Contents

Part I Introduction 1

1 Chronology of Drug Development for Malaria 3
 Nalini Kurup and Nikhil Rajnani
1.1 Introduction 3
1.1.1 Life Cycle of Malaria (Adapted from CDC) 4
1.2 Malaria – Erstwhile Memories 5
1.2.1 Progress Fighting Malaria 5
1.3 Current Chemotherapy Used to Treat Malaria 7
1.3.1 Current Combination Therapy 13
1.4 Drug Resistance of Antimalarial Drugs 14
1.4.1 Detection of Drug Resistance 16
1.5 Newer Drugs Approved for Malaria Treatment 17
1.6 Current Approaches to Developing a Malaria Vaccine 18
1.6.1 Hope for Vaccine Lies in the Parasite Itself 18
1.7 Conclusion: The Path Forward 20
1.7.1 RTS, -S Vaccine: A New Tool with Potential for Africa 20

References 21

Part II Challenges and Opportunities in Malaria Therapy 25

2 Scientific Challenges and Treatment Opportunities in the Face of Shifting Malaria Epidemiology 27
 Ketaki Ramani
2.1 Introduction 27
2.2 The Scientific Challenges Against Malarial Drug 28
2.3 Advances in Understanding and Managing Drug Resistance 29
2.3.1 Vector and Its Control 29
2.3.2 Parasite and Its Control 30
2.3.2.1 Malaria Vaccine 31
2.3.2.2 Antimalarial Drugs 31
2.4 Methods to Assess the Presence and Level of Drug Resistance 32
2.4.1 Therapeutic Efficacy of Antimalarial Drugs 32
2.4.2 Molecular Markers Associated with P. falciparum 33
2.5 Antimalarial Drugs Currently in Use and in the Pipeline 33
2.6 Future 38
References 40

3 Emerging Formulation Technologies Against Malaria Resurgence 45

Kinjal Parikh, Rakhee Kapadia, Rohan Pai, Mahendra Prajapati, and Ganesh Shevalkar

List of Abbreviations 45

3.1 Introduction 46
3.1.1 Major Pathological Hallmarks of Malaria 46
3.1.2 Current Treatment Strategies 47
3.2 Pitfalls of the Current Treatment Regimen 47
3.2.1 Drug Resistance 47
3.2.2 High Drug Dose 48
3.2.3 Long-Term Treatment 48
3.2.4 Recurrence and Reversion of Diseases 48
3.3 Nanotechnology-Based Strategies for Targeting in Antimalarial Therapy 49
3.3.1 Passive Targeting 49
3.3.2 Active Targeting 49
3.3.2.1 Hepatocyte Targeting 50
3.3.2.2 Erythrocyte Targeting 50
3.3.2.3 Brain Targeting 50
3.3.3 Rapid Diagnosis and Vector Control 51
3.4 Nano Formulations for Malarial Treatment 51
3.4.1 Lipid-Based Nanoplatforms 52
3.4.1.1 Nanoemulsion 52
3.4.1.2 Self-Emulsifying Drug Delivery System (SEDDS) 53
3.4.1.3 Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) 54
3.4.1.4 Liposome 54
3.4.2 Polymer-Based Nanoplatforms for Malaria 55
3.4.2.1 Nanoparticles 55
3.4.2.2 Nanocapsules 58
3.4.2.3 Dendrimers 58
3.4.2.4 Micelles 59
3.4.2.5 Polymeric Hydrogel Nanoparticles 59
3.4.2.6 Nanosuspension 59
3.4.3 Organized Layer-by-Layer Assembly 59
3.4.4 Inorganic Nano-architectonics 59
3.4.4.1 Metallic Platforms 60
4 Targeted Drug Delivery for Antimalarial Therapy 83
Suha Zwayen, Tamara Zwain, and Kamalinder K. Singh

4.1 Introduction 83
4.2 Remodelling of Parasite-Infected Red Blood Cell (pRBC) 84
 4.2.1 The Red Blood Cell Membrane (RBCM) 85
 4.2.2 The Parasitophorous Vacuole Membrane (PVM) 85
 4.2.3 The Parasite Plasma Membrane (PPM) 86
4.3 The Emergence of Resistance and Antimalarial Therapy Approach 86
4.4 Nanocarriers for Antimalarial Drug Delivery 89
 4.4.1 Liposomes 89
 4.4.2 Solid Lipid Nanoparticles (SLNs) 91
 4.4.3 Nanostructured Lipid Carriers (NLCs) 91
 4.4.4 Nano-emulsions (NEs) 91
 4.4.5 Polymeric Nanoparticles 92
4.5 Targeted Antimalarial Drug Delivery Systems 92
4.5.1 Passive Drug Targeting with Conventional Nanocarriers 92
4.5.2 Active Drug Targeting with Surface-Modified Nanocarrier 93
4.6 Conclusion: Moving Towards the Future 97
Acknowledgements 97
References 97

