortativity r and
robustness F on networks with ⟨k⟩ = 6.0, n = 103 (the same initial network as Fig. 4.2)
for (a,b,e-h) and n = 104 (the same initial network as in Fig. 4.4) for (c,d). (a,b) Respectively
for ξδ(r|F) and ξδ(F|r) with r(0) = −0.067 and F(0) = 0.197. (c,d) Respectively for ξδ(r|F) and
ξδ(F|r) with r(0) = −0.029 and F(0) = 0.187. (e, g) ξδ(r) with r(0) = 0.000 and r(0) = 0.050,
accordingly. (f, h) ξδ(F) with F(0) = 0.197 and F(0) = 0.250, accordingly.

We further validate the above conclusions in a much larger network with n = 104 and
⟨k⟩ = 6.0. Figs. 4.4(b, i, j) and Figs. 4.4(b-d, k, l) depict that how ES is influenced by varying
F or r, while the other one is fixed: making network fragile is more likely to collapse ES than
enhancing the network’s robustness, and a larger S can be observed in assortative networks
compared to disassortative networks. When r is not fixed (Figs. 4.4(e-f)), J and S disappear
in a high speed with decreasing of F and stay in a large range for increasing F. Moreover, in
these cases, S = 1.979 reaches its maximum when r = 0.000 and F = 0.200, and it is also
much larger than that in the network with n = 103.

4.1.4 Discussions

By now, we have presented our results of ξδ(r|ξδ(F) ≡ F0), namely, the network
robustness F is initially given for a certain value F0, and then the network assortativity
is further adjusted with the constraint F ≡ F0. But what would happen if we employ
ξδ(F|ξδ(r) ≡ r0) to modify the network? Fig. 4.5 shows the corresponding results of
ξδ(F|ξδ(r)) on the same network in Fig. 4.2. The strongest difference between them is in Fig.
4.2 and Fig. 4.5(c,d,g,h), where the hysteresis area vanishes in one network, while it still
exists in the corresponding other one, even though they both have the same r and F. One
reason may be ascribed to the fact that both r and F are disturbed heavily in Figs. 4.2(g,h)
and Figs. 4.5(c,d), e.g., for Fig. 4.5c, F will considerably increase with the rise of r and then
be dragged back to 0.200 (also see the solid line in Fig. 4.3). This can be verified in a similar
way as in Fig. 4.3.

Another interesting difference is that the hysteresis area in Fig. 4.2a is much larger than
that in Fig. 4.5a (also see Fig. 4.8). The main distinct process between them is that the change
trend of F, i.e., for ξδ(r|ξδ(F)) (Fig. 4.2a), F only undergoes an increasing process (ignore
the tiny adjustment), while it firstly increases with the rise of r and then decreases to 0.200
through ξδ(ξδ(F)|r) (Fig. 4.5a). Thus, how do the increasing and decreasing behaviours

92

4.1 Effects of Network Robustness on Explosive Synchronization

−0.15 −0.05 0.05 0.15
0.00

0.20

0.40

0.60

0.80

r

S

F

(a)

0.1 0.2 0.3 0.4
−0.15

0.00

0.15

0.30

0.45

F

S

r

(b)

Figure 4.7: The hysteresis area S and the network robustness F or assortativity r versus r or F
for forward (blue) and backward (green) evolutions on networks with ⟨k⟩ = 6.0 and n = 103.

influence the ES? Fig. 4.6 shows S of the perturbations of r and F. For a convenient
description, we employ r(Pt) and F(Pt) to be associated with the perturbation step Pt. In
detail, at each step (Pt), the associated property (r or/and F) is either increased (ξ+(g)) or
decreased (ξ−(g)) (assuming 104 times of the cut-add strategy), and then adjusted back to
the given value, i.e., networks for each data point have similar properties. Besides, we here
set odd steps (Pt = 1, 3, . . .) as the decreasing process and even steps (Pt = 2, 4, . . .) as the
increasing process. Considering Fig. 4.6(e) as an example, we firstly employ ξ−(r) (104 times
of the cut-add strategy) to reduce the network assortativity and then adjust it to r(1) ≈ r(0)
through ξδ(r) to obtain the network for Pt = 1. Based on this network, we further use ξ+(r)
to enhance the network assortativity and then tune it back to r(2) ≈ r(1) ≈ r(0) to get the
network for Pt = 2, etc. In this manner, we continually disturb r but at each data point
r(Pt) ≈ r(0), Pt = 1, 2, 3

0.5 1.5 2.5 3.5
0.0

0.2

0.4

0.6

0.8

1.0

λ

ℜ

ξδ(r|ξδ(F))

ξδ(F |ξδ(r))

ξδ(r|ξδ(F |r))

ξδ(F |ξδ(r|F))

(a)

0.5 1.5 2.5 3.5 4.5
0.0

0.2

0.4

0.6

0.8

1.0

λ

ℜ

(b)

Figure 4.8: The magnitude of synchronization ℜ versus the coupling strength λ for forward and
backward transition on networks with ⟨k⟩ = 6.0, r = 0.000 and F = 0.200 for (a) n = 103 and (b)
n = 104. ξδ(r|ξδ(F|r)) here means that F is firstly adjusted to 0.200 by keeping r constant and
then change r to 0.000 with fixed F ≡ 0.200.

As shown in Fig. 4.6 (a-d), the hysteresis area S decreases with the increase of Pt if
we disturb the network assortativity when keeping F constant, and it undergoes a slight
fluctuation by ξδ(F|r). Note that the perturbation process is different from that in Fig.
4.3. Besides, the utmost interest may locate in Fig. 4.6 (e-h), where we only consider the
perturbation from either r or F. For both cases, S periodically fluctuates in the evolution of
Pt. Specifically, when disturbing r, S negatively changes as the network robustness evolves,
while it is positively correlated to r through ξδ(F). In addition, the fluctuation between two

93

4. Functions of Order Parameter as Measure

adjacent Pt is very large. This suggests that quite different S will be obtained even though
two networks have almost similar r or F.

To further demonstrate the results of Fig. 4.6 (e-h), we show the hysteresis area S and
the network robustness F (or assortativity r) against the forward and backward evolutions of
r (or F) in Fig. 4.7. For the backward evolution of r (Fig. 4.7a), we firstly disturb r through
ξδ(r) until the network reaches a stable state (assuming Pt ∈ [1, 100]), where ⌊10000/Pt⌋
is conducted for the cut-add strategy at each perturbation step. After this, r is increased
to 0.15 and then gradually decreased to −0.15, during which we capture the temporary
networks with an interval of around 0.01 of r. We independently repeat this process 20 times
and obtain the backward transition of r, which is shown as the green-dotted-circle curve in
Fig. 4.7a. The forward evolution of r is gathered in a similar way, but with the process that
r is decreased to −0.15 and then gradually increased to 0.15. The similar strategy is also
conducted to evolve F.

As illustrated in Fig. 4.7, there is a gap of F or r between ξ−(·) and ξ+(·). This gap
changes the place of the peak of S , which indicates that δ of ξδ(·) truly plays an important
role in S . Moreover, the magnitude of synchronization ℜ versus the coupling strength
λ for the forward and backward transitions on networks with the same ⟨k⟩, r and F is
demonstrated in Fig. 4.8. These results are also twofold. On the one hand, there might be
a maximum of S achieved by appropriate adjustments of r and F. On the other hand, the
order of the adjustment plays a crucial role, which means that r and F are not the only two
properties influencing ES. By and large, this problem is still open and needs further study.

4.1.5 Summary

The robustness of networks as a fundamental problem in network science has been
widely studied during the past decade [2]. Those studies mainly consider how the structure
of networks influences their robustness. Here we view the network robustness F as a measure
of networks and employ it to capture the change of networks’ structure. More specifically,
we have numerically studied effects of the network robustness as well as its interaction with
network assortativity r on explosive synchronization (ES), and have found that both extreme
values of F and r would suppress ES, especially the hysteresis area between the forward and
backward transitions. In particular, for a network constructed by the BA model, there is a
maximum of hysteresis area achieved by appropriate adjustments of F and r. In addition, our
discussion reveals that the change trends of both the network robustness and assortativity
play important roles in ES. In other words, different behaviours of ES are found in networks
with similar F or/and r if the networks undergo different change processes, which remains
the problem of effects of the network structure on ES still partly open. More discussions will
be found in Section 4.4.

4.2 Ways to Enhance the Robustness of a Network

From Section 3 we know that the robustness of a network is associated with a number
of factors, such as the dense of edges (average degree), the degree distribution, the attack
strategy, the correlations among nodes, the existence of community structures, etc. Usually,

94

4.2 Ways to Enhance the Robustness of a Network

the denser a network is, the more robust it would be. But for most networks, like constructing
a new road in the road network, a new edge means a huge amount of cost. Besides, the
degree distribution represents the capabilities of nodes, which is also usually difficult to
manipulate, e.g., the number of airlines that an airport could handle always keeps unchanged.
Regarding the correlations and community structures, one can easily observe their influences
from the comparisons of Figs. 3.28 and 3.29. Therefore, in this section, following the
assumption that the degree of each node is fixed [5], we are going to mainly study how to
overcome the ‘bucket effect’ and increase a network’s robustness regarding varied intentional
attacks.

4.2.1 The power of selection

As studied in Section 4.1.2, for a given network G(N ,M), its degree sequence would
keep unchanged if we tune the network through the cut-add strategy, i.e., α−(eij, euv) and
α+(σiu, σjv) appear in a pair. Hence, a straightforward way to improve G’s robustness
regarding a specific attack strategy S is as follows1:

1) randomly pick up two edges eij and euv satisfying i ̸= j ̸= u ̸= v and σiu, σjv /∈ M;

2) get a new network G′ through α−(eij, euv) and α+(σiu, σjv);

3) obtain S′ of G′;

4) let G ← G′ and S ← S′ if F′(S′) > F(S), where F′(S′) and F(S) are associated with
G′ and G, respectively;

5) repeat those steps t times.

In general, step 3) of the above procedure accounts for the main part of the time consumption,
and step 4) follows (calculation of F′(S′)). Here, for a convenient description, we still use the
notation from 4.1.2, i.e., ξ+(g), in which g corresponds to F(S).

Apparently, most of the advanced strategies that we studied in Section 3 would face
the problem from step 3). For instance, compared to HubS, ARRS would take much more
time to get a result, even though it could have better results than ACIS, AEIS, and ABPDS
using much less time. Note that t is usually much larger than n to enhance a network, no
matter whether there are other constraints2. One can also imagine a scenario that we try to
enhance the robustness of the as-Skitter network, on which even ABonS1 would take a few
seconds to get a result. All those facts indicate that we cannot employ g = F(S) directly for
an advanced strategy, particularly on networks of large size.

Instead, a trick that we could use is to let g = F(HubS) in ξ+(g) since S ≡ S′ holds for
HubS, which means step 3) could be effectively eliminated. But we still face another problem:
the ‘bucket effect’. Fig. 4.9 illustrates the evolution of F as a function of t considering
g = F(HubS). Indeed, regarding HubS, both networks become more and more robust as
t increases. But if they are attacked by ARRS and EvolF, one can easily observe that there

1Here we mainly consider F and one can study qc in the similar way.
2We mainly consider a constraint of keeping the node degree fixed since others could follow a similar way to

study, e.g., accept a switch if it does not result in an increment of the edge weight (which could be the length of
airlines or the cost of relationships).

95

4. Functions of Order Parameter as Measure

100 101 102 103 104 105 106
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30
F

HubS
ARRS
EvolF

(a)

100 101 102 103 104 105 106
t

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

F

(b)

Figure 4.9: Evolution of F under the cut-add strategy regarding g = F(HubS) on (a) the power
grid network and (b) the yeast network. Marks with respect to ARRS and EvolF are obtained on
networks at t = 20, 21, 22, ..., 220.

are some critical tc, after which both F(ARRS) and F(EvolF) would decrease as F(HubS)
increases. In other words, there is some peak of F associated with an advanced strategy if a
network is enhanced by g = F(HubS).

A straightforward way to acquire that peak is using a selection strategy similar to
the one conducted by ARRS. That is, starting from G′ at t, we run the cut-add method a
number of times based on g = F(HubS) and then get a new network G′′. After that, the
corresponding advanced strategy, e.g., ARRS, is used to decide whether G′′ should be kept.
But we might still need a number of such selections to find the optimum. Hence, as an
alternative, we may rely on some basic method which could of course get a result using
much less time than ARRS. Meanwhile, it also has a similar trend of F as ARRS. A such fast
strategy might be ABonS1, ABonS2, or ARRS with an early stop.

AB
on
S1

AB
on
S1
c

AB
on
S1
q

AB
on
S2

AM
eti
sS

AM
eti
sSg AR

RS
AR
RS
e
Ev
ol F

Hu
bS

ABonS1

ABonS1c

ABonS1q

ABonS2

AMetisS

AMetisSg

ARRS

ARRSe

EvolF

HubS

-1.0

0.0

1.0

(a)

AB
on
S1

AB
on
S1
c

AB
on
S1
q

AB
on
S2

AM
eti
sS

AM
eti
sSg AR

RS
AR
RS
e
Ev
ol F

Hu
bS

ABonS1

ABonS1c

ABonS1q

ABonS2

AMetisS

AMetisSg

ARRS

ARRSe

EvolF

HubS

-1.0

0.0

1.0

(b)

Figure 4.10: Illustration of the correlation matrix based on the Pearson correlation coefficient
of F at t = 20, 21, 22, ..., 220 on (a) the power grid network and (b) the yeast network under the
condition same as Fig. 4.9. One can read the magnitude of corresponding coefficient through
both the color and the size of each square (i.e., the larger the magnitude is, the bigger the related
square is).

Fig. 4.10 shows the correlation pattern in regard to the Pearson correlation coefficient
Coef of F. Specifically, same as Fig. 4.9, we first obtain a bunch of networks at t =

20, 21, 22, ..., 220 using g = F(HubS). Then, all the considered methods run on those networks,

96

4.2 Ways to Enhance the Robustness of a Network

and a number of F regarding different t and methods could be obtained. For each method,
we have a series of F as a function of t, and the Pearson correlation coefficient is drawn
between every pair methods. As we can see from Fig. 4.10, though ABonS1 fails, both
ABonS1c and ARRSe could effectively capture the trend of EvolF, where ABonS1c3 is a
variant of ABonS1 by directly considering the component size, and ARRSe is the case of
ARRS with T = 10. Recall that our finial goal is to tackle the ‘bucket effect’ problem, namely,
to enhance a network to be against the most advanced attack strategy, i.e., EvolF. More
precisely, ABonS1c has Coef = 0.90 in both network while ARRSe holds 0.98.

2 4 6 8 10 12 14
T

0.955

0.960

0.965

0.970

0.975

0.980

0.985

Co
ef

(a)

2 4 6 8 10 12 14
T

0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990

Co
ef

(b)

Figure 4.11: The Pearson correlation coefficient Coef of F between EvolF and ARRSe with
different T under the condition same as Fig. 4.9. The solid line is drawn based on the mean of
F over 20 IIs. Meanwhile, the square mark corresponds to the case of obtaining F by running
ARRSe once. Each error bar is obtained by calculation the standard deviation over 20 IIs.

Therefore, we also depict the Pearson correlation coefficient Coef of F between EvolF and
ARRSe with different T under the condition same as Fig. 4.9 in Fig. 4.11. Here we consider
two cases: i) run ARRSe 20 times on a specific network and use the mean to measure F
(solid lines in Fig. 4.11) and ii) run ARRSe only once (square marks). As we can see from
there, for the same T, Coef of case i) is always larger than the mean of case ii). But case i)
also suffers a problem that it has to run ARRSe a number of times for the detection4. Indeed,
one could overcome that problem by parallelizing it. But in what follows, we would mainly
consider case ii) because it only needs to run ARRSe once each time, which makes it usually
more effective compared to case i), especially when a network has a large size. Besides,
as T increases, it becomes more and more stable. Nevertheless, one should find a balance
between the time consumption and Coef. To sum up, among those methods in Fig. 4.10,
ARRSe would be more preferable. And if a network has a very large size, then ABonS1c
could be an alternative.

So far we have studied which method could be used to detect the critical tc of EvolF

during a process of enhancement of robustness regarding g = F(HubS). For a convenient
description, we employ α̂ to quantify F(EvolF) at tc. Then, another problem arises as to
how could we effectively further boost α̂? A straightforward approach might be: 1) run the
cut-add strategy a number of times; 2) use ARRSe to decide whether those exchanges of
edges could be accepted; 3) repeat the previous steps until this process is stable. Following

3ABonS1c is usually more effective than ABonS1 in small networks but less in large networks with respect to
the robustness and immunization problems.

4One might also further study the influence of the number of repeated times on ARRSe.

97

4. Functions of Order Parameter as Measure

that, now HubS could also be replaced by ARRSe, that is, step 1) is conducted on g = F(S′),
where S′ is fixed to ARRSe from step 2). In this manner, α̂ of Fig. 4.9a is increased to 0.1728
from 0.1568, and Fig. 4.9b to 0.0626 from 0.0598. Besides, if we initialize ARRSe based on
different attack strategies (see Section 3) instead of HubS, then α̂ could be improved again.
The reason might be ascribed to the fact that different initial attack strategies indirectly help
keep the diversity of the network structure, which one can study more following the routine
and also strategies similar to Section 3.5. All in all, we reach the following processes to
enhance the robustness of a network G(N ,M), that is,

e1) initialize ARRSe based on a specific attack strategy;

e2) run ARRSe on G and get the corresponding attack strategy S;

e3) run ξ+(g) a number of times (say tl) on G and then get a new network G′, where
g = F(S);

e4) run ARRSe on G′ and get a new attack sequence S′;

e5) G ← G′ and S← S′ if F(S′) of G′ is larger than F(S) of G;

e6) get the enhanced network G by repeating steps e3), e4), and e5) a number of rounds
(say tg).

We call the above process WayEnhS. Note that tg corresponds to the number of times that
we run ARRSe. And in general, for the two networks in Fig. 4.11, G would become stable
within 10 of tg when tl = 103. Besides, as we mentioned, one might of course conduct e1)-e6)
a few times to acquire a more robust network (i.e., get a larger α̂) through initializing ARRSe
based on different attack strategies per round.

But instead, we are here more interested in how to further speed up WayEnhS since
our aim is to tackle networks of very large size, e.g., a network drawn over the whole
population. From Section 4.1, particularly from Fig. 4.7, we learn that there is a positive
feedback between the assortativity and F(HubS), i.e., a large r is always associated with a
large F(HubS), which means that we can actually improve F(HubS) by increasing r. Besides,
from the conclusion of iii) in Section 4.1.2, we know that r could be controlled locally (see
also Eq. (2.26)). That is, we could also indirectly control g = F(S) in step e3) locally, at least
for the case of g = F(HubS).

Therefore, we reach a problem similar to the one associated with the explosive
percolation (see Section 2.5). Specifically, considering the rewiring strategy in Section
4.1.2, if a pair of α−(eij, euv) and α+(σiu, σjv) is only accepted when

br = (kiku + k jkv)− (kik j + kukv) (4.5)

is larger than 0, then the assortativity r would be a monotonically increasing function of t.
For a convenient of description, we name this process WayEnhSrv1. Note that WayEnhSrv1
only needs to consider the degree of the related four nodes rather than calculate F(HubS)
for per t.

As exhibited in Fig. 4.12, where we verify the corresponding strategies through ARRS
with T = 103 since the associated trend of F is actually our utmost interest, WayEnhSrv1

98

4.2 Ways to Enhance the Robustness of a Network

100 101 102 103 104 105 106
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F

0.0

0.2

0.4

0.6

0.8

r

(a)

100 101 102 103 104 105 106
t

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

F

0.2

0.3

0.4

0.5

0.6

r

(b)

Figure 4.12: Evolution of F (regarding ARRS with T = 103 and HubS) and r versus t on (a) the
power grid network and (b) the yeast network, where dashed lines correspond to r and others are
associated with F. Amid them, F(HubS) is represented by solid lines and marks are F(ARRS).
Meanwhile, the strategy based on HubS (see also Fig. 4.9) is colored red and the one based on
assortativity is blue. All results are drawn from 20IIs.

acquires similar peak of F(ARRS) compared to the one based on HubS in the power grid
network, which indicates that it truly works in this case. But for the yeast network, the
performance of WayEnhSrv1 is worse than the one based on HubS. When looking into these
two results, one can easily observe that r of the strategy based on HubS in Fig. 4.12a has a
positive feedback of F(HubS) while a negative in Fig. 4.12b, which might account for the
different performances that WayEnhSrv1 has. Nevertheless, if one needs a really fast way
to enhance the robustness of a network, WayEnhSrv1 in tandem with the check of ARRSe
would be a good choice.

Considering the different behaviors of r in Figs. 4.12a and 4.12b, we naturally ask what
role does r play in WayEnhS? Specifically, for per t, if a few pairs of edges, say ap, are
selected, and only the one leading to the largest increase5 of br is chosen to conduct the
cut-add strategy, then could WayEnhS reach its peak sooner? Or could that strategy help
WayEnhS acquire better results?

