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Abstract

In this thesis, we strive to advance the knowledge of relations between convex opti-
mization and the quantum phenomena entanglement and coherence. The main re-
search areas we explore are rank-constrained semidefinite programming, the quan-
tum pure-state marginal problem and the existence of AME states as well as quantum
codes, entanglement detection, and the certification of quantum memories with coher-

ence.

First, we start with real and complex rank-constraint semidefinite optimization prob-
lems and rephrase them as an optimization over separable two-copy states. This refor-
mulation allows to approach the problem through a hierarchy of efficiently solvable
semidefinite programs that provide better and better certified bounds. We apply the
new technique to various problems in quantum information theory and beyond, such
as the optimization over pure states or unitary channels and the well-known maximum
cut problem. Furthermore, we describe an inherent symmetry in our formulation that

significantly improves the performance.

Second, we consider the application of our method to the quantum pure-state marginal
problem. In particular, we prove that the existence of n-partite absolutely maximally
entangled states with local dimension d is equivalent to the bipartite separability of a
certain state of 2n particles, and we compute that state explicitly. This application is a
striking example of how symmetries can simplify semidefinite programs and we use
them to compute high orders of our hierarchy despite the rapidly increasing dimen-
sion. Moreover, we rewrite the existence problem of quantum error-correcting codes

as a marginal problem making our method also applicable to this area of research.

Third, since entanglement is not only a theoretically interesting phenomenon, but also
a vital resource for quantum information protocols, we investigate entanglement de-
tection in practical experiments. We examine scrambled data, a scenario in which the
mapping between outcomes and their respective probabilities is lost. Furthermore, we
use the joint numerical range of observables to find measurements that allow entan-
glement detection even when the confidence region due to statistical and systematic

errors is large.

Finally, we introduce a quality measure for quantum memories that quantifies the
performance based on the memory’s ability to preserve coherence. Remarkably, this
measure also distinguishes entanglement-breaking channels from genuine quantum
memories. For the case of single-qubit channels, we find various theoretical bounds

and a simple measurement scheme to approximate our performance measure.



Zusammenfassung

Mit dieser Dissertation wollen wir das Verstindnis der Zusammenhéange zwischen
konvexer Optimierung und der Quantenphdnomene Verschrankung und Kohérenz
erweitern. Die Hauptforschungsgebiete, die wir erkunden, sind rangbeschrédnkte se-
midefinite Programmierung, das Marginalproblem reiner Quantenzustinde und die
Existenz von AME-Zustdnden sowie Quantencodes, Verschrankungsdetektion und die

Zertifizierung von Quantenspeichern mittels Kohérenz.

Als erstes beschéftigen wir uns mit reellen und komplexen rangbeschréankten semide-
finiten Optimierungsproblemen und formulieren diese als Optimierung tiber separier-
bare Zwei-Kopien-Zustande um. Das erlaubt es, mittels einer Hierarchie effizient 16s-
barer semidefiniter Programme immer bessere zertifizierte Schranken zu berechnen.
Wir wenden die Methode auf verschiedene Probleme in der Quanteninformations-
theorie an, wie etwa die Optimierung tiiber reine Zustdnde oder unitire Kanile und
das Problem des maximalen Schnitts eines Graphen. Aufierdem beschreiben wir eine

inhdrente Symmetrie unserer Formulierung, die die Komplexitét erheblich verringert.

Dann wenden wir unsere Methode auf das Marginalproblem reiner Quantenzustian-
de an. Insbesondere beweisen wir, dass die Existenz n-partiter absolut maximal ver-
schrankter Zustdande mit lokaler Dimension d dquivalent zu der bipartiten Separierbar-
keit eines bestimmten 2n-Teilchenzustands ist, den wir explizit berechnen. Das zeigt
eindrucksvoll, wie Symmetrien semidefinite Programme vereinfachen konnen, sodass
hohe Ordnungen unserer Hierarchie trotz rasch steigender Dimension berechenbar
sind. Ferner formulieren wir das Existenzproblem von Quantenfehlerkorrekturcodes

als Marginalproblem, sodass unsere Methode auch hierfiir anwendbar wird.

Da Verschrankung nicht nur theoretisch interessant ist, sondern auch eine essentiel-
le Ressource fiir Quanteninformationsprotokolle, erforschen wir anschlieffend deren
Detektion in der Praxis. Wir untersuchen ein Szenario, bei dem die Zuordnung von
Messergebnissen zu den entsprechenden Wahrscheinlichkeiten unklar ist. Aufserdem
nutzen wir das gemeinsame numerische Bild von Observablen, um Messungen zu
finden, die Verschrankungsdetektion selbst dann ermoglichen, wenn die Konfidenzre-

gion aufgrund statistischer und systematischer Fehler relativ grofs ist.

Abschlieflend stellen wir ein Qualitdtsmaf fiir Quantenspeicher vor, das die Leistungs-
tahigkeit auf Basis von Kohdrenzerhaltung misst. Bemerkenswerterweise differenziert
das Maf$ auch zwischen verschrankungszerstorenden Kanélen und echten Quanten-
speichern. Fiir Ein-Qubit-Kanéle beschreiben wir theoretische Schranken und einfache

Messungen, um das Maf$ ndherungsweise zu bestimmen.
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"Denn wenn man mnicht zunichst iiber die Quantentheorie
entsetzt ist, kann man sie doch unmaoglich verstanden haben.”
Niels Bohr

1  Introduction

Since physical phenomena had first been explained by their quantum nature more
than a hundred years ago [1, 2], quantum physics has been established as one of
the most well-tested theories, if not the most well-tested theory in science. On the
one hand, the discovery of quantum physics advanced our theoretical knowledge of
the inner workings of nature, explaining how atoms consisting of positively and neg-
atively charged particles can form a stable system. Nowadays, the quantum field
theory known as the Standard Model of particle physics describes three out of the
four fundamental forces: the electromagnetic, weak and strong interactions. Only the
gravitational force is still resisting its reconciliation with quantum theory, however,
recent works suggest that experiments probing the quantum nature of gravity might
be in reach in the near future [3], which may help finding a theory of everything.
On the other hand, quantum physics enabled unprecedented technological progress
through the development of transistors, the semiconductor devices that are the core

components of classical computers, and lasers.

Since the notion of quantum information theory had been termed almost fifty years
ago [4], many scientific efforts have been made to better understand quantum physics
and its relation to information theory. While in the early stages many prominent
physicists, among them Albert Einstein, were quite skeptical towards quantum theory
as a complete description of nature [5], especially because of its probabilistic charac-
ter according to the Copenhagen interpretation, Bell’s seminal work [6] and its recent
loophole-free experimental implementation [7—9] show that it is impossible to find a
macrorealistic, local theory explaining the quantum correlations observed in experi-
ments. Although being a common misunderstanding, spatially separated entangled,
i.e. quantum correlated, particles do not allow for superluminal communication, but
there are also correlations not allowed by quantum theory which still respect special
relativity and prevent superluminal information exchange. Thus, both the boundary
between classical and quantum physics as well as the confinement restricting quan-

tum correlations are subject of ongoing theoretical research. Furthermore, quantum
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information theory is on the verge of fulfilling the promise of an entirely new technol-
ogy: quantum computation, Feynman’s idea to efficiently simulate quantum particles
using a well-controlled quantum system - the computer [10]. This idea inspired a
wide field of research leading to experiments with highly controllable and manipula-
ble microscopic systems, improved sensing techniques, and powerful ways to speed
up computation, most prominently using Shor’s algorithm that facilitates breaking
the RSA cryptosystem on a digital quantum computer [11]. However, quantum in-
formation exchange also provides a cryptosystem whose security relies merely on the

validity of quantum mechanics [12-14].

There still remain numerous essential concepts which are not yet fully understood
such as entanglement, coherence, and Bell nonlocality, and ground-breaking results
are still discovered, such as the recent breakthrough MIP* = RE [15]. This result
establishes an intriguing connection between entanglement, one of the fundamental
phenomena distinguishing quantum from classical physics, and the expressive power
of multiple interactive provers. A classical verifier with limited resources can be con-
vinced of the solution to the Halting Problem for a given program by the all-powerful
quantum provers if the verifier is assured that the provers can share quantum cor-
relations but no correlations which are outside the possibilities of quantum physics.
Quantum entanglement allows the provers to establish a convincing joint argument
while still allowing the verifier to interrogate them independently in a way that pre-
vents them from cheating, i.e., the verifier can exclude the possibility that the provers
try to convince them of a false statement. In Chapter 3 of this thesis, we describe an-
other interesting connection between entanglement and a seemingly unrelated topic,
namely, rank-constraint semidefinite optimization. With this new method, findings
from entanglement theory can be applied to many optimization problems such as
pseudo-boolean optimization, the maximum cut problem of graphs, and the opti-

mization over pure quantum states.

Quantum entanglement is one of the key concepts in quantum information theory
since it is indispensible for basic building blocks of quantum communication like
quantum teleportation, entanglement swapping, and superdense coding as well as
other types of quantum correlations such as steering and Bell nonlocality [16]. For
systems consisting of only two particles, there exists a - up to local unitary trans-
formations - unique maximally entangled state from which any other state can be
reached via local operations and classical communication. Considering more parti-
cles, however, there are different notions of maximally entangled states, that cannot
be interconverted through local operations and classical communication. One of these

notions is the concept of absolutely maximally entangled states, which are pure states



with the property that the reduced state of any at most half of the particles is maxi-
mally mixed, i.e., the reduced state contains no information as indicated by its max-
imal von Neumann entropy. Absolutely maximally entangled states do not exist for
every number of particles and local dimension [17]. Based on the method connect-
ing entanglement and rank-constraint semidefinite optimization mentioned above, we
describe in Chapter 4 an algorithmic method that decides the existence of absolutely
maximally entangled states, making it computationally feasible by heavily utilizing
underlying symmetries. Furthermore, we depict in detail how the method can be
used to decide the existence of quantum error correcting codes, a vital tool for reliable

future quantum computation.

Since entanglement is such an invaluable resource for quantum information process-
ing, it is essential to verify the presence of entanglement in experiments. This is
usually not a simple task because it requires precise measurements of highly sensitive
microscopic systems. The number of needed measurements to characterize a quan-
tum state scales exponentially with the number of particles, and hence, it is often not
a viable approach. Instead, a smartly selected small number of easily measurable local
observables is a better strategy. In this work, we consider entanglement detection in
the presence of data scrambling, a measurement error that prevents the association
of measurement outcomes to outcome probabilities, see Chapter 5, as well as efficient
entanglement detection with few measurements such that large confidence regions in

experiments allow for statistically significant entanglement verification, see Chapter 6.