5 The Imminent Threat of Antimalarial Drug Resistance 105
Bharti Singal and Jyoti Chhibber-Goel
5.1 Introduction 105
5.2 Antimalarial Drugs: An Overview 107
5.3 The Evolution of CQ Resistance 109
5.3.1 Mechanism of Action of CQ 109
5.3.2 Basis of CQ Resistance 110
5.3.3 Prevalence of CQ Resistance 112
5.3.4 WHO Guidelines to Use CQ 113
5.4 Impact of Sulfadoxine–Pyrimethamine Resistance 113
5.4.1 Mechanism of Action of SP 114
5.4.2 SP Resistance 116
5.4.3 Distribution of DHPS and DHFR Mutation Across Globe 117
5.4.3.1 dhfr 117
5.4.3.2 dhps 117
5.4.4 WHO Guidelines to Use SP 118
5.4.4.1 IPTp Guidelines 118
5.4.4.2 IPTi Guidelines 118
5.5 ACT Resistance 118
5.5.1 Mechanism of Action of ART 121
5.5.2 ART Resistance and ACT Failure 122
5.5.3 WHO Guidelines 123
5.6 Conclusion: The Road Ahead 124
References 124

6 Current Therapies and New Drug Targets for the Future Drug Development of Drug Resistant Malaria 133
Pooja Mittal and Rupesh K. Gautam
6.1 Introduction 133
6.2 Life Cycle of Plasmodium falciparum 134
6.3 Current Antimalarial Therapy and Their Shortcomings 134
6.4 Drug Targets for Current Antimalarial Therapy 136
6.4.1 Drug-Resistant Malaria and Identification of New Targets 137
6.4.1.1 Food Vacuole as Drug Targets 137
6.4.1.2 Shikimic Acid Pathway Targeting 142
6.4.1.3 Targeting Folate Pathway and Methionine Synthesis Pathway 142
6.4.1.4 Glycolytic Pathway Inhibition 144
6.4.2 Mitochondria as Drug Targets 144
6.4.2.1 Targeting Electron Transport Chain 144
6.4.2.2 Inhibition of Dihydroorotate Dehydrogenase 144
6.5 Future Drug Development for the Treatment of Malaria 146
6.5.1 Benefits of Nanocarriers 146
6.5.2 Lipid-Based Drug Delivery 146
6.5.3 Liposomes (as Nanocarriers) 146
6.5.4 Nanostructured Lipid Carriers 146
6.5.5 Solid Lipid Nanocarriers 147
6.6 Conclusion 147
References 147

Part III Drug Development 151

7 Assays for Antimalarial Drug Discovery 153
Varun Gorki, Neha S. Walter, and Sukhbir Kaur
7.1 Introduction 153
7.2 In Vitro Assays for Antimalarial Drug Discovery 155
7.2.1 Schizont Maturation Inhibition Assay (Microscopic Test) 156
7.2.2 In Vitro Micro Test Technique 156
7.2.3 Radioisotope Assay 156
7.2.4 Colorimetric Assay (Plasmodium Lactate Dehydrogenase Assay [pLDH]) 157
7.2.5 ELISA-Based Methods 157
7.2.5.1 DELI Assay 157
7.2.5.2 Assay Based on Histidine-Rich Protein II (HRP II) of P. falciparum 158
7.2.6 Flow Cytometry 158
7.2.7 Fluorometric Assay 158
7.2.8 β-Hematin Formation (Haemozoin Test) 159
7.2.9 Drug Interaction Assay and Isobologram Analysis 159
7.2.10 PCR-Based Methods 160
7.2.11 In Vitro Assays Targeting Exo-erythrocytic and Sexual Stages of the Parasite 160
7.2.11.1 Exo-erythrocytic Schizontocidal Assay 160
7.2.11.2 Ex-flagellation Assay 160
7.3 In Vivo Assays for Antimalarial Drug Discovery 161
7.3.1 Peters’ 4-Day Test 162
7.3.2 Dose Ranging Full 4-Day Test 163
7.3.3 Onset/Recrudescence Test 163
7.3.4 Preventive Test 166
7.3.5 Curative Test 166
7.3.6 Hill’s Test for Causal Prophylaxis and Residual Activity 166
7.3.7 Assays with P. berghei Green Fluorescent Protein (PbGFP) 167
7.3.8 Assays Employing Immunocompromised Mice 167
Primate Models for In Vivo Studies 168
Sporontocidal Assays 169
Anti-sporozoite Assay 169
Ex Vivo Assays for Antimalarial Drug Discovery 169
Assays for Assessment of In Vitro Toxicity 170
MTT Assay 170
XTT Assay 172
LDH (Lactate Dehydrogenase) Assay 172
Protein Content Assay 173
Neutral Red Uptake Assay (NRU) 173
Assays for Assessment of In Vivo Toxicity 173
Acute Toxicity 174
Limit Test of Lorke 175
Up and Down Procedure 175
Chronic Toxicity 175
Conclusion 176
References 177