Firstly, we verify the effect of the above strategy on WayEnhSrv1, say WayEnhSrv1(ap).
As illustrated in Fig. 4.13a, both WayEnhSrv1(2) and WayEnhSrv1(Random) would become
stable as t increases, which is a really good property since we do not need to check the critical
point anymore as we do for the one based on HubS (i.e., the Baseline). And apparently,
both of them could acquire networks which share the largest F(ARRS) with the Baseline,
WayEnhSrv1(4) and WayEnhSrv1(8). But for the yeast network, only WayEnhSrv1(2) have
the ability to surpass the Baseline. And the peak of WayEnhSrv1(8) is even much worse
than the one that the Baseline has, which might also be ascribed to the differences of the
assortativity r. Therefore, in the insert panels of Fig. 4.13, the assortativity r against t is also
given with respect to the cases of the Baseline, WayEnhSrv1(2), and WayEnhSrv1(8). For the
power grid network, WayEnhSrv1(2) undergoes the same trend of r as the Baseline, which
indicates that r plays an important role in this type of network. But for the yeast network, a

5Note that here we only study this special case. Other strategies over the choices of edges could be investigated
following the same routine.

99

4. Functions of Order Parameter as Measure

100 101 102 103 104 105 106
t

0.01

0.02

0.03

0.04

0.05

0.06
F

Baseline
ap=1
ap=2
ap=4
ap=8
Random

(a)

100 101 102 103 104 105 106
t

0.08

0.10

0.12

0.14

0.16

0.18

F

(b)

Figure 4.13: F of ARRS (with T = 103) on networks enhanced by WayEnhSrv1(ap) considering
(a) the power grid network and (b) the yeast network, where the Baseline is the one based on
HubS in Fig. 4.12, and the Random corresponds to the case of ap randomly drawn from [1, 10]
for per tl = 103. The dashed lines in the insert panel are associated with the assortativity r as a
function of t in regard to the Baseline (Blue), ap = 2 (green), and ap = 8 (purple).

slight increase of r has a similar effect on F(ARRS) compared to a sharp decrease of r, which
tells us that the robustness might also be controlled by some other attributes.

100 101 102 103 104 105 106
t

0.01

0.02

0.03

0.04

0.05

0.06

0.07

F

Baseline
ap=1
ap=2
ap=4
ap=8
Random

(a)

100 101 102 103 104 105 106
t

0.08

0.10

0.12

0.14

0.16

0.18

F

(b)

Figure 4.14: F of ARRS (with T = 103) on networks enhanced by WayEnhS(ap) considering (a)
the power grid network and (b) the yeast network, where the Baseline is WayEnhSrv1(2) in Fig.
4.13, and the Random corresponds to the case of ap randomly drawn from [1, 10] for per tl = 103.
The dashed lines in the insert panel are associated with the assortativity r as a function of t in
regard to the Baseline (Blue), ap = 2 (green), and ap = 8 (purple).

We then conduct the same strategy on WayEnhS, say WayEnhS(ap), in which tl = 103.
The corresponding results are shown in Fig. 4.14, where the Baseline is WayEnhSrv1(2) in
Fig. 4.13 instead of the one based on HubS. Different from Fig. 4.13a, WayEnhS(8) is better
than others in the power grid network, where the performance of WayEnhS(ap) actually
increases as the rise of ap. However, for the yeast network, ap = 8 is again much worse than
others. In addition, different from Fig. 4.14a, F(ARRS) has an inverse trend against ap in Fig.
4.14b, that is, it sharply decreases as ap increases. In other words, WayEnhS(ap) could not
find such a ap like that ap = 2 works on both networks for WayEnhSrv1(ap). Nevertheless,
WayEnhS(Random) works and could overcome that problem, which also has better results
than WayEnhSrv1(2) (the Baseline).

100

4.2 Ways to Enhance the Robustness of a Network

100 101 102 103 104 105 106
t

0.03

0.04

0.05

0.06

F

T=10
T=1000

Figure 4.15: F of ARRS (with T = 103) on networks enhanced by WayEnhS(ap) regarding
different T for ARRSe on the German power grid network.

We finally consider the influence of ARRSe on WayEnhS. As we mentioned, the time
consumption would increase as the rise of T for ARRSe. Hence, we here employ a quite
small network, the German power grid network (with n = 511 and m = 679), to verify the
effects of T on WayEnhS. As shown in Fig. 4.15, ARRSe with T = 103 could truly obtain
better results than the one with T = 10. But the differences of F between them are very
small, which, in tandem with the results from Figs. 4.10 and 4.11, indicates that T = 10 is
enough for ARRSe for WayEnhS.

In conclusion, the significant performances of both WayEnhS(Random) and
WayEnhSrv1(ap) show us ‘the power of selection’. And such selection mainly includes two
parts. On the one hand, the local selection based on the assortativity could help us quickly
enhance the robustness of a given network. One the other hand, the selection based on
ARRSe accounts for the global one and could improve the associated performance again.
In particular, for a network of small size, one could use WayEnhS(Random) to acquire a
strongly robust network. Meanwhile, WayEnhSrv1(2) would be an effective alternative to
tackle a network of very large size. In what follows, if there is no special explanation, we
would mainly consider WayEnhS(Random) and WayEnhSrv1(2), and accordingly refer to
them as WayEnhS and WayEnhSr.

4.2.2 Applications

We first verify WayEnhS by considering varied attack strategies (see also Section 3) on
two small networks, the power grid network and the yeast network. Specifically, tl = 103 and
tg = 103 are conducted for WayEnhS, based on which the enhanced networks are acquired.
Following that, attacks are considered on both the original and enhanced networks. As we
can see from Fig. 4.16, WayEnhS not only improve the ‘bottle neck’ of the robustness of a
network against but also makes the network more capable of impeding attacks from all kinds
of strategies. In particular, for the power grid network, if we let F(EvolF) of the enhanced
network be F′ and the one of the original network be F′′, then F′/F′′ approaches 9.15, which
indicates that the enhanced network might be around 9 times more robust than the original
one. For the yeast network, F′/F′′ is even much larger, reaching 26.80. With respect to other
strategies, the improvement is also significant. Besides, for both enhanced networks, ARRS
and EvolF are much better than other methods, in particular, even ARRS accordingly has
improvements (see also Eq. (3.33)) of 8.15% and 9.01% on the power grid network and the

101

4. Functions of Order Parameter as Measure

0.02 0.04 0.06 0.08 0.10 0.12 0.14

HubS
AHubS
ABetS
APagS
ACNS
AEIS
AITS

ABPDS
ACIS

ABonS2
APRSs1

ABonS1q
APRSs1q
ABonS1c

ARRS
AMetisS
AMetisSg

EvolF
0.00 0.05 0.10 0.15 0.20 0.25

F

(a) (b)

Figure 4.16: Performances of WayEnhS on (a) the power grid network and (b) the yeast network.
The solid triangle is related to the original networks and the filled circle corresponds to the
networks enhanced by WayEnhS. The dashed line marks F of EvolF.

yeast network compared to AMetisSg, which means that both AMetisS and AMetisSg to
some extend failed on both enhanced networks6.

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

HubS

AHubS

ACNS

AEIS

AITS

ABPDS

ABonS2

APRSs1

ABonS1q

APRSs1q

ABonS1c

ARRS

AMetisS

AMetisSg

EvolF
0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225

F

(a) (b)

Figure 4.17: Performances of WayEnhSr on (a) the Email-Enron network and (b) the loc-Gowalla
network. The solid triangle is related to the original network and the filled circle corresponds to
the network enhanced by WayEnhSr. The dashed line marks F of EvolF.

We then demonstrate the effectiveness of WayEnhSr on two large networks, the Email-
Enron network and the loc-Gowalla network, where 108 exchanges are conducted. As
exhibited in Fig. 4.17, WayEnhSr could also effectively increase the ‘bottle neck’ of the

6One can study more regarding the condition that AMetisS and AMetisSg would fail, in tandem with the
results in Fig. 3.29.

102

4.3 Influences of Acquaintances on the Containment of Epidemics

network robustness. More precisely, it has F′/F′′ = 6.08 and 3.39 for the Email-Enron
network and the loc-Gowalla network. Though the improvements are not significant as the
one that WayEnhS has, WayEnhSr is much faster than WayEnhS, e.g., it could acquire an
enhanced network within 1 minutes in our simulation environment regarding the loc-Gowalla
network.

4.2.3 Summary

As we have discussed, the true robustness of a network is detected by the most advanced
attack strategy which, however, is usually too time-consuming to be a criterion for the cut-
add strategy. To overcome this problem, we firstly study which naive method could be
an alternative of the advanced one and reach ARRSe (our basic method ARRS with early
stop), which could effectively check the critical point during the enhancement process based
on HubS. We then further investigate that process and acquire our first method, WayEnhS,
which has a better performance and similar time consumption against the one based on
HubS. But WayEnhS is still hardly employed to tackle large networks, since it has to calculate
F(S) per t. Hence, we further investigate the effects of assortativity on WayEnhS, an attribute
that highly correlates with the network robustness and could be controlled locally. Such
trick not only helps us improve the performance of WayEnhS again but also gives us the
second method, WayEnhSr, which is totally local. To demonstrate the effectiveness of both
WayEnhS and WayEnhSr, four real-world networks are considered. The results regarding
attacks from over ten state-of-the-art strategies illustrate that both of them have the ability to
greatly improve the robustness of a network. Nevertheless, both WayEnhS and WayEnhSr
are indirect methods to increase the bound of the robustness against the most advanced
attack strategy, e.g., ARRSe with T = 103 is more effective than the one with T = 10, since
the first has larger correlation with EvolF. Thus, this problem is still open and more studies
are needed, including itself of the most advanced attack strategy and its more reliable
representative.

4.3 Influences of Acquaintances on the Containment of Epidemics

In this part, rather than consider the case in Section 3.1.2, i.e., the influence of the
degree distribution on the epidemic spreading, we mainly focus on existing networks and
study effects of the change of the corresponding structure on the spreading patterns under
immunization. In particular, we will see how we tune the network structure to make the
immunization strategy work more effectively.

4.3.1 Ways to weaken the robustness of a network

From Section 3, we know that the immunization problem and the robustness problem
in a degree are equivalent to each other. Therefore7, for the case of keeping the degree
sequence fixed, we could actually directly use the strategies that we introduced in Section

7One potential application is that, e.g., one can temporarily reconstruct the contact network of a company or
institute, so that the immunization of such network could be achieved by a small amount of staffs instead of all
working from home during a crisis such as a pandemic.

103

4. Functions of Order Parameter as Measure

4.2 but in a reverse process, i.e., ξ−(g) instead of ξ+(g). In other words, we replace step
4) in Section 4.2 with: let G ← G′ and S ← S′ if F′(S′) < F(S), where F′(S′) and F(S) are
associated with G′ and G, respectively. To distinguish from WayEnhS and WayEnhSr, we
mark their corresponding inverse processes with ‘i’, namely, WayEnhSi and WayEnhSri.
Table 4.1 shows the associated results. As we can see from there, ARRSe only works in the
power grid network (S2, S3, and S5), which indicates that WayEnhSi is not suitable for this
problem. By contrast, ξ−(g) based on HubS (S1) works well. But again, it would suffer
a problem of the time consumption. As an alternative, ξ−(r) (S8) has comparable results
against S1 in the yeast network and the global airline network, but it is much worse than S1
in the power grid network and the as-733 network. Indeed, one could study more regarding
this problem following a routine similar to Section 4.2. But here we are more interested in
another problem.

Conf. r Random HubS ARRSe Power Yeast as-733 Airline

S1 ✓ 0.0123 0.0315 0.0020 0.0206

S2 ✓ 0.0084 0.0754 0.0088 0.0363

S3 ✓ ✓ 0.0084 0.0772 0.0089 0.0366

S4 ✓ ✓ 0.0259 0.0325 0.0072 0.0216

S5 ✓ ✓ 0.0082 0.0762 0.0089 0.0359

S6 0.0600 0.1617 0.0107 0.1174

S7 ✓ 0.0751 0.0940 0.0148 0.0618

S8 ✓ 0.0638 0.0328 0.0098 0.0218

Table 4.1: Performances of different configurations (Conf.) regarding WayEnhSi, WayEnhSri,
and other strategies on the power grid network (Power), the yeast network (Yeast), the as-733
network (as-733), and the global airline network (Airline). S1 is ξ−(g) with g = F(HubS). S2 is
WayEnhSi(1). S3 is WayEnhSi(Random). S4 is ξ−(g) with g = F(HubS) and only pairs leading
to decreases of r are considered. S5 follows the same constrain from r as S4 but with ARRSe
criteria. S6 is randomly rewiring the network a number of times. S7 is WayEnhSri (Random).
And S8 is ξ−(g) with g = r. The numbers are the related results, i.e., F of ARRS (with T = 103)
on networks drawn based on each configuration.

Supposing that a number of edges, say mr = |Mu|, are allowed to be removed from a
network, we ask how this removal would influence the effectiveness of an immunization
strategy. Specifically, considering a network G(N ,M), we are interested in the following
problems:

i) if mr is given, then tackle
arg min
Mu

F′(·), (4.6)

where F′(·) corresponds to the remaining network G′ = G(N ,M\Mu);

ii) if a certain F′(·) needs to be achieved, then tackle

min mr; (4.7)

iii) a bi-objective problem regarding both Eqs. (4.6) and (4.7).

104

4.3 Influences of Acquaintances on the Containment of Epidemics

In what follows, we particularly focus on HubS as a case study, and others could be
investigated in the similar way8.

From the results in Section 4.2 and Table 4.1, we know that the assortativity r truly has
effects on F(HubS). In tandem with the fact that a more practicable strategy should usually
be local, an edge eij in our framework is removed if it has

Prodi1: maximum ki × k j,

Prodi2: minimum ki × k j,

Subti1: minimum |ki − k j|, or

Subti2: maximum |ki − k j|

among ar candidates. Indeed, it again looks similar to the explosive percolation problem. Fig.
A.25 (Appendix A.3.1) illustrates the associated results. As we can see from there, Prodi1
only works on the power grid network, where it is also better than Prodi2. But on other
networks, Prodi2 surpasses Prodi1 and holds the best on two of them. Subti2 is slightly
worse than Prodi2 on the yeast network and the global airline network, but it works on
all four networks. Note that Prodi2 considers both the degree itself and the difference of
corresponding nodes while Subti2 only captures the difference.

4.3.2 The role of less connected acquaintance

Based on those results, now we could further study the following scenario9: assuming
that you are asked to temporarily stop contacting one or a few of your acquaintances
(including all people whom you have connections with), who of them would contribute more
to the protection of the whole network? Since aiming to design a local strategy, the below
part would consider the degree of each node from the original network rather than keep
updating as the removal of edges (e.g., the case in Section 4.3.1). Specifically, for a given
network G(N ,M), the following processes are conducted: i) randomly pick up a node i
from G; ii) ar random selections (might account for the irrational decision) are conducted
on its corresponding nearest neighbors; iii) choose the node j from the ar candidates and
then remove eij based on Prodi1, Prodi2, Subti1, or Subti2; iv) repeat i)-iii) a number of times.
As illustrated in Fig. A.26 (Appendix A.3.1), still only Prodi2 and Subti2 work. It is worth
mentioning that Prodi2 is simply equivalent to choosing the node with the smallest degree10

among the ar candidates, which greatly facilitates the possibility of its implementation.
Hence, in what follows, we would mainly consider and verify Prodi2.

8All three problems are actually NP-hard.
9In general, an epidemic would die out if we effectively control the basic reproductive number η0 (see also Eq.

(3.10)), such as ηia could be curbed by social distancing, face masks, or / and hands hygiene etc. Indeed, when
the spread is mild, the Test-Track-Treat (test communities for diagnosis, track contacts of infection, and treat by
the quarantine of those cases) strategy might be the most efficient approach. But when the situation becomes
severe, that strategy would only have limited effect and a national restriction might be needed. Hence, here we
discuss a local approach could play potential role in such as the suppression of a severe spread.

10This could be achieved by the aid of machine learning methods, such as train a model correlated with node
degrees based on information like age, career, etc. Here we consider the case that the degrees of neighbors are
inferred by the focused node.

105

4. Functions of Order Parameter as Measure

4.3.3 Applications

Similar to Sections 3.4.5.5 and 3.5.7.4, we still employ the SIR model and follow the same
settings (i.e., ηr = 0.05 and b = 105) to demonstrate the effectiveness of Prodi2. Specifically,
we conduct the verification through the below processes: i) based on Prodi2, acquire a
new network G′ by removing mr edges from the given network G; ii) immunize G′ using
RanS, AcqI, or HubS, and then independently run the SIR model on the associated G′. The
sequence with respect to AcqI is obtained through: i) for a node i in G′, randomly target
one of its nearest neighbors; ii) check every node of G′ and then score each node based
on the number of targeted times; iii) independently repeat ii) 20 times and sum up their
corresponding scores; iv) acquire the sequence based on the related score.

ar 0.5n 1.0n 1.5n 2.0n 2.5n 3.0n

1 0.3546 0.2382 0.1563 0.0903 0.0461 0.0231
2 0.3570 0.2445 0.1555 0.0888 0.0453 0.0208
8 0.3533 0.2357 0.1484 0.0795 0.0380 0.0161

Table 4.2: The mean of the average infected frequency ⟨αinf⟩, ⟨⟨αinf⟩⟩, over the infected probability
ηi ∈ [0.01, 0.20] (with interval 0.01) and the immunized fraction q ∈ [0.01, 0.16] (with interval
0.0075) of RanS, in regard to networks drawn at mr = 0.5n, 1.0n, ..., 3.0n through Prodi2 with
ar = 1, 2 and 8 on the Email-Enron network.

ar 0.5n 1.0n 1.5n 2.0n 2.5n 3.0n

1 0.0459 0.0342 0.0225 0.0124 0.0057 0.0025
2 0.0428 0.0304 0.0178 0.0087 0.0038 0.0014
8 0.0394 0.0241 0.0121 0.0051 0.0018 0.0005

Table 4.3: ⟨⟨αinf⟩⟩ of Prodi2 regarding AcqI on the Email-Enron network.

ar 0.5n 1.0n 1.5n 2.0n 2.5n 3.0n

1 0.0457 0.0341 0.0225 0.0125 0.0060 0.0026
2 0.0434 0.0304 0.0185 0.0094 0.0041 0.0015
8 0.0398 0.0248 0.0131 0.0057 0.0021 0.0005

Table 4.4: ⟨⟨αinf⟩⟩ of Prodi2 regarding HubS on the Email-Enron network.

Tables 4.2, 4.3, and 4.4 exhibit the associated results on the Email-Enron network, where
the mean of the average infected frequency ⟨αinf⟩ (see also Section 3.4.5.5 for its definition)
are given, say ⟨⟨αinf⟩⟩. As we can see from there, for all three cases (i.e., networks accordingly
under the immunization of RanS, AcqI, and HubS), Prodi2 with ar = 8 is much better than
the one that randomly removes edges (namely, Prodi2 with ar = 1), especially when mr

becomes large, e.g., the fraction of ⟨⟨αinf⟩⟩ of ar = 8 and the one of ar = 1 is less 0.5 for
mr = 2.0n regarding AcqI and HubS (Tables 4.3 and 4.4). Besides, Prodi2 with ar = 2 is also
much better than the random one for most cases. Meanwhile, for a specific ar, ⟨⟨αinf⟩⟩ would
hugely decrease as mr increases, even though each node is only asked to collapse one edge
with its neighbors on average.

We then consider the contours of ⟨αinf⟩ as a function of q and ηi at mr = 2.0n on the
Email-Enron network and the loc-Gowalla network. As depicted in Figs. A.27, A.28, and
A.29 (Appendix A.3.1), on both networks, Prodi2 with larger ar could achieve better results,

106

4.4 Prediction of the Hysteresis in Explosive Synchronization

namely, for a particular q, it is more resistance against larger ηi, and for a particular ηi, it
needs less resources to reach the same ⟨αinf⟩. More precisely, to achieve ⟨αinf⟩ < 0.01 at
ηi = 0.05 on the loc-Gowalla network, AcqI accompanied by Prodi2 with ar = 8 only needs
to immunize q = 0.06 fraction of nodes compared to q = 0.07 and q = 0.09 needed for ar = 2
and ar = 1, respectively. In other words, Prodi2 with ar = 8 could help save 0.03 fraction of
nodes against the one with ar = 1.

4.3.4 Summary

In this section, we have studied the immunization problem from another perspective,
that is, the effects of the removal of edges on immunization strategies. Particularly, we want
to know whether a simple removal of edges would boost the effectiveness of immunization
strategies, and if it does, which strategy would be more effective. To answer these problems,
we first investigated strategies extended from Section 4.2 and find that the assortativity also
has impacts on immunization. In tandem with the fact that a practicable method should
need information as little as possible, we proposed a very simple strategy called Prodi2,
which searches for and targets edges connecting to nodes with a small degree. The results
on the SIR model demonstrate that our strategy could help save a huge amount of resources
(less nodes are needed to be immunized or removed to achieve the same goal). It is worth
mentioning that the developed strategy is totally local. Hence, the combination of it and
AcqI would be really useful in some cases, e.g., help distribute vaccines if the amount is very
limited.

