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Chapter 1

Preface

"The line between disorder and order lies in logistics. . . " Sun Tzu said, who was a Chinese
military strategist and lived approximately in the 6th century BC. It can be seen that
the operations research (OR) thought has a long and rich history in human development.
For nearly a century, OR has continuously developed and innovated in researching and
solving complex practical problems. With technological progress and improved production
efficiency, OR faces more new requirements and challenges in various fields. In the field of
logistics, the customer’s requirement for shorter lead time and on-time delivery increases
continuously; in the field of manufacturing, the advancement of production technology
allows companies to provide customized products to meet the different needs of customers,
but at the same time they have to reduce costs to deal with price competition.

1.1 Structure of the present thesis

This thesis consists of three papers focusing on two topics (see Table 1.1).

Otto et al. (2017) and Li et al. (2019) address operations of rail container transship-
ment yards. The railway has played an important role since its inception. As an econom-
ical and environmentally friendly mode of transportation in medium and long-distance
transportation, it plays a crucial role in many countries’ transportation systems. Increase
the proportion of rail transportation is also a goal of EU until 2050. Due to customers’
stricter demand for accuracy and timeliness, transportation efficiency becomes more and
more important. The optimization of the rail transshipment yard has also become one of
the most important parts to improve rail transportation efficiency.

Otto and Li (2020) deals with the optimization of the production process for cus-
tomized products. As a way to improve competitiveness, many companies have higher
requirements for mass customization. They need to manufacture products of different

1



1.2. Overview of the papers 2

Table 1.1: A list of the published papers

Co-Authors Journal Year

1. Two-way bounded dynamic programming approach for operations planning in transshipment yards
A. Otto, E. Pesch Transportation Science 2017

2. Solving the single crane scheduling problem at rail transshipment yards
A. Otto, E. Pesch Discrete Applied Mathematics 2019

3. Product sequencing in multiple-piece-flow assembly lines
A. Otto Omega 2020

specifications and high quality efficiently without a significant increase in cost. To achieve
this goal, in addition to the improvement of information and production technology, the
optimization of production and management processes can also play a very important
role.

1.2 Overview of the papers

1.2.1 Two-way bounded dynamic programming approach for op-

erations planning in transshipment yards - The paper of

Otto et al. (2017)

In this paper, we consider the static crane scheduling problem (SCSP) at mixed container
transshipment yards, where both rail-road container moves between trains and trucks and
rail-rail container moves between trains are present. Gantry cranes are applied to load
and unload trains and trucks. In SCSP, we determine working areas for every single crane
and sequence the movement of containers simultaneously. The objective is to minimize
the makespan, i.e., the time to serve a bundle of trains.

From a global perspective, we propose a new two-way bounded dynamic programming
(TBDP) method. We can decompose this complex problem into simpler subproblems to
quickly locate the bottleneck subproblem through this method. Specifically for the SCSP,
we apply TBDP to decompose the SCSP into a single crane scheduling subproblem, and
quickly identify the most time-consuming working area. Then we can only seek the
optimal solution for the bottleneck subproblem, and for other non-bottleneck areas, a
feasible solution that could be calculated by, for example, a heuristic without affecting
the global optimal solution is good enough.

For the single crane scheduling subproblem, we also provide an exact algorithm
Branch-and-Bound and a priority rule-based heuristic.
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Finally, in the experiment, we illustrate the algorithms’ effectiveness and efficiency in
various situations simulated through various parameter combinations.

1.2.2 Solving the single crane scheduling problem at rail trans-

shipment yards - The paper of Li et al. (2019)

In this paper, we investigated the single crane scheduling problem specified in the previous
paper more deeply. First of all, given our objective makespan and our realistic conditions,
such as that all trucks will load and unload containers in a relatively orderly manner
within the agreed time windows, we propose a decomposition algorithm (DA). Through
this method, we attempt to divide the initial problem into a set of jobs. For some sets,
we may only need a feasible solution, not even a wise one. We only optimize the job sets
that need to be optimized, to save a lot of calculation time.

Since the DA is a superstructure, we also integrate a branch-and-cut algorithm to solve
the subproblems. We call the algorithm DBC as a whole. To the best of our knowledge,
this is the first branch-and-cut algorithm for the single crane scheduling problem.

We demonstrate through the computational experiments that the DBC can solve
real-world instances in a short time.

1.2.3 Product sequencing in multiple-piece-flow assembly lines -

The paper of Otto and Li (2020)

This paper studies a product sequencing optimization problem on a multiple-piece-flow
assembly line, which is a paced assembly line used to produce customized products. The
traditional paced assembly line is designed initially to produce standard products. Work-
pieces stay on each station for the same amount of time, called cycle time, and then move
to the next station. However, the modern market has higher requirements for customiza-
tion. The processing time required for customized products at each workstation could
vary wildly, and the products may have different due dates. In this way, the traditional
single-piece assembly line will cause much idle time, increasing the product’s cost sig-
nificantly. The multiple-piece-flow assembly line is designed to solve this problem. The
idle time can be reduced by combining several workpieces to a bundle and balancing the
processing time they need at each workstation.

To the best of our knowledge, this paper is the first to discuss the optimization of
multi-piece assembly lines. We proposed a mixed integer model, discussed its relationship
and differences with other related classic optimization problems, and proposed some useful
properties. By using these properties, we developed an iterative variable neighborhood
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heuristic (IVNH), which can be employed to optimize different goals. In this paper, we
considered two objective functions: minimizing the idle times and weighted tardiness.
Based on the real production data, we have done extensive simulation tests and a rolling-
horizon planning simulation. The test results show that IVNH can find the optimal
or near-optimal solution in short run times. For some small test instances with known
optimal solutions, IVNH can find the most optimal solutions in less than one second, and
for the remaining test instances, the gap to the optimal solution is almost negligible.



Chapter 2

Two-way bounded dynamic
programming approach for operations
planning in transshipment yards

We propose a two-way bounded dynamic programming (TBDP) approach to deal with
situations, when it takes long to evaluate the value function in the state graph of dynamic
programming. TBDP provides sharp bounds early in the solution process and identifies
critical subproblems, i.e. states and transition arcs, for which the value function has to
be estimated.

Based on the TBDP framework, we develop a heuristic and an exact algorithm TEMP
for the static crane scheduling problem (SCSP). The SCSP refers to simultaneous yard
partitioning into single crane areas and job sequencing at railway container transshipment
yards, where both rail-rail and rail-road transshipments are present and rail-rail moves are
short. TEMP solves instances of practically relevant size within acceptable time limits.
The proposed heuristic finds optimal solutions in 90% of the cases. We recommend using
the heuristic algorithm for planning very large transshipment yards, with more than five
tracks a large number of container moves per crane.

2.1 Introduction

The value of world merchandise freight exports nearly tripled from 1998 to 2008 (U.S.
Department of Transportation, 2010). In view of rapidly increasing freight transportation
volumes, the issue of sustainability has become particularly important (de Jong et al.,
2013; Kozan, 1997). Sustainable transport reduces the negative environmental impact
and proposes economically efficient transportation solutions. Compared to trucks, freight

5
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trains emit only a quarter of carbon dioxide per tonne-kilometer and require significantly
less energy to move freight (Strocko et al., 2014; Verband der Bahnindustrie in Deutsch-
land (VDB) e.V., 2012). Therefore, one of the key goals of the EU’s transport strategy
until 2050 is to increase the share of freight transport performed by rail (EU Commission,
2011). The strategic focus of U.S. Department of Transportation is to strengthen the link-
age between rail and other modes of transportation (U.S. Department of Transportation,
2013).

Until recently, firms mainly decided for transportation by rail when they had enough
freight to set up a train from A to B. New innovative concepts have been designed to
make rail transportation attractive also in case of geographically distributed customers
and smaller freights. According to the "last mile concept", the most expensive "first
miles" from the distributed customer locations to the rail yard and "last miles" from
the rail yard to the distributed final destinations have to be performed by trucks. The
intermediate distance will be covered by train. Container transportation decreases the
handling costs significantly. Containers can be directly transferred from a train to a truck
or between trains without time-consuming shunting of railcars. Lower handling costs and
times enable bundling policies, e.g. hub-and-spoke, which promote rail transportation to
low-to-medium-volume freights.

However, albeit significant political effort to promote the freight rail transportation,
its share is decreasing in the EU from 15% in 1980 to 10% in 2010 (EU Commission,
2007), and remains about the same in Germany at 10% until 2030 (BMVI, 2014). In
fact, rail logistics fails any competitive advantage. Notably, the actual average speed
of freight trains is estimated to be 10-18 km/h (Kille and Schmidt, 2008; Verband der
Automobilindustrie, 2006) and only 53% of freight trains reach their destination with less
than a 30 minutes delay (EU Commission, 2007), mainly because of long processing and
waiting times at shunting and transshipment yards. It has been widely recognized that
even small improvements in yard operations, resulting in the decrease of train dwell time,
will lead to large financial savings.

In this paper, we consider operations at mixed container transshipment yards, where
both rail-road container moves (between trains and trucks) and rail-rail container moves
(between trains) are present. Most prominent transshipment yards in this category are hub
or gateway yards. Gateway yards connect domestic trains, on one side, and international
trains that carry dedicated shipments to the next hub, on the other side (see Figure 2.1,
DIOMIS, 2007). Inbound trains end and outbound trains originate at gateway yards.
Note that international trains travel between their start and end destinations without
interim stops. Although rare in US, gateway yards are common in Europe (DIOMIS,
2009), e.g. the transshipment yards Duisburg Ruhrport Hafen, Köln Eifeltor, Hamburg-
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Figure 2.1: Illustration of the movement of trains at a gateway transshipment yard

Billwerder or München-Riem in Germany, to name only a few (see, e.g., Gaidzik et al.,
2012). At gateway yards, gantry cranes unload and load trains by exchanging containers
between domestic and international trains, trains and storage (rail-storage moves) as well
as between trains and customer trucks. As a rule, rail-road transshipments comprise the
majority of transshipment at gateway yards (cf. DUSS, 2010; Gaidzik et al., 2012). Note
that at gateways usually all inbound and outbound containers are exchanged and specific
drop-off container positions on the trains therefore do not exists. The flexible container
placement at international trains favors short rail-rail moves at gateways in order to keep
the cycle time (makespan), i.e., the time of transshipment, low. Indeed, situations where
cranes move a container once across the yard are rare and often can be eliminated by
improving planning routines of container assignment to railcars of the trains (see also
Section 2.2).

A typical transshipment yard, including gateway yards, consists of multiple tracks, a
driving lane and a parking lane for trucks, as well as of a storage area, see Figure 2.2 (cf.
Ballis and Golias, 2002; Boysen et al., 2013). According to conventional policies, trains
are served in bundles, i.e. they arrive and depart largely simultaneously (see Bostel and
Dejax, 1998; Boysen et al., 2011; Rotter, 2004). Multiple gantry cranes typically share
a common track for horizontal movements that have to be coordinated in order to avoid
collisions. A common strategy in real-world transshipment yards is to define operational
areas for each crane (Boysen and Fliedner, 2010; Kellner et al., 2012). This strategy is
organizationally simple and has low costs of management. Especially crane operators find
this strategy most acceptable, because they have their own area of responsibility. The
subject of this paper is assigning and sequencing container moves to cranes. We call
the resulting problem Static Crane Scheduling Problem (SCSP) to distinguish it from the
dynamic case, where cranes are not restricted to operate within their defined operational
areas.
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Figure 2.2: Illustration of a mixed container transshipment yard.
Spatially disjoint sets of jobs (see Section 2.2) are marked with grey rectangles

We refer to Boysen et al. (2013) for a detailed description of sequencing and schedul-
ing problems at transshipment yards. The computational intractability has motivated
Boysen et al. (2011) and Boysen and Fliedner (2010) to handle assignment and sequenc-
ing of crane moves as separate, hierarchically connected planning problems. A dynamic
programming approach is proposed in Boysen and Fliedner (2010) for assigning container
moves to cranes but neither their sequencing nor setup times or time windows have been
included. Priority rules, metaheuristic and local search solution approaches for assign-
ment or sequencing of crane moves are proposed in Kozan (1997), Souffriau et al. (2009),
Montemanni et al. (2010) and Froyland et al. (2008). Alicke (2005) contains a constraint
satisfaction based approach to find a feasible schedule of crane moves for a rail-rail trans-
shipment yard, where trains have different arrival and departure times.

To the best of our knowledge, we are the first to propose an exact solution procedure
for the simultaneous assignment and sequencing of crane moves at rail transshipment
yards. We propose an exact as well as a heuristic solution approaches and we illustrate
the expected benefits of the simultaneous planning by our computational experiments. We
also investigate a realistic case of time windows for each container move. Time windows
emerge, for example, as a service promise for customer vehicles (cf. Section 4.2).

A further contribution of our paper is a new decomposition approach called two-way
bounded dynamic programming procedure (TBDP). TBDP enables to get sharp lower and
upper bounds early in the solution process, as well as identifies critical subproblems within
the decomposition that have to be handled first.
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We proceed as follows. Section 2.2 provides a problem description. The TBDP frame-
work is presented in Section 2.3. In Sections 2.4, we describe upper and lower bounds used
in our solution procedure. Afterwards, we outline a heuristic and an exact solution ap-
proach in Section 2.5. Section 2.6 presents the results of our computational experiments.
Finally, Section 2.7 concludes the paper and suggests directions for future research.

2.2 The static crane scheduling problem

In the static crane scheduling problem (SCSP), container moves are assigned to R gantry
cranes and sequenced for each crane, whereby each crane operates within its defined
operational zone.

Note that within the planning framework (see Boysen et al., 2013), assignment and
sequencing of container moves are downstream planning tasks. So that container posi-
tions on trains and in the storage area, as well as train-to-track assignments have to be
performed beforehand.

Table 2.1 summarizes parameters of the SCSP. We refer to an operation of picking
up a container and bringing it to its final position as to a job j ∈ J . The time a gantry
crane needs to move from the final container position of the current job i to the final
container position of the next job j is called setup time sij. Observe, it is the minimum
time needed to get from the drop-off position of job i’s container to the pickup position
of the container that defines job j added by the time to fix the crane’s grip hooks at this
container and lift and move it to its drop-off position. Thus the setup sij includes the
processing time of job j. Notice that the triangular inequality is valid: sij ≤ sik + skj.
We differentiate among rail-road, rail-storage and rail-rail jobs.

Table 2.1: Notations of SCSP

J Set of jobs
sij Setup and transportation time between the final position of job i to the final

position of job j
τdj Deadline of job j
τej Release time of job j (the earliest time, when the container may be brought to

its final position)
E Set of precedence relations between jobs
Pj Set of jobs preceding job j: Pj = {i|(i, j) ∈ E}
Fj Set of jobs following job j: Fj = {i|(j, i) ∈ E}
SK = {1, ...,K} Set of spatially disjoint sets
akj ∈ {1, 0} Parameter, showing whether job j belongs to the spatially disjoint set k or not
V = {1, ..., R} Set of cranes
D Set of dummy jobs

Note that for rail-road jobs trucks do not block each other and can always park at the
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most convenient slot of the parking lane to minimize the processing time of the operating
crane. Indeed, trucks arrive from the parking area outside the transshipment yard and
leave the parking lane immediately after a gantry crane has processed the corresponding
job.

Time windows arise as a service promise to customer vehicles. One of the highest
priorities of railway companies is to serve customer vehicles in a short timespan after
their arrival. Modern surveillance systems (e.g. BLU, which is implemented, for example,
at yards Köln Eifeltor, Hamburg-Billwerde and Leipzig-Wahren) enable incorporation of
service time windows into planning approaches. They register customer vehicles far in
advance of their arrival, carefully predict their arrival times and route them to their
position of service. Further reason for using time windows is the necessity to transship
containers by trucks between several transshipment areas (e.g., a modular terminal, see
Rotter, 2004, for details). Therefore job j ∈ J has a release time, or earliest start time τ ej
and a deadline τ dj .

Cranes r ∈ V = {1, ..., R} operate within defined zones. We divide the yard into
several crane handling zones, such that each container move remains within its zone.

Thus having dedicated zones is reasonable if rail-rail moves are short which is typical
for gateways. It is additionally achieved by exceptionally introducing rail-storage moves
and by selecting suitable parking positions of trains (e.g. Kellner et al., 2012), separating
trains into bundles (e.g. Boysen et al., 2011; Nossack and Pesch, 2014) and by targeted
selection of container positions at trains (e.g. Bostel and Dejax, 1998; Bruns and Knust,
2012; Cichenski et al., 2017; Corry and Kozan, 2006, 2008). Note that especially at
gateway yards, container positions are flexible at international trains commuting between
the hubs, because all the containers have the same destinations. Additionally, types
and sizes of containers in international traffic, e.g. at gateway yards, are rather uniform
compared to the domestic traffic.

In a preprocessing, the set of jobs can be separated into spatially disjoint sets k ∈
SK = {1, ..., K}. A parameter akj∈{0,1} shows whether job j belongs to spatially disjoint
set k (akj = 1) or not (akj = 0). In order to avoid container transshipments between
zones, jobs from the same spatially disjoint set have to be assigned to the same zone.
Figure 2.2 contains three spatially disjoint sets, K = 3, and two cranes, R = 2. Jobs 1
and 2 belong to the first spatially disjoint set, jobs 3 and 4 to the second one and job 5
belongs to the third one. Therefore, if crane one performs jobs 1 to 3, it has to perform
job 4 as well.

Notice that precedence relations may emerge between jobs i and j if the respective
container has to be picked from or dropped to the same railcar at a train. Precedence
relations may arise only between jobs i and j that belong to the same spatially disjoint
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set, i.e., if
∑K

k=1 akik =
∑K

k=1 akjk. The set of precedence relations E contains all pairs
of jobs (i, j) ∈ E, where job i has to be performed before job j.

The objective is to minimize makespan, i.e. the time to serve a bundle of trains.
Such an objective is of high importance in practice. Due to high competitive pressure,
rail companies struggle for shorter train processing times at transshipment yards. Shorter
train processing times at rail yards enable to be more flexible in negotiations with a
network provider about renting travelling slots and to decrease travel times of customer
containers in the mid- and long-run. In the short-term, this objective also allows to find
a feasible solution, which meets the scheduled train departure times.

Binary decision variables xij indicate, whether job i is performed before job j by the
same crane (xij = 1) or not (xij = 0). Decision variable qk defines the crane, which
performs jobs from a spatially disjoint set k. A starting time for each job j is determined
by variable τ sj .

D = {0, n + 1, n + 2, ..., n + R} are dummy jobs with release times of zero and no
processing times. {0} is a dummy source job with τ d0 = 0, job {n + r} is a dummy sink
job for crane r ∈ V . Then the SCSP can be modelled as follows:

min A (2.1)

s.t.
∑

j∈{1,...,n+R}\i

xij = 1 ∀ i ∈ J, (2.2)

∑
i∈J∪{0}\j

xij = 1 ∀ j ∈ J ∪D \ {0} (2.3)

n+R∑
j=1

x0j ≤ R (2.4)

τ si + sij ≤ τ sj +M(1− xij) ∀ i ∈ J ∪ {0}, ∀ j ∈ J ∪D \ {0}, i 6= j (2.5)

τ ej ≤ τ sj ≤ τdj ∀ j ∈ J ∪ {0} (2.6)

τ si + sij ≤ τ sj ∀ (i, j) ∈ E (2.7)

0 ≤
K∑
k=1

(qk · akj − qk · aki)

≤ (R− 1) · (1− xij − xji) ∀ i, j ∈ J, such that
K∑
k=1

akik ≤
K∑
k=1

akjk (2.8)

r · xi,n+r ≤
K∑
k=1

qk · aki

≤ r +R · (1− xi,n+r) ∀ r ∈ V, ∀ i ∈ J (2.9)

τ sj ≤ A ∀ j ∈ D \ {0} (2.10)
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xij ∈ {0, 1} ∀ i, j ∈ J ∪D (2.11)

qk ∈ {1, ..., R} ∀ k ∈ {1, ...,K} (2.12)

Objective (2.1) is to minimize the makespan A. Constraints (2.2) - (2.4) require that
jobs are arranged in R chains, that end with sink dummy jobs and start with source
dummy job {0}. Each job j ∈ J has exactly one predecessor and exactly one successor.

The time for the required setup has to be observed before starting the next job
(constraints (2.5)). Note, that constraints (2.5) also eliminate possible cycles in a sequence
of jobs for each crane. Constraints (2.6) ensure that jobs are performed within their time
windows. Further, precedence relations have to be taken into account (constraints (2.7)).

Constraints (2.8) to (2.9) assign jobs to cranes. Thereby, constraints (2.8) require that
a "chain of jobs" is assigned to the same crane. We assume that spatially disjoint sets are
increasingly numbered from 1 to K. In the same way, cranes are numbered increasingly
from 1 to R. Therefore we may assume that qk′ ≤ qk for k′ ≤ k, k, k′ ∈ SK. (2.9) require
each crane to perform its dummy sink job.

Constraints (2.10) calculate the makespan of the bundle of trains. Binary constraints
are imposed in (2.11) and values of qk are restricted in (2.12).

Table 2.2: Illustrative example of a SCSP problem instance with two cranes and no precedence
relations

Job j = 1 2 3 4 5

τ ej 1 3 4 5 1
τ dj 5 20 10 20 5
a1j 1 1 0 0 0
a2j 0 0 1 1 0
a3j 0 0 0 0 1

setup time sij
j

i 1 2 3 4 5

0 1 2 1 2 1
1 - 5 3 4 7
2 3 - 4 4 6
3 5 7 - 5 5
4 4 4 3 - 4
5 7 6 5 4 -

In our illustrative example of Table 2.2, there are two cranes R = 2, five jobs and
we assume three spatially disjoint sets K = 3 containing job sets {1, 2}, {3, 4} and {5}.
A solution might look like that: crane 1 performs first job 1 and then job 2 and crane 2
performs first job 5, then 4 and last job 3. The makespan equals to 8. Starting times τ sj
are 1, 6, 8, 5 and 1 for jobs 1 to 5, respectively. Since crane 2 performs jobs from spatially
disjoint subsets two and three, q1 = 1, q2 = 2 and q3 = 2. Our model introduces three
dummy jobs D = {0, 6, 7}. Further, x01 = x05 = x12 = x26 = x54 = x43 = x37 = 1 and
other variables xij are equal to zero.
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To solve the SCSP on the set of jobs J , we apply a hierarchical decomposition that
splits the problem into a yard partitioning problem and subsequent job scheduling problems
Π(k′, k) for single cranes each on the set of jobs J ′ ⊆ J . In the yard partitioning problem,
we limit the operating area for each crane by assigning sets of jobs k ∈ SK to crane zones.
Based on the resulting yard partition, suppose a crane has to perform a set of jobs J ′

consisting of the disjoint sets {k′, ..., k}. Then the single crane problem Π(k′, k) is to
find a sequence of the jobs j ∈ J ′, so that the makespan is minimized, i.e., Π(k′, k) is
equivalent to the SCSP with R = 1 and J = J ′ = {j|

∑k
f=k′ afj = 1}.

In the next Section 2.3, we introduce an innovative concept for the overall decom-
position which is two-way dynamic programming (TBDP). This framework allows us to
economize on computational time by examining only promising yard partitions. To in-
dicate promising yard partitions, we rely on upper and lower bounds for job scheduling
problems for single cranes Π(k′, k). First we describe the general framework and then we
sketch upper bounds, lower bounds as well as a branch and bound algorithm for single
crane scheduling problem Π(k′, k) in Section 2.4. However, note that Sections 2.3 and 2.4
are written independently from each other, so that a reader may decide to start first with
Section 2.4. Finally, in Section 2.5, we develop a heuristic and an exact algorithm for the
SCSP based on the two-way dynamic programming framework.

2.3 Two-way bounded dynamic programming frame-

work

The single crane scheduling problem Π(k′, k) (see Section 2.2) is a generalization of the
asymmetric travelling salesman problem and NP-hard in the strong sense. Therefore, we
should avoid solving too many of the problems Π(k′, k) with dynamic programming.

Suppose we know the defined crane zones, i.e. we are given a yard partition. Let us
further assume an oracle gave us a bottleneck crane zone, i.e. the one with the largest
makespan in the given yard partition. Then, we would focus on finding a sequence of
jobs with a minimal makespan only for this crane zone, i.e. we would solve Π(k′, k) to
optimality only for this zone. For all remaining zones, feasible job sequences of sufficient
solution quality would suffice. Hence, a good solution procedure implicitly generates all
possible yard partitions. Lower and upper bounds to partial solutions identify promising
yard partitions and so-called bottleneck zones. Bottleneck zones are crane zones that
are crucial for the calculation of a global upper bound (GUB) or a global lower bound
(GLB) to the optimal objective value over all partitions. An improved sequence of jobs
for the bottleneck zones may narrow the gap between the global lower and upper bound.



2.3. Two-way bounded dynamic programming framework 14

The procedure may continue until either a satisfactory solution has been achieved or
the solution has been proved to be optimal because the two global bounds are identical.
Hence, a good solution procedure must identify promising yard partitions early as well
as bottleneck zones that are pivotal for the value of the objective function. The two-way
dynamic programming provides such navigation.

We introduce and motivate the concept of the two-way dynamic programming (TBDP)
(Section 2.3.1). Then we explain TBDP on the example of the static crane scheduling
problem SCSP (Section 2.3.2). Finally in Section 2.3.3, we provide a summary of TBDP.

2.3.1 Outline of the two-way bounded dynamic programming frame-

work

TBDP is based on dynamic programming. In dynamic programming, the overall opti-
mization problem (w.l.o.g., we refer to minimization problems) is decomposed into com-
putationally easier subproblems, or states, that are recursively nested inside the initial
optimization problem (Bellman, 1954). The subproblems are evaluated (solved to opti-
mality) by the value function. All these nested subproblems, as well as relations between
them are summarized by a state graph. States represent nodes of the state graph and arcs
are referred to as transition arcs.

