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Zusammenfassung

Im Zentrum der naturwissenschaftlichen Forschung steht das Verständnis und die
Modellierung realer Phänomene. Hierbei basieren die Modelle auf empirischen
Beobachtungen sowie grundlegenden physikalischen Prinzipien und werden verwen-
det, um konkrete praktische Probleme zu lösen. Häufig verknüpfen sie hierbei eine
unzugängliche Ursache mit einer messbaren Wirkung. Daraus ergeben sich zwei
fundamentale, zueinander duale Probleme: einmal das direkte Problem, aus der
Kenntnis der Ursache die Wirkung vorherzusagen, sowie das inverse Problem, die
eine gemessene Wirkung bedingende Ursache zu bestimmen. Beispielsweise wer-
den im Rahmen tomographischer Verfahren die physikalischen Eigenschaften von
Röntgenstrahlen verwendet, um das Zusammenspiel zwischen der Dichteverteilung
eines Körpers sowie dem Intensitätsabfall durch diesen Körper gesandter Strahlen zu
beschreiben. Hierbei besteht das inverse Problem darin, Röntgenstrahlen aus ver-
schiedenen Richtungen durch den Körper zu schicken und die entsprechenden Inten-
sitätsabfälle zu messen, und schließlich daraus die unbekannte Dichteverteilung im
Körper zu ermitteln. Inverse Probleme zeichnen sich dadurch aus, dass sie typischer-
weise schlecht gestellt sind, in erster Linie die Stabilität betreffend. Selbst kleinste
Messfehler haben enorme Konsequenzen für die Rekonstruktion der Ursache.

Neben der Röntgentomographie lassen sich noch viele weitere inverse Probleme als
abstrakte lineare Gleichung

Kx = y

in unendlichdimensionalen Hilberträumen formulieren, wobei K ein kompakter, lin-
earer Operator ist, x die unbekannte Ursache und y die zu messende Wirkung.
Aufgrund unvermeidbarer Mess- und Modellierungsfehler ist auch die Wirkung y
unbekannt, stattdessen ist aus der (gestörten) Messung yδ ≈ y eine Approximation
an x zu bestimmen. Der naive Lösungsansatz, der darin besteht eine Approxima-
tion xδ so zu bestimmen, dass möglichst Kxδ = yδ gilt, scheitert im Allgemeinen an
der intrinsischen Schlechtgestelltheit inverser Probleme. Unkontrollierte Fehlerver-
stärkung macht die so gewonnenen Rekonstruktionen selbst bei kleinsten Messun-
genauigkeiten unbrauchbar.

Um dennoch eine robuste Rekonstruktion zu ermöglichen, muss das Problem regu-
larisiert werden. Dabei ersetzt man es zunächst durch eine ganze Familie abgeän-
derter Probleme. Diese Familie soll zum einen beliebig genaue Approximationen
des schlechtgestellten Problems enthalten, und zum anderen soll jede Approxima-
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tion für sich stabil sein. Die konkrete Wahl aus der Familie, die sogenannte Pa-
rameterwahlstrategie, stützt sich dann auf zusätzliche a priori Kenntnisse über den
Messfehler yδ − y.
In der klassischen deterministischen Theorie setzt man dabei zunächst die Kenntnis
einer oberen Schranke δ ≥ ‖yδ − ŷ‖ für die Norm des Datenfehlers voraus. Dies ist
entscheidend für die Wahl des Ersatzproblems: je besser ein solches das wahre in-
stabile Problem approximiert, desto unstabiler wird es zwingenderweise (bzw. desto
größer wird die Stetigkeitskonstante). Aus der Stetigkeitskonstante lässt sich nun
wiederum ablesen, wie stark Fehler verstärkt werden und um Konvergenz gegen die
wahre Lösung zu erhalten ist nun nur noch darauf zu achten, dass die maximale
Fehlerverstärkung mal der oberen Schranke der Norm des Datenfehlers gegen Null
geht (im Limes immer genauerer Messungen δ → 0).

In praktischen Anwendungen liegt eine präzise obere Fehlerschranke allerdings ad
hoc nicht vor. Tatsächlich besagt das fundamentale Bakushinskii-Veto, dass die
Kenntnis einer oberen Fehlerschranke nicht nur hinreichend, sonder auch notwendig
ist. Aus der Existenz einer von der Schranke δ unabhängigen Rekonstruktions-
methode würde direkt die stetige Invertierbarkeit obiger Gleichung folgern, was der
Schlechtgestelltheit widerspräche.

Eine häufige Annahme ist, dass die Messungen yδ Realisierungen einer Zufallsvari-
ablen sind. Auf Grund der Zufälligkeit hat man keine sichere Kenntnis einer oberen
Schranke für die Norm des Fehlers. Stattdessen trifft man quantitative Vorabannah-
men über die Fehlerverteilung und häufig schränkt man sich auf Gaußverteilungen
ein, um untypisches Verhalten der (zufälligen) Messungen durch starke Konzen-
trationsungleichungen zu kontrollieren. Auch hierbei ist in Anwendungen die An-
nahme einer Gaußverteilung sowie die Vorabkenntnis der Verteilung überhaupt oft-
mals schwierig zu rechtfertigen, beziehungsweise nicht erfüllt.

Dieser Problematik wird in dieser Arbeit wie an folgendem Beispiel demonstriert
begegnet. Mit einem Teleskop sollen Informationen über eine entfernte Galaxie
gewonnen werden. Dabei werden die Bilder unweigerlich durch z.B. atmosphärische
Turbulenzen gestört. Allerdings ändern sich besagte Turbulenzen sehr schnell, wo-
hingegen die relevanten Eigenschaften der Galaxie auf einer entsprechend kleinen
Zeitskala als konstant angesehen werden können. Es liegt also nahe, mehrere Bilder
aufzunehmen und dann die Messfehler herauszumitteln.

Die Verwendung mehrfacher Messungen ist tatsächlich gängige Praxis in Anwen-
dungen, bekannt als "Signalmittelung". In dieser Arbeit wird dieser Prozess in die
Analyse integriert. Die Daten werden dabei aus mehreren Messungen gemittelt,
welche einer beliebigen, unbekannten Verteilung folgen, wobei die zur Lösung des
Problems unweigerlich notwendige Fehlerschranke geschätzt wird. Auf Mittelwert
und Schätzer wird dann ein klassisches Regularisierungsverfahren angewandt.

Als Regularisierungen werden größtenteils Filter-basierte Verfahren behandelt, die
sich auf die Spektralzerlegung des Operators K stützen. Als Parameterwahlstrate-
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gien werden dabei zunächst einfache Strategien betrachtet, die sich nur auf die
(geschätzte) Fehlerschranke stützen (a priori-Wahlen). Mit besagten a priori-Strate-
gien erzielt man im Allgemeinen jedoch nur suboptimale Konvergenzraten. Die Kon-
vergenzgeschwindigkeit hängt von abstrakten Glattheitseigenschaften der wahren
Lösung ab, welche in der Regel unbekannt sind. Adaptive Parameterwahlstrate-
gien, welche üblicherweise neben der (geschätzten) Fehlerschranke von den konkret
gemessenen Daten abhängen, passen sich automatisch an die unbekannten Glattheit-
seigenschaften an und liefern somit optimale Konvergenzraten. Adaptive Verfahren
werden auch als a posteriori Verfahren bezeichnet. Als Prototyp eines adaptiven
Verfahrens betrachten wir in dieser Arbeit das Diskrepanzprinzip. Hierbei wird das
Beispielproblem (beziehungsweise der Regularisierungsparameter) so ausgewählt,
dass die Norm des Residuums, dass heißt der Abstand zwischen den gemessenen
Daten und der (abgebildeten) Rekonstruktion, in etwa dem geschätzten Datenfehler
entspricht. Dieses Verfahren ist eines der am häufigsten genutzten, da es einfach zu
implementieren ist und in vielen Fällen optimale Konvergenzraten liefert.

Konkret ist im ersten Kapitel eine Folge Y1, Y2, ... unabhängiger und identisch verteil-
ter Messungen der wahren Daten ŷ gegeben, d.h. jede Messung entspricht beispiel-
sweise einer ganzen zufälligen Funktion. Die Verteilung der Messungen ist beliebig,
es ist einzig vorausgesetzt, dass sie unverzerrt sind, E[Yi] = ŷ, und endliche Varianz
haben, E‖Yi − ŷ‖2 <∞. Für n Messungen bezeichnet

Ȳn :=
1

n

n∑
i=1

Yi

den Mittelwert als Schätzer für ŷ. Der zentrale Grenzwertsatz (für Hilbertraumw-
ertige Zufallsvariablen) besagt nun, dass

√
n(Ȳn − ŷ)→ Z

für n → ∞ schwach konvergiert, wobei Z eine normalverteilte Zufallsvariable ist.
Demnach sind

δestn :=
1√
n

oder δestn :=

√
1

n−1

∑n
i=1 ‖Yi − Ȳn‖2

√
n

naheliegende Schätzer für den unbekannten wahren Datenfehler δtruen := ‖Ȳn − ŷ‖.
Auf die gemittelten Daten Ȳn und den geschätzten Datenfehler δestn wird nun ein
deterministisches Regularisierungsverfahren angewandt. Man zeigt ohne Probleme
die Konvergenz in L2, auch genannt Konvergenz im quadratischen Mittel, für a pri-
ori Verfahren. Schwierigkeiten bereitet dann die Analyse des Diskrepanzprinzips,
welches bekanntermaßen sensitiv auf ein Unterschätzen des Datenfehlers reagiert,
was hier unvermeidlich immer wieder auftritt (mit uniform in n von der Null weg
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beschränkter Wahrscheinlichkeit). Tatsächlich wird gezeigt, dass das Diskrepanz-
prinzip nicht in L2 konvergiert. Dementsprechend ist überraschend, dass Konver-
genz in Wahrscheinlichkeit gilt. Hierbei nutzt man aus, dass die Richtung, aus
der Ȳn gegen ŷ konvergiert, durch die Kovarianzstruktur einer Messung festgelegt
ist. Weiterhin adaptiert das Diskrepanzprinzip in dem Sinne, dass mit gegen Eins
strebender Wahrscheinlichkeit die optimale deterministische Rate gilt.

Schließlich wird noch der Zusammenhang zu minmax-optimalen Schätzern sowie zu
heuristischen Regularsierungsverfahren diskutiert. Auch hierbei ist entscheidend,
dass durch die spezielle Struktur des Schätzers als Mittelwert aus vielen Einzelmes-
sungen, viele worst-case Fehlerszenarien ausgeschlossen sind. Es wird unter anderem
gezeigt, dass durch eine Reskalierung der Messungen und des Operators potentiell
eine bessere (als die deterministisch erwartete) Konvergenzrate erreichbar ist, sowie
dass die in der Theorie heuristischer Verfahren populäre Mouckenhoupt-Bedingung
hier in der Regel nicht erfüllt ist.

Die Bedingung der beschränkten Varianz E‖Yi− ŷ‖2 <∞ schließt Weißes Rauschen
als Fehlerverteilung aus. Um die Resultate auf diesen Fall zu erweitern, wird im
zweiten Kapitel ein semi-diskretes Modell betrachtet. Die Messungen sind nicht
mehr Elemente des Hilbertraums, sondern lineare Funktionale l1, l2, ..., bezeichnet
als Messkanäle. Man denke im Falle von Funktionenräumen beispielsweise an Punk-
tauswertungen oder Integrale über kleine Bereiche. Es sind dann wiederholte Mes-
sungen auf jedem Kanal gegeben, wobei Yij die i-te Messung des j-ten Kanals beze-
ichnet. Damit ist

 Y11 − l1(ŷ)
...

Y1m − lm(ŷ)

 ,

 Y21 − l1(ŷ)
...

Y2m − lm(ŷ)

 , ... ⊂ Rm

unabhängiges und identisch verteiltes Weißes Rauschen (unbekannter Verteilung),
mit E[Yij − lj(ŷ)] = 0 und E (Yij − lj(ŷ))2 <∞. Entsprechend ist

Ȳ (m)
n :=

1

n

n∑
i=1

Yi1
...
Yim


der komponentenweise Mittelwert und der unbekannte Datenfehler∥∥∥∥∥∥Y (m)

n −

 l1(ŷ)
...

lm(ŷ)

∥∥∥∥∥∥
wird durch
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δestm,n :=

√
m

n
oder δestm,n :=

√√√√m

n

m∑
j=1

1

n− 1

n∑
i=1

(
Yij −

1

n

n∑
l=1

Ylj

)2

geschätzt. Wieder gilt L2-Konvergenz für a priori Verfahren und Konvergenz in
Wahrscheinlichkeit für das Diskrepanzprinzip, im Limes unendlich vieler Messun-
gen (n → ∞) und unendlich feiner Diskretisierung (m → ∞). Hierbei ist be-
merkenswert, dass die Diskretisierung l1, l2, ... nur zwei sehr einfache, qualitative
Bedingungen zu erfüllen hat, namentlich dass sie vollständig und quadratsummier-
bar ist, d.h. dass für beliebige y 6= 0 aus dem Hilbertraum gilt

∃lj with lj(y) 6= 0 und
∞∑
j=1

lj(y)2 <∞.

Im dritten Kapitel wird schließlich ein einfaches stochastisches Gradientenverfahren
für die Lösung inverser Probleme untersucht. Dies ist ein Prototyp einer ganzen
Klasse neuartiger Verfahren, die für im Kontext maschinellen Lernens auftretende
extrem hoch-dimensionale Probleme entstanden sind, für welche sich Filter-basierte
Verfahren auf Grund des enormen numerischen Aufwands als unpraktikabel er-
weisen.

Diese Verfahren sind im Rahmen der klassischen Regularisierungstheorie kaum un-
tersucht. Hier wird mit dem Diskrepanzprinzip erstmals eine adaptive Stoppregel für
das stochastische Gradientenverfahren untersucht und rigoros Konvergenz gezeigt.
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Introduction

At the heart of science lies the modeling of natural phenomena. The models, de-
rived from empirical observations and principal physical laws, are used to tackle
problems in practical applications. The models are connecting a cause with an ob-
servation, and therefore yield two fundamental problems. The direct problem is the
question, given a cause what is the observation, whereas the inverse problem is to
determine the cause, when given the observation. E.g. in x-ray tomography the
physical properties of x-rays are used to describe the interplay between the absorp-
tive properties of a body and the resulting damping of the intensity of a x-ray passing
through the body. Here the inverse problem is to determine the mass density of the
body from measurements of the intensity decays of x-rays passing through the body
from various directions. Inverse problems are often ill-posed, i.e. they fail to fulfill
Hadamard’s criteria of well-posedness. Hadamard called a problem well-posed, if
there exists a solution for arbitrary data, the solution is unique and moreover de-
pends continuously on the data. In our case, typically the solution is unstable with
respect to small perturbations of the observation, which are intrinsically inevitable
in practical applications.

Many inverse problems, as the one mentioned above, can be mathematically stated
as the equation

Kx̂ = ŷ, (0.1)

where K is a compact linear operator between infinite-dimensional Hilbert spaces,
x̂ is the unknown quantity of interest which has to be determined from a noisy
measured observation yδ of the true data ŷ. We assume for a moment, that K is
injective with dense range. Clearly, on R(K) the problem (0.1) has a solution given
by K−1ŷ. The ill-posedness stems now from the compactness of K and manifests
in the fact, that R(K) ( Y and hence, not for all ŷ ∈ Y there is a solution of
(0.1). Even worse it holds that the restriction of K−1 to R(K) is not continuous.
Thus for noisy measurements yδ of ŷ with ‖yδ − ŷ‖ ≤ δ, δ → 0 does not imply that
K−1yδ → K−1ŷ (if the former exists at all). That is even for arbitrarily precise
measurements no stable reconstruction is possible. From that arises the need of
regularisation. Going back to the works of Tikhonov [Tik63] and Phillips [Phi62],
(0.1) is replaced with the minimisation problem

min
x∈X
‖Kx− yδ‖2 + α‖x‖2 (0.2)
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where the so called regularisation parameter α > 0 balances how good a candidate
x fits the observed data yδ with is regularity ‖x‖. In contrast to (0.1), a solution of
(0.2) exists for all yδ ∈ Y and α > 0, and it depends for fixed α continuously (and
linearly) on y. In fact, via the Gaussian normal equations, one obtains the following
explicit presentation

Rαy := (K∗K + αIY)−1K∗y

for the solution of (0.2). For the exact data ŷ ∈ R(K) it thus holds that Rαŷ →
K−1ŷ = x̂ as α → 0. In order to approximate the unknown solution x̂ it remains
to determine the regularisation parameter α = α(δ, yδ) for noisy measurements yδ
with ‖yδ − ŷ‖ ≤ δ. From the decomposition

‖Rα(δ,yδ)y
δ − x̂‖ ≤ ‖Rα(δ,yδ)y

δ −Rα(δ,yδ)ŷ‖+ ‖Rα(δ,yδ)ŷ −K−1ŷ‖ (0.3)
≤ ‖Rα(δ,yδ)‖δ + ‖Rα(δ,yδ)ŷ −K−1ŷ‖ (0.4)

one directly deducts the following convergence result. Let α = α(δ) be such that

α(δ) and ‖Rα(δ)‖δ → 0, (0.5)

then

‖Rα(δ)y
δ −K−1ŷ‖ → 0,

as δ → 0, where ŷ ∈ R(K) and (yδ)δ>0 ⊂ Y with ‖yδ − ŷ‖ ≤ δ. Such choices α,
which do not depend on the observation yδ, are called a priori.

The assumption for α in (0.5) is rather unspecific and fulfilled by a wide range
of choices, so the question arises, to find the optimal one. A quick look at (0.3)
reveals, that for δ fixed, the first and second term, called the data propagation and
the approximation error, become larger respectively smaller for decreasing α. Thus
one has to find the value of α which balances the both terms. Since the true data
y is unknown, this cannot be done directly. However, the following intuitive and
simple choice in essence automatically balances the both terms. The discrepancy
principle, due to Morozov [Mor68], which postulates to determine the regularisation
parameter such that the discrepancy between the measured data and the candidate
approximately matches the noise level δ

‖KRα(δ,yδ)y
δ − yδ‖ ≈ δ. (0.6)

Both the a priori choice (0.5) and the discrepancy principle (0.6) share one drawback,
as they require the explicit knowledge of the noise level δ, which is usually not jus-
tified in applications. Therefore, it would be desirable to have rules for determining
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the regularisation parameter, which are purely data driven (i.e. independent of δ)
and guarantee convergence for δ → 0. The following famous result, the Bakushinskii
veto [Bak84], states, that such rules do not exist.

Theorem 0.0.1 (Bakushinskii veto). There are no parameter choice rules α : Y →
(0,∞), such that for all ŷ ∈ R(Y ) and all (yδ)δ>0 ⊂ Y with ‖yδ − ŷ‖ ≤ δ, there
holds

lim
δ→∞

Rα(yδ)y
δ = K−1ŷ = x̂.

Proof. We give the short standard proof and argue by contradiction. Assume there
exists such a parameter choice rule α. For y ∈ R(K) we set yδ = y for all δ > 0.
Then it follows that Rα(y)y = limδ→0Rα(yδ)y

δ = K−1y. Now let (yδ)δ>0 ⊂ R(K) be
arbitrary with ‖yδ − y‖ ≤ δ. Then it holds that

K−1yδ = Rα(yδ)y
δ → K−1y

as δ → 0. Hence K−1 is continuous on R(K), contradicting the ill-posedness of K.

�

The framework presented so far (where one has an upper bound for the noise level),
is usually titled deterministic inverse problems, which is complemented by so called
stochastic or statistical inverse problems. In the latter scenario, the measurement
yδ is seen as a random variable. The assumption of knowing the noise level δ is then
replaced with knowledge about the error distribution. Very often, one restricts to
certain classes of distributions, e.g. Gaussian distributions.

In this thesis, we rigorously explore a natural setting which requires no a priori
knowledge, neither of an upper bound of the noise level nor about the (arbitrary
and usually non-Gaussian) error distribution. In applications, the a priori knowl-
edge of the error stems, in many cases, from the estimation with multiple repeated
measurements. Thus the key assumption we impose, is that a measurement can be
repeated and a crucial requirement is that the solution does not change at least on
small time scales. Let us stress, that using multiple measurements to decrease the
data error is actually a standard engineering practice called ’signal averaging’, see,
e.g., [Lyo04] for an introducing monograph or [HA10] for a survey article. Examples
with low or moderate numbers of measurements (up to a hundred) can be found
in [BLMT09] or [MBLW04] on image averaging or [GSS14] on satellite radar mea-
surements. For the recent first image of a black hole, even up to 109 samples were
averaged, cf. [AAA+19].

So instead of one single measurement yδ we have multiple unbiased, identically dis-
tributed and independent measurements Y1, Y2, Y3, ... of the exact data y (e.g., every
measurement is a whole random function). The multiple measurements naturally
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yield

Ȳn :=
1

n

n∑
i=1

Yi

as an estimator of y. Indeed, the law of large numbers (see [LT91] for Hilbert space
valued random variables), states that Ȳn → y in probability (and a.s. and in L2)
as n → ∞. So, in the light of the Bakushinskii veto (Theorem 2.1.8) we need a
reasonable guess for the data error δtruen := ‖Ȳn − y‖. By the central limit theorem,

√
n
(
Ȳn − y

)
→ Z

in distribution, as n → ∞, where Z is a Gaussian random variable. Therefore, a
natural estimator of δtruen would be

δestn =
1√
n

or δestn =

√
1

n−1

∑n
i=1

∥∥Yi − Ȳn∥∥2

√
n

.

Consequently, a natural attempt to solve the inverse problem, is to apply some
deterministic regularisation method with data Ȳn and (estimated) noise level δestn
and to investigate whether and in which sense the resulting approximation converges
against the true solution of the problem.

In Chapter 1 we thoroughly analyse the above approach under the assumption,
that the measurements have a strongly bounded second moment, i.e. E‖Y1‖2 <
∞. We show convergence in L2 (a.k.a. convergence in mean square) for a priori
regularisation (0.5) and convergence in probability for the discrepancy principle
(0.6). In case of the discrepancy principle it is moreover shown, that the optimal
deterministic rate holds with a probability tending to 1 as the number of repetitions
n goes to infinity. Thus, one can solve the inverse problem by estimating the noise
level from multiple measurements of unknown distribution. Further, we also discuss
optimality in a statistical context and show, how one may obtain a better rate (than
the one from a deterministic worst case scenario). Finally we relate to popular
heuristic methods.

In general, there are two approaches to tackle an ill-posed problem with stochas-
tic noise. The Bayesian setting considers the solution of the problem itself as a
random quantity, on which one has some a priori knowledge (see [KS06], [NP15]).
This opposes the frequentist setting, where the inverse problem is assumed to have
a deterministic, exact solution ([Cav11],[BHMR07],[NP15]). We are working in the
frequentist setting, but we stay close to the classic deterministic theory of linear in-
verse problems ([EHN96],[Rie13],[TA77], [IJ15]). E.g., in statistical inverse problem
optimality results are usually of the form, that one shows that a given estimator is
minmax (eventually using an oracle inequality). We on the other hand show, that
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our approach yields asymptotically the optimal deterministic rate with probability 1.
However, we will relate to minmax estimators in Section 1.3. In [BHMR07] a priori
error bounds under general noise distributions are given. Popular adaptive meth-
ods to determine the regularisation parameter are cross validation [Wah77], Lep-
ski’s balancing principle [MP03b] or penalised empirical risk minimisation [CG+06].
These works are restricted to Gaussian noise, which is usually due to the need for
strong concentration inequalities and control of large deviations. Moreover, the im-
plementation of these methods is typically computationally much more demanding
compared to the discrepancy principle, which is the main parameter choice rule con-
sidered in this thesis. Recently, modifications of the discrepancy principle, which
require the explicit knowledge of the singular value composition ofK, were studied in
the statistical setting under Gaussian noise ([BM12],[LM14],[BHR18],[LPB+18]). In
[G+11], [BR08],[Bec11],[Wer18] various ways are described how to solve a given sta-
tistical inverse problem under Gaussian noise without knowing the exact noise level.
We extend this results to arbitrary error distributions without any knowledge of the
singular value decomposition of K. Finally we want to mention ([Hof06],[GHR17]),
where results from the classical deterministic theory are transfered using the Ky-Fan
metric, which induces convergence in probability. Here the crucial requirement is,
that one knows the Ky-Fan distance between the measurements and the true data.

In the references mentioned above, the error is often modelled as a Hilbert space
process (such as Gaussian white noise, [Don95],[CT02]) and thus violates the con-
dition E‖Y1‖2 <∞. Under the popular assumption that the operator K is Hilbert-
Schmidt, one could in principle extend the results of Chapter 1 to a general Hilbert
space process error model (considering the symmetric equation K∗Kx̂ = K∗ŷ in-
stead of Kx̂ = ŷ, as it is done for example in [BM12]). However, this usually impairs
the relative smoothness of the true solution and yields worse error bounds. In or-
der to extend the above results to white noise scenarios we thus proceed differently
and investigate a semi-discrete model under arbitrary unknown white noise. As an
arbitrary element of an infinite-dimensional space, y cannot be measured directly.
Instead we assume that one may measure l1(y), l2(y), ... for various (normed) linear
functionals, which we refer to as measurement channels.

So we assume that we have multiple unbiased, identically distributed and indepen-
dent measurements on each measurement channel. We denote by Yij the i-th sample
on the j-th measurement channel. Then

 Yi1 − l1(y)
...

Yim − lm(y)


i∈N

⊂ Rm

are i.i.d. white noise vectors with unknown distribution. With the component wise
average
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Ȳ (m)
n :=

1

n

n∑
i=1

Yi1
...
Yim

 ,

the application of Tikhonov’s method 0.2 yields the following optimisation problem

min
x∈X

∥∥∥∥∥∥
 l1(Kx)

...
lm(Kx)

− Ȳ (m)
n

∥∥∥∥∥∥
2

+ α‖x‖2.

The regularisation parameter α has to be chosen accordingly to the data error
‖Ȳ (m)

n −
(
l1(y) ... lm(y)

)T ‖. Based on the samples we estimate the latter by

δestm,n =

√
m

n
or δestm,n =

√√√√m

n

1

m

m∑
j=1

1

n− 1

n∑
i=1

(
Yij −

1

n

n∑
l=1

Ylj

)2

.

Again the approach is to use a deterministic regularisation method together with
Ȳ

(m)
n and δestm,n.

In Chapter 2 we analyse the above approach in detail for arbitrary error distributions
fulfilling EY 2

11 < ∞. Regarding the measurement channels (lj)j∈N we only impose
two natural restrictions, namely, that it is complete and l2−summable, i.e. that for
all y ∈ Y \ {0} there is a lj with lj(y) 6= 0, and that

∑∞
j=1 lj(y)2 < ∞. Again we

obtain convergence in L2 for a priori regularisation and convergence in probability
for the discrepancy principle, as the number of measurements channels m and the
number of repetitions n tend to infinity (such that m/n → 0). We also investigate
a related approach and show how to obtain the optimal deterministic rate under
additional knowledge of a distretisation error.

It is widely known that discretisation has a regularising effect, see for example
[MP01],[Han10] for the discretisation in the deterministic setting, [MP01], [MP03a]
for the statistical frequentist setting and [KS07] for the Bayesian approach. In
general, one can either first regularise the infinite-dimensional problem and then
discretise, or, as it is done here one first discretises and then regularises the finite-
dimensional problem. So far, inverse problems under white noise are treated the
first way, and the white noise is modeled as a Hilbert space process operating on
Y , see [BHMR07], [Cav11]. The major challenge of this modeling is, that then the
measurements are not elements of Y . This implies some drawbacks, e.g. one has to
restrict to sufficiently smoothing operators and to include correction terms in the
convergence rates (compared to the classical deterministic rates). Most importantly,
the discrepancy principle cannot be applied directly due to the unboundedness of
the noise. These technical difficulties are not present in the semi-discretised setting
considered here. It is notable, that the main convergence result in this chapter
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guarantees convergence for arbitrary unknown distribution, as long as one is able
to measure repeatedly, under quite general assumptions on the discretisation, which
are only of qualitative nature and most importantly are independent of the unknown
exact right hand side.

To summarise the connection of the first two chapters to the Bakushinskii veto let us
state the following. The Bakushinskii veto states that the inverse problem can only
be solved with a deterministic regularisation, if the noise level of the data is known.
Here we show, that if one has access to multiple i.i.d. measurements of an unknown
distribution, one may use as data the average together with the estimated noise level
and one (eventually) obtains the optimal deterministic rate with high probability,
as the number of measurements tends to infinity. That is one can estimate the
measurement error from the data.

Finally, when it comes to practically solve an inverse problem one has to fully
discretise (0.1). This yields a finite-dimensional equation

Ax = y, (0.7)

with x ∈ Rm, y ∈ Rn and A ∈ Rn×m. The ill-posedness now resembles in the
fact that these problems are extremely bad conditioned, thus standard methods for
solving linear equations may it be direct methods (e.g. LR/LU decomposition) or
iterative methods (Gauß-Seidel or Jacobi) cannot be used due to stability issues
and have to be replaced with stable regularisation methods. For extremely high
dimensional discretisations, the direct application of Tikhonov’s method as in (0.3)
(or other classical methods) may become infeasible due to computational complexity
and one rather relies on iterative methods. Hereby, a computationally particularly
cheap method is stochastic gradient descent [RM51, BCN18], which directly scales
to the dimension of the problem and uses only vector-vector multiplications. In
fact, stochastic gradient descent and its variants (e.g., minibatch and accelerated)
have been established as the workhorse behind many challenging training tasks in
deep learning [Bot10, BCN18], and they are also popular for image reconstruction in
computed tomography [GBH70, Nat86]. Due to its popularity in machine learning
and big data applications, there exists a considerable amount of literature about the
convergence properties of stochastic gradient descent as an optimisation algorithm.
However, the mathematical theory in the lens of classical regularisation theory is
rather incomplete, as it does not fit in the framework of filter-based regularisation. In
the work [JL19] the regularising property of stochastic gradient descent was explored
for the first time. Further, a convergence rate in the mean squared norm was derived,
under suitable source type condition on the true solution x̂. These results were
recently extended to mildly nonlinear inverse problems, further assisted with suitable
nonlinearity conditions of the forward map [JZZ20a]. However, in these works,
the convergence rate can only be achieved under a knowledge of the smoothness
parameter of x̂, which is usually not directly accessible in practice. Therefore, it
is of enormous practical importance and theoretical interest to develop a posteriori

13



stopping rules that do not require such a knowledge.

In Chapter 3 we give a first rigorous analysis of the discrepancy principle as an
adaptive stopping rule for stochastic gradient descent. We prove the convergence of
the approach and a finite termination property. Also, a partial result on optimality
is given.
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Chapter 1

The case with finite variance

Section 1.1, 1.2 and 1.5 are up to minor changes published in [HJP20a]. Sections
1.3 and 1.4 contain yet unpublished results. All the main proofs for the results from
the aforementioned sections are collected in section 1.6. Accompanying numerical
results and a short outlook are presented in sections 1.7 and 1.8.

We start by recapping and slightly generalising the setting as presented in the in-
troduction. The goal is to solve the ill-posed equation Kx̂ = ŷ, where x̂ ∈ X and
ŷ ∈ Y are elements of infinite-dimensional Hilbert spaces and K is either linear
and bounded with non-closed range, or more specifically compact. We do not know
the right hand side ŷ exactly, but we are given several measurements Y1, Y2, ... of
it, which are independent, identically distributed and unbiased (EYi = ŷ) random
variables. Thus we assume, that we are able to measure the right hand side multiple
times. The given multiple measurements naturally lead to an estimator of ŷ, namely
the sample mean

Ȳn :=

∑
i≤n Yi

n
.

But, in general K+Ȳn 6→ K+ŷ for n → ∞, because the generalised inverse (Defini-
tion 2.2 of [EHN96]) of K is not continuous. So the inverse is replaced with a fam-
ily of continuous approximations (Rα)α>0, called regularisation, e.g. the Tikhonov
regularisation Rα := (K∗K + αId)−1K∗, where Id : X → X is the identity, as mo-
tivated (0.2) in the introduction. The regularisation parameter α has to be chosen
accordingly to the data Ȳn and the true data error

δtruen := ‖Ȳn − ŷ‖,

which is a random variable. Since ŷ is unknown, δtruen is also unknown and has to
be guessed. Natural guesses are

δestn :=
1√
n

or δestn :=

√∑
i≤n ‖Yi − Ȳn‖2/(n− 1)

√
n

.
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Chapter 1. The case with finite variance

A natural approach is now to use a (deterministic) regularisation method together
with Ȳn and δestn . We are in particular interested in the discrepancy principle (0.6),
which is known to provide optimal convergence rates (for some ŷ) in the classical
deterministic setting. The main result of this chapter states, that the approach
converges in probability for the discrepancy principle, and the optimal deterministic
(worst case) error bound holds with a probability converging to 1 (as the number
of measurements n tends to infinity). Moreover it is shown, that the approach in
general does not yield L2-convergence1 for a naive use of the discrepancy principle,
but it does for a priori regularisation.
In the following section we apply our approach to a priori regularisations and in the
main part we consider the widely used discrepancy principle. Then we compare the
obtained rates with the rates attained by the optimal oracle and show how to obtain a
better rate than the deterministic one with a modified rescaled discrepancy principle
for spectral cut-off. Then we quickly discuss relations to heuristic parameter choice
rules and show how to choose δestn to obtain almost sure convergence. We conclude
with some numerical experiments.

1.1 A priori regularisation

We use the usual definition that Rα : Y → X is called a linear regularisation, if
Rα is a bounded linear operator for all α > 0 and if Rαy → K+y for α → 0 for
all y ∈ D(K+). A regularisation method is a combination of a regularisation and a
parameter choice strategy α : R+×Y → R+, such that Rα(δ,yδ)y

δ → K+y for δ → 0,
for all y ∈ D(K+) and for all (yδ)δ>0 ⊂ Y with ‖yδ−y‖ ≤ δ. The method is called a
priori, if the parameter choice does not depend on the data, that is if α(δ, y) = α(δ).
The measurements can be modelled as realisations of an independent and identically
distributed sequence (Yi)i∈N of (integrable) random variables with values in Y on a
probability space (Ω,A,P). This requires E‖Y1‖2 < ∞ (so that the measurements
lie (almost surely) in the Hilbert space) and the unbiasedness assumption can simply
be stated as E[Y1] = ŷ ∈ D(K+). Moreover we assume that E‖Y1‖2 > 0, to avoid the
trivial case of (almost surely) constant measurements. Finally, measureability of all
involved quantities (e.g. of δestn , δtruen , αn, ...) can be derived by standard arguments
from the measureability of (Yi)i∈N and we will not comment further on this issue
throughout the thesis, but rather refer to [LT91].
In the following we apply the above approach to a priori parameter choice strategies
α(yδ, δ) = α(δ). We restrict to δestn = 1/

√
n here, that is we do not estimate the

variance (otherwise the parameter choice would depend on the data). Since then δestn
and hence α(δestn ) are deterministic, the situation is very easy here and the results
are not surprising (see Remark 1.1.5).