Finally, we describe in Chapter 7 how the quality of quantum memories can be char-
acterized in terms of their ability to preserve the coherence of the stored quantum
state. As indispensible building blocks of future large-scale quantum computers quan-
tum memories preserve quantum states over an extended period of time protecting it
against decoherence through the interaction with the environment. In contrast to
classical bits where bit flips are the source of errors, qubits can additionally undergo
erroneous phase transformations and, depending on the underlying system, also par-
ticle loss is a significant issue. Thus, the validation of a functioning quantum memory
is a lot more complex than the validation of its classical counterpart. Our research ad-
vances the understanding of valuable quantum memories with respect to the amount

of coherence they preserve.

The individual chapters of this thesis are written in a way that they can be read in-
dependently. In Chapter 2, the mathematical foundations to understand this thesis
are explained. Following the presentation in Ref. [18], we highlight the necessary and
helpful prerequisites at the beginning of each subsequent chapter. Each of these main

chapters is strongly based on a corresponding scientific publication replicating most
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of the text which has been revised several times already, however, augmented with

insightful supplements and enlightning connections between the different topics.



2 Mathematical fundamentals

2.1 Introduction

In this chapter, we introduce the mathematical formalism necessary to understand the
thesis. Although we explain the fundamental concepts, a thorough treatment of every
topic is impossible as some of them fill entire books. However, further references are

given that allow the interested reader to acquire advanced knowledge.

We start with the foundations of quantum mechanics, explaining the underlying ax-
ioms for pure and mixed states. Special attention is given to the theory of measure-
ments and quantum states of multiple systems. Subsequently, we focus on the simplest

quantum system, the two-dimensional qubit and its representation via the Bloch ball.

In addition to the time evolution of closed systems given by the Schrodinger equa-
tion, we discuss quantum channels which describe the general open system dynamics.
We describe the Kraus representation as well as the Choi-Jamiotkowski isomorphism
which allows to transfer properties of quantum states to channels and vice versa. Ex-

amples of single-qubit channels illustrate the concept intuitively.

Having laid out the fundamentals, we introduce two of the most important quan-
tum phenomena, namely, coherence and entanglement. Based on the corresponding
resource theories, we highlight similarities and differences between the two. In par-
ticular, the notion of a maximally resourceful state is examined which breaks down
in the scenario of multipartite, i.e., at least tripartite, entanglement. Moreover, we de-
scribe different methods for entanglement detection such as entanglement witnesses,
positive maps, especially the PPT criterion, and numerical range. In the context of spa-
tial quantum correlations, we also explain the marginal problem as well as quantum

error-correcting codes.

Furthermore, we present semidefinite programming as an exceedingly valuable tool
for numerical and analytical optimization. We spotlight the apparent connection to

quantum physics and describe the Doherty-Parrilo-Spedalieri hierarchy as a striking



2. Mathematical fundamentals

example for its application to entanglement theory. Finally, classical entropies and
(their relation to) majorization are introduced as fundamental information theoretic

concepts.

2.2 Quantum mechanics

At the end of the nineteenth and the beginning of the twentieth century, experiments
showed that classical electrodynamics is not sufficient to describe nature at the mi-
croscopic level. Most importantly, the photoelectric effect and black-body radiation
could only be explained with the invention of quantum mechanics. After a rigorous
mathematical foundation was laid out, many more experiments confirmed the newly
developed theory. Up until today, quantum theory became one of the most well-tested

theories of nature.

Throughout this thesis, we restrict ourselves to finite-dimensional quantum systems.
Almost all, if not all, quantum information protocols can be implemented using finite-
dimensional systems and hence, this restriction is not essential. In many cases, even
though there is an infinite-dimensional quantum system accessible such as the energy
levels of an ion or the position of a photon, only a hand full of those energy levels is
used for quantum manipulation and computation or just a finite number of possible
paths is considered, respectively. Nevertheless, there are interesting consequences of
effects when continuous, infinite-dimensional systems are investigated, and it is an
intriguing open question whether nature at the fundamental level is indeed discrete
or continuous. This question is closely related to the problem of unifying quantum
theory and general relativity. The continuous, geometrical character of gravity qual-
itatively differs drastically from the quanta and uncertainty relations appearing in

quantum physics.

2.2.1 The postulates of quantum mechanics

In this introduction, we mainly follow two classic introductions to quantum infor-
mation theory, namely Ref. [19, 20]. Since quantum information obeys and utilizes
the laws of quantum mechanics, we start with explaining the description of physical
systems and their behavior in a quantum world. To do so, we repeat the axioms or
postulates of quantum mechanics. The first postulate concerns the description of a
quantum state. In contrast to classical physics, the state of a quantum system cannot
be described by a collection of its properties such as its position in phase space. In-

stead, a pure quantum state is given by a vector in the, in our case finite-dimensional,

6
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complex Hilbert space CN, where N is the dimension of the system. More precisely,
a pure quantum state corresponds to a whole equivalence class in this space because
quantum states are normalized and hence, we restrict ourselves to vectors of length
1, and an overall complex phase ¢'? is not observable and thus, describes the same
physical state. Mathematically speaking, the space of quantum states is the complex
projective space CPN~1. We will usually use the Dirac notation, also know as bra-ket
notation, where the state vector is notated as a ket vector |¢). The canonical or stan-
dard basis, which is often called computational basis in quantum information theory,
is denoted as 0),[1),...,|N — 1) and we can express [¢) = Y_; §;|j), where the ; are
complex numbers and normalization requires ) |j|* = 1. The dual vector of |¢p) is a
bra vector (| = Y; 97 (j|, where the coefficients are given by the complex conjugate,
and the inner product is given by (¢|y) =Y ; ¢ ;.

Quantum states are often not completely known. For instance, the delicate prepara-
tion of a quantum state usually introduces errors which might not be negligible or an
attacker of a quantum communication protocol has to work with incomplete informa-
tion. To describe the state of a quantum system in such scenarios, we use the density
matrix introduced by Landau [21] and von Neumann [22]. If the system is known to
be in the pure state |¢;) with probability p;, we can describe its state by an ensemble
of pure states {pj, |1;) }. However, it turns out that different ensembles cannot always
be distinguished physically. That is why it is sufficient to instead consider the density

matrix

p =Y pile) (¥l (2.1)
]

We call a state which is not pure, i.e., there is more than one nonzero pj, a mixed
state. By construction, p is a positive semidefinite, Hermitian operator of trace one
because of the normalization. We denote these properties by first, the conjugate trans-
pose or Hermitian transpose, i.e., for the Hermitian operator p is holds that p = p'.
Represented in the computational basis, we have that for p = }; ; p;; |i) (j| the conju-
gate transpose is given by p* = Y, ; pj;17) (i Second, the eigenvalues of p, which are
all real because of the Hermiticity, are all nonnegative, i.e., p is positive semidefinite,
denoted as p > 0. Finally, normalization requires Trp = 1. Moreover, any positive
semidefinite, Hermitian matrix of trace one can be written in the form of Eq. 2.1 as a
convex combination of projectors using its spectral decomposition. Hence, any such
matrix describes a quantum state. A pure state is then just the projector onto its one-
dimensional subspace |¢) (|. Note that we also got rid of the global phase ¢'? that
leads to the same physical state since |¢) and ¢'¥ |¢) yield the same density matrix.
Pure and mixed states can be distinguished mathematically considering the trace of

the squared density operator. It holds that Tr o> = 1 if, and only if, p describes a pure
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quantum state. Otherwise, we have Tr p?> < 1. This is why = Tr p? is also known as

the purity of p.

The second postulate determines the evolution of a quantum state over time. It states

that a closed quantum system transforms via a unitary transformation, i.e.,

[P(t2)) = U(ty, t2) [P(t1)), (2.2)

where |1p(t1)) and |¢(t2)) are the states of the system at times #; and tp, respectively,
and U(ty,t;) is a unitary operator meaning it holds that UUT = U'U = 1. The
unitarity ensures that the normalization is preserved over time. The density matrix

transforms appropriately as

p(t2) = U(ty, )p(t)U (1, t2). (2.3)

The continuous evolution of a quantum system is described by the Schrodinger equa-
tion

i \) = Hlp), )

where 7 is Planck’s constant and the Hermitian operator H is called the Hamiltonian

of the system. Correspondingly, for mixed states we have that

_d
ih—e = [H,p], (2.5)

where [A, B] = AB — BA denotes the commutator of A and B. This equation is called
the von Neumann or Liouville-von Neumann equation. The time evolution implies
that the stationary states of the closed system are exactly the eigenstates |E) of the
Hamiltonian, i.e.,, H|E) = E|E), since they only aquire a phase exp(—iEt/h), and
statistical mixtures of these pure states. Because the energy is preserved in a closed
system, these states are also referred to as enery eigenstates. Correspondingly, the
lowest energy is called the ground state energy and the respective eigenstate is called
the ground state of the system. For a time-independent Hamiltonian the unitary trans-

formation is given by

(2.6)

U(ts, 1) = exp [—H(tz_“)} .

h
In this thesis, however, we will usually study unitary evolutions without considering
the underlying Hamiltonian as we will abstract the concrete physical system away

from the information theoretical scenario.

When we talk about the state of a classical system, we usually mean a collection of its
properties such as its position in phase space. In principle, classical physics allows us

to measure each of these properties independently without disturbing the system, or

8
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at least, that they are all well-defined at the same time. However, in quantum physics,
the fundamental description of the state of a system is the state vector or density
operator. To obtain physical properties such as position or momentum, we have to
actively measure the system. In contrast to a passive classical measurement process,
this will change the state of the system and will be different from the unitary time
evolution described above as the measurement apparatus becomes part of the system
for the time of the measurement and hence, the system is not closed anymore. The
third postulate delineates how measurements are described in quantum mechanics.

An observable is a Hermitian operator with spectral decomposition
A= Zaj |a;) (aj] - (2.7)
]

The eigenvalues are the possible outcomes that can be obtained through a measure-
ment and the probability of obtaining the outcome a; by measuring the system in the

state [¢) is given by p; = | (aj|yp) |
are hence given by p; = (a;| p |a;). These so-called von Neumann measurements are,

For a mixed state p, the outcome probabilities

however, not the most general way of obtaining information from a quantum system.
Instead, we can first add an ancilla system in a well-defined state, let the joint system
evolve unitarily and afterwards measure the state of the ancilla system. Via this pro-
cess which is specified in Naimark’s dilation theorem [23], the possible measurements
in quantum mechanics are given by positive operator-valued measures or POVMs.
A POVM is a collection of so-called measurement operators {M;}, that satisfy the
normalization ) ; M]JTM]- = 1. The operators E; = M]JTM]- are called the effects of the
measurement. The probability of obtaining measurement outcome j is then given by
p; = TrpE;. The von Neumann measurements characterize the important subclass of

projection-valued measures or PVMs, where all effects are projectors.