8 Aminoacyl-tRNA Synthetases as Malarial Drug Targets: A Structural Biology Perspective 187
Bharti Singal and Jyoti Chhibber-Goel

Introduction 187
Pf/Pv-aaRSs 188
Pf/Pv Genome 188
Aminoacyl-tRNA Synthetases (aaRSs) 189
Aminoacyl-tRNA Synthetases as Druggable Targets 190
Biochemical Screening of Drug Libraries 192
Colorimetric Assays 192
Enzyme-Coupled Assays 193
Luciferase Assay 193
Assay to Test Synthetic as Well as Proofreading Activity 193
Structurally Validated Pf/Pv-aaRSs as Drug Targets 194
Lysyl-tRNA Synthetase (KRS) 194
Prolyl-tRNA Synthetase 197
Potential Drug Targets Pf/Pv-aaRSs 199
Leucyl-tRNA Synthetase (LRS) 199
Arginyl-tRNA Synthetase (RRS) 199
Tryptophanyl-tRNA Synthetase (WRS) 201
Tyrosyl-tRNA Synthetase 202
Others 203
Conclusion: The Road Ahead 203
References 204
9 Natural Products as a Source for Antimalarial Drug Development Process – An Overview 213
Uma R. Lal and Snigdha Lal
9.1 Introduction 213
9.2 Phytochemicals as Antimalarial Agents: Recent Developments 214
9.2.1 Alkaloids 214
9.2.2 Terpenes 219
9.2.2.1 Sesquiterpene Lactones 219
9.2.2.2 Diterpenes 220
9.2.2.3 Triterpenes 222
9.2.2.4 Steroids and Others 224
9.2.3 Polyphenols 224
9.2.3.1 Biflavonoids 224
9.2.3.2 Prenylated Flavonoids 226
9.2.3.3 Other Flavonoids 226
9.3 Traditional System of Medicine and Malaria 227
9.3.1 Plants/Formulations Used in Malaria Treatment in Ayurvedic System of Medicine 227
9.4 Conclusions 228
References 228

10 Mushroom-Derived Products as an Alternative Antimalarial Therapeutics: A Review 235
Senzosenkosi S. Mkhize, Kgothatso E. Machaba, Mthokozisi B. C. Simelane, and Ofentse J. Pooe
10.1 Introduction 235
10.2 Biological Roles of Mushrooms 235
10.2.1 Malarial History and Impact 235
10.2.2 Antimalarial Activity of Mushroom Extracts 237
10.2.3 Bioactive Molecules Found Within Mushrooms 239
10.2.4 Phytochemical Properties of Mushroom Derived Antimalarial Products 241
10.2.5 Immunomodulatory Properties of Mushrooms 243
10.3 Conclusion 243
Acknowledgements 244
References 244

11 Discovery and Trends of 8-Aminoquinoline and 4-Aminoquinoline Classes of Antimalarials 251
Meenakshi Jain, Samarpita Das, and Rahul Jain
11.1 Introduction 251
11.1.1 History 251
11.1.2 Mode of Action 253
11.1.3 SAR of Aminoquinolines 255
11.1.3.1 SAR of 8-Aminoquinolines 255
11.1.3.2 SAR of 4-Aminoquinolines 257
11.2 Synthetic Approaches of 8-Aminoquinolines and 259
4-Aminoquinolines
11.2.1 Synthetic Approach of 8-Aminoquinolines 259
11.2.1.1 Synthetic Approach of Well-Established Drugs 259
11.2.1.2 Synthetic Approach of Recently Developed PQ Congeners 269
11.2.2 Synthetic Approaches of 4-Aminoquinolines 270
11.2.2.1 Synthetic Approaches to Well-Established Drugs 270
11.2.2.2 Synthetic Approach of PQ–CQ Hybrid 280
11.3 Conclusion and Future Perspectives 280
Acknowledgment 281
References 281