1also called convergence of the integrated mean squared error or root mean squared error

16



1.1 A priori regularisation

Theorem 1.1.1 (Convergence of a priori regularisation). Assume that K : X → Y
is a bounded linear operator with non-closed range between Hilbert spaces and that
Y1, Y2, ... are i.i.d. Y−valued random variables which fulfill E[Y1] = ŷ ∈ D(K+)

and 0 < E‖Y1‖2 <∞. Take an a priori regularisation scheme, with α(δ)
δ→0−→ 0 and

‖Rα(δ)‖δ
δ→0−→ 0. Set Ȳn :=

∑
i≤n Yi/n and δestn := n−1/2. Then limn→∞ E‖Rα(δestn )Ȳn−

K+ŷ‖2 = 0.

Proof. Because of linearity, E [RαY1] = RαE [Y1] = Rαŷ and thus by (1.5) below

E‖RαȲn −Rαŷ‖2 =
1

n2
E

∥∥∥∥∥
n∑
i=1

Rα (Yi − ŷ)

∥∥∥∥∥
2

=
E‖RαY1 −Rαŷ‖2

n
,

since RαYi ∈ R(K∗) where the latter is separable. Therefore, by the bias-variance-
decomposition,

E‖Rα(δestn )Ȳn −K+ŷ‖2 = E‖Rα(δestn )Ȳn −Rα(δestn )ŷ +Rα(δestn )ŷ −K+ŷ‖2

= E‖Rα(δestn )Ȳn −Rα(δestn )ŷ‖2 + ‖Rα(δestn )ŷ −K+ŷ‖2

=
E‖Rα(δestn )Y1 −Rα(δestn )ŷ‖2

n
+ ‖Rα(δestn )ŷ −K+ŷ‖2

≤
‖Rα(δestn )‖2

n
E‖Y1 − ŷ‖2 + ‖Rα(δestn )ŷ −K+ŷ‖2

= ‖Rα(δestn )‖2δestn
2
E‖Y1 − ŷ‖2 + ‖Rα(δestn )ŷ −K+ŷ‖2

→ 0 for n→∞.

�

As in the deterministic case, under additional source conditions for x̂ we can prove
convergence rates. In this thesis we will consider classical Hölder-type source con-
ditions, which date back at least to [Lav62]. These allow explicit presentation of
the derived rates. However, not all x̂ fulfill such a condition. In this context, the
study of general source conditions (see e.g. [Heg92],[Tau98],[HM07] and [MH08])
would be interesting, allowing to derive convergence rates for arbitrary x̂. We
leave this as a possible future work. In the following we restrict to regularisations
Rα := Fα (K∗K)K∗ defined via the spectral decomposition (see [EHN96]) with the
following assumptions for the generating filter.

Assumption 1.1.2. (Fα)α>0 is a regularising filter, i.e. a family of bounded real
valued functions on (0, ‖K‖2] with limα→0 Fα(λ) = 1

λ
and λFα(λ) ≤ CR for all α > 0

and all λ ∈ (0, ‖K‖2], where CR > 0 is some constant. Moreover, it has qualification
ν0 > 0, i.e. ν0 is maximal such that for all ν ∈ [0, ν0] there exists a constant Cν > 0
with

sup
λ∈(0,‖K‖2]

λν/2|1− λFα(λ)| ≤ Cνα
ν/2.
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Chapter 1. The case with finite variance

Finally, there is a constant CF > 0 such that |Fα(λ)| ≤ CF/α for all 0 < λ ≤ ‖K‖2.

Remark 1.1.3. The generating filter of the following regularisation methods fulfill
the Assumption 1.1.2:

1. Tikhonov regularisation (qualification 2)

2. n-times iterated Tikhonov regularisation (qualification 2n),

3. truncated singular value regularisation (infinite qualification),

4. Landweber iteration (infinite qualification).

Theorem 1.1.4 (Rate of convergence of aprioi regularisation). Assume that K :
X → Y is a bounded linear operator with non-closed range between Hilbert spaces and
that Y1, Y2, ... are i.i.d. Y−valued random variables which fulfill E[Y1] = ŷ ∈ D(K+)
and 0 < E‖Y1‖2 < ∞. Let Rα be induced by a filter fulfilling Assumption 1.1.2.
Set Ȳn :=

∑
i≤n Yi/n and δestn = n−1/2. Assume that for 0 < ν ≤ ν0 and ρ > 0 we

have that K+ŷ = (K∗K)ν/2ξ for some ξ ∈ X with ‖ξ‖ ≤ ρ. Then if for constants
0 < c < C,

c

(
δestn
ρ

) 2
ν+1

≤ α(δestn ) ≤ C

(
δestn
ρ

) 2
ν+1

,

we have that
√

E‖Rα(δestn )Ȳn −K+ŷ‖2 ≤ C ′δestn
ν
ν+1ρ

1
ν+1 = O(n−

ν
2(ν+1) ) for some con-

stant C ′ > 0.

Proof.

We proceed similar to the proof of Theorem 1.1.1, using additionally Proposition
1.6.2 of section 1.6.1.

E‖Rα(δestn )Ȳn −K+ŷ‖2 = E‖Rα(δestn )Ȳn −Rα(δestn )ŷ‖2 + ‖Rα(δestn )ŷ −K+ŷ‖2

≤ ‖Rα(δestn )‖2δestn
2
E‖Y1 − ŷ‖2 + ‖Rα(δestn )ŷ −K+ŷ‖2

≤ CRCFE‖Y1 − ŷ‖2 δestn
2

α(δestn )
+ C2

νρ
2α(δestn )ν

≤ CRCFE‖Y1 − ŷ‖2

c
δestn

−2
ν+1ρ

2
ν+1 δestn

2

+ C2
νC

νδestn
2ν
ν+1ρ

−2ν
ν+1ρ2

≤ C ′2δestn
2ν
ν+1ρ

2
ν+1 .

�

Remark 1.1.5. For separable Hilbert spaces one could alternatively argue as fol-
lows: The spaces X ′ := L2(Ω,X ) = {X : Ω→ X : E‖X‖2 <∞} and Y ′ := L2(Ω,Y)
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1.2 The discrepancy principle

are also Hilbert spaces, with scalar products (X, X̃)X ′ :=
√

E(X, X̃)X and (·, ·)Y ′
defined similary. Then K : X → Y induces naturally a bounded linear operator
K ′ : X ′ → Y ′, X 7→ KX. Clearly we have that ŷ ∈ Y ′, and (Ȳn)n is a sequence in
Y ′ which fulfills

‖Ȳn − ŷ‖Y ′ :=
√

(Ȳn − ŷ, Ȳn − ŷ)Y ′ =

√
E‖Y1 − ŷ‖2

n
=
√

E‖Y1 − ŷ‖2δestn

and we can use the classic deterministic results for K ′ : X ′ → Y ′ and Ȳn and δestn .

1.2 The discrepancy principle

In this section we restrict to compact operators with dense range. Note that then
Y = R(K) is separable. In practice the above parameter choice strategies are
of limited interest, since they require the knowledge of the abstract smoothness
parameters ν and ρ. Here, the classical discrepancy principle (0.6) would be to
choose αn such that

‖(KRαn − Id)Ȳn‖ ≈ δtruen = ‖Ȳn − ŷ‖, (1.1)

which is not possible, because of the unknown δtruen . So we replace it with our
estimator δestn and implement the discrepancy principle via Algorithm 1 with or
without the optional emergency stop.

Algorithm 1 Discrepancy principle with estimated data error (optional: with emer-
gency stop)
1: Given measurements Y1, ..., Yn;
2: Set Ȳn :=

∑
i≤n Yi/n and δestn = 1/

√
n or δestn =

√∑
i≤n ‖Yi − Ȳn‖2/(n− 1)/

√
n.

3: Choose a q ∈ (0, 1).
4: k = 0;
5: while ‖(KRqk − Id)Ȳn‖ > δestn (optional: and qk > 1/n) do
6: k = k + 1;
7: end while
8: αn = qk;

Remark 1.2.1. To our knowledge, the idea of an emergency stop first appeared in
[BM12]. It provides a deterministic lower bound for the regularisation parameter,
which may avoid over fitting. We use an elementary form of an emergency stop here,
which does not require the knowledge of the singular value decomposition of K. It
would be interesting to see, how more sophisticated versions of the emergency stop

19



Chapter 1. The case with finite variance

worked here, which is not clear to us since in our general setting we cannot rely on
the concentration properties of Gaussian noise.

Algorithm 1 will terminate, if we use the emergency stop. Otherwise, we can guar-
antee that Algorithm 1 terminates, if K has dense image (or equivalently, if K∗ is
injective) and if δestn > 0. This is because then limα→0KRα = PR(K) = Id pointwise,
so ‖(KRqk − Id)Ȳn‖ < δestn for k large enough . If we decided to use the sample
variance, it may happen that δestn = 0. But assuming E‖Y1 − ŷ‖2 > 0, it follows
that P (δestn = 0) = P (Y1 = ... = Yn) → 0 for n → ∞ (with exponential rate). If
the distribution of Y1 possess a density (with respect to the Gaussian measure for
example), then actually P(Y1 = ... = Yn) = 0 for all n ∈ N.
Unlike in the previous section, here the L2 error will not converge in general, even if
Y1 has a density. The regularisation parameter αn is now random, since it depends
on the potentially bad random data. With a diminishing probability p we are un-
derestimating the data error significantly, and thus the discrepancy principle gives
a too small α and we still have p‖Rα‖ � 1 in such a case.
In the following we will need the singular value decomposition of the compact op-
erator K with dense range (see [Cav11]): there exists a monotone sequence ‖K‖ =
σ1 ≥ σ2 ≥ ... > 0 with σl→0 for l→∞. Moreover there are families of orthonormal
vectors (ul)l∈N and (vl)l∈N with span(ul : l ∈ N) = Y , span(vl : l ∈ N) = N (K)⊥

such that Kvl = σlvl and K∗ul = σlvl.

1.2.1 A counter example for convergence

We now show that a naive use of the discrepancy principle, as implemented in Algo-
rithm 1 without emergency stop, may fail to converge in L2. To simplify calculations
we pick Gaussian noise and the truncated singular value regularisation and we set
δestn = 1/

√
n. We choose X := l2(N) with the standard basis {uk := (0, ..., 0, 1, 0, ...)}

and consider the diagonal operator

K : l2(N)→ l2(N), ul 7→
(

1

100

) l
2

ul

with x̂ = 0 = ŷ = Kx̂. Hence the σl = (1/100)
l
2 are the eigenvalues of K and

Rα : l2(N)→ l2(N), y 7→
∑
l:σ2

l ≥α

σ−1
l (y, ul)ul.

We assume that the noise is distributed along y :=
∑

l≥2 1/
√
l(l − 1)ul, so we have

that
∑

l>n(y, ul)
2 = 1/n and thus y ∈ l2(N). That is we set Ȳn :=

∑
i≤n Yi =∑

i≤n Ziy, where Zi are i.i.d. standard Gaussians. We define Ωn := {Zi ≥ 1, i =
1...n}, a (very unlikely) event on which we significantly underestimate the true data
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1.2 The discrepancy principle

error. We get that P(Ωn) := P(Z1 ≥ 1)n ≥ 1/10n. Moreover, by the definition of
the discrepancy principle

1

n
χΩn = δestn

2
χΩn ≥ ‖(KRαn − Id)Ȳn‖2χΩn = |Z̄n|2‖(KRαn − Id)y‖2χΩn

≥ ‖(KRαn − Id)y‖2χΩn

=
∑

l:σ2
l <αn

(y, ul)
2χΩn =

∑
l:(1/100)i<αn

(y, ul)
2χΩn

=
∑

l>
log(αn)

log(1/100)

(y, ul)
2χΩn ≥

log(1/100)

log(αn)
χΩn

=⇒ αnχΩn <
1

100n
.

It follows that

E‖RαnȲn −K+ŷ‖2 = E‖RαnȲn‖2 ≥ E‖RαnȲnχΩn‖2

= E
[
Z̄2
n‖RαnyχΩn‖

]2 ≥ E‖R1/100nyχΩn‖2

≥
∑

l:σ2
i≥1/100n

σ−2
l (y, ul)

2P(Ωn) ≥ 1

10n

∑
l≤n

σ−2
l (y, ul)

2

≥ 1

10n
100n(y, un)2 =

10n

n(n− 1)
→∞.

That is the probability of the events Ωn is not small enough to compensate the huge
error we have on these events, so in the end E‖RαnȲn −K+ŷ‖2 →∞ for n→∞.

1.2.2 Convergence in probability of the discrepancy principle

In this section we show, that the discrepancy principle yields convergence in proba-
bility, matching the optimal deterministic rate with growing probability. The proofs
of the Theorems 1.2.2 and 1.2.4 and of Corollary 1.2.5 are moved to section 1.6.

Theorem 1.2.2 (Convergence of the discrepancy principle). Assume that K is a
compact operator with dense range between Hilbert spaces X and Y and that Y1, Y2, ...
are i.i.d. Y−valued random variables with EY1 = ŷ ∈ R(K) and 0 < E‖Y1 − ŷ‖2 <
∞. Let Rα be induced by a filter fulfilling Assumption 1.1.2 with ν0 > 1. Applying
Algorithm 1 with or without the emergency stop yields a sequence (αn)n. Then we
have that for all ε > 0

P
(
‖RαnȲn −K+ŷ‖ ≤ ε

) n→∞−→ 1,
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Chapter 1. The case with finite variance

i.e. RαnȲn
P−→ K+ŷ.

Remark 1.2.3. If one tried to argue as in Remark 1 to show L2 convergence one
would have to determine the regularisation parameter not as given by equation (1.1),
but such that E‖(KRα − Id)Ȳn‖2 ≈ δestn , which is not practicable since we cannot
calculate the expectation on the left hand side.

The popularity of the discrepancy principles is a result of the fact that it guarantees
optimal convergence rates under an additional source condition: Assuming that
there is a 0 < ν ≤ ν0 − 1 (where ν0 is the qualification of the chosen regularisation
method) such that K+ŷ = (K∗K)

ν
2 w for a w ∈ X with ‖w‖ ≤ ρ, then

sup
yδ:‖yδ−ŷ‖≤δ

‖Rα(yδ,δ)y
δ −K+ŷ‖ ≤ Cρ

1
ν+1 δ

ν
ν+1 (1.2)

for some constant C > 0. The next theorem shows a concentration result for the
discrepancy principle as implemented in Algorithm 1, where the deterministic bound
δ in (1.2) is replaced with 1/

√
n.

Theorem 1.2.4 (Rate of convergence of the discrepancy principle). Assume that K
is a compact operator with dense range between Hilbert spaces X and Y. Moreover,
Y1, Y2, ... are i.i.d. Y−valued random variables with EY1 = ŷ ∈ R(K) and 0 <
E‖Y1 − ŷ‖2 < ∞. Let Rα be induced by a filter fulfilling Assumption 1.1.2 with
ν0 > 1. Moreover, assume that there is a 0 < ν ≤ ν0 − 1 and a ρ > 0 such that
K+ŷ = (K∗K)ν/2ξ for some ξ ∈ X with ‖ξ‖ ≤ ρ. Applying Algorithm 1 with or
without the emergency stop yields a sequence (αn)n∈N. Then there is a constant L,
such that

P

(
‖RαnȲn −K+ŷ‖ ≤ Lρ

1
ν+1

(
1√
n

) ν
ν+1

)
n→∞−→ 1.

The ad hoc emergency stop αn > 1/n, additionally assures, that the L2 error will
not explode (unlike in the counter example of the previous subsection). Under the
assumption that E‖Y1− ŷ‖4 <∞, one can guarantee, that the L2 error will converge.

Corollary 1.2.5. Under the assumptions of Theorem 1.2.2, consider the sequence
αn determined by Algorithm 1 with emergency stop. Then there is a constant C such
that E‖RαnȲn −K+ŷ‖2 ≤ C for all n ∈ N. If additionally E‖Y1 − ŷ‖4 <∞, then it
holds that E‖RαnȲn −K+ŷ‖2 → 0 for n→∞.

Remark 1.2.6. It would be interesting to quantify in Theorem 1.2.4 how fast the
probability converges to 1, which would eventually allow to determine confidence
balls. Such so called uncertainty quantification has recently been successfully applied
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1.3 Optimality

to inverse problems, see e.g. [Ten17], [Bar18] or [BZAJ20]. The main challenge will
probably lie in quantifying a lower bound for αn (and the probability that such a
bound holds). One could avoid this in weaken the bound on ‖RαnȲn−K+ŷ‖ slightly

from (1/
√
n)

ν
ν+1 to max

(
δestn

ν
ν+1 ,

(
δtruen

δestn

) 1
ν+1

δtruen

ν
ν+1

)
as in Theorem 4 of [HJP20a].

1.3 Optimality

The convergence rates given in Theorem 1.1.4 and 1.2.4 depend on the smoothness
of the true solution x̂ relative to the operator K and were compared to the opti-
mal deterministic convergence rate one would obtain for an arbitrary sequence yn
converging to ŷ = Kx̂ with noise level δn = δtruen ∼ 1/

√
n (i.e. ‖yn − ŷ‖ ≤ δn).

Since with the average Ȳn one has a rather specific sequence converging to ŷ, the
question naturally arises, if one could actually obtain a better convergence rate than
the deterministic one. After fixing a specific regularisation, we therefore define the
minimal risk

inf
α>0

sup
ξ∈X , ‖ξ‖≤ρ

K+ŷ=(K∗K)ν/2ξ

E‖RαȲn −K+ŷ‖2.

and the oracle (if it exists)

αon := arg min
α>0

sup
ξ∈X , ‖ξ‖≤ρ

K+ŷ=(K∗K)ν/2ξ

E‖RαȲn −K+ŷ‖2,

as that parameter choice, which minimises the L2 error under all possible param-
eters. So called oracle inqualities, which link the error obtained by an estimator
to the one of the oracle are an universal tool to prove minmax properties [DJ94],
[Can06],[CGP+02]. We illustrate in the following, that the minimal rate attained
by the oracle is usually better than the deterministic rate given in Theorem 1.1.4,
a possibility which was already noted in [BR08]. We restrict to the singular value
decomposition as a regularisation and to mildly ill-posed problems. The notation
σ2
j � j−q means that there exist constants cq, Cq with cqj

−q ≤ σ2
j ≤ Cqj

−q for all
j ∈ N. The proofs are deferred to Section 1.6.

Theorem 1.3.1. Assume that K is a compact operator (with singular value de-
composition (σj, uj, vj)) between Hilbert spaces X and Y and that Y1, Y2, ... are i.i.d.
Y−valued random variables with E[Y1] = ŷ ∈ R(K). Moreover, assume that there
are q > 0 and p > 1 such that σ2

j � j−q and E(Y1 − ŷ, uj)
2 � j−p and there are

ν, ρ > 0 such that K+ŷ = (K∗K)ν/2ξ for some ξ ∈ X with ‖ξ‖ ≤ ρ. Then for Rα

the truncated singular value decomposition it holds that
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Chapter 1. The case with finite variance

inf
α>0

sup
ξ∈X , ‖ξ‖≤ρ

K+ŷ=(K∗K)ν/2ξ

E‖RαȲn −K+ŷ‖2 �


1
n

q − p < −1
log(ρn)
n

q − p = −1

ρ
q+1−p

(ν+1)q+1−p
(

1
n

) ν

ν+1− p−1
q q − p > −1

.

In particular, for the a priori choice

αn �

{
(ρn)−

1
ν q − p ≤ −1

(ρn)−
1

(1+ν)q+1−p q − p > −1

it holds that

sup
ξ∈X , ‖ξ‖≤ρ

K+ŷ=(K∗K)ν/2ξ

E‖RαnȲn −K+ŷ‖2 � inf
α>0

sup
ξ∈X , ‖ξ‖≤ρ

K+ŷ=(K∗K)ν/2ξ

E‖RαȲn −K+ŷ‖2.

So we see that the optimal rate attained by the oracle is in all cases better than the
optimal deterministic rate (since for q− p > −1 it holds that p−1

q
∈ (0, 1) because of

p > 1). In particular for q − p < −1 the problem is in fact wellposed. However, the
above optimal choice of α depends on the in general unknown relative smoothness ν
of x̂ and on the decay of the variances p. At least the latter may be estimated with
multiple measurements, so we assume for the moment that we know a p > 1 with
E(Y1− ŷ, uj)2 � j−p, but the smoothness ν is unknown. We consider the discrepancy
principle, and the general idea is to rescale the measurements in order to improve
the relative smoothness. So we define

S :D(S)→ Y (1.3)

ui 7→ j
r
2ui

for r < min(p − 1, q) and apply the discrepancy principle to the rescaled operator
SK : X → Y and the rescaled measurements SY1, SY2, ...

‖SKR′αSȲn − SȲn‖ ≈ δestn ,

with δestn := 1√
n
and R′α the truncated singular value decomposition for SK. The

restriction on r guarantees, that the rescaled measurements still have finite variances
and the rescaled operator is compact.

Theorem 1.3.2. Under the assumptions of Theorem 1.3.1 and the additional as-
sumption that K has dense range, let S be given by (1.3) for r < min(p−1, q). Then

24



1.3 Optimality

for R′α the truncated singular value decomposition for SK and αn the output of the
discrepancy principle as implemented in Algorithm 1 (for K = SK and Yi = SYi)
it holds that

P

(
‖R′αnSȲn −K

+ŷ‖ ≤ Lρ
q−r

q(ν+1)−r

(
1√
n

) ν
ν+1− rq

)
→ 1

as n→∞ for some L > 0.

So we see that, with the choice r → min(p− 1, q) we in essence recover the optimal
rate from Theorem 1.3.1. However, the larger r, the slower will be the convergence
of the probability to 1.

Of course, in application we do not ad hoc know the decay rate of the variances.
We propose the following algorithm for the implementation of a modified rescaled
discrepancy principle where we also estimate the decay of the variances. In contrast
to Algorithm 1 we only consider finitely many components for fixed n.

Algorithm 2 Modified discrepancy principle with estimated data error
1: Given measurements Y1, ..., Yn with mn := bn1−ε1c;
2: Set s2

j,n := 1
n−1

∑n
i=1

(
Y1 − Ȳn, uj

)2 for j = 1, ...,mn;

3: Set dj,n :=

√
min

(
j−(1+ε2)

s2j,n
, σ−2

j

)∑mn
j′=1 s

2
j′,n;

4: Set δestn :=

√∑mn
j=1 d

2
j,ns

2
j,n

n
;

5: k = 0;
6: while

∑mn
j=k+1 d

2
j,n

(
Ȳn, uj

)2
> δestn do

7: k = k + 1;
8: end while
9: kn = k;

10: X̄n :=
∑kn

j=1

(Ȳn,uj)
σj

uj;

In order to guarantee simultaneous estimation of the component variances, we
slightly strengthen our assumption on the error distribution.

Theorem 1.3.3. Assume that K is a compact operator with dense range between
Hilbert spaces X and Y and that Y1, Y2, ... are i.i.d. Y−valued random variables with
EY1 = ŷ ∈ R(K). Moreover, assume that there are p > 1 and q > p− 1 and Cd ≥ 1

such that σ2
j � j−q and E(Y1− ŷ, uj)2 � j−p and supj∈N

E[(Y1−ŷ,uj)4]

(E[(Y1−ŷ,uj)2])2 ≤ Cd. Finally,

assume that there are ν, ρ > 0 such that K+ŷ = (K∗K)ν/2ξ for some ξ ∈ X with
‖ξ‖ ≤ ρ and (ξ, vj) 6= 0 for infinitely many j ∈ N. For ε1, ε2 > 0 let X̄n be the
output of the rescaled discrepancy principle implemented with Algorithm 2. Then
there is a L > 0 with
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Chapter 1. The case with finite variance

P

(
‖X̄n −K+ŷ‖ ≤ Lmax

(
ρ

q+1+ε2−p
νq+q+1+ε2−p

(
1√
n

) ν

ν+1− p−1−ε2
q , ρ

(
1√
n

)2(1−ε1)qν
))
→ 1

as n→∞.

Remark 1.3.4. Clearly, Algorithm 2 could be applied in a general setting. A simi-
lar result to the one of Theorem 1.3.3 could be obtained under relaxed assumptions,
e.g. if only Cq′j−q

′ ≤ σ2
j ≤ Cqj

−q and E(Y1− ŷ, uj)2 ≤ Cpj
−p for some Cq, Cq′ , Cp > 0

and q′ ≤ q. Moreover, one could omit to assume (ξ, vj) 6= 0 for infinitely many j ∈ N
and q > p− 1.

The second argument in the maximum is a discretisation error. If the latter is
negligible, i.e. if ν

ν+1
< 2(1 − ε)qν, the rate from Theorem 1.3.3 is better than

the one from Theorem 1.2.4 for ε2 < p − 1 (if we only consider dn1−εe components
there as well). The additional assumption supj∈N

E[(Y1−ŷ,uj)4]

(E[(Y1−ŷ,uj)2])2 < ∞ assures that
the component distribution are not too degenerated. This is clearly fulfilled, if
E(Y1 − ŷ, uj)

d
= cjZ for some Z with E[Z] = 0, E[Z4] < ∞ and (cj)j∈N ⊂ R \ {0}

(e.g. this holds under Gaussian noise). In particular no independence between the
components is required.

In 1.7.1.1 we consider a small example to confirm numerically, that the above ap-
proach can significantly reduce the error of our approximation.

1.4 Connection to heuristic regularisation

We briefly discuss the relation to so called heuristic parameter choice rules. These
rules α = α(yδ) depend only on the data. The term heuristic indicates that even
though they might perform remarkably well in practical applications, such rules will
not converge under general (deterministic) noise, as stated by the Bakushinskii veto
0.0.1. Thus rigorous convergence results for heuristic parameter choice rules are pos-
sible only under a noise-restricted analysis, see e.g. ([Neu08],[KN08],[KPJP18]). In
the aforementioned articles the noise is assumed to fulfill a Mouckenhoupt condition
[AM90], i.e. there is a constant C > 0 such that for all k ∈ N it holds that

σ4
k

k∑
j=1

σ−2
j

(
yδ − ŷ, uj

)2 ≤ C

∞∑
j=k+1

σ2
j

(
yδ − ŷ, uj

)2
.

In our case, an interesting question is whether Ȳn − ŷ fulfills the Mouckenhoupt
condition, which would allow to directly transfer results for heuristic strategies. So
far, there are some result on the validness of the Mouckenhoupt condition under

26



1.4 Connection to heuristic regularisation

stochastic noise. In particular, Theorem 2 of [KPJP18] states, that the Moucken-
houpt condition holds true with probability 1, if K is mildly ill-posed, i.e. σj � j−q

for some q > 0 and if E(Y1 − ŷ, uj)2 � j−p for p > 1, and the (Y1 − ŷ, uj)j∈N are
independent and have infinitely many moments. It is also shown in Theorem 4 of the
aforementioned paper, that the Mouckenhoupt condition is not fulfilled with proba-
bility 1, if K is severely ill-posed (i.e. σj � aj with a ∈ (0, 1)) even under Gaussian
noise. We now give a counter example (with non independent components) show-
ing that the Mouckenhoupt condition does not hold true in general under our noise
model, may it be in the mildly or severely ill-posed case.

1.4.1 Counter example for validity of the Mouckenhoupt
condition

Assume that

Yi − ŷ
d
=
∞∑
j=1

Biajujχ{Zi=j}

where (Bi)i∈N are i.i.d. Bernoulli random variables (i.e. P (Bi = ±1) = 1/2) inde-
pendent from the i.i.d. N-valued random variables (Zi)i∈N. Let pj := P (Z = j) and
aj =

√
j−p/pj with p > 1. Then it holds that

E [Y1 − ŷ] =
∞∑
j=1

E[Bi]ajujpj = 0

and

E (Y1 − ŷ, uk)2 =
∞∑
j=1

pjE
[
B2
i

]
a2
j (uk, uj)

2 = pkE[B2
i ]a

2
k = E[B2

i ]k
−p

=⇒ E‖Y1 − ŷ‖2 = E[B2
i ]
∞∑
k=1

k−p <∞.

Thus Y1, Y2, ... are i.i.d unbiased measurements of ŷ with finite variance. However,
for all n ∈ N it holds that

P (max(Z1, ..., Zn) <∞) = 1

which implies
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Chapter 1. The case with finite variance

P ((Y1 − ŷ, uj) = 0, ..., (Yn − ŷ, uj) = 0, ∀j large enough) = 1.

From that we deduce that

P
(
(Ȳn − ŷ, uj) = 0, ∀j large enough

)
= 1

and hence

P

(
sup
k∈N

σ4
k

∑k
j=1 σ

−2
j

(
Ȳn − ŷ, uj

)2∑∞
j=k+1 σ

2
j

(
Ȳn − ŷ, uj

)2 =∞

)
= 1,

thus the Mouckenhoupt condition is violated with probability 1.

1.5 Almost sure convergence

The results so far delivered either convergence in probability or convergence in L2.
We give a short remark how one can obtain almost sure convergence. Roughly
speaking, one has to multiply a

√
log log n term to δestn . This is a simple consequence

of the following theorem

Theorem 1.5.1 (Law of the iterated logarithm). Assume that Y1, Y2, ... is an i.i.d
sequence with values in some separable Hilbert space Y. Moreover, assume that
EY1 = 0 and E‖Y1‖2 <∞. Then we have that

P

(
lim sup
n→∞

‖
∑

i≤n Yi‖√
2E‖Y1‖2n log log n

≤ 1

)
= 1.

Proof. This is a simple consequence of Corollary 8.8 in [LT91]. �

So if EY1 = ŷ ∈ Y we have for δtruen = ‖Ȳn − ŷ‖

P

(
lim sup
n→∞

√
nδtruen√

2E‖Y1 − ŷ‖2 log log n
≤ 1

)
= 1,

that is, with probability 1 it holds that δtruen ≤
√

2E‖Y1−ŷ‖2 log logn
n

for n large enough.
Consequently, for some τ > 1 the estimator should be

δestn := τsn

√
2 log log n

n
,
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where sn is the square root of the sample variance. Since P(limn→∞ s
2
n = E‖Y1 −

ŷ‖2) = 1 and τ > 1 it holds that
√

E‖Y1 − ŷ‖ ≤ τsn for n large enough with
probability 1 and thus δtruen ≤ δestn for n large enough with probability 1. In other
words, there is an event Ω0 ⊂ Ω with P(Ω0) = 1 such that for any ω ∈ Ω0 there is
a N(ω) ∈ N with δtruen (ω) ≤ δestn (ω) for all n ≥ N(ω). So we can use Ȳn and δestn to-
gether with any deterministic regularisation method to get almost sure convergence.

1.6 Proofs

1.6.1 Proofs of Theorem 1.2.2 and 1.2.4

Throughout this thesis, we will steadily use without pointing out the following basic
facts, i.e.

A ⊂ B ⇒ P(A) ≤ P(B) (monotinicity)
AC := Ω \ A ⇒ P(AC) = 1− P(A) (normed to 1)

P (∪i∈NAi) ≤
∑
i∈N

P(Ai) (σ-subadditivity)

(∩i∈NAi)
C = ∪i∈NA

C
i (law of de Morgan)

for arbitrary events A,B,Ai ∈ A (where A is the σ-Algebra on Ω). We will multiple
times use the Pythagorean theorem for independent centralised random variables.
For real-valued random variables Xi with E[X2

i ] <∞ and E[Xi] = 0 there holds

E

( n∑
i=1

Xi

)2
 =

n∑
i,i′=1

E[XiXi′ ] =
n∑
i=1

E[X2
i ] +

n∑
i,i′=1
i 6=i′

E[Xi]E[Xi′ ] =
n∑
i=1

E[X2
i ]. (1.4)

We deduce, that for separable Hilbert space valued random variables Zi with
E‖Zi‖2 <∞ and EZi = 0 it holds that

E

∥∥∥∥∥
n∑
i=1

Zi

∥∥∥∥∥
2

=
n∑
i=1

∞∑
l,l′=1

E [(Zi, el)(Zi, el′)] =
n∑
i=1

E

[
∞∑
j=1

(Zi, ej)
2

]
=

n∑
i=1

E ‖Zi‖2 ,

(1.5)
where (el)l∈N is an orthonormal basis. Based on this, one central ingredient will
be the following lemma, which strengthens the point wise worst case error bound
‖(KRα − Id)(Ȳn − ŷ)‖ ≤ C0δ

true
n in some sense.
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Chapter 1. The case with finite variance

Lemma 1.6.1. For all ε > 0 and (deterministic) sequences (qn)n∈N with qn > 0
and limn→∞ qn = 0, it holds that

P

(
sup

0<α≤qn
‖(KRα − Id)(Ȳn − ŷ)‖ ≥ ε/

√
n

)
→ 0

and

P
(
|
√
nδestn − γ| ≥ ε

)
→ 0

for n→∞, where γ = 1 or γ =
√

E‖Y1 − ŷ‖2, depending on if we used the sample
variance or not.

Proof.