Two-way bounded dynamic programming (TBDP) is developed for cases, when the
state graph is of moderate size, but it takes a lot of time to calculate the value function for
each state exactly. Our framework combines the strengths of the approximate dynamic
programming of Bertsimas and Demir (2002) (see also Powell, 2010) as well as of the
relaxed dynamic programming procedure of Christofides et al. (1981). In the former,
values of the value function are calculated approximately in order to receive a good GUB
for the problem instance. The later relaxes states and thus bounds the values of the value
function from below, to come up with a GLB.

Apart from GLB and GUB, TBDP provides further valuable information. On the one
hand, we can easily track the bottleneck points of the value function, which are pivotal
for the values of the current GLB and GUB. Improving bounds of these few point values
of the value function will directly improve the GLB or the GUB. On the other hand, we
can identify non-influential points of the value function, which are sufficiently approxi-
mated/bounded, i.e. tighter bounds on these point values will neither affect the GLB nor
the GUB. We ignore these points, i.e. prune the corresponding states and transition arcs
from the state graph.
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Figure 2.3: Illustrative example based on Table 3: state graph for dynamic bottleneck crane
procedure

2.3.2 Illustrating TBDP for the static crane scheduling problem

Let the sets of jobs k ∈ SK = {1, ..., K}, as well as cranes r ∈ V = {1, ..., R} be numbered
in increasing order from left to right according to their position. In the state graph of
TBDP, states are partial yard partitions, i.e. yard partitions with r ≤ R crane zones. A
transition arc from state a to state b means, that in partial yard partition b the crane
zone is added to a that is adjacent to the last (most right) zone in partial yard partition
a. TBDP has R+ 1 stages, notice that at the initial state at stage 1 no crane is assigned.
At each subsequent stage, the next right unassigned crane will be added to the current
yard partition. The different states of a stage differ in their job sets. Thus, the nodes of
the state graph (see Figure 2.3) are partial yard partitions (r, k) for r cranes (or zones)
and for jobs from spatially disjoint sets {1, 2, ..., k}. Transition arcs ((r − 1, k′), (r, k))

connect nodes, or states, of neighboring stages and represent valid transitions between
states. Note that w. l. o. g., our formulation of the SCSP assumes s0j ≤ τ rj , ∀ j ∈ J . We
demand that k′ < k because we won’t miss an optimal solution by requiring each crane
zone to contain at least one spatially disjoint set of jobs.

We use two labels for each state which correspond to an upper bound FUB(·) and
a lower bound FLB(·) of the value function. Let LB(Π(k′, k)) be a lower bound and
UB(Π(k′, k)) be an upper bound of the corresponding single crane scheduling problem
Π(k′, k), which can be computed as described in Section 2.4. Then we assign two labels
to arc ((r − 1, k′), (r, k)) that show the increase in the upper (or lower) bound of the
makespan of the current partial yard partitioning, if we add the next crane that serves
jobs from sets {k′ + 1, ..., k}:

F̃UB(((r − 1, k′), (r, k))) = max{0, UB(Π(k′ + 1, k))− FUB(r − 1, k′)} (2.13)
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F̃LB(((r − 1, k′), (r, k))) = max{0, LB(Π(k′ + 1, k))− FLB(r − 1, k′)} (2.14)

F̃LB(((r′, k′), (r, k))) =∞ ∀ r′, r ∈ R|r′ 6= r − 1, ∀ k′, k ∈ SK (2.15)

F̃UB(((r′, k′), (r, k))) =∞ ∀ r′, r ∈ R|r′ 6= r − 1, ∀ k′, k ∈ SK (2.16)

F̃LB(((r′, k′), (r, k))) =∞ ∀ r′, r ∈ R, ∀ k′, k ∈ SK|k′ ≥ k (2.17)

F̃UB(((r′, k′), (r, k))) =∞ ∀ r′, r ∈ R, ∀ k′, k ∈ SK|k′ ≥ k (2.18)

Node labels refer to the length of the shortest path in the state graph from state (0, 0)

and are computed by the recurrence equations:

FUB(r, k) = min
k′<k
{FUB(r − 1, k′) + F̃UB(((r − 1, k′), (r, k)))} (2.19)

FLB(r, k) = min
k′<k
{FLB(r − 1, k′) + F̃LB(((r − 1, k′), (r, k)))} (2.20)

The last stage contains only one node (R,K). FUB(R,K) is the global upper bound
(GUB) and FLB(R,K) is the global lower bound (GLB) for the SCSP.

We use a forward dynamic programming algorithm and initialize the recursion by:

FUB(0, 0) = FLB(0, 0) (2.21)

FUB(0, k) = FLB(0, k) =∞ ∀ k ∈ SK (2.22)

F̃UB(((0, 0), (1, k))) = UB(Π(1, k))

F̃LB(((0, 0), (1, k))) = LB(Π(1, k)) ∀ k ∈ SK (2.23)

Example. Consider a situation where we have three cranes, R = 3, and four spatially
disjoint sets, K = 4, with upper and lower bounds for single crane scheduling problems
Π(k′, k) assumed as provided by Table 2.3. Note that we require that each crane performs
at least one job. In this way, we further reduce the problem size without missing an
optimal solution. The state graph with R + 1 = 4 stages of TBDP is provided in Figure
2.3. We see, for example, that labels for arc ((1, 1), (2, 2)) are F̃UB(((1, 1), (2, 2))) =

max{0, 8 − 7} = 1 and F̃LB(((1, 1), (2, 2))) = max{0, 5 − 6} = 0. Labels of node (2, 3)

are FUB(2, 3) = min{FUB(1, 1) + F̃UB(((1, 1), (2, 3))), FUB(1, 2) + F̃UB(((1, 2), (2, 3)))} =

min{7 + 4, 10 + 0} = 10 and FLB(2, 3) = min{6 + 0, 8 + 0} = 6. In our example,
GUB = FUB(3, 4) = 8 and GLB = FLB(3, 4) = 6.

The computational complexity of TBDP for SCSP heavily depends on the complexity
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Table 2.3: Example for four spatially disjoint sets

UB(Π(k′, k))\LB(Π(k′, k))

k′
k 1 2 3 4

1 7\6 10\8 ∗2 8\5 11\6
3 ∗ 5\2 8\6
4 8\1

of the algorithms for upper and lower bounds of Π(k′, k), which have to be run repeatedly.
But the number of arcs in the state graph is rather low and is bounded by O(K2 ·R).

With TBDP, it is easy to trace bottleneck yard partitions and bottleneck single crane
scheduling problems. We call a yard partition ub-bottleneck (lb-bottleneck), if the best
known makespan (largest lower bound on the makespan) of this yard partition equals to
the current GUB (GLB). A zone, containing the corresponding Π(k′, k), is ub-bottleneck
if it is a part of an ub-bottleneck yard partition and if its best known makespan equals
to the current GUB. In a similar way, we define an lb-bottleneck zone, the corresponding
Π(k′, k) is called lb-bottleneck as well.

At each stage, we can store some best found (with respect to the upper bound) partial
yard partitions for each state and thus receive several ub-bottleneck yard partitions in the
final state (R,K). Note that the upper bound for each ub-bottleneck zone in at least one
ub-bottleneck yard partition has to be improved in order to improve (decrease) the GUB.

Similarly, we can mark zones that are lb-bottleneck in all the lb-bottleneck yard
partitions. Note that to increase the GLB, the lower bound for at least one lb-bottleneck
zone in each of the lb-bottleneck yard partitions has to be improved.

Further, we can prune Π(k′, k) if the makespan exceeds the global upper bound
(GUB ≤ LB(Π(k′, k))). Similarly, we need not solve Π(k′, k) optimally if UB(Π(k′, k)) ≤
GLB; i.e. we mark them as "sufficiently approximated".

Given the moderate size of the state graph, we perform the bounding iteration (i.e.
determine shortest paths with respect to the upper and lower bound values in the state
graph again, see Figure 2.4) each time, when GLB and GUB get updated. So that TBDP
navigates to the currently ub- and lb-bottleneck zones.

Example (continuation). In the example in Table 2.3 and Figure 2.3, we can prune
subproblems Π(1, 2) and Π(3, 3). Indeed, UB(Π(1, 2)) > LB(Π(1, 2)) ≥ GUB = 8 and
UB(Π(3, 3)) < GLB = 6. Further, there is only one ub-bottleneck zone partitioning
{(1, 1), (2, 2), (3, 4)}; it contains two ub-bottleneck zones (2, 2) and (3, 4). To decrease
GUB, we have to decrease both UB(Π(2, 2)) and UB(Π(3, 4)). On the other hand, there
are three lb-bottleneck zones: (1, 1), (3, 4) and (2, 3). However to increase GLB, it suffices
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Figure 2.4: Outline of the two-way bounded dynamic programming (TBDP) framework

to improve the lower bound only of Π(1, 1), because zone (1, 1) is contained in all the lb-
bottleneck yard partitions (these are {(1, 1), (2, 2), (3, 4)} and {(1, 1), (2, 3), (4, 4)}).

2.3.3 Summary of the TBDP framework

In TBDP (see Figure 2.4) we calculate an upper and a lower bound for the value function
of each state with generally more than one crane and for each transition arc. Thereby we
rely on the objective value bounds for the single crane problems. Afterwards, we prune
transition arcs (and states) in the state graph, for which estimations of the value function
do not have to be improved. We also identify bottleneck transition arcs (and states), for
which the estimation of the value function is currently pivotal for the GUB or GLB. We
improve bounds of the value functions for such bottleneck arcs and states. If the GUB
or GLB improve, we update the state graph and re-run the bounding iteration in order
to receive actual information on the bottleneck transition arcs and states. We repeat the
procedure, until a solution of desired quality has been found.

Depending on the stopping criterion, the TBDP framework may serve as an effective
heuristic or as an exact solution procedure.

2.4 Bounds and an exact algorithm for the single crane

scheduling problem

Bounds for the single crane scheduling problem Π(k′, k) play an important role in our
dynamic programming approach introduced in Section 2.3. Therefore, we outline lower
bounds (Section 2.4.1) and an upper bound (Section 2.4.2) for the single crane scheduling
problem. Afterwards we describe a branch and bound algorithm for the job set J ′ defined
by Π(k′, k) (Section 2.4.3).
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2.4.1 Lower bounds for single crane scheduling problem

In this section, we additionally use pj to define the processing time of job j, i.e., it is the
time needed when the crane’s grip hooks are fixed to pick the container until it is dropped
at the final position. Setup times and release times without including the processing time
are defined as ϑij = sij − pj and ej = τ ej − pj, respectively.

LB1. To compute LB1, we relax the single crane scheduling problem and build a
single machine scheduling problem 1/ei/Cmax. The computational complexity of LB1 is
O(|J ′|2). Details on LB1 can be found in Appendix A.

LB2. LB2 is based on the relaxation to the linear assignment problem (LAP, Burkard
et al., 2009). In the LAP we assign to each job i an immediately following job j, i ∈
{0} ∪ J ′, j ∈ J ′ ∪ {d}, where {d} is a dummy sink job. The assignment costs cij of i to
j are equal to sij, cii = M and c0i = max{τ ei , s0i}. M is a sufficiently large number, for
example, M = maxi∈{0}∪J ′{τ ei }+

∑
i,j∈{0}∪J ′∪{d} sij. We modify some assignment costs in

order to:

• Require that {0} is at the "beginning" of the resulting assignment: c0d = M, i ∈ J ′.

• Take into account precedence relations: cij = M if (j, i) ∈ E.

LB2 can be computed, for example, by the Hungarian algorithm in O(|J ′|3) steps.

LB3. In LB3, we apply a relaxation to a vehicle routing problem with time windows
(VRP-TW, Desrosiers et al., 1984) and compute its lower bound by a column generation
approach.

In VRP-TW, customers can be served by an unlimited number of vehicles, where each
vehicle has to start at the source depot and to finish at the sink depot. Customers are
visited within the specified time windows. We interpret jobs j ∈ J ′ as customers, dummy
source job {0} as the source depot and dummy sink job {d} as the sink depot. We set
the arc costs in VRP-TW equal to sij. Note that the objective function of VRP-TW is
not the makespan, but total costs over all vehicles, i.e. possible waiting times of vehicles
are neglected.

In the column generation approach, we rely on the model formulation of Desrosiers
et al. (1984). We use the algorithm of Cunha and Swait (2000) for the restricted shortest
path problem to generate the routes of single vehicles.

2.4.2 Upper bound for the single crane scheduling problem

To compute an upper bound, we start with preprocessing steps. Afterwards, we use
construction heuristics: a multistart feasible nearest neighbor heuristic as well as priority
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rules. For each received feasible sequence of jobs, we apply local search procedures of node
reinsertion and of two node exchange.

Preprocessing. We apply preprocessing steps, described by Ascheuer et al. (2001),
to tighten time windows of jobs and construct new precedence relations between the jobs.

Release rule takes into account that job j ∈ J ′ cannot start earlier than the earliest
possible arrival time of the crane from a preceding job:

τ ej = max{τ ej ,maxi∈Pj
{τ ei + sij}}.

Deadline rule takes into account that job j ∈ J ′ cannot finish later than the latest
possible departure time of the crane to a succeeding job:

τ dj = min{τ dj ,mini∈Fj
{τ di − sji}}.

The preprocessing steps have computational complexity of O(|J ′|2).

Multiple start feasible nearest neighbor heuristic (MSFNH). Feasible nearest
neighbors are determined by taking time windows and precedence relations into account
(cf. Ascheuer et al., 2001). The computational complexity of MSFNH is O(|J ′|3).

Priority rules. We apply composite priority rules, as described by Otto and Otto
(2014a). In this construction heuristic, jobs j ∈ J ′ are assigned one after another to build
a sequence. At each step, a job with the highest priority value (priovalue) is selected.

Elementary priovalues for job j are calculated based on its deadline (earliest deadline
priovalue EDDj), on its release time (earliest release time priovalue ERTj), on its setup
time from the currently last job in the sequence (smallest setup priovalue Sj) or on the
size of its time window (time window priovalue TWj).

In composite priority rules, the final priovalue of job j is received by a weighted sum
of (in our case two) elementary priovalues. Composite rule (EDDj, Sj, w) means, for
example, that the final priovalue of job j ∈ J ′ is computed as [w · EDDj + (1 − w) ·
Sj]. Thereby priovalues are scaled to make them comparable to each other. We apply
composite priority rules (EDDj, Sj, w), (ERTj, Sj, w) and (TWj, Sj, w) with weights w ∈
{0, 0.1, 0.2, ..., 1}, which makes 3 · 10 + 1 = 31 composite priority rules in total (since the
composite rules are identical for w = 0).

Let job l ∈ J ′ be the last job in the currently built sequence of jobs and τ sl is the
starting time of this job l. Then, the scaled priovalues are computed as follows:

EDDj = −
τdj∑

f∈J ′ maxi∈J ′|(i,f)/∈E{sfi}
;

ERTj = −
τ ej

maxi∈J ′{τ ei }
;
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TWj = −
τdj − τ ej∑

f∈J ′ maxi∈J ′|(i,f)/∈E{sfi}
;

Sj = −
max{τ ej , τ sl + slj} − τ sl
maxf,i∈J ′|(i,f)/∈E{sfi}

.

Example. Let us apply composite priority rule (EDDj, Sj, 0.5) on a single crane
scheduling instance with four jobs J ′ = {1, 2, 3, 4} and parameters as provided in Table
2.2. We assume that there are no precedence relations. In the first assignment step, we
select job 1 because it has the highest final priovalue and fix job 1 to be first in the job
sequence (see Table 2.4). We set τ s1 = max{τ e1 , s01} = max{1, 1} = 1. In the second
assignment step, we select job 3 and set τ s3 = max{τ e3 , τ s1 + s13} = max{4, 1 + 3} = 4 and
so on. The final sequence is (1, 3, 4, 2) with the makespan of 13.

The computational complexity of a composite priority rule is O(|J ′|2).

Table 2.4: Application of priority rule (EDDj , Sj , 0.5)

Job 1 2 3 4
Priovalue EDDj -0.25 -1 -0.5 -1

Step 1 Priovalue Sj -1/7 -3/7 -4/7 -5/7
Final priovalue -0.20 -0.71 -0.54 -0.86

Step 2 Priovalue Sj - -5/7 -3/7 -4/7
Final priovalue - -0.86 -0.46 -0.79

Step 3 Priovalue Sj - -1 - -5/7
Final priovalue - -1 - -0.86

Local search. Node-reinsertion and two-node exchange local search procedures are
adapted from Ascheuer et al. (2001). The computational complexity of the local search
procedure is O(|J ′|2).

2.4.3 Branch and bound algorithm for the single crane scheduling

problem

Our overall branch and bound procedure for the single crane scheduling problem Π(k′, k)

is based on a depth-first search. The root node P0, which is located at depth δ = 1 of
the branch and bound tree, is the initial single crane scheduling problem Π(k′, k) on the
set of jobs J ′. In each node Pr which corresponds to a single crane scheduling problem
of a set of jobs J ′Pr

, branching leads to several subproblems. A child node Pl at depth
δ′ distinguishes from its parent node Pr at depth (δ′ − 1) by assigning some job j ∈ J ′Pr

to the next position in the sequence. In order to strengthen the preprocessing and lower
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bounds, we consider in Pl only the scheduling problem for the jobs J ′Pl
= J ′Pr

\ {j} with
setup times from the source (job) equal to s′oi = τ sj + sji, ∀i ∈ J ′Pl

.

In the root node P0, we compute an upper bound UB(Π(k′, k)) of the single crane
scheduling problem according to Section 2.4.2. Note that we check the reduction rule (see
below) for each generated feasible sequence. We take the maximum of LB1, LB2 and LB3
(Section 2.4.1) as lower bound LB(Π(k′, k)).

In all other nodes Pr we run a preprocessing step (Section 2.4.2) and calculate a lower
bound LB(Pr) as the maximum of LB1 and LB2. The computational complexity of LB3
forces to limit its use for nodes up to depth δ = 2.

We fathom node Pr if its lower bound exceeds the upper bound, i.e. LB(Pr) ≥
UB(Π(k′, k)) or if there is no feasible solution.

Reduction rule. Consider a feasible sequence of jobs where [f ] denotes the job at
position f and let τ s[f ] be the starting time for job [f ] ∈ J ′ in this sequence. If for some [f ] ∈
J ′, releases of all subsequent jobs are late enough (τ e[f ′] ≥ τ s[f ] + s[f ],[f ′], ∀f ′ > f, [f ′] ∈ J ′),
then the subsequence ([1], [2], ..., [f ]) does not have to be improved anymore. Therefore
we reduce the original single crane scheduling problem and set J ′ := J ′ \ {[1], [2], ..., [f ]}.

In the reduction rule, we check each job in a feasible sequence starting from the last
one. Its computational complexity is O(|J ′|2).

2.5 Algorithms for the static crane scheduling problem

In this section, we combine solution elements introduced above and develop two solution
algorithms for the SCSP, a heuristic (Section 2.5.1) and an exact algorithm (Section 2.5.2).
The algorithms are based on the two-way bounded dynamic programming framework
(Section 2.3).

2.5.1 The TBDP heuristic for the SCSP

In the TBDP heuristic, we perform only steps 1 and 2 (see Figure 2.4). Thereby single
crane scheduling problems Π(k′, k) are solved heuristically, by computing only an upper
bound (see Section 2.4.2).

We can check the quality of the received solution, by computing a global lower bound
within the TBDP framework based on lower bounds for single crane problems (Section
2.4.1). In case of insufficient solution quality, the planner can re-solve ub-bottleneck
single crane scheduling problems of the stored most promising yard partition(s) with more
powerful algorithms, e.g. with a truncated branch and bound algorithm (e.g. Section
2.4.3) or beam search.
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2.5.2 TBDP-based exact method for the SCSP (TEMP)

TEMP is an exact solution procedure based on the TBDP framework (cf. Figure 2.4). In
TEMP, we run the TBDP procedure until an optimal solution is found and its optimality
is proven. TEMP has an integrated branch and bound (B&B) algorithm to solve job
scheduling problems for single cranes. The B&B algorithm (see Section 2.4.3) in TEMP
is applied to improve lower bounds of the lb-bottleneck zones.

In step 1 of TEMP (see Figure 2.4), upper bounds UB(Π(k′, k)) are computed as
described in Section 2.4.2 and lower bounds LB(Π(k′, k)) are set to the maximum of
LB1 and LB2 (see Section 2.4.1). In step 4, we apply a branch and bound algorithm
(see Section 2.4.3) to improve the lower bound of the lb-bottleneck zone with the highest
priority. We improve lb-bottlenecks rather than ub-bottleneck zones, because the GLBs
were less close to the optimal value than the GUBs in our experiments. We stop the B&B,
when an optimal solution is found or an improvement of the lower bound is achieved.

We put the highest priority to lb-bottleneck zones, which are a part of all the lb-
bottleneck crane partitions. Recall that it suffices to improve the lower bound only of
one of such zones in order to raise the GLB. Thereafter, priority is given to lb-bottleneck
zones (k′, k), which contain the least number of spatially disjoint sets [k−k′+ 1]. Indeed,
if k′′′ ≤ k′ and k ≤ k′′ and we were able to raise LB(Π(k′, k)) so that LB(Π(k′, k)) >

LB(Π(k′′′, k′′)), then we can raise LB(Π(k′′′, k′′)) as well.

2.6 Computational Experiments

Yard layout. For our computational experiments we generated instances that closely
mimic typical German transshipment yards. A typical terminal segment is about 700
meters long (Boysen et al., 2010; DUSS, 2015). We divide it into slots that correspond to
a standard railcar of 14 meter length and 7 meters vertical distance between the tracks.
Similar parameters were used by Boysen et al. (2010) and Boysen and Fliedner (2010).
Further, a terminal segment typically consists of about two to four parallel tracks (Ballis
and Golias, 2002; DUSS, 2015) and contains up to four cranes (Boysen et al., 2013; DUSS,
2015). Therefore we designed our data sets as follows. To investigate the impact of the
number of parallel tracks, we randomly generated data sets with four cranes and two,
three and four parallel tracks called C4T2, C4T3 and C4T4, respectively. To study the
impact of the number of cranes, we look at instances with two parallel tracks and two,
three and four cranes called C2T2, C3T2, C4T2, respectively. Each data set contains 25
instances, so that we have 25 · 5 = 125 instances in total.

Trains. The train lengths may vary. We have drawn them from a normal distribution
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N(µtrain, σtrain) with expected train length of µtrain = 43 slots, which corresponds to
about 600 meters (see Ballis and Golias, 2002). To mimic the situation that yards differ
in the length of tracks and thus in their capacity to handle long trains, we randomly set
the standard deviation σtrain to 2, 4, 6 or 8 for each instance (cf. Boysen and Fliedner,
2010). Without loss of generality and following a common practice in the literature, we
let each train to park from the first slot.

Since freight trains also transport empty railcars and some trains end at the rail-yard,
the number of jobs n is a fraction of the number of possible container positions determined
by the total length of trains. We set this fraction at Share = 40% on average (cf. Boysen
and Fliedner, 2010). We generated the parameter Share from a normal distribution with
expectation of 40% and standard deviation of 5.

Set-up times. In our data set, we mimic technical crane parameters similar to studies
of Boysen et al. (2010) and Boysen and Fliedner (2010). Independent engines enable cranes
to move a container simultaneously in both directions, parallel to the tracks (horizontal) as
well as orthogonally to the parallel tracks (vertical) whereby the whole crane is progressing
in the horizontal direction, the steering cab carrying the spreader is moving in the vertical
direction. We assume horizontal and vertical velocities of the crane carrying a container
at vl = 2 meters per second. When the crane is not loaded, its horizontal and vertical
velocities increase to vu = 3 meters per second. Picking and dropping a container requires
fixing (unfixing) the gripping hooks as well as a careful positioning of the spreader. This
precision task takes about 45 seconds on average. For example, the setup time s25 between
job 2 and job 5 in Figure 2.2 involves travelling of the crane 1 slot vertically and 4
slots horizontally; picking container of job 5; moving it 2 slots horizontally and 1 slot
vertically as well as dropping the container: s25 = max{4 · 14m/(3m/sec); 1 · 7m/(3m/
sec)}+ 45 sec+ max{2 · 14m/(2m/sec); 1 · 7m/(2m/sec)}+ 45 sec = 122.7 sec.

Jobs. As common in a typical transshipment yard (Rotter, 2004), in each instance,
about 2/3 of the jobs are generated as rail-road and the rest are rail-rail (25% of jobs) and
rail-storage jobs (10% of jobs). For each job, its pickup horizontal positions were deter-
mined randomly from a uniform distribution. For rail-road jobs, we realistically assume
that vehicles park at the most convenient parking position (cf. Figure 2.2). For rail-rail
and rail-storage jobs we assume that container positions have already been optimized
after arranging trains to bundles and selecting suitable parking positions. Therefore we
limit the difference in horizontal positions for rail-rail and rail-storage jobs and generate
it randomly from {−1, 0, 1}. For example, in Figure 2.2 job 2 starts in slot 8 and ends
in slot 7, so that the difference in horizontal positions is 7 − 8 = −1. Note as European
freight trains are one-story (due to low height of electric wires), we do not allow to pick
more than one container from the same slot.
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To imitate the current situation, time windows are kept wide. Let us define pj as
processing time of job j, i.e., it is the time needed when the crane’s grip hooks are fixed
to pick the container until it is dropped at the final position. The size of the time window
(τ di − τ ei ) is uniform distributed in the interval [RV/2; 2 ·RV ] where RV =

∑
i∈J pj · γ/R

is a reference value and measures the total processing time per crane with some allowance
(γ = 1.5) for setup times. Note that narrow time windows will further favor to jointly
consider yard partition and job scheduling together, as we promote in this paper, i.e.,
the advantage of using the TBDP framework is more significant for small time windows.
Moreover, run times for the exact algorithm will decrease. We randomly select the release
time τ ei among four options: 0, RV/4, 2 ·RV/4 and 3 ·RV/4. We generated time windows
for rail-road jobs (i.e., for about two thirds of the jobs).