After the measurement process, the state of the examined quantum system has changed.
The post-measurement state, however, depends not only on the effects but on the ac-
tual physical implementation of the measurement specified by the measurement op-

erators M;. For a quantum system in state p, it is given by

o = 1 ]-pMJ-r, (2.8)

Pj
if outcome j is obtained. In case, one is indifferent to the post-measurement state, it
is enough to consider the measurement effects instead of the measurement operators.
This is the approach taken throughout this thesis. The intriguing prediction of a
discrete set of outcomes often drastically differs from predictions in classical physics.

For instance, the Stern-Gerlach experiment [24] reveals the quantization of the spatial
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orientation of angular momentum of silver atoms. Similarly, polarization experiments
with photons show the same effect and, by measuring the change of light intensity
between multiple polarizers, the change of the state through the measurement can be

observed.

Finally, the fourth postulate tells us how to describe a composite physical system
consisting of multiple smaller systems or particles. In many classic books about quan-
tum mechanics, this feature is hidden somewhere in the mathematical framework. If
composite systems are considered, they usually refer to indistinguishable particles,
namely fermions and bosons, and their statistics [25, 26]. In quantum information
theory, however, also composite systems of particles that can, for example, be reliably
distinguished by their spatial distribution is essential. The state space of m systems in
Hilbert spaces H1, ..., Hw is given by its tensor product H; ® - - - ® H,,. This means
that for two systems, one being in state p, the other in state o, the composite system is

in state p ® 7, or in the computational basis, p = }; ; pij |i) (j|, ¢ = ¥ ; 03; i) (j| and

pRo =Y piowli) (jl@ k) (I =) pijou lik) (jI]. (2.9)
ikl ikl

Correspondingly, for pure states |p) = Y ;¢;[j) and |¢) = Y ; ¢;[j), the composite
system is in the state [) @ |¢) = Y;; ¢i¢; |ij). However, as we will see later when
we discuss quantum entanglement, not every state of the composite system can be

written as the tensor product of local states.

Interestingly, mixed states can be viewed as parts of a pure state on a composite

quantum system. For a state in its spectral decomposition

k
p= Z% pi l9;) (¥, (2.10)
=

where k is the rank of the density matrix, a possible purification on a composite system

with an added k-dimensional ancilla, is given by
9) = Y /Pilgp 1) - (2.11)
]

Indeed, there are infinitely many different purifications, however, the rank of p deter-
mines the minimal dimension of the ancilla system. The correct operation to obtain
the original state on part of the system is the partial trace p = Trp |¢) (¢|, which as a

linear operator can be defined on the computational basis by

Tra ([2) (jl @ |m) (1) = St 1) (1, (2.12)

10



2.2. Quantum mechanics

where the subscript indicates the part of the system that is traced out and 6, is the

Kronecker delta which is 1 if m = [ and 0 otherwise.

To sum up, the postulates of quantum mechanics tell us how to describe the funda-
mental state of a physical system, how it evolves with time, what measurements we
can do to learn about the state and how they change the system, and how we can

describe composite systems consisting of multiple particles.

2.2.2 The qubit

The smallest nontrivial quantum system is two-dimensional, i.e., a single qubit. For
instance, this can be the spin of an electron, the polarization of a photon, or simply
two energy levels of an ion. Qubits are the natural quantum generalization of classi-
cal bits and hence, they usually serve as the fundamental building block of quantum
computers. Higher-dimensional systems are usually referred to as qudits, where the
d indicates the dimension. Sometimes, we also use qutrits, ququarts, or quhex to de-
scribe three-, four-, or six-dimensional quantum systems. In the case of a single qubit,
the computational basis consists only of the vectors |0) and |1), often also referred to
as spin-up and spin-down. Because a global phase is irrelevant physically, normalized,

pure single-qubit states can be parameterized using two real parameters as
) = cosB0) +e¥sinf|1). (2.13)

We can interpret the angles 6 and ¢ as the polar and azimuthal angle in spherical

coordinates, respectively. Then, the pure states cover the surface of the unit sphere.

To see that we can map the mixed states to the interior of the unit sphere, we introduce

the so-called Pauli matrices:

10 01
U'O:]l: , 0’1:X: ,

01 10

0 —i 1 0
0'2:Y: P 0'3:Z: .

i 0 0 -1

The eigenvectors or eigenstates of Z are exactly the computational basis states, the

(2.14)

eigenstates of X are often denoted as |+) and |—) and those of Y by |i}) and |i_).
The Hermitian and unitary Pauli matrices form an orthogonal basis for the Hermitian
2 X 2-matrices, i.e., Tr 0i0j = 01if 7 # j. Such a basis does not exist in higher dimensions

as one needs to restrict the requirements to either Hermitian or unitary matrices. A

11



2. Mathematical fundamentals

general mixed state can be represented as

1

p=5(I+AX+AY+A1Z) = (1+A-0), (2.15)

N —

where positive semidefiniteness requires [A| < 1 and |A| = 1 if, and only if, the state
is pure. Hence, we can describe the set of single-qubit states geometrically as the
three-dimensional unit ball. In quantum information theory, it is also known as Bloch

sphere or Bloch ball.

Since qubits form the smallest and simplest quantum system, they are often of special
interest in research and serve as a testbed for more difficult systems. However, many
properties are indeed exclusive to qubits and hence, investigating higher-dimensional

systems can lead to interesting observations.

2.3 Quantum channels

As we have seen, the class of physically implementable measurements grows signifi-
cantly if we allow to utilize an ancilla system and a controlled joint evolution with the
system of interest, namely, instead of PVMs or von-Neumann measurements we have
access to POVMs. Similarly, the time evolution of a closed system is heavily restricted
— it is unitary — compared to the time evolution of open systems, i.e., quantum sys-
tems that transform as parts of a larger closed system. The general time evolution is
a linear map from quantum states of one Hilbert space to quantum states of another
Hilbert space M : L(H4) — L(Hg), where L(H) denotes the set of density matrices
on the Hilbert space . However, not every such map can be realized in quantum
mechanics. The reason is that if only part of a quantum system transforms according

to M, the joint system must remain in a valid quantum state. This means that for
o= (Idg®@M) (p), (2.16)

where Id; : H; — H; is the d-dimensional identity map that maps d-dimensional
quantum states to themselves, it must hold that ¢ is a physical quantum state, i.e.,
o > 0and Tro = 1, for any d and any state p. In other words, M is a trace-preserving

and so-called completely positive map, also known as a quantum channel.

Definition 2.1. A quantum channel M : L(H4) — L(#3p) is a linear map that is

(i) completely positive, i.e., (Idg ® M) (p) > 0 for any positive semidefinite operator
peL(Ha@Ha), p=>0.

12



2.3. Quantum channels

31\

> 1

FIGURE 2.1: [29] The image of the Bloch sphere (red) of single-qubit maps is an ellip-
soid (blue) with semi-axes A;, displaced by «.

(ii) trace-preserving, i.e., Tr M(p) = Trp for any positive semidefinite operator p >
0.

This is why quantum channels are also known as CPTP maps.

An excellent introduction to quantum channels can be found in Ref. [27]. Indeed,
similarly to the relation between POVMs and PVMs, any quantum channel as defined
above can be physically implemented using an ancilla system and unitary time evo-
lution. More precisely, for any quantum channel M : L(H4) — L(H3p), there exists a

unitary operator U such that
M(p) =Tre [U (p® |0) (0] U*], (2.17)

where the dimension of the environment ancilla Hilbert space is dgp = dadp with d4
and dp being the dimensions of the Hilbert spaces H 4 and H3p, respectively, due to

Stinespring’s dilation theorem [28].

2.3.1 Single-qubit channels

The action of single-qubit channels can be well understood in the Bloch picture. Let
the Bloch decomposition of a qubit state be p = 3(1 + 7 - &), where 7 € R? is required
to have length equal or smaller than 1 in order for p to be positive semi-definite, and
0 = (0x,0y,0:)" with 0; being the Pauli matrices. Then, any qubit-qubit quantum
channel corresponds to an affine transformation ¥ — A7 + ¥ with a real matrix A
and a displacement vector ¥ [20], where some restrictions on A and ¥ apply to ensure

complete positivity. Thus, the image of any single-qubit channel M is given by an
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ellipsoid in the Bloch sphere, where the semi-axes are given by the singular values of
A and the ellipsoid is translated by . The surface is given by the image of the pure

states under M because of linearity (see Fig. 2.1).

Quantum channels are, for instance, used to model noise in quantum systems. In the
following, we consider important examples of single-qubit channels, i.e., H4 and Hp

are both two-dimensional. First, the depolarizing channel D, is defined by

Dy(p) = py + (1= pp, (218)

where 0 < p <1 characterizes the strength of the noise. In the Bloch picture, the ball
of quantum states is mapped to a ball with smaller radius but the same origin. The

states become more mixed, the purity changes as

Y(Dy(p)) = & +p1—p) + (1= p)2(0) < (0. (2.19)

Applying the depolarizing channel is also described by mixing with white noise or
the so-called maximally mixed state 1/2. This channel is also defined for higher-
dimensional Hilbert spaces, however, the maximally mixed state is given by 1/d due

to normalization. Second, the bit flip channel B, is defined by

By(p) = pp+ (1 —p)XpX, (2.20)

where again 0 < p < 1. A classical bit has only two possible states 0 and 1 and
hence, the only error source is the probabilistic flip of the bit, interchanging the states.
The bit flip channel emulates this behavior for a quantum bit, i.e., the states |0) and
|1) are interchanged with probability 1 — p. The image of the state space under this
operation is a deformed sphere, an ellipsoid generated by the contraction of the sphere
along the y- and the z-axis. The related phase flip channel P, and the bit-phase flip
channel are defined similarly, however, using the other Pauli matrices Z and Y instead
of X, respectively. They illustrate that errors on quantum computers are more subtle
and multifaceted compared to errors on a classical computer. Finally, the amplitude

damping channel A, is defined by
Ap(p) = EopE§ + E1pE], (2.21)

where the operation elements Ey and E; are given by

E0:<1 0 ), E1:<0 ﬁ) (2.22)
0 1-—p 0 0
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2.3. Quantum channels

This channel is important to describe energy dissipation or photon loss as it favors the

ground or no photon state |0) over the excited or single photon state |1).

2.3.2 Choi-Jamiotkowski isomorphism

Complete positivity of a quantum channel is usually difficult to verify directly be-
cause positivity has to be checked for any dimension of the ancilla system. The Choi-
Jamiotkowski isomorphism [30-32] provides a technique to avoid this difficulty. It
assigns to every CPTP map a quantum state, and to certain quantum states a corre-

sponding quantum channel.

Definition 2.2. For a channel M : L(H ) — L(#3), the Choi state is defined as

v = (1d@M) (I¢7) (¢7)), (2.23)

where Id : L(H ) — L(Ha), ie., 1y € L(Ha ® Hp), and
%) = ——= L)1) (224
is the so-called maximally entangled state.

Choi’s theorem on completely positive maps proves that the positivity of 1, is equiv-
alent to the complete positivity of M. Hence, it enables a simple characterization of

quantum channels utilizing the positive semidefiniteness of matrices.