4.4 Prediction of the Hysteresis in Explosive Synchronization

4.4.1 Problems and motivations

From Section 4.1, we learned that both the robustness and assortativity have effects on
the ES11. Meanwhile, from the comparisons of Figs. 4.2 and 4.5, and the results in Fig. 4.8,
we also knew that they are not the only attributes to influence the ES. Particularly, taking
the hysteresis area S between the forward and backward transitions as an example, one can
easily observe that it has far different behaviours in Figs. 4.2(a) and 4.5(a), even though the
degree sequence, F(HubS), and r of the two networks are same, which indicates that S is
also influenced by other unknown attributes. Hence, is there any way that could help us to
figure out what those unknown attributes are?

Further, though another conclusion which could be drawn from Section 4.1 is that the
size of a network also plays an important role in the ES, we still do not know the exact
relationship between S and n. To answer this, we first have to overcome two subproblems.
That is, on the one hand, even a network of size 103 needs more than 15 hours12 to acquire a
result. And Fig. 4.3 is obtained based on 18, 720 networks, which indicates that it would
be very expensive to get similar datasets for n = 2× 103, 3× 103, On the other hand, if

11Note that all studied networks share the same degree distribution.
12We implement the corresponding numerical algorithm ourselves for this particular problem. And our testing

results show that it is faster than ‘DifferentialEquations.jl’ and much faster than MATLAB.

107

4. Functions of Order Parameter as Measure

a network is too large, then Eq. (4.1) would become stiff. Thus, is there any other way to
predict the behaviour of a system on large networks rather than run the system directly?

In addition, regarding the ways to enhance the robustness of a network (Section 4.2), a
goal function based on a more advanced strategy usually leads to a better result. But, as
we mentioned, a more advanced strategy is always associated with more time consumption.
Therefore, is it possible to find a faster and more suitable way to measure a network, by aid
of which we could optimize the network directly rather than calculate, e.g., F(EvolF) per
time? Furthermore, why did AMetisSg fail in cases of Figs. 3.28, 3.29, 4.16, and 4.17 etc.?
And is there any better way than Prodi2 to boost the effectiveness of existing immunization
strategies?

Indeed, we again cannot answer all those problems. In what follows, we are going to
particularly consider the first problem and try to tackle it by the aid of machine learning
tools. And others are partly or fully equivalent to that problem. More specifically, we will
focus on the prediction of S and try to figure out whether it could be manipulated as that
we did in Sections 4.2 and 4.3.

4.4.2 Basic idea

The reason that we choose to consider S is two-fold. On the one hand, compared to
the critical threshold of the order parameter ℜ, the maximum jump size Je, or Jb, S is
more robust against the numerical error and the coupling strength ∆λ. On the other hand,
since the natural frequency is correlated with the node degree, and the associated degree
sequence keeps fixed, S to some extent only relies on the adjacency matrix, i.e., the network
structure. In this manner, we reach a special case of the following problem: assuming that a
given system13 mainly or only depends on the network structure, i) study the effects of the
network structure on such a system; and ii) control and optimize the network structure to
optimize the behaviour of the corresponding system.

Yang Liu Identification of Networks

Problem—II

July 23, 2020 6

Att.#1 Att.#2

Sys.#i

Rep.

Rep.

Verify

(a)

Yang Liu Identification of Networks

Problem—II

July 23, 2020 6

Sys.#i

Att.#1 Att.#2

Con.

Samples

Model

Lea.

Opt.

𝑥

𝑦

(b)

Figure 4.18: Framework of the investigation of effects of the network structure on dynamic
systems.

Over the past decades, most works including Sections 4.1 and 4.2 and many others [9,
49, 113, 37] basically follow a routine from Fig. 4.18a. That is,

13We particularly consider systems without analytical solutions, which most complex systems follow.

108

4.4 Prediction of the Hysteresis in Explosive Synchronization

a) represent a given network G by its corresponding attributes, say Att.#1 and Att.#2
etc.;

b) study the correlation between the behaviour f (·) of a considered system Sys.#i and
those attributes by the aid of the verification from the direct investigation of Sys.#i on
G;

c) achieve the prediction through the leading one, say Att.#1, or the combination of a
few;

d) achieve the optimization by controlling Att.#1 or others.

However, the above process would suffer several problems. The first one is from b), i.e., the
direct investigation of Sys.#i on G is usually very expensive: it is either hard to solve the
problem analytically or would take a long time to get a numerical solution. Besides, as we
studied in Section 4.1, the attribute is always correlated with each other and it would be
really difficult to manipulate them simultaneously. Meanwhile, there are also some attributes
that we might never know.

Due to those problems, in what follows, we are going to consider and study a routine
from Fig. 4.18b. Specifically, from existing works, such as [116, 37], we could know what
attributes have effects on the considered system. Through them, the network structure could
be controlled and tuned, and further we can acquire a number of new networks (x in Fig.
4.18b), on which the corresponding f (·) (y in Fig. 4.18b) could be obtained too. Viewing x
and y as samples, a model is learned by aid of machine learning tools. And the prediction
and optimization might be achieved based on the learned model.

To sum up, we will particularly focus on S and first construct several datasets based on
the studies in Section 4.1. Then, we are going to verify the effectiveness of a few machine
learning methods on those datasets and see whether S is controllable and optimizable.

4.4.3 Essentials

4.4.3.1 Problems

As we mentioned, for a given network G and a system f (here Eq. (4.1)), we aim to
learn a function f ′ : xα → S ′ which could achieve the goal similar to f : G → S (i.e., |S ′ −S|
should be as small as possible), where xα is a feature vector with α dimensions. Meanwhile,
f ′′ : G → xα should be much easier and also take much less time to be acquired compared
to f . For instance, regarding the assortativity r, Eq. (2.26) could obtain x = r with a time
complexity of O(m).

Then, we are going to gradually study the following problems:

P1) classification: predict whether S exists;

P2) regression: predict S .

And verify

P3) optimization: maxS .

All these problems would also be investigated with respect to varied attributes, degree
sequences, and network sizes etc.

109

4. Functions of Order Parameter as Measure

4.4.3.2 Baseline

The baseline is set to be the case that xα ← [r, F]14 and f ′ is learned through random
forests (RF)15 [118, 117].

4.4.3.3 Data

The corresponding data are mainly from Section 4.1. Particularly, for the classification
problem, networks with 0.01 ≤ S ≤ 0.03 are removed to avoid numerical errors. As a
result, we have 16, 655 valid samples out of 18, 720 networks, which includes 7, 115 cases of
nonexistence (i.e., S < 0.01) and 9, 540 cases of existence (S > 0.03) (see also Fig. A.30 in
Appendix A.3.2 for visual examples). The regression problem considers all 18, 720 networks.

4.4.3.4 Experimental configurations

We particularly consider four cases summarized in Table 4.5. Specifically, based on
different initial networks, we divide the data used by Fig. 4.3 into 20 groups. As a result,
each group contains 936 networks which share the same degree sequence. But different
groups correspond to different sequences16. Note that all networks in the 20 groups also
have the same average degree ⟨k⟩ and network size n. Then, EXP1 and EXP2 are associated
with the verification on a particular group, where the only difference between them is that
EXP1 would shuffle the whole group while EXP2 does not. That is, EXP2 would usually not
cover the bounds of r and F, e.g., learn a model based on networks with F < 0.3 and then
predict S of those with F > 0.3. EXP3 is the case that a model is learned based on some
groups and verified by the others. EXP4 is similar to EXP2 but the verification would be
conducted based on networks in other groups.

Conf. Same size Same degree sequence Mixed

EXP1 ✓ ✓ ✓

EXP2 ✓ ✓

EXP3 ✓ ✓

EXP4 ✓

Table 4.5: Experimental configurations.

4.4.4 Results

4.4.4.1 Method based on the eigenvalue

A straightforward way is to construct xα based on the spectrum of a graph, whose
effectiveness has been demonstrated in a large range of fields [119, 120, 121]. We here mainly
consider the eigenvalues of the related normalized Laplacian matrix L̂ [119]17, which is

14One could of course add more attributes.
15If there is no special explanation, RF is conducted under default parameters given by ref. [117] (version

0.23.1).
16Different sequences follow a similar degree distribution.
17Others could follow the same manner to investigate.

110

4.4 Prediction of the Hysteresis in Explosive Synchronization

defined as L̂ := D−1/2LD−1/2 = I − D−1/2AD−1/2, where D is a diagonal matrix of the
degree sequence k, and L = D − A is the Laplacian matrix. In addition, as the baseline
does, RF is conducted on features generated based on the largest α eigenvalues of L̂, namely,
xα ← [λ1, λ2, ..., λα]. For a convenient description, we refer to this process as EigRF(α).

Conf. Baseline 2 8 32 128 512

EXP1 97.55± 0.53 72.36± 3.64 80.28± 2.92 84.87± 3.13 87.64± 2.77 93.54± 1.47
EXP2 85.84± 3.06 60.23± 4.25 64.00± 4.72 67.13± 5.21 67.96± 5.89 74.67± 3.70
EXP3 93.25± 1.09 69.59± 2.34 77.64± 2.44 82.74± 1.65 86.40± 1.78 92.85± 1.23
EXP4 90.04± 1.09 58.93± 1.80 63.27± 3.55 67.06± 2.92 72.07± 2.65 85.65± 2.22

Table 4.6: Accuracy (in percentage for both the mean and standard deviation) of EigRF(α)
regarding varied feature dimensions α based on the eigenvalue of L̂, namely, α = 2, 8, ..., 512. The
baseline is the case of xα ← [r, F]. Results of EXP1 and EXP2 are drawn on 20 groups, on each
of which 10-fold cross-validation is adopted. Instead, EXP3 and EXP4 directly conduct 10-fold
cross-validation on all groups, i.e., learn a model based on networks from 18 groups and verify it
on the others.

Table 4.6 reports the corresponding results with respect to the classification problem,
where α = 2, 8, ..., 512 of EigRF(α) are investigated18. As we can see from there, the
effectiveness of EigRF(α) increases as the rise of α, i.e., the mean increases followed by
a decrease of the standard deviation. But it could not surpass the baseline19 for all cases,
even when α = 512. For EXP2, one can also easily observe a larger gap between the baseline
and EigRF(512) compared to EXP1. Nevertheless, comparing the results of EXP1 and EXP3,
i.e., from networks with the same degree sequence to networks with massive sequences, the
baseline has a much larger drop of accuracies than the one of EigRF(α), which indicates that
EigRF(α) might be more capable of handling unknown networks. Besides, different from a
drop between EXP1 and EXP3, the results of EXP2 and EXP4 show us that the increase of
the number of samples could alleviate the boundary problem.

Conf. Baseline 2 8 32 128 512

EXP1 2.89± 0.46 10.44± 1.37 8.74± 1.13 6.89± 1.01 6.34± 0.90 5.34± 0.71
EXP2 5.45± 0.73 12.28± 1.53 10.88± 1.36 9.11± 1.25 9.19± 1.24 8.82± 1.26
EXP3 5.33± 0.51 11.11± 0.99 9.36± 0.90 7.50± 0.86 6.94± 0.73 5.83± 0.73
EXP4 6.32± 0.55 12.42± 0.98 10.80± 0.87 9.13± 0.88 9.00± 0.76 8.48± 0.87

Table 4.7: MAE (in percentage for both the mean and standard deviation) of EigRF(α) regarding
varied feature dimensions α. The baseline is the case of xα ← [r, F].

We further consider EigRF(α) on the regression problem, where the mean absolute
error (MAE) is conducted during the training phase. As reported in Table 4.7, for networks
generated from the same degree sequence (EXP1), the baseline has a much smaller MAE
than EigRF(α). And similar to the one in the classification task, the increment of MAE from
EXP1 to EXP3 with respect to the baseline is much larger than the one of EigRF(α). But
comparisons between EXP2 and EXP4 show that the increase of the number of samples
only slightly lowers the MAE of EigRF(α) while it actually increases the one regarding the
baseline.

18One could tune parameters of RF to boost those accuracies but the improvement is very limited.
19Again, we view the baseline as a touchstone to verify which machine learning strategy would work.

111

4. Functions of Order Parameter as Measure

To sum up, for both problems, EigRF(α) could not facilitate better results than the
baseline in all cases, no matter whether networks are generated from the same degree
sequence or the attributes are mixed. But the increases of α and the number of samples could
help it approach the baseline (see EXP3 in Tables 4.6 and 4.7). More validations regarding
EigRF(α) would be conducted later, in particular using networks from Figs. 4.4, 4.5, and 4.6
in Section 4.1.

4.4.4.2 Method based on the graph kernel

Since S relies on both the degree sequence and the network structure, the graph kernel
might also be an alternative tool. Here, we particularly verify the Weisfeiler-Lehman subtree
kernel (WLsubK(t)) [122], where t is a control variable to indicate how many iterations the
kernel would run. Roughly, WLsubK(t) is a method to measure the similarity of graphs
by repeatedly calculating the inner product of the color-frequency sequences20. We choose
WLsubK(t) because other kernels are usually too time-consuming to tackle networks that we
considered here [123]. Besides, to achieve classification or regression, WLsubK(t) is usually
followed by a support-vector machine strategy which the default one from ref. [117] is
considered here.

Conf. Classification Regression
5 10 SP 5

EXP1 58.87± 3.36 58.80± 3.35 72.22± 6.38 12.13± 1.13
EXP2 50.74± 14.29 50.72± 14.31 58.95± 7.76 13.05± 1.23
EXP3 75.58± 1.79 76.05± 1.61 80.16± 3.46 13.29± 0.68

Table 4.8: Accuracy and MAE (in percentage for both the mean and standard deviation) of
WLsubK(t) regarding t = 5 and 10. SP corresponds to the shortest path kernel [124].

The associated results are illustrated in Table 4.8, where each node is initially labeled
based on their related degrees. Obviously, compared to EigRF(α) and the baseline (see Tables
4.6 and 4.7), both accuracy and MAE of WLsubK(t) are much worse, which indicates that
the graph-kernel-based method might not be a good tool to tackle this type of problem.

4.4.4.3 Method based on the graph neural network

The graph neural network (GNN) is a special group of neural networks aiming to tackle
irregular graph-structure data [125], which, from the perspective of network science, could
be mainly classified into two categories. The first category (GNN1), such as the one in ref.
[126], is trying to learn the network spectrum and handle a graph in a global view. On the
contrary, the second category (GNN2) measures a network in a graph-kernel-based way, i.e.,
it also repeatedly integrates information from nodes’ neighbors and identifies a network
based on its all nodes (capture local patterns), e.g., GIN [127]. In what follows, we are going
to mainly verify GNN2, particularly considering GIN as an example, since GNN1 is mainly
designed to deal with node-related problems.

20During each iteration, nodes in a network relabel (color) themselves based on labels from their nearest
neighbors. After that, one could count the number of nodes that have the same color, which gives us some
color-frequency sequences. Then, the similarity could be drawn based on those sequences.

112

4.4 Prediction of the Hysteresis in Explosive Synchronization

For a given network G, GIN measures it through hG,

hG = ∑
ℓ

MLP(ℓ)
1 (∑

v∈N
h(ℓ)v), (4.8)

where MLP represents multilayer perceptrons, ℓ is a control variable, and hv follows

h(ℓ)v = ReLU(MLP(ℓ)
2 (∑

u∈Γ(v)∪v
h(ℓ−1)

u)), (4.9)

in which ReLU is the activation function [128]. Besides, the blow configurations are taken for
GIN: the number of hidden units for both MLP1 and MLP2 is fixed to 64; MLP1 and MLP2

are accordingly with 1 and 2 layers, and they are followed by dropouts with rates of 0 and
0.5 [129], respectively; ℓ = 5 and h0

u is initialized by the degree21, that is, h0
u = ku; the batch

size for EXP1 and EXP2 is 32, otherwise, 128 is considered; the batch normalization strategy
[130] is also used for each hidden layer; and to learn the associated variables, the Adam
optimizer [131] is employed with an initial learning rate of 0.01 which is meanwhile decayed
with a fixed ratio of 0.5 every 50 epochs.

Conf. Classification Regression
Baseline GIN GIN-RK4 Baseline GIN GIN-RK4

EXP1 97.55± 0.53 96.30± 1.10 96.47± 0.89 2.89± 0.46 3.09± 0.40 3.04± 0.40
EXP2 85.84± 3.06 90.09± 2.43 90.47± 2.60 5.45± 0.73 11.30± 1.70 11.19± 1.42
EXP3 93.25± 1.09 97.71± 0.94 97.44± 0.73 5.33± 0.51 5.55± 0.86 5.57± 0.44

Table 4.9: Accuracy and MAE (in percentage for both the mean and standard deviation) of GIN
and GIN-RK4.

Table 4.9 shows the corresponding results, where GIN-RK4 is the case that we rewrite
Eq. (4.8) in a ‘fourth-order Runge–Kutta method’ manner22. Besides, for both GIN and
GIN-RK4, accuracy or MAE is calculated at the epoch where the validation set performs best,
and the ratio of the training set, validation set, and testing set follows 8 : 1 : 1. As we can
see from there, for the classification problem, GIN could surpass the baseline in both EXP2
and EXP3, and it is only slightly worse than the baseline in EXP1. But for the regression
task, the baseline still holds the best, especially in EXP2, where GIN is much worse than the
baseline. Nevertheless, GIN could obtain much better results than EigRF(α) and WLsubK(t)
for almost all cases that we considered here. Besides, GIN-RK4 is usually more stable than
GIN (see the associated standard deviation), and also slightly better for most cases23. It is
worth mentioning that the mean of the test set of EXP3 is 0.1259 regarding the regression.

4.4.4.4 More validations

Now we move to networks from Figs. 4.4 (with mean of S 0.5346), 4.5 (0.0849) and 4.6
(0.2611), in which networks of Figs. 4.4 and 4.6(c,d) are with size n = 104. The corresponding

21The one-hot encoding strategy is not conducted here since we need a model which could tackle unknown
networks.

22Roughly, the architecture of Eq. (4.8) could be viewed as ‘Euler’s method’.
23For a system like Eq. (4.1), we could construct a neural network in RK4 way to track its trajectory. In this

manner, only the sin function is needed to be precisely learned. But it is always very difficult for a neural
network to achieve. One could verify this by truncating RK4’s results during each iteration.

113

4. Functions of Order Parameter as Measure

Networks Baseline EigRF(α) GIN GIN-RK42 8 32 128 512

Fig. 4.4 31.45 44.09 56.02 56.60 58.10 49.36 30.67 34.94
Fig. 4.5 14.56 7.51 4.40 6.22 7.83 8.80 3.17 2.09
Fig. 4.6 18.56 16.46 12.68 12.22 13.16 15.78 12.19 13.05

Table 4.10: Mean MAE (in percentage) of networks from Figs. 4.4, 4.5, and 4.6 regarding varied
methods.

Methods (a) (b) (c) (d) (e) (f) (g) (h)

GIN 4.27 6.83 19.18 25.67 16.82 9.09 8.01 7.69
GIN-RK4 6.09 4.76 25.19 31.65 16.16 10.56 5.10 4.86

Table 4.11: Mean MAE (in percentage) of networks from Fig. 4.6 regarding GIN and GIN-RK4.

results are shown in Tables 4.10 and 4.11, where the prediction model is acquired based on
EXP3. As reported there, the baseline fails as expected. And others do not work on networks
from Fig. 4.4 either, namely, all of them could not achieve the prediction of networks with a
much larger size than those used to train the model24. For networks from Fig. 4.5, GIN-RK4
works extremely well compared to others, which indicates that it has the ability to capture
the change of the network structure that both r and F fail to do. Besides, since Fig. 4.6
is based on networks of size both n = 103 and 104, we also show the MAE of GIN and
GIN-RK4 in regard to each subfigure (Table 4.11). Again, both GIN and GIN-RK4 fail to
predict S of a large network. Meanwhile, even for small networks, either GIN or GIN-RK4
has a large MAE, which means that we cannot cope with the optimization problem (i.e., P3)
in Section 4.4.3.1) relying on them. Hence, more studies might be needed, including the
improvement of existing models and the development of new models.

4.4.4.5 Effects of network robustness on S

We further divide the training set of EXP3 into two equal parts, say D1 and D2, and
constrain them in the same way of EXP3. That is, D1 consists of 7, 488 networks reconstructed
based on 8 initial BA networks. Then, the following process is considered: 1) for D1, each
network is relabeled by the mean of 20 F(GPEP) (see also Section 3.6); 2) learn a model
based on D1 and the corresponding new labels; 3) fix MLP2 of the learned model (here we
arbitrarily choose the one at 500 epochs) and retrain MLP1 based on D2 (see Eqs. (4.8) and
(4.9)), i.e., transfer learning from D1 to D2 [132]. We name this process as GIN-F(b), where b
represents the number of groups of D2 used to retrain (recall that each group contains 936
networks). Besides, GIN-3(b) and GIN-null(b) are conducted as baselines, where GIN-3(b)
is GIN but with different MLP1, and GIN-null(b) is similar to GIN-F(b) but with random
initialization of MLP2. Meanwhile, we also refer to GIN-F-3(b) as the case that both MLP1

and MLP2 of GIN-F(b) are retained. All of them employ the same architecture of GIN except
for MLP1 with 3 layers.