Descriptive statistics of our data sets is provided in Table 2.5. We performed tests
on a PC with Intel i5-3450 3.1GHz CPU and 8.0 GB RAM. The implementation of the
algorithms is in C++, utilizing the library of IBM ILOG CPLEX 12.6.

Table 2.5: Descriptive statistics of the data sets

Data set No. of cranes R No. of tracks No. of spatially disjoint sets K No. of jobs |J |
Avg. [min,max] Avg. [min,max]

C4T2 4 2 21 [15, 27] 32 [20, 45]
C4T3 4 3 24 [17, 31] 52 [41, 68]
C4T4 4 4 25 [19, 30] 63 [49, 75]
C3T2 3 2 21 [14, 28] 34 [28, 42]
C2T2 2 2 20 [15, 26] 32 [26, 37]

In Experiment 1 (Section 2.6.1) we investigate the performance of the TBDP heuristic
and of TEMP. A detailed additional value analysis of the proposed TBDP framework for
SCSP, is studied in Experiment 2 (Section 2.6.2).

The proposed solution methods, TEMP and TBDP, are designed for the case, when
no container moves are performed across crane zones. This policy is reasonable if there is
a sufficient number of spatially disjoint sets of jobs and it requires a low-to-medium share
of rail-rail moves, low variety of container sizes, which is common for international traffic,
and optimized container positions resulting in short container moves. Such conditions, for
example, can be found in gateway traffic, described in the Introduction. In Appendix 2.B,
we examine the expected number of spatially disjoint sets of jobs for different operational
parameters of the transshipment yard.
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2.6.1 Experiment 1: Performance of the TBDP heuristic and of

TEMP

TBDP heuristic. TBDP heuristic found optimal solutions in 90% of the total 125
instances (see Table 2.6). For instances not solved to optimality, the average relative
deviation from the optimal objective value (average performance) was about 1% and
never exceeded 2.5% (worst performance). We conclude that the TBDP heuristic performs
sufficiently well for many practical purposes.

Table 2.6: Performance of TBDP heuristic and of exact algorithm TEMP

Data set C4T2 C4T3 C4T4 C3T2 C2T2

Performance of the TBDP heuristic
No. of cases, where optimum was found 24 23 19 23 24
Avg. performance of instances not solved optimally (%) 1.3 0.2 0.3 1.3 1.1
Worst performance (%) 1.3 0.2 0.7 2.5 1.1

Performance of exact algorithm TEMP
Avg. computational time (sec.) 2 10 113 4 27

Performance of TEMP after the first bounding iteration
No. of cases with GUB = GLB 9 2 2 3 1
Avg. relation of GLB to optimum (%) 99 99 99 98 99

Performance of TEMP compared to the current routines in operational practice
Avg. relative improvement to practice by TEMP (%) 23 28 27 22 18

Performance of a standard solver (IBM ILOG CPLEX 12.6, 1 hour time limit)
No. of cases, where a feasible solution was found 5 0 0 4 14
No. of cases, where optimum was found 3 0 0 2 4
No. of cases, where optimum was proven 2 0 0 1 1
Avg. relation of GLB to optimum (%) 91 87 86 89 91

TEMP. TEMP took 30 seconds per instance on average. As the B&B algorithm
for the single crane scheduling problem is the most computationally expensive part of
TEMP, run times differ a lot among the data sets (see Table 2.6). Overall, the more
jobs (or tracks) a crane handles the larger is the run time. We were able to solve all the
instances to optimality within the run time limit of 30 minutes. The maximal run time
per instance comprised 23 minutes.

In practice, an early estimation of the solution quality is much appreciated. Therefore
we analyzed the results of TEMP after the first bounding iteration (cf. Section 2.3.2). We
compared, how the gap GLB/GUB is related to the gap GLB/optimum. Overall for only
15% of the instances, for which the optimum was actually found (but not necessarily
proven), both bounds were the same, i.e., GUB = GLB (see Table 2.6). However, the
GLB provides a good approximation of the optimal solution. On average, the relation of
GLB to the optimal objective function value comprised 99% and never dropped below 96%
of the optimal value. Notice that if TEMP is stopped after the first bounding iteration,
it is equivalent to the TBDP heuristic.
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Routines in practice. It is interesting to compare the proposed solution methods
to the routines used currently in practice (cf. Boysen and Fliedner, 2010; Boysen et al.,
2010). According to practitioners, the yard is partitioned in zones of about equal size. The
crane operator determines a sequence of jobs. The operator’s decision criterion resembles
in most cases the earliest deadline rule (EDDj). Compared to these planning routines,
TEMP was able to reduce the resulting makespan by 18% to 28% on average (see Table
2.6).

Standard solver. In these computational tests, we introduce redundant constraints
into the SCSP model (see Section 2.2) in order to improve the performance of the standard
solver. IBM ILOG CPLEX 12.6 was able to find a feasible solution for only 23 (or 18%
of) instances within a one hour run time. On average, the GLB of CPLEX was about
89% of the optimum value and dropped even to 79% of the optimal value in the worst
case (see Table 2.6).

Large instances. Although large transshipment yards with more than four tracks
are rare, we also compared the performance of the TBDP heuristic for 6 tracks and 2 to 6
cranes C2T6, C3T6, C4T6, C5T6 and C6T6 with the current situation in practice. Each
data set contains 25 instances generated in the same way as described above. We applied
the TBDP heuristic, because B&B for a single crane instance often takes more than an
hour if there are more than 20 jobs per crane. Table 2.7 shows that the TBDP was able
to reduce the makespan by 13% to 26% on average compared to planning routines in
practice. For some instances the improvement reached 45%.

Table 2.7: Performance of TBDP heuristic compared to the current routines in use for large
transshipment yards

C2T6 C3T6 C4T6 C5T6 C6T6

Avg. relative improvement in % to results in practice 13 15 20 25 26

2.6.2 Experiment 2: Additional value of TBDP

It is interesting to illustrate and measure the advantages of TBDP as a part of our
computational experiments.

Firstly, the TBDP indicates critical crane zones (see our discussion in Section 2.3.1)
early in the solution process. For example, in TEMP, a single crane job scheduling problem
(step 4 in Figure 2.4) had to be solved only for few critical crane zones. Indeed, B&B
algorithm for a single crane problem was on average only called twice and never more
than eight times per instance.

Further, the TBDP framework allows to receive strong lower bounds early in the
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Figure 2.5: TBDP provides sharp lower bounds: relative improvement of GLB after the first
bounding iteration, which is based solely on LB2, called GLBLB2 compared to LB2SCSP

solution process. While constructing a lower bound, TBDP takes additional information
into account, on which combinations of the crane zones are possible.

For example, consider the lower bound based on the linear sum assignment problem.
We can apply this bound to the SCSP assuming that there was only one crane. Therefore
we add R dummy source jobs and R dummy sink jobs and apply same transformations
as in case of LB2 (see Section 2.4.1). The value of the optimal solution of the resulting
linear sum assignment problem provides us an estimation from below of the total time to
be spend by all the cranes. If we divide this value by the number of cranes R we get a
lower bound, which we call LB2SCSP .

Alternatively, we apply the relaxation idea to the single crane job scheduling problems.
Notice that this is the idea behind LB2. Then we aggregate via the introduced dynamic
programming procedure (step 2 in Figure 2.4), we get a sharp GLB. We call this GLB as
GLBLB2.

We compared the results of LB2SCSP to GLBLB2 (Figure 2.5). TBDP helped to
improve the lower bound by 5% to 12% on average. For some instances, GLBLB2 was
impressive 35% higher than LB2SCSP . We also observe that in line with intuition, TBDP
returns a sharper lower bound with an increasing number of cranes. The difference be-
tween GLBLB2 and LB2SCSP slightly decreases with an increasing number of tracks. The
reason is as follows. A larger number of tracks usually corresponds to a larger num-
ber of jobs per crane and to more "balanced" makespans of single crane zones with the
same number of jobs. So that the average time per crane, which is the main idea behind
LB2SCSP , gets closer to the optimal makespan of SCSP.

Thirdly, TBDP enables to consider complex computational planning problems : yard
partitioning and job scheduling - together. While considering possible yard partitions,
we anticipate possible schedules of jobs in advance and therefore improvve the quality of
planning as well as avoid infeasible solutions.

A hierarchical planning of yard partitioning and job scheduling (cf. Boysen et al.,
2013), without anticipating the results of job scheduling, needs to evaluate each crane
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Figure 2.6: TBDP vs. decomposition approaches: exact algorithm TEMP vs. hierarchical
planning approach HA

zone by some surrogate value function, for example, by a simple sum of job processing
times

∑
j∈J ′ pj (cf. Boysen and Fliedner, 2010; Boysen et al., 2010). Such a hierarchical

approach (HA) results in efficiency losses and complicates promising tight service times to
priority customer vehicles, because a HA may be unable to find available feasible solutions.

We implemented the hierarchical approach as follows. Yard partitioning, which is a
first-tier planning problem, is solved by a dynamic programming approach. Nodes and
transition arcs of the state graph are formulated in the same way, as in Section 2.3.
However, the value function F () is different. The recursive formula for the value function,
which is a counterpart of formulas (2.19) and (2.20), is F (r, k) = mink′<k{F (r − 1, k′) +∑

j∈J ′ pj}, where J ′ = {j ∈ J |afj = 1, f ∈ {k′ + 1, k}}. When the yard partitioning is
obtained using dynamic programming, we perform the scheduling of jobs as a second-tier
planning problem. Thereby, scheduling of jobs is performed using our branch and bound
procedure (see Section 2.5).

Figure 2.6 shows that hierarchical planning of yard partitioning and job scheduling
in HA leads to 1.5% to 7% deterioration in the received makespan. The worst observed
deterioration in the makespan comprised 14%. The disadvantage of a hierarchical de-
composition is even more obvious with the increasing number of cranes and with the
decreasing number of jobs per crane.

2.7 Conclusion

The proposed two-way bounded dynamic programming procedure is an effective tool, in
case it takes long to compute the value function within dynamic programming. TBDP
provides not only sharp initial bounds, but also navigates to critical states and transition
arcs within the state graph, for which the value functions have to be computed foremost.
As a consequence, TBDP enables to solve hard instances, for which hierarchical planning
decomposition previously had to be applied.

We propose an exact algorithm TEMP and a heuristic approach, both based on TBDP.
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TEMP solves instances of practically relevant size within 30 minutes time limit and an
average from 2 seconds to 2 minutes. We recommend using the proposed heuristic in
cases of very large transshipment yards, with more than five tracks and more than about
30 jobs per crane. The TBDP heuristic finds an optimum in about 90% of the cases; its
solution does not exceed the optimal makespan by more than 2.5% in our experiments.

Overall, we highly recommend performing yard partitioning and job scheduling to-
gether. Hierarchical decomposition leads to efficiency losses of up to 14%. Thereby the
losses become more pronounced, if more cranes or less jobs per crane are present.

Several topics remain for further research. First of all, we assumed that no container
transshipment between the crane zones occurs. Certainly, at least variable costs may be
reduced by introducing sorter vehicles, which are carrying out such transshipments. In
this case, our model serves as a baseline to determine the additional value of such sorters.
Secondly, although static crane zones are currently preferred because of organizational
simplicity, the dynamic policies, i.e. when cranes do not have to stay within their defined
zones, may lead to a better makespan. Therefore, it is useful to investigate this case in
context of railway transshipment yards. Overall, with progressing automation and better
data processing at transshipment yards, the importance of holistic planning approaches
is growing. Holistic planning approaches combine several planning steps and make the
trade-offs between single decisions transparent. For example, container placement that
minimizes distances of container moves leads to time and cost savings in the container
transshipment operations. On the other hand, we may place containers to minimize the
wind resistance of the train in order to prolong the servicing life of brakes and to reduce the
energy consumption. A holistic planning approach, which combines container placement
with job-to-crane assignments and jobs sequencing compares these trade-offs to enable an
optimized decision.

2.A Appendix A. LB1

Since all the jobs have to be assigned in a sequence, the makespan is at least LB1 =∑
i∈J ′ pi +

∑
i∈J ′ minj{ϑij|i, j ∈ J ′, (j, i) /∈ E} − maxi minj{ϑij|i, j ∈ J ′, (j, i) /∈ E}.

Obviously, LB1 can be calculated in O(|J ′|2) time as each factor of the lower bound
requires linear time, if the minimum for each job i has been determined in an earlier step
which also requires only linear time.

LB1 can be further improved by relaxing the single crane scheduling problem to the
problem 1/ei/Cmax which can be solved in polynomial time by sequencing the jobs in
non-decreasing order of their releases ej. Thus assume all jobs of set J ′ are ordered in
non-decreasing order of their release times with job [J ′] being the last job in this ordering.
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We assign the jobs sequentially one after another and assume [J ′] completes at time C[J ′]

. The time for processing is assumed to be p′i = pi + minj{ϑij|i, j ∈ J ′, (j, i) /∈ E}
for all jobs i ∈ J ′. Additionally define ϑmax := maxi minj{ϑij|i, j ∈ J ′, (j, i) /∈ E}. If
e[J ′] + p[J ′] ≤ C[J ′] − ϑmax then LB1 is equal to C[J ′] − ϑmax, otherwise LB1 is equal to
e[J ′] + p[J ′].

In the example with four jobs J ′ = {1, 2, 3, 4} and parameters from Tables 2.2 and
2.A1, jobs are assigned in the sequence (1, 2, 3, 4) and ϑmax = 3. LB1 equals to 12
(modified processing times p′[f ] are shown in Table 2.A1).

Notice that in general minj{ϑij|j ∈ J ′} is not equal to minj{ϑji|j ∈ J ′}. So, we can
reformulate the aforementioned calculation with "incoming" setup times and choose the
larger lower bound as LB1.

Table 2.A1: Additional parameters for the illustrative problem instance given in Table 2.2

Job j = 1 2 3 4

pj 1 2 1 2
ej 0 1 3 3
p′j 3 4 4 4

setup time ϑij = sij − pj
j

i 1 2 3 4

1 - 3 2 2
2 2 - 3 2
3 4 5 - 3
4 3 2 2 -

2.B Appendix B. Terminal Settings and the Number of

Spatially Disjoint Sets of Jobs

In this section we report on results of two computational studies. We focus on a general
case and quantify the criteria, when container moves across crane zones are not reasonable,
which implies that our solution approach can be applied without any changes. As a rule
of thumb in case of two to four cranes, we require at least 8 to 10 spatially disjoint sets
of jobs.

In a first computational study, we generated instances with 50 slots and, to examine
the least favorable case, assumed that all containers are to be moved. Notice that this
setting is different from our simulation in Sections 2.6.1 and 2.6.2, where we limited the
number of jobs to 40% of the number of railcars in a train in order to account for trains
being compiled at this terminal, empty railcars or containers not being transshipped at
this terminal. We varied the number of tracks, the fraction of rail-rail and rail-storage
jobs θ as well as the maximal horizontal distance in number of slots between the pickup
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Figure 2.B1: Number of spatially disjoint sets
of jobs for 50 slots and a horizontal distance
to the new container position of at most 1 slot

Figure 2.B2: Number of spatially disjoint sets
of jobs for four tracks and 50 slots. Curves vi-
sualize the maximal distance to the new hori-
zontal container position in number of slots

and drop-off position of a container. We generated 20 instances for each setting (see
Figure 2.B1 and 2.B2). Note that there are spatially disjoint sets with rail-rail and rail-
storage jobs, as well as single-slot sets of rail-road jobs. To provide a full picture, we also
report the number of spatially disjoint sets for different values θ excluding single-slot sets
rail-road jobs (see Table 2.B1). As a result Figure 2.B1 shows that even if the share of
rail-rail and rail-storage jobs raises up to 50%, we still get more than 10 spatially disjoint
sets of jobs for a terminal with four tracks. Even in case of very large terminals with
six tracks, we get more than eight spatially disjoint sets for θ ≤ 0.45. Not surprisingly
the maximal horizontal distance in number of slots to the new container position has a
profound impact on the number of spatially disjoint sets (see Figure 2.B2). For a distance
of up to 3 and θ < 0.25 we receive more than 8 spatially disjoint sets. In a common
situation where θ = 0.35 there are more than 10 spatially disjoint sets even for distances
of up to two slots.

Table 2.B1: Number of spatially disjoint sets excluding single-slot sets of jobs in case of four
tracks and 50 slots

Share of rail-rail and rail-storage jobs θ
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Max. distance in slots
to the new position

1 10.9 14.0 15.9 16.7 17.4 17.2 16.5 16.6 15.7
2 9.7 11.4 12.1 11.6 11.2 10.1 9.1 8.0 7.1
3 8.1 9.0 8.9 7.6 7.1 6.4 5.3 4.5 4.1
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In the second computational study, we assume containers and railcars of varying sizes.
Especially in the national traffic, sizes of railcars and containers may differ. For example,
trains to or from ports regularly carry about 50% 20-foot and 50% 40-foot containers
(cf. EU Commission, 2015). A European transshipment terminal may handle up to 23
types of containers or swap bodies and railcars are of lengths between 40 and 104 feet
(12.2 to 31.7 meter) (see Bruns and Knust, 2012). The corners castings of containers
are fixed to the railcars with specialized pins. There are three possible fixation types
of containers and swap bodies with the following distances between the corner castings:
20 feet (5, 853 ± 3mm), 30 feet (8, 918 ± 4mm) or 40 feet (11, 985 ± 5mm). Note that
the positions of pins at the railcar and the fixation type of the container restrict possible
loading patterns of the railcar.

In our computational study, we randomly generated railcars of three types with lengths
13, 23 and 32 meters, and three load patterns for each railcar type depending on the
fixation type of the containers (see Table 2.B2). For example, load pattern {3.5, 9.5}
consists of two containers with midpoints at 3.5 meters and 9.5 meters from the left edge
of the railcar, respectively.

Table 2.B2: Load patterns for railcar and fixation types used in the computational study

Fixation type 1 Fixation type 2 Fixation type 3

13-meter railcar {3.5, 9.5} {7.5} {6.5}
23-meter railcar {4.5, 11.5, 18.5} {7.5, 16.5} {14.5}
32-meter railcar {4.5, 11.5, 18.5, 25.5} {7.5, 16.5, 25.5} {10, 23}

We randomly generated railcars to compile trains of up to 650 meters. For each
railcar, we draw a random load pattern. Following our experimental settings in Sections
2.6.1 and 2.6.2, we generated instances with 25% of rail-rail, 10% of rail-storage jobs and
65% of rail-road jobs. We set the number of tracks to 2, 3 or 4. Since only a fraction of
containers is moved at a transshipment yard, we also vary the probability of a container
to be moved between 5% and 95%. We call this parameter the "fraction of container
movements" in Figure 2.B3. We examined 20 instances for each setting, which makes
3 · 19 · 20 = 1140 instances in total.

Note that we cannot measure the horizontal distance of a container’s current position
to its new position because of varying container and railcar sizes. Therefore we generated
pickup and drop-off positions of rail-rail and rail-storage jobs as follows. Given a random
pickup position, we set the drop-off position to the horizontally nearest available location
with the same fixation type, which does not belong to the same train.

Because of safety reasons, we do not allow that two containers (of two jobs, respec-
tively) with the distance between the midpoints less than 10 meters belong to different
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Figure 2.B3: Number of spatially disjoint subsets in case of varying types of railcars and con-
tainers

spatially disjoint sets.

Figure 2.B3 reports the computational results. Note that if very few jobs are available,
then almost every single job forms a spatially disjoint set. Therefore, the relation of the
number of spatially disjoint sets to the fraction of container movements has an concave
U-shape. In line with the intuition and our previous results, the curve for 4 tracks is the
steepest to rise and the fastest to decline, so that the number of tracks is an important
determinant of the number of spatially disjoint sets. Overall, we get more than 10 spatially
disjoint sets unless the fraction of container movements exceeds 0.60.

Our computational experiments show that limiting container moves to their crane
zones is reasonable for a wide range of settings provided that moves are short, e.g., moves
to neighbor slots. In case of moderate container moves over distances of up to 3 slots,
the fraction of rail-rail and rail-storage moves to the number of railcars should not exceed
25-35% depending on the number of tracks.



Chapter 3

Solving the single crane scheduling
problem at rail transshipment yards

We consider single-crane scheduling at rail transshipment yards, in which gantry cranes
move containers between trains, trucks and a storage area. The single-crane schedul-
ing problem arises at single-crane transshipment terminals and as a subproblem of the
multiple-crane scheduling problem. We consider a makespan objective function, which is
equivalent to minimizing the train dwell time in the yard, and introduce time windows for
container moves, for example, as a customer service promise. Our proposed decomposi-
tion algorithm with integrated dynamic branch-and-cut or dynamic programming solves
practically relevant instances within short time limits.

3.1 Introduction

Freight container transportation has been growing steadily in the last years. The amount
of goods transported in containers increased by 50% in Germany in the ten years from 2004
to 2014 (www.destatis.de). In comparison to freight railcars, containers are standardized
transport units and allow significant savings on handling cost and time, especially during
consolidation at transshipment yards. Optimization of yard operations enables to exploit
this time and cost reduction potential of containers to its maximum.

The layout of a typical rail terminal for the container transshipment includes four to
six tracks, two lanes for trucks – a driving lane and a parking lane –, and a storage area (see
Figure 3.1). One or several gantry cranes transport containers between trains (rail-rail
transshipments), between trains and trucks (rail-road transshipments) or between trains
and the storage (rail-storage transshipments). In this paper, we consider scheduling of
a single crane. Single-crane terminals are quite widespread and can be found, e.g., at

35



3.1. Introduction 36

Figure 3.1: Illustration of a typical rail terminal

transshipment yards in Göttingen, Beiseförth, or Heilbronn. The single-crane scheduling
problem also arises as a subproblem of crane scheduling problems with several cranes (eg.
Froyland et al., 2008; Nossack et al., 2018; Otto et al., 2017; Souffriau et al., 2009).

We define J to be a set of n jobs each representing a container move. The processing
time pj of job j ∈ J is the duration of a container move that consists of a series of
operations like fixing the crane’s grip hooks at the target container, lifting it, and moving
it to its target position where the grip hooks are released. The time for moving the
crane from the position where the current job j has been completed (drop-off position
of the container) to the starting position of the next job j′ (pick-up position of the next
container) may be considered as a setup time ϑjj′ between the two jobs. Cranes have to
load and unload the customer trucks fast, within the promised time windows. Therefore
we specify a time window [roj , dj] for each job j ∈ J where the release time roj is the earliest
possible starting time of job j and the deadline dj specifies the time when j is supposed to
be finished at the latest. The first and the last job to be processed from set J are dummy
jobs and determine the starting and the desired final position of the crane and will be
addressed as source job a and sink job z, respectively. Therefore, we set pa = pz := 0,
roa = roz := 0, da := 0, dz :=∞.

In some cases, it might happen that the container of j has to replace the container of
job j′, as for example in case of job 2 and job 3 of Figure 3.1. Then job j′ has to precede
job j described by the order (j′, j) ∈ E, where set E is a set of precedence constraints
between jobs. We enforce the source job to be the first and the sink job to be the last
in any feasible sequence of jobs by introducing precedence constraints (a, j) ∈ E and
(j, z) ∈ E for all j ∈ J \ {a, z}.

To simplify the notation, we define modified setup times as sij = ϑij +pj and modified
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release times as rj = roj + pj. Observe that the triangular inequality is satisfied for the
setup times, i.e. sjk + skl ≥ sjl, ∀ j, k, l ∈ J . We introduce the completion time of job j
as decision variable Cj.

A bundle of trains arrives together at the yard for container transshipment and departs
from it jointly (see Bostel and Dejax, 1998; Boysen et al., 2011; Rotter, 2004). Specifi-
cally, for safety reasons trains are not allowed to move while a crane is working. Thus
minimizing the makespan leads to a short handling time of each bundle and accelerates
the throughput. The first exact methods on partitioning trains into the bundles and on
scheduling arrival of the bundles are described in Boysen et al. (2011, 2012) as well as in
Barketau et al. (2013).

Therefore the Single-Crane Scheduling Problem (SgCSP) is to find a schedule with a
minimal makespan Cz, i.e. an optimal sequence P ∗ = (j1, j2, ..., jn) of the n jobs starting
with source job a and finishing with sink job z and completion times Cj for each job
j ∈ J , such that:

• time windows constraints are satisfied: rj ≤ Cj ≤ dj, ∀ j ∈ J ,

• precedence constraints are satisfied: ∀ (jk, jl) ∈ E : k < l,

• setup times are observed: Cjk ≥ Cjk−1
+ sjk−1jk , ∀ k ∈ {2, ..., n}.

In the next steps, we develop exact solution approaches for the SgCSP.

Articles on the crane scheduling at transshipment yards mostly treat the single-crane
scheduling problem as a part of a more general planning problem and solve it heuris-
tically. For example, Alicke (2005) examines the multiple-crane scheduling problem at
transshipment yards with a sorter system, which is to assign jobs to cranes and to deter-
mine the sequence of jobs. He formulates a constraint satisfaction problem and develops
different heuristics to minimize maximum lateness. Souffriau et al. (2009) consider the
two-crane scheduling problem without time windows and the objective to minimize the
makespan. They simultaneously determine container positions on trains, assign the jobs
to cranes and decide on the sequence of the jobs. The authors solve the last subprob-
lem, which is similar to the SgCSP, with a variable neighborhood search procedure. Otto
et al. (2017) consider the multiple-crane scheduling problem, where cranes are working
in separate areas. They solve the arising SgCSP subproblem with a branch-and-bound
algorithm. Barketau et al. (2015, 2016) focus on the assignments of the containers to
the drop-off positions in case there is no unique position predefined for each container.
They prove that the new assignment problem is NP-hard in the strong sense and derive a
best approximation result. Cichenski et al. (2017) introduce the first holistic model that
solves simultaneously the train bundling, train-to-track assignment and the selection of
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the container drop-off positions for instances relevant in practice. Kress et al. (2015) allow
the pick-up positions and therefore the assignment of containers to cranes be a part of the
optimization. Stephan and Boysen (2017) analyze computational complexity of different
formulations of the single-crane scheduling problem. A detailed survey on the container
processing at rail transshipment yards is provided by Boysen et al. (2013).