On the other hand, given a Choi state 7,4, the action of the corresponding channel can

be calculated as

M(p) =daTr [WM (PT ® 1@” , (2.25)

where p! is the transpose of p. From this equation, it is clear that Tr M(p) = 1
for all states p if and only if Trpyay = 1/dg, ie., the partial state on system A of
the joint state 77, is maximally mixed. This condition characterizes the set of Choi
states. Furthermore, a quantum channel M : L(H4) — L(Hp) is called unital if
it maps the maximally mixed state of H4 to the maximally mixed state of Hp or
M(1/d4) = 1/dp. For the Choi state 70, we have that Tr4 70 = 1 if, and only if, the

corresponding channel M is unital.

While we did define the bit-flip and the amplitude damping channel in a way that
can be applied to general matrices as well, this is not the case for our definition of

the depolarizing channel since it is not trace-preserving for operators that are not
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normalized. Hence, it is harder to see how to apply it to part of the state
97) (9T =5 Zlu il :,D (jle1i) (2.26)
because Tr|i) (j| = ¢;;. However, with the, for quantum states equivalent, definition

Dy(p) = p (Trp) % +(1=pp, (2.27)

we obtain yp = pLl @ 1/4+ (1 —p) [¢pT) (¢7| which as the mixture of quantum states

is easily seen to be positive semidefinite and hence, complete positivity for D), follows.

2.3.3 Kraus representation

The way we defined the depolarizing channel, albeit very intuitive, is quite different
from the way we defined the bit-flip and the amplitude damping channel. As we
saw with the Choi-Jamiotkowski isomorphism, this can complicate computations and
further analysis. Fortunately, there is a standard form for quantum channels called
the Kraus representation [27, 33]. The action of any CPTP map M : H4 — Hp can be

written as

=Y KjpK, (2.28)
j

where the K; are called Kraus operators. Because M is trace-preserving, we have that

Y K}LK]' = 1. Complete positivity follows immediately by construction since

(I [(1d@M) (19%) (0™ D] Iy) = & [l (1@ KDY 197) (¢*] (1@ k) [)] =0,
]
(2.29)
where the inequality follows from the positive semidefiniteness of [¢p*) (¢ 7| as a quan-

tum state. Furthermore, if M is a unital channel, then it also holds that Z]- K]-K; =1.

Although the Kraus representation is not unique, it is straightforward to find a de-
composition into a minimal number of Kraus operators with the property that they
are orthogonal, i.e., Tr K:rKj o ;. This is done by considering the (unnormalized)
spectral decomposition of the corresponding Choi state 7,1 = Y; |¢;) (;|. From the
definition of 77 in Eq. 2.23, we have that

Y lw) (gl = (1@ K)) [97) (97| (1@ K]), (2.30)
J

]

where we can identify |¢;) = (1 ® K;) |¢™) which is always possible, as we will see
in Section 2.5, for states |¢;) with Try [¢;) (¢;| = 1/d which is the case for Choi states.
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2.4. Coherence

In the case of the depolarizing channel for single-qubit states, we find such a Kraus

decomposition as

3 3

2.4 Coherence

Coherence is one of the distinguishing features of quantum physics compared to clas-
sical physics. In experiments, or generically in physical systems, there is often a dis-
tinct basis given, e.g., by the eigenstates of the underlying Hamiltonian or another
observable, that is protected by conservation laws or superselection rules. This basis
is also known as the classical basis of the system. Then, it is usually much easier to
prepare, manipulate, and measure these basis states and mixtures thereof compared to
superpositions. For instance, consider a single-qubit system with distinguished basis
{]0),]1) }. The mixture

1 1
p =3 10) (01 +5 1) 1 (232)

is qualitatively very different from the superposition of the basis states

) = 5 100+ 1), 23)

Vit

even though, when measured in the preferred basis, they both yield outcome 0 and
1 with probability 1/2 each. Measured in a different basis, e.g., the eigenbasis of the
Pauli operator X, {|+),|—)}, however, the state p yields outcomes + and — with
equal probability while the state |[+) deterministically yields outcome +. Such su-
perpositions are important for quantum information protocols such as quantum key
distribution [13]. States that are mere mixtures of distinguished basis states are called
incoherent, whereas states that contain superpositions of these basis states are called
coherent. Hence, a coherent state requires superposition to describe it. That is why

superposition and coherence are sometimes used interchangeably.

To quantify the coherence, a resource theory of coherence has been developed that
appropriately characterizes sensible coherence measures [34-36]. Quantum resource
theories naturally share a common structure [37, 38] that can, and has been, applied
to different resources such as coherence, entanglement, and Bell nonlocality [39—43].
This structure consists of, first, free states, i.e., states that are for example easy to
prepare in an experiment and hence, are regarded as resourceless. In the context of
coherence, the free states are obviously the incoherent states. The set of incoherent

states is usually denoted as Z. Second, there are free operations that are also easy to

17



2. Mathematical fundamentals

implement in practice and cannot transform a free state into a resourceful state. For a
resource theory of coherence, the choice of free operations is not unique, however, they
are usually given by the so-called incoherent operations defined as quantum channels

Picpre(0) = X ijK]J-r with Kraus operators satisfying
K/ZK! C I, (2.34)

for all j, i.e., all the Kraus operators map incoherent states to (unnormalized) incoher-

ent states.

The advantage of quantum resource theories is that they provide natural criteria for
sensible resource measures that quantify the amount of resource present in a quantum

state. The criteria for a coherence measure C : L(H) — R are given by

C1 C(p) =0forallp € Z.
C2.a Monotonicity under incoherent operations: C(®icpre(p)) < C(p).

C2.b Monotonicity under selective measurements on average: }; p;C(p;) < C(p),
where p; = Tr K]-pK;f, pj = K]-pK]J-r /pj and the Kraus operators form an incoherent
channel (I)ICPTP (p) = Z] KJPK}r

C3 Convexity: C(¥;pjpj) < ¥;jpjC(p;) for any probability distribution {p;} and

quantum states p;.

Resource measures are often also called resource monotones. Coherence monotones
satisfying the above criteria are, for instance, the robustness of coherence [44], the I1-
norm of coherence [45], and the relative entropy measure [46]. The measures differ

from each other in their physical and operational interpretation.

The the [;-norm of coherence intuitively quantifies the amount of superposition using

the off-diagonal elements of the density matrix.

Definition 2.3. The /;-norm of coherence Cj, of a quantum state p € L(# ) is defined
by

Cr,(p) = Y lpijl- (2.35)

i#]

Note that the analogous l,-norm of coherence is indeed not a coherence monotone
[35]. While easy to compute, the /1-norm of coherence does not provide a direct phys-
ical interpretation in terms of an underlying quantum information protocol whose
performance could be measured via this coherence measure. The robustness of coher-

ence, on the other hand, provides such an operational measure of quantum coherence
[47]-
18
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Definition 2.4. The robustness of coherence Cg of a quantum state p € L(H) is defined
by

. p+to }
C = t>0 ;. .36
<o) = i, {12075 € 230

Note that for a single qubit, i.e., a two-dimensional quantum system, we have that
Cr(p) = Cy, (p). Computing the robustness of coherence can be done efficiently using
a semidefinite program as described in Section 2.8 [47]. The operational meaning
associated to this measure becomes apparent by examining the following scenario [44].
In a phase discrimination game, someone, let us call her Alice, prepares a quantum

state p € L(#H) which subsequently undergoes the transformation

p = pg = Uypl}, (237)

where U, = exp(iH¢). Without loss of generality, we consider a Hamiltonian H that
has evenly spaced energy levels, i.e., H = Y, n |n) (n|. Suppose that there is a finite set
of angles ¢; € R that are imprinted on the quantum state with probability p;. Alice,
however, is unaware of which angle ¢; has actually been encoded and wants to guess it
in an optimal way by measuring the transformed state p,,. The most general protocol is
to measure a POVM with effects E; and returning the outcome of the measurement as
the guess for ¢. Then, for such a game ® = {(p;, ¢;) }, the optimal success probability
is given by

succ (

Pe

= m.
P) e

meHEW- (2.38)
)

The Hamiltonian provides a natural choice for the classical basis. Then, incoherent
states are indeed invariant under U, and hence, the measurement cannot reveal any
information about the underlying ¢;. Thus, the best Alice can do is to guess the
most likely ¢;, yielding a success probability of max; p;. It turns out that the maximal
quantum advantage that can be reached using a coherent input state for any game is
given by the robustness of coherence [44]

Pa(p)

max max; p; =1+ Cr(p)- (2:39)

Thus, this measure has a clear physical interpretation benefiting its usefulness.

In some, but not all, resource theories, there are states that unambiguously contain a
maximal amount of that resource. This is the case if they can be compared with any
other state under the monotonicity conditions, i.e., using free operations, it is possible

to reach any other state from these states. The resource theory of coherence contains
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a set of such states given by [35, 45]

1 .
%) = —= ¥ expliog) |b), (2.40)
j=0

where {|b;) j’; ' is the D-dimensional classical basis. Thus, the maximally coherent
states are those that are an equal superposition of all basis states, albeit they might

contain different phases for each basis state.

2.5 Entanglement

While coherence is a feature of quantum mechanics that is assigned to a single sys-
tem, quantum entanglement describes spatial correlations between quantum systems
that are not allowed in classical physics. Also, entanglement is in contrast to coher-
ence independent of the choice of a special basis. The physical spatial separation of
subsystems provides a natural split of the joint quantum state into reduced substates.
It is the most fundamental concept of quantum correlations between spatially sepa-
rated particles that is essential for other correlations such as EPR steering and Bell
nonlocality which are impossible without entanglement. A good introduction to en-
tanglement theory can be found in Ref. [16]. Entanglement between two particles is
already quite remarkable as it plays a crucial role in many quantum information and
quantum computation protocols, however, entanglement between multiple particles
provides a much richer structure that can lead to surprising mechanisms, for instance,
the distribution of entanglement using separable states [48]. Since it is such an inter-
esting and important concept, detecting entanglement and measuring its amount in
experiments is vital. In the following, we present various detection methods and a
resource theory of entanglement that uses physically motivated free operations. Fur-
thermore, we discuss so-called entanglement-breaking channels, which remove any

entanglement present in a quantum state.

2.5.1 Entanglement between two particles

As we have seen, the state space of two particles is the tensor product H4 ® Hp of the
individual particles’ state spaces H 4 and Hp. If the states |4) € Ha and |¢p) € Hp
of the two systems are uncorrelated, the joint state is also given by their tensor product

|$a) ® |PB), however, there exist states in the joint state space Hap = Ha ® Hp that
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cannot be written as a tensor product. Most prominently, for the two-qubit state

B

™) = NG (100) +[11)), (2.41)

which is known as the Bell state and is the maximally entangled state of two qubits,
it is easy to see that it cannot be written as the tensor product of uncorrelated states,
i.e., it is not separable and hence, it is entangled. The following definition introduces

bipartite entanglement and separability formally for pure states.