12 Antimalarial Activity of Novel Class of 1,3-Benzoxaborole
Derivatives Containing 1,3,4-Oxadiazole Moiety 285
Vinayak Adimule, Adarsha Haramballi Jagadeesha Gowda, Santosh S. Nandi, and Debdas Bowmik
12.1 Introduction 285
12.1.1 Materials and Methods 286
12.1.2 Synthesis 287
12.2 Experimental Procedure for In Vitro Studies on Antimalarial Activity 287
12.2.1 Experimentation 289
12.2.1.1 Analytical Results of the Intermediate Compounds (6a–10a) 289
12.3 Analytical Results of Intermediate Compounds (12–16) 290
12.3.1 NMR and CMR Analysis 290
12.4 Synthesis Procedures for 4-Ethoxy Phenyl Boronic Acid (General Procedure for Compounds 2, 3, and 4) 292
12.4.1 Synthesis of 1-Bromo-4-(Cyclopropyl Methyl) Benzene (Compound 2) 292
12.4.1.1 1-Bromo-4-(Cyclopentyl Methoxy)Benzene (Compound 2b) 292
12.4.1.2 1-Bromo-4-(Cyclohexyl Methoxy)Benzene (Compound 2c) 292
12.4.1.3 1-(Benzyloxy)-4-Bromobenzene (Compound 2d) 293
12.4.1.4 1-Bromo-4-(Pentyloxy) Benzene (Compound 2e) 293
12.4.1.5 Synthesis of 4-Methoxy Phenyl-Bispinacolato Adduct (3a) 293
12.4.1.6 Synthesis of 4-Methoxy Phenyl Boronic Acid 293
12.4.1.7 General Procedure for the Synthesis of Derivatives (Compounds 6–10) (Step II) 293
12.4.1.8 General Procedure for the Synthesis of Derivatives (Compounds 6a–10a) 293
12.4.1.9 General Procedure for the Synthesis of Derivatives (Compounds 12–16) 294
12.5 Results and Discussion 294
12.5.1 In Vitro Antiplasmodial Activity 294
12.6 Conclusion 297
Authors Contributions 298
Acknowledgments 298
Conflict of Interest 298
References 298

Part IV A Vaccine Perspective 303

13 Recent Advances in Malaria Vaccine Development 305
Sailendra Kumar Mahanta
13.1 Introduction 305
13.2 History of Malaria Vaccine Development 306
13.3 Vaccine Design Targets and Approaches 308
13.4 Types of Malaria Vaccine 309
13.4.1 Pre-erythrocytic Vaccines 309
13.4.1.1 Vaccines Based on the RTS, -S, and CSP Encoded Sections of the Malaria Gene 310
13.4.2 Whole Sporozoite Vaccines 311
13.4.3 Blood Stage Vaccines (BSVs) 311
13.4.4 Placental Malaria Vaccines 312
13.4.5 Transmission Blocking Vaccines (TBV) 313
13.4.6 Vaccines for P. vivax 314
13.5 Conclusions 314
References 314

14 Toll-Like Receptor-Based Adjuvants: A Gateway Toward
Improved Malaria Vaccination 319
Deepika Kannan, Arshpreet Kaur, Deepak B. Salunke, and Shailja Singh
14.1 Introduction 319
14.2 Host Immunological Responses in Malaria Conferring Protection 322
14.2.1 Innate Immunity 322
14.2.2 Adaptive Immunity 324
14.3 Crosstalk of PRRs in Host Immune System with Malarial Antigens 326
14.3.1 Glycosyl Phosphatidylinositols (GPI) 328
14.3.2 Plasmodial RNA 330
14.3.3 Hemozoin (Hz) 330
14.4 Synthetic TLR Adjuvants: An Approach to Enhance Vaccine
Immunogenicity 331
14.4.1 TLR2 331
14.4.2 TLR4 333
14.4.3 TLR5 336
14.4.4 TLR7/8 337