Several articles focus on single crane scheduling in the context of port container ter-
minals. Thus, Ng and Mak (2005) address the single-crane scheduling problem with the
objective to minimize the sum of job waiting times. They neither include precedence con-
straints nor deadlines of jobs. The authors propose a branch-and-bound algorithm, which
solves the generated test instances with up to 25 jobs. Montemanni et al. (2010) propose
a local search algorithm and an ant colony metaheuristic for the single-crane scheduling
problem without time windows and the objective of minimizing the total cost. In other
papers the single-crane scheduling problem is part of a more general framework. For exam-
ple, Kim and Park (2004) propose a mixed-integer model for a multiple-crane scheduling
problem with the objective to minimize makespan. They develop a branch-and-bound
algorithm to solve small instances to optimality and a customized heuristic algorithm for
instances of practically relevant size. Alsoufi et al. (2015) suggest a mixed-integer model
that combines crane scheduling with the berth allocation problem. They solve small-scale
instances with off-the-shelf software CPLEX. Sha et al. (2017) propose a mixed-integer
model for crane scheduling to minimize the energy consumption. Fedtke and Boysen et al.
(2017) set up an optimization problem for simultaneous crane and shuttle car schedul-
ing problem in rail-rail transshipment yards. The authors solve single-crane scheduling
subproblems with a beam search heuristic based on the dynamic programming algorithm
of Held and Karp (1962). Dik and Kozan (2017) design a hybrid metaheuristic based
on the variable neighborhood and tabu search for the multiple crane scheduling problem.
We also refer the reader to the recent surveys on crane scheduling with interference by
Boysen et al. (2017). The classification scheme, complexity results and close to optimal
approximation algorithms for twin cranes operating on the same level can be found in
Kovalyov et al. (2018) and the fast branch and cut algorithm for dual cranes operating
on different levels are proposed by Nossack et al. (2018). Barketau and Pesch (2016)
represent the single crane scheduling problem without time windows as a special case of
the asymmetric traveling salesman problem and design an approximating algorithm with
an approximation guarantee of 3. More about container processing at seaports can be
found in Stahlbock and Voß (2008) as well as Bierwirth and Meisel (2010, 2015).

Notice that the SgCSP is an extension of the asymmetric traveling salesman problem
with time windows (ATSPTW) where we additionally allow precedence constraints. The
asymmetric traveling salesman problem (ATSP) with the makespan objective function,
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in the literature also referred to as the minimum completion time problem (MCTP), has
a more general variant, the minimum tour duration problem (MTDP), with a flexible
starting time of the tour. According to this terminology, the SgCSP is equivalent to the
MCTP with time windows and precedence constraints. Although a plentitude of solution
approaches has been developed for the ATSP and its variants, the MCTP and the MTDP
have rather rarely been investigated. To the best of our knowledge, the available exact
solution approaches for the MCTP and the MTDP are dynamic programming or branch-
and-bound approaches (e.g. Baker, 1983; Christofides et al., 1981; Cire and van Hoeve,
2013; Langevin et al., 1993; Tilk and Irnich, 2017).

The SgCSP is also related to the single-machine scheduling problem with sequence-
dependent setup times, precedence relations, time windows, and the makespan objective
function, or 1/rj, dj, prec, sij/Cmax in notation of Graham et al. (1979). Literature reviews
on the machine scheduling literature with sequence-dependent setup times can be found
in Allahverdi et al. (1999, 2008) and Allahverdi (2015). Machine scheduling problems
are often motivated by manufacturing or hospital applications, so they mostly contain
a number of specific features and constraints, such as time-dependent setup times, rate-
modifying activities, or scheduling of maintenance work (cf. Ivanov et al., 2009; Nesello
et al., 2018; Pei et al., 2017; Silva et al., 2018; Stecco et al., 2008). A few papers propose
exact solution methods - branch-and-bound, dynamic programming, and constraint pro-
gramming algorithms - for 1/sij, ·/· with different objective functions (makespan: Bianco
et al. (1988); sum of weighted completion times: Chou et al. (2009); tardiness-related
objectives: Bigras et al. (2008); Kim and Lee (2009); Luo and Chu (2007); Luo et al.
(2006); Luo and Chu (2006); Tanaka and Araki (2013)). However, most of these algo-
rithms neglect time windows. Time windows significantly increase the intractability of
the SgCSP because waiting times may have to be included into a schedule (Bigras et al.,
2008; Kim and Lee, 2009; Luo and Chu, 2007; Luo et al., 2006; Luo and Chu, 2006; Tanaka
and Araki, 2013). To the best of our knowledge, none of these algorithms can be readily
applied to the SgCSP.

In this paper, we design a decomposition algorithm (DA), which is a general approach
to decompose the initial problem for a set of jobs into smaller and easier to solve problems
for subsets of jobs. The DA is a superstructure that requires an additional algorithm to
solve the resulting SgCSP problems. Therefore, we propose a decomposition algorithm
where subproblems are solved by a dynamic branch-and-cut procedure (DBC). To the
best of our knowledge the designed DBC is the first branch-and-cut algorithm for the
SgCSP and the closely related problem of the MCTP.

Next, we discuss alternative problem formulations of the SgCSP, that will be used
in our solution approaches. Section 3.3 and Section 3.4 describe the DBC and the DA
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(and its combination), respectively. We report on extensive computational experiments
in Section 3.5 and finally conclude with an outlook in Section 3.6.

3.2 Problem formulations for the single-crane schedul-

ing problem

In Section 3.2.1, we provide an illustrative example on the SgCSP, introduce some ad-
ditional notation, and formulate an observation that we will actively use in our solution
procedures.

To solve the SgCSP with a branch-and-cut algorithm (see Section 3.3), we will use
a problem formulation with a surrogate objective function – minimize total cost. This
problem formulation, which we call the SgCSP-Mincost, has a rather tight LP-relaxation
and therefore allows to speed up the branch-and-cut algorithm significantly according our
preliminary evaluations. In Section 3.2.2, we describe the SgCSP-MinCost and its relation
to the SgCSP.

Observe that since the SgCSP closely relates to machine scheduling as well as to
routing problems (see Section 3.1), we use suitable terminology from both research fields.
For instance, terms "paths" and "Hamiltonian paths" enable us to explain, how we apply
effective path-elimination-constraints in our branch-and-cut procedure, whereas we use
the term "active schedule" to succinctly explain how we can reduce the solution space
and schedule jobs given their sequence.

3.2.1 Some observations on the single-crane scheduling problem

Consider the example of Table 3.1 with six jobs, where job 3 has to precede job 2: E =

{(3, 2), (a, 1), (a, 2), (a, 3), (a, 4), (1, z), (2, z), (3, z), (4, z)}. Figure 3.2 shows an optimal
sequence of jobs (a, 1, 3, 2, 4, z) with makespan 16 and completion times Cj of 0, 3, 8, 10,
16 and 16, respectively.

Figure 3.2: Illustration of an optimal solution for the example in Table 3.1

Observe that the constructed schedule of jobs will remain optimal if job 1 is resched-
uled to finish anywhere between 3 and 4. Indeed, for a given sequence of jobs, we will be
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Table 3.1: Example of a SgCSP problem instance

Job j = a 1 2 3 4 z

rj 0 3 6 8 16 0
dj 0 6 10 14 18 ∞

setup time sij
j

i a 1 2 3 4 z

a – 3 1 2 2 0
1 ∞ – 2 4 7 0
2 ∞ 5 – 2 6 0
3 ∞ 6 2 – 6 0
4 ∞ 10 7 7 – 0
z ∞ ∞ ∞ ∞ ∞ –

able to construct a plentitude of feasible job schedules, i.e., schedules where precedence
constraints among jobs are observed and the jobs are scheduled within their time win-
dows. In the following we show that it is sufficient to examine active schedules (see the
definition below) for the SgCSP and we reformulate our model accordingly.

We define a labeled directed graph G = (J,A) with vertex set J corresponding to the
set of jobs. Two labels for each vertex j ∈ J describe release time rj and deadline dj. Arc
set A = {(i, j)|imay precede j, i, j ∈ J} describes all possible job pairs, in particular,
E ⊆ A. Let P = (j1, j2, ..., jm) be a path in G that includes any vertex of G at most once.
The makespan, i.e., the earliest completion time M(P ) of the jobs of path P is recursively
defined through a simple forward calculation as follows:

M(j1) := rj1

M(j1, ..., jk) := max{rjk,M(j1, ..., jk−1) + sjk−1,jk} for k ∈ {2, ...,m}.

A feasible schedule of jobs, i.e. a schedule that does not violate any precedence
constraints and where each job is scheduled within a time interval defined by its release
time and deadline, is active, if each job in the sequence finishes at its earliest possible
completion time, i.e. no job can start earlier without delaying another one. For instance,
the schedule in Figure 3.2 is active.

Observation 3.2.1. If an instance of the SgCSP has a feasible schedule then there exists
an optimal schedule which is active.

Consequently, we can restrict our attention to active schedules. We call a path P

feasible if it has an active schedule based on P .
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3.2.2 On the single-crane scheduling problem with the objective

to minimize total cost

In order to find improved bounds within our solution procedure we make use of a mixed-
integer formulation of the single-crane scheduling problem with a modified objective. In
this problem formulation, we will omit hard-to-deal-with waiting times from the objective
function and will consider just the total sum of the incurred setup times (or total "cost").

We denote this problem as SgCSP-Mincost and a path defining an optimal solution
as P̃ ∗. The cost C(P ) of path P = (j1, j2, ..., jm) is the sum of its setup times, i.e.
C(P ) =

∑m
k=2 sjk−1,jk . Additionally, we introduce a set Θ(J,A,GUB) of prohibited paths.

A path P ′ is prohibited if one of the following is true:

• it violates time window or precedence constraints,

• or if the makespan M(P ′) of P ′ is equal to or higher than the current global upper
bound (GUB), i.e. the makespan of the currently best solution of the SgCSP.

In the following, we refer to the set of prohibited paths simply as Θ for simplicity.

Given GUB, the SgCSP-Mincost(J,A,GUB) is the problem to find a Hamiltonian
path P̃ ∗ /∈ Θ in G with minimal cost C(P̃ ∗).

Let us denote the set of ingoing arcs incident to vertex i as δ−(i) = {(j, i) ∈ A|j ∈ J}
and the set of outgoing arcs as δ+(i) = {(i, j) ∈ A|j ∈ J}. Binary decision variables xij
define whether job i is performed immediately before job j (xij = 1) or not (xij = 0).
We denote the sum of decision variables corresponding to the arcs of set A′ by x(A′) =∑

(i,j)∈A′ xij. Thus for a path P it is x(P ) =
∑m

k=2 xjk−1,jk . Let A(K) be the set of all
arcs connecting any two vertices from a set K ⊆ J .

We adapt the model proposed by Ascheuer et al. (2001) and formulate a mixed-integer
model for the SgCSP-Mincost as follows:

min
∑

i∈J\{z}

∑
j∈J\{a}

sij · xij (3.1)

s.t. x(δ+(i)) = 1 ∀ i ∈ J \ {z} (3.2)

x(δ−(i)) = 1 ∀ i ∈ J \ {a} (3.3)

x(A(K)) ≤ |K| − 1 ∀K ⊂ J, 2 < |K| < n (3.4)

x(P ) ≤ m− 2 ∀ pathP = (j1, j2, ..., jm), P ∈ Θ (3.5)

xij ∈ {0, 1} ∀ i, j ∈ J (3.6)
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Constraints (3.2) and (3.3) require that each job has exactly one successor and exactly
one predecessor job. Subtours are excluded by constraints (3.4). The paths elimination
constraints (3.5) eliminate all prohibited paths. The number of constraints of type (3.4)
and (3.5) can be exponential in n.

Notice that any feasible solution of SgCSP-Mincost(J,A,GUB) is also a feasible solu-
tion for the original problem SgCSP(J,A), therefore M(P ∗(J,A)) ≤ M(P̃ ∗(J,A,GUB)).
Moreover, the optimal objective value of problem SgCSP−Mincost(J,A,GUB) provides
a lower bound to the corresponding objective value of problem SgCSP (J,A). Therefore
the following observation holds.

Observation 3.2.2. C(P̃ ∗(J,A,GUB)) ≤M(P ∗(J,A)) ≤M(P̃ ∗(J,A,GUB)).

3.3 Dynamic branch-and-cut algorithm for the SgCSP

We apply the following dynamic branch-and-cut (DBC) procedure to the SgCSP: we
iteratively solve the SgCSP-Mincost(J,A,GUB) problem and update GUB dynamically
during the solution process. For instance, whenever we find a currently optimal solution
P := P̃ ∗(J,A,GUB), we update the global upper bound as
GUB := min{GUB,M(P̃ ∗(J,A,GUB))}, path P enters set Θ of prohibited paths and
we add a cut to exclude the solution. We proceed, until GUB equals a global lower bound
(GLB), so that we find an optimal solution of the problem SgCSP(J,A) or the set of
feasible solutions of SgCSP-Mincost(J,A,GUB) is empty.

Recall that the major idea of the branch-and-cut is to start with a relaxed model and
to gradually strengthen this relaxation during the solution process by introducing valid
cuts and enforcing integrality conditions on the decision variables. In the DBC, we extend
this basic idea by using a non-restrictive initial value of an important parameter (GUB)
and by "strengthening" this value during the solution process.

In Section 3.3.1, we provide an overview on the overall branch-and-cut procedure. Sub-
sequently, in Section 3.3.2, we describe new separation routines designed for the SgCSP-
Mincost problem.

3.3.1 Branch-and-cut solution procedure

We start the DBC with some preprocessing steps in order to narrow time windows and
to reveal new implicitly existing precedence constraints imposed by the time windows.
Additionally we compute a global lower bound GLB and a global upper bound GUB for
the SgCSP(J,A). In the following, we explain the main idea. We refer an interested
reader to Otto et al. (2017) for a detailed discussion.
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We compute a lower bound as an optimal solution to the assignment problem (3.1)-
(3.3), and continuous variables in (3.6). An alternative lower bound is obtained from an
optimal solution of the single machine scheduling problem 1/r′j/Cmax with job release time
r′j and a makespan objective. The processing times p′j and release times r′j of the jobs of
this single machine scheduling problem are either defined as p′j := mini∈J |(i,j)∈A{sij} and
r′j := rj −mini∈J |(i,j)∈A{sij} or as p′j := pj + mink∈J |(j,k)∈A{ϑjk} and r′j := roj .

We compute a global upper bound GUB for the SgCSP(J,A) through several heuris-
tics, such as multiple start feasible nearest neighbor heuristic, priority rules as well as
local search procedures with vertex reinsertion and two vertex exchange (see Otto et al.,
2017, for details on preprocessing routines, GLB and GUB).

Starting with initial values for GLB and GUB, empty sets K and Θ in (3.4) and
(3.5) as well as continuous variables in (3.6), we adapt cuts and separation routines in
our branch-and-cut procedure as described by Ascheuer et al. (2001). We modify the
separation routines for the path elimination constraints (PECs, see Section 3.3.2). The
cuts include besides subtour elimination constraints (3.4), path elimination constraints
for prohibited paths, inequalities for the sequential ordering problem, (π, σ)-inequalities
to take precedence constraints into account, as well as inequalities for the one-machine
scheduling problem with time windows and inequalities for the traveling salesman prob-
lem. We skip the details here and refer the interested reader to the paper of Ascheuer
et al. (2001). We apply the cuts in the same order as in Ascheuer et al. (2001), but we
include PECs immediately after the subtour elimination constraints in order to exclude
long paths as early as possible.

In each node of the branch-and-cut tree, we consider one class of cuts at a time. We
branch when we have included all the classes of cuts or when we have detected tailing-off.
In each search tree node ϕ of the branch-and-cut procedure we consider a partial sequence
of already scheduled jobs. Let job k (initially k = a) be the incumbent last job of the
sequence in node ϕ. Binary branching in ϕ leads to two descendant nodes λ and µ where
we either append a next job k′ from the set of unscheduled jobs J(ϕ) available in this
node (xk,k′ := 1) or k′ is not going to be the first job scheduled from the set J(ϕ), i.e.,
xk,k′ := 0.

Job k′ is excluded from the set of unscheduled jobs, i.e., J(λ) := J(ϕ) \ {k′}, and
release times are updated as ri(λ) := max{Ck′ + sk′i, ri(ϕ)|i ∈ J(λ)} where ri(α) is the
release time of job i in search tree node α. These transformations allow reducing time
windows and including implicitly existing precedence constraints by applying some simply
preprocessing steps for the subproblem in node λ (for details see Otto et al., 2017). The
search is repeated for the LP-relaxation of problem SgCSP-Mincost(J(λ), A(J(λ)), GUB)

in node λ.
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Fixing variable xk,k′ to 0 in the other node µ is rather weak and usually neither allows
powerful preprocessing steps nor tight cuts. Therefore, we decided not to add any cuts.

We fathom a node when the lower bound exceeds the best upper bound or the set of
feasible solutions is empty.

In order to improve efficiency of the branch-and-cut, we use the following simple
dominance rule. Node λ dominates node η if J(λ) = J(η) and ri(λ) ≤ ri(η) for all
i ∈ J(λ). In this case, the same sets of jobs have to be assigned in λ and in η, but the
next unscheduled job may start earlier in node λ.

We perform the following variation of a breadth search. We always resume branching
at a node with the smallest number of the already assigned jobs. Observe that this kind
of branching eases application of the dominance rule. Among not yet assigned jobs in
the incumbent node ϕ and given a possibly non-integer solution x(ϕ) in this node, we
heuristically select job k′ as the job with k′ = arg max{xk,i(ϕ)|i ∈ J(ϕ), 0 < xk,i(ϕ) < 1}
where k is the last job scheduled.

Each time we find a feasible Hamiltonian path in the branch-and-cut search, we com-
pute the makespan of the corresponding active schedule and update GUB. A smaller
GUB allows to eliminate more paths based on the path-elimination constraints (PECs) as
described in Section 3.3.2. If a Hamiltonian path is optimal for the incumbent relaxed ver-
sion of the SgCSP-Mincost problem, then we exclude this path by using a path-elimination
constraint (3.A1) (see Appendix 3.A) in all active nodes of the branch-and-cut tree.

In the following, [S] denotes a generic permutation of the jobs in set S, which does not
violate precedence constraints. For example, ([S], j) describes a path, where a permutation
of jobs in set S is immediately followed by job j. Further, {P} denotes the set of all jobs
of path P .

3.3.2 Extension of path elimination constraints

We extend the separation routine for path elimination constraints (PECs), originally used
by Ascheuer et al. (2001), by introducing precedence constraints tests (see Section 3.3.2.1)
and waiting time tests (see Section 3.3.2.2). The precedence constraints tests exclude infea-
sible paths violating precedence constraints. Notice that precedence constraints are also
enforced by other classes of cuts with computationally more expensive separation routines
(e.g., (π, σ)-inequalities), which are tackled following the separation for PECs during our
branch-and-cut procedure. Therefore, our new precedence constraints tests may speed up
the solution process, as will be demonstrated in our computational experiments in Section
5.2. The waiting time tests eliminate paths with large makespans.

To generate PECs, we consider all the paths P = (j1, j2, ..., jm), m > 1, satisfying
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condition
∑m

k=2 x̃
∗
jk−1,jk

> m− 2 for a (possibly non-integer) solution x̃∗ of the incumbent
LP-relaxation of the SgCSP-Mincost problem (3.1)–(3.4), (3.6). Note that because of
constraints (3.2) and (3.3), there are only polynomially many such paths. In contrast
to Ascheuer et al. (2001), besides checking whether these paths violate time window
constraints, we additionally apply our precedence constraints and waiting time tests.
Detected infeasible or extra-long paths are eliminated through cuts. For convenience, we
provide a list of PECs in the Appendix 3.A.

Observe that the logics of our tests in Sections 3.3.2.1-3.3.2.2 is somewhat related
to the concept of the local-search domination of Bianco et al. (1988) and Jamal et al.
(2017). Given some partial infeasible or extra-long path P , we identify and prohibit
further similar infeasible or extra-long paths. In this way, we effectively prune whole
sub-trees in the solution space.

3.3.2.1 Precedence constraints tests

Precedence constraints test 1. Consider an infeasible path P = (j1, j2, ..., jm−1, jm) ob-
tained during the search procedure where (jm, j1) ∈ E. Then, we eliminate all paths of
the form (j1, [{P} \ {j1}]) where j1 is the first job, by PEC-constraints (3.A4) (see Ap-
pendix 3.A) and all paths ([{P} \ {jm}], jm) where jm is the last job, by PEC-constraints
(3.A3) (see Appendix 3.A).

Precedence constraints test 2. Assume there is a job jl to be scheduled between
jobs j1 and jm, i.e., (j1, jl) ∈ E and (jl, jm) ∈ E. Further assume jl is not a part of
the infeasible path P = (j1, j2, ..., jm−1, jm). Then we exclude any path containing a
consecutive permutation of jobs {P},i.e., [{P}] by constraint (3.A2) (see Appendix 3.A).

3.3.2.2 Waiting time tests

Let w(P ) be a lower bound on the waiting time of an active (partial) schedule, i.e., of any
feasible path P in graph G. Additionally, let L̃B0 be a lower bound on the cost of feasible
Hamiltonian paths in the current node ϕ of the branch-and-cut tree. We compute L̃B0 as
the solution of the relaxed SgCSP-Mincost(J(ϕ), A(ϕ), GUB) problem (see Section 3.3.1).
We set lower bound L̃B := L̃B0 + Ck(ϕ), where Ck(ϕ) is the completion time of the last
job in the sequence of assigned jobs in node ϕ. If L̃B + w(P ) ≥ GUB, we prohibit path
P . Recall that J(ϕ) does not include the assigned jobs (cf. section 3.3.1).

We develop waiting time tests for three overlapping classes of paths: paths that start
with the source job (class 1), paths that end with the sink job (class 2) and the rest of
the paths (class 3).

Observe that the waiting time in any active schedule between two consecutive jobs



3.3. Dynamic branch-and-cut algorithm for the SgCSP 47

jk followed by jl is at least wjkjl(Cjk) := max{rjl − Cjk − sjk,jl , 0} because jk finishes at
Cjk ≤ djk and jl cannot start earlier than rjl .

Waiting time test 1. Consider a path P = (a, j1, j2, ..., jm) where the last job finishes
at its release time, i.e. Cjm = rjm = M(P ) and w(P ) = M(P ) − Ck(ϕ) − C(P ). If
L̃B + w(P ) ≥ GUB, we prohibit:

• any path [{P}] starting in a, and which is a permutation of jobs of path P , by
constraints (3.A2),

• paths of the form [({P}∪ {jk}) \ {jm}] by constraints (3.A2) for any jk /∈ {P} with
wjm−1jk(Cjm−1) ≥ wjm−1jm(Cjm−1) > 0, where Cjm−1 is the completion time of job
jm−1 in the active schedule of path P .

The intuition behind the first statement is the following. Any path P ′ starting in a
and consisting of only jobs from P has a makespan M(P ′) ≥ M(P ) as job jm cannot
finish earlier than at its release time rjm = M(P ) possibly followed by additional jobs
that are sequenced in P before job jm. Let jk be the last job in P ′ and assume H is a
complete schedule consisting of the jobs of P ′ followed by a sequence P ′′ of jobs starting
with jk and all jobs from J \ {P ′}. Then M(H) ≥ M(P ′) + C(P ′′) ≥ M(P ) + C(P ′′) =

w(P ) + Ck(ϕ) + C(P ) + C(P ′′) ≥ w(P ) + L̃B ≥ GUB.

As for the second statement consider the case where jk replaces the last job jm in
P . wjm−1jk(Cjm−1) > 0 implies that job jk is not available at time (Cjm−1 + sjm−1jk) and
therefore Cjk = rjk . From wjm−1jk(Cjm−1) ≥ wjm−1jm(Cjm−1) we conclude that w(P ′) ≥
w(P ) where P ′ = (a, j2, j3, ..., jm−1, jk) which immediately implies L̃B + w(P ′) ≥ GUB.
Applying the first part of the waiting time test 1 proves the statement.

Waiting time test 2. Consider a path P = (j1, j2, ..., z) from class 2. A possible lower
bound on the waiting time is to set w(P ) := max{L̃B − C(P ) − dj1 , 0} because j1 may
finish as late as dj1 and the local lower bound on the costs L̃B is also a local lower bound
on the makespan. If L̃B + w(P ) ≥ GUB, then we prohibit

• any path [{P}] ending in z, and which is a permutation of jobs of path P , by
constraints (3.A2),

• paths of the form [({P}∪{jk})\{j1}] where wjkj2(djk) ≥ wj1j2(dj1) > 0 by constraints
(3.A2).

The reasoning behind the first statement is the following. As L̃B < GUB (otherwise
we would have fathomed the search tree node) path P has a positive waiting time, i.e.
L̃B − C(P ) > dj1 . Consider a feasible complete schedule where the jobs of path [{P}]
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occupy the last positions. Assume the schedule consists of the jobs of a path P ′ ending
with j1 followed by a sequence P ′′ of jobs starting with j1. As C(P ′)+C(P ) ≥ L̃B−Ck(ϕ),
we get dj1 < L̃B − C(P ) ≤ C(P ′) + Ck(ϕ) which contradicts that all jobs of P ′ finish
until dj1 .