The corresponding results are reported in Table 4.12. Compared to GIN-3(b), GIN-F-3(b)
has smaller MAE for all b, and GIN-F(b) holds better in two and similar in the rest, which

24Perhaps one reason is that the predicted networks are too large. But this is one of the final goals with respect
to this problem.

114

4.4 Prediction of the Hysteresis in Explosive Synchronization

Methods 1 2 4 8

GIN-3(b) 9.52± 1.64 7.87± 0.91 6.73± 1.48 5.51± 1.03
GIN-null(b) 8.97± 1.36 8.14± 1.28 8.67± 1.61 7.97± 1.34
GIN-F(b) 8.92± 1.87 6.85± 1.13 6.87± 1.14 5.83± 1.16
GIN-F-3(b) 7.76± 1.57 6.30± 0.80 6.54± 1.08 5.31± 0.77

Table 4.12: Mean MAE (in percentage) regarding varied training sets of sizes b ∈ {1, 2, 4, 8}.

indicates that both GIN-F(b) and GIN-F-3(b) could benefit from the pre-trained model25.
That is, we could rely on the methodology of Chapter 3 to train a model, and then use
such model to capture the transition of the network structure, which might have potential
applications in such as climate networks where usually only a few networks have labels or /
and the number of networks is quite limited. Note that both GIN-null(b) and GIN-F(b) only
retrain MLP1.

4.4.5 Summary

To sum up, we have studied a few strategies (which, to our knowledge, should be the
most suitable tools here) considering the problems raised in Section 4.1, in particular the
predictability of S . Our results show that some of them could truly help us to acquire either
a high accuracy or a low MAE regarding the prediction of S . But none of them could actually
further be used to investigate the corresponding optimization problem, since the precision
of those tools are so far not enough to tackle it, such as only GIN and GIN-RK4 could just
approach the baseline in some cases. Indeed, one might follow a similar strategy of Section
4.2 to indirectly achieve that. But that strategy would drive us away from the real optimum.
Thus, this problem is still open and needs more studies.

25We didn’t tune hyperparameters for this problem. But we truly did that when verifying GIN-F-3(8) on the
empirical networks studied in ref. [127]. And GIN-F-3(8) could acquire slightly better results than GIN in most
of those networks.

115

5
Conclusion and Outlook

5.1 Conclusion

This thesis particularly studied a number of attack and immunization strategies
regarding the robustness and immunization problems, including bounded and unbounded
strategies, and the evolutionary framework. Based on them, a fast scheme for the suppression
of F – a parameter characterizing the network robustness – was further developed. Those
three sections correspond to the identification of nodes (Chapter 3). Following that, Chapter
4 discussed whether F could be viewed as a measure to capture the network structure
considering effects of network robustness on explosive synchronization. Meanwhile, ways
to enhance the robustness of a network, influences of acquaintances on the containment of
epidemics, and prediction of the hysteresis in explosive synchronization were also studied,
which are related to the identification of networks. Specifically, the main contributions of
this thesis are summarized as follows.

Identification of nodes: bounded and unbounded strategies

The order parameter of an explosive percolation usually undergoes an irreversible
process. But for most regular percolation, like the one on a two-dimensional square lattice
(Section 2.4.1), the order parameters of the forward transition (percolation) and backward
transition (attack) are in principle equivalent to each other. That is, they are reversible, which
motivates us to ask whether the rule leading to an explosive percolation could also be used to
attack an existing (usually finite) network. If it does, then the rule could usually heavily delay
the critical threshold, which corresponds to the solution of the robustness and immunization
problems, that is, finding the minimum node set to collapse or immunize the given network.
Focusing on that, the strategies – ABonS1, ABonS1q, ABonS2, ARRS, APRSs1, APRSs1q, and
APRSrr – are developed, which are basically suitable for all kinds of networks. Among them,
ABonS1, ABonS1q, ABonS2, APRSs1, and APRSs1q are bounded-size strategies (Section 3.4.2)
but the others are unbounded (Section 3.4.4). Indeed, an unbounded-size method usually has
a better performance than a bounded one. But the bounded methods have the advantage in

117

5. Conclusion and Outlook

the time consumption, e.g., ABonS1 and ABonS1q could accordingly obtain smaller F and qc

(a parameter capturing the percolation transition) within 10 seconds than almost all existing
methods that we mentioned in Section 3.4 in a network with over 1.6 million nodes (they
are perhaps only less effective than ABetS, which, however, is almost impossible to tackle a
network of such size.). Besides, APRSs1 and APRSs1q give the option to score each node
so that one can tune the score based on varied scenarios and further acquire a better result.
With respect to the two unbounded methods, APRSrr is more capable of handling the model
or model-like network, where there is usually a lack of community structures, short cycles,
and correlations, such as the p2p-Gnutella08 network. ARRS instead has good performances
in most real-world networks regarding both F and qc, and on average, surpasses all other
basic methods. More importantly, ARRS also paves the way for the evolutionary framework.
Note that both bounded and unbounded methods could be easily extended for the FVS
problem. And they both have better performances than ABPDS in almost all networks that
we considered in this thesis (Table 3.4).

Identification of nodes: evolutionary framework for the identification of influential
nodes

But the above strategies are still easy to fall into a local optimum. To overcome that,
we further studied the effects of the initial sequence and also the corresponding control
variables on the basic method ARRS, which guided us to our second main contribution, i.e.,
the evolutionary framework for investigation of influential nodes, where we have introduced
selection strategies, mutation operators, and the ways to initialize and maintain a population
(sequence) as well (Section 3.5). In particular, in regard to F, we firstly investigated PruOrd,
which is yet effective enough to outperform ARRS. But it also faces a problem in the
difficulty of the management of control parameters. To tackle that, PruGri was developed
and it takes a much easier way that only two parameters are needed to be given beforehand.
Usually, PruGri could obtain better results than PruOrd if we fail to give PruOrd the optimal
configuration of the related parameters. However, the grid search strategy means that
PruGri would be time-consuming if we do not have a parallel environment. Hence, we
further had PruRan and PruRang, where PruRan chooses the slice simply following the
uniform distribution, while PruRang does that by taking some probability from a variant of
the Gaussian distribution. Therefore, PruRang is usually more capable of approximating
PruGri. Note that one can also try other strategies of that probability. We then further
studied the effects of qc on F and also the influences of F on qc, and found that there is some
conflict between the paralleled optimization of qc and F. This conflict guided us to have
PruRangqv4 and PruRangqv5, and further those mutation operators. In addition, through
these investigations, we found that the initial sequence plays an important role, especially one
having advanced performance. Thus, we had another approach based on graph partitioning
to provide initial sequences for our framework, i.e., AMetisS and AMetisSg. Finally, we
reached the evolutionary framework, that is, EvolF and Evolq accordingly for F and qc.

We then verified the effectiveness of the proposed framework considering a number of
real-world networks. Regarding F, our framework accordingly has average improvements
(Eq. (3.33)) of 8.89%-60.62% over HubS, AHubS, ACIS, AEIS, ARRS, AMetisS, and AMetisSg,

118

5.1 Conclusion

while such improvements become 13.26%-59.21% over HubS, AHubS, ACIS, ABPDS, AEIS,
ARRSq, ARRS, AMetisS, and AMetisSg for qc, respectively.

Identification of networks: effects of network robustness on explosive synchronization

A lot of literatures have shown that the robustness of a network is influenced by a number
of associated attributes, such as the density of edges (average degree), the assortativity, the
clustering coefficient, and the degree distribution, etc. This inspired us to ask what effects
the robustness has on a more complex phenomenon, since, on the one hand, the robustness
(particularly F(S)) could globally capture the transition of the network structure under the
corresponding attack, and on the other hand, it could also be acquired very easily, especially
for, e.g., HubS. To investigate that, we took the explosive synchronization regarding the
Kuramoto model as an example, and numerically studied how F(HubS) (view it as a global
attribute) as well as its interaction with the network assortativity r influence the behavior of
the explosive synchronization (Section 4.1). We found that both extreme values of F and r
would suppress the explosive synchronization, especially the hysteresis area between the
forward and backward transitions. In particular, for a network constructed by the BA model,
there is a maximum of hysteresis area achieved by appropriate adjustments of F and r. In
addition, our discussion reveals that the change trends of both the network robustness and
assortativity play important roles in the explosive synchronization. In other words, different
behaviours of the explosive synchronization are found in networks with similar F or/and
r if the networks undergo different change processes. Thus, the problem of effects of the
network structure on ES still remains partly open.

Identification of networks: ways to enhance the robustness of a network

Our fourth main contribution is the investigation of possible approaches to enhance the
robustness of a given network (Section 4.2). From our first and second studies, we knew that
a network would have varied reactions of robustness over different attack strategies, which
indicates that the true robustness of a network is detected by the most advanced attack
strategy. But such a strategy is usually too time-consuming to be a practicable criterion for the
cut-add approach (an approach could modify the network structure by keeping the degree
sequence fixed). To overcome that problem, we firstly studied which naive method could
be an alternative of the advanced one and reached ARRSe, our basic method ARRS with
an early stop trick, which could effectively check the critical point during the enhancement
process based on HubS. We then further investigated such process and acquired our first
method, WayEnhS, which has a better performance and similar time consumption against the
one based on HubS. But WayEnhS is still hardly employed to tackle large networks, since it
has to calculate F(S) per t. Hence, we further studied the effects of assortativity on WayEnhS,
an attribute that highly correlates with the network robustness and could be controlled
locally. More importantly, such strategy not only helped us to improve the performance of
WayEnhS again but also led us to the second method, WayEnhSr, which is totally local. To
demonstrate the effectiveness of both WayEnhS and WayEnhSr, four real-world networks are
analyzed. The results regarding attacks from over ten state-of-the-art strategies illustrate that
both of them have the ability to greatly improve the robustness of a network. Nevertheless,

119

5. Conclusion and Outlook

both WayEnhS and WayEnhSr are indirect methods to increase the bound of the robustness
against the most advanced attack strategy, e.g., ARRSe with T = 103 is more effective than
the one with T = 10, since the first has a larger correlation with EvolF. Thus, this problem is
still open and more studies are needed, including itself of the most advanced attack strategy
and its more reliable representative.

Identification of networks: influences of acquaintances on the containment of epidemics

In Section 4.3, rather than consider the case in Section 3.1.2, i.e., the influence of the
degree distribution on the epidemic spreading, we chose to focus on existing networks and
study effects of the change of the corresponding structure on the spreading patterns under
immunization. In particular, we wanted to know whether a simple removal of edges would
boost the effectiveness of immunization strategies, and if it does, which strategy would be
more effective. To cope with these problems, we firstly investigated strategies extended from
the previous part and found that the assortativity also has impacts on immunization. In
tandem with the fact that a practicable method should need information as little as possible,
we proposed a very simple strategy, called Prodi2, which searches for and targets edges
connecting to nodes with a small degree. The results on the SIR model demonstrate that
our strategy could help to save a huge amount of resources (less nodes are needed to be
immunized or removed). It is worth mentioning that the developed strategy is totally local.
Hence, the combination of it and AcqI (a well-known local immunization strategy) would be
really useful in some cases, e.g., help to distribute vaccines if the amount is very limited.

Identification of networks: from a machine learning perspective

Last but not least, our sixth main contribution could be viewed as a proof of concept. To
further tackle the problems raised in the previous sections, especially the one from Section
4.1, we turned our attention to machine learning methods. In Section 4.4, we first employed
the data from Section 4.1 to set up four experimental configurations, which aim to verify
the predictability of S (the hysteresis area of the explosive synchronization) under varied
conditions. Then, we studied methods based on the spectrum of the related normalized
Laplacian matrix, the graph kernel, and the graph neural network. Our results show that
some of them could truly help us to acquire either a high accuracy or a low MAE regarding
the prediction of S . But none of them could actually further be used to investigate the
corresponding optimization problem, since the precision of those tools are so far not enough
to tackle it, such as only GIN and GIN-RK4 could just approach the baseline in some cases.
Indeed, one might follow a similar strategy as in Section 4.2 to indirectly achieve that.
But that strategy would drive us away from the real optimum. Note that, the considered
strategies, to our knowledge, should be the most suitable tools here. Thus, as a bunch of
problems that we touched in the previous sections, more studies are needed, including the
improvement of existing models and the development of new models.

120

5.2 Outlook

5.2 Outlook

Several problems have arisen during our journey to this thesis. For part of them, one
could predictably have solutions, or at least some approximate solutions, following the
routines that we have already done. But for others, we still do not know how to handle them
so far. A few instances are as below.

Temporal networks. By now we have only studied static networks. When it comes to
temporal networks, the corresponding problems would become much more difficult. For
example, the human being interactions could be modeled by a network, which evolves day by
day. In this case, how could we achieve the immunization of such a network with minimum
resources during a pandemic? Besides, in a short term, that interaction network could be
viewed as a special case where only edges evolve. For more complex situations including
the change of nodes (e.g., the online social network), what strategy should be designed?

Incomplete networks. For many empirical networks, we only have partial information
regarding them, e.g., the human-being-contact network. In this case, how should we design
the corresponding strategy? In Section 4.3, we have shown a possible alternative. But that is
only a very special example. More significant approaches should be further developed.

Predictability and controllability of F. As we showed in Section 4.1, F(HubS) truly
plays an important role on, at least the explosive synchronization, which indicates that F
could be viewed as a global attribute to capture the structure of a network. Hence, a natural
question is: what about the true robustness regarding such measure? To answer this question,
we however firstly need to solve a problem from Section 4.2, that is, finding a more reliable
representative of the most advanced attack strategy.

Machine learning methods. As we mentioned and verified, machine learning methods
might play functions on the problem from 4.1 and the methods in Sections 4.2 and 4.3. But
the question is how could we achieve that? In Section 4.4, we have shown that both the
precision and the learning models themselves are challenged by the considered problems.
Hence, are there more suitable models? Or do we need to develop new models to cope with
those problems?

121

References

[1] Mark Newman. Networks. Oxford university press, 2018.

[2] Albert-László Barabási et al. Network science. Cambridge university press, 2016.

[3] Peter J Menck et al. “How dead ends undermine power grid stability”. In: Nature
Communications 5 (2014), p. 3969.

[4] Mark EJ Newman. “Spread of epidemic disease on networks”. In: Physical review E
66.1 (2002), p. 016128.

[5] Christian M Schneider et al. “Mitigation of malicious attacks on networks”. In:
Proceedings of the National Academy of Sciences 108.10 (2011), pp. 3838–3841.

[6] Goylette F Chami et al. “Social network fragmentation and community health”. In:
Proceedings of the National Academy of Sciences 114.36 (2017), E7425–E7431.

[7] Yong Zou et al. “Complex network approaches to nonlinear time series analysis”. In:
Physics Reports 787 (2019), pp. 1–97.

[8] Dirk Brockmann and Dirk Helbing. “The hidden geometry of complex, network-
driven contagion phenomena”. In: Science 342.6164 (2013), pp. 1337–1342.

[9] Réka Albert, Hawoong Jeong, and Albert-László Barabási. “Error and attack tolerance
of complex networks”. In: Nature 406.6794 (2000), pp. 378–382.

[10] Duncan S Callaway et al. “Network robustness and fragility: Percolation on random
graphs”. In: Physical Review Letters 85.25 (2000), p. 5468.

[11] Reuven Cohen, Shlomo Havlin, and Daniel Ben-Avraham. “Efficient immunization
strategies for computer networks and populations”. In: Physical Review Letters 91.24
(2003), p. 247901.

[12] Zhen Wang et al. “Statistical physics of vaccination”. In: Physics Reports 664 (2016),
pp. 1–113.

[13] Jesús Gómez-Gardenes et al. “Explosive synchronization transitions in scale-free
networks”. In: Physical Review Letters 106.12 (2011), p. 128701.

[14] Daqing Li et al. “Percolation transition in dynamical traffic network with evolving
critical bottlenecks”. In: Proceedings of the National Academy of Sciences 112.3 (2015),
pp. 669–672.

[15] Abhijeet Ghadge, Hendrik Wurtmann, and Stefan Seuring. “Managing climate change
risks in global supply chains: a review and research agenda”. In: International Journal
of Production Research 58.1 (2020), pp. 44–64.

123

REFERENCES

[16] OECD. Climate-resilient Infrastructure. 2018. url: http : / / www . oecd . org /

environment / cc / policy - perspectives - climate - resilient - infrastructure .

pdf (visited on 04/23/2020).

[17] Paul Baran. “On distributed communications networks”. In: IEEE transactions on
Communications Systems 12.1 (1964), pp. 1–9.

[18] Albert-László Barabási and Réka Albert. “Emergence of scaling in random networks”.
In: Science 286.5439 (1999), pp. 509–512.

[19] Reuven Cohen et al. “Resilience of the internet to random breakdowns”. In: Physical
Review Letters 85.21 (2000), p. 4626.

[20] Reuven Cohen et al. “Breakdown of the internet under intentional attack”. In: Physical
Review Letters 86.16 (2001), p. 3682.

[21] Christian M Schneider, Tamara Mihaljev, and Hans J Herrmann. “Inverse targeting—
An effective immunization strategy”. In: EPL (Europhysics Letters) 98.4 (2012), p. 46002.

[22] Yang Liu et al. “Immunization strategy based on the critical node in percolation
transition”. In: Physics Letters A 379.43-44 (2015), pp. 2795–2801.

[23] Flaviano Morone and Hernán A Makse. “Influence maximization in complex networks
through optimal percolation”. In: Nature 524.7563 (2015), pp. 65–68.

[24] Pau Clusella et al. “Immunization and targeted destruction of networks using
explosive percolation”. In: Physical Review Letters 117.20 (2016), p. 208301.

[25] Salomon Mugisha and Hai-Jun Zhou. “Identifying optimal targets of network attack
by belief propagation”. In: Physical Review E 94.1 (2016), p. 012305.

[26] Alfredo Braunstein et al. “Network dismantling”. In: Proceedings of the National
Academy of Sciences 113.44 (2016), pp. 12368–12373.

[27] C Drew Harvell et al. “Climate warming and disease risks for terrestrial and marine
biota”. In: Science 296.5576 (2002), pp. 2158–2162.

[28] Fred Brauer, Carlos Castillo-Chavez, and Carlos Castillo-Chavez. Mathematical models
in population biology and epidemiology. Vol. 2. Springer, 2012.

[29] In Wikipedia, the free encyclopedia. Economic impact of the COVID-19 pandemic. 2020.
url: https://en.wikipedia.org/wiki/Economic_impact_of_the_COVID- 19_

pandemic#cite_note-2 (visited on 08/07/2020).

[30] Anthony J McMichael et al. Climate change and human health: risks and responses. World
Health Organization, 2003.

[31] Dean T Jamison et al. “Global health 2035: a world converging within a generation”.
In: The Lancet 382.9908 (2013), pp. 1898–1955.

[32] Renee Cho. How Climate Change Is Exacerbating the Spread of Disease. 2014. url: https:

//blogs.ei.columbia.edu/2014/09/04/how-climate-change-is-exacerbating-

the-spread-of-disease/ (visited on 05/08/2020).

[33] Matt J Keeling and Ken TD Eames. “Networks and epidemic models”. In: Journal of
the Royal Society Interface 2.4 (2005), pp. 295–307.

124

http://www.oecd.org/environment/cc/policy-perspectives-climate-resilient-infrastructure.pdf
http://www.oecd.org/environment/cc/policy-perspectives-climate-resilient-infrastructure.pdf
http://www.oecd.org/environment/cc/policy-perspectives-climate-resilient-infrastructure.pdf
https://en.wikipedia.org/wiki/Economic_impact_of_the_COVID-19_pandemic#cite_note-2
https://en.wikipedia.org/wiki/Economic_impact_of_the_COVID-19_pandemic#cite_note-2
https://blogs.ei.columbia.edu/2014/09/04/how-climate-change-is-exacerbating-the-spread-of-disease/
https://blogs.ei.columbia.edu/2014/09/04/how-climate-change-is-exacerbating-the-spread-of-disease/
https://blogs.ei.columbia.edu/2014/09/04/how-climate-change-is-exacerbating-the-spread-of-disease/

REFERENCES

[34] Romualdo Pastor-Satorras et al. “Epidemic processes in complex networks”. In:
Reviews of modern physics 87.3 (2015), p. 925.

[35] Peng Ji et al. “Cluster explosive synchronization in complex networks”. In: Physical
Review Letters 110.21 (2013), p. 218701.

[36] Yong Zou et al. “Basin of attraction determines hysteresis in explosive synchroniza-
tion”. In: Physical Review Letters 112.11 (2014), p. 114102.