Definition 2.5. A state |{) € H 4 @ Hp is called separable if there exist states |iP4) €
H 4 and |¢Pp) € Hp such that

1) = |$pa) @ |B) - (2.42)

It is then also called a product state. Otherwise, |ip) is called entangled.

For a general state

9) =Y wi li) 1)), (2.43)
L]

we can determine whether or not it is entangled using the so-called Schmidt decom-
position [19]. The coefficients ¢;; can be interpreted as a matrix with singular value
decomposition ¢ = udv, where u and v are unitary matrices and d is a diagonal

matrix. Then, we have

) =Y updpevi |i) |f)

i,jk

= Ldik <Z“ik W) (Z%‘ U>> (2.44)
k i j

=Y Aclka) lks),
k

where we have introduced new bases |ka) = Y; uj |i) and |kp) = }; vy |j) — orthog-
onality follows from the unitarity of # and v — and identified the so-called Schmidt
coefficients Ay = dy; > 0. The number of nonzero Schmidt coefficients is known as the
Schmidt number and measures, in some sense, the amount of entanglement present.
In particular, the state |¢) is a product state if, and only if, its Schmidt number is 1.
A very useful property of the Schmidt number is its invariance under local unitary
transformations as can be seen from the procedure of the singular value decomposi-

tion. Thus, the entanglement of pure states is easy to detect when the state is known.

For mixed states, however, the situation is a lot more involved.
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Definition 2.6. A state p € L(H 4 ® Hp) is called separable if there exist states |¢;) €
Ha and |¢;) € Hp as well as a probability distribution {p;} such that p can be written

as

o =2 pil¥) (¢l @ l9)) (@51 (2.45)
)

Otherwise, it is called entangled. Furthermore, p is called a product state if there exist

states po € L(H4) and pg € L(#H3g) such that p can be written as

p=pa&pp. (2.46)

While product states are completely uncorrelated, separable states contain classical
correlations but no spatial quantum correlations. For a mixed state p, there are in-
finitely many possibilities to write it as an ensemble {p;, |¢;)}, i.e., as a mixture of

pure states

o =Y pile) (¥l (2.47)
]

The Schrodinger-HJW theorem [49-51] tells us how two different ensembles {p;, |¢;) }
and {qx, |¢x)} that represent the same quantum state, and hence, are physically indis-
tinguishable, are connected. Namely, the two ensembles represent the same state p,
ie.,

p=2_pil) (| = ;qk b (@l (2.48)
)

if, and only if, there exists a unitary matrix u such that
VP W) =Y wie/ax 1) (2.49)
k

where the smaller ensemble is padded with zero-probability states such that u is a
square matrix. Hence, apart from the spectral decomposition, all other possible en-
sembles have to be checked to ensure that the underlying state is indeed entangled.
This is the reason why entanglement detection is such a vast field of research and

many criteria have been developed to detect it [52].

2.5.2 Multipartite entanglement

As already mentioned, the entanglement structure in multipartite systems is far more
complex compared to bipartite systems. With three (or more) particles, there are dif-
ferent notions of entanglement. First, there are states {45 c) that are fully separable,
ie.,

[Waipic) = [¥a) ® |¢5) @ [c) - (2.50)
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Second, one can consider a fixed bipartition of the three particles and the bipartite
entanglement between them, i.e., between particle A and particles BC and so on, often
written as A|BC, B|AC, and C|AB. A so-called biseparable state |4 pc) with respect

to the bipartition A|BC, for instance, can be written as

[Wajpc) = [$a) ® |$as), (2.51)

where |45) might be entangled. Finally, |¢) is called genuine tripartite entangled
if it cannot be written in such a biseparable form. Three-qubit examples for genuine

tripartite entangled states are the GHZ [53, 54] and the W state [55, 56]

IGHZs) — \2 (|000) + |111)), (2.52)
W) = —— (]001) + |010) + |100)). (2.53)

V3

A mixed state p 4p|c is called fully separable if it can be written as the mixture of fully
separable pure states. Furthermore, the mixture of biseparable pure states which are
biseparable w.r.t. a fixed bipartition are biseparable mixed states w.r.t. this partition.
For example,

A|BC|

oaisc = L l9]") (¢ (254)
]

is biseparable w.r.t. the bipartition A|BC. Convex combinations of biseparable states
w.r.t. different bipartitions are simply called biseparable. Mixed states which are not

biseparable are then genuine tripartite entangled.

Extending the concept of multipartite entanglement naturally to more particles leads
to even more involved structures. Importantly, the definition of fully, bi-, tri-, and
so on separable mixed states yields convex subsets of the state space. This is why
entanglement witnesses are a vital tool in the detection of the different forms of en-

tanglement.

2.5.3 Entanglement witnesses

Entanglement witnesses are Hermitian operators and as such, they are observables
that can be measured in experiments. This feature makes them a resource-saving tool
for entanglement detection, although they do not give direct access to the amount of

entanglement present in a quantum state. Formally, they are defined as follows.
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Definition 2.7. An entanglement witness W is an observable that first, yields a non-
negative expectation value for separable states, i.e.,

(W) = Tr Wpsep > 0, (2.55)

Psep

and second, there exists an entangled state p with a negative expectation value
(W), =TrWp <0. (2.56)

States with a negative expectation value are said to be detected by the corresponding

entanglement witness.

In this context, separability can mean full separability or biseparability or triseparabil-

ity and so on, depending on the underlying quantum system.

Thus, in an experiment, the measurement of a negative expectation value indicates the
presence of entanglement. An entanglement witness defines via Tr Wp a hyperplane
in the space of density matrices with Hilbert-Schmidt inner product (A, B) = Tr AB,
and hence, also in the space of density matrices. Such a hyperplane geometrically
splits the state space into two parts. On the one hand, for entanglement witnesses,
separable states can only be found on one side of the corresponding hyperplane. On
the other hand, for any entangled state outside the convex set of separable states, there
exists a hyperplane separating the entangled state from the separable states, and this

hyperplane can be defined by an entanglement witness detecting the entangled state

[52].

Obviously, for a given entangled state, there are different entanglement witnesses that
detect it. Entanglement witnesses are the better the more states they detect. More
formally, an entanglement witness W is called finer than a witness W if it detects
at least all the states that are detected by W,. This is equivalent to the existence of a

positive semidefinite operator P # 0 such that
Wy = Wy + P. (2.57)

An entanglement witness is called optimal if there is no entanglement witness that
is finer. However, it is very difficult to check this optimality condition in practice. A
weaker property that characterizes the optimality, sometimes called weak optimality,
is the condition that there exists a separable state with Tr Wpsep = 0. This necessary
condition for the optimality of W can be easily interpreted geometrically as a hyper-

plane that touches the set of separable states [52].
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2.5.4 Positive maps and the PPT criterion

We have seen that quantum channels are completely positive, trace-preserving maps

such that applying them to part of a quantum system always yields a physical state
(Id®@M) (p) > 0. (2.58)

Linear positive maps M, i.e.,, M(p) > 0 for all quantum states p, that are not com-
pletely positive in general only satisfy the above relation if the state that is transformed

is separable. This is because for a separable state
Psep = ) 1; [¥7) (il @ |9y) (s, (2.59)
j
due to linearity, we have that

(Id @ M) (psep) = Y pj [¥5) (¢l @ M(Igy) (9]) = 0. (2.60)
j

Thus, applying a positive map to part of a quantum state detects its entanglement if
the resulting operator is not positive semidefinite. Indeed, for any entangled state,

there exists a positive map detecting it with this procedure [57].

A very prominent example of such a positive map is the partial transpose. Writing a

state p in the computational basis

p =2 piuli) (il @ k) (1], (2.61)
i,jk,1

its partial transpose on the second subsystem is given by

p'" =Y piu |) (il @ 11) (K| (2.62)

ijk]l
Thus, we transpose the operators on the second part of the system. Although, the
partial transpose w.r.t. a different basis yields a different state, the positivity, and more
generally the spectrum, of the resulting state is independent of the underlying basis.
The entanglement criterion pTB > 0 is known as PPT criterion or Peres-Horodecki

criterion, originally introduced in Ref. [58].

Especially for bipartite systems, the PPT criterion is a very powerful tool to detect
entanglement. For two-qubit and qubit-quitrit states, it is indeed sufficient for entan-
glement detection [57], i.e., a two-qubit or qubit-qutrit state is entangled if, and only if,

its partial transpose is positive semidefinite. Hence, the separability problem for these
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small dimensions is solved with this simple characterization. In higher dimensions,
however, this is not the case [59] and the separability problem becomes NP hard to
solve [60, 61]. Then, the best we can do is to find a hierarchy that can, in principle,
detect all entangled states and detects more states with each level of the hierarchy. In
Section 2.8, we introduce such a hierarchy found by Doherty, Parrilo, and Spedalieri
[62, 63].

2.5.5 Resource theory of entanglement

So far, we have seen various methods to detect entanglement that is present in some
quantum state. To quantify the amount of entanglement, however, so-called entangle-
ment measures are necessary. For a constructive approach to find such measures, it is
useful to consider a resource theory of entanglement similar to the resource theory of
coherence discussed in Section 2.4. Naturally, the separable states form the set of free
states as they do not contain any spatial quantum correlations. The free operations are
those that can be done easily in experiments. Considering spatial correlations, local
operations are regarded as simple and thus, belong to the free operations. Further-
more, as we are interested in quantum correlations, classical communication, which,
of course, can generate classical correlations, is also part of the free operations. The set
of LOCC, short for local operations and classical communication, is hence physically
well-motivated. However, its mathematical characterization is very involved since an
unbounded number of rounds of communication might be necessary for certain en-

tanglement transformations [64].

Analogously to the criteria for a sensible coherence measure, this resource theory of
entanglement allows us to do the same for entanglement measures. The criteria for an

entanglement measure E : L(H) — R are given by

E1 E(p) = 0 for all separable states p € SEP.

E2 Monotonicity under LOCC operations: E(M(p)) < E(p) for all quantum states
p and all LOCC operations M.

E3 Convexity: E(Y;pjo;) < Y;pjE(p;) for any probability distribution {p;} and

quantum states p;.

Since entanglement describes the spatial quantum correlations, there are other useful
criteria that are sometimes regarded necessary for an entanglement measure [65, 66].

Namely, there are additivity and subadditivity,
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E4 Additivity: E(p®") = nE(p), i.e., n copies of a quantum state contain n times the

amount of entanglement compared to a single copy.

E5 Subadditivity: E(p ® o) < E(p) + E(c) for all quantum states p and o, i.e., two
uncorrelated states do not contain more entanglement than the individual states

together.
as well as a stronger version of (E1),
E1” E(p) = 0if, and only if, p € SEP.

which leads, however, to an entanglement measure that is NP-hard to compute as it
decides the separability problem. A measure satisfying (E4) is called extensive. There
is no common agreement on what criteria are necessary for an entanglement measure
or entanglement monotone, for which criterion (E2) is sometimes regarded sufficient.
An important feature of entanglement measures, that is sometimes added as an ex-
tra criterion, is their invariance under local unitary (LU) operations. LU invariance

follows from (E2) since local unitaries are reversible local operations.