As for the second statement let us consider the case where jk replaces j1 in P . Positive
waiting time wjkj2(djk) > 0 implies that job j2 is not available at time (djk + sjkj2) and
therefore Cj2 = rj2 . From wjkj2(djk) ≥ wj1j2(dj1) we conclude that w(P ′) ≥ w(P ) where
P ′ = (jk, j2, j3, ..., jm−1, z) which immediately implies L̃B+w(P ′) ≥ GUB. An application
of the first part of waiting time test 2 proves the statement.

Waiting time test 3. Let P = (j1, j2, ..., jm) be a path of class 3. Observe that its first
job cannot be scheduled later than its deadline, therefore we may consider the following
waiting time lower bound w(P ) = min{M(P ) − C(P ) − dj1 , 0}. If L̃B + w(P ) ≥ GUB,
then we prohibit

• path P by constraints (3.A1),

• paths P ′ received from P by replacing job j1 with jk such that wjkj2(djk) ≥ wj1j2(dj1) >

0 by constraints (3.A1),

• paths P ′′ received from P by replacing job jm with jl such that wjm−1jl(Cjm−1) ≥
wjm−1jm(Cjm−1) > 0 by constraints (3.A1), where Cjm−1 is the completion time of
job jm−1 in the active schedule of path P \ {jm}, i.e. Cjm−1 := M(j1, ..., jm−1).

Let us consider the second statement. Since wjkj2(djk) > 0 and wj1j2(dj1) > 0, we
receive that rj2 > djk +sjkj2 and rj2 > dj1 +sj1j2 . Therefore, in both schedules j2 completes
at its release time rj2 and M(P ) = M(P ′). The validity of the second statement can be
shown by observing that M(P ′)− C(P ′)− djk ≥M(P )− C(P )− dj1 .

In the third statement, observe thatM(P ) = rjm andM(P ′′) = rjl because wjm−1jm(Cjm−1) >

0 and wjm−1jl(Cjm−1) > 0. Therefore M(P ′′)− C(P ′′)− d1 = rjl + (rjm − rjm) + (Cjm−1 −
Cjm−1) − (C(P ) − sjm−1jm + sjm−1jl) − d1 = rjm + (wjm−1jl(Cjm−1) − wjm−1jm(Cjm−1)) −
C(P )− d1 ≥M(P )−C(P )− d1. So that w(P ′′) = max{M(P ′′)−C(P ′′)− d1, 0} ≥ w(P )

and we can prohibit path P ′′.

In our preliminary tests we observed that excluding paths using the waiting time tests
made the solver generate slightly modified new paths where the waiting times are also too
large. Therefore, we apply waiting tests 1, 2 and 3 first. As soon as we prohibit a path P
we construct similar paths by job insertion and examine them with the waiting time test
4.

In the following, we define wjkjl := wjkjl(djk) if path P belongs to classes 2 and 3 and
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wjkjl = wjkjl(Cjk) if path P belongs to class 1, where Cjk is the completion time of job jk
in the active schedule of path P .

Waiting time test 4. Let jobs jk and jl be scheduled consecutively in some path P

and wjkjl > 0. If L̃B+wjkjl − (sjkjc + sjcjl − sjkjl) ≥ GUB for some job jc ∈ J \ {P}, then
we prohibit path

• P ′ = (..., jk, jc, jl, ...) obtained from path P by inserting job jc between jk and jl by
constraint (3.A1).

3.4 Decomposition Algorithm

In the DA, we try to solve the original problem by decomposing it into easier to solve
subproblems. Effectively, we try to partition the set of jobs J into two subsets J1 and J2

such that jobs J1 precede jobs J2 in an optimal solution. Observe that such introduction
of additional precedence relations may favorably change the problem structure and sig-
nificantly speed-up the solution process (cf. Klindworth et al., 2012; Montemanni et al.,
2013).

Before initiating the DA we perform some preprocessing steps to tighten time windows
and to introduce subsequently additional precedence constraints implicitly forced by the
time windows as well as to compute a global upper bound GUB and a global lower bound
GLB for problem SgCSP (cf. Section 3.3). If necessary we initialize GUB :=∞.

The initialization of the DA starts with the best feasible solution P = (a, j2, j3, ..., jn−1, z)

generated during the preprocessing. We heuristically look for a decomposition of the job
set J into J1 ∪ J2, i.e., we assign a job jk together with all the subsequent jobs to J2 if:

• rjk ≤ rjl , k ≤ l ≤ n (jk has the earliest release time among all the following jobs),
and

• Cjk = rjk (jk starts at its release time).

For the remaining jobs we assign J1 := J \ J2 . If set J2 is empty, we proceed solving
the original problem SgCSP(J,A), e.g., using the DBC (see Section 3.3).

Otherwise, we start looking for a solution with the minimum makespan for jobs in
J2. We call the first job in this solution jc ∈ J2 as connecting job because it should
immediately follow jobs from J1 in our decomposition. If we can find a feasible schedule
for jobs in J1, so that for the last job of J1, say jk, satisfies Cjk ≤ rjc − sjkjc , then the
concatenation of both sequences gives us a best possible (and potentially optimal) solution
with jobs from J1 preceding jobs from J2 and we stop the decomposition algorithm.
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Otherwise, we complement the available job sequence for J1 to a feasible solution for the
SgCSP(J,A) (if such solution exists) with a minimum makespan and update the global
upper bound GUB; we prohibit the examined job jc to be a connecting job and proceed
with a new iteration of the DA.

Observe that the decomposition algorithm will not find an optimal solution for the
original problem SgCSP(J,A), if no optimal solution of the SgCSP(J,A) with jobs J1

preceding jobs J2 exists. Even in such a case a DA-based improved upper bound GUB
often reduces the solution time significantly, as we will show in our computational exper-
iments. Observe that the decomposition algorithm may also improve our initial global
lower bound because the makespan of an optimal schedule for J2 provides a lower bound
for problem SgCSP(J,A).

We refer to the decomposition algorithm that uses the DBC to solve the resulting
SgCSP problems as DBC&DA.

3.5 Computational experiments

Our computational experiments were run on a laptop with Intel i5-3450 3.1GHz CPU.
The algorithms are implemented in C++, utilizing the library of IBM ILOG CPLEX
12.7. Next we describe our data sets in Section 3.5.1. We report on the results of our
simulation of single-crane transshipment yards in Section 3.5.2. Section 3.5.3 presents the
performance of the algorithms and their constituent elements on various test sets in more
detail, including well-established benchmark data sets.

3.5.1 Data sets

We conducted computational experiments on three data sets, which we call for brevity
DS1, DS2 and DS3. DS1, which contains 90 instances, is based on a careful simulation
of single-crane transshipment yards. DS2 is the benchmark data set of Ascheuer (1996),
which we downloaded from http://ftp.zib.de/pub/mp-testdata/tsp/atsptw/index.html.
It contains 50 instances describing scheduling of a stacker crane in an automatic stor-
age system, the instances are based on real data from practice. DS3 is an artificially
generated well-established benchmark data set of Dumas et al. (1995) and contains 135
instances.

Instances of DS1 simulate a 700-meter-long single-crane transshipment terminal con-
sisting of two tracks and of n = 15, 20 and 25 jobs with wide time windows. We generate
instances in nine settings with different numbers of jobs and of (nontrivial) time windows.
With 10 instances per setting, DS1 contains 9 ·10 = 90 instances in total. For brevity, we
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only sketch the most important instance generation parameters and refer the interested
reader to Otto et al. (2017) for further details. We compute setup times and process-
ing times based on typical horizontal and vertical velocities of a gantry crane, thereby
we differentiate between velocities of a loaded and of an unloaded crane. Observe that
precedence constraints arise when pickup and drop-off positions of containers are identi-
cal (e.g. job 3 and job 2 in Figure 3.1). We generate time windows for rail-road jobs,
which account for about 65% of all jobs (cf. Rotter, 2004), to reflect a service promise
for customer trucks. For instances with n = 20 jobs, we consider settings with 0, 2, 4,
6, 8, 10 and 13 (i.e. for all rail-road jobs) time windows. For instances with n = 15 and
n = 25, we only look at settings where time windows are generated for all rail-road jobs.
In order to see the influence of the time windows on the job sequence we report a ratio
between the average time window length and the average setup time sij (not including
dummy jobs). For DS1 this ratio is 180

1
, in other words time windows are wide and do

not significantly restrict job positions.

DS2 is a well-established data set of Ascheuer (1996) originally describing instances of
an asymmetric travelling salesman problem with time windows containing up to 233 jobs.
In the original data set, Ascheuer (1996) sets the release time of the dummy sink job to
a large number as part of the preprocessing procedure. Therefore, we change the release
time of the dummy sink jobs to 0 in order to adapt the instances of Ascheuer (1996) to a
makespan objective function of the SgCSP. The time windows in DS2 are rather wide as
well. The ratio between the average size of the time windows and the average setup time
varies significantly between 16

1
and 291

1
. It is about 82

1
on average.

DS3 describes the data set of Dumas et al. (1995), which is a well-established bench-
mark data set for the traveling salesman problem with time windows. In DS3, there
are no precedence constraints, setup times are symmetric (sij = sji ∀ i, j ∈ J) and time
windows are narrow. The ratio between the average size of the time windows and the
average setup times sij is about 2

1
for the instance settings with the largest time windows.

DS3 contains 135 instances spread over 27 settings with n = 20, 40, 60, 80, 100, 150 and
200 jobs. There are up to 5 time window settings for each size. Each setting specifies an
interval from which the release times and the deadlines of jobs are randomly drawn. For
small instances with n ≤ 60, the data set of Dumas et al. (1995) contains five settings of
time windows. For larger instances, it contains two to four settings of time windows with
smaller intervals.

In our experiments, we solved all the instances of DS1, DS2 and DS3 to optimality.

We report the performance of our decomposition algorithm as a part of two solution
procedures: the DBC&DA and the DP&DA. The DP&DA uses the dynamic programming
algorithm (DP) of Dumas et al. (1995) to solve (sub-)problems of the SgCSP. DP was
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originally developed for the traveling salesman problem with time windows (TSPTW)
with a total cost minimizing objective. It is one of the most successful currently available
algorithms for the TSPTW, which can straightforwardly be extended to deal with a
makespan objective function and precedence constraints.

In all the tests, we set a time limit to 600 seconds per instance. For the two-stage
algorithms DBC&DA and DP&DA, we set a time limit to 600 seconds both for the first
part and for the overall algorithm, including the first part. Recall that the first part
examines all the solutions with a heuristically determined set of jobs J2 6= ∅ succeeding
the set of jobs J1 = J \ J2. The second part solves the original SgCSP(J,A), if the first
part of the algorithm could not find an optimal solution.

3.5.2 Simulation results

Table 3.2 summarizes our results on the instances of DS1. Both algorithms, the DBC&DA
and the DP&DA solved all the instances of DS1 to optimality with an average run time of
about 1.5 and 3.0 seconds, respectively. The run times of the DBC&DA and the DP&DA
are generally lower if a decomposition is possible (i.e. if the set of jobs J2 is not empty,
cf. Section 3.4). This is the case for 67 out of 90 instances. The computational time of
the DBC&DA does not exceed 63 seconds per instance and the computational time of
the DP&DA does not exceed 91 seconds per instance. The DBC&DA usually dominates
DP&DA for instances with only a small number of time windows.

Insight 1 : We conclude that the proposed methods DBC&DA and DP&DA success-
fully solve instances of practically relevant size.

Planners often use algorithms that minimize the total cost even if they are actually
interested in the makespan objective. In other words, they expect a waiting time of 0 in
a solution with minimal cost. Table 3.3 illustrates that such an approximation results in
about 30-40% increase in the makespan at transshipment terminals.

Insight 2 : Solving a total cost minimization problem (and neglecting the makespan)
may lead to a significant increase in the makespan.

The ability to warrant a service promise, i.e. a service time window, is one of the
important instruments to attract customers and additional order volumes. However, the
more jobs with time windows exist and the tighter time windows are, the larger is the
makespan. Figure 3.3 illustrates that the makespan increases from about 33 minutes in
case of no time windows to about 44 minutes (by 30%) in case all the rail-road jobs have
time windows.

Observe that characteristics of time windows may be very different at different trans-
shipment yards, and such an analysis should be performed with the data of the transship-
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Table 3.2: Performance of the DP&DA, the DBC&DA and the DP for DS1 with time limit of
600 seconds

Setting,
No. of jobs (No. of TW)* Solution method Avg. computational

time (sec)
No. of instances

decomposed with the DA

15 (all) DP&DA 0.0
10 out of 10DBC&DA 0.0

DP 0.0
20 (all) DP&DA 0.0

10 out of 10DBC&DA 10.7
DP 1.1

20 (10) DP&DA 0.0
10 out of 10DBC&DA 0.0

DP 2.4
20 (8) DP&DA 0.0

10 out of 10DBC&DA 0.0
DP 4.4

20 (6) DP&DA 0.5
9 out of 10DBC&DA 0.9

DP 16.1
20 (4) DP&DA 7.1

5 out of 10DBC&DA 0.4
DP 12.9

20 (2) DP&DA 16.9
3 out of 10DBC&DA 1.1

DP 34.6
20 (0) DP&DA 2.1

0 out of 10DBC&DA 0.1
DP 44.0

25 (all) DP&DA 0.0
10 out of 10DBC&DA 0.0

DP 71.8
Best algorithms in each setting are marked in bold
* No. of rail-road jobs with nontrivial time windows (TW)

Table 3.3: Differences in the makespan for the optimization with different objective functions

Setting,
no. of jobs (no. of TW)*

Avg. makespan for solutions
with the minimal cost** (A)

Avg. minimal
makespan (B)

Avg. relative deviation
(Ai)/(Bi)*** (%)

15 (all) 2550.3 1944.3 132
20 (all) 3445.3 2619.9 132
25 (all) 4387.8 3191.0 138

* No. of rail-road jobs with nontrivial time windows (TW)
** Average makespan of optimal solutions found by minimizing the total cost
*** (Ai)/(Bi) is computed for each instance i, then the average is taken
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Figure 3.3: Relation between the average optimal makespan and the number of rail-road jobs
with time windows

ment yard of interest. Nevertheless, this piece of analysis illustrates that our algorithms
have no problem solving instances with only a few time windows and are perfectly suited
for such an analysis.

Insight 3 : Service promises to customer trucks lead to a significant increase in the
makespan.

3.5.3 Detailed performance analysis of the algorithms

In this section, we discuss the performance of the proposed algorithms DBC&DA and
DP&DA in more detail. We compare them to the dynamic programming algorithm (DP)
of Dumas et al. (1995) for well-established benchmark data sets DS2 and DS3. After-
wards, we examine the performance of DA and DBC in more detail.

Comparative performance of the DBC&DA, the DP&DA and the DP on benchmark
data sets DS2 and DS3. Table 3.4 illustrates that the DBC&DA and the DP&DA outper-
form DP on DS2, which is the data set of Ascheuer (1996). Interestingly, the DBC&DA
was able to solve instances that were not solved by the DP and the DP was able to solve
instances that were not solved by the DBC&DA. Overall, there is no dominance rela-
tion between the results of the DBC&DA and the DP&DA. For example, the DBC&DA
outperforms the DP&DA on eight instances.

Whereas the DP&DA outperforms the DP on DS3, the DBC&DA shows an inferior
performance. The DBC&DA seems to have more difficulties for DS3 instances with larger
time windows. It is rather surprising, because the DBC&DA performs particularly well
on DS1 and DS2 with large time windows. Interestingly, the DBC&DA is extremely fast
on the solved instances, including those with 200 jobs, and solves 81% of instances in less
than 0.5 second each. On the other hand, the run time of the DP depends more strongly
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Table 3.4: Comparative performance of DBC&DA, DP&DA and DP on DS2 and DS3

Data set
No. of instances solved to

optimality (total no. of instances) Avg. run time (sec.)* No. of instances
decomposed with

the DADBC&DA DP&DA DP DBC&DA DP&DA DP

DS2 47 (50) 50 (50) 44 (50) 11.5 1.8 41.8 46
DS3 116 (135) 135 (135) 135 (135) 4.4 4.4 10.7 106

* for solved instances

on instance sizes, which also points on the success of our decomposition algorithm. For
example, the DP needs at least 9 seconds to solve instances with 200 jobs.

Overall, although the DBC&DA was not able to solve 22 out of 185 instances of DS2

and DS3 within the run time limit, in 16 cases it found an optimal solution and in the
remaining 6 cases the average relative deviation from optimality equaled just 0.6%.

Performance of the DA. Results of the DP&DA and the DP in Tables 3.2 and 3.4
confirm that the decomposition algorithm significantly reduces run times on all the tested
data sets. Notably, it reduces the average run time from 71.8 to less than 0.05 seconds
for the instances of DS1 with n = 25 jobs.

Performance of the specific algorithmic elements of the DBC. Table 3.2 illustrates that
the DBC has a relative advantage for instances with a small number of time windows.
In the following piece of analysis (see Tables 3.5 and 3.6), we examine effectiveness of
specific elements of our DBC procedure on the benchmark data set DS3. Table 3.5 gives
some insight on the average number of search tree nodes when the dominance rule is used
to eliminate dominated nodes early in the search process (cf. Section 3.3.1). Overall,
the dominance rule prunes 15.8% of nodes per instance on average. Table 3.6 evaluates
performance of the new tests in the separation routine for the path elimination constraints
(see, cf. Section 3.3.2). It reports the average number of cuts per instance and the average
percentage of the total run time needed on the separation routines. Notice that besides the
separation routines there are the LP-relaxations, branching and preprocessing that require
some time. From Table 3.6 we see that the proposed waiting time tests and precedence
constraints tests supply about 28% of cuts per instance on average. The proposed waiting
time and precedence constraints tests are also very fast to compute.

Table 3.5: Performance of the dominance rule of the DBC on DS3

Avg no. of nodes per instance Avg no. of nodes pruned
with the dominance rule

Avg share of nodes pruned with
the dominance rule (%)

2708 525 15.8
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Table 3.6: Performance of cuts in the DBC for DS2

No. of jobs

Path-elimination constraints
(PECs)* based on

Precedence-related
non-PEC cuts** Other cuts

Precedence
constraints

tests,
no. of cuts

Waiting
time
tests,

no. of cuts

Other
PECs,

no. of cuts

CPU
(%)

No. of
cuts

CPU
(%)

No. of
cuts

CPU
(%)

n = 20 88 443 1050 1.7 33 17.3 144 17.7
n = 40 686 1316 4819 1.0 211 23.3 655 19.4
n = 60 1284 827 7918 0.8 246 31.5 983 15.7
n = 80 1646.4 431 6628 0.7 127 32.1 890 18.7
n = 100 2100 755 3806 0.6 77 35.7 749 17.2
n = 150 1831 575 1080 0.4 36 52.1 539 12.6
n = 200 1102 107 240 0.2 12 57.4 518 8.6

The column "CPU" reports the average percentage of the total run time needed on the separation
routines.
* Precedence constraints and waiting time tests are described in Sections 3.3.2.1 and 3.3.2.2,
respectively. Other tests check, whether paths violate time window constraints.
** π-, σ- inequalities as well as so-called precedence cycle breaking and special inequalities, see
Ascheuer et al. (2001) for the details on the cuts and separation routines.

3.6 Conclusion

In this paper, we propose a decomposition algorithm (DA) and a solution procedure
DBC&DA for the single-crane scheduling problem with the objective to minimize the
makespan. To our best knowledge, the DBC&DA is the first branch-and-cut-based al-
gorithm for the single-crane scheduling problem, moreover it is the first branch-and-cut
algorithm for the asymmetric travelling salesman problem with a makespan objective
function (called as the minimum completion time problem in the literature). The DA
decomposes problem instances into smaller subproblems, which are faster to solve. In its
essence, the DA is a metastructure that can be integrated with many other exact and
heuristic algorithms for the single-crane scheduling problem.

In our experiments, DA significantly reduces the run time by a larger factor for almost
all the examined instances. Applied either with our dynamic branch-and-cut procedure
or with a dynamic programming procedure of Dumas et al. (1995), it is able to solve
all the instances in our simulations of transshipment yards within short run times that
practitioners expect.

Overall, the proposed branch-and-cut-based algorithm DBC&DA has a comparable
performance to the DP&DA for the tested instances. According to our computational
experiments, the DBC&DA has a relative advantage for instance with a small number
of time windows. The developed separation routines for path elimination constraints,
waiting time tests and precedence relations tests, supply a majority of cuts and are fast
to compute.
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Our simulations of transshipment yards indicate that the makespan objective cannot
be approximated by a cost minimization objective and that introducing service promises
for all the customer trucks leads to a significant increase in the makespan.

For future research, we suggest to consider hybrid algorithms, which combine advan-
tages of dynamic programming or branch-and-bound algorithms with those of the dynamic
branch-and-cut. In the next steps, the developed solution approaches should be extended
to a more general class of the minimum tour duration problems.

3.A Appendix A

In the following, we summarize different types of the path elimination constraints.

We exclude an infeasible path P = (j1, ..., jm) using the following constraint:

x(P ) :=

m−1∑
k=1

m∑
l=k+1

xjkjl ≤ m− 2 (3.A1)

If a set of jobs j1, ..., jm admits no feasible path, then we introduce the following cut:

x(A({j1, ..., jm})) :=

m∑
k=1

m∑
l=1

xjkjl ≤ m− 2 (3.A2)

If a path of the type (Q, jm) is infeasible, where Q is some permutation of the job set
{j1, ..., jm−1}, then we introduce the following constraint:

x(A(Q)) + x(Q : jm) :=

m−1∑
k=1

m−1∑
l=1

xjkjl +

m−1∑
k=1

xjkjm ≤ m− 2 (3.A3)

Similarly, if any path of the type (j1, Q) is infeasible, where Q is some permutation
of the job set {j2, ..., jm}, then a constraint is specified as follows:

x(j1 : Q) + x(A(Q)) :=

m∑
k=2

xj1jk +

m∑
k=2

m∑
l=2

xjkjl ≤ m− 2 (3.A4)

Finally, if any path of the type (j1, Q, jm) is infeasible, where Q is some permutation
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of the job set {j2, ..., jm−1}, then we include the following cut:

x(j1 : Q) + x(A(Q)) + x(Q : jm) :=
m−1∑
k=2

xj1jk +
m−1∑
k=2

m−1∑
l=2

xjkjl +
m−1∑
k=2

xjkjm ≤ m− 2 (3.A5)



Chapter 4

Product sequencing in
multiple-piece-flow assembly lines

Modern markets demand mass customization, that is, the manufacture of customized
products at low cost. Mass customization represents a major challenge for the organiza-
tion of assembly lines, which were originally designed for the manufacture of homogeneous
products. The multiple-piece-flow assembly line is an organizational innovation that can
address this challenge. Here, several customized workpieces, each associated with a sep-
arate customer order and, hence, a separate due date, are handled simultaneously in one
cycle. Consequently, the idle times decrease as do the manufacturing costs. Multiple-
piece-flow assembly lines are used, for instance, in manufacturing industrial equipment.

To the best of our knowledge, this paper is the first to investigate product sequenc-
ing in multiple-piece-flow assembly lines. We formalize the underlying planning problem,
establish a mixed-integer model, examine its relation to several classic optimization prob-
lems, and describe useful problem properties. We leverage these properties to design an
effective iterative variable neighborhood heuristic (IVNH). A detailed simulation based
on real-world data and the rolling-horizon planning framework confirms that the IVNH
is well suited for practical use. Furthermore, extensive computational experiments on
well-structured randomly generated data sets show that the IVNH identifies optimal or
near-optimal solutions within short run times. It outperformed an off-the-shelf optimiza-
tion software, and in certain practice settings, the IVNH was even able to substantially
reduce average order delays.

59
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4.1 Introduction

In the coming decades, manufacturing organization is likely to completely change owing to
technological innovations and increasingly sophisticated demand. Companies struggle to
offer mass customization to the clients, that is, the manufacture of customized products
at low cost (Davis, 1990; Pine, 1993). Since the assembly line was originally designed
for manufacturing homogeneous products, mass customization is particularly challenging
for this organizational form. Companies are seeking to re-organize the manufacturing
process to secure advantages of traditional assembly lines, while also being able to produce
customized products at low cost.

In traditional paced assembly lines, conveying technology moves products (workpieces)
through sequentially arranged stations. At each station, workers or robots process the
workpiece for a specified amount of time (i.e., cycle time), after which the workpiece is
transported to the next station. Paced assembly lines offer several advantages (for more
discussion see (Buxey et al., 1973; Nof et al., 1997)). For instance, manufacturing times
can be drastically reduced because of specialization and learning effects (Jaber, 2016; Otto
and Otto, 2014a). Furthermore, paced production increases the transparency of produc-
tion processes for management and control. If products are not homogeneous, however,
large idle times may emerge. Indeed, the processing time of a bottleneck workpiece at a
bottleneck station dictates the cycle time. In addition, the processing times of customized
products may be very different (Bukchin, 1998; Rekiek and Delchambre, 2006). Therefore,
in the manufacture of customized products, the upsurge in cost due to large idle times
may offset the cost reduction expected from pacing.

Multiple-piece-flow assembly lines may secure the benefits of paced production and,
by having several workpieces bundled together, keep idle times low. In multiple-piece-
flow assembly lines, a set of workpieces moves together, which enables processing several
workpieces at one station in one cycle. Multiple-piece-flow assembly lines are used in the
production of customized industrial equipment.