Let ε′ > 0 be arbitrary and Jε′ such that
∑∞

j=Jε′
C2

0E(Y1 − ŷ, uj)2 ≤ ε′ε2/2 . Then
by Markov’s inequality

P

(
sup

0<α≤qn
‖(KRα − Id)(Ȳn − ŷ)‖ ≥ ε/

√
n

)
≤ n
ε2

E

[(
sup

0<α≤qn
‖(KRα − Id)(Ȳn − ŷ)‖

)2
]

=
n

ε2
E[ sup

0<α≤qn

∞∑
j=1

(
Fα(σ2

j )σ
2
j − 1

)2
(Ȳn − ŷ, uj)2]

≤ n
ε2

∞∑
j=1

E

[
sup

0<α≤qn

(
Fα(σ2

j )σ
2
j − 1

)2
(Ȳn − ŷ, uj)2

]

=
1

ε2

∞∑
j=1

sup
0<α≤qn

(
Fα(σ2

j )σ
2
j − 1

)2
E(Y1 − ŷ, uj)2

≤E‖Y1 − ŷ‖2

ε2

Jε′∑
j=1

sup
0<α≤qn

(
Fα(σ2

j )σ
2
j − 1

)2
+
C2

0

ε2

∞∑
j=Jε′

E(Y1 − ŷ, uj)2 ≤ ε′

for n large enough, where we used Tschebyscheff’s inequality in the first, subaddi-
tivity of the supremum in the third, linearity of the expectation in the fourth and
the point wise convergence of Fα(λ) to 1/λ in the last step. This proves the first
assertion. The second assertion only needs a proof for γ =

√
E‖Y1 − ŷ‖2 and then
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nδestn
2

=
1

n− 1

n∑
i=1

‖Yi − Ȳn‖2 =
n

n− 1

(
1

n

n∑
i=1

‖Yi‖2 − ‖Ȳn‖2

)
→ E‖Y1‖2 − ‖ŷ‖2 = E‖Y1 − ŷ‖2 = γ2

almost surely (thus in particular in probability) for n→∞ by the strong law of large
numbers (Corollary 7.10 in [LT91]) and the bias-variance-decomposition. Therefore√
nδestn → γ in probability for n→∞.

�

For convergence in probability it does not matter how large the error is on sets with
diminishing probability and with Lemma 1.6.1 we will show, that the probability of
certain ’good events’ is 1 in the limit of infinitely many measurements.

We will also need some well known properties of regularisations defined by filters
which fulfill Assumption 1.1.2. These are mostly easy modifications from [EHN96].

Proposition 1.6.2. The constants in the following are defined as in Assumption
1.1.2. We assume, that K is bounded and linear with non-closed range. Assume
that (Rα)α>0 is induced by a regularising filter fulfilling |Fα(λ)| ≤ CF/α for all
0 < λ ≤ ‖K‖2. Then

‖Rα‖ ≤
√
CRCF/

√
α (1.6)

‖Id−KRα‖ ≤ C0 (1.7)

for all α > 0, with C0 ≥ 1. If moreover, the filter has qualification ν0 > 0 and there
is a w ∈ X with ‖w‖ ≤ ρ such that K+ŷ = (K∗K)

ν
2 w for some 0 < ν ≤ ν0, then

‖Rαŷ −K+ŷ‖ ≤ Cνρα
ν/2 (1.8)

‖Rαŷ −K+ŷ‖ ≤ ‖KRαŷ −KK+ŷ‖
ν
ν+1C

1
ν+1

0 ρ
1
ν+1 (1.9)

for all α > 0. If additionally, ν0 ≥ ν + 1 > 1, then

‖KRαŷ −KK+ŷ‖ ≤ Cν+1ρα
ν+1

2 . (1.10)

Moreover, if K is compact, than for all x ∈ X it holds that

lim
α→0
‖(KRα − Id)Kx‖/

√
α = 0. (1.11)

Proposition 1.6.2 (1.6) and (1.9) are shown in the proofs of Theorem 4.2 and
Theorem 4.17 in [EHN96]. (1.8) and (1.10) are Theorem 4.3 in [EHN96]. (1.7)
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Chapter 1. The case with finite variance

follows directly from Assumption 1.1.2.
For (1.11) mimic the proof of Theorem 3.1.17 of [NP15] and set ε > 0. We fix L,
such that C2

1

∑∞
l=L+1(x̂, vj)

2 < ε. Then

‖(KRα − Id)Kx̂‖2/α =
∞∑
l=1

(
Fα(σ2

l )σ
2
l − 1

)2 σ2
l

α
(x̂, vl)

2

≤
(

sup
λ>0

λ
ν0
2 |Fα(λ)λ− 1|

)2

‖x̂‖2

L∑
l=1

σ
2(1−ν0)
l

α

+

(
sup
λ>0

λ
1
2 |Fα(λ)λ− 1|

)2 ∑∞
l=L+1(x̂, vj)

2

α

≤C2
ν0
Lσ

2(1−ν0)
L ‖x̂‖2αν0−1 + C2

1

∞∑
l=L+1

(x̂, vj)
2 < 2ε

for all α <
(
ε−1C2

ν0
Lσ

2(1−ν0)
L ‖x̂‖2

)− 1
ν0−1 , therefore ‖(KRα − Id)Kx‖/

√
α = 0 for

α→ 0.

�

We will first consider the case without emergency stop. We will treat the two cases
(ŷ, ul) 6= 0 for infinitely many l ∈ N and (ŷ, ul) = 0 for all l ∈ N sufficiently large
separately.

Proposition 1.6.3. Assume that (ŷ, ul) 6= 0 for infinitely many l ∈ N, then there
is a (deterministic) sequence (qn)n∈N with qn → 0+ and

P (αn ≤ qn)→ 1

as n→∞

Proof.

It suffices to show that P (αn ≤ ε) → 1 as n → ∞ for arbitrary ε > 0. Let ε > 0.
Then there is a L ∈ N such that (ŷ, uL) 6= 0 and

(
Fqk(σ

2
L)σ2

L − 1
)2
> 1/2 for all

k ∈ N0 with qk ≥ ε (because the Fqk are bounded and σl → 0 for l→∞). Set

Ωn :=
{
|
√
nδestn − γ| < γ , (Ȳn, uL)2 ≥ (ŷ, uL)2/2

}
. (1.12)

Then for n ≥ 16γ2/(ŷ, uL)2,
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δestn χΩn ≤
2γ√
n
χΩn <

√
(ŷ, uL)2

4
χΩn ≤

√(
Fqk(σ

2
L)σ2

L − 1
)2

(Ȳn, uL)2χΩn

≤

√√√√ ∞∑
l=1

(
Fqk(σ

2
l )σ

2
l − 1

)2 (
Ȳn, ul

)2
χΩn = ‖(KRqk − Id)Ȳn‖χΩn

for all k ∈ N0 with qk ≥ ε. Thus for Ωn given in (1.12)

lim
n→∞

P (αn ≤ ε) ≥ lim
n→∞

P (Ωn) = 1 (1.13)

by Lemma 1.6.1 and since (Ȳn, uL) =
∑n

i=1(Yi, uL)/n → E(Y1, uL) = (ŷ, uL) 6= 0
almost surely for n→∞.

�

We are now ready for the central lemma.

Lemma 1.6.4. Assume that (ŷ, ul) 6= 0 for infinitely many l ∈ N, then there holds

P
(
‖(KRαn − Id)(Ȳn − ŷ)‖ ≤ δestn /2, ‖(KRαn/q − Id)(Ȳn − ŷ)‖ ≤ δestn /2

)
→ 1

as n→∞.

Proof. By Proposition 1.6.3 there is a (qn)n∈N with qn → 0 and P (αn/q ≤ qn)→ 1
as n→∞. Therefore

P

(
‖(KRαn − Id)(Ȳn − ŷ)‖ ≤ δestn

2
, ‖(KRαn/q − Id)(Ȳn − ŷ)‖ ≤ δestn

2

)
≥P

(
sup

0<α≤qn
‖(KRα − Id)(Ȳn − ŷ)‖ ≤ γ

4
√
n
, αn/q ≤ qn, δ

est
n >

γ

2
√
n

)
=1− P

((
sup

0<α≤qn
‖(KRα − Id)(Ȳn − ŷ)‖ ≤ γ

4
√
n
, αn/q ≤ qn, δ

est
n >

γ

2
√
n

)C)

≥1− P

(
sup

0<α≤qn
‖(KRα − Id)(Ȳn − ŷ) >

γ

4
√
n

)
− P (αn/q > qn)

− P

(
δestn <

γ

2
√
n

)
→ 1

as n→∞ by Lemma 1.6.1. �
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Chapter 1. The case with finite variance

1.6.1.1 Proof of Theorem 1.2.4 without emergency stop

So let x̂ = (K∗K)ν/2ξ with ξ ∈ X , ‖ξ‖ ≤ ρ. We first assume that (ŷ, uj) 6= 0 for
infinitely many j ∈ N. Define

Ωn :=

{
‖(KRαn − Id)(Ȳn − ŷ)‖ ≤ δestn

2
, ‖(KRαn/q − Id)(Ȳn − ŷ)‖ ≤ δestn

2
, (1.14)

|
√
nδestn − γ| ≤

γ

2
, αn < 1

}
. (1.15)

There holds limn→∞ P (Ωn) = 1. We decompose the total error in two parts

‖RαnȲn −K+ŷ‖ ≤ ‖Rαn(Ȳn − ŷ)‖+ ‖Rαn ŷ −K+ŷ‖

and restrict to Ωn. For the approximation error, by (1.9), (1.7) and since K has
dense image,

‖Rαn ŷ −K+ŷ‖χΩn

≤‖KRαn ŷ −KK+ŷ‖
ν
ν+1C

1
ν+1

0 ρ
1
ν+1χΩn

=‖KRαn ŷ − ŷ‖
ν
ν+1C

1
ν+1

0 ρ
1
ν+1χΩn

≤
(
‖(KRαn − Id)Ȳn‖+ ‖(KRαn − Id)(ŷ − Ȳn)‖

) ν
ν+1 C

1
ν+1

0 ρ
1
ν+1χΩn

≤
(
δestn +

δestn
2

) ν
ν+1

C
1
ν+1

0 ρ
1
ν+1χΩn ≤

(
9

4
γ

) ν
ν+1

C
1
ν+1

0 ρ
1
ν+1

(
1√
n

) ν
ν+1

.

For the data propagation error we first bound αn from below. By the defining
relation of the discrepancy principle (note that Algorithm 1 does not terminate
immediately on Ωn),

δestn χΩn ≤ ‖(KRαn/q − Id)Ȳn‖χΩn

≤ ‖(KRαn/q − Id)ŷ‖χΩn + ‖(KRαn/q − Id)(Ȳn − ŷ)‖χΩn

≤ ρCν+1

(
αn
q

) ν+1
2

+
δestn
2

=⇒αn ≥ q

(
γ

ρCν+14

) 2
ν+1

χΩn := bnχΩn . (1.16)

Set
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L :=

(
9

4
γ

) ν
ν+1

C
1
ν+1

0 + 1. (1.17)

To finish the proof (for the case that (ŷ, uj) 6= 0 for infinitely many j ∈ N), it now
suffices to show that there is a C > 0 such that

P

(
‖RαnȲn −Rαn ŷ‖ ≤ ρ

1
ν+1

(
1√
n

) ν
ν+1

)
≥ 1− Cε (1.18)

for all ε > 0, if n ≥ n(ε) large enough. We set Jε := min{j ∈ N :
∑

j′≥j E(Y1 −
ŷ, uj)

2 ≤ ε and Z :=
∑∞

j=Jε+1(Y1 − ŷ, uj)uj. Then

P
(
‖Rαn(Ȳn − ŷ)‖ ≤ ρ

1
ν+1n−

ν
2(ν+1)

)
=P

(
∞∑
j=1

(
Fαn(σ2

j )σj
)2

(Ȳn − ŷ, uj)2 ≤ ρ
2
ν+1n−

ν
(ν+1)

)

=P

(
Jε∑
j=1

(
Fαn(σ2

j )σj
)2

(Ȳn − ŷ, uj)2 + ‖RαnZ‖2 ≤ ρ
2
ν+1n−

ν
(ν+1)

)

≥P

(
CR
σ2
Jε

Jε∑
j=1

(Ȳn − ŷ, uj)2 +
CRCF
αn
‖Z‖2 ≤ ρ

2
ν+1n−

ν
(ν+1)

)

≥P

(
CR
σ2
Jε

Jε∑
j=1

(Ȳn − ŷ, uj)2 +
CRCF
bn
‖Z‖2 ≤ ρ

2
ν+1n−

ν
(ν+1) , αn ≥ bn

)

≥1− P

(
CR
σ2
Jε

Jε∑
j=1

(Ȳn − ŷ, uj)2 +
CRCF
bn
‖Z‖2 > ρ

2
ν+1n−

ν
(ν+1)

)
− P (αn < bn) .

By Markov’s inequality
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P

(
CR
σ2
Jε

Jε∑
j=1

(Ȳn − ŷ, uj)2 +
CRCF
bn
‖Z‖2 > ρ

2
ν+1n−

ν
(ν+1)

)

≤ρ−
2
ν+1n

ν
ν+1 E

[
CR
σ2
Jε

Jε∑
j=1

(Ȳn − ŷ, uj)2 +
CRCF
bn
‖Z‖2

]

≤ρ−
2
ν+1n

ν
ν+1

(
CR
σ2
Jε
n

Jε∑
j=1

E(Y1 − ŷ, uj)2

+CRCF

(
4
√
nρCν+1

γ

) 2
ν+1 1

n

∞∑
j=Jε

E(Y1 − ŷ, uj)2

)

≤ρ−
2
ν+1

CR
σ2
Jε

n
−1
ν+1 + CRCF

(
4Cν+1

γ

) 2
ν+1

ε ≤ C

2
ε

for n large enough and C := 1 +CRCF

(
2Cν+1

γ

) 2
ν+1 . Moreover by (1.16) and Lemma

1.6.1 P (αn ≤ bn) ≤ P
(
ΩC
n

)
≤ Cε/2 for n large enough which proves assertion (1.18).

Now we prove the assertion of Theorem 1.2.4 for the special case that
J := sup (j ∈ N : (ŷ, uj) 6= 0) <∞. In this case we cannot expect a result similar
to Lemma 1.6.4 (for example, αn will not converge to 0 in probability for spectral
cut-off), but the true solution x̂ has arbitrarily large smoothness. Let ε > 0 such
that σ−εJ ≤ 2 and set ν ′ = ν + ε. Then

x̂ =
J∑
j=1

σνj (ξ, vj)vj =
J∑
j=1

σν+ε
j (ξ′, vj)vj = (K∗K)

ν+ε
2 ξ′

and

‖ξ′‖ =

√√√√ J∑
j=1

(ξ, vj)2/σ2ε
j ≤ σ−εJ ρ ≤ 2ρ = ρ′.

For the approximation error it is
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‖Rαn ŷ −K+ŷ‖

=

√√√√ J∑
j=1

(
Fαn(σ2

j )σj −
1

σj

)2

(ŷ, uj)2 =

√√√√ J∑
j=1

(
Fαn(σ2

j )σ
2
j − 1

)2 (ŷ, uj)2

σ2
j

≤ 1

σ2
J

√√√√ J∑
j=1

(
Fαn(σ2

j )σ
2
j − 1

)2
(Ȳn, u2

j) +

√√√√ J∑
j=1

(
Fαn(σ2

j )σ
2
j − 1

)2
(Ȳ − ŷ, uj)2


≤ 1

σ2
J

(
‖(KRαn − Id)Ȳn‖+ ‖(KRαn − Id)(Ȳn − ŷ)‖

)
≤ 1

σ2
J

(
δestn + C0δ

true
n

)
.

We now deduce a lower bound for the regularisation parameter and set bn :=(
1
ρ′

γ
4Cν′+1

√
n

) 2
ν′+1 with γ = 1 or γ =

√
E‖Y1 − ŷ‖2, depending on if we used the

sample variance or not. We claim that

P (αn ≤ bn)→ 1 (1.19)

as n→∞. Define

Ωn : =

{
|
√
nδestn − γ| < γ/2 , sup

0<α≤bn
‖(KRα − Id)(Ȳn − ŷ)‖ < γ/

√
16n, (1.20)

δestn , δtruen ≤
√
n
ε′−1
}

(1.21)

for ε′ < ν′

ν′+1
− ν

ν+1
. By (1.10)

‖(KRα − Id)Ȳn‖χΩn ≤ ‖(KRα − Id)ŷ‖χΩn + ‖(KRα − Id)(Ȳn − ŷ)‖χΩn (1.22)

≤ Cν+1ρb
ν+1

2
n χΩn +

γ

4
√
n
χΩn =

γ

2
√
n
χΩn < δestn χΩn ,

for all α ≤ bn, so

αn ≥ qbnχΩn (1.23)

for n large enough and the claim (1.19) follows with P (Ωn) → 1 as n → ∞ (by
Lemma 1.6.1). Finally,
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‖RαnȲn −K+ŷ‖χΩn

≤‖Rαn‖‖Ȳn − ŷ‖χΩ′n + ‖Rαn ŷ −K+ŷ‖χΩn

≤
√
CRCF

δtruen√
αn
χΩn +

1

σ2
J

(
δestn + C0δ

true
n

)
χΩn

≤
√
CRCF

(
ρ′

4Cν′+1

γ

) 1
ν′+1 √

n
1

ν′+1
+ε′−1

+
1

σ2
J

(1 + C0)
√
n
ε′−1

≤

(√
CRCF

(
2Cν′+1

γ

) 1
ν′+1

ρ
1

ν′+1 +
1 + C0

σ2
J

)(
1√
n

) ν′
ν′+1

−ε′

≤Lρ
1
ν+1

(
1√
n

) ν
ν+1

for n large enough and L given in (1.17). The proof is finished with limn→∞ P (Ωn) =
1.

1.6.1.2 Proof of Theorem 1.2.2 without emergency stop

W.l.o.g. we may assume that there are arbitrarily large l ∈ N with (ŷ, ul) 6= 0, since
otherwise we could apply Theorem 1.2.4 with any ν > 0. Let ε′ > 0 be arbitrary.
Since (Rα)α>0 is a regularisation and by (1.11) there is a ε′′ > 0 such that

‖Rαŷ −K+ŷ‖ ≤ ε/2 and ‖(KRα/q − Id)ŷ‖/
√
α/q ≤

√
q

8γCRCF
εε′

for all α ≤ ε′′. Set

Ωn : =

{
|
√
nδestn − γ| < γ/2 , ‖(KRαn/q − Id)(Ȳn − ŷ)‖ ≤ δestn

2

αn ≤ ε′′, δtruen ≤ 1

ε′
√
n

}
.

Then,
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δestn χΩn ≤ ‖(KRαn/q − Id)Ȳn‖χΩn

≤ ‖(KRαn/q − Id)ŷ‖χΩn + ‖(KRαn/q − Id)
(
Ȳn − ŷ

)
‖χΩn

≤ ‖(KRαn/q − Id)ŷ‖χΩn +
δestn
2
.

=⇒ γ

2

√
q

nαn
χΩn ≤

√
qδestn√
αn

χΩn ≤ ‖(KRαn/q − Id)ŷ‖/
√
αn/qχΩn ≤

√
qγ2

8CRCF
εε′

(1.24)

by definition of Ωn. Finally,

‖RαnȲn −K+ŷ‖χΩn ≤ ‖Rαn ŷ −K+ŷ‖χΩn + ‖Rαn(Ȳn − ŷ)‖χΩn

≤ ε

2
+ ‖Rαn‖‖Ȳn − ŷ‖χΩn ≤

ε

2
+

√
CRCF
αn

δtruen χΩn

≤ ε

2
+

√
4CRCF
γ2q

γ

2

√
q

nαn
δtruen

√
nχΩn

≤ ε

2
+

√
4CRCF
γ2q

√
qγ2

8CRCF
εε′

1

ε′
≤ ε,

where we used (1.24) and the definition of Ωn in the fifth step. Thus
P
(
‖RαnȲn −K+ŷ‖ ≤ ε

)
≥ P (Ωn) ≥ 1 − ε′2E‖Y1 − ŷ‖2 for n → ∞ (by Lemmata

1.6.1 and 1.6.4, Proposition 1.6.3 and since P
(
δtruen ≥ 1

ε′
√
n

)
≤ ε′2E‖Y1 − ŷ‖2 by

Tschebyscheff’s inequality) and the claim follows with ε′ → 0.

1.6.1.3 Proofs for the emergency stop case

Again, denote by αn the output of Algorithm 1 without the emergency stop. For
the emergency stop, we have to consider ‖Rmax{αn,1/n}Ȳn−K+ŷ‖. It suffices to show
that

P (αn ≥ 1/n)→ 1 (1.25)

for n → ∞. First assume that K+ŷ = (K∗K)
ν
2 ξ for some ξ ∈ X with ‖ξ‖ ≤ ρ and

0 < ν ≤ ν0 − 1. With (1.16) or (1.23) and Lemma 1.6.1 it follows that

P

(
αn ≥ q

(
γ

4ρCν+1

√
n

) 2
ν+1

)
≥ P (Ωn)→ 1 (1.26)
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for n → ∞, with Ωn given in (1.14) or (1.20)), thus we obtain (1.25). Otherwise,
if there are no such ν, ρ and w, then (1.24) implies that for all ε′′′ :=

√
qγ2

8CRCF
εε′

(where all quantities are given as in Section 1.6.1.2),

P

(
αn ≥

δestn
2

ε′′′

)
= P

(
αn

qδestn
2 ≥

1

qε

)
≥ P (Ωn) (1.27)

for n→∞, with Ωn given in (1.12) and we obtain the assertion with ε, ε′ → 0 and
Lemma 1.6.1.

1.6.2 Proof of Corollary 1.2.5

Fix ε > 0. Denote by αn the output of the discrepancy principle with emergency
stop and set

Ωn := {‖RαnȲn −K+ŷ‖ ≤ ε}. (1.28)

It is
‖Rαŷ −K+ŷ‖ ≤ ‖RαK − Id‖‖x̂‖ ≤ C (1.29)

for all α > 0. By the triangle inequality,

E‖RαnȲn −K+ŷ‖2 = 2E‖RαnȲn −Rαn ŷ‖2 + 2E‖Rαn ŷ −K+ŷ‖2

≤ 2E
[
‖Rαn‖2δtruen

2
]

+ 2C2 ≤ 2CRCFE
[
δtruen

2
/αn

]
+ 2C2

≤ 2nCRCFEδtruen
2

+ 2C2 = 2CRCFE‖Y1 − ŷ‖2 + 2C2 ≤ C ′,

where C ′ does not depend on n and where we used αn ≤ 1 and (1.29) in the second
step and αn ≥ 1/n in the fourth. By (1.28) there holds ‖RαnȲn −K+ŷ‖χΩn ≤ ε, so

E‖RαnȲn −K+ŷ‖2 = E
[
‖RαnȲn −K+ŷ‖2χΩn

]
+ E

[
‖RαnȲn −K+ŷ‖2χΩCn

]
≤ ε2 + E

[
‖RαnȲn −K+ŷ‖2χΩCn

]
.

We apply Cauchy-Schwartz to the second term

E
[
‖RαnȲn −K+ŷ‖2χΩCn

]
≤
√

E‖RαnȲn −K+ŷ‖4Eχ2
ΩCn

=
√

E‖RαnȲn −K+ŷ‖4 P (ΩC
n )

and we claim that there is a constant A with E‖RαnȲn −K+ŷ‖4 ≤ A for all n ∈ N.
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E‖RαnȲn −K+ŷ‖4

≤4
(
E‖RαnȲn −Rαn ŷ‖4 + 2E

[
‖RαnȲn −Rαn ŷ‖2‖Rαn ŷ −K+ŷ‖2

]
+E‖Rαn ŷ −K+ŷ‖4

)
≤4
(

E
[
‖Rαn‖4δtruen

4
]

+ 2C2E
[
‖Rαn‖2δtruen

2
]

+ C4
)

≤B
(

E
[
δtruen

4
/α2

n

]
+ E

[
δtruen

2
/αn

]
+ 1
)

for some constant B, where we used (1.29) in the second step. First,

E
[
δtruen

4
/α2

n

]
≤n2E‖Ȳn − ŷ‖4 = n2E

[∑
j,j′≥1

(
Ȳn − ŷ, uj

)2 (
Ȳn − ŷ, uj′

)2

]

=
1

n2

(∑
j,j′≥1

n∑
i,i′,l,l′=1

E [(Yi − ŷ, uj) (Yl − ŷ, uj) (Yi′ − ŷ, uj′) (Yl′ − ŷ, uj′)]

)

≤ 1

n2

∑
j,j′≥1

(
nE
[
(Y1 − ŷ, uj)2 (Y1 − ŷ, uj′)2]+ n2E

[
(Y1 − ŷ, uj)2]E

[
(Y1 − ŷ, uj′)2]

+ 2n2 (E [(Y1 − ŷ, uj) (Y1 − ŷ, uj′)])2)
≤n+ 2n2

n2
E

[∑
j,j′≥1

(Y1 − ŷ, uj)2 (Y1 − ŷ, uj′)2

]

+ E

[∑
j≥1

(Y1 − ŷ, uj)2

]
E

[∑
j′≥1

(Y1 − ŷ, uj′)2

]

≤n+ 2n2

n2
E

(∑
j≥1

(Y1 − ŷ, uj)2

)2
+

(
E

[∑
j≥1

(Y1 − ŷ, uj)2

])2

=
n+ 2n2

n2
E‖Y1 − ŷ‖4 +

(
E
[
‖Y1 − ŷ‖2

])2 ≤ B1

for some constant B1, where in the fourth step we used that the Yi are i.i.d, that
E (Y1 − ŷ, uj) = (E[Y1]− ŷ, uj) = 0 and that E[XY ] = E[X]E[Y ] for independent
(and integrable) random variables (so the relevant cases are the ones where either all
indices i, i′, l, l′ are equal or exactly pairwise two). Then we used Jensen’s inequality
in the fifth step. Moreover,
E
[
δtruen

2
/αn

]
≤ nE

[
δtruen

2
]

= E‖Y1 − ŷ‖2 = B2, so the claim holds for A = B(B1 +

B2 + 1). By Theorem 3 it holds that P (Ωn) → 1 for n → ∞, thus P
(
ΩC
n

)
≤ ε2/A
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for n large enough and

E‖RαnȲn −K+ŷ‖2 ≤ εE[χΩn ] +
√

E‖RαnȲn −K+ŷ‖4 P (ΩC
n ) ≤ 2ε.

1.6.3 Proofs of Theorem 1.3.1, 1.3.2 and 1.3.3

Proof of Theorem 1.3.1

Note that p > 1 is necessary because of
∑∞

j=1 E(Y1 − ŷ, uj)2 = E‖Y1 − ŷ‖2
!

≤ ∞.

E‖RαȲn −K+ŷ‖2 = E‖Rα(Ȳn − ŷ)‖2 + ‖Rαŷ −K+ŷ‖2

=
∑
j

σ2
j>α

σ−2
j E(Ȳn − ŷ, uj)2 +

∑
j

σ2
j≤α

σ−2
j (ŷ, uj)

2

=
1

n

N∑
j=1

σ−2
j E(Y1 − ŷ, uj)2 +

∞∑
j=N+1

σ−2ν
j (ξ, vj)

2

� 1

n

N∑
j=1

jq−p + ρ
∞∑

j=N+1

j−νq(ξ, vj)
2,

where N = N(α) = max{j ≥ 1 : σ2
j > α}. Therefore it holds that

sup
ξ∈X , ‖ξ‖≤ρ

K+ŷ=(K∗K)ν/2ξ

E‖RαȲn −K+ŷ‖2 � 1

n

∫ N

j=1

xq−pdx+ ρN−νq

�


1
n

+ ρN−νq q − p < −1
1
n

log(N) + ρN−νq q − p = −1
1
n
N q−p+1 + ρN−νq q − p > −1

.

The right hand side is minimised by the choices

N = N(n) �

{
(ρn)

1
νq q − p ≤ −1

(ρn)
1

(1+ν)q+1−p q − p > −1
.

Thus we obtain

min
α>0

sup
ξ∈X , ‖ξ‖≤ρ

K+ŷ=(K∗K)ν/2ξ

E‖RαȲn −K+ŷ‖2 �


1
n

q − p < −1
log(ρn)
n

q − p = −1

ρ
q+1−p

(ν+1)q+1−p
(

1
n

) ν

ν+1− p−1
q q − p > −1

.
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�

Proof of Theorem 1.3.2

The choice of r guarantees, that SK : X → Y is compact with singular values
σj(SK)2 � jr−q. Moreover by the choice of r,

‖Sŷ‖2 =
∞∑
j=1

jr(ŷ, uj)
2 ≤ C

∞∑
j=1

jr−q(x̂, vj)
2 <∞

and

E‖S(Y1 − ŷ)‖2 =
∞∑
j=1

jrE(Y1 − ŷ, uj)2 ≤ C ′
∞∑
j=1

jr−p <∞,

where C,C ′ are constants. Thus SY1, SY2, ... are i.i.d with E [SY1] = Sŷ and
E‖SY1‖2 <∞. By assumption, there exists ξ ∈ X with x̂ = (K∗K)ν/2ξ and ‖ξ‖ < ρ
and aj, with infj∈N aj = C ′′ > 0 and σj = j−qaj, σj(SK) = jr−qaj. It follows that

x̂ = (K∗K)ν/2ξ =
∞∑
j=1

σνj (ξ, vj)vj =
∞∑
j=1

j−νqaνj (ξ, vj)vj

=
∞∑
j=1

j−
q
q−r ν(q−r)aνj (ξ, vj)vj =

∞∑
j=1

σj(SK)
q
q−r νa

− νr
q−r

j (ξ, vj)vj

= ((SK)∗SK)
q

2(q−r)ν ξ′,

with ξ′ :=
∑∞

j=1 a
− νr
q−r

j (ξ, vj)vj ∈ X and ‖ξ′‖ ≤ C ′′
−rν
q−r ρ =: ρ′. Thus, for ν ′ := q

q−rν

it holds that x̂ = ((SK)∗SK)ν
′/2ξ′, so by Theorem 1.2.4 there exists L′ > 0 with

P

‖R′αnSȲn − x̂‖ ≤ L′ρ′
1

ν′+1

(
1√
n

) ν′
ν′+1

→ 1

as n→∞. It is

ν ′

ν ′ + 1
=

ν

ν + 1− r
q

and
1

ν ′ + 1
=

q − r
(ν + 1)q − r

.

Finally, considering the cases C ′′ ≤ 1 and C ′′ > 1 separately yields

ρ′
1

ν′+1 =
(
C ′′
− rν
q−r ρ

) 1
q
q−r ν+1

= C ′′
−rν

qν+q−r ρ
1

ν′+1 ≤ max (1, 1/C ′′) ρ
1

ν′+1
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Chapter 1. The case with finite variance

and the claim holds with L := L′max(1, 1/C ′′).

�

Proof of Theorem 1.3.3 For dj := jp−1−ε2 it holds that

x̂ = (K∗K)
ν
2 ξ =

∞∑
j=1

σνj (ξ, vj)vj =
∞∑
j=1

j−qν(ξ, vj)vj (1.30)

=
∞∑
j=1

(
j−(q+1+ε2−p)

) qν
q+1+ε2−p (ξ, vj)vj =

∞∑
j=1

(djσj)
qν

q+1+ε2−p (ξ, vj)vj

=
∞∑
j=1

(djσj)
ν′(ξ, vj)vj

with ν ′ := qν/(q + 1 + ε2 − p). By Theorem 2 of [Ang12] it holds that E[|s2
n,j −

E(Y1 − ŷ, uj)2|2] ≤ 4E(Y1 − ŷ, uj)4, thus

P

(
|s2
n,j − E(Y1 − ŷ, uj)2| ≤ E(Y1 − ŷ, uj)2

2
, ∀j ≤ mn

)
≥1−

mn∑
j=1

P

(
|s2
n,j − E(Y1 − ŷ, uj)2| > E(Y1 − ŷ, uj)2

2

)

≥1−
mn∑
j=1

E[|s2
n,j − E(Y1 − ŷ, uj)2|2]

(E[(Y1 − ŷ, uj)2]/2)2

=1− 16mn

n
sup

j=1,...,mn

E[(Y1 − ŷ, uj)4]

(E[(Y1 − ŷ, uj)2])2
≥ 1− 16mnCp

n

≥1− 16Cpn
−ε1 → 1

as n→∞. From that directly follows

P

(
d2
j

2
≤ d2

j,n ≤ 2d2
j , ∀j = 1, ...,mn

)
→ 1, (1.31)

P
(
|
√
nδestn − γ| ≤

γ

2

)
→ 1 (1.32)

for γ :=
√

E‖Y1 − ŷ‖2
∑∞

j=1 j
−(1+ε2) as n→∞, because q > p− 1 implies

min(jp−1−ε2 , jq) = j(p−1−ε2). We prove a modulation of Lemma 1.6.4.

Lemma 1.6.5. It holds that
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P

√√√√ mn∑
j=kn

d2
j,n(Ȳn − ŷ, uj)2 ≤ δestn

2

→ 1

as n→∞.

Proof of Lemma 1.6.5 we first show that there is (qn)n∈N ⊂ N

P (kn ≥ qn)→ 1 and qn →∞ (1.33)

as n → ∞. For that it suffices to show that limn→∞ P (kn ≥ k) = 0 for all k ∈ N.
To see this set

Ωn :=
{
‖
√
nδestn − γ‖ ≤

γ

2
, (Ȳn, uL)2 ≥ (ŷ, uL)2/2, d2

L ≤ 2d2
L,n

}
. (1.34)

Then for n ≥ max(k, 16γ2/(dL(ŷ, uL))2),

δestn χΩn ≤
2γ√
n
χΩn <

√
d2
L(ŷ, uL)2

4
χΩn ≤

√
d2
L(Ȳn, uL)2

2
χΩn

≤
√
d2
L,n(Ȳn, uL)2 ≤

√√√√ mn∑
j=k

d2
j,n(Ȳn, uj)2.

Thus knχΩn > kχΩn by Algorithm 2 and (1.33) follows with limn→∞ P (Ωn) = 1
(because of (1.31), (1.32) and the law of large numbers). For ε > 0

P

√√√√ mn∑
j=kn

d2
j,n(Ȳn − ŷ, uj)2 ≤ δestn

2


≥P

√√√√ mn∑
j=qn

d2
j(Ȳn − ŷ, uj)2 ≤ γ

4
√
n
, δestn ≥

γ

2
√
n
, d2

j ≥
d2
j,n

2
∀j ≤ mn, kn ≥ qn


≥1− P

√√√√ mn∑
j=qn

d2
j(Ȳn − ŷ, uj)2 >

γ

4
√
n

− P

(
δestn <

γ

2
√
n

)

− P

(
d2
j <

d2
j,n

2
, ∀j ≤ mn

)
− P (kn < qn)

≥1− ε− P

√√√√ mn∑
j=qn

d2
j(Ȳn − ŷ, uj)2 >

γ

4
√
n


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Chapter 1. The case with finite variance

for n large enough because of (1.31), (1.32) and (1.33). Now

P

√√√√ mn∑
j=qn

d2
j(Ȳn − ŷ, uj)2 >

γ

4
√
n

 ≤ 16n

γ2

mn∑
j=qn

d2
j

E(Y1 − ŷ, uj)2

n

≤ 16

γ2

mn∑
j=qn

j−(1+ε2) ≤ ε

for n large enough, because limn→∞
∑mn

j=qn
j−(1+ε2) ≤ limn→∞

∑∞
j=qn

j−(1+ε2) = 0.
Since ε was arbitrary, the proof of Lemma 1.6.5 is concluded.