[37] Francisco A Rodrigues et al. “The Kuramoto model in complex networks”. In: Physics
Reports 610 (2016), pp. 1–98.

[38] Yoshiki Kuramoto. “Self-entrainment of a population of coupled non-linear oscil-
lators”. In: International Symposium on Mathematical Problems in Theoretical Physics.
Springer. 1975, pp. 420–422.

[39] Gino Del Ferraro et al. “Finding influential nodes for integration in brain networks
using optimal percolation theory”. In: Nature Communications 9.1 (2018), p. 2274.

[40] Jun Meng et al. “Percolation framework to describe El Niño conditions”. In: Chaos:
An Interdisciplinary Journal of Nonlinear Science 27.3 (2017), p. 035807.

[41] Béla Bollobás. Modern graph theory. Vol. 184. Springer Science & Business Media, 2013.

[42] Duncan J Watts and Steven H Strogatz. “Collective dynamics of ‘small-world’
networks”. In: Nature 393.6684 (1998), p. 440.

[43] Phillip Bonacich. “Power and centrality: A family of measures”. In: American journal
of sociology 92.5 (1987), pp. 1170–1182.

[44] Leo Katz. “A new status index derived from sociometric analysis”. In: Psychometrika
18.1 (1953), pp. 39–43.

[45] Sergey Brin and Lawrence Page. “The anatomy of a large-scale hypertextual web
search engine”. In: (1998).

[46] Alex Bavelas. “Communication patterns in task-oriented groups”. In: The journal of
the acoustical society of America 22.6 (1950), pp. 725–730.

[47] Linton C Freeman. “A set of measures of centrality based on betweenness”. In:
Sociometry (1977), pp. 35–41.

[48] Romualdo Pastor-Satorras, Alexei Vázquez, and Alessandro Vespignani. “Dynamical
and correlation properties of the Internet”. In: Physical Review Letters 87.25 (2001),
p. 258701.

[49] Mark EJ Newman. “Assortative mixing in networks”. In: Physical Review Letters 89.20
(2002), p. 208701.

[50] Dietrich Stauffer and Ammon Aharony. Introduction to percolation theory. CRC press,
2018.

[51] Ray Solomonoff and Anatol Rapoport. “Connectivity of random nets”. In: The bulletin
of mathematical biophysics 13.2 (1951), pp. 107–117. issn: 0007-4985.

[52] Edgar N Gilbert. “Random graphs”. In: The Annals of Mathematical Statistics 30.4 (1959),
pp. 1141–1144. issn: 0003-4851.

125

REFERENCES

[53] Paul Erdős and Alfréd Rényi. “On random graphs I.” In: Publicationes mathematicae
6.26 (1959), pp. 290–297.

[54] Paul Erdős and Alfréd Rényi. “On the evolution of random graphs”. In: Publ. Math.
Inst. Hung. Acad. Sci 5.1 (1960), pp. 17–60.

[55] Béla Bollobás and Bollobás Béla. Random graphs. 73. Cambridge university press, 2001.

[56] Alan Frieze and Michał Karoński. Introduction to random graphs. Cambridge University
Press, 2016.

[57] Oliver Riordan, Lutz Warnke, et al. “Achlioptas process phase transitions are
continuous”. In: The Annals of Applied Probability 22.4 (2012), pp. 1450–1464.

[58] Dimitris Achlioptas, Raissa M D’Souza, and Joel Spencer. “Explosive percolation in
random networks”. In: Science 323.5920 (2009), pp. 1453–1455.

[59] Nuno AM Araujo and Hans J Herrmann. “Explosive percolation via control of the
largest cluster”. In: Physical Review Letters 105.3 (2010), p. 035701.

[60] Raissa M D’Souza et al. “Explosive phenomena in complex networks”. In: Advances
in Physics 68.3 (2019), pp. 123–223.

[61] Jingfang Fan et al. “Universal gap scaling in percolation”. In: Nature Physics 16.4
(2020), pp. 455–461.

[62] Tom Bohman and Alan Frieze. “Avoiding a giant component”. In: Random Structures
& Algorithms 19.1 (2001), pp. 75–85.

[63] Joel Spencer and Nicholas Wormald. “Birth control for giants”. In: Combinatorica 27.5
(2007), pp. 587–628.

[64] Eric J Friedman and Adam S Landsberg. “Construction and analysis of random
networks with explosive percolation”. In: Physical Review Letters 103.25 (2009),
p. 255701.

[65] Robert M Ziff. “Explosive growth in biased dynamic percolation on two-dimensional
regular lattice networks”. In: Physical Review Letters 103.4 (2009), p. 045701.

[66] Young Sul Cho et al. “Percolation transitions in scale-free networks under the
Achlioptas process”. In: Physical Review Letters 103.13 (2009), p. 135702.

[67] SS Manna and Arnab Chatterjee. “A new route to explosive percolation”. In: Physica
A: Statistical Mechanics and its Applications 390.2 (2011), pp. 177–182.

[68] Jan Nagler, Anna Levina, and Marc Timme. “Impact of single links in competitive
percolation”. In: Nature Physics 7.3 (2011), pp. 265–270.

[69] Rui A da Costa et al. “Explosive percolation transition is actually continuous”. In:
Physical Review Letters 105.25 (2010), p. 255701.

[70] Oliver Riordan and Lutz Warnke. “Explosive percolation is continuous”. In: Science
333.6040 (2011), pp. 322–324.

[71] Tom Bohman, Alan Frieze, and Nicholas C Wormald. “Avoidance of a giant
component in half the edge set of a random graph”. In: Random Structures & Algorithms
25.4 (2004), pp. 432–449.

126

REFERENCES

[72] Wei Chen and Raissa M D’Souza. “Explosive percolation with multiple giant
components”. In: Physical Review Letters 106.11 (2011), p. 115701.

[73] Young Sul Cho, Byungnam Kahng, and Doochul Kim. “Cluster aggregation model
for discontinuous percolation transitions”. In: Physical Review E 81.3 (2010), p. 030103.

[74] AA Moreira et al. “Hamiltonian approach for explosive percolation”. In: Physical
Review E 81.4 (2010), p. 040101.

[75] Christian Von Mering et al. “Comparative assessment of large-scale data sets of
protein–protein interactions”. In: Nature 417.6887 (2002), pp. 399–403.

[76] Protein-protein interaction network. url: http://www.linkprediction.org/index.

php/link/resource/data/1 (visited on 04/23/2020).

[77] Xiao-Long Ren et al. “Generalized network dismantling”. In: Proceedings of the national
academy of sciences 116.14 (2019), pp. 6554–6559.

[78] Michael Molloy and Bruce Reed. “A critical point for random graphs with a given
degree sequence”. In: Random structures & algorithms 6.2-3 (1995), pp. 161–180.

[79] Reuven Cohen and Shlomo Havlin. Complex networks: structure, robustness and function.
Cambridge university press, 2010.

[80] William Ogilvy Kermack and Anderson G McKendrick. “A contribution to the
mathematical theory of epidemics”. In: Proceedings of the royal society of london. Series
A, Containing papers of a mathematical and physical character 115.772 (1927), pp. 700–721.

[81] Romualdo Pastor-Satorras and Alessandro Vespignani. “Epidemic dynamics and
endemic states in complex networks”. In: Physical Review E 63.6 (2001), p. 066117.

[82] Yamir Moreno, Romualdo Pastor-Satorras, and Alessandro Vespignani. “Epidemic
outbreaks in complex heterogeneous networks”. In: The European Physical Journal
B-Condensed Matter and Complex Systems 26.4 (2002), pp. 521–529.

[83] Wikipedia. List of epidemics. 2020. url: https://en.wikipedia.org/wiki/List_of_

epidemics (visited on 05/08/2020).

[84] Nita Madhav et al. “Pandemics: risks, impacts, and mitigation”. In: Disease Control
Priorities: Improving Health and Reducing Poverty. 3rd edition. The International Bank for
Reconstruction and Development/The World Bank, 2017.

[85] European Parliament. Economic impact of epidemics and pandemics. 2020. url: https:

//www.europarl.europa.eu/RegData/etudes/BRIE/2020/646195/EPRS_BRI(2020)

646195_EN.pdf (visited on 05/08/2020).

[86] WHO. Global epidemics and impact of cholera. 2020. url: https://www.who.int/topics/

cholera/impact/en/ (visited on 05/08/2020).

[87] Linyuan Lü et al. “Vital nodes identification in complex networks”. In: Physics Reports
650 (2016), pp. 1–63.

[88] Ron Milo et al. “Network motifs: simple building blocks of complex networks”. In:
Science 298.5594 (2002), pp. 824–827.

127

http://www.linkprediction.org/index.php/link/resource/data/1
http://www.linkprediction.org/index.php/link/resource/data/1
https://en.wikipedia.org/wiki/List_of_epidemics
https://en.wikipedia.org/wiki/List_of_epidemics
https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/646195/EPRS_BRI(2020)646195_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/646195/EPRS_BRI(2020)646195_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/646195/EPRS_BRI(2020)646195_EN.pdf
https://www.who.int/topics/cholera/impact/en/
https://www.who.int/topics/cholera/impact/en/

REFERENCES

[89] Asim K Dey, Yulia R Gel, and H Vincent Poor. “What network motifs tell us about
resilience and reliability of complex networks”. In: Proceedings of the National Academy
of Sciences 116.39 (2019), pp. 19368–19373.

[90] Maksim Kitsak et al. “Identification of influential spreaders in complex networks”. In:
Nature physics 6.11 (2010), pp. 888–893.

[91] Richard M Karp. “Reducibility among combinatorial problems”. In: Complexity of
computer computations. Springer, 1972, pp. 85–103.

[92] Zvi Galil and Giuseppe F Italiano. “Data structures and algorithms for disjoint set
union problems”. In: ACM Computing Surveys (CSUR) 23.3 (1991), pp. 319–344.

[93] Jure Leskovec et al. “Community structure in large networks: Natural cluster sizes
and the absence of large well-defined clusters”. In: Internet Mathematics 6.1 (2009),
pp. 29–123.

[94] Pu Wang et al. “Understanding the spreading patterns of mobile phone viruses”. In:
Science 324.5930 (2009), pp. 1071–1076.

[95] Adam DI Kramer, Jamie E Guillory, and Jeffrey T Hancock. “Experimental evidence
of massive-scale emotional contagion through social networks”. In: Proceedings of the
National Academy of Sciences 111.24 (2014), pp. 8788–8790.

[96] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. “Graphs over time: densification
laws, shrinking diameters and possible explanations”. In: Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining. ACM.
2005, pp. 177–187.

[97] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. “Graph evolution: Densification
and shrinking diameters”. In: ACM Transactions on Knowledge Discovery from Data
(TKDD) 1.1 (2007), p. 2.

[98] Ripeanu Matei, Adriana Iamnitchi, and P Foster. “Mapping the Gnutella network”.
In: IEEE Internet Computing 6.1 (2002), pp. 50–57.

[99] Johannes Gehrke, Paul Ginsparg, and Jon Kleinberg. “Overview of the 2003 KDD
Cup”. In: ACM SIGKDD Explorations Newsletter 5.2 (2003), pp. 149–151.

[100] Bryan Klimt and Yiming Yang. “Introducing the Enron Corpus.” In: CEAS. 2004.

[101] Eunjoon Cho, Seth A Myers, and Jure Leskovec. “Friendship and mobility: user
movement in location-based social networks”. In: Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM. 2011, pp. 1082–
1090.

[102] Jaewon Yang and Jure Leskovec. “Defining and evaluating network communities
based on ground-truth”. In: Knowledge and Information Systems 42.1 (2015), pp. 181–213.

[103] Zbigniew Michalewicz. Genetic Algorithms + Data structures = Evolution Programs.
Springer, 1996.

[104] Wolfgang Banzhaf. “The “molecular” traveling salesman”. In: Biological Cybernetics
64.1 (1990), pp. 7–14.

128

REFERENCES

[105] David B Fogel. “An evolutionary approach to the traveling salesman problem”. In:
Biological Cybernetics 60.2 (1988), pp. 139–144.

[106] John Henry Holland. Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. MIT press, 1992.

[107] David B Fogel. “Applying evolutionary programming to selected traveling salesman
problems”. In: Cybernetics and Systems 24.1 (1993), pp. 27–36.

[108] George Karypis and Vipin Kumar. “A fast and high quality multilevel scheme for
partitioning irregular graphs”. In: SIAM Journal on scientific Computing 20.1 (1998),
pp. 359–392.

[109] George Karypis. “METIS: Unstructured graph partitioning and sparse matrix ordering
system”. In: Technical report (1997).

[110] Brian W Kernighan and Shen Lin. “An efficient heuristic procedure for partitioning
graphs”. In: The Bell system technical journal 49.2 (1970), pp. 291–307.

[111] Liuhua Zhu, Liang Tian, and Daning Shi. “Criterion for the emergence of explosive
synchronization transitions in networks of phase oscillators”. In: Physical Review E
88.4 (2013), p. 042921.

[112] Ping Li et al. “Reexamination of explosive synchronization in scale-free networks:
The effect of disassortativity”. In: Physical Review E 87.4 (2013), p. 042803.

[113] I Sendiña-Nadal et al. “Effects of degree correlations on the explosive synchronization
of scale-free networks”. In: Physical Review E 91.3 (2015), p. 032811.

[114] Thomas K DM Peron et al. “Effects of assortative mixing in the second-order
Kuramoto model”. In: Physical Review E 91.5 (2015), p. 052805.

[115] Erwin Fehlberg. “Low-order classical Runge-Kutta formulas with stepsize control
and their application to some heat transfer problems”. In: (1969).

[116] Alex Arenas et al. “Synchronization in complex networks”. In: Physics Reports 469.3
(2008), pp. 93–153.

[117] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: the Journal of
machine Learning research 12 (2011), pp. 2825–2830.

[118] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[119] Fan RK Chung and Fan Chung Graham. Spectral graph theory. 92. American
Mathematical Soc., 1997.

[120] Andrew Y Ng, Michael I Jordan, and Yair Weiss. “On spectral clustering: Analysis and
an algorithm”. In: Advances in neural information processing systems. 2002, pp. 849–856.

[121] Santo Fortunato. “Community detection in graphs”. In: Physics reports 486.3-5 (2010),
pp. 75–174.

[122] Nino Shervashidze et al. “Weisfeiler-lehman graph kernels.” In: Journal of Machine
Learning Research 12.9 (2011).

[123] Giannis Siglidis et al. “GraKeL: A Graph Kernel Library in Python.” In: Journal of
Machine Learning Research 21.54 (2020), pp. 1–5.

129

REFERENCES

[124] Karsten M Borgwardt and Hans-Peter Kriegel. “Shortest-path kernels on graphs”. In:
Fifth IEEE international conference on data mining (ICDM’05). IEEE. 2005, 8–pp.

[125] Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In: IEEE
Transactions on Neural Networks and Learning Systems (2020).

[126] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional neural
networks on graphs with fast localized spectral filtering”. In: Advances in neural
information processing systems. 2016, pp. 3844–3852.

[127] Keyulu Xu et al. “How powerful are graph neural networks?” In: arXiv preprint
arXiv:1810.00826 (2018).

[128] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted
boltzmann machines”. In: International Conference on Machine Learning. 2010.

[129] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from
overfitting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

[130] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167
(2015).

[131] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[132] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning”. In: IEEE Transactions
on knowledge and data engineering 22.10 (2009), pp. 1345–1359.

[133] Stéphane Coulomb et al. “Gene essentiality and the topology of protein interaction
networks”. In: Proceedings of the Royal Society B: Biological Sciences 272.1573 (2005),
pp. 1721–1725.

[134] Sebastian Wandelt et al. “A comparative analysis of approaches to network-
dismantling”. In: Scientific reports 8.1 (2018), pp. 1–15.

[135] Filippo Radicchi and Claudio Castellano. “Fundamental difference between su-
perblockers and superspreaders in networks”. In: Physical Review E 95.1 (2017),
p. 012318.

[136] Raj Kumar Pan et al. “Using explosive percolation in analysis of real-world networks”.
In: Physical Review E 83.4 (2011), p. 046112.

[137] Peter Sanders and Christian Schulz. “Think Locally, Act Globally: Highly Balanced
Graph Partitioning”. In: Proceedings of the 12th International Symposium on Experimental
Algorithms (SEA’13). Vol. 7933. LNCS. Springer, 2013, pp. 164–175.

130

A
A.1 Complex Network Theory and Network Percolation

A.1.1 Networks

Network Node Edge Examples

Social Person Friendship Facebook

Co-purchasing Product Co-purchasing frequency Online shop

Web Web page Hyperlink World Wide Web

Airline Airport Airline Global airline network

Metabolic Protein Metabolic interaction Yeast protein-interaction
network

Collaboration Person Collaboration • Publication
• Movie

Climate Local measure-
ment

• Location-adjoin
• Correlation

ERA5

Road • City
• Interaction
• Endpoint

Road EU road network

Power grid • Generator
• Transformator
• Substation

Power supply line US power grid

Citation • Article
• Patent

Citation Publication

Internet • Host
• Router

• Cable
• Wireless data connection

Internet topology graph

Communication • Person
• Recipient

• Face-to-face talk
• Contact

• Conference
• Email system

Table A.1: Examples of networks from the real world.

A1

A.

A.1.2 Eigenvector centrality

With some rearrangement, Eq. (2.13) can be rewritten as

λH = AH, λ ̸= 0 (A.1)

in matrix notation. Obviously, the solution should be thatH is an eigenvector of the adjacency
matrix A, and λ is the related eigenvalue. Besides, since A is a non-negative matrix and all
entries in H should be non-negative, the largest eigenvalue λ1 and the associated eigenvector
are considered as the preferable solution (according to the Perron-Frobenius theorem). Thus,
the main goal of the eigenvector centrality is actually to find out the eigenvector that the
largest eigenvalue corresponds to. One way to approximate1 this eigenvector is the power
method. Let’s randomly initialize H(0) (should be a non-zero vector) and based on it obtain
the centrality at step t,

H(1) = AH(0),H(2) = AH(1) = A2H(0), ...,H(t) = AtH(0).

One can also write H(0) as a linear combination of all eigenvectors vi of A,

H(0) =
n

∑
i=1

αivi, (A.2)

where αi is some constant. Thus, we have

H(t) = At
n

∑
i=1

αivi

=
n

∑
i=1

αiλ
t
i vi

= λt
1

n

∑
i=1

αi(
λi

λ1
)tvi,

(A.3)

in which λi is the eigenvalue that vi is associated with. Apparently, when t → ∞, H(t) ≈
α1λt

1v1, which means that H(t) is proportional to2 v1.
To sum up, starting with a random H(0), the eigenvector centrality can be iteratively

acquired through H(t) with AH(t− 1).

A.1.3 Katz centrality

Consider Eq. (2.14) and recall that the ith-row-jth-column value of At is the number of
walks with length t from node i to node j. If letting α < 1

λ1
, then one can have αt At → 0

when t→ ∞. Thus, we can get

Z = (I − αA)−1 − I, (A.4)

1Approximation solution is enough for the eigenvector centrality because we only need to find out which
nodes are relatively important than others.

2Again, this is enough for the eigenvector centrality.

A2

A.1 Complex Network Theory and Network Percolation

where I represents the identity matrix and (I − αA)−1 is the inverse of matrix I − αA. In
this way, the Katz centrality can be obtained through calculating (I − αA)−1 directly.

Since we only need to identify each node, we can remove the term −I in Eq.(A.4) and
get

HT = 1TZ = 1T(I − αA)−1, (A.5)

where HT is the transpose of H and 1 represents a vector (1, 1, 1, ...). Multiplying (I − αA)

on both sides of Eq.(A.5) and doing some transposition and rearrangement, we have

H = αATH+ 1. (A.6)

Now we can also obtain H in the way like the eigenvector centrality does.

A.1.4 Percolation on random graph

0.0 0.2 0.4 0.6 0.8 1.0
p∞

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0
p ∞

⟨k⟩ ⟩ 0.⟨

⟨k⟩ ⟩
1.0

⟨k⟩ ⟩ 1.⟨

p∞

(a)

0 1 2 3 4 5
⟨k⟩

0⟨0

0⟨2

0⟨4

0⟨⟩

0⟨8

1⟨0
p ∞

(b)

Figure A.1: Illustration regarding the giant component p∞ of the average degree ⟨k⟩. (a) The solid
line and the dashed line are accordingly associated with y = 1− e−p∞⟨k⟩ and p∞. Considering
three different ⟨k⟩, only ⟨k⟩ = 1.5 has a non-trivial solution (they three share a same trivial
solution p∞ = 0). (b) The numerical solution of p∞ versus ⟨k⟩.

Following ref. [1] and assuming that p∞ is the probability that a randomly chosen node
i belongs to the giant component, which also indicates that i connects to at least one node
from the giant component, thus we have

p∞ = 1− (1− p)(n−1)p∞ . (A.7)

It is worth noting that (1− p)(n−1)p∞ is the probability that i does not connect to any nodes
in the giant component. Using Eq. (2.30) to eliminate p from Eq. (A.7) we get

p∞ = 1− (1− ⟨k⟩
n− 1

)(n−1)p∞ . (A.8)

After rearrangement, we have

1− p∞ = (1− ⟨k⟩
n− 1

)(n−1)p∞ . (A.9)

A3

A.