Multiple-piece-flow assembly lines are among several organizational forms that adapt
paced assembly lines to the requirements of customized manufacturing. Other organiza-
tional forms include, for instance, (i) deploying multi-skilled workers, called floaters, that
can assist at bottleneck stations (e.g., (Faccio et al., 2016; Mayrhofer et al., 2013)), (ii)
increasing the cycle time and assigning several workers to (especially bottleneck) stations
(e.g., (Dolgui et al., 2006; Lapierre et al., 2006; Simaria et al., 2009)), as well as (iii) es-
tablishing open-end stations, where workers can cross station borders to keep processing
a bottleneck workpiece (cf. mixed-model assembly lines with open-end stations in (Bock
et al., 2006; Sarker and Pan, 2001)). However, it may be difficult to ensure sufficient
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Figure 4.1: Illustrative example of a multiple-piece-flow assembly line. Workpieces are trans-
ported on mobile platforms between several stations in a series. One or more workpieces may
enter the assembly line at the beginning of each cycle. The line is pictured after the launch of
the third mobile platform.

utilization of the expensive multi-skilled floaters that would keep production costs low.
Multi-manned stations may also be impossible because several workers cannot work on
certain workpieces without severely hindering each other. In addition, open-end stations
may pose hard-to-solve organizational issues of worker coordination and equipment acces-
sibility. Therefore, the multiple-piece-flow assembly line is the first-choice organizational
form, or at least the organizational form of interest, for many different companies, based
on information that we gathered at cooperation meetings with firms and conferences.

To the best of our knowledge, multiple-piece-flow assembly lines have not yet been
discussed in the literature. As a result, the planners and industrial engineers lack evidence-
based methodological support in organizing the production process. As a first step in
closing this gap, we formulate and study the product sequencing problem in multiple-
piece-flow assembly lines in the current paper.

We briefly outline specific examples of multiple-piece-flow assembly lines in Sec-
tion 4.1.1 and formulate the respective optimization problem in Section 4.1.2. Section 4.1.3
provides an overview of the literature and Section 4.1.4 explains the article’s contribution.

4.1.1 Examples of multiple-piece-flow assembly lines

In this section, we provide two real-world examples of multiple-piece-flow assembly lines
describing two medium-sized companies in separate industries and from different federal
states in Germany. Both companies produce customized industrial equipment. Based
on interviews with representatives from these and other companies who highlight the
advantages of the multiple-piece flow, we suggest that many more companies could benefit
from using this alternative for manufacturing customized products.

The first example describes the final assembly of soldering machines shown in Fig-
ure 4.1. Soldering machines are used in the electronics industry to automatically fix
components on circuit boards. Depending on customer requirements, the manufacturing
times (and size) of soldering machines may vary significantly. In the final assembly at the
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company we visited, soldering machines in-process are transported on mobile platforms
between different stations. The final assembly is organized as a paced line, where each
platform carries one or more workpieces depending on their size and the extent of the
manufacturing process required. At each station all the workpieces on one platform have
to be processed within the set cycle time. Afterward, the platforms move one station
forward.

(a) Industrial crane
(b) Assembly line consisting of a pillar line, a jib line, and the final
processing station

Figure 4.2: Schematic illustration of the assembly system for industrial cranes

The second example describes manufacture of industrial jib cranes, which are used
in industrial settings, such as warehouses or factory workshops (see Figure 4.2). Each
workpiece has to be processed at several stations, and each station usually has a machine
and a worker to service it. The stations are organized in two lines: a jib line consisting of
five stations as well as a pillar line consisting of four stations and a buffer to compensate
for different lengths of the two lines. Jibs and pillars are joined together and finally
processed in the final station. The production is organized in batches. Each batch (i.e.,
bundle of workpieces) enters a station at the beginning of the day and all workpieces of
that bundle have to be processed by the end of the day. At the beginning of the next day,
this bundle of workpieces enters the next station. We discuss this example in more detail
in our simulation study in Section 4.4.3.

4.1.2 Problem definition

To describe the product sequencing decisions in multiple-piece-flow assembly lines, we
formulate the m-vector bin packing and sequencing problem (m-BiPacS) as follows. Work-
pieces j ∈ J are launched in sets on the paced assembly line to be processed at sequen-
tially arranged stations. Once launched, the composition of a set of workpieces remains
the same, i.e., all the workpieces in a set enter and leave each station simultaneously. A
set of workpieces is available for a certain amount of time at each station, called cycle
time c. After c time units are over, the workpieces are moved to the next station and a
new set of workpieces is launched at station 1. We denote the set of possible launch times
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as {1, . . . , B̄}, where B̄ is the number of potential launch times. Because each workpiece
j ∈ J corresponds to a specific customer order, it has a specific due date dj, which is the
latest possible launch time that allows the workpiece to be finished in time, and a specific
release time rj, which is the earliest possible launch time when the specification of the
product order is fixed and the required material supply is secured. We denote the set of
dimensions as {1, . . . ,m} and the size of workpiece j ∈ J along dimension i ∈ {1, . . . ,m}
as vji. Along each dimension, the total size of the workpieces launched together in a set is
restricted. For example, each station represents a separate dimension because at each sta-
tion the total processing time (=the total size) of workpieces that are launched together
cannot exceed the cycle time. In some applications, the size of the mobile platform repre-
sents an additional dimension, because the total size of the workpieces that are launched
together cannot be larger than the mobile platform. We also introduce cost parameters
wjb if workpiece j is launched at time b ∈ {1, . . . , B̄}. For example, if the workpiece is
launched after its due date dj some lateness penalties may be incurred. In this paper,
we examine m-BiPacS with non-decreasing costs in the ordering number of the launch
times. That is, for any two launch times b′ > b, the assignment cost to the second launch
time is not lower than the assignment cost to the first launch time: wjb′ ≥ wjb ∀j ∈ J .

The objective of the m-BiPacS is to find mapping x : J → {1, . . . , B̄} of workpieces
to their launch times such that

• Each workpiece is launched exactly once and not earlier than its release time: x(j) ≥
rj ∀j ∈ J .

• Total size of the workpieces along each dimension does not exceed the cycle time:∑
j∈J :x(j)=b vji ≤ c ∀b ∈ {1, . . . , B̄}, ∀i ∈ {1, . . . ,m}.

• The objective function F (x) =
∑

j∈J wj,x(j) is minimized.

Note that we use bold type, e.g., x, to denote vectors or matrices.

Observe that the formulated objective function is quite general and can be used, for
example, to minimize the weighted tardiness (by setting wjb := wj ·max{b− dj; 0} where
wj is the weight of workpiece j), weighted lateness (by setting wjb := wj · (b − dj)), and
average completion time (by setting dj := 0, wjb := b). Also observe that the m-BiPacS
does not prohibit the launch of workpieces after their due date, but it penalizes late
completions in the objective function.

Consider an illustrative example with the parameters in Table 4.1 and a multiple-piece-
flow assembly line as shown in Figure ??. Note that the workpieces that are launched
together cannot exceed the size of the mobile platform. We can formulate the respective
product sequencing problem as the m-BiPacS. In this formulation, the set {1, . . . ,m}
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Table 4.1: Illustrative example:
A m-BiPacS-M instance with six jobs, four dimensions m := 4, c := 6, rj := 0 ∀j ∈ J ,
B̄ := 4 possible launch times, and total tardiness objective function with wjb := max{b− dj ; 0}

Workpieces (jobs)
1 2 3 4 5 6

Processing time at station 1, vj1 5 3 2 3 2 2
Processing time at station 2, vj2 6 4 1 2 3 2
Processing time at station 3, vj3 4 2 3 4 2 1
Size of the workpiece, vj4 3 2 1 2 1 1
Due date dj 3 2 2 1 1 1

Cost parameters wjb

1 2 3 4 5 6

b = 1 0 0 0 0 0 0
b = 2 0 0 0 1 1 1
b = 3 0 1 1 2 2 2
b = 4 1 2 2 3 3 3

describes three assembly stations and an additional dimension, the size of the platform.
So that the number of dimensions equals m := 4. Parameters vj1, vj2, and vj3 denote
processing times of workpiece j and parameters vj4 denote the length of soldering machine
j. Observe that we have normalized vj4 in order to set the size of the platform to be equal
to 6 as the cycle time. Figure ?? illustrates a feasible solution for the instance in Table 4.1
pictured after the launch of the third mobile platform, where workpieces 3, 5, and 6 are
launched at time b = 1, workpieces 2 and 4 at launch time b = 2, and workpiece 1 at
launch time b = 3. The set of workpieces that are launched together is the product bundle,
or bin. The total processing time of each product bundle in Figure ?? does not exceed
the cycle time at any station; moreover, the total size of each product bundle is not larger
than the size of the mobile platform. Because workpiece 4 is launched at time b = 2, i.e.,
1 period later than its due date, the total tardiness equals 1.

As with the bin packing problem, we can interpret a product bundle launched at time
b as an m-dimensional bin with capacity c. Therefore, we refer to product bundles as bins
in the following sections. We will also use more general term job instead of workpiece.

4.1.3 Literature Overview

Assembly lines, in which each workpiece may represent a unique model with unique pro-
cessing times, are referred to as mixed-model assembly lines in the literature (see literature
reviews on assembly lines and assembly line balancing in (Battaïa and Dolgui, 2013; Bay-
bars, 1986; Becker and Scholl, 2006; Boysen et al., 2007, 2008, 2009a; Erel and Sarin,
1998; Ghosh and Gagnon, 1989; Otto and Battaïa, 2017; Scholl and Becker, 2006)). To
the best of our knowledge, none of the article in this thread of the literature considers
multiple-piece-flow assembly lines (e.g., (Bautista et al., 2016; Cortez and Costa, 2015;
Dörmer et al., 2015; Faccio et al., 2016; Mosadegh et al., 2017; Otto and Scholl, 2011; Otto
and Otto, 2014b)). Boysen et al. (2009b) introduce a classification system for sequenc-
ing models in mixed-model assembly lines and provide an extensive literature review.
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However, this classification solely pertains to one-piece-flow assembly lines.

The m-BiPacS is also closely related to the classical optimization problems of the
vector bin packing, multiple knapsack, batch scheduling, and lot-sizing and scheduling.
However, the existing problem formulations and their solution methods cannot be straight-
forwardly applied to solve the m-BiPacS as we explain below.

The vector bin packing problem (VBP) revolves around minimizing the number of bins
– each stretching in m independent dimensions and having capacity c in each dimension
– needed to store all the items j ∈ J of size vji along dimension i ∈ {1, . . . ,m}. The
VBP, which was introduced by Garey et al. (1976), is known to be NP-hard in the strong
sense. Therefore, most publications study the two-dimensional VBP (Alves et al., 2014;
Caprara and Toth, 2001; Chang et al., 2005; Heßler et al., 2018), with the exception of
few recent papers mostly motivated by IT applications in which the authors study the
VBP with more than two dimensions (Caprara et al., 2003; Gabay and Zaourar, 2016;
Ng et al., 2008). We refer the interested reader to the survey of Christensen et al. (2016).
The objective function of the m-BiPacS is different from that of the VBP. For instance,
as we explain in Section 4.2.2, solutions of m-BiPacS instances with large numbers of bins
may have better objective values that those with the minimal number of bins.

Several studies investigate a generalization of the VBP motivated by logistics applica-
tions in which bins represent boxes or containers and the objective is to minimize the sum
of bin costs. The cost of the bin may depend on its size (Wei et al., 2015), the number
of items it contains (Epstein and Levin, 2012), its utilization (Leung and Li, 2008; Li
and Chen, 2006), or additional factors such as weight, volume, manpower, and transport
distance of the bin (Hu et al., 2018). However, these articles usually consider just one-
(Epstein and Levin, 2012; Leung and Li, 2008; Li and Chen, 2006) or two-dimensional
bins (Hu et al., 2018). Moreover, in contrast to the m-BiPacS, the sequence of bins is
irrelevant to the objective function in this generalization of the VBP.

In the m-dimensional multiple knapsack problem (MMKP), a subset of items has to
be packed into several multidimensional knapsacks so that the total value of the selected
items is maximized (Camati et al., 2014; Kellerer et al., 2004; Song et al., 2008). We refer
the interested reader to the surveys of Fréville (2004); Gavish and Pirkul (1985); Kellerer
et al. (2004); Laabadi et al. (2018); Puchinger et al. (2010), and Varnamkhasti (2012). In
contrast to the m-BiPacS, we do not have to pack all the items into the knapsacks (bins)
in the MMKP. Moreover, the item profits (=negative cost parameters) −wjb := −wj are
independent from the knapsack’s position b, so that the sequence of the knapsacks (=bins)
does not influence the objective value.

Similar to the m-BiPacS, the batching scheduling problem (BP) is to partition jobs
into ordered sets (batches) with respect to some scheduling criterion (e.g., minimize sum
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of completion times or weighted tardiness) (Brucker et al., 1998). Two variants of the
batching problem have been studied in the literature: the parallel-batching scheduling
problem (p-BP) and the serial-batching scheduling problem (s-BP) (Brucker, 2007). The
p-BP is motivated by the scheduling of so-called batching machines that can handle several
jobs simultaneously (Cabo et al., 2018, 2015; Wang, 2011). However, in the p-BP, the size
of a batch, i.e. its processing time, is variable – it is normally computed as the maximum
processing time of the jobs in the batch. In the p-BP, the number of jobs in a batch is
usually given. Recall that in m-BiPacS, the size of batches, or bins, is given and equals
c, whereas the number of jobs in a bin is variable. In the s-BP, the processing time of the
batch is equal to the total processing time of all jobs in this batch and some setup time may
be required between subsequent batches. The size of the batches (e.g., their processing
time) is usually not limited in the s-BP, whereas the restriction on the size of the batches
(=total size of the bins along dimensions {1, ...m}) is central to the formulation of the
m-BiPacS. To the best of our knowledge, only Aloulou et al. (2014); Cheng and Kovalyov
(2001), and Yuan et al. (2007) study the s-BP with batches of a limited size, however,
even in these cases, the size of a batch is bounded just by the number of jobs. Moreover,
none of these papers examines multidimensional batches. We refer the interested reader
to the surveys of Brucker (2007); Potts and Kovalyov (2000); Potts and Van Wassenhove
(1992), and Webster and Baker (1995), which explore scheduling problems with batching,
and to the survey of Mönch et al. (2011), which examines various scheduling problems,
including the batching problem, in the context of semiconductor manufacturing.

The m-BiPacS is distinct from the lot-sizing and scheduling problem (LSP) (Fleis-
chmann, 1990; Fleischmann and Meyr, 1997; Haase, 1996). The LSP involves partitioning
jobs into batches, or lots, and scheduling production of the batches to meet demand in
each production period, while considering trade-offs between the inventory holding costs
and the setup costs between the batches. We refer the reader to a recent survey by Copil
et al. (2017) for a more detailed discussion of the LSP.

4.1.4 Contribution

To the best of our knowledge, this article is the first to study operations planning in
multiple-piece-flow assembly lines. We examine product sequencing decisions. For this
purpose, we formulate the m-BiPacS with a specific type of objective functions that in-
clude, for instance, weighted tardiness and we propose a mixed-integer model for the
m-BiPacS. We show that m-BiPacS is NP-hard in the strong sense. We discuss a poly-
nomially solvable special case of the problem and prove some useful properties, such as
the maximum load rule. We also discuss lower bounds and possible ways to strengthen
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the problem formulation. Our fast and effective iterative variable neighborhood heuris-
tic procedure IVNH finds good-quality solutions for instances of practice-relevant size.
In particular, IVNH relies on neighborhood definitions of relatively low computational
complexity that are able to construct many distinct neighbor solutions with maximally
packed bins (cf. Section 4.2.2). We perform extensive computational experiments on a
large number of randomly generated instances with different settings and perform a sim-
ulation based on a real-world data set. For instance, our computational experiments in
Sections 4.4.2 and 4.4.3 illustrate that idle times can be kept low in multiple-piece-flow
assembly lines even with highly customized products.

We proceed as follows. In Section 4.2, we analyze the problem. Section 4.3 de-
scribes our heuristic solution procedure. Computational experiments are presented in
Section 4.4. We conclude with a summary of major findings and future research direc-
tions in Section 4.5.

4.2 The m-vector bin packing and sequencing problem

We present an integer programming formulation for the m-BiPacS in Section 4.2.1. Af-
terward, in Section 4.2.2, we describe several useful problem properties.

4.2.1 Integer programming formulation

Recall that, in analogy to the bin packing problem, we refer to the possible launch time
b of the products in the paced multiple-piece-flow assembly line as bin b. The following
is a mixed-integer formulation of the m-BiPacS with assignment decision variables:

minimize F (x) =
∑
j∈J

B̄∑
b=rj

wjb · xjb (4.1)

s.t.
B̄∑

b=rj

xjb = 1 ∀j ∈ J (4.2)

∑
j∈J :rj≤b

vji · xjb ≤ c ∀i ∈ {1, . . . ,m}, ∀b ∈ {1, . . . , B̄} (4.3)

xjb ∈ {0, 1} ∀j ∈ J, ∀b ∈ {1, . . . , B̄} (4.4)

where binary decision variable xjb denotes whether job j is assigned to bin b (xjb = 1)
or not (xjb = 0). The objective (4.1) is to minimize total cost. Parameter B̄ describes
the upper bound on the number of the required bins, for example, B̄ := |J | + maxj{rj}.
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Each job has to be assigned to exactly one bin and not earlier than its release time rj
(constraints (4.2)). Capacity constraints (4.3) should be respected for each bin along each
dimension, and constraints (4.4) state that the decision variables are binary.

4.2.2 Properties of the m-BiPacS

In this section, we formulate several properties of the m-BiPacS that we use in our solution
procedures.

Table 4.2: Illustrative example:
A m-BiPacS-M instance with five jobs, one dimension m := 1, c := 10, rj := 0 ∀j ∈ J ,
and total tardiness objective function wjb := max{b− dj ; 0}

Jobs
1 2 3 4 5

Size vj1 5 5 3 3 4
Due date dj 1 2 1 2 3

For instance, observe that in contrast to the closely related bin packing problem,
optimal solutions of the m-BiPacS instances do not necessarily contain the lowest possible
number of bins, although cost parameters wjb in the m-BiPacS are non-decreasing in the
ordering number of the bins. Indeed, we may have to increase the number of bins by
moving large less-urgent jobs to the last bins and move small urgent jobs to the earlier
bins to receive an optimal solution – as illustrated in the example in Table 4.2. In
this example, we can pack all the jobs into two bins as {1, 2}, {3, 4, 5} with cost of 1.
But when we move less-urgent job 2 to a later bin and process urgent job 3 earlier as
{1, 3}, {2, 4}, {5}, the cost falls to 0.

Lemma 4.2.1. The m-BiPacS is NP-hard in the strong sense.

Proof. Recall that the VBP is NP-hard in the strong sense (Garey et al., 1976). The
respective decision problem (D-VBP) is to determine whether a feasible solution with
not more than B̄V BP bins exists (yes/no); B̄V BP is a natural number. The decision
problem corresponding to the m-BiPacS (D-m-BiPacS) is to find out whether a feasible
solution with an objective value of not more than F̄ exists (yes/no); F̄ is some real
number. Observe that the D-VBP can be solved by solving the instance of the D-m-

BiPacS with parameters rj := 0, dj := B̄V BP , F̄ := 0, wjb :=

0 if b ≤ dj,

1 if b > dj.
. Therefore,

the complexity of the D-m-BiPacS (and the m-BiPacS) is not less than that of the D-VBP
(the VBP), respectively. We conclude that m-BiPacS is NP-hard in the strong sense.
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Let J b(s) be the set of jobs assigned to bin b and J<b(s) be the set of jobs assigned
to the bins preceding bin b in some solution s of an m-BiPacS instance. In the following,
we simply write J b and J<b if the notation can be unambiguously constructed from the
context. We call bin b maximally packed if no additional job j ∈ J \

(
J<b ∪ J b

)
can be

assigned to this bin without violating either its release time rj or the bin’s capacity.

Property 1. (Maximum load rule) There is an optimal solution to the m-BiPacS with
only maximally packed bins.

Proof. The claim follows immediately from the assumption of non-decreasing cost param-
eters wjb in the ordering number of the bins (cf. the definition of wjb in Section 4.1.2).

The maximum load rule is well known in bin packing. It allows us to construct
algorithms that examine only solutions with maximally packed bins.

We use the next property, Property 2, to construct a well-performing neighborhood
(neighborhood N3) in our heuristic algorithm in Section 4.3 and to strengthen the model
formulation (4.1)-(4.4), as described below.

Property 2. The m-BiPacS with equal job sizes (i.e., vji = vj′i ∀j, j′ ∈ J and ∀i ∈
{1, . . . ,m}) is polynomially solvable.

Proof. Let nb be the maximal number of jobs that can be packed in bin b. To assign jobs to
bins, we formulate a transportation problem (see Hitchcock, 1941; Winston and Goldberg,
2004) as described below. The transportation problem can be solved, for example, with
the algorithm of Kleinschmidt and Schannath (1995) in polynomial time.

The transportation problem consists of finding the number of items to be transported
from each supply center to each demand center in order to satisfy the demand, so that
the transportation cost is minimized and the needs of demand centers are satisfied. We
model B̄ bins as demand centers with demand nb (because each bin contains a maximum
of nb jobs) and jobs as supply centers with a supply of 1 each (because each job has to
be assigned to exactly one bin). We introduce B̄ · nb − |J | dummy jobs to match the
supply and the demand. We set transportation costs of one product unit from supply
center j ∈ J to demand center b to wjb if b ≥ rj and to some sufficiently large number
M , e.g., M :=

∑
j∈J maxb∈{1,...,B̄} {wjb}+ 1, otherwise. Observe that each job j has to be

assigned to exactly one bin and, therefore, the objective value of any feasible solution, in
which all jobs are assigned to bins not earlier than their release times, is lower than M .
Transportation costs per product unit from dummy supply centers equal 0.

The constructed transportation problem indeed solves the m-BiPacS with equal job
sizes, because it respects all the constraints of the m-BiPacS (and only them): bin ca-
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pacity constraints (4.3) as well as assignment and release time constraints (4.2) (see Sec-
tion 4.2.1). The constructed problem also correctly represents the objective function of
the m-BiPacS.

Note that if jobs additionally have the same assignment costs (wjb = wb ∀j ∈ J), we
can get an optimal solution by examining them in the non-decreasing order of their due
dates and assigning them to the earliest bin possible.

Observe that the bin packing problem is closely related to the m-BiPacS, for instance,
the decision problem of the bin packing is a special case of the decision problem D-m-
BiPacS. Therefore, several properties of the bin packing problem can be directly adapted
to the m-BiPacS. These properties include, for example, the Jackson dominance rule
(cf. Jackson, 1956) and the lower bounds of Martello and Toth (1990). However, in our
experience, the quality of these lower bounds drastically deteriorates with the increasing
number of bin dimensions m. Therefore, we formulate an alternative lower bound LB

based on computing Nb, which denotes an upper bound on the number of jobs that can be
packed into bin b in a solution with maximally packed bins due to bin size and release time
restrictions, and relaxing the problem to the transportation problem. We describe lower
bound LB below. Further, observe that model (4.1)-(4.4) can be strengthened by adding
the following constraints as a simple and computationally inexpensive way to strengthen
model formulation (4.1)-(4.4):

∑
j∈J :rj≤b

xjb ≤ Nb ∀b ∈ {1, . . . , B̄} (4.5)

In the computational experiments in Section 4.4.2.3, we show that constraints (4.5)
may speed up the standard solver by several times.

We compute Nb in the increasing order of the bin numbers starting with Nb′ , b
′ =

minj∈J{rj}. We estimate Nb by solving the one-dimensional knapsack problem for the
current set of jobs J ′ with surrogate constraints (cf. (Caprara and Toth, 2001; Glover,
1977)), that is, some weighted sums of constraints (4.3). The objective KS(x) of the
knapsack problem is to maximize the number of the selected jobs. Given some weights
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li ≥ 0,
∑m

i=1 li = 1, the knapsack problem for bin b can be notated as follows:

maximize KS(x) =
∑
j∈J ′

xjb (4.6)

m∑
i=1

∑
j∈J ′

li · vji · xjb ≤ c ·
m∑
i=1

li = c (4.7)

xjb ∈ {0, 1} ∀j ∈ J ′ (4.8)

We set Nb := KS(x). Observe that we can solve the resulting knapsack problem simply
by assigning the jobs in the non-decreasing order of their surrogate size in O(|J | log |J |).

Initially, for Nb′ , we assign all jobs with sufficiently early release times to set J ′ :=

{j ∈ J : rj ≤ b′}. Because of the maximal load-rule, bin b′ will contain at least one
job if set J ′ is not empty. Therefore, for computing Nb′+1, we ignore job j′ ∈ J ′ with
the largest surrogate size and update set J ′ := (J ′ \ {j′}) ∪ {j ∈ J : rj = b′ + 1} as
described in Algorithm 1. Indeed, since we can solve the knapsack problem (4.6)-(4.8) by
assigning the jobs in the non-decreasing order of their surrogate size, Nb′+1 is the largest
if we select job j′ ∈ J ′ with the largest surrogate size. We proceed in a similar manner
for all b ∈ {b′, . . . , B̄}.

1 Initialise b′ := minj∈J{rj} ;
2 Initialise J ′ := {j ∈ J : rj ≤ b′} ;
3 for

(
b := b′; b ≤ B̄; b++

)
do

4 if |J ′| > 0 then
5 Find Nb by solving knapsack problem (4.6)-(4.8) for J ′ and b;
6 Set j′ to be a job in J ′ with the largest (surrogate) size;
7 J ′ := (J ′ \ {j′}) ∪ {j ∈ J : rj = b+ 1};
8 else
9 Nb := 0;

10 J ′ := J ′ ∪ {j ∈ J : rj = b+ 1};
11 end
12 end

Algorithm 1: Computation of Nb

Based on the calculated parameters Nb, we compute lower bound LB by formulat-
ing and solving a transportation problem with nb := Nb, as described in the proof of
Property 2.

Observe that LB is indeed a lower bound for the m-BiPacS because each feasible
solution of the m-BiPacS with maximally packed bins (see Property 1) is also feasible for
the formulated transportation problem and has the same objective value. As explained
above, Nb is an upper bound on the number of jobs that can be assigned to bin b in a
feasible solution with maximally packed bins. Therefore, in fact, the formulated trans-
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portation problem is equivalent to problem (4.1)-(4.4) with constraints (4.3) relaxed to∑
j∈J :rj≤b xjb ≤ Nb ∀b ∈ {1, . . . , B̄}.