�

We start the main proof and decompose as usual

‖X̄n −K+x̂‖ ≤

√√√√ kn∑
j=1

(Ȳn − ŷ, uj)2

σ2
j

+

√√√√ ∞∑
j=kn

(x̂, uj)2

and first consider the approximation error. With the convention
∑t

j=s = 0 for s > t,
a standard application of Hölder’s inequality for p = ν′+1

ν′
and q = ν ′+ 1, (1.30) and

the triangle inequality yield

√√√√ mn∑
j=kn+1

(x̂, uj)2 =

√√√√ mn∑
j=kn+1

(djσj)2ν′(ξ, vj)2

≤

√√√√√( mn∑
j=kn+1

(djσj)2(ν′+1)(ξ, vj)2

) ν′
ν′+1

(
mn∑

j=kn+1

(ξ, vj)2

) 1
ν′+1

≤ρ
1

ν′+1

√√√√ mn∑
j=kn+1

(djσj)2(x̂, vj)2

 ν′
ν′+1

= ρ
1

ν′+1

√√√√ mn∑
j=kn+1

d2
j(ŷ, vj)

2

 ν′
ν′+1

≤ρ
1

ν′+1

√√√√ mn∑
j=kn+1

d2
j(Ȳn, uj)

2 +

√√√√ mn∑
j=kn+1

d2
j(Ȳn − ŷ, uj)2

 ν′
ν′+1

.

Thus for
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Ωn : =


√√√√ mn∑

j=kn

d2
j,n(Ȳn − ŷ, uj)2 ≤ δestn

2
, |δestn −

γ√
n
| ≤ γ

2
√
n
, (1.35)

d2
j

2
≤ d2

j,n ≤ 2d2
j ∀j ≤ mn

}

there holds

√√√√ mn∑
j=kn+1

d2
j(Ȳn, uj)

2 +

√√√√ mn∑
j=kn+1

d2
j(Ȳn − ŷ, uj)2

 ν′
ν′+1

χΩn

≤4
ν′
ν′+1

√√√√ mn∑
j=kn+1

d2
j,n(Ȳn, uj)2 +

√√√√ mn∑
j=kn+1

d2
j,n(Ȳn − ŷ, uj)2

 ν′
ν′+1

χΩn

≤4
ν′
ν′+1

(
δestn + δestn

)
χΩn ≤

(
16γ√
n

) ν′
ν′+1

.

Consequently,

√√√√ ∞∑
j=kn+1

(x̂, uj)2χΩn ≤

√√√√ mn∑
j=kn+1

(x̂, uj)2χΩn +

√√√√ ∞∑
j=mn

(x̂, uj)2 (1.36)

≤ ρ
1

ν′+1

(
16γ√
n

) ν′
ν′+1

+

√√√√ ∞∑
j=mn+1

σ2ν
j (ξ, vj)2

≤ L

2
max

(
ρ

q+1−p
νq+q+1−p

(
1√
n

) ν

ν+
q+1+ε2−p

q , ρ

(
1√
n

)2(1−ε1)qν
)

for L = (32γ)
ν′
ν′+1 . To finish the proof we need to verify a similar bound for the data

propagation error. By definition of the discrepancy principle (Algorithm 2) and Ωn
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δestn χΩn <

√√√√ mn∑
j=kn

d2
j,n(Ȳn, uj)2χΩn

≤

√√√√ mn∑
j=kn

d2
j,n(ŷ, uj)2χΩn +

√√√√ mn∑
j=kn

d2
j,n(Ȳn − ŷ, uj)2χΩn

< 2

√√√√ mn∑
j=kn

d2
j(ŷ, uj)

2 +
δestn
2

= 2

√√√√ mn∑
j=kn

(djσj)2(1+ν′)(ξ, vj)2 +
δestn
2
χΩn

≤ 2ρk
− (q+1+ε2−p)(1+ν′)

2
n +

δestn
2
χΩn

=⇒ knχΩn ≤
(

4ρ

δestn

) 2
(q+1+ε2−p)(1+ν′)

χΩn ≤
(

16ρ2n

γ2

) 1
(q(ν+1)+1+ε2−p

=: b′n.

We set bn := min(b′n,mn), so knχΩn ≤ bn and

P

√√√√ kn∑
j=1

(Ȳn − ŷ, uj)2

σ2
j

≤ L

2
max

ρ 1
ν′+1

(
1√
n

) ν′
ν′+1

, ρ

(
1√
n

)2(1−ε1)qν


≥ P

√√√√ bn∑
j=1

(Ȳn − ŷ, uj)2

σ2
j

≤ A

(
1√
n

)min
(

ν′
ν′+1

,2(1−ε1)qν
)
,Ωn


≥ 1− P

√√√√ bn∑
j=1

(Ȳn − ŷ, uj)2

σ2
j

> A

(
1√
n

)min
(

ν′
ν′+1

,2(1−ε1)qν
)− P

(
ΩC
n

)

with A := L
2

max
(
ρ

1
ν′+1 , ρ

)
. Finally, with constants A′, A′′
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P

√√√√ bn∑
j=1

(Ȳn − ŷ, uj)2

σ2
j

> A

(
1√
n

)min
(

ν′
ν′+1

,2(1−ε1)qν
)

≤Anmin
(

ν′
ν′+1

,2(1−ε1)qν
) bn∑
j=1

jqE(Ȳn − ŷ, uj)2

≤A′nmin
(

ν′
ν′+1

,2(1−ε1)qν
)
−1
∫ bn

1

xq−pdx ≤ A′n
min

(
ν′
ν′+1

,2(1−ε1)qν
)
−1
bq+1−p
n

≤A′′nmin
(

ν′
ν′+1

,2(1−ε1)qν
)
−1+(q+1−p) min

(
1

q(ν+1)+1+ε2−p
,(1−ε1)

)

≤A′′nmin
(

1
q(ν+1)+1+ε2−p

,2(1−ε1)
)
qν−1+(q+1−p) min

(
1

q(ν+1)+1+ε2−p
,2(1−ε1)

)

≤A′′nmin
(

q(ν+1)+1−p
q(ν+1)+1+ε2−p

,2(1−ε1)(q(ν+1)+1−p)
)
−1 → 0

as n → ∞, since ε2 > 0. With P
(
ΩC
n

)
→ 0 this concludes the proof of Theorem

1.3.3.

�

1.7 Numerical demonstration

We conclude with some numerical results.

1.7.1 Differentiation of binary option prices

A natural example is given if the data is acquired by a Monte-Carlo simulation,
here we consider an example from mathematical finance. The buyer of a binary call
option receives after T days a payoff Q, if then a certain stock price ST is higher
then the strike value K. Otherwise he gets nothing. Thus the value V of the binary
option depends on the expected evolution of the stock price. We denote by r the
riskfree rate, for which we could have invested the buying price of the option until
the expiry rate T . If we already knew today for sure, that the stock price will hit the
strike (insider information), we would pay V = e−rTQ for the binary option (e−rT
is called discount factor). Otherwise, if we believed that the stock price will hit the
strike with probability p, we would pay V = e−rTQp. In the Black Scholes model
one assumes, that the relative change of the stock price in a short time interval is
normally distributed, that is

St+δt − St ∼ N (µδt, σ2δt).

Under this assumption one can show that (see [HB16])
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ST = S0e
sT ,

where S0 is the initial stock price and s ∼ N (µ− σ2/2, σ2/T ). Under this assump-
tions one has V = e−rTQΦ(d), with

Φ(x) :=
1√
2π

∫ x

−∞
e−

ξ2

2 dξ, d =
log S0

K
+ T

(
µ− σ2

2

)
σ
√
T

.

Ultimately we are interested in the sensitivity of V with respect to the starting
stock price S0, that is ∂V (S0)/∂S0. We formulate this as the inverse problem of
differentiation. Set X = Y = L2([0, 1] = and define

K :L2([0, 1])→ L2([0, 1])

f 7→ Af = g : x 7→
∫ x

0

f(y)dy.

Then our true data is ŷ = V = e−rTQΦ(d). To demonstrate our results we now
approximate V : S0 7→ e−rTQp(S0) through a Monte-Carlo approach. That is we
generate independent gaussian random variables Z1, Z2, ... identically distributed
to s and set Yi := e−rTQχ{S0eTZi≥K}. Then we have EYi = e−rTQP(S0e

TZi) =

e−rTQp(S0) = V (S0) and E‖Yi‖2 ≤ e−rTQ < ∞. We replace L2([0, 1]) with piece-
wise continuous linear splines on a homogeneous grid with m = 50000 elements (we
can calculate Kg exactly for such a spline g). We use in total n = 10000 random
variables for each simulation. As parameters we chose r = 0.0001, T = 30, K =
0.5, Q = 1, µ = 0.01, σ = 0.1. It is easy to see that x̂ = K+ŷ ∈ Xν for all ν > 0 using
the transformation z(ξ) = 0, 5e

√
0,3ξ−0,15. Since the qualification of the Tikhonov

regularisation is 2, Theorem 1.2.4 gives an error bound which is asymptotically pro-
portional to (1/

√
n)

1
2 . In Figure 1 we plot the L2 average of 100 simulations (with

the sample variance as error bars) of the discrepancy principle together with the
(translated) optimal error bound. In this case the emergency stop did not trigger
once - this is plausible, since the true solution is very smooth, which yields compa-
rably higher values of the regularisation parameter and also, the error distribution
is Gaussian.
Let us stress that this is only an academic example to demonstrate the possibility of
using our new generic approach in the context of Monte Carlo simulations. Explicit
solution formulas for standard binary options are well-known, and for more com-
plex financial derivatives with discontinuous payoff profiles (such as autocallables
or Coco-bonds) one would rather resort to stably differentiable Monte Carlo meth-
ods ([AHHK13] or [GHR20]) or use specific regularization methods for numerical
differentiation [HS01].
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1.7 Numerical demonstration

Figure 1.1: Estimated Risk of a binary option.

1.7.1.1 Rescaling of the measurements and the operator

We now numerically investigate the idea of rescaling the measurements to improve
the relative smoothness and hence the convergence speed, cf. section 1.3. We
reduce the discretisation dimension to m = 5000 and calculate the singular value
decomposition with the function ’csvd’ from the regularisation toolbox [Han10]. We
apply Algorithm 2 for ε1 = 0.5, ε2 = 0.1 and n = 5 ∗ [101 , 3.3 ∗ 101 , 102...3.3 ∗
104 , 105] and compare the result to Algorithm 1 with the same n. In Figure 1.2
we plot the L2 average of the relative errors for 100 simulations of the discrepancy
principle together with the sample variance of the relative errors. We clearly see,
that the convergence is faster in the rescaled case.

1.7.2 Inverse heat equation

We consider the toy problem ’heat’ from [Han10]. We chose the discretisation level
m = 100 and set σ = 0.7. Under this choice, the last seven singular values (calculated
with the function ’csvd’) fall below the machine precision of 10−16. The discretised
large systems of linear equations are solved iteratively using the conjugate gradient
method (’pcg’ from MATLAB) with a tolerance of 10−8. As a regularisation method
we chose Tikhonov regularisation and we compared the a priori choice αn = 1/

√
n,

the discrepancy principle (dp) and the discrepancy principle with emergency stop
(dp+es), as implemented in Algorithm 1 with q = 0.7 and estimated sample variance.
The unbiased i.i.d measurements fulfill

√
E‖Yi − ŷ‖2 ≈ 1.16 and E‖Yi − EYi‖k =∞
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Chapter 1. The case with finite variance

Figure 1.2: Estimated risk of a binary option for unscaled and rescaled operator and
measurements.

for k ≥ 3. Concretely, we chose Yi := ŷ+Ei with Ei := Ui ∗Zi ∗ v, where the Ui are
independent and uniformly on [−1/2, 1/2] distributed, the Zi are independent Pareto
distributed (MATLAB function ’gprnd’ with parameters 1/3, 1/2 and 3/2), and v is
a uniform permutation of 1, 1/2

3
4 , ..., 1/m

3
4 . Thus we chose a rather ill-posed problem

together with a heavy-tailed error distribution. We considered three different sample
sizes n = 103, 104, 105 with 200 simulations for each one. The results are presented
as boxplots in Figure 3. It is visible, that the results are much more concentrated
for a priori regularisation and discrepancy principle with emergency stop, indicating
the L2 convergence (strictly speaking we do not know if the discrepancy principle
with emergency stop converges in L2, since the additional assumption of Corollary
1.2.5 is violated here). Moreover the statistics of the discrepancy principle with and
without emergency stop become more similiar with increasing sample size - with the
crucial difference, that the outliers as such we denote the red crosses above the blue
box, thus the cases where the method performed badly) are only present in case of
the discrepancy principle without emergency stop, causing non-convergence in L2,
see Figure 2. Thus here the discrepancy principle with emergency stop is superior
to the discrepancy principle without emergency stop, in particular for large sample
sizes. Beside that, the error is falling slower in case of the a priori parameter choice.
The number of outliers falls with increasing sample size from 37 for n = 103 to
18 for n = 105, indicating the (slow) convergence in probability of the discrepancy
principle. Note that δtruen /δestn ≈ 1.9 (in average), if we only consider the runs
yielding outliers. This illustrates, that the lack of convergence in L2 is caused by
the occasional underestimation of the data error.
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1.7 Numerical demonstration

Figure 1.3: Comparison of Tikhonov regularisation with discrepancy principle (dp, Al-
gorithm 1), discrepancy principle with emergency stop (dp+es, Algorithm
1 (optional)) and a priori choice for ’heat’. Boxplots of the relative errors
‖Rαn Ȳn−K+ŷ‖/‖K+ŷ‖ for 200 simulations with three different sample sizes.
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Table 1.1: Estimated relative L2 error for ’heat’

n edp edp+es eapriori
1e3 572.49 0.66 0.83
1e4 79.45 0.49 0.76
1e5 107.19 0.31 0.69

1.8 Concluding remarks

In this chapter, we have shown how to solve a linear inverse problem under arbitrary
stochastic noise of unknown error distribution (unbiased and with finite variance),
if we are able to repeat the measurement independently. Important further investi-
gations could deal with a rigorous analysis of the approach presented numerically in
section 1.7.1.1 on the rescaling of the measurements, or on the relation to heuristic
parameter choice rules with their noise conditions, as touched in section 1.4. It could
also be worth to take a closer look at settings involving Monte-Carlo simulations,
c.f. the numerical example in 1.7.1. Hereby one should probably also take errors of
the forward operator into account. Finally, we did not touch nonlinear problems or
problems in Banach spaces, see [EHN96],[KNS08], [SKHK12] and [IJ15] for intro-
ducing monographs. The approach of using averaged data is first of all independent
of the linear Hilbert space setting, and therefore should be investigated in these
scenarios as well.
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Chapter 2

The white noise case

The sections 2.1 to 2.5 are, up to minor changes, submitted for publication [HJP20b].

We again consider the ill-posed equation Kx̂ = ŷ for a given ŷ ∈ D(K+), where
K+ is the generalised inverse of the compact and linear operator K and the right
hand side ŷ is ad hoc unknown and has to be reconstructed from measurements.
In the preceeding chapter we presented an approach, how to solve the problem for
multiple unbiased and independent measurements of ŷ, if the arbitrary unknown
error distribution has finite variance. Now we take discretisation into account and
extend the results to arbitrary (unknown) white noise settings.

As an arbitrary element of an infinite-dimensional space, ŷ cannot be measured
directly, but we may measure l(ŷ) for various linear functionals l ∈ L(Y ,R). If
the unknown ŷ is for example a continuous function, one may think of performing
point evaluations or measuring the integrals of that function over small parts of
the domain. We will refer to these linear functionals as measurement channels in
the following. We assume that we have multiple and unbiased samples on each
measurement channel, corrupted randomly by additive noise. So,

Yij := lj(ŷ) + δij (2.1)

is the i-th sample on the j-th measurement channel, with ‖l1‖ = ‖l2‖ = ... and
unbiased and independent measurement errors δij, i, j ∈ N with arbitrary unknown
distribution. Thus

(
Yi1 − l1(ŷ) ... Yim − lm(ŷ)

)T ∈ Rm, i ∈ N are i.i.d white noise
vectors with unknown distribution. We assume, that (lj)j∈N is complete and square-
summable, i.e. for all y ∈ Y \ {0} there is a lj with lj(y) 6= 0 and

∑∞
j=1 lj(y)2 <∞.

For a fixed number m of measurement channels and a large number n of repetitions
we obtain an approximation

Ȳ (m)
n :=

 1
n

∑n
i=1 Yi1
...

1
n

∑n
i=1 Yim

 ≈
 l1(ŷ)

...
lm(ŷ)

 .

As a first approach we apply the ideas of Tikhonov (0.2) and minimise the following
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Chapter 2. The white noise case

functional with finite-dimensional residuum (fdr)

arg min
x∈X

∥∥∥∥∥∥
 l1(Kx)

...
lm(Kx)

− Ȳ (m)
n

∥∥∥∥∥∥
2

Rm

+ α‖x‖2
X . (2.2)

The main question of this chapter is, whether the unique minimiser of (2.2), denoted
by R

(m)
α Ȳ

(m)
n , converges to x̂ for m,n → ∞, for adequately chosen α = α(m,n).

With the Bakushinskii veto (Theorem 0.0.1) in mind, this choice must depend on
the measurement error ‖Ȳ (m)

n −
(
l1(ŷ) ... lm(ŷ)

)T ‖. Here, the i.i.d assumption
yields a natural estimator

δestm,n :=

√
m

n
s2
m,n, (2.3)

where s2
m,n := 1

m

∑m
j=1

1
n−1

∑n
i=1

(
Yij − 1

n

∑n
l=1 Ylj

)2 is the mean of the sample vari-
ances. Clearly, δestm,n converges to 0 in probability (and a.s. and in root mean square),
iff m/n→ 0 (see Proposition 2.3.3 below). For the determination of the regularisa-
tion parameter α in (2.2) we once more consider the discrepancy principle (0.6) and
solve

∥∥∥∥∥∥
 l1(KR

(m)
α Ȳ

(m)
n )

...

lm(KR
(m)
α Ȳ

(m)
n )

− Ȳ (m)
n

∥∥∥∥∥∥ ≈ δestm,n (2.4)

(see Algorithm 3 with C0 = 1 for the numerical implementation). We obtain the
following convergence result for the discrepancy principle.

Corollary 2.0.1. Assume that K is injective with dense image and that (δij)i,j∈N

are independent and identically distributed with zero mean and bounded variance.
Moreover assume, that (lj)j∈N is complete and square-summable. Then, with αm,n
determined by the discrepancy principle (2.4), we have that

lim
m→∞
n→∞
m/n→0

P
(
‖R(m)

αm,nȲ
(m)
n −K+ŷ‖ ≥ ε

)
= 0

for all ε > 0.

All the details to this result can be found in Section 2.1, where we also more generally
treat filter based regularisations, as well as a priori parameter choice rules and
discretisations l(m)

j , j = 1, ...,m. Let us stress, that Corollary 2.0.1 guarantees
convergence without any quantitative knowledge of the quality of the discretisation
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(error), for an arbitrary unknown error distribution. In view of the Bakushinskii
veto it might be surprising, that no knowledge of some kind of discretisation error is
required. Corollary 2.0.1 does not give a convergence rate, however, the numerical
experiments in Section 2.4 indicate, that there might hold order optimality in various
settings.

In order to obtain convergence rates we consider a second approach, which is about to
first construct from the measured data in Rm continuous measurements in the Hilbert
space Y , see f.e. the recent preprint [GH20]. For that we solve the optimisation
problem

Z(m)
n := arg min

y∈Y

∥∥∥∥∥∥
 l1(y)

...
lm(y)

− Ȳ (m)
n

∥∥∥∥∥∥ . (2.5)

We restrict to discretisations, for which (2.5) is well-conditioned, see Assumption
2.2.1. For general discretisations one would need to add an additional regularisa-
tion term. Then, instead of (2.2), we solve the following functional with infinite-
dimensional residuum (idr)

arg min
x∈X

∥∥Kx− Z(m)
n

∥∥2

Y + α ‖x‖2
X (2.6)

and the regularisation parameter α has to be chosen accordingly to ‖Z(m)
n − ŷ‖.

With

y(m) := arg min
y∈Y

∥∥∥∥∥∥
 l1(y)

...
lm(y)

−
 l1(ŷ)

...
lm(ŷ)

∥∥∥∥∥∥ .
we may decompose this term into a measurement error and a discretisation error

‖Z(m)
n − ŷ‖ ≤ ‖Z(m)

n − y(m)‖+ ‖y(m) − ŷ‖.

Assume that we know an asymptotic bound δdiscm for the discretisation error ‖ŷ −
y(m)‖ (which is natural in various settings, see Section 2.2). One may estimate
‖Z(m)

n − y(m)‖ (see Algorithm 2), and should use that many repetitions n(m, δdiscm ),
such that this estimator approximately equals δdiscm . The regularisation parameter
α is then again determined via the discrepancy principle

‖KRαZ
(m)

n(m,δdiscm )
− Z(m)

n(m,δdiscm )
‖ ≈ 2δdiscm , (2.7)

with RαZ
(m)

n(m,δdiscm )
the unique solution of (2.6) (see Algorithm 4 with C0 = 1 for the

numerical implementation). We obtain the following result on the convergence and
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Chapter 2. The white noise case

the order optimality.

Corollary 2.0.2. Assume that K is injective with dense image and that (δij)i,j∈N

are independent with zero mean and finite variance. Moreover, the discretisation is
complete and well-conditioned (see Propposition 2.2.3). Let (δdiscm )m∈N be an known
upper bound for the discretisation error converging to 0 and determine αm with the
discrepancy principle (2.7). Then

lim
m→∞

P
(
‖RαmZ

(m)

n(m,δdiscm )
−K+ŷ‖ ≥ ε

)
= 0

for all ε > 0. If moreover there is a 0 < ν ≤ 1 and a ρ > 0 such that K+ŷ =
(K∗K)ν/2ξ for some ξ ∈ X with ‖ξ‖ ≤ ρ, then

P
(
‖RαmZ

(m)

n(m,δdiscm )
−K+ŷ‖ ≤ L′ρ

1
ν+1 δ

ν
ν+1
m

)
→ 1

for m→∞ and some constant L′.

The rest of the chapter is organised as follows. In Section 2.1 and Section 2.2 we
will show the L2 convergence (a.k.a. convergence of the mean squared error) of a
priori parameter choice rules and the convergence in probability of the discrepancy
principle for the both approaches respectively. The proofs are deferred to Section
2.3 and we conclude with a numerical study in Section 2.4 and some final remarks
in Section 2.5.

2.1 Approach with finite-dimensional residuum

We start with a precise and more general definition of our discretisation scheme.
Therefore we introduce as follows the discretisation (operators)

Pm : Y → Rm, y 7→

l(m)
1 (y)
...

l
(m)
m (y)

 , (2.8)

with the corresponding measurements

Y
(m)
ij := l

(m)
j (ŷ) + δ

(m)
ij .

That is, the measurement channels and also the error distribution may depend on
the number m of measurement channels now. We will often use, that by the Riesz
representation theorem there are unique (η

(m)
j )j≤m,m∈N such that l(m)

j (y) = (η
(m)
j , y)
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2.1 Approach with finite-dimensional residuum

for all y ∈ Y . From now on we consider more generally filter-based regularisations
R

(m)
α := Fα ((PmK)∗ PmK) (PmK)∗, where (Fα)α fulfills Assumption 2.1.1 below.

Assumption 2.1.1 (Filter). (Fα)α>0 is a family of piecewise continuous real valued
functions on [0, ‖K‖]2, with

lim
α→0

sup
ε≤λ≤‖K‖2

|Fα(λ)− 1/λ| = 0 (2.9)

for all ε > 0 and λ|Fα(λ)| ≤ CR ∈ R for all λ ∈ (0, ‖K‖2] and α > 0. Moreover it
has qualification ν0 ≥ 0, i.e. ν0 is maximal such that for all 0 ≤ ν ≤ ν0 there is a
constant Cν ∈ R such that

sup
λ∈(0,‖K‖2]

λ
ν
2 |1− Fα(λ)λ| ≤ Cνα

ν
2 .

Hereby, for ν = 0 the constant C0 is assumed to be known. Finally, there is a
constant CF ∈ R with |Fα(λ)| ≤ CF/α for all α > 0 and λ ∈ (0, ‖K‖2].

Remark 2.1.2. Assumption 2.1.1 coincides with the classical ones as given in
Assumption 1.1.2 in the preceding chapter up to (2.9), which is replaced by the
weaker condition limα→0 Fα(λ) = 1/λ, for all λ ∈ (0, ‖K‖2] there. However, it
is easy to verify that the generating filter of all popular methods, e.g. truncated
singular value, (iterated) Tikhonov or Landweber regularisation, fulfill Assumption
2.1.1. In all this cases it holds that C0 = 1.

We require the discretisation to converge in the following sense.

Assumption 2.1.3 (Disretisation for finite-dimensional residuum). There exists
an injective operator A ∈ L(Y) such that limm→∞ P

∗
mPmy = Ay for all y ∈ Y.

We list some popular discretisation schemes which fulfill Assumption 2.1.3, starting
with the one from the introduction.

Proposition 2.1.4. Assume that l(m)
j = lj for all j = 1, ...,m and m ∈ N with

(lj)j∈N ⊂ L(Y ,R), where (lj)j∈N is complete and square-summable, i.e. for all y ∈
Y \ {0} there is a lj such that lj(y) 6= 0 and there holds

∑∞
j=1 lj(y)2 < ∞. Then

Assumption 2.1.3 is fulfilled.

Often the limit operator A will be the identity Id = IdY , e.g. in the case when we
discretise by box or hat functions.

Proposition 2.1.5. Assume that Y = L2([0, 1]) and we discretise by box functions,
i.e. l

(m)
j = (η

(m)
j , ·), with η

(m)
j =

√
mχ[ j−1

m
, j
m

) for j = 1, ...,m and m ≥ 2. Then
Assumption 2.1.3 is fulfilled with A = Id.
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Chapter 2. The white noise case

Proposition 2.1.6. Assume that Y = L2([0, 1]) and we discretise by hat functions,
i.e. l(m)

j = (η
(m)
j , ·), with

1. η
(m)
j√
m−1

= (1 − j + (m − 1)x)χ[ j−1
m−1

, j
m−1

) + (j + 1 − (m − 1)x)χ[ j
m−1

, j+1
m−1

) for
j = 2, ...,m− 1,

2. η(m)
1 =

√
2(m− 1)(1 + j − (m− 1)x)χ[ j

m−1
, j+1
m−1

),

3. η(m)
m =

√
2(m− 1)((m− 1)x− j + 1)χ[ j−1

m−1
, j
m−1

].

Then Assumption 2.1.3 is fulfilled with A = Id.

2.1.1 A priori regularisation with finite-dimensional residuum

We start with a priori regularisations and impose the following assumption on the
error, which is weaker than the one in the introduction. Basically, solely indepen-
dence on each measurement channel and a uniform boundedness of the variances
are required.

Assumption 2.1.7 (Error for a priori regularisation). For allm, j ∈ N, the random
variables

(
δ

(m)
ij

)
i∈N

are independent with zero mean and there exists Cd ∈ R with

sup
m,i,j∈N
j≤m

E[δ
(m)
ij

2
] ≤ Cd.

Since the sample variance depends on the data, we set s2
m,n = 1 here, such that

δestm,n =
√
m/n. This has the advantage, that the regularisation parameter α is

independent of the measurements Y (m)
ij . We obtain convergence in L2 for a priori

regularisation.

Theorem 2.1.8. Assume that the discretisation fulfills Assumption 2.1.3 and that
the error is accordingly to Assumption 2.1.7 and (Fα)α>0 fulfills Assumption 2.1.1.
Take an a priori parameter choice rule with α(δ)

δ→0−→ 0 and δ/
√
α(δ)

δ→0−→ 0. Then
there holds

lim
m,n→∞
m/n→0

E‖R(m)
α(δestm,n)Ȳ

(m)
n −K+ŷ‖2 = 0.
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2.1 Approach with finite-dimensional residuum

2.1.2 A posteriori regularisation with finite dimensional
residuum

We turn our attention to the discrepancy principle. The regularisation parameter is
determined through

‖PmKR(m)
α Ȳ (m)

n − Ȳ (m)
n ‖ ≈ δestm,n (2.10)

and in the definition of δestm,n =
√
s2
m,nm/n we choose the mean of the sample vari-

ances

s2
m,n :=

1

m

m∑
j=1

1

n− 1

n∑
i=1

(
Y

(m)
ij − 1

n

n∑
l=1

Y
(m)
lj

)2

,

since we will need a sharp estimation of the right hand side. We implement the
discrepancy principle with Algorithm 3.

Algorithm 3 Discrepancy principle with fdr approach
1: Choose τ > C0 (from Assumption 2.1.1) and q ∈ (0, 1);
2: Input: Measurements Y (m)

ij = l
(m)
j (ŷ) + δ

(m)
ij with i ≤ n and j ≤ m;

3: Set Ȳ (m)
n = 1

n

∑n
i=1

Y (m)
i1

...

Y
(m)
im

;

4: Set δestm,n =

√
m
n

1
m

∑m
j=1

1
n−1

∑n
i=1

(
Y

(m)
ij − 1

n

∑n
l=1 Y

(m)
lj

)2

;

5: k = 0;

6: while

∥∥∥∥∥∥∥
l

(m)
1 (KR

(m)

qk
Ȳ

(m)
n )

...

l
(m)
m (KR

(m)

qk
Ȳ

(m)
n )

− Ȳ (m)
n

∥∥∥∥∥∥∥ > τδestm,n do

7: k = k + 1;
8: end while
9: αm,n = qk;

Algorithm 3 terminates (with probability tending to 1 for m→∞), if K has dense
image and (for m large enough) E(Y

(m)
11 − EY (m)

11 )2 > 0, for details see section 1.2 of
the preceding chapter. We extend the assumptions of the error in the introduction.

Assumption 2.1.9 (Error for a posteriori regularisation). It holds that either

1. the random variables
(
δ

(m)
ij

)
i,j,m∈N

are i.i.d. with zero mean and bounded vari-
ance, or,
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Chapter 2. The white noise case

2. there are Cd ∈ R and p > 1 such that for all m ∈ N the random variables(
δ

(m)
ij

)
i,j∈N

are i.i.d with zero mean and E|δ(m)
ij |

2p

(Eδ(m)
ij

2
)p
≤ Cd.

The main difference between Assumption 2.1.9.1 and 2.1.9.2 is, that for the latter
the error distribution may vary with m, to the cost of a uniform moment condition.

Remark 2.1.10. Assumption 2.1.9.2 guarantees, that the error distribution does
not degenerate too much. It is trivially fulfilled, if f.e. δ(m)

ij
d
= cmX, with E|X|2p <

∞, (cm)m∈N ⊂ R \ {0}.

Now we are ready to prove convergence of the discrepancy principle. In contrast to
the previous section, where we showed convergence in L2 for a priori regularisation
methods, the result will now be on convergence in probability, as convergence in L2

is not expected (compare this to the counterexample in section 1.2.1 of the preceding
chapter).

Theorem 2.1.11. Assume that K is injective with dense image and that the dis-
cretisation fulfills Assumption 2.1.3 and that the error is accordingly to Assumption
2.1.9 and (Fα)α>0 fulfills Assumption 2.1.1 with a qualification ν0 > 1. Then, with
αm,n the output of Algorithm 3,

lim
m,n→∞
m/n→0

P
(
‖R(m)

αm,nȲ
(m)
n −K+ŷ‖ ≥ ε

)
= 0

for all ε > 0.

Corollary 2.0.1 is an easy consequence of Theorem 2.1.11 and Proposition 2.1.4. We
conclude the section with some remarks regarding Assumptions 2.1.3 and 2.1.9.

Remark 2.1.12. A natural generalisation of the assumption in the introduction,
that (lj)j∈N is complete, would be the following: For all y ∈ Y \ {0} there is a ε > 0
such that ‖Pmy‖ ≥ ε for m large enough. However, the following counter example
shows that this condition is not sufficient to guarantee, that the discretisation error
tends to 0: Let (ej)j∈N be an orthonormal basis of Y . Set l(m)

j (y) = (y, ej) for
j = 2, ...,m and l(m)

1 (y) = (y, e1/
√

2 + em+1/
√

2). For y 6= 0 we set ε = |(y, ej)|/2
with j = min{j : (y, ej) 6= 0}. Then clearly, ‖Pmy‖ ≥ ε for m large enough. But, it
is N (Pm) =< e1/

√
2 − em+1/

√
2, em+2, em+3, ..., >, thus PN (Pm)e1 = e1/

√
2 6→ 0 for

m→∞.

Remark 2.1.13. As already mentioned, Assumption 2.1.9 excludes distributions
which are too degenerated and guarantees, that Eδ(m)

11

2
is in some sense uniformly

estimatable. We quickly sketch what can go wrong, if the distributions degenerate
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2.2 Approach with infinite-dimensional residuum

too much. Assume that (δ
(m)
ij )ij are i.i.d. for all m ∈ N, with

P(δ
(m)
ij = x) =

{
1
m4 for x = −

√
m4 − 1

m4−1
m4 for x = 1/

√
m4 − 1

.

Thus Eδ(m)
11 = 0 and Eδ(m)

11

2
= 1, but, for any p > 1,

E|δ(m)
11 |2p

(Eδ(m)
11

2
)p
≥ 1

m4
|
√
m4 − 1|2p =

(
1− 1

m4

)
|m4 − 1|p →∞

as m → ∞. Thus Assumption 2.1.9 is violated and with the choice n(m) = m2 it
holds that limm→∞

m
n(m)

= 0, but we have that

P
(
δestm,n(m) = 0

)
= P

(
s2
m,n(m) = 0

)
= P

(
δ

(m)
ij = 1/

√
m4 − 1 , i = 1, ...,m2, j = 1, ...,m

)
=

(
1− 1

m4

)m3

=

((
1− 1

m4

)m4
) 1

m

→ 1

as m → ∞. Thus with asymptotic probability 1 the discrepancy principle cannot
even be applied for this choice of n. The number of repetitions n(m) = m is simply
too small to estimate the variance of δ(m)

11 adequately.