Then,

ln(1− p∞) = (n− 1)p∞ ln(1− ⟨k⟩
n− 1

)

≈ (n− 1)p∞(−
⟨k⟩

n− 1
)

= −p∞⟨k⟩.

(A.10)

Further, we get
p∞ = 1− e−p∞⟨k⟩, (A.11)

which does not have a simple solution. Therefore, in Fig. A.1a3, one can find the change
of y = 1− e−p∞⟨k⟩ and p∞ as a function of p∞ considering different average degrees ⟨k⟩,
respectively. Since Eq. (A.11) has a trivial solution p∞ = 0, we can identify the phase
transition through

1 =
d

dp∞
(1− e−p∞⟨k⟩)

= ⟨k⟩e−p∞⟨k⟩.
(A.12)

Rearranging it, we have

p∞ =
ln⟨k⟩
⟨k⟩ , (A.13)

which indicates that a non-trivial solution only exists for ⟨k⟩ > 1 in a view of the fact
1− e−p∞⟨k⟩ < 1 and d

dp∞
(dy

dp∞
) < 0. Besides, we also show the numerical results of p∞ against

⟨k⟩ in Fig. A.1b.

3Note that these behaviors correspond to n→ ∞.

A4

A.2 Ways to Fragment Networks

A.1.5 BFW Algorithm

Algorithm A.1: BFW
Input: n, m
Output: G(n, m)

1 Initialize G(n,M = ∅), α = 2, a = 0, b = 0,Mu(t) andMo(t)
2 t← 0
3 while t < m do
4 eij ← RS(Mu(t), 1)
5 a← The size of the LCC of G(n,Mo(t) ∪ {eij})
6 if a ⩽ α then
7 t← t + 1
8 Mu(t)←Mu(t) \ {eij}
9 Mo(t)←Mo(t) ∪ {eij}

10 b← b + 1

11 else if t/b < 1/2 +
√︁

1/(2α) then
12 α← α + 1

13 else
14 b← b + 1

15 M←Mo(t)

A.2 Ways to Fragment Networks

A.2.1 Molloy-Reed criterion

We here show an intuitive explanation of the Molloy-Reed criterion [78, 79]. Given a
network G(n, m) constructed through the configuration model, we assume that there is a
giant component, and node j belongs to it. Further, supposing that a randomly chosen node
i has degree ki, then the average degree of nodes in the giant component can be expressed
as a conditional expectation ⟨ki|eij⟩ which means that node i has nearest neighbors in the
giant component if it belongs to the giant component. Apparently, ⟨ki|eij⟩ should be at least
2− 2/n (imagining that the giant component is a tree). ⟨ki|eij⟩ can also be obtained through

⟨ki|eij⟩ = ∑
ki

kiP(ki|eij), (A.14)

where P(ki|eij) is the corresponding conditional probability that the randomly chosen node i
with degree ki connects to a node j from the giant component. Further, since

P(ki|eij) =
P(eij|ki)P(ki)

P(eij)
(A.15)

where P(ki) = pki (the probability that a random chosen node has degree ki), P(eij) = 2m/n2

(recall that G is constructed through the configuration model) and P(eij|ki) = ki/n (which is

A5

A.

the probability that a node i with degree ki has an edge to node j), we have

⟨ki|eij⟩ =
⟨k2⟩
⟨k⟩ ⩾ 2− 2

n
, (A.16)

in which the equal holds if the giant component is a tree. But usually, there should be a
few self-loops and multi-edges (see Section 3.1.1.5) in the network G [1]. Thus, we get the
Molloy-Reed criterion as Eq. (3.5).

A.2.2 Attacks on the configuration model network

Given a network G generated by the configuration model, we randomly select q
fraction of its nodes and then remove them from the network, including the incident
edges. Apparently, this move will change the degree of the remaining nodes and also lead to
a subnetwork G′, which has a different degree distribution p′k′ . Assuming that node i is held
by both G and G′, the probability that its degree k decreases to a specific degree k′ should be

(k
k′)(1− q)k′qk−k′ ,

i.e., each of its nearest neighbors has q probability of being removed. Since k ⩾ k′ and
the probability that a randomly chosen node has degree k obeys pk in G, the new degree
distribution p′k′ follows

p′k′ =
∞

∑
k=k′

pk(
k
k′)(1− q)k′qk−k′ . (A.17)

To determine whether there is a giant component in G′, we need to obtain both ⟨k′⟩ and ⟨k′2⟩
(see Eq. (3.5)). For ⟨k′⟩, we can get it through

⟨k′⟩ =
∞

∑
k′=0

k′p′k′ =
∞

∑
k′=0

k′
∞

∑
k=k′

pk(
k
k′)(1− q)k′qk−k′ . (A.18)

After some algebraic calculations, we get

⟨k′⟩ = (1− q)⟨k⟩. (A.19)

In the similar way, one can obtain ⟨k′2⟩,

⟨k′2⟩ = (1− q)2⟨k2⟩+ q(1− q)⟨k⟩. (A.20)

G′, on the other hand, represents a network constructed with part of edges from G through
the configuration model. Thus, we can use the Molloy-Reed criterion (Eqs. (3.5)) to determine
whether there is a giant component in network G′, i.e., ⟨k′2⟩/⟨k′⟩ > 2 which leads us to get
the critical threshold qc, i.e., Eq. (3.6).

A.2.3 Attacks on ER network

Intentional attack on hubs regarding ER networks. Refer to Fig. A.2.

A6

A.2 Ways to Fragment Networks

103 104 105 106
n

0.0

0.2

0.4

0.6

0.8

1.0

q c

√n /n on ER
√n /n on CM
0.01 on ER
0.01 on CM

⟨k2⟩
⟨k⟩ ⟨2 on ER
⟨k2⟩
⟨k⟩ ⟨2 on CM

⟨k⟩ ⟨ 5.0

⟨k⟩ ⟨ 3.5 ⟨k⟩ ⟨ 3.0

(a)

0.0 0.2 0.4 0.6 0.8 1.0
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

Random attack on G
Random attack on CM
Hubs attack on G
Hubs attack on CM

α=0.01
⟨k ′2⟩
⟨k ′⟩ =2

(b)

Figure A.2: (a) The critical threshold qc as a function of network size n under the intentional
attack on hubs on ER networks and the associated configuration model networks (CM). Each
symbol from top to bottom, e.g., the square, corresponds to a different average degree ⟨k⟩. (b)
The fraction of the LCC Ga(q) versus removed fraction q for the random attack and the intentional
attack on hubs. The network G is an enhanced network considering the intentional attack.

A.2.4 Attacks on scale-free network

Letting k be continuous and p(k) = αk−γ, then we have
∫︁ ∞

kmin
p(k)dk = 1 and thus

α = (γ− 1)kγ−1
min , where kmin is the minimum degree. Therefore,

p(k) = (γ− 1)kγ−1
min k−γ. (A.21)

Besides, assuming that there is only one node4 [2] which bounds the node degree in a
scale-free network G(n, m), say kmax, one can get

∫︂ ∞

kmax

p(k)dk =
1
n

, (A.22)

and further (with Eq. (A.21))
kmax = kminn1/(γ−1). (A.23)

Hence, one can approximate ⟨k⟩ and ⟨k2⟩ of pk through p(k) [19] (in particular kmin ≪ kmax),
i.e., pk ≈

∫︁ k+1
k p(k)dk and

⟨k⟩ =
kmax

∑
kmin

kpk ≈
∫︂ kmax

kmin

kp(k)dk = (γ− 1)kγ−1
min

k2−γ
max − k2−γ

min
2− γ

, (A.24)

Similarly, we get

⟨k2⟩ ≈ (γ− 1)kγ−1
min

k3−γ
max − k3−γ

min
3− γ

. (A.25)

4This can be found in many real-world networks.

A7

A.

Thus, according to Eqs. (3.6), (A.23), (A.24) and (A.25), the threshold of scale-free networks
is approximated as

qc ≈

1− 1
akmax − 1

, if 1 < γ < 2,

1− 1

ak3−γ
maxkγ−2

min − 1
, if 2 < γ < 3,

1− 1
akmin − 1

, if γ > 3,

(A.26)

where a = |(2− γ)/(3− γ)|. Eq. (A.26) indicates that: for γ > 3, qc is independent from the
network size n; for 2 < γ < 3, k3−γ

maxkγ−2
min ∼ n(3−γ)/(γ−1) means that qc → 1 if n→ ∞ and its

convergence speed increases as γ decreases; for 1 < γ < 2, qc converges even faster as the
increase of n.

For the intentional attack on hubs [20], we first assume that the new degree bound is
k′max after the removal of q fraction of hubs. Then, we have

q =
kmax

∑
k=k′max

pk ≈
∫︂ ∞

k′max

p(k)dk− 1
n

. (A.27)

If q≫ 1/n which always holds, we can get (with Eq. (A.21))

k′max = kminq1/(1−γ). (A.28)

Since networks are constructed through the configuration model, edges are independent
of each other. That is, each edge has the same probability of connecting to those hubs. In
other words, the removal of hubs would remove each edge with the same probability which
follows the fraction of removed edges

qe =

∫︁ kmax
k′max

kpkdk

⟨k⟩ ≈ (
k′max
kmin

)2−γ, γ > 2 (A.29)

by the aid of Eq. (A.24) and ignoring kmax (for γ > 2) which is usually much larger than
both kmin and k′max. Inserting Eq. (A.28) into Eq. (A.29), one can get

qe = q(2−γ)/(1−γ) (A.30)

which also indicates that qe → 1 as γ→ 2. In other words, for networks with γ→ 2, hubs
dominate almost all edges (also see Eq. (A.21)). Now considering the remaining nodes,
each of their incidental edges has the same probability qe of being removed. Therefore, the
intentional attack on hubs also follows Eq. (A.17) but with k′max instead of kmax, i.e.,

p′k′ =
k′max

∑
k=k′

pk(
k
k′)(1− qe)

k′qk−k′
e , (A.31)

which indicates that the critical threshold under the intentional attack on hubs can also be
obtained through Eq. (3.6) if we replace q with qe and kmax with k′max in Eqs. (A.24) and
(A.25). Specifically, according to Eqs. (A.24), (A.25) and (A.28), one can have a new ⟨k2⟩/⟨k⟩

A8

A.2 Ways to Fragment Networks

as
⟨k2⟩
⟨k⟩ =

2− γ

3− γ
kmin

q(3−γ)/(1−γ) − 1
q(2−γ)/(1−γ) − 1

. (A.32)

Inserting it and Eq. (A.30) into Eq. (3.6), i.e.,

q(2−γ)/(1−γ)
c = 1− 1

2−γ
3−γ kmin

q(3−γ)/(1−γ)
c −1

q(2−γ)/(1−γ)
c −1

− 1
, (A.33)

and after some rearrangements, Eq. (3.9) is reached.

1 2 3 4 5 6 7 8 9 10
γ

0.0

0.2

0.4

0.6

0.8

1.0

q c

k
m
in =

1.0 kmin =2.0
kmin=2.0

kmin=1.0

Random attack
Hubs attack
Random attack
Hubs attack

(a)

0.0 0.2 0.4 0.6 0.8 1.0
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

Random attack on ER
Random attack on SF
Hubs attack on ER
Hubs attack on SF

(b)

Figure A.3: (a) The critical threshold qc as a function of γ for scale-free networks under random
and intentional attacks. The dashed and solid lines are obtained through Eqs. (A.26) and (3.9),
respectively. The circle and square symbols correspond to the results on networks with n = 220

and α = 0.01 (see Eq. (3.8)). (b) Comparison of ER networks (with ⟨k⟩ = 3.0 and n = 220) and SF
networks (with kmin, ⟨k⟩ = 3.0, n = 220 and γ = 2.5).

Fig. A.3a shows the results of qc versus γ predicted by Eqs. (A.26) and (3.9) at n→ ∞
regarding kmin = 1.0 and kmin = 2.0. To verify those results, we also give qc of γ on networks
with size n = 220 considering kmin = 1.0. As we can see from there, qc under the random and
intentional attacks are getting closer as the increase of γ, which follows the conclusion from
Eq. (A.23), that is, a SF network would not have hubs whose degrees are much larger than
others if γ is large. Besides, it is worth mentioning that we construct a SF network in the
following way: i) generate a random number a drawn from power-law distribution regarding
node i; ii) let ki = ⌊a + 0.5⌋ where ⌊·⌋ is the floor function; iii) get the degree sequence based
on i) and ii), and then generate the SF network through the configuration model. In Fig.
A.3b, we compare the response of qc of ER networks and SF networks to the random attack
and intentional attack on hubs. Apparently, for the case of Fig. A.3b, SF networks are more
robust against random failure but also much more fragile to intentional attacks compared to
ER networks. In addition, ⟨k⟩ = 3.0 also follows the conclusion given by Eq. (A.24).

A.2.5 Susceptible-Infected-Recovered model

Since the population is fully mixed, the effective number that per infectious person
leads to on susceptible individuals is ηiaS(t), namely, on average, aS(t) of a individuals are
susceptible and ηiaS(t) of them would be infected by an infectious individual. Thus, to the

A9

A.

next step t + 1, the fraction of susceptible individuals would decrease, i.e.,

dS(t)
dt

= −I(t)ηiaS(t) (A.34)

which based on the fact that I(t) fraction of infectious individuals exist at t5. Eq. (A.34)
accounts for the infection phase. Meanwhile, the recovery phase assumes that ηr fraction
of current infected individuals would recover at step t. Therefore, the fraction of recovered
individuals would increase,

dR(t)
dt

= ηrI(t). (A.35)

Regarding the number of infected individuals to the next time step t + 1, it depends on both
the infection phase and the recovery phase, namely,

dI(t)
dt

= I(t)ηiaS(t)− ηrI(t). (A.36)

Apparently, an epidemic can outbreak only if dI(t)
dt > 0, that is,

I(t)ηiaS(t) > ηrI(t), (A.37)

which gives us Eq. (3.11).
Fig. A.4 shows an example regarding the SIR model.

0 25 50 75 100 125 150 175 200
t

0.0

0.2

0.4

0.6

0.8

1.0

S(t)
I(t)
R(t)

Figure A.4: An example of the SIR model with ηia = 0.5, ηr = 0.25, S(0) = (n − 1)/n and
I(0) = 1/n on a population of size n = 106. That is, the basic reproductive number here is
η0 = ηia/ηr = 2.

A.2.6 From SIR to percolation

Following ref. [2], we here show some results on networks generated through the
configuration model. Specifically, for a given network G(n, m), we firstly divide its nodes
into different groups based on their degrees. Consider the group consisting of nodes with

5One can understand this in the following ways. The number of infected individuals is nI(t). Each of them
would infect ηiaS(t) people. Then, the number of new infected individuals is nI(t)ηiaS(t). Thus, the lost fraction
of susceptible individuals is I(t)ηiaS(t), i.e., Eq. (A.34).

A10

A.2 Ways to Fragment Networks

degree k and let Ik(t) be the fraction of infected nodes in this group, i.e.,

Ik(t) =
#infected nodes have degree k at t

npk
, (A.38)

Similarly, we have Sk(t) and Rk(t). Now focusing on the change of Ik(t), obviously, the
second term on the right side of Eq. (A.36) has similar formation, namely, ηrIk(t). For the
first term, a can be replaced by k, ηi and ηr are same, and S(t) turns into Sk(t); however, the
infected neighbors that the group has are different since they might come from other groups.
Therefore, we can rewrite Eq. (A.36) as

dIk(t)
dt

= Θ(t)ηikSk(t)− ηrIk(t), (A.39)

where Θ(t) is called density function [2, 81, 82], which characterizes the average fraction of
infected nodes that a node with degree k contacts. Further, because the network generated
through configuration model, the probability that a node with degree k connects to a node
with degree k′ is k′pk′/⟨k⟩ according to Eq. (2.22). For a particular infected node with k′, it
could at most further infect k′ − 1 other nodes because it gets the virus from at leat one of its
neighbors. Thus, we have Θ(t) as

Θ(t) = ∑
k′

(k′ − 1)pk′Ik′(t)
⟨k⟩ , (A.40)

which is independent of k. Now considering the early stage of an epidemic where Sk(t) ≈ 1,
we have

∑
k

(k− 1)pk

⟨k⟩
dIk(t)

dt
= ∑

k

(k− 1)pk

⟨k⟩ Θ(t)ηik−∑
k

(k− 1)pk

⟨k⟩ ηrIk(t) (A.41)

by multiplying ∑k
(k−1)pk
⟨k⟩ on Eq. (A.39). After some rearrangements, one can get

dΘ(t)
dt

= (
⟨k2⟩ − ⟨k⟩
⟨k⟩ ηi − ηr)Θ(t), (A.42)

where the derivative of Eq. (A.40) is used. Through solving Eq. (A.42), we have

Θ(t) = aebt, (A.43)

where a is a constant and b = ⟨k2⟩−⟨k⟩
⟨k⟩ ηi − ηr. Apparently, if b < 0, Θ(t) will exponentially

decrease to zero as t increases. Thus, an epidemic that can outbreak should satisfy b > 0,
which gives us the epidemic threshold on networks, i.e., Eq. (3.12).

Assuming that we occupy each edge (bond) with probability 1− e−ηitr , then we can get
a subnetwork consisting of a number of connected components, which possibly has a giant
component. For this case, the spread size of an epidemic is equivalent to the size of the
connected component where the infected source locates at. Apparently, if there is a giant
component and the infected source is randomly chosen (i.e., with high probability that the
infected source is in the giant component), then with high probability, the final size of an
outbreak is equal to the size of the giant component. And thus, the epidemic threshold

A11

A.

is associated with the critical threshold of the related bond percolation. Mathematically,
considering a particular node i and an associated edge eij, the probability α that i does
not connect to the giant component through j with degree k j comprises the following two
parts: i) the probability that the edge eij is unoccupied, i.e., e−ηitr ; ii) the probability that
node j does not belong to the giant component if eij is occupied, that is, (1− e−ηitr)αk j−1

(recall that we should subtract the one connecting to i), where αk j−1 is the probability that j
does not connect to the giant component through its other neighbors. Thus, the probability
that node i does not connect to the giant component through a particular node j with k j is
e−ηitr + (1− e−ηitr)αk j−1. Further, according to Eq. (2.22) and recalling that G is constructed
through the configuration model, the probability Pk j that j has degree k j is independent of ki

and it is given by Pk j =
k j pkj
⟨k⟩ . Now averaging over k j, we have α which follows

α = ∑
k

kpk

⟨k⟩ (e
−ηitr + (1− e−ηitr)αk−1)

= e−ηitr + (1− e−ηitr)∑
k

kpkαk−1

⟨k⟩ ,
(A.44)

where we simply replace k j with k. According to refs. [4, 1], the critical threshold (regarding
percolation) can be obtained through the derivative of Eq. (A.44) at α = 1. Thus, we have

1− e−ηitr =
⟨k⟩

⟨k2⟩ − ⟨k⟩ , (A.45)

which indicates that a giant component exists or an epidemic outbreaks if the occupied
probability 1 − e−ηitr or the epidemic threshold is larger than ⟨k⟩

⟨k2⟩−⟨k⟩ . After some
rearrangements, one can also get 6

ηitr = − ln(1− ⟨k⟩
⟨k2⟩ − ⟨k⟩). (A.46)

A.2.7 Metrics to Methods

Ga(q) and ⟨k′2⟩/⟨k′⟩ of q on ER networks regarding RanS and HubS. Refer to Fig. A.5.

A.2.8 General methods

Fig. A.6 gives some comparisons among those methods on one artificial network and
two empirical networks. The BA network is constructed through the BA model [18] (check
details from Section 3.1.1.4). The power grid network (Power) is a network containing 4941
nodes and 6594 edges, where a node represents either a generator, a transformator or a
substation, and an edge is a power supply line [42]. Here we are interested in how the
LCC changes if an attack occurs on some of those nodes. Although this imagined attack
might never happen, climate change indeed increases the frequency and intensity of extreme

6If replacing tr with the mean recovered time 1/ηr in Eq. (A.46), one can get ηi/ηj which is actually different
from the one in Eq. (3.12), even though many literatures view Eqs. (3.12) and (A.45) as the same thing, such as [2,
12]. The reason, as mentioned in ref. [1], is that Eqs. (3.12) and (A.45) are derived based on different assumption.
In this thesis, we mainly consider the epidemic threshold given by Eq. (3.12) but sometimes we use Eq. (A.45)
when referring to percolation.