4.3 Iterative variable neighborhood heuristic

To address large problem instances of them-BiPacS, we propose iterative variable neighborhood
heuristic (IVNH). The IVNH examines only solutions with maximally packed bins. Recall
that the objective value of any solution does not get worse and potentially significantly
improves, if we shift jobs to pack bins maximally (cf. Section 4.2, Property 1). This is a
key factor influencing the performance of the IVNH.

The IVNH iteratively performs local search with three different neighborhoods: N1,N2,
and N3 (see Section 4.3.2). Having reached a local optimum with respect to neighborhood
Ni, i = 1, 2, we move to the next neighborhood Ni+1. Whenever we reach a local optimum
in all the three neighborhoods, we perform a diversification procedure (see Section 4.3.3).
We construct our initial solution with a greedy procedure as described in Section 4.3.1.
Section 4.3.4 provides a summary of the IVNH and its pseudocode.

4.3.1 Initial heuristic

We adapt the priority rule based method (PRBM) of Otto and Otto (2014a) to find an
initial solution. The PRBM is a greedy procedure based on multiple cues, which constructs
a large number of different good-quality feasible solutions. At each PRBM iteration (l),
the PRBM constructs a feasible solution by setting priorities p(l)

j for each job j ∈ J and
assigning jobs to bins in a non-increasing order of their priorities. We apply a first-fit
procedure to assign jobs, i.e., we assign each job to the earliest bin, to which it can be
assigned because of bin size and release time restrictions.

We compute three elementary priority values for each job j scaled to the interval of
[0, 1]: pwj , pddj , and psj . Priority values describe factors (cues) that are likely to lead to
a good assignment of jobs. Values pwj :=

wj

maxj′∈J{wj′}
force jobs with large weights to be

assigned to early bins. Values pddj assign high priority values to jobs with early due dates.
We set pddj := 1− dj−minj′∈J{dj′}

maxj′∈J{dj′}−minj′∈J{dj′}
if due dates differ among jobs (i.e., maxj′∈J{dj′} >

minj′∈J{dj′}) and set pddj := 0 otherwise. Value psj informs on the job’s size: psj :=∑m
i=1 vji·ei

maxj′∈J{
∑m

i=1 vj′i·ei}
, where coefficient ei :=

∑
j′′∈J vj′′i assigns a higher importance to the

bottleneck dimensions.

We compute priorities as a weighted sum of the three elementary priority values:
p

(l)
j = π

(l)
1 · pwj + π

(l)
2 · pddj + π

(l)
3 · psj . Coefficients π(l)

1 , π
(l)
2 , π

(l)
3 weigh the importance of

elementary priority values. We exploit the low computational complexity of priority rules
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and perform a brute search over many possible values of the elementary priority values’
weights. We select values π(l)

1 and π
(l)
2 from the set {0, 0.1, 0.2, . . . , 1} to assign high

importance to jobs with large weights and early deadlines. Observe that ranking jobs
according to their size has two opposing effects. From the one hand, if we assign larger
jobs first, we are likely to require less bins, which is good. On the other hand, since
assignment costs are monotonous non-decreasing in the ordering number of the bins, we
are interested in assigning as many jobs as possible to the earlier bins to reduce the
assignment costs for the largest possible number of jobs. For the latter reason, it may
be beneficial to assign smaller jobs first. Therefore, we construct priorities both with
non-negative and negative values of coefficient π(l)

3 and select values π(l)
3 from the set

{−1,−0.9,−0.8, . . . , 1}.
We perform 11 · 11 · 21 = 2541 iterations of the PRBM in total, because π(l)

1 and
π

(l)
2 take 11 values and π(l)

3 takes 21 values. Since some of these iterations use equivalent
priorities, such as priorities with (π

(l)
1 , π

(l)
2 , π

(l)
3 ) of (0.1, 0.1, 0.1) and (0.2, 0.2, 0.2), the

number of the constructed distinct feasible solutions is somewhat lower. We choose the
best found solution to be the initial solution.

Table 4.3: Instance of the m-BiPacS-M with eight jobs, three dimensions, c := 10, equal release times
rj := 0 ∀j ∈ J , and the objective to minimize total tardiness

Jobs
1 2 3 4 5 6 7 8

vj1 5 4 3 4 2 7 2 3
vj2 4 5 4 2 1 6 3 2
vj3 2 4 5 5 3 7 1 1
dj 1 1 1 2 2 3 3 4

Table 4.4: Priorities of the jobs in the instance of Table 4.3 according to the EDD rule (π(l)
1 := 0, π

(l)
2 := 1,

and π(l)
3 := 0)

Jobs
1 2 3 4 5 6 7 8

Priority values pj 1 1 1 2
3

2
3

1
3

1
3 0

Consider the instance in Table 4.3 with eight jobs, three dimensions, c := 10, equal
release times rj := 0 ∀j ∈ J , and the objective to minimize total tardiness. Table 4.4
illustrates priorities of the jobs in some iteration l with π(l)

1 := 0, π
(l)
2 := 1, and π(l)

3 := 0.
(We call this rule as the earliest due date rule (EDD) in our computational experiments.)
We break the ties by taking a job with a lower ordering number. In this iteration l of
the PRBM, we receive a feasible solution as follows. We sort jobs in a non-decreasing
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Figure 4.3: Illustration: Computing neighbors in N1 and N2

order of their priorities as (1, 2, 3, 4, 5, 6, 7, 8) and assign them with the first-fit procedure
to receive solution {1, 2}, {3, 4}, {5, 6}, {7, 8} with objective value of 3.

The time complexity of the first-fit assignment procedure is O(|J | · m · B̄) because
we have to examine m dimensions of up to B̄ bins for each job. The time complexity to
compute vectors of elementary priority values is linear in |J | for pw and pdd. It is linear
in |J | · m for ps. Therefore, the time complexity of one iteration of the PRBM equals
O(|J | ·m · B̄), or O(|J |2 ·m), because the number of non-empty bins cannot exceed the
number of jobs.

4.3.2 Local search procedures

We formulate three neighborhoods: N1 is based on two-job exchanges, N2 examines job
reinsertions, and N3 looks for alternative sequences of the bins. We formulate neighbor-
hoods N1 and N2 such that they (i) examine only solutions with maximally packed bins,
(ii) have moderate time complexity, and (iii) each feasible solution has, as a rule, many
distinct neighbors. Although the resequencing neighborhood N3 may contain solutions
with not maximally packed bins, the maximum load rule is enforced in the further search
since we always perform N1- and N2-local search for such solutions.

We construct a neighbor solution s′ of the incumbent solution s indirectly by recoding
solution s as shown in Figure 4.3(i). We represent incumbent solution s as a permutation
of jobs σ(s) skipping the assignment of jobs to the bins (jobs within each bin can be
arbitrarily ordered). Afterward, we perform a neighborhood move and receive another
permutation of jobs σ(s′). Then we construct s′ by assigning jobs of σ(s′) to bins with the
first-fit procedure as explained in Section 4.3.1. Such indirect local search procedures have
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two major advantages compared to the respective conventional local search procedures.
First of all, if we would perform neighborhood moves on the original (not recoded) solution
s, the number of these moves would be significantly limited, since we will have to preserve
the feasibility of the resulting neighbor solution. In our indirect local search procedures,
the neighbor moves are performed on permutation of jobs σ(s) so that we are not restricted
by them-BiPacS constraints at this step and any resulting permutation of jobs is “feasible”.
We construct a feasible solution afterward with very flexible first-fit procedure. Secondly,
our indirect local search procedures always result in solutions with maximally packed bins.
We provide examples for these statements and explain Figures 4.3(ii) and 4.3(iii) below.

Two-job exchange neighborhood N1. Let denote the incumbent solution as s. Let
j ∈ J be one of jobs and J b ⊆ J be the set of jobs assigned to the same bin as j in s. We
construct a permutation of jobs σ(s) by skipping the assignment of jobs to the bins (step
1). Given σ(s), we receive a neighbor s′ of s by swapping j with some job j′ ∈ J \ J b in
σ(s) (step 2) and assigning jobs to bins in the resulting order by the first-fit procedure
(step 3).

Consider the instance in Table 4.3 and s := {1, 2}{3, 4}{5, 6}{7, 8} as initial solution.
Figure 4.3(ii) illustrates how to construct a neighbor of solution s by swapping jobs 2
and 3. We construct a permutation of jobs σ(s) = {1, 2, 3, 4, 5, 6, 7, 8} in step 1. After
swapping jobs 2 and 3, we get permutation σ(s′) = {1, 3, 2, 4, 5, 6, 7, 8} (step 2). Then,
we apply the first-fit procedure, i.e., we assign each job to the earliest bin, to which it can
be assigned, considering them in the order provided by σ(s′) (step 3). For instance, jobs
1 and 3 can be assigned to bin 1, afterward, jobs 2 and 4 can only be assigned to bin 2.
The next job, job 5, fits bin 1. And so on. The resulting solution s′ is, in fact, an optimal
solution with objective value of 1.

The time complexity to examine all the neighbors of solution s is O(|J |3 · m · B̄)

because there are up to O(|J |2) job exchanges and the complexity of first-fit procedure is
O(|J | ·m · B̄).

Let us illustrate the effectiveness of the formulated indirect neighborhood moves by
comparing neighborhood N1 to the conventional two-job exchange neighborhood on the
example in Table 4.3 for s := {1, 2}{3, 4}{5, 6}{7, 8}. In N1, solution s has 19 distinct
neighbor solutions and all of them consist of maximally packed bins. In the conventional
neighborhood search, in which we examine feasible swaps of two jobs, there are only 16
(15% less) distinct neighbor solutions and only four of them consist of maximally packed
bins; none of these solutions is optimal. This illustrative example is not an exception (see
Appendices A and B). It can be shown that neighborhood N1 of some feasible solution s
contains all the neighbors of the conventional two-job exchange neighborhood of s that are
improved by the subsequent shift of jobs to receive maximally packed bins (see Appendix
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A). Recall that by shifting jobs to earlier bins we cannot worsen, but can potentially
improve the objective function (see Property 1 in Section 4.2.2).

Job reinsertion neighborhood N2. Let consider reinsertion of job j ∈ J . Observe that
the recoding of a solution is a one-to-many mapping because several different permutations
of jobs may correspond to a single solution of m-BiPacS. Therefore, we introduce an
additional computational step of low time complexity to exclude (almost all the) identical
solutions from the neighborhoods: We transform incumbent solution s into partial solution
sp by assigning jobs J \{j} from σ(s) according to the first-fit procedure (step 1a). Then,
we perform a neighborhood move by inserting job j between two consequent neighboring
jobs jk−1 and jk in σ(sp), which belong to two different bins in sp (step 1b and step 2).
Afterward, we assign jobs to bins according to the first-fit procedure to receive neighbor
solution s′ (step 3).

For the instance in Table 4.3 and initial solution s := {1, 2}{3, 4}{5, 6}{7, 8}, we can
construct a neighbor solution by reinserting job 2 as shown in Figure 4.3(iii). We receive
an optimal solution s′ with objective value of 1.

The time complexity to examine all the neighbors of some solution s is O(|J |3 ·m · B̄)

because there are |J | candidates for the job reinsertion that can be reinserted in up to
O(|J |) positions and the complexity of the first-fit procedure is O(|J | ·m · B̄).

Similar to neighborhood N1, neighborhood N2 constructs many distinct neighbor
solutions with maximally packed bins. Recall that in the conventional job reinsertion
neighborhood, we construct feasible neighbor solutions by shifting some job j to some
other bin. Therefore, in this conventional neighborhood of some solution s with maximally
packed bins, we can move any job j only to a later bin. Thus, there exist no improving
neighbors for solutions with maximally packed bins.

Overall, in our local search procedure, we search neighborhoods N1 and N2 of incum-
bent solution s until we find some neighbor s′ with a better objective value (a so-called
improving neighbor ). We immediately set the improving neighbor to be a new incumbent
solution s := s′. We repeat our search, until the incumbent solution does not have any
improving neighbors, i.e., until a local optimum is found.

Resequencing neighborhood N3. In the third neighborhood, N3, we treat the partition
of jobs J = J1∪J2∪ . . . into bin loads as given and look for a permutation of the bin loads
that results in a feasible solution with the best possible objective value. We formulate
the respective assignment problem and solve it in O(B̄3 + |J | · B̄) because the improved
version of the Hungarian algorithm takes O(B̄3) and we can construct the assignment
graph in |J | · B̄.

Consider neighborhood N3 of s := {1, 3, 5}{2, 4, 7}{6, 8}. Figure 4.4 visualizes the
resulting assignment problem. Its optimal solution is 1. Therefore, there is no better
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Figure 4.4: Illustration: Computing neighbors in N3
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Figure 4.5: Illustration of a diversification step

assignment (sequence of bins) and s is a local optimum with respect to N3.

4.3.3 Diversification step

A good diversification procedure would overcome a local optimum by jumping to a far-
enough solution in the solution space. And it should also learn some “good” characteristics
of the incumbent solution in order to jump to a “good” region in the solution space.
In our computational experiments, the diversification procedure we describe below has
outperformed the conventional random diversification, which is jumping to a randomly
generated solution (cf. Section 4.4.2.2). Presumably, our diversification procedure has a
rather high probability to keep some good combinations of jobs from the current local
optimal solution s∗ together in the same bin.

To perform diversification, we randomly assign jobs of the recoded current local op-
timal solution σ(s∗) to f categories (subsequences of jobs), i.e., we randomly generate a
category for each job from discrete uniform distribution U{1, f} (step 1 and step 2 in
Figure 4.5). Afterward, we form a new sequence of jobs σ(s) by taking jobs with number
one from the f categories, then jobs with number two and so on (step 3). We receive
a new incumbent solution s by assigning jobs to bins in the resulting order σ(s) by the
first-fit procedure (step 4).
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Figure 4.5 illustrates the diversification procedure for local optimal solution s∗ :=

{1, 3, 5}{2, 4, 7}{6, 8} and f := 2 categories for the instance in Table 4.3. In step 1, we
receive a permutation of jobs σ(s∗) = {1, 3, 5, 2, 4, 7, 6, 8}. A random assignment of jobs
to the categories resulted in jobs 1 and 6 belonging to category 2 and the rest of the jobs
belonging to category 1 (step 2). After having alternately assigned the jobs from the two
categories, we receive a new sequence of jobs σ(s) = {3, 1, 5, 6, 2, 4, 7, 8} (step 3). And the
first-fit procedure constructs solution s = {3, 1, 5}{6, 7}{2, 4}{8} (step 4). Observe that
the resulting solution s preserves a well-fitting bin load {1, 3, 5}.

4.3.4 Summary of the IVNH procedure

Algorithm 2 summarizes the IVNH procedure, which uses parameters T lim,Glim, F lim,
and finit. We describe the parameter values that we used in our experiments in Sec-
tion 4.4.1.

Let denote the following steps as an iteration of the IVNH: construction of a new
incumbent solution (either as described in Section 4.3.1 or as described in Section 4.3.3)
and local search until a local optimal solution with respect to the three neighborhoods
N1, N2, and N3 is found.

We start by initializing iterations counter it, the objective value of the best solution
found so far F ∗, the number of iterations from the last update of the best found objective
value gt, the locally optimal solution found in the previous iteration s∗d, and diversification
parameter f (row 1). The IVNH starts with an initial solution computed as described
in Section 4.3.1 (row 2). Afterward, we perform the local search with respect to the
three neighborhoods N1, N2, and N3 until a feasible solution s∗3 is found, which is locally
optimal with respect to all the neighborhoods (rows 3-8). In the diversification procedure,
we initialize parameter f as f := finit (row 1). If the objective function of the new local
optimum s∗3 in current iteration it is not better than that of the previous one s∗d, we
return to the previous local optimal solution s∗d and increase f by one (row 13) unless
f = Flim. In the latter case, we accept the current local optimal solution as incumbent
solution s∗d := s∗3 and reset f := finit (row 11). We update s∗d := s∗3 and reset the counter f
otherwise (row 15). At each iteration, we update the objective value of the best solution
found so far (rows 16-19). We stop the IVNH either when the time limit T lim have been
reached or the maximal number of iterations without the improvement in the best found
solution equals Glim (rows 23-25).
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// initialization
1 Initialize f := finit, F

∗ :=∞, gt := 0; s∗d := ∅; it := 0;
2 Construct s with initial heuristic (see Section 4.3.1);
// local search

3 Starting from s, find locally optimal solution s∗1 with respect to N1;
4 Starting from s∗1, find locally optimal solution s∗2 with respect to N2;
5 Starting from s∗2, find locally optimal solution s∗3 with respect to N3;
6 if s 6= s∗3 then
7 s := s∗3;
8 go to 3 ;

9 end
// diversification

10 if s∗d 6= ∅ and F (s∗d) ≤ F (s∗3) then
11 if f = Flim then
12 f := finit; s∗d := s∗3;
13 else
14 f := f + 1; s∗d := s∗d;
15 end
16 else
17 f := finit; s∗d := s∗3;
18 end
19 if F ∗ > F (s∗d) then
20 F ∗ := F (s∗d); gt := 0;
21 else
22 gt := gt+ 1;
23 end
24 it := it+ 1;
25 Apply diversification procedure for s∗d with parameter f to receive s∗div (see Section 4.3.3);
26 s := s∗div;

// verification of the stopping criterion
27 if elapsed time < Tlim and gt < Glim then
28 goto 3;
29 end

Algorithm 2: Pseudocode of the IVNH

4.4 Computational Experiments

We perform our computational experiments on a diversified randomly generated data set
and as a simulation based on the real-world data of an industrial equipment producer.
Section 4.4.1 describes the randomly generated data set. We then compare the perfor-
mance of the IVNH and of an off-the-shelf solver in Section 4.4.2.1 and illustrate the
results of the IVNH in a simulation of a real-world rolling-horizon planning framework in
Section 4.4.3.

4.4.1 Data generation

Since the literature lacks a benchmark data set for the m-BiPacS, we have randomly
generated a data set with a wide range of various instance characteristics for our ex-
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periments. We examine a total of 440 instances in our experiments, encompassing 22
parameter settings with 20 randomly generated instances for each parameter setting.

The large data set (LDS) contains large instances with n ≥ 100 jobs. In the basic
setting, we set n := 150, number of dimensions m := 5, dimensions’ capacities c := 100,
and release times rj := 0 for all the jobs. For each job j ∈ J and each dimension i ∈
{1, . . . ,m}, we randomly and independently generate sizes vji from the interval [v, v] :=

[10, 30]. Deadlines dj are randomly and independently drawn from the interval [dL
2
e, dLe]

(we designate this interval as large), where L is a reference value that depends on the
number of jobs and their sizes. The value of L increases if the number of jobs or their
sizes increase: L := n

c/E(vji)
, where E (vji) is the expectation of the job’s size. In the basic

setting, [dL
2
e, dLe] = [15, 30]. We have selected this interval for the due dates to include

both in-time and delayed jobs in each instance. For example, on average about 5.5% of
jobs are delayed in the best known solution of the basic setting. We minimize the total
tardiness, so that wjb := max{dj − b, 0}.

We construct another 11 settings in the LDS by varying one set of parameters at a
time. For example, we examine two additional settings with n := 100 and n := 200, two
settings with m := 2 and m := 8, and four settings with intervals [v, v] equal to [0, 20],
[20, 40], [30, 50], and [0, 100]. We introduce a setting with release times by randomly
and independently drawing them from [0, dL

2
e]. Two further settings examine smaller,

more restrictive due dates by drawing them from intervals [0, dL
2
e] (small) and [dL

4
e, d3L

4
e]

(medium). The LDS contains 12 settings with 240 instances in total.

The small data set (SDS) contains smaller instances with n := 30 jobs. Because we
fix the number of jobs in the SDS, it consists of 10 settings arranged along the same lines
as the LDS.

In the following sections, we describe a setting as (n,m, [v, v], release time, due date).

We performed our experiments on a personal computer with an Intel i7-8700K pro-
cessor, 6 cores, and 16 GB RAM. We compared the performance of the IVNH to that of
the off-the-shelf software IBM ILOG CPLEX 12.8 (which we simply call CPLEX below).
We used default settings of CPLEX. We set the objective function to optimize the total
tardiness, i.e., wjb := max{b− dj; 0}, unless specified otherwise.

We set the IVNH parameters to Glim := 20, finit := 2, Flim := 4, and T lim := 10

minutes in our experiments.

In the computational experiments, we report the average absolute performance and the
average relative performance. Because optimal objective values of some of the instances
are not known, we compare the algorithm’s solutions for each instance ψ to the best
objective value found in all the computational experiments for this instance ψ.
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The average absolute performance refers to the average difference in the absolute
objective value of the algorithm’s solution and the objective value of the best found
solution. For instance, the absolute performance equals 1 if just one tardy job was assigned
one bin later compared to the best found solution.

The average relative performance denotes the average relation of the difference be-
tween the objective values found by the algorithm and the best found solution to the best
found objective value. Note, however, that the average relative performance is generally
not very informative for such objective functions as tardiness. Overall, relative perfor-
mance may be large even for very small absolute gaps between the algorithm’s objective
function value and the optimal objective function value. For instance, if the optimal
tardiness is 0, then relative performance would be undefined (equal infinity).

Overall, we were able to solve all the instances in the SDS and 37 instances of the
LDS to optimality.

4.4.2 Computational experiments on the randomly generated data

sets

4.4.2.1 Comparative performance of the IVNH and CPLEX

Table 4.5: Performance of the IVNH and CPLEX on the LDS

n m [v, v]
Release
time

Due
date

No. of found best
known solutions

Avg. absolute
performance

Avg. relative
performance

Avg. objective
value of best

known solutions

Avg. abs. performance of
the best known solution to
the lower bound of CPLEXIVNH CPLEX IVNH CPLEX IVNH CPLEX

100 5 [10 30] no large 19 2 0.1 3.4 0.8% 68.1% 5.9 5.4
d 2 [10 30] no large 13 18 0.8 0.9 87.9% 56.7% 1.7 0.7
| d [0 100] no large 20 14 0.0 48.4 0.0% 4.8% 1350.7 1090.4
| | [0 20] no large 20 20 0.0 0.0 -∗ -∗ 0.0 0.0
| | d no large 20 0 0.0 15.0 0.0% 140.9% 12.6 11.6

150 5 [10 30] yes large 20 0 0.0 14.0 0.0% 122.2% 12.9 11.8
| | | no medium 19 1 0.3 25.2 0.1% 6.9% 370.3 104.0
| | b no small 19 2 0.1 15.1 0.0% 1.4% 1077.3 141.4
| | [20 40] no large 19 3 0.1 3.1 0.2% 13.3% 25.5 25.5
| b [30 50] no large 20 20 0.0 0.0 0.0% 0.0% 345.9 80.0
b 8 [10 30] no large 20 0 0.0 34.8 0.0% 112.0% 33.1 32.1

200 5 [10 30] no large 20 0 0.0 41.6 0.0% 163.8% 27.3 25.6
∗ Not defined if the best found objective value is 0

Table 4.5 reports results of the IVNH and CPLEX for the LDS. We run CPLEX on
the extended model formulation (4.1)-(4.5). Because the IVNH takes about 1 minute on
average and never more than 10 minutes per instance, we limit the run time of CPLEX
to 10 minutes for the sake of a meaningful comparison.

CPLEX solved just 37 out of 240 instances to optimality: 14 instances in setting (150,
2, [10 30], no, large), 20 instances in setting (150, 5, [0 20], no, large), and 3 instances
in setting (150, 5, [30 50], no, large). The average absolute optimality gap, that is the
difference between the CPLEX upper and the CPLEX lower bounds, remained quite large.
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In fact, CPLEX lower bounds were close to 0 in the majority of the settings (e.g., compare
the last two columns in Table 4.5).

The IVNH required just 88 seconds per instance on average and performed at most
101 iterations for each instance. Table 4.5 illustrates that the IVNH clearly outperformed
CPLEX in 9 out of 12 settings and found solutions of comparable quality as CPLEX in
the remaining three settings (150, 2, [10 30], no, large), (150, 5, [0 20], no, large), and
(150, 5, [30 50], no, large).

Note that we were not able to compare the results of the IVNH to optimal solutions
of all the instances of the LDS. Indeed, CPLEX was not able to solve the LDS instances
to optimality even within a several-hour run time per instance.

Table 4.6: Performance of the IVNH and CPLEX on the SDS

n m [v, v]
Release
time

Due
date

IVNS
Avg. CPU, sec. No. of optimal solutions (out of 20) Avg. absolute performance

2 [10 30] no large 0.00 20 0.0
d [0 100] no large 0.39 20 0.0
| [0 20] no large 0.00 20 0.0
| d no large 0.01 20 0.0

30 5 [10 30] yes large 0.01 20 0.0
| | no medium 0.16 15 0.3
| b no small 0.16 16 0.2
| [20 40] no large 0.00 20 0.0
b [30 50] no large 0.20 20 0.0
8 [10 30] no large 0.03 20 0.0

Therefore, in order to compare the results of the IVNH with optimal solutions, we
run the algorithms on the SDS data set (see Table 4.6). We did not limit the run time
of CPLEX. CPLEX required up to 70 minutes per instance. Overall, the IVNH found
optimal solutions in 95.5% of cases (for 191 instances out of 200) in a fraction of a second.
In a few (nine out of 200) cases, in which the IVNH was not able to find an optimal
solution, the remaining gap to optimality (= absolute performance) was very low. It
equaled 1 in eight instances and 2 in the ninth instance. Recall that the gap to optimality
equals 1, for instance, if just one job has been assigned one bin later. Interestingly, all
these nine instances belong to the settings with more restrictive – small and medium – due
dates. The IVNH found optimal solutions for 15+16

20+20
≈ 75% of the instances in these two

settings. A possible reason could be the following. Because of more restrictive due dates,
optimal solutions are likely to contain many tardy jobs. As a consequence, we are more
likely to be trapped in a local optimum, because many neighbors in the neighborhoods
N1,N2, and N3 are not improving neighbors and will be rejected. So that the instances
get harder for the IVNH and the relative advantage of enumeration-based procedures,
such as CPLEX, becomes more pronounced.