As in the resource theory of coherence, there exists a (up to local unitaries) unique

bipartite maximally entangled state
n 1 g
l97) ==Ll (2.63)
]

where d is the local dimension of the subsystems, i.e., using local operations and classi-
cal communication any other quantum state can be reached [67]. Hence, it can be used
for any bipartite quantum information protocol that allows for classical communica-
tion, independent of which state is actually needed, making |¢™) the unambiguously
most valuable resource. This state is often referred to as the maximally entangled state.
In the multipartite scenario, there is no such concept, i.e., a maximally entangled state
does not exist [56]. For instance, in the case of three qubits, there are two states that
are incomparable and there is no LOCC operation to reach them from another state.

These are the W- and GHZ-state introduced in Egs. (2.52,2.53).

2.5.6 Entanglement-breaking channels

In Chapter 7, we will discuss quantum memories, which are an essential part of future

universal quantum computers. In essence, a quantum memory is a quantum channel
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that preserves a quantum state rather well. In contrast, a so-called entanglement-
breaking channel M is a channel that destroys the entanglement between any trans-

formed state and other systems, i.e.,
(Id@M) (p) € SEP, (2.64)

for all states p. Fortunately, there is a simple characterization of entanglement-breaking
channels. Indeed, they are exactly the so-called measure-and-prepare channels [68,
69].

Definition 2.8. A measure-and-prepare channel M : L(H4) — L(#p) is a CPTP map,

i.e. a quantum channel, whose action can be written as

M(p) = Y Tr(Ejp)pj, (2.65)
]

where the E; are the effects of a POVM and the p; are arbitrary quantum states.

Furthermore, a quantum channel is entanglement-breaking if, and only if, the corre-
sponding Choi state is separable [69]. The description as measure-and-prepare chan-
nels also allows for a physical interpretation. Entanglement-breaking channels can
be implemented by measuring the quantum state and, depending on the measure-
ment outcome, prepare some other state. As such, they provide very bad quantum

memories since they do not store any quantum information.

Although the PPT criterion is not a sufficient entanglement criterion in higher di-
mensions, there might be an interesting connection to separability in the context of
entanglement-breaking channels. Quantum channels M that map all states to states

with a positive semidefinite partial transpose are known as PPT channels, i.e.,
(M(p)™ >0, (2.66)

for all states p. It has been conjectured that applying such a channel twice yields a
measure-and-prepare channel, i.e., the composition M o M is entanglement-breaking
[70]. Although it has been proved for some special cases [70-72], a general treatment

is still missing.
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2.6 Numerical range

The numerical range was originally introduced as the Wertvorrat W of a complex

square matrix A defined by [73]

W(A) ={wlAly) | {¢ly) =1}, (2.67)

which forms a convex set of complex numbers, where convexity follows from the
Hausdorff-Toeplitz theorem [73, 74]. Beyond this original formulation, we are inter-
ested in the joint (restricted) numerical range L of multiple observables Ay, Ay, ..., Ay,

i.e. Hermitian matrices,
T
Lx(Ay .., An) = { (TrpAs,..., TrpA,) ‘ pex}, (2.68)

where X restricts the accessible set of normalized quantum states and is, for instance,
the set of all quantum states ALL of given dimension, that of PPT states or that of
separable quantum states SEP. If X = ALL, we sometimes simply omit the subscript
to improve readability. In the case of two Hermitian observables A, A, and X = ALL,
we indeed recover the Wertvorrat W(A) with A; = (A + A")/2 and Ay = —i(A —
A")/2 because Lar1 (A1, Az) is clearly the convex hull of W(A) due to C and R? being
isomorphic and the convexity of W(A) then implies that Laip (A1, A2) and W(A)

describe the same set of numbers.

In Chapter 6, we explicitly compute the separable and general numerical range for
various examples. The smallest instance is a single Hermitian observable and the
correponding numerical range a line connecting the minimal and maximal eigenvalue,
i.e., L(A) = [Amin(A), Amax(A)]. In contrast, the separable numerical range is given by

the optimization problem

Lsgp(A) = |min Tr Apsep, max Tr Apsep | , (2.69)
Psep Psep
which is, in general, not easy to solve. For instance, it is not known what the minimal

relative one-dimensional volume of Lggp is compared to Lapy.

In quantum information theory, the concept of restricted numerical range is useful to
detect features that distinguish quantum from classical physics. In Ref. [75], various
applications are considered. For given observables, in the case of ensemble mea-
surements with access only to the expectation value, the numerical range provides a

collection of all measurement information for different quantum states corresponding
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to different points in the underlying real vector space. Even when projective measure-
ments or POVMs are considered, the (restricted) numerical range of the effects pro-
vides full measurement information since the expectation value with an effect yields
the related outcome probability. For a small number of observables, it also conveys
an intuitive visualization of the measurement information that neglects inaccessible

information due to a restricted measurement apparatus.

A different perspective is to view the (restricted) numerical range as an affine pro-
jection of the (restricted) state space with Hilbert-Schmidt norm. This point of view
can reveal interesting geometric properties of the (restricted) state space investigating
manageable small dimensions. The structure of higher-dimensional Hilbert spaces
is much richer than the Bloch ball for a single qubit. For example, the boundary is
partly flat and contains mixed states which can be visualized using low-dimensional

projections.

It is also interesting to examine nonconvex sets of states such as pure or mixed product
states, yielding what is referred to as product numerical range. This leads, however,
to likewise nonconvex numerical ranges which tend to be difficult to investigate. As
the convex hull of the corresponding pure state numerical ranges yields the numerical
range of mixed quantum states, it is nevertheless a method to facilitate computation.
For instance, for two Hermitian observables A; and A,, there is a known procedure to
compute the joint numerical range for X = ALL [76—78] which we use in Chapter 6.

The so-called generating line C(Aj, Az) is defined via its dual (line) equation
det (uA; +vA; + wl) =0, (2.70)

where ux + vy +w = 0 is the equation of a supporting line to C(A;, A) in the x-
y-plane, i.e., in the numerical range space. The numerical range itself is then given
by the convex hull of its generating line [76, 77]. To obtain an explicit expression for
the generating line, a usual procedure is to dehomogenize Eq. (2.70) by setting either
u =1orv =1, and replace w by w = —ux —y. In the latter case, an expression for

the generating line is then given by the solution to the equations
F(u,x,y) =det[uA; + Ay — (ux+y)1] =0 (2.71)

and oF /du = 0 [78].
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2.7 The marginal problem and quantum codes

In the introduction to quantum mechanics, we described how the state of a subsystem
is obtained from the joint quantum state via the partial trace. This quantum channel
is straightforward to compute if the joint state is known as it contains all information
about the investigated physical system. Considering the maximally entangled state
|¢p*), the marginal states, i.e., the states of the subsystems, are maximally mixed and
hence, do not contain any information even though the state of the joint system is
pure. Hence, the connection between the whole and its parts of a system is especially
relevant to quantum physics [18], and it manifests itself in the quantum marginal

problem.

The marginal problem is the question whether or not, given a set of marginal states

05,/ 05, - - -,Ps,, on subsystems S1,55,...,5, C S, there exists a joint state pg such that

Trg\s, ps = ps;, (2.72)

forall j = 1,...,m where S\ S]- denotes the complement of Sj relative to S, i.e., a
global state with the desired marginals. In the case of maximally mixed marginals
pa = 1/d and pgp = 1/d, there are many possibilities for a global state such as (one
of) the maximally entangled state(s) pag = [¢pT) (¢7| or the maximally mixed state
pap = 1/d%

Thus, apart from the existence, it is also insightful to investigate the uniqueness of such
a solution. Moreover, restrictions on the global state are usually necessary to make the
marginal problem appealing. In particular, forcing the joint state to be pure leads,
e.g., to the concept of absolutely maximally entangled (AME) states. We consider this
type of marginal problem in Chapters 3 and 4. This restriction makes the marginal
problem substantially harder to tackle and previously, it has only been solved in the

case of disjoint subsets S;, i.e., nonoverlapping marginals [79].

2.7.1  AME states

An important class of quantum states whose definition is closely linked to certain

marginal problems is that of absolutely maximally entangled, or short AME, states.

Definition 2.9. An AME state of n particles and local dimension d is a pure state
|AME(n,d))s where marginals with at most half of the particles are maximally mixed,
ie.,

Try [AME(n, d)) (AME(n, d)| = d%lTl (2.73)
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forall T C S with |T| < [n/2].

Due to the Schmidt decomposition it is clear that Eq. (2.73) cannot hold if T contains

more than half of the particles as the corresponding marginal state is not of full rank.

From the perspective of the marginal problem, AME states are the natural multipartite
extension to the bipartite maximally entangled states. In contrast to bipartite systems,
however, it is not possible to reach any other quantum state via LOCC. As we have
seen, the concept of a maximally entangled state breaks down already at three particles
because the GHZ state, which is an AME state of three qubits, and the W state are
incomparable. Furthermore, AME states do not exist for arbitrary number of particles
and local dimensions. The existence problem of AME states is indeed an outstanding

challenge. A regularly updated summary of known results can be found in Ref. [17].

Since AME states are maximally entangled with respect to any bipartition, they serve
as essential resource for various quantum information protocols such as quantum

secret sharing and open-destination quantum teleportation [80, 81].

2.7.2  Quantum error-correcting codes

In a classical computer, the only error possible is the bit-flip. If errors on individual
bits occur independently, they can be corrected using a so-called repetition code. The
simplest version is to copy the bit two times such that a single bit is represented by
three bits and the states 0 and 1 are encoded as 000 and 111, respectively. Then, in
the most probable erroneous scenario, only one of the bits is affected and the original

state can be recovered by majority vote.

In a quantum computer, however, the possible errors not only comprise a continu-
ous set, but also the no-cloning theorem [82] prevents the use of a repetition code,
and syndrom measurements that detect an error might destroy the encoded quantum
information. Unfortunately, errors are ubiquitous in quantum computing because of
decoherence due to interaction with the environment. Surprisingly, quantum error

correction is still possible [83, 84].

Mathematically, a set of possible error operators E, might be applied to the code state
|¢p) through erroneous quantum computation. Single-qubit errors are, for instance, the
bit-flip and phase-flip error but also any other rotation on the Bloch sphere. Although
the set of error operators is usually continuous, it can be reduced to a finite set of
operators for finite-dimensional quantum systems whose successful correction implies

also that any linear combination is corrected effectively [19].
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Typically, a K-dimensional quantum system is encoded into a K-dimensional subspace
Q of n particles with local dimension 4 via a unitary map. The errors on the individ-
ual parties are assumed to be independent due to the spatial separation. Then, it is
particularly helpful to assume that errors only affect a limited number of particles at

a time which leads to the following definition.