A12

A.2 Ways to Fragment Networks

0.0 0.2 0.4 0.6 0.8 1.0
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

⟨k
′2
⟩⟨⟨
k′
⟩

RanS
⟩ubS
RanS
⟩ubS

Figure A.5: Ga(q) and ⟨k′2⟩/⟨k′⟩ versus q on ER networks with ⟨k′⟩ = 3.0 and n = 220. The solid
and dashed lines are associated with Ga(q) and ⟨k′2⟩/⟨k′⟩, respectively. RanS is the random
attack strategy, and HubS is the intentional attack on hubs. On the one hand, the removal of
nodes would isolate a network, and an epidemic could only outbreak at most as the size of
the LCC if the infectious source is unique. On the other hand, the removal also increases the
epidemic threshold, i.e., decreases ⟨k′2⟩/⟨k′⟩. Apparently, for both cases, HubS is much more
efficient than RanS.

0.0 0.2 0.4 0.6 0.8 1.0
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

HubS
EigS
KatS
PagS
CloS
BetS
KshS

(a)

0.0 0.2 0.4 0.6 0.8 1.0
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

0.0 0.2 0.4 0.6 0.8 1.0
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(c)

Figure A.6: Performance of HubS, EigS, KatS, PagS, CloS, BetS, and KshS regarding Ga(q) of
q on (a) a BA network with n = 104 and ⟨k⟩ = 4.0, (b) a power grid network of the western
states of US with n = 4941, ⟨k⟩ = 2.7, and (c) a protein-protein interaction network in yeast with
n = 2375 and ⟨k⟩ = 9.8. EigS is with α = 0.1. KatS is with α = 0.04 for the BA and the power
grid networks, and α = 0.01 for the yeast network (recall that α of EigS should be smaller than
the reciprocal of the largest eigenvalue of the adjacent matrix to ensure convergence). PagS is
with α = 0.85. All symbols are sampled over the same interval of q. Thus one can also compare
Ga(q) for a specific q through vertically considering those symbols.

events that possibly disable a few of the lines or generators simultaneously. The other real-
world network is the protein-protein interaction network in yeast, in which nodes represent
proteins, and the metabolic interaction among them is captured by edges [75, 76]. Research
has shown that proteins have more interactions with others are more important for the yeast
to survive [133], which is directly associated with one of our potential goals to design drugs
to kill unwanted bacteria [2].

Apparently, for all those three networks, PagS performs better than others, that is, for
almost all q, PagS has smaller Ga(q) compared to other methods. In particular, KatS is more
effective than EigS but less than PagS, which exactly follows those explanations in Section 2.2.
For HubS, it is comparable to PagS in the BA network and the power grid network but worse
than both PagS and BetS in the yeast network. In real-world networks, there are always some
critical nodes that connect two or several communities. Though those nodes sometimes have
a small degree, they are very important to keep or block the transition of information among
communities. For this case, BetS might be a good choice. BetS usually has better performance

A13

A.

in real-world networks than that in model networks where a community structure rarely
exists. Among those strategies, CloS and KshS account for the worst performance. That
may be because both of them try to find those influential nodes which could maximize
the spread. Therefore, one should notice that there are some differences between finding a
group of nodes to maximize a spread and finding a group of nodes to prevent an outbreak
effectively. In addition, comparing PagS on those three networks, the density of edges, i.e.,
⟨k⟩, plays a very important role regarding the network robustness. Moreover, regarding the
critical threshold qc, PagS only needs to remove 1583 nodes to disintegrate the BA network.
However, KatS needs 6604 to achieve the same goal. Further, in the same network, PagS also
has much smaller F than KatS, 0.099 compared to 0.318.

A.2.9 Heuristic methods

(a) (b)

Figure A.7: An example of AHubS. (a) Apparently, node 2 has larger degree than node 1, i.e.,
k2 = 4 compared to k1 = 3. (b) After the removal of two hubs under shadow, node 1 emerges as
a new hub in the remaining network.

0.0 0.1 0.2 0.3
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

HubS
PagS
AHubS
APagS
ABetS

(a)

0.0 0.1 0.2 0.3
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

0.0 0.1 0.2 0.3 0.4
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(c)

Figure A.8: Performance of HubS, PagS, AHubS, APagS, and ABetS regarding Ga(q) of q on the
same networks as Fig. A.6, i.e., (a) the BA network, (b) the power grid network, and (c) the yeast
network. AHubS, APagS and ABetS repeatedly identify and remove the node with highest score
from the corresponding remaining network.

Fig. A.8 shows the performance of AHubS, APagS, and ABetS compared to HubS and
PagS. As we can see from Fig. A.8a, even though the adaptive process is conducted, AHubS
is only slightly better than HubS. The reason is that a network generated through the BA
model theoretically has an absence of degree correlation (see Section 2.3.1), which means
that the removal of hubs would not influence other hubs. In real-world networks, however,
AHubS always has much better results than HubS. PagS and APagS share a similar pattern.
To some extent, PagS indirectly relies on the degree from both a node itself and others7.

7PagS (see also Section 2.2.4) converges to the leading eigenvector of the related matrix which is indirectly
associated with the node degree.

A14

A.2 Ways to Fragment Networks

Again, in the BA network where there is the absence of degree correlation, PagS would be
conquered by the degree of node itself (see also Fig. A.6a).

Figure A.9: An example with respect to BetS and ABetS. Both BetS and ABetS would firstly
remove node 1. But after that, BetS might choose node 2 while ABetS choose node 3 instead.
Apparently, the combinational configuration of 1 and 3 is better than the one of 1 and 2 to
disintegrate this network.

The most surprising results are from ABetS. From Fig. A.6, we know that PagS actually
has better performance than BetS. But, for the adaptive case, on the contrary, ABetS is much
more effective than APagS. More specifically, for example, ABetS collapses the BA network
with only 1076 nodes compared to APagS with 1459, i.e., (1459− 1076)/1459 = 26.25%
saving of nodes. From Section 2.2.6, we know that BetS aims at those nodes that a lot of
shortest paths rely on. Though BetS usually works well on varied networks (see Fig. A.6),
it faces a problem that a large-score node would have neighbors with a large score when
coming to collapsing a network (see Fig. A.9). One can also imagine a special case on an
unbalanced tree network where ABetS would be much more capable than BetS. Indeed,
ABetS could obtain smaller qc and F than many other methods [134]. But it suffers a problem
from the time consumption. Therefore usually, ABetS is not suitable to tackle large networks.
Thus, in what follows, we employ ABetS as a criterion to verify recently developed methods
on small networks but would not consider it on large networks.

A.2.10 Decycling-based methods

0.00 0.05 0.10 0.15 0.20
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

ABetS
AMSRGS
ABPDS

(a)

0.00 0.05 0.10
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(c)

Figure A.10: Performance of ABetS, AMSRGS, and ABPDS regarding Ga(q) of q on the same
networks as Fig. A.6, i.e., (a) the BA network, (b) the power grid network, and (c) the yeast
network. The inserted panel shows the critical threshold qc marked by correspond symbols.
AMSRGS is conducted with α1 = 3/n and α = 0.01 while ABPDS is with α = 0.01 and x = 12 of
Eq. (4) in ref. [25].

Fig. A.10 shows the results of both ABPDS and AMSRGS compared to ABetS on the BA
network, the power grid network, and the yeast network, respectively. Since ABPDS and
AMSRGS are only designed for the critical threshold qc, we here mainly consider the insert

A15

A.

in each figure. Obviously, ABetS and AMSRGS have similar performance on those three
networks, and ABetS is better on two of them. ABPDS, instead, surpasses both ABetS and
AMSRGS on the BA network but is worse than them on the two real-world networks. Besides,
regarding F, both ABPDS and AMSRGS are much less effective than ABetS, especially in
real-world networks. To sum up, on average, ABetS still outperforms both AMSRGS and
ABPDS that are comparable with each other. But again, ABetS is too time-consuming for
large networks. In addition, since ABPDS is usually much faster than AMSRGS to get a
result (check details from refs. [25, 26]), we will then mainly verify the proposed methods
through the comparison with ABPDS instead of AMSRGS.

A.2.11 Collective influence approach

Figure A.11: An example of the collective influence strength. Considering node i and the case of
ℓ = 1, ∂Ball(i, 1) is a node set comprising of the nearest neighbors of i, i.e., the three nodes on
the inner dashed curve. Similarly, ∂Ball(i, 2) contains 5 nodes located on the outer dashed curve.

Fig. A.11 shows an instance regarding how to calculate the collective influence strength.

0.00 0.05 0.10 0.15 0.20
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

ABetS
AHubS
ℓ=1
ℓ=3
ℓ=5

(a)

0.00 0.05 0.10 0.15 0.20
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

0.0 0.1 0.2 0.3 0.4
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(c)

Figure A.12: Performance of ACIS with ℓ = 1, ℓ = 2 and ℓ = 3 compared to ABetS regarding
Ga(q) of q on the same networks as Fig. A.6, i.e., (a) the BA network, (b) the power grid network,
and (c) the yeast network.

Indeed, for a tree, one can easily see the connection between the CI strength and the
root of a balanced tree, i.e., a node i with large CIℓ(i) is more likely to be the root of a
balanced tree. And from ABetS, AMSRGS, and ABPDS, we know that the removal of the
root is fatal to a tree. However, this also indicates that ACIS could not find real optimization,
or at least does not have the ability to outperform ABetS. To verify this, Fig. A.12 gives
results of Ga(q) as a function of q respecting ACIS with different ℓ compared to ABetS. As
it illustrates, even though ACIS outperforms AHubS that is mainly considered by ref. [23],
ABetS is much more effective than ACIS, particularly in real-world networks. Besides, as
shown in Fig. A.12c, the performance of ACIS might become worse as ℓ increases. Moreover,

A16

A.2 Ways to Fragment Networks

it is also worth mentioning that ref. [23] views the immunization problem and the influence
maximization problem as the same, but they are an actually different problem. One can find
more comparisons in ref. [135].

A.2.12 Percolation-based methods

0.00 0.05 0.10 0.15 0.20
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

ABetS
AHubS
ACIS
AITS

(a)

0.00 0.05 0.10 0.15
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(c)

Figure A.13: Performance of AITS compared to ABetS, AHubS, and ACIS (with ℓ = 3) regarding
Ga(q) of q on the same networks as Fig. A.6, i.e., (a) the BA network, (b) the power grid network,
and (c) the yeast network. Each AITS is an average of 20 independent implementations.

Fig. A.13 shows compared results among AITS, ABetS, AHubS, and ACIS under ℓ = 3.
For all three networks, AITS and ABetS can obtain similar critical thresholds that are much
smaller than those through AHubS and ACIS. In the BA network, AITS even has a smaller F
than ABetS. However, for real-world networks, this advantage disappears, especially in the
yeast network, where the ratio of F of ABetS and AITS is 0.68.

0.00 0.05 0.10 0.15 0.20
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

AITS
ACNS
AEIS

(a)

0.00 0.02 0.04 0.06 0.08 0.10
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(c)

Figure A.14: Comparisons among AITS, ACNS, and AEIS regarding Ga(q) of q on the same
networks as Fig. A.6, i.e., (a) the BA network, (b) the power grid network, and (c) the yeast
network. Following the suggestions from ref. [24], here ns and K of AEIS are fixed to 2000
and 6, respectively. All of them are obtained by averaging the results of 20 independent
implementations.

Fig. A.14 gives the performance of ACNS and AEIS compared to AITS. Obviously, they
have similar performance in the three considered networks, which means that both ACNS
and AEIS would be less effective than ABetS in real-world networks. In addition, ACNS is
slightly worse than AITS and AEIS in the BA network and the power grid network but better
in the yeast network. Besides, ACNS could always obtain results faster than AITS since it
only needs to remove nodes until the remaining network only contains isolated nodes.

A17

A.

A.2.13 Bounded and Unbounded Strategies

Union-Find Algorithm. Refer to Algorithm A.2. Besides, Fig. A.15 shows an example,
where the starting node of an arrow can be viewed as node i, and the blue node is the
corresponding root a[i].

(a) (b) (c)

Figure A.15: An example of the Union-Find algorithm. (a) Considering the nodes in the two
components (marked by shadows) at time t, they point to the two roots (in blue color), respectively.
(b) Union: assuming that the two components in (a) merge together by the aid of an edge between
the two roots, then the root in the small component points to the one in the large component
(see the solid arrow). Note that the remaining nodes in the smaller component still point to the
old root. (c) Find: those remaining nodes (colored blue) follow their old root to find and change
to the new root.

Algorithm A.2: Union-Find

1 Function Root(i, a):
2 while i ̸= a[i] do
3 a[i]← a[a[i]]
4 i← a[i]

5 return i

6 Function Find(i, j, a):
7 return Root(i, a) = Root(j, a)

8 Function Union(i, j, a, c):
9 u← Root(i, a)

10 v← Root(j, a)
11 if |c(u)| < |c(v)| then
12 a[u]← v
13 c(v)← c(v) ∪ c(u)
14 return |c(v)|
15 else
16 a[v]← u
17 c(u)← c(u) ∪ c(v)
18 return |c(u)|

Bounded-size strategies. Performance of the bounded-size approach regarding Eq.
(3.23) is shown in Fig. A.16.

A18

A.2 Ways to Fragment Networks

0.0 0.2 0.4 0.6 0.8 1.0
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

RanS
HubS
ns=2
ns=20
ns=200
ns=2000

(a)

0.0 0.2 0.4 0.6 0.8 1.0
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

Figure A.16: Performance of basic bounded-size rule with α = 0.01× n on (a) an ER network
with n = 105 and ⟨k⟩ = 3.5 and (b) a BA network with n = 105 and ⟨k⟩ = 4.0.

Performance of ABonS1. As we can see from Fig. A.17, apparently, ABonS1 can get
much smaller critical threshold qc than AHubS, and it is even better than ACIS. Here it is
also worth mentioning that, for example on the BA network regarding ACIS with ℓ = 4 and
ABonS1 with b = 1.2, ABonS1 can obtain the corresponding result within 1 second while
ACIS needs over 10 minutes in the same computational environment.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

AHubS
ACIS
1.2
1.6
2.0

(a)

0.00 0.05 0.10 0.15 0.20
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

Figure A.17: Performance of ABonS1 (with b = 1.2, 1.6 and 2.0) compared to AHubS and ACIS
(with ℓ = 4) on (a) an ER network with n = 105 and ⟨k⟩ = 3.5 and (b) a BA network with n = 105

and ⟨k⟩ = 4.0.

Performance of ABonS2. Though the results in Fig. A.18 show ABonS2 is comparable
to ABonS1, one can truly tune bc and bo to get better results, especially in real-world networks.
Note that ABonS1 and ABonS2 surpass most existing methods and have comparable results
to the others except for ABetS.

Performance of ASumRS and AProRS. Fig. A.19 shows their performance validated
by ABonS1. Apparently, both ASumRS and AProRS are less effective than ABonS1, and
ASumRS is better than AProRS, which is different from the one in Fig. 2.5. Specifically, for
example, ASumRS converges very fast as the increase of ns at the early stage and becomes
stable around ns = 2000. Actually, the results with ns = 20000 are slightly worse than those
with ns = 2000 in some cases, which indicates the optimum is not obtained at ns = n, in
contrast to the conclusions8 given in refs. [136, 24].

8Different strategies share the similar properties.

A19

A.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)
ABonS1
1.1, 2.0
1.1, 3.0
1.2, 2.0
1.2, 3.0

(a)

0.00 0.05 0.10 0.15 0.20
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

Figure A.18: Performance of ABonS2 (with bc = 1.1 and bo = 2.0, and so forth) compared to
ABonS1 (with b = 1.2) on (a) an ER network with n = 105 and ⟨k⟩ = 3.5 and (b) a BA network
with n = 105 and ⟨k⟩ = 4.0.

Performance of APRSs1 and APRSrr. Results in Fig. A.20 demonstrate that APRSs1
is slightly more effective than ABonS1 under same d with respect to the critical threshold.
Note that one can tune ns(0) and ru(0) to arm APRSrr to get better results than APRSs1, e.g.,
set ns(0) and ru(0) large enough.

A.2.14 Evolutionary Framework for the Identification of Influential Nodes

Comparisons of qc between ARRS and ARRSq. Refer to Fig. A.21.
An example of the accepted probability Ap against a(Tp). Refer to Fig. A.22.
Performance of mutation operators regarding qc. Fig. A.23 shows the corresponding

comparisons among ARRSq, PruGriq, PruGriqv4, PruGriqv4m (PruGriqv4 with mutation
operators) and PruGriqv5m (PruGriqv5 with mutation operators), where the probabilities of
the local mutation and the global mutation are 0.1 and 0.3, respectively. Note that all those
results are based on initial sequences drawn from HubS. Compared to ARRSq, PruGriq
can find smaller qc in 10 out of 18 networks. PruGriqv4 further improves PruGriq and it
surpasses PruGriq in all networks (see also Eq. (3.41)). We then add mutation operators
into PruGriqv4 (PruGriqv4m). As we can see from PruGriqv4 vs. PruGriqv4m, PruGriqv4m
only has negative D(qc) in 5 networks. For PruGriqv5m, it has better performance in 13
networks than PruGriqv4m, in 15 than PruGriqv4, in 18 than PruGriq and in 16 than ARRSq.
It is worth mentioning that PruGriqv5m truly outperforms PruGriqv4m on average, but
one should know that it is possible of PruGriqv4m to have smaller critical threshold than
PruGriqv5m if they are initialized based on other methods instead of HubS (see Fig. 3.26).

A.2.15 Fast Scheme for the Suppression of F

The computing time of GPEP is illustrated in Fig. A.24 and the corresponding results of
F are reported in Table A.2. Meanwhile, performance of GPEP regarding varied imbalances
and τ̂ is presented in Tables A.3 and A.4, respectively.

A20

A.3 Functions of Order Parameter as Measure

0.0 0.1 0.2 0.3 0.4 0.5
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

ABonS1
2
20
200
2000
20000

(a)

0.0 0.1 0.2 0.3 0.4 0.5
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

0.0 0.1 0.2 0.3 0.4 0.5
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(c)

0.0 0.1 0.2 0.3 0.4 0.5
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(d)

Figure A.19: Performance of ASumRS ((a) and (b)) and AProRS ((a) and (b)) compared to ABonS1
(with b = 1.2) on (a) and (c) an ER network with n = 105 and ⟨k⟩ = 3.5, and (b) and (d) a BA
network with n = 105 and ⟨k⟩ = 4.0. Here ns = 2, 20, 200, 2000 and 20000 are considered.

Networks AMetisS AMetisSg AMetisSe AMetisSge GPEPK GPEP EvolF(1) EvolF(2) EvolF(3) EvolF(4)

Power 0.0076 0.0075 0.0099‡† 0.0098‡† 0.0071 0.0074 0.0070 0.0069 0.0069 0.0069
CA-GrQc 0.0346‡ 0.0304 0.0356‡ 0.0312 0.0293 0.0300 0.0275 0.0283 0.0284 0.0288
p2p-Gnutella08 0.2007‡† 0.1486 0.2011‡† 0.1464 0.1454 0.1454 0.1327 0.1326 0.1326 0.1333
as-733 0.0109‡ 0.0101† 0.0111‡ 0.0105‡ 0.0094 0.0094 0.0085 0.0084 0.0085 0.0087
Scottish 0.0281† 0.0270 0.0288† 0.0278 0.0250 0.0266 0.0226 0.0225 0.0225 0.0226
CA-AstroPh 0.1476‡ 0.1224 0.1490‡ 0.1196 0.1412‡ 0.1201 0.1130 0.1104 0.1109 0.1166
CA-CondMat 0.0659 0.0639 0.0669† 0.0639 0.0658 0.0627 0.0599 0.0597 0.0600 0.0610
hep-th 0.1539 0.1524 0.1556 0.1540 0.1790‡ 0.1515 0.1836‡ 0.1516 0.1510 0.1511
Cit-HepPh 0.1380 0.1372 0.1395 0.1387 0.1370 0.1360 0.2011‡‡ 0.1367 0.1363 0.1359
Email-Enron 0.0242† 0.0226 0.0248‡ 0.0228 0.0225 0.0219 0.0206 0.0198 0.0198 0.0198
p2p-Gnutella31 0.1169‡ 0.1101† 0.1172‡ 0.1048 0.1048 0.1044 0.0959 0.0961 0.0964 0.1006
loc-Gowalla 0.0460 0.0446 0.0470† 0.0452 0.0629‡† 0.0444 0.0530‡ 0.0416 0.0417 0.0417
Email-EuAll 0.0012‡ 0.0011 0.0013‡† 0.0012‡ 0.0011 0.0011 0.0008 0.0008 0.0008 0.0008
com-Amazon 0.0250 0.0247 0.0267† 0.0263† 0.0352‡† 0.0248 0.0352‡† 0.0247 0.0244 0.0247
web-Google 0.0103 0.0101 0.0125‡† 0.0122‡ 0.0239‡‡ 0.0100 0.0178‡‡ 0.0095 0.0095 0.0096
PAroad 0.0006 0.0006 0.0031‡‡ 0.0031‡‡ 0.0006 0.0006 0.0010‡‡ 0.0006 0.0006 0.0006
Txroad 0.0003 0.0003 0.0028‡‡ 0.0028‡‡ 0.0003 0.0003 0.0005‡† 0.0003 0.0003 0.0003
as-Skitter 0.0138† 0.0135† 0.0162‡† 0.0151‡ 0.0250‡‡ 0.0126 0.0180‡† 0.0113 0.0114 0.0117

Ave. imp. 6.65% 0.87% 21.50% 15.27% 10.53% 6.68% −9.25% −9.16% −7.01%

Table A.2: Results of F on the 18 real-world networks regarding GPEP. EvolF(1) is EvolF(HubS),
EvolF(2) is EvolF(AMetisS), EvolF(3) is EvolF(AMetisSg), EvolF(4) is EvolF(GPEP).