We conclude that the IVNH performs very well. Overall, the relative advantage of
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Figure 4.6: Sensitivity analysis of the basic setting of the LDS instances – (150, 5, [10 30], no,
large): Relative advantage of the IVNH over CPLEX

the IVNH seems larger for a larger number of dimensions m and for a larger number of
jobs n, see Figure 4.6.

4.4.2.2 Performance drivers of the IVNH

In this section, we analyze main performance drivers of the IVNH. We start by examining
the influence of the number of iterations, or so-called convergence behavior of the IVNH.

Recall that the following algorithmic steps constitute an iteration of the IVNH (cf.
Section 4.3.4):

• construction of a new incumbent solution with procedures described in Section 4.3.1
or Section 4.3.3,

• local search with respect to neighborhoods N1, N2, and N3 (see Section 4.3.2).
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Figure 4.7: Convergence analysis of the basic setting of the LDS instances – (150, 5, [10 30], no,
large)

∗ The average absolute performance of the best incumbent solution found so far
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Table 4.7: Average number of iterations until the best solution is found which is not improved
in the Glim := 20 consequent iterations

n m [v, v]
Release
time

Due
date Avg. number of iterations

100 5 [10 30] no large 12.9
d 2 [10 30] no large 6.3
| d [0 100] no large 11.0
| | [0 20] no large 1.0
| | d no large 14.4

150 5 [10 30] yes large 22.1
| | | no medium 19.4
| | b no small 16.9
| | [20 40] no large 11.7
| b [30 50] no large 1.0
b 8 [10 30] no large 22.3

200 5 [10 30] no large 21.4

Figure 4.7 illustrates the convergence behavior for instances of the basic setting (150,
5, [10 30], no, large). For each iteration, the figure shows the average absolute performance
of the best solution found until this iteration. As we see, the quality of the best found
solution rapidly improves in the first five iterations and continuously ameliorates at a
diminishing rate afterward. It is exactly the kind of behavior we would like to have in
a good heuristic procedure, because (i) solutions of very good quality are found very
fast and (ii) there are excellent chances to compute even better solutions if we relax
the stopping criterion and perform more iterations, unless an optimal solution has been
already found. Note that we found a similar behavior of the IVNH in other settings as
well. For instance, in Table 4.7, we report the average number of iterations until the best
solution was found that could not be improved in the Glim := 20 consequent iterations.
Table 4.7 illustrates that, in concordance with intuition, the flattening-out of the average
absolute performance of the IVNH occurs at later iterations for instances with a larger
number of jobs or a larger number of dimensions.

We also analyze the impact of different algorithmic elements on the performance of the
IVNH in Table 4.8. In the initial algorithm of the IVNH, we disable local search procedures
(see Section 4.3.2) one at a time. We also replace our customized diversification procedure
(see Section 4.3.3) with a straightforward random generation of a new feasible solution
by assigning jobs to the bins by the first-fit procedure (see Section 4.3.1) in a randomly
generated order. We call the resulting algorithm as ‘Random diversification’ in Table 4.8.

According to the received results, local search with respect to neighborhood N1 has
the largest impact on the IVNH performance in almost all the settings. Neighborhood N3

appears to be especially important in data settings with job sizes [10 30] and [0 100], i.e.,
data settings in which small jobs are present (the results on setting [0 20] are inconclusive
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Table 4.8: Impact of the algorithmic elements of the IVNH on its performance

n m [v, v]
Release
time

Due
date

Difference in the average absolute performance CPU ratio
to that of the IVNH to that of the IVNH

Disabled Disabled Disabled Random Random
N1 N2 N3 diversification diversification

100 5 [10 30] no large 5.8 1.1 0.5 0.2 277%
d 2 [10 30] no large 4.0 1.0 0.7 0.1 313%
| d [0 100] no large 18.5 0.8 4.7 0.1 109%
| | [0 20] no large 0.0 0.0 0.0 0.1 -*
| | d no large 17.3 1.4 2.5 0.1 233%

150 5 [10 30] yes large 14.8 1.0 2.4 0.2 222%
| | | no medium 64.0 4.8 15.4 2.3 318%
| | b no small 48.2 2.4 15.8 4.5 262%
| | [20 40] no large 6.0 0.9 1.7 0.6 379%
| b [30 50] no large 0.0 0.0 0.0 0.0 769%
b 8 [10 30] no large 21.3 2.7 4.0 0.0 253%

200 5 [10 30] no large 31.7 1.9 3.6 0.0 172%
∗ Not defined if the CPU time of the IVNH is 0

because all the examined algorithms found solutions of very good quality). A possible
explanation for this effect can be the following. If many small jobs are present, then
feasible solutions are likely to have many jobs in each bin and each neighborhood move in
N3 relocates many jobs at once. If the jobs are large in size, however, so that only very few
(one, two, or three) jobs can be packed into one bin, then the ‘bin moves’ of neighborhood
N3 are equivalent to a few (one, two, or three) subsequent swap moves of neighborhood
N1 or a few subsequent reinsertion moves of neighborhood N2. In such settings, locally
optimal solutions with respect to neighborhoods N1 and N2 are more likely to be locally
optimal with respect to the neighborhood N3 as well and the relative impact of N3 in the
IVNH performance gets smaller.

The impact of our diversification procedure is twofold. On the one hand, it improves
the final solutions (see Table 4.8). On the other hand, it speeds up the IVNH-algorithm
several times. In other words, our diversification procedure seems to construct promising
new incumbent solutions, whereas the incumbent solutions generated by the random di-
versification are usually far from the local optima and need more steps of the local search
(see also our discussion in Section 4.3.3).

4.4.2.3 Comparison of the two integer programming model formulations

In Table 4.9, we additionally illustrate performance of the strengthened model formula-
tion (4.1)-(4.5) and the basic model formulation (4.1)-(4.4) on the SDS. In this computa-
tional experiment, we did not limit the run time of CPLEX. The strengthened model (4.1)-
(4.5) reduced computational time of CPLEX significantly compared to the basic model.
For example, in setting (30, 5, [30 50], no, large), the computational time was reduced by
69% on average and the number of nodes decreased to 0 for all 20 instances, i.e., all the
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Table 4.9: CPLEX results for the two model formulations

n m [v, v]
Release
time

Due
date

Model (4.1)-(4.4) Model (4.1)-(4.5)
Avg. CPU, sec. Avg. no. of nodes Avg. CPU, sec. Avg. no. of nodes

2 [10 30] no large 0.06 0.0 0.06 0.0
d [0 100] no large 6.64 25,639.8 6.71 17,734.4
| [0 20] no large 0.06 0.0 0.06 0.0
| d no large 0.13 458.1 0.12 328.1

30 5 [10 30] yes large 0.23 2,426.4 0.12 353.8
| | no medium 395.88 1,871,376.8 115.84 658,962.1
| b no small 30.26 203,352.1 21.93 133,944.6
| [20 40] no large 0.07 0.0 0.08 0.0
b [30 50] no large 1.00 1,154.6 0.25 0.0
8 [10 30] no large 15.92 90,686.8 2.68 15,731.2

instances were solved in the root node.

4.4.2.4 Report on the idle times in the found solutions

Of course, the most important objective for the firms that produce customized products
is meeting the promised delivery dates. Nevertheless, it is interesting to examine the
dynamics of idle times in our computational experiments. Idle times are an important
performance indicator of the cost-efficiency of the assembly line. Figures 4.8a and 4.8b
illustrate idle times for the basic setting of the LDS instances (150, 5, [10 30], no, large)
and how it changes with the number of dimensions (Figures 4.8a) and the job size (Fig-
ures 4.8b). Interestingly, the average idle time remains moderate and does not exceed
20% for a large range of settings, which illustrates the efficiency of the multiple-piece-flow
manufacturing policy.
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Figure 4.8: Sensitivity analysis of the basic setting of the LDS instances– (150, 5, [10 30], no,
large): The average idle time

Figures 4.8b illustrates that two opposite effects may influence idle times. On the
one hand, the smaller the jobs are, the better we can combine them to fill bins to their
capacity and the idle time decreases. The other effect is related to the peculiarity of the
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total tardiness function: any schedule, in which jobs are finished not later than their due
dates, is equally good notwithstanding the amount of the idle time. In other words, if
jobs are so small so that we can pack many jobs in one bin and finish them without delay,
the idle time may increase as in the setting (150, 5, [0 20], no, large).

4.4.3 Simulation study: The IVNH as part of rolling-horizon

planning

We have also examined our algorithm in a case study of the production of industrial
cranes.

The aim of the current simulation study is to illustrate the suitability of the tardiness
objective function in general and the designed heuristic IVNH in particular for the rolling-
horizon planning framework used in the company. Therefore, we compare the IVNH to the
status quo planning rule and perform further analysis of its performance in Section 4.4.3.2.
In Section 4.4.3.3, we compare the tardiness objective function to another widespread
objective function – minimization of the total idle time. We describe the simulation
framework in Section 4.4.3.1.

Based on the results in Section 4.4.2, we do not use CPLEX in our simulation exper-
iments for the following two reasons:

• The resulting problem instances that have to be solved within the simulation frame-
work are too large to be solved by CPLEX in a reasonable amount of time. Observe
that in the rolling-horizon planning framework, an m-BiPacS instance have to be
solved at each replanning step.

• If we set some acceptable run time limit, CPLEX performs worse than the IVNH.

We also conducted some selective preliminary testing, which reconfirmed the reasons
stated above.

4.4.3.1 Data generation

To simulate the actual production planning process, we set up a rolling-horizon planning
framework: The simulation runs for 15 days and the replanning is performed in the
beginning of each day.

The product consists of two large workpieces – a pillar and a jib –, each of them is
processed in a separate assembly line consisting of four and five stations, respectively (see
Figure 4.2). Workpieces should be cleansed, trimmed to the desired size, drilled, and
welded. Each process requires a specialized machine and processing times highly depend



4.4. Computational Experiments 88

on the customer orders, such as on the length and diameter of the pillars or jibs and on
the ordered fixtures. Afterward, the two workpieces are joined and processed together
at the final station. So that there are 4 + 5 + 1 = 10 dimensions in total. A bundle
of workpieces (a bin of jobs) enters each station in the beginning of the day and leaves
the station in the beginning of the next day. There is a buffer before the final station
to compensate for different lengths of the two assembly lines. The work on each station
is organized in shifts, and bottleneck stations work several shifts per day, whereas the
rest stations work just one shift or a half shift a day. We have taken these different shift
schedules into account by an appropriate scaling of the dimensions’ capacities c and job
sizes vji.

We have setup the arrival process of the jobs to mimic the actual company data, for
instance, in the expected number of the arriving jobs each day and in the distribution of
different crane models. Following the practice data, we also start the simulation with a
four-day backlog of jobs, i.e., the jobs arrived in the last five days (including the current
day) are available for immediate processing. In the beginning of the next day, the set of
available jobs reduces by the bin load whose manufacture has already started and increases
by the newly arrived jobs; a new plan is made for the now available jobs. Because we
simulate the production process for 15 days, we perform 15 replannings in total. At
each replanning step of the rolling-horizon planning framework, all the available jobs
are scheduled. Because the simulated system is in the steady state, the number of the
scheduled jobs roughly corresponds to the work amount for the next five days. Thereby,
in the default setting (in contrast to the setting with full information), the planner only
knows the characteristics of the already arrived jobs. In each simulation setting, we
generate 100 simulation instances (runs) and report the average results obtained in these
runs. We have also carefully checked the simulated data for possible warm-up and phasing-
out effects. As a consequence, we have truncated the last four bins in the simulated data
in the idle time experiment (Figure 4.10a in Section 4.4.3.3). Indeed, because of the
phasing-out effect, less jobs were available for planning and four last bins had moderately
larger idle times.

We formulate several simulation settings to examine different promised delivery times
u: dj := rj +u, where rj is the arrival time of the job. The initial level of u, denoted as u0,
was calibrated to the current policy of the company – the time between the final specifi-
cation of the job (i.e., crane characteristics) and the latest acceptable start of production
given the promised delivery time. At the request of the company management, we also
examine the values of u := u0 + 1 and u := u0 + 2 in our experiments, which correspond
to later promised delivery times.
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Figure 4.9: Results of the simulation study

∗ The objective value computed by the EDD for u := u0 is set to 100.
∗∗ The values of u are anonymized, the minimal value is denoted as u0.

4.4.3.2 Tardiness objective function in the rolling-horizon planning frame-
work

In this section, we examine the suitability of the set up optimization problem with the tar-
diness objective function for the rolling-horizon planning framework used in the company.
For instance, to investigate the improvement of the status quo, we compare the results of
the IVNH to the earliest due date (EDD) heuristic (see Section 4.3.1) which is common in
practice and roughly describes the currently used planning routine in the company. Re-
call that in the rolling-horizon planning framework, the information is incomplete: The
planner only knows the characteristics of the jobs that have already arrived and knows
nothing about the jobs that are about to enter the system in the future. Therefore, we
also perform the competitive analysis, i.e., we compare the results of the IVNH in this
incomplete-information framework to the results of the IVNH in the full-information case
(designated as the IVNH-full info). The latter schedules jobs in the beginning of day 1
with a full information about all the future jobs and their release times (i.e., times of
arrival).

Figure 4.9 illustrates the average objective value (tardiness) in the solutions found
by the IVNH, EDD, and the IVNH-full info. To anonymize the data, we set the average
delay per job for the EDD at initial value u0 to 100.

As expected, the IVNH significantly outperforms the EDD, especially at shorter
promised delivery times. If the promised delivery times are large and set at u := u0 + 2,
the jobs can be easily manufactured without tardiness and the advantage of the IVNH
over the EDD vanishes out.

Interestingly, the value of full information, which is the difference in the objective
value computed with the IVNH-full info compared to the results of the IVNH, is modest,
so that the tardiness objective function performs very well in the rolling-horizon procedure
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for the studied company.

Overall, the total tardiness in Figure 4.9 is nonlinear in u: it increases sharply if
the promised delivery times u become short. Indeed, in case of less restrictive promised
delivery times, jobs may be combined more freely into bins, so that more jobs can be
produced in the given time period. We have also observed that at low values of u large
urgent jobs are pushed back into the later bins in order to fill earlier bins with many
smaller jobs.

4.4.3.3 Comparison of the tardiness and the idle-time objective functions

In this section, we compare the tardiness objective function to the idle time objective
function in the rolling-horizon planning framework. The minimization of the average idle
time per station (i.e., per dimension) leads to lower manufacturing costs per product unit.
This is a widespread objective function in the assembly line balancing and bin packing
literature. Observe that because the sizes of each bin dimension and the sizes of the
jobs are given, the minimization of the average idle time per station is equivalent to the
minimization of the total idle time and to the minimization of the number of the bins.

The adaptation of the IVNH algorithm from Section 4.3 to the idle-time objective
function is straightforward and simply amounted to using the new objective function in
the respective algorithmic routines, such as selection of an improving neighbor, update
of the best found solution etc. Observe, however, that the local search with respect
to neighborhood N3 turns obsolete, since we cannot improve the average idle time by
resequencing the bin loads.

Figure 4.10a compares the average idle time per station in case the rolling-horizon
planning uses the IVNH with the tardiness and with the idle-time objective functions,
respectively. As expected, the average idle time in the latter case is lower. But the
degree of improvement, which equals about 2.3 percentage points, is considered to be
very moderate by the company management.

The average total tardiness of the manufactured jobs is presented in Figure 4.10b. As
we see, the average total tardiness is extremely high in case the rolling-horizon planning
uses the IVNH with the idle-time objective function, for instance, it is about 2.3 times
larger compared to the status-quo rule EDD and u := u0. Indeed, the solution algorithm
often pushes some urgent jobs to the ever later bins. Interestingly, the average tardiness
remains very high even if the promised delivery times are set large, at u := u0 + 2.

We conclude that the idle time objective function is not suitable for the rolling-horizon
planning framework.
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Figure 4.10: Comparison of two different objective functions in the rolling-horizon planning
framework: the minimization of the total tardiness and the minimization of the total idle time

∗ The data is anonymized, the scale starts with some initial idle time level id0.
∗∗ The values of u are anonymized, the minimal value is denoted as u0.
∗∗∗ The objective value computed by the EDD for u := u0 is set to 100.
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4.5 Conclusion

This paper studies product sequencing in paced multiple-piece-flow assembly lines that
are used, for instance, by medium-sized companies in manufacturing large pieces of cus-
tomized equipment. We set up a mixed-integer model and analyze the relation of the
problem, which we call m-vector bin packing and sequencing problem (m-BiPacS), to
classical optimization problems in the literature. We design an iterative variable neigh-
borhood search metaheuristic, the IVNH, to address large problem instances of the m-
BiPacS. The IVNH utilizes several innovative local search procedures that examine many
distinct good-quality solutions with maximally packed bins in a short time. In our com-
putational experiments based on well-diversified randomly generated data sets, the IVNH
clearly outperformed the off-the-shelf optimization tool IBM ILOG CPLEX: It found bet-
ter solutions and had much shorter run times. For smaller problem instances with known
optimal solutions, the IVNH was able to find an optimal solution in a fraction of a second
in almost all cases. The gap to optimality in the remaining cases was negligible. An
extended simulation based on real-world data confirms suitability of the IVNH and the
tardiness objective function for the rolling-horizon planning framework in practice.

Future studies may develop exact solution methods that can solve instances of practice-
relevant size in acceptably short run times. Research is needed on related planning prob-
lems, such as assembly line balancing and committing order due dates in multiple-piece-
assembly lines. In particular, our simulation illustrates the importance of accurately esti-
mated promised delivery dates. Promised delivery dates that are too restrictive prohibit
a favorable combination of jobs (workpieces) into bins (lots that are launched simultane-
ously) and manufacturing cost may increase significantly. Overall, companies need the
support of academia in developing further organizational concepts and planning tools
that help to reduce manufacturing costs in the production of highly customized prod-
ucts. For instance, future field and case studies may investigate whether the performance
of multiple-piece-flow assembly lines can be further improved by flexible deployment of
machines (robots) and workers and more flexible flow of workpieces.

4.A Appendix A

In this appendix, we explain the relation of N1 to the conventional two-job exchange
neighborhood.

Recall that we get neighbor s′c of some solution s in the conventional two-job exchange
neighborhood by swapping two jobs belonging to two different bins such that the resulting
solution is feasible. We say that a subsequent sequential shift of jobs is performed to
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solution s′c, when we shift the jobs belonging to some bin to the earliest possible bins to
which they can be assigned; we apply this procedure to all the bins in the increasing order
of the bin number. We call the resulting solution s′′c . For example, consider the instance in
Table 4.3 and s := {1, 2}{3, 4}{5, 6}{7, 8}. Feasible solution s′c = {1,8}{3, 4}{5, 6}{7,2}
is a neighbor solution of s with respect to the conventional two-job exchange neighborhood.
After the subsequent sequential shift of jobs, we receive s′′c = {1,5, 8}{3, 4}{6,7}{2}.

Lemma 4.A.1. Neighborhood N1 of some feasible solution s contains all the neighbor
solutions of the conventional two-job exchange neighborhood of s that are improved by
subsequent sequential shift of jobs to receive maximally packed bins. In other words, for
each neighbor solution s′c of s with respect to the conventional two-job exchange neighbor-
hood, there exists a feasible solution s′′c that is part of neighborhood N1(s) and that can be
constructed from s′c with the subsequent sequential shift of jobs.

Proof. The proof follows straightforwardly from the definition of N1. Indeed, to construct
s′N1
∈ N1(s), we exchange job j with some job j′ that belongs to another bin in s in steps

1 and 2 in Figure 4.3(ii). The subsequent application of the first-fit procedure can be
interpreted as the subsequent sequential shift of jobs.

4.B Appendix B

In this appendix, we perform a computational experiment on the LDS instances (see
Section 4.4.1) to compare the number of neighbors in N1 and the conventional two-job
exchange neighborhood.

Table 4.B1: Comparison of the N1 neighborhood and the conventional two-job exchange neigh-
borhood

n m [v, v]
Release
time

Due
date

N1 Conventional two-job exchange neighborhood
Avg. total No. Avg. No. of Avg. absolute performance Avg. total No. Avg. No. of Avg. No. of distinct Avg. absolute performance
of neighbors distinct neighbors of the best neighbor of neighbors distinct neighbors* max. loaded neighbors** of the best neighbor

100 5 [10 30] no large 4,950.0 4,703.1 145.4 2,186.1 2,186.1 2,180.2 161.8
d 2 [10 30] no large 11,175.0 10,739.0 253.0 3,997.0 3,997.0 3,988.0 282.6
| d [0 100] no large 11,175.0 10,743.3 2,209.4 4,759.2 4,759.2 4,759.2 2,280.8
| | [0 20] no large 11,175.0 9,940.7 89.3 1,008.9 1,008.9 1,000.8 109.6
| | d no large 11,175.0 10,788.5 340.5 4,630.1 4,630.1 4,620.8 371.7

150 5 [10 30] yes large 11,175.0 10,286.5 325.4 3,628.0 3,628.0 3,620.7 365.3
| | | no medium 11,175.0 10,785.3 868.2 4,432.5 4,432.5 4,424.8 924.2
| | b no small 11,175.0 10,782.9 1,551.2 4,285.7 4,285.7 4,279.9 1,610.4
| | [20 40] no large 11,175.0 10,846.6 406.9 2,439.0 2,439.0 2,438.4 421.5
| b [30 50] no large 11,175.0 11,100.0 933.5 11,100.0 11,100.0 11,100.0 933.5
b 8 [10 30] no large 11,175.0 10,816.1 394.3 5,077.8 5,077.8 5,072.2 421.9

200 5 [10 30] no large 19,900.0 19,372.4 601.9 8,164.5 8,164.5 8,153.5 657.4

* The neighbor solutions with not maximally packed bins are also included
** After subsequent sequential shift of jobs

We construct an initial solution with the PRBM heuristic described in Section 4.3.1,
afterward we enumerate all the neighbors of this solution in the respective neighborhood.
Observe that some neighbors in N1 may represent essentially identical solutions, therefore,
we also compute the number of distinct neighbors. Table 4.B1 summarizes the results.
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Overall, neighborhood N1 contained 242.6% more neighbors and 221.8% more distinct
neighbors on average than the conventional two-job exchange neighborhood. Recall that
neighbors in the conventional neighborhood may contain not maximally packed bins.
After we applied a subsequent sequential shift of jobs to the neighbors in the conventional
neighborhood (cf. Appendix 4.A), the number of distinct solutions reduced even further.
As a consequence, average absolute performance of the best neighbor was 8.5% worse
in the conventional neighborhood, even after the subsequent sequential shift of jobs had
been applied.

This computational experiment confirmed that N1 tend to contain more neighbors
and, therefore, its best improving neighbor may have a better objective function value
than the conventional two-job exchange neighborhood.



Chapter 5

Summary and Outlook

This dissertation summarizes several papers of operational planning problems that are
crane scheduling problems at rail transshipment yards and a sequencing problem in as-
sembly lines.

For each problem, we propose a model formulation and develop exact and/or heuristic
algorithms that can solve practice-relevant sized instances. Most of our test instances are
randomly generated based on real data from practice, as much as possible to simulate the
practical situation.

A crane scheduling problem at rail container transshipment yards is considered in
Chapter 2. This problem addresses the working areas for each crane and the sequence of
containers’ moves. The objective is to minimize the makespan. We formulate the problem
as a mixed-integer model and propose a two-way bounded dynamic programming (TBDP)
procedure. We also propose an exact algorithm and a heuristic approach within the TBDP
framework. The computational study results indicate that the heuristic approach obtains
high-quality solutions in a short time, and the exact algorithm can solve some instances of
real-life size in a reasonable time. We observe that it improves efficiency up to 14% when
considering yard partitioning and container scheduling together. Future research could
consider a more flexible range of container movements, e.g., containers can pass through
more than one crane working area by introducing sorter vehicles. Furthermore, dynamic
policy for the crane zone may further improve the makespan, i.e., the crane working zones
can overlap.

In chapter 3, we address an asymmetric traveling salesman problem with a makespan
objective function, namely the single crane scheduling problem, which is also a subprob-
lem of the crane scheduling problem in chapter 2. We propose a dynamic branch-and-cut
algorithm (DBC) with new separation routines. The DBC is, to the best of our knowl-
edge, the first branch and cut based algorithm for such a problem. We also design a
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decomposition algorithm (DA) specifically for the makespan objective, which is a metas-
tructure that can be integrated with other algorithms. In a computational study, we
observe that the DA reduces the run time significantly for many test instances, and the
combined algorithm DBC&DA is able to solve all the instances of our real-life simulations.
Future research could consider improving this algorithm’s efficiency further, e.g., consider
combining more advantages of other exact algorithms with DBC.

Finally, Chapter 4 focuses on the product sequencing problem in paced multiple-piece-
flow assembly lines, namely m-vector bin packing and sequencing problem. We intensely
study the properties of the problem and examine its relation to several classic optimization
problems. We present a mixed-integer model formulation solved by IBM ILOG Cplex and
design an iterative variable neighborhood heuristic (IVNH). We compare the performance
of IVNH and Cplex. For smaller test instances, the IVNH is able to find an optimal solu-
tion on the millisecond time scale for almost all cases; for real-life sized instances, it clearly
outperformed Cplex with better solutions and shorter run times. Furthermore, the cal-
culation results show the importance of reasonable promised delivery dates. Specifically,
sometimes tight delivery times make some better combinations of workpieces impossible.
Further work needs to be done to develop an efficient exact algorithm that can solve
instances of real-life size in acceptable run times.
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