2.2 Approach with infinite-dimensional residuum

We turn our attention to the second approach (2.6). The strategy is to use the
measured data to construct virtual measurements in the infinite-dimensional Hilbert
space Y and then to regularise the infinite-dimensional problem using classical meth-
ods. For the regularisation we will need in the following an upper bound for the
discretisation error, which we denote by δdiscm ≥ ‖ŷ − P+

mPmŷ‖. Decomposing the
true data error yields

‖ŷ − P+
m Ȳ

(m)
n ‖ ≤ ‖ŷ − P+

mPmŷ‖+ ‖P+
mPmŷ − P+

m Ȳ
(m)
n ‖.

As in the approach with a finite-dimensional residuum, there is a generic way to
estimate the (projected) measurement error ‖P+

m Ȳ
(m)

n(m,δdiscm )
− P+

mPmŷ‖. So that it
is natural to choose the number of repetitions n(m, δdiscm ) in such a way, that this
estimator approximately equals the discretisation error δdiscm . After that one may
use any deterministic regularisation together with total estimated noise level

2δdiscm ≈ ‖ŷ − P+
mPmŷ‖+ ‖P+

mPmŷ − P+
m Ȳ

(m)

n(m,δdiscm )
‖ ≥ ‖ŷ − P+

m Ȳ
(m)

n(m,δdiscm )
‖. (2.11)
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Chapter 2. The white noise case

We again consider regularisations Rα := Fα(K∗K)K∗ induced by a regularising filter
fulfilling Assumption 2.1.1 and impose the following restrictions on the discretisation
and our a priori knowledge of it.

Assumption 2.2.1 (Discretisation for infinite dimensional residuum). We assume
that we know an asymptotic upper bound (δdiscm )m∈N for the discretisation error
and asymptotic upper and lower bounds (cm)m∈N, (Cm)m∈N for the singular val-
ues (σ

(m)
j )j≤m,m∈N of (Pm)m∈N. More precisely, these bounds have to fulfill ‖ŷ −

P+
mPmŷ‖ ≤ δdiscm , cm ≤ σ

(m)
j ≤ Cm for all j = 1, ..,m and m large enough, and

δdiscm → 0 as m→∞ and

lim sup
m∈N

κ(Pm) := lim sup
m
‖Pm‖‖P+

m‖ = lim sup
m∈N

maxj=1,...,m σ
(m)
j

minj=1,...,m σ
(m)
j

≤ lim sup
m∈N

Cm
cm

<∞.

(2.12)

Often the stability assumption (2.12) can be guaranteed by an angle condition for
the unique η(m)

j ∈ Y , which fulfill l(m)
j (y) = (ηj, y) for all y ∈ Y .

Proposition 2.2.2. Assume that

sup
m∈N

sup
j≤m

∑
i 6=j

|(η(m)
i , η

(m)
j )|

‖η(m)
1 ‖2

≤ c < 1.

Then cm := ‖η(m)
1 ‖2(1 − c) ≤ σ

(m)
j ≤ ‖η(m)

1 ‖2(1 + c) =: Cm for j = 1, ..,m and m
large enough and thus κ(Pm) ≤ 1+c

1−c .

Clearly, the angle condition is always satisfied for orthogonal discretisations. We now
show that Assumption 2.2.1 is fulfilled for various popular discretisation schemes.
We start with the example from the introduction.

Proposition 2.2.3. Assume that l(m)
j = lj = (ηj, ·) for all j = 1, ...,m and m ∈ N,

with (lj)j∈N ⊂ L(Y ,R) and (ηj)j∈N ⊂ Y, and that we know c and δdiscm such that
δdiscm ≥ ‖ŷ − P+

mPmŷ‖ and (lj)j∈N is complete, i.e. for all y ∈ Y \ {0} there is a lj
such that lj(y) 6= 0, and well-conditioned, that is

sup
j∈N

∞∑
i=1
i 6=j

|(ηi, ηj)|/‖η1‖2 ≤ c < 1.

Then Assumption 2.2.1 is fulfilled for δdiscm and cm = 1− c, Cm = 1 + c.

Next we consider discretisation along the singular directions of K.
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2.2 Approach with infinite-dimensional residuum

Proposition 2.2.4. Assume that the singular value decomposition (σl, vl, ul)l∈N of
K is known. Then for the discretisation l(m)

j = (uj, ·) Assumption 2.2.1 is (asymp-
totically) fulfilled, with the bounds δdiscm = fmσm+1 (where fm is any sequence with
fm →∞ as m→∞) and cm = Cm = 1.

In many important cases, for example if K is a Fredholm integral equation with
sufficient smoothing kernel, Assumption 2.2.1 is also fulfilled for discretisation with
box or hat functions.

Proposition 2.2.5. Consider X = Y = L2(0, 1) and η(m)
j the box functions from

Proposition. If ŷ is continuously differentiable, then Assumption 2.2.1 is fulfilled with
bounds δm = fm/m and cm = Cm = 1, where (fm)m is arbitrary with limm fm =∞.

Proposition 2.2.6. Consider X = Y = L2(0, 1) and η(m)
j the hat functions from

Proposition. If ŷ is continuously differentiable, then Assumption 2.2.1 is fulfilled
with bounds δm = fm/m and cm = 1/6 and Cm = 7/6, where limm fm = ∞. If ŷ
is twice continuously differentiable, then Assumption 2.2.1 is fulfilled with bounds
δm = fm/m

2 and cm = 1/6 and Cm = 7/6, with limm fm =∞.

It remains to determine the number of repetitions n(m, δdiscm ), such that the (back
projected) measurement error fulfills ‖P+

mPmŷ−P+
m Ȳ

(m)

n(m,δdiscm )
‖ ≈ δdiscm . This number

depends on the singular value composition of Pm and the variance Eδ(m)
11

2
. More pre-

cisely, with (σ
(m)
j , v

(m)
j , u

(m)
j )j≤m the singular value decomposition of Pm and e1, ...em

is the standard basis of Rm, it is

‖P+
m Ȳ

(m)
n − P+

mPmŷ‖2 =
m∑
j=1

1

σ
(m)
j

2

(
m∑
l=1

∑
i

δ
(m)
ij /n(vj, el)

)2

=⇒E‖P+
m Ȳ

(m)
n − P+

mPmŷ‖2 =
Eδ(m)

11

2

n

m∑
j=1

1

σ
(m)
j

2 .

Thus with our lower bound cm ≤ σ
(m)
j we determine

n(m, δdiscm ) := min

{
n ≥ 2 :

ms2
m,n

nc2
m

≤ δdiscm

2
}
,

with s2
m,n = 1 or s2

m,n = 1
m

∑m
j=1

1
n−1

∑n
i=1

(
Y

(m)
ij − 1

n

∑n
l=1 Y

(m)
lj

)2

.
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Chapter 2. The white noise case

2.2.1 A priori regularisation for infinite-dimensional
residuum

For a priori regularisations we set s2
m,n = 1, so that n(m, δ) and the measurements

Y
(m)
ij are independent. The convergence result holds true with the same assumption

for the error as in Section 2.1.1.

Theorem 2.2.7. Assume that the discretisation fulfills Assumption 2.2.1 and that
the error is accordingly to Assumption 2.1.7 and (Fα)α>0 fulfills Assumption 2.1.1.
Take an a priori parameter choice rule with α(δ)

δ→0−→ 0 and δ/
√
α(δ)

δ→0−→ 0. Then
there holds

lim
m→∞

E‖Rα(δdiscm )P
+
m Ȳ

(m)

n(m,δdiscm )
−K+ŷ‖2 = 0

for n(m, δdiscm ) = d m

c2mδ
disc
m

2 e.

Remark 2.2.8. Note that for a priori regularisation one can relax the condition
on δdiscm in Assumption 2.2.1 to limm→∞ δ

disc
m = 0 and lim supm→∞

δdiscm

‖ŷ−P+
mPmŷ‖

> 0.

2.2.2 A posteriori regularisation for infinite-dimensional
residuum

Now we determine the stopping index n(m, δdiscm ) more accurately with the sample

variance and set s2
m,n := 1

m

∑m
j=1

1
n−1

∑n
i=1

(
Y

(m)
ij − 1

n

∑n
l=1 Y

(m)
lj

)2

. We implement
the discrepancy principle in Algorithm 2.
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2.2 Approach with infinite-dimensional residuum

Algorithm 4 Discrepancy principle with idr approach
1: Choose τ > C0 (from Assumption 2.1.1) and q ∈ (0, 1);
2: Input: Number of measurement channels m, measurements Y (m)

ij , j ≤ m, i ∈ N,
upper bound δdiscm for discretisation error, lower bound cm for singular values of
Pm;

3: Determine n(m, δdiscm ) := min

{
n′ ≥ 1 :

ms2
m,n′

n′c2m
≤ δdiscm

2

}
from measurements

Y
(m)
ij .

4: Set Ȳ (m)

n(m,δdiscm )
= 1

n(m,δdiscm )

∑n(m,δdiscm )
i=1

(
Y

(m)
i1 ... Y

(m)
in

)T
;

5: k = 0;
6: while ‖(KRqkP

+
m Ȳ

(m)

n(m,δdiscm )
− P+

m Ȳ
(m)

n(m,δdiscm )
‖ > 2τδdiscm do

7: k = k + 1;
8: end while
9: αm = qk;

Algorithm 4 terminates under the same conditions as Algorithm 3. The back prop-
agating of the measurements induces correlations, which forces us to impose slightly
stricter conditions on the error distribution than in the setting before. On the other
hand, the regularisation is now done in Y (no matter which m), which allows to use
classical results to obtain a convergence rate.

Theorem 2.2.9. Assume that K is injective with dense image and that the dis-
cretisation fulfills Assumption 2.2.1 and that the error is accordingly to Assumption
2.1.9, with p ≥ 2 in the case of 2.1.9.2 and (Fα)α>0 fulfills Assumption 2.1.1 with
a qualification ν0 > 1. For τ > C0, let αm and Ȳ

(m)

n(m,δdiscm )
be the output of the

discrepancy principle as implemented in Algorithm 4. Then

lim
m→∞

P
(
‖RαmP

+
m Ȳ

(m)

n(m,δdiscm )
−K+ŷ‖ ≥ ε

)
= 0.

If moreover, there is a 0 < ν ≤ ν0 − 1 and a ρ > 0 such that K+ŷ = (K∗K)ν/2ξ for
some ξ ∈ X with ‖ξ‖ ≤ ρ, then

P
(
‖RαmPm

+Ȳ
(m)

n(m,δdiscm )
−K+ŷ‖ ≤ L′ρ

1
ν+1

(
δdiscm

) ν
ν+1

)
→ 1

for m→∞ and some constant L′.

Now Corollary 2.0.2 in the introduction is an easy consequence of Theorem 2.2.9
and Proposition 2.2.3.
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Chapter 2. The white noise case

2.3 Proofs

In this section we collect the proofs. We will need the singular value decompo-
sition of an injective compact operator A (see [Cav11]): there exists a monotone
sequence ‖A‖ = σ1 ≥ σ2 ≥ ... > 0. Moreover there are families of orthonor-
mal vectors (ul)l≤dim(R(A)) and (vl)l≤dim(R(A)) with span(ul : l ≤ dim(R(A)) = R(A),
span(vl : l ≤ dim(R(A)) = N (A)⊥ such that Avl = σlvl and A∗ul = σlvl.

2.3.1 Proofs for finite-dimensional residuum

The assumptions for the discretisation when using the first approach (with finite-
dimensional residuum) are such, that the discretised operators K∗P ∗mPmK converge
uniformly to a compact and injective operator K∗AK. The uniform convergence
guarantees, that the eigenvalues and spaces of the former converge pointwise to the
ones of the latter, and the injectivity of the limit operator assures, that the unknown
x̂ is determined arbitrarily precisely by finitely many eigenvectors of the latter. We
make this precise with the following lemma.

Lemma 2.3.1. Assume that K is injective and that Assumption 2.1.3 holds true.
Then

‖K∗P ∗mPmK −K∗AK‖ → 0

for m→∞ and K∗AK is injective, compact, self-adjoint and positive semidefinite.
Denote by (λ

(m)
j )j≤m and (λ

(∞)
j )j∈N the nonzero eigenvalues with corresponding or-

thonormal eigenvectors (v
(m)
j )j≤m of

K∗P ∗mPmK and K∗AK respectively, ordered decreasingly. Then

1. limm→∞ λ
(m)
j = λ

(∞)
j for all j ∈ N, and

2. for all x ∈ X and ε > 0, there is a M = M(x, ε) ∈ N, such that

lim sup
m→∞

m∑
j=M+1

(x, v
(m)
j )2 ≤ ε.

Proof.

Denote by (σj, uj, vj) the singular value decomposition of K and set Am = P ∗mPm
and
C := max {‖A‖, supm ‖Am‖} < ∞ (uniform boundedness principle). For ε > 0
arbitrary define M ∈ N implicitly through 2CσM+1 ≤ ε/2. Then
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2.3 Proofs

‖AmK − AK‖

= sup
x∈X
‖x‖=1

‖AmKx− AKx‖ = sup∑
α2
j=1

x=
∑
αjuj

∥∥∥∥∥
∞∑
j=1

αj(AmK − AK)uj

∥∥∥∥∥
≤ sup∑

α2
j=1

x=
∑
αjuj

M∑
j=1

σj|αj| ‖(Am − A)vj‖+ sup∑
α2
j=1

x=
∑
αjuj

∥∥∥∥∥(Am − A)
∞∑

j=M+1

σjαjvj

∥∥∥∥∥
≤σ1

M∑
j=1

‖(Am − A)vj‖+ ‖Am − A‖ sup∑
α2
j=1

x=
∑
αjuj

∥∥∥∥∥
∞∑

j=M+1

σjαjvj

∥∥∥∥∥
≤ σ1

M∑
j=1

‖(Am − A)vj‖+ 2CσM+1 ≤ σ1

M∑
j=1

‖(Am − A)vj‖+ ε/2

Because Am → A pointwise there is an m0 ∈ N, such that σ1

∑M
j=1‖(Am − A)vj‖ ≤

ε/2 for all m ≥ m0, thus AmK → AK and therefore K∗AmK → K∗AK for m →
∞ uniformly. Since K∗P ∗mPmK is compact, self-adjoint and positive semidefinite,
so is K∗AK as its uniform limit. Then (1.) holds by Section 6 of [BO91]. We
define iteratively I1 := {j : λ

(∞)
j = λ

(∞)
1 }, Ii := {j : λ

(∞)
j = λmax(Ii−1)+1}.

So the cardinality of Ii is the algebraic multiplicity of the i-th largest eigenvalue
of K∗AK. We define the corresponding eigenspaces Ei := span

(
v

(∞)
j , j ∈ Ii

)
,

Em
i := span

(
v

(m)
j , j ∈ Ii

)
. With PEi , PEmi the orthogonal projections onto Ei and

Em
i , by Theorem 7.1 of [BO91] there is a constant Ci such that ‖PEmi − PEi‖ ≤

Ci‖K∗P ∗mPmK − K∗AK‖ (for m sufficiently large). Thus there is a M ∈ N with
M =

∑i∗

i=1 |Ii| for some i∗ ∈ N such that∣∣∣∣∣
M∑
j=1

(
x̂, v

(m)
j

)2

−
M∑
j=1

(
x̂, v

(∞)
j

)2

∣∣∣∣∣ ≤
i∗∑
i=1

∣∣‖PEmi x̂‖2 − ‖PEix̂‖2
∣∣

≤
i∗∑
i=1

(
|‖PEmi x̂‖+ ‖PEix̂‖

) ∣∣‖PEmi x̂‖ − ‖PEix̂‖∣∣
≤ 2‖x̂‖

i∗∑
i=1

‖Pm
Ei
x̂− PEix̂‖

≤ 2‖x̂‖2‖K∗P ∗mPmK −K∗AK‖
i∗∑
i=1

Ci ≤ ε/2

for m sufficiently large and
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Chapter 2. The white noise case

∣∣∣∣∣‖x̂‖2 −
M∑
j=1

(
x̂, v

(∞)
j

)2

∣∣∣∣∣ =
∞∑

j=M+1

(x̂, v
(∞)
j )2 ≤ ε/2,

where the second assertion followed from the injectivity of K∗AK. Thus

m∑
j=M+1

(
x̂, v

(m)
j

)2

≤
∥∥∥P(PmK)⊥x̂

∥∥∥2

−
M∑
j=1

(
x̂, v

(m)
j

)2

≤ ‖x̂‖2 −
M∑
j=1

(
x̂, v

(∞)
j

)2

+
M∑
j=1

(
x̂, v

(m)
j

)2

−
M∑
j=1

(
x̂, v

(∞)
j

)2

≤ ε

for m sufficiently large. �

2.3.1.1 Proof of Proposition 2.1.4

It is supm∈N ‖Pmy‖ = supm∈N

∑m
j=1 lj(y)2 <∞, thus supm ‖Pm‖ <∞ and with the

embedding Rm ⊂ l2(N) it follows that limPmy = P∞y, with P∞y =
(
l1(y) l2(y) ...

)
.

Thus P ∗mPmy → Ay with A = P ∗∞P∞ and A is injective because of the completeness
condition.

2.3.1.2 Proof of Proposition 2.1.5

Since smooth functions are dense in L2, it suffices to consider the case where y is
smooth. We have that P ∗mPm = P+

mPm = PN (Pm)⊥ and N (Pm)⊥ := {
∑m

j=1 αjΛ
(m)
j }

is the set of all functions constant on a homogeneous grid with m elements. Since
the set of all functions constant on a homogeneous grid is dense in the set of smooth
functions, the claim follows.

2.3.1.3 Proof of Proposition 2.1.6

As above w.l.o.g. y is assumed to be smooth. We denote by Am ∈ Rm×m the matrix
representing Pm : N (Pm)⊥ → Rm with respect to the bases (η

(m)
j )j=1,...,m ⊂ N (Pm)⊥

and (ej)j=1,...,m ⊂ Rm, where the latter is the canonical basis of Rm. So

P ∗mPmη
(m)
j =

m∑
i=1

(A∗mAm)ij η
(m)
i ,

and

70



2.3 Proofs

(Am)ij =
(
Pmη

(m)
i , ej

)
Rm

= l
(m)
j (η

(m)
i ) = (η

(m)
j , η

(m)
i )Y

with

(η
(m)
j , η

(m)
i ) =


2/3 , i = j

1/3 , |i− j| = 1,min(i, j) = 1 or max(i, j) = m

1/6 , |i− j| = 1,min(i, j) > 1 and max(i, j) < m

0 , else.

So it is

‖Pm‖ ≤
√
‖Pm‖1‖Pm‖∞ = max

j=1,...,m

m∑
i=1

|(Am)ij| =
7

6
,

where ‖.‖, ‖.‖1 and ‖.‖∞ are the spectral, the maximum absolute column and row
norm respectively, and

P ∗mPmη
(m)
j =

η
(m)
j−2

36
+

2η
(m)
j−1

9
+
η

(m)
j

2
+

2η
(m)
j+1

9
+
η

(m)
j+2

36
,

for j = 4, ...,m − 3. Denote by ym =
∑m

j=1 y
(
j−1
m−1

)
η

(m)
j

√
3

2(m−1)
the interpolating

spline of y, then
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‖y − P ∗mPmy‖
≤‖ym − P ∗mPmym‖+ ‖(I − P ∗mPm)(y − ym)‖

≤

∥∥∥∥∥
m∑
j=1

y

(
j − 1

m− 1

)√
3

2(m− 1)
(Im − P ∗mPm) η

(m)
j

∥∥∥∥∥+ 2‖y − ym‖

≤2‖yg − ym‖+ 6 sup
t
|y(t)|

√
3

2(m− 1)

(
1 +

72

62

)
+

∥∥∥∥ m−3∑
j=4

(
y
(

j
m−1

)
2

−
2y
(
j+1
m−1

)
9

−
2y
(
j−1
m−1

)
9

−
y
(
j+2
m−1

)
36

−
y
(
j−2
m−1

)
36

) √
3η

(m)
j√

2(m− 1)

∥∥∥∥∥
≤2‖y − ym‖+ 30 sup

t
|y(t)| 1√

m− 1

+ sup
j≤m

∣∣∣∣∣y
(

j
m−1

)
2

−
2y
(
j+1
m−1

)
9

−
2y
(
j−1
m−1

)
9

−
y
(
j+2
m−1

)
36

−
y
(
j−2
m−1

)
36

∣∣∣∣∣
∗

∥∥∥∥∥
m−3∑
j=4

√
3η

(m)
j√

2(m− 1)

∥∥∥∥∥
≤ 2‖y − ym‖+ 30 sup

t∈(0,1)

|y(t)| 1√
m− 1

+ sup
t∈(0,1)

|y′(t)| 3

m
→ 0

as m→∞.

2.3.1.4 Proof of Theorem 2.1.8

We will need the following proposition for the convergence proofs.

Proposition 2.3.2. Assume that Assumption 2.1.3 is fulfilled. Then, PN (PmK)x→
0 as m→∞, for all x ∈ X .

Proof. We assume w.l.o.g. that xm := PN (PmK)x ⇀ z ∈ X for m → ∞ (weakly).
Then limm→∞Kxm = Kz. Thus

‖AKz‖ = lim sup
m→∞

‖P ∗mPmKz‖ = lim sup
m→∞

‖P ∗mPm(Kz −Kxm)‖

≤ lim sup
m→∞

‖Pm‖2‖Kz −Kxm‖ = 0,

so AKz = 0 hence by injectivity z = 0. In particular,
(
PN (PmK)vi, vi

)
→ (0, vi) = 0

for m→∞ and i ∈ N (set x = vi the i-th singular vector of K), so
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1 ≥ ‖PN (PmK)vi − vi‖2 = ‖PN (PmK)vi‖2 − 2(PN (PmK)vi, vi) + 1

and therefore

lim sup
m→∞

‖PN (PmK)vi‖ = 0.

Finally, by injectivity of K, for ε > 0 there is a M ∈ N with
∑∞

j=M+1(x, vj)
2 ≤ ε, so

lim sup
m→∞

‖PN (PmK)x‖2 ≤
M∑
j=1

(x, vj)
2 lim sup

m→∞
‖PN (PmK)vj‖2 + ε = ε

and the claim follows with ε→ 0. �

We come to the main proof and split

E
∥∥∥R(m)

α(δestm,n)Ȳ
(m)
n −K+ŷ

∥∥∥2

≤
∥∥∥K+ŷ −R(m)

α(δestm,n)Pmŷ
∥∥∥2

+ E
∥∥∥R(m)

α(δestm,n)Pmŷ −R
(m)
α(δestm,n)Ȳ

(m)
n

∥∥∥2

≤
∥∥∥K+ŷ −R(m)

α(δestm,n)Pmŷ
∥∥∥2

+
∥∥∥R(m)

α(δestm,n)

∥∥∥2

E
∥∥Ȳ (m)

n − Pmŷ
∥∥2

and because of independence,

E
∥∥Ȳ (m)

n − Pmŷ
∥∥2

= E
m∑
j=1

(
1

n

n∑
i=1

δ
(m)
ij

)2

=
1

n

m∑
j=1

Eδ(m)
1j

2
≤ m

n
Cd =

(
δestm,n

)2
Cd.

Assumption 2.1.1 implies, that

‖Rα‖ ≤
√
CRCF/α, (2.13)

see f.e. [EHN96] or Proposition 1 of [HJP20a]. Therefore it follows that

∥∥∥R(m)
α(δestm,n)

∥∥∥2

Eδmeasm
2 ≤

(∥∥∥R(m)
α(δestm,n)

∥∥∥ δestm,n)2

Cd ≤ CdCRCF
δestm,n

2

α(δestm,n)
→ 0 (2.14)

for m,n→∞,m/n→ 0. Now
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∥∥∥K+ŷ −R(m)
α(δestm,n)Pmŷ

∥∥∥
≤
∥∥K+ŷ − (PmK)+ Pmŷ

∥∥+
∥∥∥(PmK)+ Pmŷ −R(m)

α(δestm,n)Pmŷ
∥∥∥

=
∥∥K+Kx̂− (PmK)+ PmKx̂

∥∥+
∥∥∥(PmK)+ Pmŷ −R(m)

α(δestm,n)Pmŷ
∥∥∥

=
∥∥x̂− PN (PmK)⊥x̂

∥∥+
∥∥∥(PmK)+ Pmŷ −R(m)

α(δestm,n)Pmŷ
∥∥∥

and

lim
m→∞

‖x̂− PN (PmK)⊥x̂‖ = lim
m→∞

‖PN (PmK)x̂‖ = 0 (2.15)

by Proposition 2.3.2. Finally, for ε > 0, by Lemma 2.3.1.2 there is a M ∈ N such

that
∑m

j=M+1

(
x̂, v

(m)
j

)2

≤ ε for m large enough and therefore

∥∥∥(PmK)+ PmKx̂−R(m)
α(δestm,n)PmKx̂

∥∥∥2

=
m∑
j=1

∣∣∣1− Fα(δestm,n)(σ
(m)
j

2
)σ

(m)
j

2
∣∣∣2 (x̂, v(m)

j

)2

≤
M∑
j=1

∣∣∣1− Fα(δestm,n)(σ
(m)
j

2
)σ

(m)
j

2
∣∣∣2 (x̂, v(m)

j

)2

+
m∑

j=M+1

(
x̂, v

(m)
j

)2

≤‖x̂‖2 sup
j=1,...,M

∣∣∣1− Fα(δestm,n)(σ
(m)
j

2
)σ

(m)
j

2
∣∣∣2 + ε.

By Lemma 2.3.1.1, (2.9) and since α(δestm,n)→ 0 for m,n→∞,m/n→ 0,

sup
j=1,...,M

∣∣∣1− Fα(δestm,n)(σ
(m)
j

2
)σ

(m)
j

2
∣∣∣ ≤ sup

σ
(∞)
M

2

2
≤λ≤‖K‖2

∣∣∣1− Fα(δestm,n)(λ)λ)
∣∣∣ ≤ √ε‖x̂‖

for all m,n sufficiently large and m/n sufficiently small. Thus with ε→ 0 it follows
that

lim
m,n→∞
m/n→0

∥∥∥(PmK)+ PmKx̂−R(m)
α(δestm,n)PmKx̂

∥∥∥ = 0,

which concludes the proof together with (2.14) and (2.15).
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2.3.1.5 Proof of Theorem 2.1.11

By the nature of white noise we cannot expect the error to concentrate along a certain
direction, in contrast to the setting in chapter 1. However, the independence between
the measurement channels implies, that its amplitude is highly concentrated. First,
the following Proposition affirms that we are estimating the variance correctly.

Proposition 2.3.3. Assume that the error fulfills Assumption 2.1.9. Then for the
sample variance

s2
m,n =

1

m

m∑
j=1

1

n− 1

n∑
i=1

(
Y

(m)
ij − 1

n

m∑
l=1

Y
(m)
lj

)2

there holds

lim
m→∞

P

(
sup
n≥2

∣∣∣s2
m,n − Eδ(m)

11

2
∣∣∣ ≥ εEδ(m)

11

2
)

= 0

for all ε > 0.

Proof. As a sum of m reversed martingales,
(
s2
m,−n − Eδ(m)

11

2
)
n≤−2

is a reversed
martingale adapted to the filtration

F−n = σ

(
n∑
i=1

(δ
(m)
i1 − δ

(m)
i1 )2, ...,

n∑
i=1

(δ
(m)
im − δ

(m)
im )2

)
, n ≥ 2.

Under Assumption 2.1.9.2, by the Kolmogorov-Doob-inequalities there holds

P

(
sup
n≥2

∣∣∣s2
m,n − Eδ(m)

11

2
∣∣∣ ≥ εEδ(m)

11

2
)
≤

E
∣∣∣s2
m,2 − Eδ(m)

11

2
∣∣∣p(

εEδ(m)
11

2
)p .

By Marcinkiewicz-Zygmund inequality [Gut13] there exists Cp such that

E
∣∣∣s2
m,2 − Eδ(m)

11

2
∣∣∣p = E

∣∣∣∣∣ 1

m

m∑
j=1

2∑
i=1

(δ
(m)
ij − δ

(m)
ij )2 − Eδ(m)

11

2

∣∣∣∣∣
p

≤ Cp
mp−1

E

∣∣∣∣∣
2∑
i=1

(δ
(m)
i1 − δi1

(m)
)2 − Eδ(m)

11

2

∣∣∣∣∣
p

≤ 2p−1(4p + 1)Cp
mp−1

E|δ(m)
11 |2p,
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so

P

(
sup
n≥2

∣∣∣s2
m,n − Eδ(m)

11

2
∣∣∣ ≥ εEδ(m)

11

2
)
≤

E
∣∣∣s2
m,2 − Eδ(m)

11

2
∣∣∣p

(Eδ(m)
11

2
)p

≤ 2p−1(4p + 1)CpCd
εpmp−1

→ 0

as m→∞. Under Assumption 2.1.9.1, by the Kolmogorov-Doob-inequality,

P

(
sup
n≥2

∣∣∣s2
m,n − Eδ(m)

11

2
∣∣∣ ≥ εEδ(m)

11

2
)
≤

E
∣∣∣s2
m,2 − Eδ(1)

11

2
∣∣∣

εEδ(1)
11

2 .

It is

s2
m,2 − Eδ(1)

11

2
=

1

m

m∑
j=1

2∑
i=1

(
δ

(m)
ij − δ

(m)
ij

)2

− Eδ(1)
11

2
=:

1

m

m∑
j=1

X
(m)
j

with X(m)
j , j = 1, ...,m,m ∈ N are i.i.d and EX(m)

j = 0,E|X(m)
j | <∞. To finish the

proof we need to show that E|
∑

j Xm/m| → 0 asm→∞. Let ε′ > 0. By dominated
convergence and integrability of X(m)

j , there is M > 0 large enough such that for
Y

(m)
j := X

(m)
j χ{|X(m)

j |≤M
} and Z

(m)
j := X

(m)
j χ{|X(m)

j |>M
} it holds that E|Z(1)

1 | ≤ ε.

So, since X(m)
j are i.i.d,

E

∣∣∣∣∣
m∑
j=1

X
(m)
j

∣∣∣∣∣ ≤ E

∣∣∣∣∣
m∑
j=1

Y
(m)
j − EY (m)

j

∣∣∣∣∣+ E

∣∣∣∣∣
m∑
j=1

Z
(m)
j − EZ(m)

j

∣∣∣∣∣ (2.16)

≤

√√√√E

∣∣∣∣∣
m∑
j=1

Y
(m)
j − EY (m)

j

∣∣∣∣∣
2

+
m∑
j=1

E
∣∣∣Z(m)

j − EZ(m)
j

∣∣∣
≤
√
mE

∣∣∣Y (1)
1 − EY (1)

1

∣∣∣2 + 2mE|Z(1)
1 | ≤

√
m2ME|X(1)

1 |+ 2mε,

thus E
∣∣∣∑m

j=1X
(m)
j /m

∣∣∣ ≤ 3ε for m large enough. �

Now we need the following Lemma.

Lemma 2.3.4. Assume that the error model is accordingly to Assumption 2.1.9.
Then there holds

lim
m,n→∞

P

∣∣∣∣∣∣
∥∥∥Ȳ (m)

n − Pmŷ
∥∥∥− δestm,n

δestm,n

∣∣∣∣∣∣ ≥ ε

 = 0.
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Proof. It is

∥∥∥Ȳ (m)
n − Pmŷ

∥∥∥− δestm,n
δestm,n

=

√√√√Eδ(m)
11

2

s2
m,n


∥∥∥Ȳ (m)

n − Pmŷ
∥∥∥−√mEδ(m)

11

2
/n√

mEδ(m)
11

2
/n

+ 1−
√

s2
m,n

Eδ(m)
11

2

 .

Thus by Proposition 2.3.3 it suffices to show that

lim
m,n→∞

P


∣∣∣∣∣∣∣
∥∥∥Ȳ (m)

n − Pmŷ
∥∥∥2

− m
n

Eδ(m)
11

2

m
n

Eδ(m)
11

2

∣∣∣∣∣∣∣ ≥ ε

 = 0.

Let us first assume that Assumption 2.1.9.1 holds true. Then, by Markov’s inequality

P


∣∣∣∣∣∣∣
∥∥∥Ȳ (m)

n − Pmŷ
∥∥∥2

− m
n

Eδ(m)
11

2

m
n

Eδ(m)
11

2

∣∣∣∣∣∣∣ ≥ ε

 ≤ E

∣∣∣∣∥∥∥Ȳ (m)
n − Pmŷ
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− m
n

Eδ(m)
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2
∣∣∣∣

εm
n

Eδ(m)
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2

=
1

mε
E
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m∑
j=1

∑n
i=1 δ

(m)
ij√

nEδ(m)
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2

2

− 1

∣∣∣∣∣∣ .
Now with

X
(m)
jn :=

∑n
i=1 δ

(m)
ij√

nEδ(m)
11

2

2

− 1,

it holds that (X
(m)
jn )j=1, j = 1, ...,m,m ∈ N are i.i.d (for each fixed n) and EX(m)

jn =

0,E|X(m)
jn | = 2 < ∞. We proceed similiar as at the end of the proof of Proposition

2.3.3, with the additional technical difficulty due to the dependence on n. Let ε > 0
and Z be a standard Gaussian (thus EZ2 = 1 in particular). Then for M large
enough, it holds that

E
[
χ{|Z2−1|≥M}

]
≤ ε

4
(2.17)

E
[
Z2χ{|Z2−1|<M}

]
≥ E[Z2]− ε

4
= 1− ε

4
. (2.18)
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By the standard central limit theorem for real valued random variables, it holds that

∑n
i=1 δ

(1)
i1√

nE
[
δ

(1)
11

2
] → Z

weakly, as n→∞. Since

f1 : R→ R, x 7→ χ{|x2−1|≥M},

f2 : R→ R, x 7→ x2χ{|x2−1|<M}

are bounded functions whose set of discontinuities has Lebegue measure 0, it holds
that
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→ E [fp(Z)]

as n → ∞ for p = 1, 2 by Portemanteaus lemma (see e.g. [Kle13]). Thus by (2.17)
there is a n∗ such that
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2

for all n ≥ n∗ and p = 1, 2. We again set Y (m)
jn := X

(m)
jn χ{|X(m)

jn |≤M
} and Z

(m)
jn :=

X
(m)
jn χ{|X(m)

jn |>M
} and define

f3 := R→ R, x 7→ x2χ{|x2−1|≥M |.