Definition 2.10. An ((n,K,m + 1)), error-correcting code encodes a K-dimensional
quantum system into a subspace Q of n d-dimensional particles such that all errors of
the form

E=M QM- -QM,, (2.74)

where the number of M; # 1 is at most m, are successfully corrected by the underlying

recovery channel. The code is said to have minimum distance m + 1.

The existence of an ((n, K, m + 1)), error-correcting code is equivalent to the existence
of a K-dimensional subspace Q such that for all states |) € Q it holds that

Trr ) (¢] = o1, (2.75)

for all collections of subsystems T with n — |T| < m, where pr is independent from
|¢) [85, 86]. Furthermore, a so-called pure ((1n, K, m + 1)), error-correcting code where
distict errors map any code state to orthogonal states exists if, and only if, Eq. (2.75)
holds with pr being the maximally mixed state for all T. Thus, the existence of an
AME(n,d) state is equivalent to the existence of a pure ((n,1,|n/2| 4+ 1)), error-

correcting code.

An important necessary condition for the existence of quantum codes is the quantum

Singleton bound [85, 87].

Theorem 2.11. If there is an ((n, K, m + 1))4 error-correcting code, then K < d"~2™.

This result limits the distance that can be reached for an otherwise fixed quantum
code. Quantum error-correcting codes that meet the Singleton bound are known as

maximum-distance separable (MDS) codes.

2.8 Semidefinite programming

Optimization problems are ubiquitous in science and quantum information theory is
no exception. Finding optimal states, channels, and quantum information protocols

is essential to advance our understanding of quantum physics. Some of the typical
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problems such as the separability problem are NP hard to solve [60, 61], meaning that
there is most likely no efficient, i.e. polynomial time, algorithm. At the other end of the
spectrum, linear programs are optimization problems with a linear objective function
subject to linear equality and inequality constraints. Indeed, any linear program can

be solved in polynomial time [88].

In quantum information theory, however, a natural constraint that is omnipresent is
the positive semidefiniteness of a matrix since this is one of the conditions that define
a quantum state. Although such a constraint is apparently not linear, there is a larger
class of optimization problems, namely the class of so-called semidefinite programs
(SDPs), that allows semidefinite constraints and is still efficiently solvable [89]. A
comprehensive review of the theory and applications of semidefinite programs can be

found in Ref. [90].

2.8.1 Duality

Formally, any semidefinite program can be written in the standard form

min c-x
X

st. F+ ZXJF] >0,
j

(2.76)

where c is a constant vector defining the objective function and the F; are matrices and
hence, the inequality denotes positive semidefiniteness. Linear inequalities can be im-
plemented via blockwise diagonal matrices F; and equalities through the combination
of two inequalities. Further examples such as rewriting convex quadratic constraints
in terms of linear matrix inequalities can be found in Ref. [go] The above standard

form is also referred to as primal problem. Consequently, the corresponding dual

problem is defined by
max —TrFZ
z
st. TrFZ=c¢j, forj>0, (2.77)
Z > 0.

It is easy to see that the solution of the dual problem provides a lower bound to the

solution of the primal problem because

—TrRZ<) xjTrFZ=) xjcj=c-x, (2.78)
j i

where the inequality follows from the positivity of Z and the constraint of the primal

problem. Likewise, this also means that the solution of the primal problem provides
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an upper bound to the solution of the dual problem. The difference between the

optimal solutions is known as duality gap.

Although the primal and dual SDP are not guaranteed to have the same optimal
value, there are sufficient conditions implying what is called strong duality. Most

prominently, we have Slater’s condition for semidefinite programs [91, 92].

Theorem 2.12. The optimal solution of the primal and dual problem in Egs. (2.76,2.77),
respectively, coincide if one of them is strictly feasible. That means that either there is a vector
x such that Fo + }; xjF; > 0 is positive definite or a positive definite matrix Z > 0 satisfying
TrFZ =cjforall j > 0.

Note that, unless both the primal and dual problem are feasible, it can happen that

one of the problems is strictly feasible but unbounded and the other is infeasible.

To solve an SDP in practice, the dual problem is computed automatically and both
problems are numerically solved in parallel using an interior-point method [90]. As
intermediate feasible points provide bounds for the optimal value, it can be computed
up to the desired accuracy if strong duality holds, which is commonly the case in
practical scenarios. Sometimes the exact solution can be obtained analytically. If one
finds feasible points to the primal and dual problem with the same objective value,
they must be optimal. In other words, they provide a certificate for the optimality of
the solution. Even if one does not find optimal solutions, any feasible point provides

an analytical upper or lower bound to the optimal solution.

2.8.2 The Doherty-Parrilo-Spedalieri hierarchy

An important application of semidefinite programming in entanglement theory is the
Doherty-Parrilo-Spedalieri (DPS) hierarchy for bipartite entanglement detection [62,

63]. By definition, any separable state psep can be written as
Psep = ij ;) (il @ |97) (il , (2.79)
]

and hence, it can be mathematically extended to a fully separable state of more parties

as

olig = Yopi ) (9l @ |7) (9] ™" (2.80)
]

for any n > 1, called a symmetric extension of psep to 71 copies satisfying first, that the

marginal on the first two particles is given by the original state, i.e.,

Trs\ (4,8} P_E,Z% = Pseps (2.81)
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and second, that it is is symmetric under permutations of the copies, i.e.,
(14 @ Py) plep (14 ® Py) = plep, (2.82)

for any permutation ¢ of n elements and the corresponding permutation operator
Py =Y, i lo(iy, ... in)) (i1,. .., in|. It turns out that not only there exists a symmetric
extension for any separable state but also for any entangled state, there is an n > 1

such that no extension can be found that satisfies the two conditions [62, 63].

Theorem 2.13. A bipartite state p € L(Ha ® Hp) is separable if, and only if, for every

n € dN there exists a symmetric extension p(") satisfying the conditions in Egs. (2.81,2.82).

These conditions can apparently be checked by an SDP for fixed n. That is why this
result is commonly referred to as a hierarchy of semidefinite programs to decide the
separability problem. As we noted before, the separability problem is in general NP
hard to solve, and hence, the level of the hierarchy 7 to detect entanglement for some

states can be quite large.

To improve entanglement detection via the DPS hierarchy, it is helpful to add further
constraints to the SDPs that are satisfied by the natural extension of separable states
in Eq. (2.81). For instance, the symmetry constraint in Eq. (2.82) can be replaced by
the stronger condition that p(") must live in the corresponding symmetric subspace,
ie, (14 ® Pg)pggg = pggl)) for any permutation ¢. Furthermore, any linear or semidefi-
nite separability criterion can be added since the natural extension is fully separable.
Typically, the extension is required to have a positive partial transpose with respect
to all bipartitions. Then, the DPS hierarchy can be viewed as an extension of the PPT

criterion.

2.9 Classical entropy and majorization

As the term quantum information theory suggests, it is about the interplay between
quantum physics and information theory. Hence, it should come as no surprise that
information theoretic concepts such as entropy play an essential role. Entropy quan-
tifies the amount of uncertainty of a random variable before an outcome is obtained
and, from a different perspective, it is the average information gained when learning

the variables” value [19, 20]. The Shannon entropy defined by [93]

S({pi}) = = L pjlogp; (2.83)
]
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which, if the logarithm is taken with base 2, operationally yields the average number
of bits needed to communicate the outcome of the underlying random variable. Note
that for p; = 0, the corresponding summand in the Shannon entropy in Eq. (2.83) is

set to 0 in agreement with the related limit.

In the context of quantum information theory, the random variable is usually the mea-
surement of a quantum state. For instance, Heisenberg’s famous uncertainty principle
[94] can be generalized in an entropic formulation. A good survey on entropic uncer-
tainty relations can be found in Ref. [95]. A well-known entropic uncertainty relation

is the following result by Maassen and Uffink [96],
1

where A and B are observables with eigenvectors |a) and |b), respectively, and S(A) =
S({(a|lpla)}) for some state p. Finally, ¢ is the maximal overlap between any eigen-
vectors of A and B, i.e., ¢ = max| (a|b) |>. What makes this inequality so powerful is
that it is independent of the quantum state p that is considered in the measurements,

as long as it is the same for both observables.

Apart from the Shannon entropy, there are other information measures such as the

Tsallis-q entropy [97]

SO ({p;}) = qil (1 — Zp;’) , (2.85)
j

and the Rényi-a entropy [98]

thm}%=liabg<Zﬁ#>, (2.86)
)

which are monotonic functions of each other for 4 = a. While values related to the
Tsallis entropy are easier to compute as they avoid logarithms, Rényi entropies are
additive, i.e., Hy(p ® q) = Hy(p) + Ha(q). In the limits q,« — 1, both converge to the

Shannon entropy.

Independent from the concrete choice of information measure, the concept of ma-
jorization provides an intuitive way to characterize how chaotic a random variable is
and thus, a partial order on probability distributions [20]. A probability vector p is
said to be majorized by another probability vector g, i.e. p < g, if

k k
Yr<)Y.q) (287)
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forallk = 1,2,..., where p* and g* are vectors with the same components as p and g,
respectively, but the components are sorted in decreasing order. In this partial order,
there is a (up to permutations) unique maximum and minimum given by the flat and
a deterministic distribution. A function f is called Schur concave if f(p) > f(g) for all
p < g. All the introduced entropies satisfy this relation illustrating the independence

of majorization from a concrete information measure.



3 Quantum-inspired hierarchy for

rank-constrained optimization

Prerequisites

2.2 Quantum mechanics

2.5 Entanglement

2.7 The marginal problem and quantum codes
2.8 Semidefinite programming

2.9 Classical entropy and majorization

3.1 Introduction

The main parts of this chapter have been published as Publication (D) [99]. The math-
ematical theory of optimization has become a vital tool in various branches of science.
This is not only due to the fact that some central problems (e.g., finding the ground
state energy of a given Hamiltonian in condensed matter physics) are by definition
optimization problems, where mathematical methods can directly be applied. It also
turned out that other physical problems, which are not directly optimizations, can be

reformulated as optimization tasks.