A.3 Functions of Order Parameter as Measure

A.3.1 Influences of Acquaintances on the Containment of Epidemics

F of mr/m regarding varied removal criteria. Refer to A.25.
A21

A.

0.0 0.1 0.2 0.3
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)
ABonS1
1.2
1.6
2.0
APRSrr

(a)

0.0 0.1 0.2 0.3
q

0.0

0.2

0.4

0.6

0.8

1.0

a(q

)

(b)

Figure A.20: Performance of APRSs1 (with b = 1.2, 1.6 and 2.0) and APRSrr (with same
configuration as ARRS in Fig. 3.10) compared to ABonS1 (with b = 1.2) on (a) an ER network
with n = 105 and ⟨k⟩ = 3.5 and (b) a BA network with n = 105 and ⟨k⟩ = 4.0.

-10.00%

0.00%

10.00%

D
(q

c)

Po
we

r
CA

-G
rQ

c
p2

p-
Gn

ut
ell

a0
8

as
-7

33
Sc

ot
tis

h
CA

-A
st

ro
Ph

CA
-C

on
dM

at
he

p-
th

Ci
t-H

ep
Ph

Em
ail

-E
nr

on
p2

p-
Gn

ut
ell

a3
1

loc
-G

ow
all

a
Em

ail
-E

uA
ll

co
m

-A
m

az
on

we
b-

Go
og

le
PA

ro
ad

Tx
ro

ad
as

-S
kit

te
r

85.00%

90.00%

95.00%

100.00%

Co
ef

T= 10
T= 50
T= 150

Figure A.21: Comparisons of qc between ARRS and ARRSq on the 18 real-world networks,
where the normalized qc difference D(qc) is calculated through D(qc) = (qc(ARRS) −
qc(ARRSq))/((qc(ARRS) + qc(ARRSq))/2). Coef is the Pearson correlation coefficient of F
and qc as a function of T considering ARRS.

0 500 1000 1500 2000
a(Tp)

0.0

0.2

0.4

0.6

0.8

1.0

A p Tp=1
Tp=10
Tp=100
Tp=200

Figure A.22: An example of Ap against a(Tp) regarding Eq. (3.40), where b2(0) = 0.05 and n =
2375 are considered based on an assumed scenario of b1(1) = 1000, b1(10) = 800, b1(100) = 600,
and b1(200) = 400.

A22

A.3 Functions of Order Parameter as Measure

Po
we

r
CA

-G
rQ
c

p2
p-
Gn

ut
ell
a0

8
as
-7
33

Sc
ot
tis
h

CA
-A
st
ro
Ph

CA
-C
on

dM
at

he
p-
th

Ci
t-H

ep
Ph

Em
ail
-E
nr
on

p2
p-
Gn

ut
ell
a3

1
loc

-G
ow

all
a

Em
ail
-E
uA

ll
co
m
-A
m
az
on

we
b-
Go

og
le

PA
ro
ad

Tx
ro
ad

as
-S
kit

te
r

D
(q

c)

ARRSq vs. PruGriq

PruGriq vs. PruGriqv4

PruGriqv4 vs. PruGriqv4m

PruGriqv4m vs. PruGriqv5m

Figure A.23: Comparisons of qc among ARRSq, PruGriq, PruGriqv4, PruGriqv4m (PruGriqv4
with mutation operators) and PruGriqv5m (PruGriqv5 with mutation operators) on the 18 real-
world networks, where D(qc) = (qc(ARRSq)− qc(PruGriq))/((qc(ARRSq) + qc(PruGriq))/2)
is calculated for ARRSq vs. PruGriq, and so forth. The value between every two ticks is uniquely
0.1 and each dark solid line corresponds to D(qc) = 0.

104 105 106
n

10−1

100

101

102

103

104

Ti
m
e(
s)

AMetisS
AMetisSg
AMetisSe
AMetisSge
GPEPK
GPEP

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Figure A.24: Computing time (in second) of GPEP as a function of the network size n compared
to AMetisS, AMetisSg, AMetisSe, AMetisSge, and GPEPK, where the average degree could be
read by both the size and corresponding color. AMetisSe is AMetisS with an early stop (till
Ga(q) < α) and AMetisSge is AMetisSg with an early stop. GPEPK is the case that the node
separator is acquired based on KaHIP [137].

F of mr/m regarding varied removal criteria from local perspective. Refer to A.26.
Contours of ⟨αinf⟩ regarding Prodi2 on the Email-Enron network and loc-Gowalla

network. Accordingly refer to Figs. A.27 and A.28.
Contours of ⟨αinf⟩ regarding Prodi2 with different mr on the Email-Enron network.

Refer to Fig. A.29.

A23

A.

Networks 10 20 40 80 160 320 640 GPEP

Power 0.0080† 0.0077 0.0082‡ 0.0077 0.0073 0.0076 0.0075 0.0074
CA-GrQc 0.0314 0.0300 0.0297 0.0305 0.0301 0.0307 0.0323† 0.0300
p2p-Gnutella08 0.1468 0.1463 0.1456 0.1482 0.1448 0.1455 0.1526 0.1454
as-733 0.0091 0.0096 0.0092 0.0094 0.0096 0.0094 0.0097 0.0094
Scottish 0.0258 0.0262 0.0259 0.0254 0.0259 0.0265 0.0265 0.0266
CA-AstroPh 0.1254 0.1242 0.1234 0.1242 0.1235 0.1172 0.1161 0.1201
CA-CondMat 0.0626 0.0622 0.0635 0.0619 0.0606 0.0661† 0.0643 0.0627
hep-th 0.1510 0.1632† 0.1564 0.1492 0.1485 0.1540 0.1534 0.1515
Cit-HepPh 0.1357 0.1357 0.1362 0.1368 0.1374 0.1386 0.1464† 0.1360
Email-Enron 0.0225 0.0248‡ 0.0223 0.0227 0.0223 0.0220 0.0222 0.0219
p2p-Gnutella31 0.1088 0.1100† 0.1060 0.1040 0.1034 0.1054 0.1058 0.1044
loc-Gowalla 0.0460 0.0470† 0.0471† 0.0456 0.0459 0.0451 0.0424 0.0444
Email-EuAll 0.0009 0.0009 0.0009 0.0010 0.0010 0.0010 0.0010 0.0011
com-Amazon 0.0272† 0.0262† 0.0261† 0.0253 0.0252 0.0224 0.0235 0.0248
web-Google 0.0102 0.0090 0.0104 0.0104 0.0089 0.0096 0.0083 0.0100
PAroad 0.0007‡ 0.0007‡ 0.0007† 0.0007 0.0007 0.0006 0.0007‡ 0.0006
Txroad 0.0004‡ 0.0004‡ 0.0004† 0.0004 0.0003 0.0003 0.0003 0.0003
as-Skitter 0.0148‡ 0.0139† 0.0138† 0.0135† 0.0130 0.0118 0.0115 0.0126

Ave. imp. 2.96% 2.41% 2.25% 1.63% −0.63% −0.97% −0.56%

Table A.3: Performance of GPEP regarding varied imbalance. Note that GPEP is with 100.

Networks 10 20 40 80 160 320 640 1280 GPEP

Power 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074
CA-GrQc 0.0304 0.0303 0.0302 0.0301 0.0300 0.0300 0.0300 0.0300 0.0300
p2p-Gnutella08 0.1485 0.1462 0.1457 0.1455 0.1455 0.1454 0.1455 0.1454 0.1454
as-733 0.0096 0.0095 0.0095 0.0094 0.0094 0.0094 0.0094 0.0095 0.0094
Scottish 0.0269 0.0268 0.0267 0.0266 0.0266 0.0266 0.0266 0.0266 0.0266
CA-AstroPh 0.1339‡ 0.1292† 0.1235 0.1201 0.1201 0.1197 0.1198 0.1198 0.1201
CA-CondMat 0.0633 0.0631 0.0630 0.0627 0.0625 0.0625 0.0625 0.0625 0.0627
hep-th 0.1515 0.1515 0.1515 0.1515 0.1515 0.1514 0.1513 0.1513 0.1515
Cit-HepPh 0.1361 0.1361 0.1361 0.1361 0.1360 0.1360 0.1360 0.1360 0.1360
Email-Enron 0.0224 0.0222 0.0221 0.0220 0.0219 0.0219 0.0219 0.0220 0.0219
p2p-Gnutella31 0.1074 0.1067 0.1057 0.1045 0.1042 0.1042 0.1042 0.1042 0.1044
loc-Gowalla 0.0448 0.0448 0.0447 0.0445 0.0441 0.0440 0.0439 0.0439 0.0444
Email-EuAll 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011
com-Amazon 0.0248 0.0248 0.0248 0.0248 0.0247 0.0246 0.0246 0.0245 0.0248
web-Google 0.0101 0.0101 0.0101 0.0100 0.0099 0.0099 0.0098 0.0098 0.0100
PAroad 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006
Txroad 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
as-Skitter 0.0132 0.0132 0.0130 0.0127 0.0126 0.0125 0.0125 0.0125 0.0126

Ave. imp. 1.80% 1.21% 0.69% 0.16% −0.13% −0.25% −0.27% −0.24%

Table A.4: Performance of GPEP regarding varied τ̂. Note that GPEP is with 100.

A.3.2 Prediction of the Hysteresis in Explosive Synchronization

Examples regarding S . Refer to Fig. A.30.

A24

A.3 Functions of Order Parameter as Measure

0.0 0.1 0.2 0.3 0.4 0.5 0.6
mr/m

0.00

0.01

0.02

0.03

0.04

0.05

0.06

F

Baseline
Prodi1
Prodi2
Subti1
Subti2

8

32

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
mr/m

0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

F

8

32

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
mr/m

0.002

0.004

0.006

0.008

0.010

0.012

F

8

32

(c)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
mr/m

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

F

8

32

(d)

Figure A.25: F against the fraction of removed edges mr/m regarding varied criteria on (a) the
power grid network, (b) the yeast network, (c) the as-733 network, and (d) the global airline
network. The Baseline (the dashed line) corresponds to the case that mr/m fraction of edges are
randomly removed from the network. The main figure is related to ar = 2 and the two inserts
are associated with ar = 8 and ar = 32, respectively.

A25

A.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
mr/n

0.00

0.01

0.02

0.03

0.04

0.05

0.06

F

Baseline
Prodi1
Prodi2
Subti1
Subti2

8

32

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
mr/n

0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

F

8

32

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
mr/n

0.002

0.004

0.006

0.008

0.010

0.012

F

8

32

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
mr/n

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

F

8

32

(d)

Figure A.26: F against the fraction of removed edges mr and the network size n regarding varied
criteria on (a) the power grid network, (b) the yeast network, (c) the as-733 network, and (d) the
global airline network. The Baseline (the dashed line) corresponds to the case that mr edges are
randomly removed from the network. The main figure is related to ar = 2 and the two inserts
are associated with ar = 8 and ar = 32, respectively.

A26

A.3 Functions of Order Parameter as Measure

0.05 0.10 0.15
q

0.05

0.10

0.15

0.20

η i 0.1
00

(a)

0.05 0.10 0.15
q

0.05

0.10

0.15

0.20

η i

0.
00

1

0.
01

0

(b)

0.05 0.10 0.15
q

0.05

0.10

0.15

0.20

η i

0.10
0

(c)

0.05 0.10 0.15
q

0.05

0.10

0.15

0.20

η i

0.
00

1

0.
01

0

(d)

0.05 0.10 0.15
q

0.05

0.10

0.15

0.20

η i

0.1
00

(e)

0.05 0.10 0.15
q

0.05

0.10

0.15

0.20

η i

0.
00

1

0.
01

0

(f)

Figure A.27: Contours of ⟨αinf⟩ as a function of the immunized fraction q and the infected
probability ηi on the Email-Enron network regarding Prodi2 with mr = 2.0n for RanS in (a), (c),
and (e), and AcqI in (b), (d), and (f). Note that RanS and AcqI are in different scales of the color,
e.g., the same colors represent the same magnitudes of ⟨αinf⟩ for (a) and (c) but they are different
for (a) and (b). In each figure, color from deep dark (i.e., top left) to light purple (bottom right)
indicates that ⟨αinf⟩ changes from large to small. In addition, ⟨αinf⟩ = 0.001, 0.01 and 0.1 are
marked by the three solid curves, respectively.

A27

A.

0.05 0.10 0.15 0.20
q

0.05

0.10

0.15

0.20

η i

0.100

(a)

0.05 0.10 0.15 0.20
q

0.05

0.10

0.15

0.20

η i

0.0
010.
01

0

0.
10

0
(b)

0.05 0.10 0.15 0.20
q

0.05

0.10

0.15

0.20

η i

0.100

(c)

0.05 0.10 0.15 0.20
q

0.05

0.10

0.15

0.20

η i

0.
00
1

0.
01

0

0.
10

0

(d)

0.05 0.10 0.15 0.20
q

0.05

0.10

0.15

0.20

η i

0.1
00

(e)

0.05 0.10 0.15 0.20
q

0.05

0.10

0.15

0.20

η i

0.
00

1

0.
01

0

(f)

Figure A.28: Contours of ⟨αinf⟩ as a function of q and ηi on the loc-Gowalla network regarding
Prodi2 with mr = 2.0n for RanS in (a), (c), and (e), and AcqI in (b), (d), and (f).

A28

A.3 Functions of Order Parameter as Measure

0.05 0.10 0.15
q

0.05

0.10

0.15

0.20
η i

0.
00
1

0.
01
0

0.
10

0

(a)

0.05 0.10 0.15
q

0.05

0.10

0.15

0.20

η i

0.
00

1

0.
01

0

(b)

Figure A.29: Contours of ⟨αinf⟩ as a function of q and ηi on the loc-Gowalla network regarding
Prodi2 with (a) mr = 1.0n and (b) mr = 1.5n considering AcqI.

0.5 1 1.5 2 2.5 3 3.5
0.0

0.2

0.4

0.6

0.8

1.0

λ

ℜ

(a)

0.5 1 1.5 2 2.5 3 3.5
0.0

0.2

0.4

0.6

0.8

1.0

λ

ℜ

(b)

0.5 1 1.5 2 2.5 3 3.5
0.0

0.2

0.4

0.6

0.8

1.0

λ

ℜ

(c)

0.5 1 1.5 2 2.5 3 3.5
0.0

0.2

0.4

0.6

0.8

1.0

λ

ℜ

(d)

Figure A.30: Examples regarding S . (a) S = 0.5323. (b) S = 0.0913. (c) S = 0.0000. (d)
S = 0.0121.

A29

	Title Page
	Zusammenfassung
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Symbols
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Organization and Outline of the Thesis
	1.4 Relation to Previously Published Work

	2 Complex Network Theory and Network Percolation
	2.1 Complex Network Theory
	2.1.1 Networks
	2.1.2 Adjacency matrix
	2.1.3 Essentials
	2.1.3.1 Nearest neighbor
	2.1.3.2 Degree, average degree, degree distribution
	2.1.3.3 Walks, paths, connected components, and cycles
	2.1.3.4 Clustering coefficient

	2.2 Measures of Nodes
	2.2.1 Degree centrality
	2.2.2 Eigenvector centrality
	2.2.3 Katz centrality
	2.2.4 PageRank
	2.2.5 Closeness centrality
	2.2.6 Betweenness centrality

	2.3 Measure of Networks
	2.3.1 Assortativity

	2.4 Percolation Theory
	2.4.1 Percolation on two-dimensional square lattice
	2.4.2 Percolation on random network
	2.4.2.1 Random network
	2.4.2.2 Essentials
	2.4.2.3 Percolation on random graph

	2.5 Explosive Percolation
	2.5.1 Basics
	2.5.2 Bohman and Frieze's strategy
	2.5.3 Product rule, sum rule, and explosive percolation
	2.5.4 Other rules

	3 Ways to Fragment Networks
	3.1 Problems and Motivations
	3.1.1 Inverse percolation and network robustness
	3.1.1.1 Inverse percolation
	3.1.1.2 Network robustness
	3.1.1.3 Overview of attack strategies
	3.1.1.4 Scale-free network
	3.1.1.5 Configuration model
	3.1.1.6 Attacks on the configuration model network
	3.1.1.7 Attacks on ER network
	3.1.1.8 Critical threshold regarding order parameter
	3.1.1.9 Attacks on scale-free network

	3.1.2 The connection between network robustness and immunization
	3.1.2.1 Susceptible-Infected-Recovered model
	3.1.2.2 From SIR to percolation
	3.1.2.3 Network immunization

	3.2 Metrics to Methods
	3.3 State-of-the-art Approaches
	3.3.1 General methods
	3.3.2 Heuristic methods
	3.3.3 Decycling-based methods
	3.3.4 Collective influence approach
	3.3.5 Percolation-based methods
	3.3.6 Summary

	3.4 Bounded and Unbounded Strategies
	3.4.1 Union-Find Algorithm
	3.4.2 Bounded-size strategies
	3.4.3 Sum and product rules regarding nodes
	3.4.4 The power of selections over choices
	3.4.5 Applications
	3.4.5.1 Data
	3.4.5.2 Configurations of associated methods
	3.4.5.3 Percolation metrics
	3.4.5.4 FVS problem
	3.4.5.5 SIR results
	3.4.5.6 Running time

	3.5 Evolutionary Framework for the Identification of Influential Nodes
	3.5.1 The advantage and disadvantage of ARRS
	3.5.2 Pruning an existing method
	3.5.2.1 PruOrd
	3.5.2.2 PruGri
	3.5.2.3 PruRan and PruRang
	3.5.2.4 Summary

	3.5.3 Effects of the critical threshold on the average order parameter
	3.5.4 Optimization of the critical threshold
	3.5.4.1 Effects of the average order parameter on the critical threshold
	3.5.4.2 Mutation operators

	3.5.5 Initialization based on graph partitioning
	3.5.6 Evolutionary framework for the robustness and immunization problems
	3.5.7 Applications
	3.5.7.1 Data
	3.5.7.2 Configurations of associated methods
	3.5.7.3 Percolation metrics
	3.5.7.4 SIR results

	3.6 Fast Scheme for the Suppression of F
	3.7 Summary

	4 Functions of Order Parameter as Measure
	4.1 Effects of Network Robustness on Explosive Synchronization
	4.1.1 Model
	4.1.2 Rewiring strategy
	4.1.3 Results
	4.1.4 Discussions
	4.1.5 Summary

	4.2 Ways to Enhance the Robustness of a Network
	4.2.1 The power of selection
	4.2.2 Applications
	4.2.3 Summary

	4.3 Influences of Acquaintances on the Containment of Epidemics
	4.3.1 Ways to weaken the robustness of a network
	4.3.2 The role of less connected acquaintance
	4.3.3 Applications
	4.3.4 Summary

	4.4 Prediction of the Hysteresis in Explosive Synchronization
	4.4.1 Problems and motivations
	4.4.2 Basic idea
	4.4.3 Essentials
	4.4.3.1 Problems
	4.4.3.2 Baseline
	4.4.3.3 Data
	4.4.3.4 Experimental configurations

	4.4.4 Results
	4.4.4.1 Method based on the eigenvalue
	4.4.4.2 Method based on the graph kernel
	4.4.4.3 Method based on the graph neural network
	4.4.4.4 More validations
	4.4.4.5 Effects of network robustness on S

	4.4.5 Summary

	5 Conclusion and Outlook
	5.1 Conclusion
	5.2 Outlook

	References
	Appendix A
	A.1 Complex Network Theory and Network Percolation
	A.1.1 Networks
	A.1.2 Eigenvector centrality
	A.1.3 Katz centrality
	A.1.4 Percolation on random graph
	A.1.5 BFW Algorithm

	A.2 Ways to Fragment Networks
	A.2.1 Molloy-Reed criterion
	A.2.2 Attacks on the configuration model network
	A.2.3 Attacks on ER network
	A.2.4 Attacks on scale-free network
	A.2.5 Susceptible-Infected-Recovered model
	A.2.6 From SIR to percolation
	A.2.7 Metrics to Methods
	A.2.8 General methods
	A.2.9 Heuristic methods
	A.2.10 Decycling-based methods
	A.2.11 Collective influence approach
	A.2.12 Percolation-based methods
	A.2.13 Bounded and Unbounded Strategies
	A.2.14 Evolutionary Framework for the Identification of Influential Nodes
	A.2.15 Fast Scheme for the Suppression of F

	A.3 Functions of Order Parameter as Measure
	A.3.1 Influences of Acquaintances on the Containment of Epidemics
	A.3.2 Prediction of the Hysteresis in Explosive Synchronization