Then
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E|Z(n)
1n | ≤ E
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2
) +

ε

2
= ε,

for all n ≥ n∗, where we used that f2(x) = f3(x) = x2 in the second step. With the
same argumentation as in (2.16),

E
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√
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for all n ≥ n∗, where we used E|X(1)
1n | ≤ 2 and (2.19) in the last step. Thus

E|
∑m

j=1X
(m)
jm /m| ≤ 3ε for m,n large enough. The claim is proved.

Now assume that Assumption 2.1.9.2 holds true. Then, by Markov’s inequality,
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and using further twice the Marcinkiewicz-Zygmund inequality, one obtains
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as m → ∞, where we have used independence and E
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in the second step.

�

Before we will start with the main proof, we need one last proposition.

Proposition 2.3.5. For all ε > 0, there are m0 ∈ N and α0 > 0 such that

lim
m→∞

∥∥PmKR(m)
α PmKx̂− PmKx̂

∥∥ /√α ≤ ε

for all m ≥ m0 and α ≤ α0.

Proof. Lemma 2.3.1.2 guarantees the existence of M ∈ N, such that

C2
1

m∑
j=M+1

(x̂, v
(m)
j )2 ≤ ε/2

for m sufficiently large. Then
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for m sufficiently large and α sufficiently small, where we have used that the quali-
fication of (Fα)α>0 is bigger than one in the third and Lemma 2.3.1.1 in the fourth
step. �

We start with the main proof. We define

Ωm,n :=

{∥∥Ȳ (m)
n − Pmŷ

∥∥ ≤ τ + C0

2C0

δestm,n , δ
est
m,n ≤ cε

}
,

with c ≤ 1
2
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{
C0+3τ

σ
(∞)
M

2 ,
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√
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, where ε′ is given below.

By Proposition 2.3.2,

∥∥(PmK)+Pmŷ −K+ŷ
∥∥ =

∥∥PN (PmK)x̂
∥∥ ≤ ε

for m large enough, and by Lemma 2.3.1.2,
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+ŷ
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2
− 1
∣∣∣2 (x̂, v

(m)
j )2 +

m∑
j=M+1

(x̂, v
(m)
j )2

≤ 1

σ
(m)
M

2

M∑
j=1

∣∣∣Fαm,n(σ
(m)
j

2
)σ

(m)
j

2
− 1
∣∣∣2 σ(m)

j

2
(x̂, v

(m)
j )2 + ε/2

=
1

σ
(m)
M

2

∥∥∥(PmKR
(m)
αm,n − Id)Pmŷ

∥∥∥+ ε/2

≤ 1

σ
(m)
M

2

(∥∥∥(PmKR
(m)
αm,n − Id)Ȳ (m)

n

∥∥∥+
∥∥∥(PmKR

(m)
αm,n − Id)(Pmŷ − Ȳ (m)

n )
∥∥∥)+ ε/2

for m sufficiently large. So Lemma 2.3.1.1 and the defining relation of the discrep-
ancy principle and of Ωm,n ensure that

∥∥∥R(m)
αm,nPmŷ −K

+ŷ
∥∥∥χΩm,n ≤

2

σ
(∞)
M

2

(
τδestm,n + C0

τ + C0

2C0

δestm,n

)
χΩm,n + ε/2 ≤ ε

for m sufficiently large. Moreover,

τδestm,nχΩm,n

≤
∥∥∥(PmKR

(m)
αm,n/q

− Id)Ȳ (m)
n

∥∥∥χΩm,n

≤
∥∥(PmKRαm,n/q − Id)Pmŷ

∥∥+
∥∥∥(PmKR

(m)
αm,n/q

− Id)(Ȳ (m)
n − Pmŷ)

∥∥∥χΩm,n

≤
∥∥(PmKRαm,n/q − Id)Pmŷ

∥∥+ C0
τ + C0

2C0

δestm,nχΩm,n ,

=⇒δestm,nχΩm,n ≤
2

τ − C0

∥∥(PmKRαm,n/q − Id)Pmŷ
∥∥

Proposition 2.3.5 guarantees the existence of ε′ such that for m large enough

∥∥PmKR(m)
α Pmŷ − Pmŷ

∥∥ /√α ≤ (τ − C0)qC0

(τ + C0)
√
CRCF

ε

2

for all α ≤ ε′/q. So with (2.13),
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‖R(m)
αm,n(Ȳ (m)

n − Pmŷ)‖χΩm,n

≤ ‖Rαm,n‖‖Ȳ (m)
n − Pmŷ‖χΩm,n ≤

√
CRCR
αm,n

τ + C0

2C0

δestm,nχΩm,n

≤(τ + C0)
√
CRCF

2C0

(
δestm,n√
αm,n

χΩm,n∩{αm,n≤ε′} +
δestm,n√
αm,n

χΩm,n∩{αm,n≥ε′}

)

≤(τ + C0)
√
CRCF

2C0

 2

(τ − C0)q

∥∥∥(PmKRαm,n
q
− Id)Pmŷ

∥∥∥√
αm,n/q

χ{αm,n≤ε′} +
δestm,n√
ε′
χΩm,n


≤(τ + C0)

√
CRCF

2C0

(
2

(τ − C0)q

(τ − C0)qC0

(τ + C0)
√
CRCF

ε

2
+

cε√
ε′

)
≤ ε/2 + ε/2

for m large enough. Putting it all together,

∥∥∥R(m)
αm,nȲ

(m)
n −K+ŷ

∥∥∥χΩm,n

≤
∥∥∥R(m)

αm,n(Ȳ (m)
n − Pmŷ)

∥∥∥χΩm,n +
∥∥∥R(m)

αm,nPmŷ − (PmK)+Pmŷ
∥∥∥χΩm,n

+
∥∥(PmK)+Pmŷ −K+ŷ

∥∥χΩm,n

≤3ε

for m sufficiently large, which together with limm,n→∞
m/n→0

P (Ωm,n) = 1 finishes the

proof.

2.3.2 Proofs for infinite-dimensional residuum

For the second approach (with infinite-dimensional residuum), we need to guarantee
stable inversion of the discretisation operator Pm. Afterwards we will show strong
concentration of the back projected measurements in Y in order to use classical
results from deterministic regularisation theory.

2.3.2.1 Proof of Proposition 2.2.2

It is κ(Pm) = κ(Pm|N (Pm)⊥). We again denote by Am ∈ Rm×m the matrix represent-
ing Pm : N (Pm)⊥ → Rm with respect to the bases (η

(m)
j )j=1,...,m ⊂ N (Pm)⊥ and

(ej)j=1,...,m ⊂ Rm, where the latter is the canonical basis of Rm. Thus

(Am)ij =
(
Pmη

(m)
i , ej

)
Rm

= l
(m)
j (η

(m)
i ) = (η

(m)
j , η

(m)
i )Y .

83



Chapter 2. The white noise case

By assumption, we have that

∥∥∥∥∥ Am

‖η(m)
1 ‖2

− Im

∥∥∥∥∥ ≤
√√√√∥∥∥∥∥ Am

‖η(m)
1 ‖2

− Im

∥∥∥∥∥
1

∥∥∥∥∥ Am

‖η(m)
1 ‖2

− Im

∥∥∥∥∥
∞

= max
j=1,...,m

∑
i 6=j

|(η(m)
j , η

(m)
i )|

‖η(m)
1 ‖2

=: c < 1,

where Im ∈ Rm×m is the identity and ‖.‖, ‖.‖1, ‖.‖∞ are the spectral and the maxi-
mum absolute column or row norm. So by (2.3) in [Rum11], it is

1− c ≤ σj

(
Am

‖η(m)
1 ‖2

)
≤ 1 + c, (2.20)

for j = 1, ...,m, where σ1(A), ..., σm(A) denote the singular values of A ∈ Rm×m.
This proves the proposition.

2.3.2.2 Proof of Proposition 2.2.3

The bounds cm, Cm follow directly from Proposition 2.2.2. It remains to show that
‖ŷ − P+

mPmŷ‖ → 0 as m → ∞. It holds that N (P1) ⊇ N (P2) ⊇ .... In particular,
there is an orthonormal basis (wi)i∈N such that N (Pm) = span(wm+1, wm+2, ...).
Thus, δdiscm = ‖PN (Pm)y‖ =

√∑∞
j=m+1(y, wj)2 → 0 as m→∞.

2.3.2.3 Proof of Proposition 2.2.4

The bound for the discretisation error follows from

‖ŷ − Pm+Pmŷ‖2 =
∑
j>m

(ŷ, uj)
2 =

∑
j>m

σ2+2ν
j (w,vj)

2 ≤ σ
2(1+ν)
m+1 ‖w‖2.

Since (η
(m)
j , η

(m)
i ) = (vj, vi) and (vj)j∈N is an orthonormal basis, the claim follows.

2.3.2.4 Proof of Proposition 2.2.5

The choice cm = Cm = 1 follows from Proposition 2.2.2, since (η
(m)
j )j=1,...,m are

orthonormal for all m ∈ N. Denote by ym =
∑m

j=1 ŷ((j − 1)/m)χ( j−1
m
, j
m

) ∈ R(P ∗m) =
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N (Pm)⊥ the piecewise constant interpolating spline of the continuously differentiable
function ŷ. Then there holds

‖ŷ − P+
mPmŷ‖ = ‖ŷ − PN (Pm)⊥ ŷ‖ ≤ ‖ŷ − ym‖ ≤

√∫ 1

0

(ŷ(t)− ym(t))2dt

=

√√√√ m∑
j=1

∫ j
m

j−1
m

(
ŷ(t)− ŷ

(
(
j − 1

m

))2

dt

=

√√√√ m∑
j=1

∫ j
m

j−1
m

y′(ξt)

(
t− j − 1

m

)2

dt ≤
supt′∈(0,1) |ŷ′(t′)|

m
,

with ξt ∈ [ j−1
m
, j
m

).

2.3.2.5 Proof of Proposition 2.2.6

It is

(η
(m)
j , η

(m)
i ) =


2/3 , i = j

1/3 , |i− j| = 1,min(i, j) = 1 or max(i, j) = m

1/6 , |i− j| = 1,min(i, j) > 1 and max(i, j) < m

0 , else

Therefore

sup
m∈N

max
j≤m

∑
j 6=i |(η

(m)
j , η

(m)
i )|

‖η(m)
1 ‖2

=
1/2

2/3
=

3

4
,

so that the bounds cm, Cm follow with Proposition 2.2.2. Let ym ∈ N (Pm)⊥ be the
interpolating spline of continuously differentiable ŷ. By the mean value theorem
there are ξt, ζt ∈ [ j−1

m−1
, j
m−1

) such that

ŷ(t)− ym(t)

=ŷ

(
j − 1

m− 1

)
+ ŷ′(ξt)

(
t− j − 1

m− 1

)
−
(
ŷ

(
j − 1

m− 1

)
+

(
(ŷ

(
j

m− 1

)
− ŷ

(
j − 1

m− 1

))
((m− 1)t− (j − 1))

)
=(y′(ξt)− y′(ζt)

(
t− j − 1

m− 1

)
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for t ∈ [ j−1
m−1

, j
m−1

). Thus

‖ŷ − P+
mPmŷ‖ ≤ ‖ŷ − ym‖ ≤

√√√√ m∑
j=1

∫ j
m−1

j−1
m−1

(ŷ′(ξt)− ŷ′(ζt))2

(
t− j − 1

m− 1

)2

dt

≤
2
√
m supt∈(0,1) |ŷ′(t)|

(m− 1)3/2
≤

25/2 supt′∈(0,1) |ŷ′(t′)|
m

If ŷ is twice continuously differentiable, then there are ξ′t, ζ ′t ∈ ( j−1
m−1

, j
m−1

] such that

|ŷ′(ξt)− ŷ′(ζt)| =
∣∣∣∣ŷ′′(ξ′t)(ξt − j − 1

m− 1

)
− ŷ′′(ζ ′t)

(
ζt −

j − 1

m− 1

)∣∣∣∣
≤

2 supt′∈(0,1) |ŷ′′(t′)|
m− 1

for t ∈ [ j−1
m−1

, j
m−1

), so that

‖ŷ − P+
mPmŷ‖ ≤ ‖ŷ − ym‖ ≤

√√√√ m∑
j=1

∫ j
m−1

j−1
m−1

(
2 supt′∈(0,1) |ŷ′′(t′)|

m− 1

)2(
t− j − 1

m− 1

)2

dt

≤
2
√
m supt′∈(0,1) |ŷ′′(t′)|

(m− 1)5/2
≤

27/2 supt′∈(0,1) |ŷ′′(t′)|
m2

.

2.3.2.6 Proof of Theorem 2.2.7

We use the bias-variance decomposition
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E
∥∥∥Rα(δdiscm )P

+
m Ȳ

(m)

n(m,δdiscm )
−K+ŷ

∥∥∥2

=E
∥∥∥Rα(δdiscm )P

+
m(Ȳ

(m)

n(m,δdiscm )
− Pmŷ)

∥∥∥2

+
∥∥Rα(δdiscm )P

+
mPmŷ −K+ŷ

∥∥2

≤E
∥∥∥Rα(δdiscm )P

+
m(Ȳ

(m)

n(m,δdiscm )
− Pmŷ)

∥∥∥2

+ 2
∥∥Rα(δdiscm )P

+
mPmŷ −Rα(δdiscm )ŷ

∥∥2

+ 2
∥∥Rα(δdiscm )ŷ −K+ŷ

∥∥2

≤
∥∥Rα(δdiscm )

∥∥2
(
‖P+

m‖2E
∥∥∥Pmŷ − Ȳ (m)

n(m,δdiscm )

∥∥∥2

+ 2
∥∥P+

mPmŷ − ŷ
∥∥2
)

+ 2
∥∥Rα(δdiscm )ŷ −K+ŷ

∥∥2

≤ CRCF
α(δdiscm )

(
Eδ(m)

11

2
m

c2
mn(m, δdiscm )

+ 2δdiscm

2

)
+ 2

∥∥Rα(δdiscm )ŷ −K+ŷ
∥∥2

≤ (CRCF (Cd + 2))
δdiscm

2

α(δdiscm )
+ 2

∥∥Rα(δdiscm )ŷ −K+ŷ
∥∥2 → 0

as m→∞.

2.3.2.7 Proof of Theorem 2.2.9

The proof of Theorem 2.2.9 is more technical than the one of Theorem 2.1.11, due
to correlations coming from the back projecting of the measurements and the data-
dependent determination of the stopping index n(m, δdiscm ). However, under slightly
stronger conditions we obtain a similar concentration property of the measurement
error.

Lemma 2.3.6. Assume that the discretisation fulfills Assumption 2.1.3 and the
error is accordingly to Assumption 2.1.9, with p ≥ 2 in the case of Assumption
2.1.9.2. For m ∈ N, δ0, δ > 0 and the sample variance

s2
m,n :=

1

m

m∑
j=1

1

n− 1

n∑
i=1

(
Y

(m)
ij − 1

n

n∑
l=1

Y
(m)
lj

)2

,

consider the (random) choice

n(m, δ) = min

{
n′ ≥ 1 :

ms2
m(n′)

c2
mn
′ ≤ δ2

}
with σ(m)

1 , ..., σ
(m)
m the singular values of Pm. Then for any ε > 0 there holds
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lim
m→∞

sup
0<δ≤δ0

P

∣∣∣∣∣∣
∥∥∥P+

m Ȳ
(m)
n(m,δ) − P+

mPmŷ
∥∥∥− δm

δm

∣∣∣∣∣∣ ≥ ε

 = 0

with Ȳ (m)
n(m,δ) = 1

n(m,δ)

∑n(m,δ)
i=1

(
Y

(m)
i1 ... Y

(m)
im

)T
and δm := δ

√∑m
j=1

c2m
mσmj

2 .

Proof. The auxiliary parameter δm has to be introduced due to the fact, that with

the choice of n(m, δ) we are actually overestimating E
∥∥∥P+

m Ȳ
(m)
n(m,δ) − P+

mPmŷ
∥∥∥2

, since

cm ≤ σ
(m)
j . We define

µδm :=
mE[δ

(m)
11

2
]

c2
mδ

2

Iε(m, δ) :=
[
(1− ε)µδm, (1 + ε)µδm

]
.

δmeasm,n := ‖P+
m Ȳ

(m)
n − P+

mPmŷ‖ =

√√√√ m∑
j=1

λ
(m)
j

(
m∑
l=1

n∑
i=1

δ
(m)
ij

n
(u

(m)
j , e

(m)
l )

)2

where λ(m)
j = σ

(m)
j

−2
and (u

(m)
j )j≤m, (e

(m)
j )j≤m ⊂ Rm are the singular basis of Pm

(fulfilling
PmPm

∗u
(m)
j = σ

(m)
j

2
u

(m)
j ) and the canonical basis of Rm respectively. So

Eδmeasm,n
2 =

m∑
j=1

λjE

(
m∑
l=1

n∑
i=1

δ
(m)
il

n
(u

(m)
j , e

(m)
l )

)2

=
Eδ(m)

11

2

n

m∑
j=1

λj

and

P

(∣∣∣∣∣δ
meas
m,n(m,δ)

2 − δ2
m

δ2
m

∣∣∣∣∣ ≤ ε

)
≥ P

(∣∣∣∣∣δ
meas
m,n(m,δ)

2 − δ2
m

δ2
m

∣∣∣∣∣ ≤ ε, n(m, δ) ∈ Iε′
)

≥ P

(
sup
n∈Iε′

∣∣∣∣∣δmeasm,n
2 − δ2

m

δ2
m

∣∣∣∣∣ ≤ ε, n(m, δ) ∈ Iε′
)

≥ 1− P

(
sup
n∈Iε′

∣∣∣∣∣δmeasm,n
2 − δ2

m

δ2
m

∣∣∣∣∣ > ε

)
− P (n(m, δ) /∈ Iε′) .

Since
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∣∣∣∣∣δmeasm,n
2 − δ2

m

δ2
m

∣∣∣∣∣ ≤
(∣∣∣∣∣δmeasm,n

2 − Eδmeasm,n
2

Eδmeasm,n
2

∣∣∣∣∣+

∣∣∣∣∣Eδmeasm,n
2 − δ2

m

Eδmeasm,n
2

∣∣∣∣∣
)

Eδmeasm,n
2

δ2
m

and

sup
n∈Iε′

∣∣∣∣∣Eδmeasm,n
2 − δ2

m

δ2
m

∣∣∣∣∣ =
ε′

1− ε′
, sup

n∈Iε′

Eδmeasm,n
2

δ2
m

=
1

1− ε′
,

we conclude that for ε′ = 3
16
ε ≤ 1/4

P

(∣∣∣∣∣δ
meas
m,n(m,δ)

2 − δ2
m

δ2
m

∣∣∣∣∣ ≤ ε

)

≥1− P

(
sup
n∈Iε′

∣∣∣∣∣δmeasm,n
2 − Eδmeasm,n

2

Eδmeasm,n
2

∣∣∣∣∣ > ε(1− ε′)− ε′

1− ε′

)
− P (n(m, δ) /∈ Iε′)

≥1− P

 sup
n∈I 3

16 ε

∣∣∣∣∣δmeasm,n
2 − Eδmeasm,n

2

Eδmeasm,n
2

∣∣∣∣∣ > ε/2

− P
(
n(m, δ) /∈ I 3

16
ε

)
. (2.21)

Thus it remains to show that the both terms with negative sign tend to zero.

Proposition 2.3.7. For every ε > 0 there holds

sup
δ0≥δ>0

P (n(m, δ) ∈ Iε(m, δ))→ 1

for m→∞.

Proof. For m large enough it is b(1 + ε)µδmc ≥ (1 + ε/2)µδm and

{n(m, δ) ∈ Iε(m, δ)} =
{∣∣n(m, δ)− µδm

∣∣ ≤ εµδm
}

⊇
{
ms2

m,n

c2
mn

> δ2 , ∀ n < (1− ε)µδm
}

∩
{
ms2

m,n

c2
mn

≤ δ2 , for n = b(1 + ε)µδmc
}

=

{
ms2

n,m >
n

µδm
, ∀n < (1− ε)µδm

}
∩
{
s2
n,m ≤

n

µδm
, for n = b(1 + ε)µδmc

}
⊇
{
|s2
n,m − E[δ

(m)
11

2
]| ≤ ε/2E[δ

(m)
11

2
] , ∀n ≥ 2

}
,
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and the claim follows by Proposition 2.3.3.

�

For the first term in (2.21) we will need the following proposition.

Proposition 2.3.8. For (Xl) i.i.d, l = 1, ...,m, with EXl = 0, EX2
l = 1 and

EX4
l <∞ and

(uj)j≤m, (ej)j≤m ⊂ Rm orthonormal bases and (λj)j≤m ∈ R+, it holds that

E

∣∣∣∣∣∣
m∑
j=1

λj

( m∑
l=1

Xl(uj, el)

)2

− 1

∣∣∣∣∣∣
2

≤ max
j≤m

λ2
j(EX

4
1 + 5)m.

Proof. By Jensen’s inequality,

E

∣∣∣∣∣∣
m∑
j=1

λj

( m∑
l=1

Xl(uj, el)

)2

− 1

∣∣∣∣∣∣
2

≤E

∣∣∣∣∣∣
m∑
j=1

λj

( m∑
l=1

Xl(uj, el)

)2

− 1

∣∣∣∣∣∣
2

=
m∑

j,j′=1

λjλj′

E

( m∑
l=1

Xl(uj, el)

)2( m∑
l′=1

Xl′(uj′ , el′)

)2


−2E

( m∑
l=1

Xl(uj, el)

)2
+ 1


=

m∑
j,j′=1

λjλj′

(
m∑

l,l′,l′′,l′′′=1

E [XlXl′Xl′′Xl′′′ ] (uj, el)(uj, el′)(uj′ , el′′)(uj′ , el′′′)

+2
(
E[X1]2

)2 − 1
)

=
m∑

j,j′=1

λjλj′

EX4
1

m∑
l=1

(uj, el)
2(uj′ , el)

2 +
(
E[X2

1 ]
)2

m∑
l,l′=1
l 6=l′

(uj, el)
2(uj′ , el′)

2

+2
(
E[X2

1 ]
)2

m∑
l,l′=1
l 6=l′

(uj, el)(uj, el′)(uj′ , el)(uj′ , el′)− 1

 .

With
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m∑
l′=1
l′ 6=l

(uj′ , el′)
2 = 1− (uj′ , el)

2

and

m∑
l′=1
l′ 6=l

(uj, el′)(uj′ , el′) = (uj, uj′)− (uj, el)(uj′ , el)

we further deduce that

E

∣∣∣∣∣∣
m∑
j=1

λj

( m∑
l=1

Xl(uj, el)

)2

− 1

∣∣∣∣∣∣
2

=
m∑

j,j′=1

λjλj′

(
EX4
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m∑
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2)
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(
(uj, uj′)

2 −
∑
l

(uj, el)
2(uj′ , el)

2

)
− 1

)

≤ max
j≤m

λ2
j

(
m∑
l=1

m∑
j,j′=1

|EX4
1 − 3|(uj, el)2(uj′ , el)

2 + 2
m∑

j,j′=1

(uj, uj′)
2

)
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j≤m
λ2
j(EX

4
1 + 5)m,

�

Finally, it is
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M (m)
n := n

δmeasm,n
2 − Eδmeasm,n

2

Eδmeasm,n
2

= n

∑m
j=1 λj

(∑m
l=1

∑n
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δ
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il√
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j , e
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− Eδ(m)
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Eδ(m)
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j′=1 λj′

m∑
j=1

λj

 m∑
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il√

nEδ(m)
11

2
(u

(m)
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(m)
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2

− 1

 .

It is easy to verify that (M
(m)
n )n∈N is a martingale adapted to the filtration (Fn)n∈N

generated by the measurement errors, Fn := σ
(
δ

(m)
ij , i ≤ n, j ≤ m

)
for every fixed

m ∈ N. Now assume that Assumption 2.1.9.2 with p ≥ 2 holds true. With n− :=
(1 + 3

16
ε)µδm, n+ := (1 + 3

16
ε)µδm, we obtain via the Kolmogorov-Doob-inequality

P

 sup
n∈I 3

16
ε

∣∣∣∣∣δmeasm,n
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2

Eδmeasm,n
2

∣∣∣∣∣ ≥ ε

2
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ε2n2
−

.

With Xl :=
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i δ
(m)
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√
nEδ(m)

ij

2
Proposition 2.3.8 yields

4E
[
M
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=

4n2
+
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−ε
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+
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−
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+

ε2n2
−
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(
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n+

+ 3
n+ − 1

n+

+ 5

)
1

m
→ 0

asm→∞. In the following we write uj and ej for u
(m)
j and e(m)

j . Under Assumption
2.1.9.1, the Kolmogorov-Doob-inequality yields
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We set Sm :=
M

(m)
n+

n+

∑m
j=1 λj and Z

(m)
l :=

∑n
i=1 δ

(m)
il /

√
n+Eδ(m)
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2
. So Z

(m)
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<∞, by Proposition 2.3.8 above and Jensen’s inequality,
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For the second term,
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For the third term we calculate the variance,
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Altogether,
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The claim follows with limK→∞ E
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�

We come to the main proof

Proof. We set

Ωm :=

{∥∥∥P+
m Ȳ

(m)

n(m,δdiscm )
− P+

mPmŷ
∥∥∥ ≤ τ + C0

2C0
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}
.

Then,
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(m)
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∥∥P+
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By Algorithm 2 it is

αm
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and because of 4τC0

τ+3C0
> C0,(2.22) and limm→∞ δ

disc
m = 0, it follows that

lim
m→∞

∥∥∥RαmP
+
m Ȳ

(m)

n(m,δdiscm )
−K+ŷ

∥∥∥χΩm = 0

by Theorem 4.17 and Remark 4.18 from [EHN96]. With the same reasoning it
follows that there is a L′ ∈ R such that∥∥∥RαmP

+
m Ȳ

(m)

n(m,δdiscm )
−K+ŷ

∥∥∥χΩm ≤ L′ρ
1
ν+1 δdiscm

ν
ν+1 ,

if there are 0 < ν ≤ ν0− 1 and ξ ∈ X with K+ŷ = (K∗K)ν/2ξ and ‖ξ‖ ≤ ρ. Lemma
2.3.6 implies that limm→∞ P (Ωm) = 1, which concludes the proof.

�

2.4 Numerical Demonstration

We provide numerical experiments to complement the theoretical analysis. Three
model examples, i.e. phillips (mildly ill-posed, smooth), gravity (severely ill-
posed, medium smooth) and shaw (severely ill-posed, non smooth), are taken from
the open source MATLAB package Regutools [Han94].The problems cover a variety
of setting, e.g., different solution smoothness and degree of ill-posedness. These
examples are discretisations of Fredholm/Volterra integral equations of the first
kind, by means of either the Galerkin approximation with piecewise constant basis
functions or quadrature rules. We approximate our infinite-dimensional K with one
of the above examples with dimension m∞ � 1. The number of measurements
channels m is then always chosen such that m � m∞. In most of the examples
we use discretisation by box functions as follows, compare to Lemma 2.1.5. With
k = m∞/m we set

Pm : Rm∞ → Rmy(i−1)k+1

...
y(i−1)k+k

 7→ 1√
k

(
y(i−1)k+1 + ...+ y(i−1)k+k

)
ei

where i = 1, ...,m and e1, ..., em is the canonical basis of Rm. In Subsection 2.4.3 we
will also consider discretisation by hat functions to give an example with nonorthog-
onal discretisation. We chose a shifted generalised Pareto distribution for the distri-
bution of the measurement error, e.g. δ(m)

ij = Z
(m)
ij −EZ

(m)
ij , where Z(m)

ij are i.i.d and
follow a generalised Pareto distribution (gprnd(l,σ,θ,m,n) in Matlab, with l = 1/3,
σ =

√
(1− l)2(1− 2l)‖ŷ‖ and θ = 0). This distribution is highly non symmetric
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with a heavy tail. The above choices for the parameters imply that Eδ(m)
ij

2
= ‖ŷ‖

and E|δ(m)
ij |3 = ∞. Thus the error fulfills Assumption 2.1.9.1 in all the examples.

The parameter τ in the definition of the discrepancy principle is set to τ = 1.2. All
the statistical quantities are computed for 100 independent runs, and the results are
presented as box plots.

2.4.1 Convergence of finite-dimensional residuum approach

First we visualise the convergence of the discrepancy principle with the finite-
dimensional
residuum approach, as stated in Corollary 2.0.1. We use discretisation by box func-
tions as presented above and set m∞ = 4000 and m = 5, 10, 20. For each m we plot
in Figure 2.1 the resulting relative errors ‖R(m)

αm,nȲ
(m)
n − x̂‖/‖x̂‖ for n = 10, ..., 109

repetitions. For m fix, the relative errors first decrease steadily, and then saturate
(at ‖x̂ − (PmK)+PmKx̂‖), as the number of repetitions n grows. The saturation
level decreases rapidly while m grows, confirming the convergence of the approach.
It is notable, that for all examples a fairly small number of measurement channels
is sufficient to yield good approximations.

2.4.2 (Semi-)Convergence of infinite-dimensional residuum
approach

Now we come to the discrepancy principle with the infinite-dimensional residuum ap-
proach, as stated in Corollary 2.0.2. Again we chose discretisation by box functions
for the measurements with m∞ = 4000 and this time we set m = 20, 50, 100. For
each m we plot in Figure 2.1 the resulting relative errors ‖RαmP

+
m Ȳ

(m)

n(m,δdiscm )
− x̂‖/‖x̂‖

for varying upper bound δdiscm from Assumption 2.2.1. More precisely we chose the
latter in relation to the exact discretisation error dm := ‖ŷ−P+

mPmŷ‖. In particular
we also consider δdiscm < dm and we exhibit a semi-convergence. Strictly speaking,
the last two choices (dm/2 and dm/4) for δdiscm violate Assumption 2.2.1 and we thus
illustrate the sensitiveness to underestimation of the true discretisation error. It is
notable that for the choice δdiscm = dm/2 (e.g. underestimation of the discretisation
error by a factor 1/2) the relative errors are still decreasing. This is explained by the
fact, that the estimation in (2.11) is quite coarse. Together with the choice τ = 1.2

this yields, that it still holds that the true unknown error ‖P+
m Ȳ

(m)

n(m,δdiscm )
− ŷ‖ fulfills

‖P+
m Ȳ

(m)

n(m,δdiscm )
− ŷ‖ < 2τδdiscm . For the choice δdiscm = dm/4 the errors then diverge.

The semi-convergence is in contrast to the saturation observed in the left column of
Figure 2.1 and illustrates the fundamental difference, that for the finite-dimensional
approach no quantitative knowledge of the discretisation error is required, while for
the infinite-dimensional approach it is.
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Figure 2.1: Results of approach (2.2) and (2.6) with the discrepancy principle as im-
plemented in Algorithm 1 (left column) or 2 (right column) respectively,
for ’phillips’ (first row), ’gravity’ (second row) and ’shaw’ (third row), vi-
sualised as boxplots for 100 independent runs. Left column: Relative errors
‖R(m)

αm,n Ȳ
(m)
n − x̂‖/‖x̂‖ against number of repetitions n for several numbers of

measurement channelsm. Right column: Relative errors ‖RαmP+
m Ȳ

(m)

n(m,δdiscm )
−

x̂‖/‖x̂‖ against bound for the discretisation error δdiscm for several numbers of
measurement channelsm. δdiscm is chosen in relation to the exact discretisation
error dm := ‖ŷ − P+

mPmŷ‖.
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2.4.3 Comparison of the both approaches

We now compare the both approaches directly. We consider discretisation by box
functions with m∞ = 4000 and m = 50, 100, 200 and discretisation by hat functions
(compare to Proposition 2.1.6). The latter is precisely implemented as follows. With
k = m∞−1

m−1
we set

Pm : Rm∞ → Rmy(i−1)k+1

...
y(i+1)k+1

 7→ 1√∑2k+1
j=1 a2

j

(
a1y(i−1)k+1 + ...+ a2k+1y(i+1)k+1

)
ei

where i = 2, ...,m− 1 and

ai :=

{
(i− 1)/k i ≤ k + 1,

1− (i− k − 1)/k i ≥ k + 1.

For the boundaries we set,

 y1

...
yk+1

 7→ 1√∑k=2k+1
i=k+1 a2

i

(ak+1y1 + ...+ a2k+1yk+1) e1

and

ym∞−(k+1)

...
ym∞

 7→ 1√∑k=k+1
i=1 a2

i

(
a1ym∞−(k+1) + ...+ ak+1ym∞

)
em.

Here we use m∞ = 4132 and m = 18, 28, 52. We first applied Algorithm 2 with
exact upper bound δdiscm = ‖ŷ − P+

mPmŷ‖. The (random) stopping index n(m, δdiscm )
from Algorithm 2 is then used as the number of repetitions n in Algorithm 1. We
plot in Figure 2.2 the relative errors of the both approaches for growing number of
measurement channelsm. We observe the stated convergence asm grows. Moreover,
the errors of the approach with finite-dimensional residuum are even slightly better
than the ones of the approach with infinite-dimensional approach in all the examples.
This gives numerical evidence, that also the first approach is order optimal in various
settings.
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Figure 2.2: Direct comparison of both approaches (2.2) (fdr) and (2.6) (idr) with discrep-
ancy principle as implemented in Algorithm 1 and 2 for ’phillips’ (first line),
’gravity’ (second line) and ’shaw’ (third line). For the discretisation of the
measurements either box functions (first column) or hat functions (second
column) are used. Concretely, the relative errors ‖Rα

m,n(m,δdiscm )
Ȳ

(m)

n(m,δdiscm )
−

x̂‖/‖x̂‖ (fdr) and ‖RαmP+
m Ȳ

(m)

n(m,δdiscm )
− x̂‖/‖x̂‖ (idr) are plotted against the

number of measurement channels m, where δdiscm is chosen to be the exact dis-
cretisation error ‖ŷ − P+

mPmŷ‖ and n(m, δdiscm ) is calculated with Algorithm
2.
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2.5 Concluding remarks

In this chapter, we have analysed linear inverse problems under unknown white
noise. We presented two approaches for the solution. In both cases, we used mul-
tiple discretised measurements to prove convergence in probability against the true
solution, as the number of repetitions and the number of measurement channels tend
to infinity. The first approach neither required knowledge of the arbitrary error dis-
tribution, nor quantitative knowledge of the quality of the discretisation to obtain
convergence. For the second approach we also proved an optimal convergence rate,
under additional knowledge of the discretisation error.

We want to pronounce two important outstanding questions. Firstly, the discretisa-
tion considered in this article entered the problem through discretised measurements.
In particular, this is determined by the practical problem and the way the data is
measured or acquired. In order to solve the problem numerically, as in the pre-
ceding section, one also has to discretise the true unknown x̂. In contrast to the
measurements, here there is more freedom to choose the numerical discretisation,
since one is basically only limited by computational power. It therefore is of high
interest to find an optimal choice for that. Secondly, it might come as a surprise that
in all the numerical examples the approach with finite-dimensional residuum (fdr)
gives slightly better results than the one with infinite-dimensional residuum (idr),
even though the theoretical results do only guarantee the optimality of the latter
one. Thus an important open question is to derive natural and verifiable conditions,
which rigorously guarantee optimality of the first approach.
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The discrepancy principle for
stochastic gradient descent

Sections 3.1, 3.2 and 3.4 are, up to minor changes, published in [JJ20]. Section 3.3
contains yet unpublished results.

In chapter 1 and 2 we mainly focused on classical filter-based regularisation methods.
Relatively novel methods used heavily in machine learning do not fit into this frame-
work, and its application and convergence properties remain largely unexplored, in
particular in the context of regularisation theory of inverse problems. Here we fo-
cus on a seemingly simple method, the stochastic gradient descent. It is classically
formulated in a finite-dimensional setting, and we hence study the following finite-
dimensional (though possibly the dimension may be extremely large) linear inverse
problem:

Ax = ŷ, (3.1)

where x ∈ Rm
′ is the unknown signal of interest, ŷ ∈ Rm is the exact data and

A ∈ Rm×m
′ is the system matrix. In practice, we have access only to a corrupted

version yδ of the exact data ŷ = Ax̂ (with the reference solution x̂ being any exact
solution). In order to isolate the difficulties arising intrinsically from the usage of
stochastic gradient descent, we first restrict to classical deterministic noise. The case
of i.i.d. measurements and estimated noise level is discussed afterwards in Section
3.3. So the measurement is

yδ = ŷ + ξ

where ξ ∈ Rm denotes the noise, with a noise level δ = ‖ξ‖. When the size of
the problem (3.1) is massive, the classical methods from the previous chapters may
become infeasible due to computational complexity. Especially computationally
cheap and thus attractive is a simple stochastic gradient descent (SGD) [RM51,
BCN18]. In its simplest form, it reads as follows: given an initial guess xδ1 = x1 ∈
Rm

′ , let
xδk+1 := xδk − ηk((aik , xδk)− yδik)aik , k = 1, 2, . . . , (3.2)

where ηk > 0 is a decreasing stepsize, ai is the i-th row of the matrix A (as a column
vector), (·, ·) denotes Euclidean inner product on Rm

′ , and the row index ik at the
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kth SGD iteration is chosen uniformly (with replacement) from the set {1, ...,m}. It
can be derived by applying stochastic gradient descent to the quadratic functional:

J(x) =
1

2m
‖Ax− yδ‖2 =

1

m

m∑
i=1

fi(x), with fi(x) =
1

2
((ai, x)− yδi )2.

Distinctly, the method (3.2) operates only on one single data pair (aik , yik) each time,
and thus it is directly scalable to the data size m of problem (3.1). This feature
makes it especially attractive in the context of massive data.

As already stated in the introduction, a central open problem is the verification
of adaptive stopping rules for stochastic gradient descent. In this chapter we once
more take the focus on the discrpancy principle 0.6. Specifically in this context,
with xδk being the kth iterate constructed by an iterative regularization method, the
principle determines the stopping index k(δ) by

k(δ) := min
{
k ∈ N : ‖Axδk − yδ‖ ≤ τδ

}
, (3.3)

where the constant τ > 1 is fixed. Note that the stopping index k(δ) depends on
the random iterate xδk, and thus it is also a random variable, which poses the main
challenge in the theoretical analysis. The use of the discrepancy principle in the
context of stochastic iterative methods has not been explored so far, to the best
of our knowledge. The goal of this chapter is to study the basic properties of the
discrepancy principle for SGD. It is worth noting that a direct computation of the
residual ‖Axδk−yδ‖ at every SGD iteration is demanding. However, one may compute
it not at every SGD iteration but only with a given frequency (e.g., per epoch, see
Section 3.4), as done by the popular stochastic variance reduced gradient [JZ13], for
which residual evaluation is a part of gradient computation. Also there are efficient
methods to compute the residual ‖Axδk − yδ‖ using randomized SVD [KJ19], by
exploiting the intrinsic low-rank nature for many practical inverse problems.

3.1 Convergence and a finite termination property

Now we specify the algorithmic parameters for SGD, and state the main results of
the work. Throughout, we make the following assumption on the stepsizes and the
regularity condition on the ground truth solution x̂, i.e., the minimum-norm solution
defined by

x̂ = arg min
x:Ax=ŷ

‖x‖. (3.4)

The stepsize schedule in (i) is commonly known as the polynomially decaying stepsize
schedule, and (ii) is the classical power type source condition, where B = m−1(ATA)
(with m being the data size, i.e., the number of rows in A), imposing a type of
smoothness on the solution x̂ (relative to the system matrix A and the initial guess
x1). In the analysis and computation below, x1 is fixed at 0. Generally, in classical
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regularization theory for infinite-dimensional inverse problems, the source element
w plays the role of a Lagrangian multiplier of the constrained problem in (3.4),
whose existence is not ensured for an operator with a nonclosed range and has to
be assumed [EHN96, IJ15]. In the finite-dimensional case, the existence of a source
element w for the case ν

2
≤ 1 is ensured, but the norm of the source element w can

be arbitrarily large.

Assumption 3.1.1. The following conditions hold.

(i) The stepsizes ηj satisfy ηj = c0j
−α, with α ∈ (0, 1) and c0 ≤ (maxj=1,...,n ‖aj‖2)−1.

(ii) There is a ν > 0 and a w ∈ Rm
′ such that x̂− x1 = B

ν
2w.

The first theorem gives a finite-iteration termination property of the discrepancy
principle, where P is with respect to the filtration generated by the random index
(ik)

∞
k=1. It can also be viewed as a partial result on the optimality. It implies in

particular that for ν < 1, the data propagation error is of optimal order. The proof
relies crucially on the observation that the variance component of the mean squared
residual contributes only marginally for sufficiently large k.

Theorem 3.1.2. Let Assumption 3.1.1 be fulfilled, and k(δ) be determined by the
discrepancy principle (3.3). Then for all 0 < r < 1 and τ > τ ∗ > 1, with c =(
τ∗−1√
mcν

)− 2
(1−α)(min(ν,r)+1) + 2, there holds

P
(
k(δ) ≤ cδ−

2
(1−α)(min(ν,r)+1)

)
→ 1 as δ → 0+,

with the constant cν = (
( ν

2
+ 1

2
)(1−α)

c0e(21−α−1)
)
ν
2

+ 1
2‖w‖.

Remark 3.1.3. The condition r < 1 is related to an apparent saturation phe-
nomenon with SGD: for any ν > 1, the SGD iterate xδk with a priori stopping
can only achieve a convergence rate comparable with that for ν = 1 in the setting
of Assumption 3.1.1, at least for the analysis in [JL19]. However, in the very re-
cent preprint [JZZ20b] a refined convergence analysis is presented, showing that this
saturation actually does not occur, if the initial step size c0 is sufficiently small.

The second contribution of this chapter is on the convergence in probability of the
SGD iterate xδk(δ) with the stopping index k(δ) determined by (3.3). This result
has one drawback. In the proof, we have to assume that the stopping index k(δ)
is independent of the iterates xδk(δ). In practice, this can be achieved by running
SGD twice with the same data (yδ, δ): the first round is for the determination of
k(δ), then the second (independent) round is stopped using k(δ). This increases the
computational expense by a factor of 2. However, the numerical results in Section
3.4 show that one can use the iterate from the first run without compromising the
accuracy.
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Theorem 3.1.4. Let Assumption 3.1.1 be fulfilled, and k(δ) be determined by the
discrepancy principle (3.3). Then for all ε > 0 there holds

P
(
‖xδk(δ) − x̂‖ ≥ ε

)
→ 0 as δ → 0+,

where (xδk)k∈N are SGD iterates independent of k(δ), with the same data (yδ, δ).

In sum, Theorems 3.1.2 and 3.1.4 confirm that the discrepancy principle is a valid a
posteriori stopping rule for SGD. However, they do not give a rate of convergence,
which remains an open problem. Numerically, we observe that the convergence rate
obtained by the discrepancy principle is nearly order-optimal for low-regularity solu-
tions, as the a priori rule in the regime in [JL19], and the performance is competitive
with the standard Landweber method. Thus, the method is especially attractive for
finding a low-accuracy solution. However, for very smooth solutions (i.e., large ν),
it manifested as an undesirable saturation phenomenon, due to the presence of the
significant variance component (when compared with the approximation error), un-
der the setting of Assumption 3.1.1. The rest of the chapter is organized as follows.
In Sections 3.2.1 and 3.2.2, we prove Theorems 3.1.2 and 3.1.4, respectively. Several
auxiliary results needed for the proof of Theorem 3.1.2 are given in Section 3.2.3.
The setup with repeatedly i.i.d. measurements is discussed in Section 3.3. Finally,
several numerical experiments are presented in Section 3.4 to complement the theo-
retical analysis. We conclude with some useful notation. We denote the SGD iterate
for exact data ŷ by xk, and that for noisy data yδ by xδk. The expectation E[·] is
with respect to the filtration Fk, generated by the random indices {i1, . . . , ik}.

3.2 Proofs

In this section we gather the proofs.

3.2.1 The proof of Theorem 3.1.2

In this section, we give the proof of Theorem 3.1.2. First, we give several preliminary
facts. By the construction in (3.2), since xδk is measurable with respect to Fk−1,

E[xδk+1|Fk−1] = xδk − ηkm−1

n∑
i=1

((ai, x
δ
k)− yδi )ai

= xδk − ηkm−1(AtAxδk − Atyδ).

Thus, by the law of total expectation, the sequence (E[xδk])k∈N satisfies the following
recursion:

E[xδk+1] = E[xδk]− ηk(ĀtĀE[xδk]− Ātȳδ) (3.5)
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with Ā = m−
1
2A and ȳδ = m−

1
2yδ. This is exactly the classical Landweber method

[Lan51] (but with diminishing stepsizes) applied to the rescaled linear system Āx =
ȳδ. For the Landweber method, the discrepancy principle (3.3), e.g., regularizing
property and optimal convergence rates, has been thoroughly studied for both lin-
ear and nonlinear inverse problems (see, e.g., [EHN96, Chapter 6] and [KNS08]).
The key insight for the analysis below is the following empirical observation: for
a suitably large k, typically the variance component E[‖A(xδk − E[xδk])‖2] � δ2, as
confirmed by the numerical experiments in Section 3.4.2. This fact allows us to
transfer the results for the Landweber method to SGD.

The proof of Theorem 3.1.2 employs two preliminary results, whose lengthy proofs
are deferred to Section 3.2.3. The first result gives an upper bound of the following
stopping index k∗(δ), for any τ ∗ > 1, defined by

k∗(δ) := min{k ∈ N : ‖AE[xδk]− yδ‖ ≤ τ ∗δ}. (3.6)

Clearly, k∗(δ) is the stopping index by the classical discrepancy principle, when
applied to the sequence (E[xδk])k∈N, which is exactly the Landweber method, in view
of the relation (3.5).

Proposition 3.2.1. Let Assumption 3.1.1 be fulfilled. Then for k∗(δ) defined in
(3.6), there holds

k∗(δ) ≤
(τ ∗ − 1√

mcν
δ
)− 2

(1−α)(ν+1)
+ 2, (3.7)

with cν = (
( ν

2
+ 1

2
)(1−α)

c0e(21−α−1)
)
ν
2

+ 1
2‖w‖.

The second result gives an upper bound on the variance component E[‖A(xδκ(δ) −
E[xδκ(δ)])‖2] of the mean squared residual E[‖Axk−yδ‖2]. It indicates that the variance
E[‖A(xδk(δ) − E[xδk(δ)])‖2] contributes only marginally to the mean squared residual
E[‖Axδk(δ)−yδ‖2], and consequently the squared residual ‖Axδk(δ)−yδ‖2 of individual
realizations of SGD may be used instead for determining an appropriate stopping
index.

Proposition 3.2.2. Under Assumption 3.1.1 with κ(δ) ≥ δ−
2

(1−α)(min(ν,r)+1) and 0 <
r < 1, there holds

E[‖A(xδκ(δ) − E[xδκ(δ)])‖2] = o(δ2), as δ → 0+.

Now we can present the proof of Theorem 3.1.2.

Proof. Set 1 < τ ∗ < τ and k̄(δ) = [cδ−
2

(1−α)(min(ν,r)+1) ] + 2 ([·] denotes taking the
integral part of a real number), with c =

(
τ∗−1√
mcν

)− 2
(1−α)(min(ν,r)+1) . By the definition of

k(δ) in (3.3), the event E = {k(δ) ≤ k̄(δ)} is given by

E = {∃i ∈ {1, . . . , k̄(δ)} such that ‖Axδi − yδ‖ ≤ τδ}.
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Thus, E ⊃ {‖Axδ
k̄(δ)
− yδ‖ ≤ τδ}. Consequently,

P(k(δ) ≤ k̄(δ)) ≥ P(‖Axδk̄(δ) − y
δ‖ ≤ τδ)

≥ P(‖A(xδk̄(δ) − E[xδk̄(δ)])‖ ≤ (τ − τ ∗)δ, ‖AE[xδk̄(δ)]− y
δ‖ ≤ τ ∗δ).

By the choice of k̄(δ), Proposition 3.2.1 implies

‖AE[xδk̄(δ)]− y
δ‖ ≤ τ ∗δ.

Consequently,

P(k(δ) ≤ k̄(δ)) ≥ P(‖A(xδk̄(δ) − E[xδk̄(δ)])‖ ≤ (τ − τ ∗)δ)
= 1− P(‖A(xδk̄(δ) − E[xδk̄(δ)])‖ > (τ − τ ∗)δ).

Meanwhile, by Tschebyscheff’s inequality [Fel68, p. 233], we have

P(‖A(xδk̄(δ) − E[xδk̄(δ)])‖ > (τ − τ ∗)δ) ≤
E‖A(xδ

k̄(δ)
− E[xδ

k̄(δ)
])‖2

(τ − τ ∗)2δ2
.

Therefore,

P(k(δ) ≤ k̄(δ)) ≥ 1−
E‖A(xδ

k̄(δ)
− E[xδ

k̄(δ)
])‖2

(τ − τ ∗)2δ2
,

which together with Proposition 3.2.2 directly implies

P(k(δ) ≤ k̄(δ))→ 1 as δ → 0+.

This completes the proof of the theorem. �

Remark 3.2.3. The condition r < 1 is related to an apparent saturation phe-
nomenon with SGD: for any ν > 1, the SGD iterate xδk with a priori stopping can
only achieve a convergence rate comparable with that for ν = 1 in the setting of As-
sumption 3.1.1, at least for the current analysis [JL19]. It remains unclear whether
this is an intrinsic drawback of SGD or due to limitations of the proof technique.

Remark 3.2.4. In practice, we prefer computing the residual with a frequency
ωm ∈ N:

kω(δ) := min{ωmk : k ∈ N , ‖Axδωmk − yδ‖ ≤ τδ}.

Since one of the numbers [cδ−
2

(1−α)(min(ν,r)+1) ] + 2, ...., [cδ−
2

(1−α)(min(ν,r)+1) ] +ωm+ 1 is of
the form ωmk, with k ∈ N, there holds

P
(
kω(δ) ≤ cδ−

2
(1−α)(min(ν,r)+1) + ωm+ 1

)
→ 1 as δ → 0+.

That is, the upper bound on the stopping index remains largely valid for a variant
of the discrepancy principle (3.3) evaluated with a given frequency.
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Remark 3.2.5. The finite-iteration termination property in Theorem 3.1.2 relies
heavily on the assumption α < 1 in the definition of the stepsize schedule. With-
out this condition, Theorem 3.1.2 (and thus also the convergence in probability)
generally do not hold. Indeed, if rank(A) ≥ 2, ŷ 6= 0 and α > 1, then there holds

lim inf
δ→0+

P(k(δ) =∞) > 0. (3.8)

To prove this assertion, let k∗ ∈ N be such that ηk‖A‖2 ≤ 1
2
for all k ≥ k∗. Since

rank(A) ≥ 2 and ŷ 6= 0, there exists an index j ∈ {1, . . . ,m} such that ŷ /∈
span(Aaj). In view of the fact Axkχ{i1=...=ik∗−1=j} ∈ span(Aaj), for k ∈ {1, ..., k∗},
there exists an η > 0 with

P (‖Axk − ŷ‖ ≥ η, ∀k ≤ k∗) ≥ P (i1 = ... = ik∗−1 = j) > 0.

Meanwhile for k > k∗, similiar to (3.10) below, there holds

‖Axk − ŷ‖ ≥ ‖Axk−1 − ŷ‖ − ηk−1|(Axk−1 − ŷ, eik−1
)|‖AAteik−1

‖

≥ ... ≥ ‖Axk∗ − ŷ‖
k−1∏
i=k∗

(1− ηi‖A‖2).

Using the elementary inequalities 1 + x ≤ ex for all x ∈ R and 1 + x ≥ ex−x
2 for all

x ∈ [−1
2
, 0] and the estimate (3.10) below, we deduce

‖Axδk − yδ‖
≥‖Axk − ŷ‖ − ‖A(xk − xδk)− (ŷ − yδ)‖

≥‖Axk∗ − ŷ‖
k−1∏
i=k∗

(1− ‖A‖2ηi)− δ
k−1∏
i=1

(1 + ‖A‖2ηi)

≥‖Axk∗ − ŷ‖ exp
(
− c0‖A‖2

k−1∑
i=k∗

i−α − c2
0‖A‖4

k−1∑
i=k∗

i−2α
)
− δ exp

(
c0‖A‖2

k−1∑
i=1

i−α
)

≥c′‖Axk∗ − ŷ‖ − c′′δ,

with

c′ := e−c0‖A‖
2
∑∞
i=1 i

−α−c20‖A‖4
∑∞
i=1 i

−2α

> 0 and c′′ := ec0‖A‖
2
∑∞
i=1 i

−α
<∞.

So for small enough δ > 0, there holds

‖Axδk − yδ‖χ{‖Axi−ŷ‖≥η, ∀i≤k∗} ≥ c′η − c′′δ > τδ.

Consequently,

lim inf
δ>0

P(k(δ) =∞) ≥ P (‖Axi − ŷ‖ ≥ η, ∀i ≤ k∗) > 0.

This shows the assertion (3.8).
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3.2.2 The proof of Theorem 3.1.4

In this section, we prove Theorem 3.1.4. It employs the following proposition, which
states that potential early stopping actually does not cause any problem.

Proposition 3.2.6. For all ε > 0, there is a sequence (k−δ )δ with k−δ → ∞ for
δ → 0+, such that

‖xδk(δ) − x̂‖χ{k(δ)≤k−δ }
≤ ε

for δ > 0 small enough.

Proof. It suffices to show that for all K ∈ N

‖xk(δ) − x̂‖χ{k(δ)≤K} → 0 as δ → 0+. (3.9)

In order to show this, we need the following two estimates for the iterated noise:

‖A(xδk − xk)− (yδ − ŷ)‖ ≤ δ
k−1∏
j=1

(1 + ηj‖A‖2), (3.10)

‖xδk − xk‖ ≤ δ‖A‖
k−1∑
j=1

ηj

j−1∏
i=1

(1 + ηi‖A‖2), (3.11)

with the conventions
∑0

j=1 = 0 and
∏0

j=1 = 1. We prove the estimates (3.10) and
(3.11) by mathematical induction. Note that ai = Atei. For the estimate (3.10), by
the triangle inequality and the defining relation (3.2) of SGD iteration,

‖A(xδk+1 − xk+1)− (yδ − ŷ)‖
≤ ‖A(xδk − xk)− (yδ − ŷ)‖+ ηk‖

(
A(xδk − xk)− (yδ − ŷ), eik

)
AAteik‖

≤ ‖A(xδk − xk)− (yδ − ŷ)‖
(
1 + ηk‖A‖2

)
,

and since x1 = xδ1, ‖A(xδ1− x1)− (yδ − ŷ)‖ = ‖yδ − ŷ‖ ≤ δ. For the estimate (3.11),
we have ‖xδ1 − x1‖ = 0 and

‖xδk+1 − xk+1‖ ≤ ‖xδk − xk‖+ ηk‖A‖‖A(xδk − xk)− (yδ − ŷ)‖,

so the claim follows using the estimate (3.10). Now, for each fixed K, since there
are only finitely many different realisations of the first K SGD iterates, there is a
(deterministic) η > 0, which depends on K, such that

min
k=1,...,K

(‖Axk − ŷ‖ − η)χ{‖Axk−ŷ‖>0} ≥ 0, (3.12)
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where without loss of generality, we have assumed ŷ 6= 0. Therefore, using estimates
(3.10) and (3.12),

‖Axδk − yδ‖χ{‖Axk−ŷ‖>0}

≥ ‖Axk − ŷ‖χ{‖Axk−ŷ‖>0} − ‖A(xk − xδk)− (ŷ − yδ)‖χ{‖Axk−ŷ‖>0}

≥
(
η − δ

k−1∏
j=1

(1 + ηj‖A‖2)
)
χ‖Axk−ŷ‖>0} > τδχ{‖Axk−ŷ‖>0},

for any δ < η

τ+
∏K−1
j=1 (1+ηj‖A‖2)

. Then by the definition of the discrepancy principle in

(3.3), this implies
{k(δ) ≤ K} ⊂ {‖Axk(δ) − ŷ‖ = 0}

for δ > 0 small enough. Meanwhile, since by construction xk(δ) ∈ R(At) = N (A)⊥,
‖Axk(δ) − ŷ‖ = 0 implies xk(δ) = x̂, the minimum norm solution. The proof of (3.9)
is concluded by

‖xδk(δ) − x̂‖χ{k(δ)≤K} = ‖xδk(δ) − xk(δ)‖χ{k(δ)≤K}

≤ δ‖A‖
K−1∑
j=1

ηj

j−1∏
i=1

(1 + ηi‖A‖2)→ 0

for δ → 0+, where we have used estimate (3.11). This completes the proof of the
proposition. �

Now we can state the proof of Theorem 3.1.4.

Proof of Theorem 3.1.4 Fix ε > 0. Proposition 3.2.6 and Theorem 3.1.2 guarantee
the existence of two sequences (k−δ )δ, (k

+
δ )δ, with k−δ ≤ k+

δ ≤ cδ−
2

(1−α)(min(ν,r)+1) , k−δ →
∞ for δ → 0+ and

‖xδk(δ) − x̂‖χ{k(δ)≤k−δ }
≤ ε for δ small enough

and
P
(
k(δ) ≤ k+

δ

)
→ 1 for δ → 0+.

Consequently, for δ > 0 small enough, there holds

P(‖xδk(δ) − x̂‖ > ε)

= P(‖xδk(δ) − x̂‖ > ε, k(δ) ≤ k−δ ) + P(‖xδk(δ) − x̂‖ > ε, k(δ) > k−δ )

= P(‖xk(δ) − x̂‖ > ε, k(δ) > k−δ )

= P(‖xk(δ) − x̂‖ > ε, k−δ < k(δ) ≤ k+
δ ) + P(‖xk(δ) − x̂‖ > ε, k(δ) > k+

δ )

≤ P(‖xk(δ) − x̂‖ > ε, k−δ < k(δ) ≤ k+
δ ) + P(k(δ) > k+

δ ).

In view of Theorem 3.1.2, it remains to show that

P(‖xk(δ) − x̂‖ > ε, k−δ < k(δ) ≤ k+
δ )→ 0 for δ → 0+.
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To this end, let Ωδ := {k−δ ≤ k(δ) ≤ k+
δ } and we split the error into three parts in a

customary way: approximation error, data propagation error and stochastic error.
Specifically, by the triangle inequality, there are constants c1 and c2 such that

‖xδk(δ) − x̂‖χΩδ

=

k+
δ∑

k=k−δ

‖xδk − x̂‖χ{k(δ)=k}

≤
k+
δ∑

k=k−δ

(
‖E[xk]− x̂‖+ ‖E[xk]− E[xδk]‖+ ‖xδk − E[xδk]‖

)
χ{k(δ)=k}

≤
k+
δ∑

k=k−δ

(
c1(k − 1)−(1−α) ν

2 + c2δ(k − 1)
1−α

2 + ‖xδk − E[xδk]‖
)
χ{k(δ)=k}

≤c1

(
k−δ − 1

)−(1−α) ν
2 + c2δ

(
k+
δ − 1

) 1−α
2 +

k+
δ∑

k=k−δ

‖xδk − E[xδk]‖χ{k(δ)=k},

where we have used [JL19, Theorem 3.2] and Lemma 3.2.8 below in the third line.
The first two terms clearly tend to 0 for δ → 0+ (since k−δ → ∞, and δ(k+

δ )
1−α

2 →
0, in view of Theorem 3.1.2). By Markov’s inequality [Fel68, p. 242] and the
independence assumption between k(δ) and xδk(δ),

P

 k+
δ∑

k=k−δ

‖xδk − E[xδk]‖χ{k(δ)=k} > ε′

 ≤ ∑k+
δ

k=k−δ
E
[
‖xδk − E[xδk]‖χ{k(δ)=k}

]
ε′

=

∑k+
δ

k=k−δ
E
[
‖xδk − E[xδk]‖

]
P (k(δ) = k)

ε′
.

Now Jensen’s inequality and Proposition 3.2.12 below (with s = 0, γ < min(α, 1−α)
and β < 1− α) give

P

 k+
δ∑

k=k−δ

‖xδk − E[xδk]‖χ{k(δ)=k} > ε′

 ≤ ∑k+
δ

k=k−δ

√
E
[
‖xδk − E[xδk]‖2

]
P (k(δ) = k)

ε′

≤

√
c((k−δ )−β + δ2(k−δ )−γ)

∑k+
δ

k=k−δ
P (k(δ) = k)

ε′

=

√
c((k−δ )−β + δ(k−δ )−γ)P (Ωδ)

ε′
→ 0

as δ → 0+. Thus it follows that

P
(
‖xk(δ)− x̂‖ > ε, k−δ < k(δ) ≤ k+

δ

)
→ 0
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as δ → 0+. This completes the proof of the theorem. �

Remark 3.2.7. Clearly, with kω(δ) given as in Remark 3.2.4, there holds

P
(
‖xkω(δ) − x̂‖ ≥ ε

)
→ 0

for δ → 0+. That is, the convergence remains valid for the variant of the discrepancy
principle (3.3) evaluated with a frequency.

3.2.3 The proofs of Propositions 3.2.1 and 3.2.2

In this part, we prove Propositions 3.2.1 and 3.2.2, which are used in the proof of the
Theorems 3.1.2 and 3.1.4. We shall use the following result from [JL19, Theorem
3.1] frequently. Note that ‖B 1

2 (xk − x̂)‖ = ‖Axk − ŷ‖/
√
m.

Lemma 3.2.8. Let Assumption 3.1.1 be fulfilled, then for s ∈ {0, 1
2
} and cν,s :=(

( ν
2

+s)(1−α)

c0e(21−α−1)

) ν
2

+s

‖w‖, there holds

‖Bs(E[xk+1]− x̂)‖ ≤ cν,sk
−( ν

2
+s)(1−α).

3.2.3.1 The proof of Proposition 3.2.1

Proof. We may assume k∗ > 2. By the definition of k∗(δ) and the triangle inequality

τ ∗δ ≤ ‖AE[xδk∗−1]− yδ‖
≤ ‖AE[xk∗−1]− ŷ‖+ ‖AE[xδk∗−1 − xk∗−1] + (ŷ − yδ)‖.

By Lemma 3.2.8, the term ‖AE[xk∗−1]− ŷ‖ is bounded by

‖AE[xk∗−1]− ŷ‖ ≤ cν(k
∗ − 2)−( ν

2
+ 1

2
)(1−α), with cν =

√
mcν, 1

2
. (3.13)

Next we claim
‖AE[xδk∗−1 − xk∗−1] + (ŷ − yδ)‖ ≤ δ. (3.14)

Combining (3.13) with (3.14) immediately implies the desired assertion. It remains
to show the claim (3.14). To this end, we employ the filter of the Landweber method.
The relation (3.5) implies that E[xδk] satisfies the following recursion

AE[xδk+1]− yδ =
(
I − ηk

m
AAt

) (
AE[xδk]− yδ

)
.

Using this yields

AE[xδk]− yδ =
k−1∏
j=1

(
I − ηj

m
AAt

) (
Ax1 − yδ

)
, (3.15)
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Chapter 3. The discrepancy principle for stochastic gradient descent

and consequently, by the choice of c0,

‖AE[xδk − xk] + (ŷ − yδ)‖ =

∥∥∥∥∥
k−1∏
j=1

(
I − ηj

m
AAt

) (
ŷ − yδ

)∥∥∥∥∥ ≤ δ. (3.16)

This completes the proof of the proposition. �

3.2.3.2 Proof of Proposition 3.2.2

The proof of Proposition 3.2.2 employs several technical estimates [JL19].

Lemma 3.2.9. For any j < k, and any symmetric and positive semidefinite oper-
ator S and stepsizes ηj ∈ (0, ‖S‖−1] and p ≥ 0, there holds

‖
k∏
i=j

(I − ηiS)Sp‖ ≤ pp

ep(
∑k

i=j ηi)
p
.

Next we recall two useful estimates taken from [JL19].

Lemma 3.2.10. For ηj = η0j
−α with α ∈ (0, 1), β ∈ [0, 1] and r ≥ 0, there hold

[ k
2

]∑
j=1

η2
j

(
∑k

`=j+1 η`)
r
j−β ≤ cα,β,rk

−r(1−α)+max(0,1−2α−β),

k−1∑
j=[ k

2
]+1

η2
j

(
∑k

`=j+1 η`)
r
j−β ≤ c′α,β,rk

−((2−r)α+β)+max(0,1−r),

where we slightly abuse the notation k−max(0,0) for ln k, and cα,β,r and c′α,β,r are given
by

cα,β,r = 2rη2−r
0


2α+β

2α+β−1
, 2α + β > 1,

2, 2α + β = 1,
22α+β−1

1−2α−β , 2α + β < 1,

and c′α,β,r = 22α+βη2−r
0


r
r−1

, r > 1,

2, r = 1,
2r−1

1−r , r < 1.

The next result gives an important recursion between the variance estimate.

Lemma 3.2.11. Let Assumption 3.1.1 be fulfilled. Then for the SGD iterate xδk,
with φsj = ‖B 1

2
+sΠk

j+1(B)‖, there holds

E[‖Bs(xδk+1 − E[xδk+1])‖2]

≤
k∑
j=1

η2
j (φ

s
j)

2
(
csE[‖Bs

(
xδj − E[xδj ]

)
‖2] + 2cνj

−2(1−α)( ν
2

+ 1
2

) + 2δ2
)
,

with s ∈ {0, 1
2
} and cs, cν given below.
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Proof. By [JL19, Theorem 3.3] and the bias variance decomposition, the left hand
side (LHS) is bounded by

LHS ≤
k∑
j=1

η2
j (φ

s
j)

2E[‖Axδj − yδ‖2

=
k∑
j=1

η2
j (φ

s
j)

2
(
E[‖A

(
xδj − E[xδj ]

)
‖2] + ‖AE[xδj ]− yδ‖2

)
.

Now by the triangle inequality and (3.16),

LHS ≤
k∑
j=1

η2
j (φ

s
j)

2
(
E[‖A

(
xδj − E[xδj ]

)
‖2]

+
(
‖AE[xj]− ŷ‖+ ‖A

(
E[xδj ]− E[xj]

)
−
(
yδ − ŷ

)
‖
)2
)

Since ‖AE[x1]− ŷ‖ = ‖ŷ‖, and

‖AE[xj]− ŷ‖ ≤
√
mcν, 1

2
(j − 1)−( ν

2
+ 1

2
)(1−α) ≤

√
mcν, 1

2
2( ν

2
+ 1

2
)(1−α)j−( ν

2
+ 1

2
)(1−α)

for j ≥ 2 by Lemma 3.2.8. Thus, with cν :=
(

max{‖ŷ‖,
√
mcν, 1

2
2( ν

2
+ 1

2
)(1−α)}

)2

,

LHS ≤
k∑
j=1

η2
j (φ

s
j)

2
(
n2s‖A‖4( 1

2
−s)E[‖Bs

(
xδj − E[xδj ]

)
‖2] + 2cνj

−2(1−α)( ν
2

+ 1
2

) + 2δ2
)

which completes the proof of the lemma with cs = m2s‖A‖4( 1
2
−s). �

The next result gives a sharp estimate on E[‖Bs(xδk − E[xδk])‖2].

Proposition 3.2.12. Let Assumption 3.1.1 be fulfilled. Then for the SGD iterate
xδk, the mean squared error E[‖Bs(xδk − E[xδk])‖2] with s ∈ {0, 1

2
} satisfies

E[‖Bs(xδk − E[xδk])‖2] ≤ c(α, ν,m, s, β, γ)(k−β + δ2k−γ)

for β < min ((1 + 2s)(1− α), (1 + ν)(1− α) + α) and γ < min(α, 1− α).

Proof. Lemma 3.2.11 implies that the weighted mean squares error dsj = E[‖Bs(xδk−
x̂)‖2] satisfies the following recursion

dsk+1 ≤
k∑
j=1

η2
j (φ

s
j)

2
(
csd

s
j + 2cνj

−2(1−α)( ν
2

+s) + 2δ2
)

(3.17)

Now we prove the desired assertion by mathematical induction (with β = (ν+1)(1−
α)):

dsk ≤ c(k−β + δ2k−γ),
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Chapter 3. The discrepancy principle for stochastic gradient descent

where the constant c ≥ 1 is to be determined. This assertion holds trivially for all
finite k, up to k∗, provided that c is sufficiently large. Now suppose the assertion
holds for k ≥ k∗, and we prove the assertion for k + 1. Indeed, it follows from the
recursion (3.17), the induction hypothesis and since β < 2(1− α)(ν

2
+ 1

2
), that

dsk+1 ≤
k∑
j=1

η2
j (φ

s
j)

2(csc(j
−β + j−γδ2) + 2cνj

2(1−α)( ν
2

+s) + 2δ2)

≤ csc

k∑
j=1

η2
j (φ

s
j)

2j−β + (csc+ 2)δ2

k∑
j=1

η2
j (φ

s
j)

2 + 2cν

k∑
j=1

η2
j (φ

s
j)

2j−2(1−α)( ν
2

+ 1
2

)

≤ (csc+ 2cν)
k∑
j=1

η2
j (φ

s
j)

2j−β
′
+ (csc+ 2)δ2

k∑
j=1

η2
j (φ

s
j)

2.

with β′ = min(β, (1 + ν)(1 − α)). Without loss of generality, we may assume that
β′ ≥ 1− 2α. By Lemmas 3.2.9 and 3.2.10, the first sum is bounded by

k∑
j=1

η2
j (φ

s
j)

2j−β
′ ≤e−2cα,β′,1+2sk

−(1+2s)(1−α)+max(0,1−2α−β′)

+ e−1c′α,β′,1‖B‖k−(α+β′) ln k + c2
0‖B‖2k−(2α+β′). (3.18)

Since β′ + α > β and max(0, 1− 2α− β′) = 0, thus,

k∑
j=1

η2
jφ

2
jj
−β′

≤(e−2cα,β′,1+2sk
−(1+2s)(1−α)+β ln k + e−1c′α,β′,1‖B‖k−(α+β′)+β ln k + c2

0‖B‖2k−α)k−β.

Meanwhile, with −(1 + 2s)(1 − α) + max(0, 1 − 2α) = −min((1 + 2s)(1 − α), α +
2s(1− α)), we obtain

k∑
j=1

η2
j (φj)

2

≤e−2cα,0,2k
−min((1+2s)(1−α),α+2s(1−α)) + e−1c′α,0,1‖B‖k−α ln k + c2

0‖B‖2k−2α

≤(e−2cα,0,1+2sk
−min((1−α),α)+γ + e−1c′α,0,1‖B‖k−α+γ ln k + c2

0‖B‖2k−2α+γ)k−γ

Combining the preceding estimates yields

dk+1

≤(ccs + 2cν)
(
e−2cα,β′,1+2sk

−(1+2s)(1−α)+β ln k + e−1c′α,β′,1‖B‖k−(α+β′)+β ln k

+c2
0‖B‖2k−α

)
k−β + (csc+ 2)δ2

(
e−2cα,0,1+2sk

−min((1−α),α)+γ

+e−1c′α,0,1‖B‖k−α+γ ln k + c2
0‖B‖2k−2α+γ

)
k−γ.
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Since by assumption, β < (1 + 2s)(1− α), β < α+ β′ and γ < min(α, 1− α), there
exists k∗ such that for all k ≥ k∗

1

4
> (cs + 2cν)

(
e−2cα,β′,1+2sk

−(1+2s)(1−α)+β ln k + e−1c′α,β′,1‖B‖k−(α+β′)+β ln k

+c2
0‖B‖2k−2α

)
,

1

4
> (cs + 2)δ2

(
e−2cα,0,1+2sk

−min((1−α),α)+γ + e−1c′α,0,1‖B‖k−α+γ ln k

+c2
0‖B‖2k−2α+γ

)
.

Thus, with this choice of k∗ and k ≥ k∗,

dk+1 ≤ c
4

(
k−β + δ2k−γ

)
≤ c (1+k−1)β

4

(
(k + 1)−β + δ2(k + 1)−γ

)
< c

(
(k + 1)−β + δ2(k + 1)−γ

)
and we obtain the desired assertion. �

Remark 3.2.13. The m factor in the estimate is due to the variance inflation of
using stochastic gradients in place of gradient in SGD. This factor can be reduced by
suitable variance reduction techniques, e.g., mini-batching and stochastic variance
reduced gradient [JZ13]. Note that with [JL19, Theorems 3.1 and 3.2] and s = 0,
Proposition 3.2.12 gives an improved (regarding the exponents) a priori bound for
the mean squared error E[‖xδk − x̂‖2].

Last, using Lemma 3.2.11 and Proposition 3.2.12, we can prove Proposition 3.2.2.

Proof of Proposition 3.2.2 Using Lemma 3.2.11 and Proposition 3.2.12 with
s = 1

2
and c = c(α, ν,m, s, β, γ), we deduce

E[‖A(xδκ(δ) − E[xδκ(δ)])‖2] ≤ mc
(
κ(δ)−β + δ2κ(δ)−γ

)
.

We choose γ > 0. If ν < 1 and r > 2ν, then we can choose β > (1 − α)(ν + 1), so
with the choice κ(δ) = δ−

2
(1−α)(ν+1) , the claim follows. Otherwise, if ν ≥ 1, then we

can choose β > (1−α)(r+ 1), so with the choice κ(δ) = δ−
2

(1−α)(r+1) the claim again
follows. This completes the proof of the proposition. �

3.3 Stochastic error

In contrast to Chapter 1 and 2, we here assumed that we know and upper bound
δ ≥ ‖ŷ − yδ‖ of the data error. We now discuss the case, when we have multiple
unbiased measurements of the data ŷ.
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3.3.1 The case with finite variance

Assume that we have unbiased i.i.d. measurements Y1, ..., Yn of ŷ with finite variance
(i.e E‖Y1− ŷ‖2 is of smaller order than the discretisation dimension m). We take the
mean Ȳn as our approximation of ŷ with estimated data error δestn = s2

n/
√
n. We are

facing now exactly the same problem as in Chapter 1, i.e. it will occasionaly hold
that δestn < ‖Ȳn − ŷ‖ := δtruen . For simplicity we restrict to the case s2

n = 1, the case
s2
n = 1

n−1

∑n
i=1 ‖Yi − Ȳn‖2 can be treated almost the same way, see Chapter 1. We

show in the following, that this will in essence not change the results. We assume
that the measurements are independent of the random sampling of the row index.
We denote by Esgd the expectation with respect to the random sampling of the row
index, and with E the total expectation. We denote by Xn

k the SGD iterates for
noisy random data Ȳn and with xk the ones for exact data ŷ. First note, that δestn
and δtruen are of the same order, i.e. for arbitrary sequences (cn)n∈N, (Cn)n∈N with
cn → 0, Cn →∞ it holds that

P
(
cnδ

est
n ≤ δtruen ≤ Cnδ

est
n

)
→ 1

as n → ∞. Thus the δ = δtruen in Proposition 3.2.2 may be replaced with δestn
and in order to reproduce Theorem 3.1.2 and 3.1.4 it is sufficient to just rework
Proposition 3.2.1. However, Esgd[Xn

k ] are the iterates of the filter-based Landweber
method (applied to noisy random data Ȳn) and hence can be treated as in Chapter
1.

Proposition 3.3.1. Let Assumption 3.1.1 be fulfilled. Then, for

k∗(n) := min
{
k ∈ N : ‖AEsgd[X

n
k ]− Ȳn‖ ≤ τ ∗δestn

}
it holds that

P

(
k∗(n) ≤ k̄(n) :=

(
τ ∗ − 1√
mcν

δestn

)− 2
(1−α)(ν+1)

+ 1

)
≥ 1− f(n)→ 1,

as n→∞, with cν =
(

( ν
2

+ 1
2

)(1−α)

c0e(21−α−1)

) ν
2

+ 1
2 ‖w‖ and

f(n) :=
r∑
l=1

k̄(n)−1∏
j=1

(
1− ηj

m
σ2
l

)2

E (Y1 − ŷ, ul)2 ,

with (σl, ul, vl)
r
l=1 the singular value decomposition of A.

Proof.
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Decomposition of the residual and Lemma 3.2.9 (with Esgd instead of E) give

‖AEsgd[X
n
k̄(n)]− Ȳn‖

≤‖AEsgd[Xk̄(n)]− ŷ‖+ ‖AEsgd
[
Xn
k̄(n) − xk̄(n)

]
− (Ȳn − ŷ)‖

≤
√
mcν(k̄(n)− 1)−(

ν+1)(1−α)
2 + ‖AEsgd

[
Xn
k̄(n) − xk̄(n)

]
− (Ȳn − ŷ)‖

=(τ ∗ − 1)δestn + ‖AEsgd
[
Xn
k̄(n) − xk̄(n)

]
− (Ȳn − ŷ)‖.

Therefore,

{
‖AEsgd[X

n
k̄(n)]− Ȳn‖ ≤ τ ∗δestn } ⊃ {‖AEsgd

[
Xn
k̄(n) − xk̄(n)

]
− (Ȳn − ŷ)‖ ≤ δestn

}

and by definition of k∗(n) and Tschebyscheff’s inequality we deduce that

P
(
k∗(n) ≤ k̄(n)

)
≥ P

(
‖AEsgd[X

n
k̄(n)]− Ȳn‖ ≤ τ ∗δestn

)
≥ P

(
‖AEsgd

[
Xn
k̄(n) − xk̄(n)

]
− (Ȳn − ŷ)‖ ≤ δestn

)
≥1−

E‖AEsgd
[
Xn
k̄(n)
− xk̄(n)

]
− (Ȳn − ŷ)‖2

δestn
2

=1− nE

∥∥∥∥∥∥
n∑
i=1

k̄(n)−1∏
j=1

(
I − ηj

m
AAt

)
(Yi − ŷ)

∥∥∥∥∥∥
2

=1−
r∑
l=1

k̄(n)−1∏
j=1

(
1− ηj

m
σ2
l

)2

E (Y1 − ŷ, ul)2 = 1− f(n).

We show that f(n)→ 0 as n→∞. Let ε > 0 and L ≤ r such that

r∑
l=L+1

E (Y1 − ŷ, ul)2 < ε/2.

Then,
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f(n) : =
r∑
l=1

k̄(n)−1∏
j=1

(
1− ηj

m
AAt

)2

E (Y1 − ŷ, ul)2

≤
L∑
l=1

k̄(n)−1∏
j=1

(
1− ηj

m
AAt

)2

E (Y1 − ŷ, ul)2 +
r∑

l=L+1

E (Y1 − ŷ, ul)

≤ Le−
2σ2
L
m

∑k̄(n)−1
j=1 ηj + ε/2 ≤ ε

for n large enough (since
∑∞

j=1 ηj = ∞). Note that the proof worked also for
m→∞, given c0 � m. �

3.3.2 The white noise case

We now consider the white noise scenario from Chapter 2. So assume that Yij,
i ≤ n, j ≤ m are unbiased and i.i.d measurements of ŷj, j = 1, ...,m (so that
δij := Yij − ŷj are i.i.d for j ≤ m, i ∈ N). We replace yδ and δ by the mean and the
estimated data error

Ȳ (m)
n :=

1

n

n∑
i=1

Yi1...
Yin

 δestm,n =

√
s2
m,n

m

n
,

where

s2
m,n :=

1

m

m∑
j=1

1

n− 1

n∑
i=1

(
Yij −

1

n

n∑
l=1

Ylj

)2

=
1

m

m∑
j=1

1

n− 1

n∑
i=1

(
δij −

1

n

n∑
l=1

δlj

)2

is the mean of the sample variances. Note that the true error

δtruem,n := ‖Ȳ m
n − ŷ‖ =

√√√√ m∑
j=1

(
n∑
i=1

Yij/n− ŷj

)2

=

√√√√ m∑
j=1

(
n∑
i=1

δij/n

)2

and δestm,n in fact only depend on the dimension m of the inverse problem and are
otherwise independent of A, x̂ and ŷ. The following lemma states, that for a fixed
error distribution all the results remain true with high probability (for sufficiently
large dimension m and number of measurements n), if we replace yδ and δ with Ȳ (m)

n

and δestm,n.
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Lemma 3.3.2. Let ε > 0. Then,

P

(∣∣∣∣δtruem,n − δestm,n
δestm,n

∣∣∣∣ ≤ ε

)
→ 1

as m,n→∞, where the rate depend only on ε and the distribution of δ11.

Proof. This follows directly with Lemma 2.3.4. �

3.4 Numerical experiments and discussions

Now we provide numerical experiments to complement the theoretical analysis.
Three model examples, i.e., phillips (mildly ill-posed, smooth), gravity (severely
ill-posed, medium smooth) and shaw (severely ill-posed, nonsmooth), are taken from
the open source MATLAB package Regutools [Han07], available at http://people.
compute.dtu.dk/pcha/Regutools/ (last accessed on April 14, 2020). The prob-
lems cover a variety of setting, e.g., different solution smoothness and degree of ill-
posedness. These examples are discretizations of Fredholm/Volterra integral equa-
tions of the first kind, by means of either the Galerkin approximation with piecewise
constant basis functions or quadrature rules. All the examples are discretized into
a linear system of size m = m′ = 1000. In addition, we generate a synthetic ex-
ample, termed smoothed-phillips, whose exact solution x̂ is first generated by
x̄ = AtAAtȳ and then normalized to have unit maximum, i.e., x̂ = x̄/‖x̄‖`∞ , where
A is the system matrix and ȳ the exact data from phillips, and the corresponding
exact data is formed by ŷ = Ax̂. By its very construction, the solution x̂ satisfies
Assumption 3.1.1(ii) with an exponent ν > 4, and thus it is very smooth in some
sense. Throughout, the noisy data yδ is generated according to

yδi := y†i + δmax
j

(|ŷj|)ξi, i = 1, . . . , n,

where the i.i.d. random variables ξi follow the standard Gaussian distribution (with
zero mean and unit variance), and δ > 0 denotes the relative noise level (by slightly
abusing the notation). The parameter c0 in the stepsize schedule in Assumption
3.1.1(i) is set to (maxi ‖ai‖2)−1, the exponent α is taken from the set {0.1, 0.3, 0.5},
and unless otherwise stated, the stopping criterion is tested every 100 SGD iterations
(see Remarks 3.2.4 and 3.2.7). SGD is always initialized with x1 = 0, and the
maximum number of epochs is fixed at 5000, where one epoch refers to n SGD
iterations. The parameter τ in the discrepancy principle (3.3) is fixed at τ = 1.2.
All the statistical quantities presented below are computed from 100 independent
runs.
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Chapter 3. The discrepancy principle for stochastic gradient descent

3.4.1 Optimality

First, we verify the optimality of the discrepancy principle (3.3), against an order
optimal regularization method. There are many possible choices, e.g., Landweber
method and conjugate gradient method [EHN96, Chapters 6 and 7]. In this work,
we employ the Landweber method as the benchmark. The Landweber method gen-
erally converges steadily although often slowly. However, it is known to be an order
optimal regularization method with infinite qualification [EHN96, Theorem 6.5, p.
159], when terminated by the discrepancy principle (3.6), and further, it is the pop-
ulation version of SGD (the expected iterates

(
E[xδk]

)
k∈N

are exactly the Landweber
iterates; see (3.5)), and thus it serves a good benchmark for performance compari-
son in terms of the convergence rate. For the comparison, the Landweber method is
initialized with x1 = 0, with a constant stepsize 1/‖A‖2, and it is terminated with
the discrepancy principle (3.6) with τ ∗ = 1.2 (i.e., the same as for SGD) with the
maximum number of iterations being fixed at 5000. The numerical results for the
examples are summarized in Tables 3.1–3.4. In the tables, esgd and std(esgd) de-
note the (sample) mean and the (sample) standard deviation of the (squared) error
‖xδkδ − x̂‖

2, respectively, i.e.,

esgd = E[‖xδkδ − x̂‖
2] and std(esgd) = E[(‖xδkδ − x̂‖

2 − esgd)2]
1
2 ,

and ksgd = E[kδ] is the mean stopping index for SGD, in terms of the number of
epochs. Likewise elm and klm denote the squared reconstruction error and stop-
ping index, respectively, of the Landweber method, terminated according to the
discrepancy principle (3.6).

Table 3.1: Comparison between SGD and LM for phillips.

α = 0.1 α = 0.3 α = 0.5 LM

δ esgd std(esgd) ksgd esgd std(esgd) ksgd esgd std(esgd) ksgd elm klm

1e-3 8.6e-3 4.5e-3 1.42 8.5e-3 4.4e-3 4.18 8.3e-3 4.6e-3 52.2 5.7e-3 361
5e-3 1.7e-2 8.4e-3 0.45 2.3e-2 8.8e-3 0.97 2.4e-2 7.3e-3 6.03 2.2e-2 128
1e-2 2.8e-2 1.6e-2 0.28 4.7e-2 2.0e-2 0.43 5.7e-2 2.0e-2 1.64 5.7e-2 51
5e-2 1.4e-1 9.7e-2 0.15 1.4e-1 9.0e-2 0.11 2.1e-1 9.6e-2 0.17 2.1e-1 15

The numerical results allow drawing a number of interesting observations. First,
the exponent α in the stepsize schedule exerts a strong influence on the (expected)
stopping index ksgd. At low noise levels (i.e., small δ), ksgd increases dramatically
with the value of α. Meanwhile, for any fixed α, the error esgd increases steadily with
the noise level δ, exhibiting the convergence behavior indicated in Theorem 3.1.4.
Further, for each fixed δ, the error esgd is largely comparable for all different α values,
although ksgd increases with α. This behavior is qualitatively in good agreement with
Theorem 3.1.2: the upper bound scales as O(δ−

2
(1−α)(min(2p,r)+1) ). Thus, in practice,

in order to obtain relatively efficient SGD, one prefers small α values. Second, in
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Table 3.2: Comparison between SGD and LM for gravity.

α = 0.1 α = 0.3 α = 0.5 LM

δ esgd std(esgd) ksgd esgd std(esgd) ksgd esgd std(esgd) ksgd elm klm

1e-3 6.7e-1 2.6e-1 1.96 7.4e-1 2.7e-1 9.31 7.7e-1 2.4e-1 198 7.2e-1 640
5e-3 2.0e0 8.9e-1 0.45 2.5e0 1.1e0 0.88 2.7e0 1.1e0 6.21 2.4e0 95
1e-2 3.1e0 1.5e0 0.25 4.3e0 1.9e0 0.36 4.7e0 2.0e0 1.36 4.0e0 50
5e-2 9.0e0 5.3e0 0.14 1.1e1 6.6e0 0.10 1.5e1 7.4e0 0.13 1.6e1 9

Table 3.3: Comparison between SGD and LM for shaw.

α = 0.1 α = 0.3 α = 0.5 LM

δ esgd std(esgd) ksgd esgd std(esgd) ksgd esgd std(esgd) ksgd elm klm

1e-3 8.2e0 9.3e-2 57.7 8.4e0 5.5e-2 891 2.0e1 5.6e-1 5000 1.2e1 5000
5e-3 2.7e1 1.2e0 0.94 2.8e1 1.1e0 3.81 2.8e1 1.0e0 51.69 2.8e1 189
1e-2 2.9e1 1.6e0 0.59 3.1e1 1.1e0 1.93 3.1e1 1.0e0 19.71 3.1e1 117
5e-2 5.0e1 1.0e1 0.15 6.0e1 8.0e0 0.25 6.7e1 7.4e0 0.818 6.8e1 22

Table 3.4: Comparison between SGD and LM for smoothed-phillips.

α = 0.1 α = 0.3 α = 0.5 LM

δ esgd std(esgd) ksgd esgd std(esgd) ksgd esgd std(esgd) ksgd elm klm

1e-3 1.6e-1 6.8e-2 1.34 1.5e-1 5.8e-2 4.03 1.5e-1 6.0e-2 48 1.5e-3 29
5e-3 3.9e-1 2.0e-1 0.36 5.0e-1 2.0e-1 0.59 4.9e-1 1.9e-1 2.68 1.3e-2 18
1e-2 5.9e-1 2.6e-1 0.24 8.5e-1 3.7e-1 0.30 9.4e-1 3.9e-1 0.77 4.0e-2 15
5e-2 2.9e0 1.4e0 0.16 3.2e0 1.5e0 0.10 4.3e0 2.1e0 0.13 7.1e-1 9

terms of accuracy (measured by the mean squared error), SGD is competitive with
the classical Landweber method for phillips, gravity and shaw: esgd and elm are
fairly close to each other in most cases, and esgd can be smaller than elm, which
fully confirms the order-optimality of the discrepancy principle (3.3) for SGD for
low regularity solutions, and also confirming the convergence in Theorem 3.1.4. In
fact, empirically, the error seems to converge not only in probability, but also in
L2. A close inspection on the stopping index ksgd is very telling: when the noise
level δ is medium to large, the stopping index ksgd of SGD, determined by (3.3),
is ten-fold smaller than that for the Landweber method in terms of epoch count.
In particular, when the noise level δ is relatively high, SGD can actually deliver an
accurate solution within less than one epoch, i.e., going through only a fraction of all
the available data points. Thus, in this regime, SGD is much more efficient than the
Landweber method. These observations are valid for all the examples, despite their
dramatic difference in degree of ill-posedness and solution smoothness. However, for
smoothed-phillips, the achieved accuracy by SGD is far below than that by the

123
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Landweber method for all three exponents α. This suboptimality in convergence
rate is attributed to the saturation phenomenon for SGD, due to the dominance of
the computational variance, when the true solution x̂ is very smooth. The effect of
the variance component will be examined more closely below in Section 3.4.2.

The example shaw is challenging for numerical recovery, since the solution is far
less smooth, and at low noise level δ =1e-3, the discrepancy principle (3.6) cannot
be reached even after 5000 Landweber iterations, see Table 3.3. A similar behavior
is also observed for SGD with α = 0.3 and α = 0.5. Nonetheless, with α = 0.1,
the discrepancy principle (3.3) can be reached by SGD after a few hundred epochs,
clearly showing the surprisingly beneficial effect of SGD noise for low-regularity
solutions.

Next we examine more closely the performance of individual samples. The boxplots
are shown in Fig. 3.1 for the examples at two different scenarios, i.e., fixed α and
fixed δ. On each box, the central mark indicates the median, and the bottom and top
edges of the box indicate the 25th and 75th percentiles, respectively; The whiskers
extend to the most extreme data points not considered outliers, and the outliers
are plotted individually using the ’+’ symbol. It is observed that for a fixed α,
on average the error ‖xδk(δ) − x̂‖2 increases with the noise level δ samplewise, and
also its distribution broadens. However, the required number of iterations to fulfill
the discrepancy principle (3.3) decreases dramatically, as the noise level δ increases,
concurring with the preceding observation that SGD is especially efficient for data
with high noise levels. Meanwhile, with the noise level δ fixed, the value of α does
not change the results much overall. However, a larger α can potentially make the
percentile box larger and also more outliers, as shown by the results for gravity in
Fig. 3.1, and thus give less accurate results. This observation is counter-intuitive
in that smaller variance does not immediately lead to better accuracy. This might
be related to the delicate interplay between the total error and various problem /
algorithmic parameters, e.g., α and p. Further, the outliers in the boxplots mostly
lie above the box. These observations are typical for all the examples.

3.4.2 How influential is the variance?

Now we examine more closely the dynamics of the SGD iteration via the bias-
variance decomposition of the error E[‖xδk − x̂‖2] and residual E[‖Axδk − yδ‖2]:

E[‖xδk − x̂‖2] = ‖E[xδk]− x̂‖2 + E[‖xδk − E[xδk]‖2],

E[‖Axδk − yδ‖2] = ‖AE[xδk]− yδ‖2 + E[‖A(xδk − E[xδk])‖2].

In Fig. 3.2, we display the dynamics of mean squared error E[‖xδk − x̂‖2] and the
mean squared residual E[‖Axδk − yδ‖2] together with their variance components for
the examples at two different relative noise levels, i.e., δ =5e-3 and δ =5e-2. At
each time, SGD is run for 100 epochs (i.e., 1e5 SGD iterations), and the results are
recorded every 50 SGD iterations, starting from the 50th SGD iterations.
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Figure 3.1: Box plots for the error ‖xδkδ − x̂‖
2 and the stopping index kδ by SGD. The

first two columns are obtained by SGD with α = 0.3, whereas the last two
columns are for the noise level δ =1e-2. The rows from top to bottom refer
to phillips, gravity, shaw and smoothed-phillips, respectively.

In the plots, we have indicated the true noise ‖yδ − ŷ‖2, also denoted by δ2. It is
observed that both E[‖xδk − x̂‖2] and E[‖Axδk − yδ‖2] decay steadily at an algebraic
rate up to a value comparable to the stopping index k∗(δ) for the Landweber method
(by the discrepancy principle (3.6)). Beyond the critical threshold k∗(δ), the error
E[‖xδk−x̂‖2] exhibits a semiconvergence behavior in that it starts to increase, whereas
the residual E[‖Axδk − yδ‖2] nearly levels off at a value comparable with the noise
level δ2 (actually it oscillates slightly, since the SGD iterate is only descent for the
residual on average). This is typical for iterative regularization methods for inverse
problems, since for the later iterates, the noise becomes the dominating driving force.
Proposition 3.2.12 with s = 1

2
indicates that a similar behavior holds also for their

variance components (up to slightly beyond k∗(δ)). Actually, the residual variance

125



Chapter 3. The discrepancy principle for stochastic gradient descent

E[‖A(xδk − E[xδk])‖2] first decays as O(k−2(1−α)) (upon ignoring the δ term), which
matches well the empirical rate in the plot. For the later iterates, as suggested
by the δ term in Proposition 3.2.12, the decay is roughly O(k−α). Likewise, the
error variance E[‖xδk − E[xδk]‖2] decays slower at a rate O(k−(1−α)). Interestingly,
the decay rates of E[‖A(xδk − E[xδk])‖2] and E[‖xδk − E[xδk]‖2] in the first and last
columns are largely comparable, despite their drastic difference in the smoothness
of the exact solution x̂. Thus, the decay estimate in Proposition 3.2.12 is actually
quite sharp, partially explaining the saturation phenomenon observed earlier. This
behavior is consistently observed for all three α values. It is worth noting that for
smoothed-phillips, the curves for E[‖xδk−E[xδk]‖2] and E[‖xδk− x̂‖2] nearly overlay
each other, i.e., the bias component is negligible after the initial 50 iterations, due
to high smoothness of the true solution, clearly indicating the saturation. For the
other three examples, empirically, the variance components are of smaller order
right after the initial 50 iterations. In particular, as stated in Proposition 3.2.2,
E[‖A(xδk−E[xδk])‖2] contributes very little to the mean squared residual E[‖Axδk−yδ‖2]
in the neighborhood of k∗(δ). This occurs for all three values of the exponent α in
the stepsize schedule. The observations hold also for individual realizations; see
Fig. 3.3 for the corresponding plots. The overall behavior of the curves in Fig.
3.3 is fairly similar to that in Fig. 3.2, except that the residual and error curves
exhibit pronounced oscillations due to the randomness of the row index selection.
Nonetheless, in the neighborhood of k∗(δ), the variance components remain much
smaller in magnitude. This observation provides the key insight for the analysis in
Section 3.2.1.

3.4.3 Independent run

The convergence analysis in Theorem 3.1.4 requires a SGD iterate xδk(δ) independent
of the stopping index k(δ) determined by the discrepancy principle (3.3). In practice
this can be achieved by an independent run of SGD, at the expense of slightly
increasing the computational effort. Now we examine the impact of this choice, and
we denote by DP and i-DP the SGD iterate used in (3.3) and that by an independent
SGD run, respectively. The relevant numerical results are presented in Tables 3.5–
3.8, where the numbers outside and inside the bracket denote esgd and std(esgd),
respectively. It is observed that DP gives only slightly better results in terms of the
mean, but its standard deviation std(esgd) is generally much smaller than that by
i-DP. Nonetheless, both the mean esgd and the standard deviation std(esgd) of i-DP
are decreasing steadily as the noise level δ decreases to 0, confirming the convergence
result in Theorem 3.1.4.

The difference is more clearly visualised in the boxplots in Fig. 3.4 (for phillips
with two noise levels). A close look shows that the mean and percentile are fairly
close to each other, but the i-DP result tends to have far more outliers lying above
the box (marked by red cross in the plots). This is attributed to the fact that
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Figure 3.2: The decay of the mean squared error E[‖xδk− x̂‖2] and residual E[‖Axδk−yδ‖2]
and their variance components E[‖xδk−E[xδk]‖2] and E[‖A(xδk−E[xδk])‖2] versus
the SGD iteration number k. The solid and dashed curves denote the mean
squared quantity and the variance component, respectively, and the black
curve indicates the discrepancy δ2 = ‖yδ − ŷ‖2. The first two columns are
for the noise level δ = 5e-3 and the last two columns are for the noise level
δ = 5e-2. The rows from top to bottom refer to phillips, gravity, shaw
and smoothed-phillips, respectively.
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Figure 3.3: The decay of the squared error ‖xδk − x̂‖2 and residual ‖Axδk − yδ‖2 and their
variance components E[‖xδk−E[xδk]‖2] and E[‖A(xδk−E[xδk])‖2] versus the SGD
iteration number k. The solid and dashed curves denote the squared quantity
and the variance components, respectively, and the black curve indicates the
discrepancy δ2 = ‖yδ − ŷ‖2. The first two columns are for the noise level δ =
5e-3 and the last two columns are for the noise level δ = 5e-2. The rows from
top to bottom refer to phillips, gravity, shaw and smoothed-phillips,
respectively.
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k(δ) determined by the discrepancy principle (3.3) is occasionally too small for an
independent SGD run, and thus the corresponding residual is far above the target
noise level in the discrepancy principle (3.3); see the boxplots in the last column
of Fig. 3.4. That is, the outliers are due to stopping too early. This agrees with
the observation that one iteration step of SGD has only a small effect on the high
frequency components (because of the scaling with the corresponding small singular
values). Thus, small ‖Axδk − ŷ‖ for k � k∗(δ) implies that also ‖xδk − x̂‖ is small.
Although not presented, we note that this behavior is observed for all the examples
at different noise levels. Thus, in practice, using the SGD iterate directly from the
path for (3.3) is preferred, taking into account both accuracy and computational
efficiency. It is an interesting theoretical question to analyze the convergence (and
convergence rates) of the SGD iterate by (3.3).

Table 3.5: Comparison between DP and i-DP for phillips.

α = 0.1 α = 0.5

δ DP i-DP DP i-DP
1e-3 8.60e-3 (4.53e-3) 1.12e-2 (1.18e-2) 8.34e-3 (4.60e-3) 1.28e-2 (1.55e-2)
5e-3 1.70e-2 (8.41e-3) 2.31e-2 (2.43e-2) 2.48e-2 (7.38e-3) 4.17e-2 (3.63e-2)
1e-2 2.82e-2 (1.62e-2) 4.35e-2 (4.44e-2) 5.78e-2 (2.04e-2) 6.85e-2 (5.66e-2)
5e-2 1.41e-1 (9.70e-2) 1.53e-1 (8.97e-2) 2.11e-1 (9.69e-2) 2.47e-1 (1.93e-1)

Table 3.6: Comparison between DP and i-DP for gravity.

α = 0.1 α = 0.5

δ DP i-DP DP i-DP
1e-3 6.71e-1 (2.61e-1) 9.30e-1 (7.45e-1) 7.46e-1 (2.73e-1) 1.03e0 (8.04e-1)
5e-3 2.00e0 (8.91e-1) 2.43e0 (1.39e0) 2.53e0 (1.12e0) 3.74e0 (2.62e0)
1e-2 3.12e0 (1.57e0) 4.03e0 (2.54e0) 4.33e0 (1.92e0) 5.24e0 (3.13e0)
5e-2 9.07e0 (5.31e0) 1.01e1 (5.49e0) 1.15e1 (6.61e0) 1.19e1 (8.16e0)

Table 3.7: Comparison between DP and i-DP for shaw.

α = 0.1 α = 0.5

δ DP i-DP DP i-DP
1e-3 8.29e0 (9.35e-2) 8.30e0 (3.29e-1) 2.01e1 (5.64e-1) 2.00e1 (5.25e-1)
5e-3 2.77e1 (1.24e0) 2.77e1 (1.27e0) 2.82e1 (1.02e0) 2.80e1 (1.22e0)
1e-2 2.96e1 (1.65e0) 3.03e1 (2.58e0) 3.12e1 (1.08e0) 3.16e1 (2.44e0)
5e-2 5.02e1 (1.08e1) 5.34e1 (1.53e1) 6.70e1 (7.41e0) 7.04e1 (1.35e1)
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Table 3.8: Comparison between DP and i-DP for smoothed-phillips.

α = 0.1 α = 0.5

δ DP i-DP DP i-DP
1e-3 1.63e-1 (6.87e-2) 1.92e-1 (1.27e-1) 1.55e-1 (6.09e-2) 1.93e-1 (1.88e-1)
5e-3 3.92e-1 (2.08e-1) 4.68e-1 (3.47e-1) 4.92e-1 (1.99e-1) 7.51e-1 (5.73e-1)
1e-2 5.95e-1 (2.64e-1) 8.12e-1 (5.04e-1) 9.46e-1 (3.93e-1) 1.46e0 (1.13e0)
5e-2 2.98e0 (1.44e0) 3.25e0 (1.52e0) 4.35e0 (2.13e0) 4.59e0 (3.29e0)
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Figure 3.4: Boxplots for the error ‖xδk(δ) − x̂‖
2 and the residual ‖Axδk(δ) − y

δ‖2 for DP
(the first two columns) and i-DP (the last two columns), for phillips at two
noise levels, i.e., δ = 1e-3 (top) and δ = 1e-2 (bottom).

3.5 Concluding remarks

In this work, we have presented a preliminary study on the discrepancy principle as
an a posteriori stopping rule for the popular stochastic gradient descent for solving
linear inverse problems. We proved a finite-iteration termination property of the
principle, and a consistency result in high probability for an independent version of
discrepancy principle. Several numerical experiments indicate the feasibility of the
rule as a stopping criterion.

There are several outstanding questions that deserve further research. First, one
important question is the convergence of the dependent version of the discrepancy
principle, and convergence rates (and also optimality, if possible!). This would put
the discrepancy principle on a firm mathematical basis. Second, the analysis so far
does not cover the critical case α = 1 in the stepsize schedule. This choice is often
adopted in the context of stochastic approximation [KY03] for optimal asymptotic
behaviour, but it is unclear whether the discrepancy principle can be applied then.
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