Recently, many efforts have been devoted to so-called semidefinite programs (SDPs),
which is a class of highly tractable convex optimization problems as described in Sec-
tion 2.8. In quantum information theory, they have been used to characterize quan-
tum entanglement via the DPS hierarchy [62] and quantum correlations [100]. In
condensed matter physics, SDPs are relevant for solving ground-state problems [101].
In conformal field theory, they have been employed for bootstrap problems [102]. In
fact, SDPs also found widespread applications in more general topics beyond physics,
examples include the Shannon capacity of graphs [103] and global polynomial opti-

mization [104, 105].
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3. Quantum-inspired hierarchy for rank-constrained optimization

In many cases, however, one cannot directly formulate an SDP, as some non-convex
constraints remain. Well-known examples are the characterization of quantum cor-
relations for a fixed dimension [106, 107], the determination of the faithfulness of
quantum entanglement [108], the ground state energy in spin glasses [109], and com-
pressed sensing tomography [110]. Interestingly, these non-convex optimization prob-
lems share a common structure: They can be formulated as SDPs with an extra rank
constraint. Apart from these physics examples, rank-constrained optimizations are
also widely-used in signal processing, model reduction, and system identification
[111]. All these applications demonstrate that to achieve significant progress, it would

be highly desirable to develop techniques to deal with rank constraints in SDPs.

In the following, we provide a method to deal with rank constraints based on the
theory of quantum entanglement. More precisely, we prove that a large class of rank-
constrained SDPs can be written as a convex optimization over separable two-party
quantum states. Based on this, a complete hierarchy of SDPs can be constructed.
In this way, we demonstrate that quantum information theory does not only bene-
fit from ideas of optimization theory, but the results obtained in this field can also
be used to study mathematical problems (like the Max-Cut problem) from a fresh
perspective. Notably, unlike widely-used local optimization methods [112, 113], our
method can give global bounds for the rank-constrained optimization. This makes our
method especially useful for certification problems in quantum information, where

global bounds are usually necessary to establish conclusions with certainty.

In order to demonstrate the usefulness of our method, we first show that the opti-
mization over pure quantum states or unitary matrices in quantum information can
be naturally written as a rank-constrained optimization. This provides a complete
characterization of faithful entanglement [108, 114] and of mixed unitary channels
[115, 116]. The second example concerns majorization uncertainty relations [117, 118],
and the third dimension-bounded orthonormal representations of graphs [119], which
is closely related to the existence of quantum contextuality in a given measurement
configuration [120, 121]. Finally, we consider the maximum cut (Max-Cut) problem
[122] and quadratic optimization over Boolean vectors [123]. Not only are these prob-
lems very important in classical information theory, but they also find various appli-
cations in statistical physics [124] and complex networks [125]. Remarkably, solving
these optimization problems with noisy intermediate-scale quantum computers has

drawn a lot of research interest in recent years [126—129].

To begin with, we explain the core idea of our method, first for matrices with com-
plex entries, then for real matrices. Furthermore, we provide some insight into the

quantum de Finetti theorem and the uniqueness of the corresponding decompositions
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3.2. Rank-constrained SDP and quantum entanglement

into multi-copy states. We also discuss how symmetries can be used to simplify the
resulting sequence of SDPs. Subsequently, we present several examples, where our
methods can be applied. Finally, we discuss more general forms of rank-constrained
SDPs, rank-constrained quadratic and higher-order optimization problems, as well as

open questions.

3.2 Rank-constrained SDP and quantum entanglement

SDPs are widely used in various branches of science, especially in the quantum
regime. One of the reasons is that density matrices are automatically positive semidef-
inite, so that related optimization problems naturally contain some semidefinite con-
straints. Another important reason that SDPs have drawn a lot of interest is that there
are efficient algorithms for solving them [89], moreover, symmetries can be used to
drastically simplify the SDPs [130-132]. In many cases, however, one cannot directly
formulate an SDP, as some non-convex constraints remain. This happens, for example,
when the underlying quantum states are required to be pure or the quantum system is
of bounded dimension. These restrictions will introduce some extra rank constraints,

which is the main focus of this chapter.

The prototype optimization problem we consider is given by

max tr(Xp)
st. Alp)=Y, tr(p) =1, (3.1)

p >0, rank(p) < k.

Here, p and X are n x n matrices with real (F = R) or complex (I = C) entries,
which are symmetric (resp. Hermitian). A is a map from matrices in F"*" to ma-
trices in F"™*™ and consequently Y € F"*™. In this way, the constraint A(p) = Y
denotes all affine equality constraints. While our main results are formulated for the
rank-constrained SDP in Eq. (3.1), we stress that our method can also be extended to
more general cases with (semidefinite) inequality constraints A(p) < Y, without the

normalization condition tr(p) = 1, or even without the positivity constraint p > 0.

3.2.1  Optimization over complex matrices

We start with I = C for the optimization in Eq. (3.1), where we can easily apply the

results from quantum information. Let F be the feasible region of optimization (3.1),
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Hi = H1QH, = Ha R Hp

F = P = S

p = ool = Lipilei) (@i®?

FIGURE 3.1: [99] An illustration of the relations between the feasible region F, the
purification P, and the two-party extension S,. |¢) is a purification of p, H4 = Hp =
H1 ® Hp, and |¢;) are states in P.

ie.,

F={p|Alp) =Y, tr(0) = 1,p > 0,rank(p) < k}. (3.2)

With the terminology in quantum information, F is a subset of quantum states in the

quantum system (or Hilbert space) C".

Now, we recall the notion of state purification in quantum information as described
in Section 2.2. Let #; = C" and H, = C* be two quantum systems (Hilbert spaces).
Then, a quantum state p in 7 satisfies that rank(p) < k if, and only if, there exists a
pure state |¢) € Hq ® Hy such that trp(|¢) (@|) = p. Thus, F C L(#H;) can be written

as try(P), where

P ={lg) (¢l | Allo) (p]) =Y, (gplg) =1} C L(H1® Ha), (3-3)

with A(-) = Altry(-)]. Let conv(P) be the convex hull of P, i.e., all states of the
form Y; p; |¢i) (@i|, where the p; form a probability distribution and |¢;) (¢;| € P. By
noting that the maximum value of a linear function can always be achieved at extreme

points, the optimization in Eq. (3.1) is equivalent to

tr(Xp) = tr(XP), .
max r(Xp) 01X r(XP) (3-4)

where X = X ® 1y € L(H; ® Hz) with 1; being the identity operator on H, as X €

L(H1) because p and X have the same matrix dimensions.

Equation (3.4) implies that if we can fully characterize conv(P), the optimization (3.1)
is solved. To this end, we utilize the notion of separable states. More specifically, we
let Hy = Hp = Hi ® Hp = C" ® CF and define the SEP cone on H 4 @ Hp as

SEP = conv {M4 ® Ng | Ma >0, Ng > 0}. (3.5)
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3.2. Rank-constrained SDP and quantum entanglement

Physically, SEP is the set of all unnormalized separable quantum states (besides the

zero matrix). SEP is a proper convex cone, and its dual cone is given by
SEP* = {WAB | tr(WABQDAB) >0 Vdyp e SEP}, (3.6)

which, in the language of quantum information, corresponds to the set of entangle-
ment witnesses and positive semidefinite matrices, i.e., the set of block-positive matri-

ces.

Then, we consider the two-party extension of the purified feasible states,

82 = conv ({ I9) (94 @ I9) (9l | lo) (ol € P}), 67)

where |¢) , and |¢) are the same state but belong to H 4 and Hp, respectively; see

Fig. 3.1. One can easily check that
trg(Sy2) = conv(P). (3.8)

The benefit of introducing the two-party extension is that we can fully characterize S,

with the SEP cone, and hence conv(P) is also fully characterized.

The first necessary condition for ®4p5 € &; is that it is separable with respect to the
bipartition (A|B), i.e.,
D 4p € SEP, tI‘(CDAB) =1. (3.9)

Second, ®4p € &, implies that it is within the symmetric subspace of H4 ® Hp.

Mathematically, this can be written as

Vap®Pap = Pap, (3.10)

where V3 is the swap operator between H 4 and Hp, i.e., Vag |P1) o [92) 5 = [92) 4 |¥1) 5
for any |¢1), |¢2) € C" @ CF. In contrast to Eq. (3.10), the similar intuitive constraint
VapPapVap = P ap forces ®4p to be permutation-invariant but not necessarily in the
symmetric subspace. This weaker condition would also allow separable states such as
D45 = 3101) (01] + 3 |10) (10| which is not of the two-copy form needed in Eq. (3.7).
The constraint in Eq. (3.10) can alternatively be formulated as P, ®4pP, = P45 with
the projector onto the symmetric subspace Py = (145 + Vap)/2 as the swap operator

Vg has eigenvalues £1 only.
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3. Quantum-inspired hierarchy for rank-constrained optimization

The final necessary condition needed arises from Eq. (3.3), i.e., /~\(|<p) (p|]) =Y for
|@) (@] € P. Then, Eq. (3.7) implies that

Ap®1dp(Pap) =Y ® tra(Pap) (3.11)

for all ® 45 € Sy, where A 4(-) is the map A(-) = Altry(+)] acting on system 74 only,
and Idp is the identity map on Hp. Hereafter, we will also use a similar convention

for matrices, e.g., }N( 4 denotes the matrix 5( on system Ha.

Surprisingly, the conditions in Egs. (3.9, 3.10, 3.11) are also sufficient for 45 € S,. To
see this, note that the constraints in Egs. (3.9, 3.10) imply that ®4p is a separable state

in the symmetric subspace, which always admits the form [133]
Pap = Zpi [9i) (@il » @ |9i) (@il ., (3.12)
1

where the p; form a probability distribution and the |¢;) are normalized. Here-
after, without loss of generality, we assume that all p; are strictly positive. From

Egs. (3.3,3.7), to show that ® 45 € S, we only need to show that

Allg) (gil) =Y (3.13)
for all |¢;). To this end, we introduce an auxiliary map
E()=A() —t()Y. (3-14)
Thus, the last constraint is equivalent to £4 ® Idg(P4p) = 0, which implies that
Ea®EL(Pap) =0, (3.15)

where £ is the linear map satisfying £7(X) = [£(X)]" for any Hermitian operator X,
and the subscripts A, B in €4, £} indicate that the maps operate on systems H 4 and
Hp, respectively. Note that €T is not the dual map of €. Then, Egs. (3.12,3.15) imply
that

Y piEi®E] =0, (3.16)
i

where E; = £(|¢;) (¢i]). Let V be the swap operator acting on the same space as
E; ® EJ, then the relations tr[V(E; ® E])] = tr(E;E}) imply that

tr = Zpi tr(EiE:r) =0. (3.17)

4 (Z piEi ® E?)
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3.2. Rank-constrained SDP and quantum entanglement

Furthermore, as tr(E;ET) > 0 unless E; = 0, we obtain

E(lgi) {p:i]) =Ei =0 (3.18)

for all |@;). Then, Eq. (3.13) follows directly from the definition of £ in Eq. (3.14), and
hence ® 45 € Ss.

With the full characterization of S, from Egs. (3.9, 3.10, 3.11), we can directly rewrite
the rank-constrained SDP in Eq. (3.1). The result is a so-called conic program, as one

constraint is defined by the cone of separable states.

Theorem 3.1. For I = C, the rank-constrained SDP in Eq. (3.1) is equivalent to the following

conic program

max tr(X, @ 15D ap) (3.19)
Dagp
s.t. b4 € SEP, tI'(CI)AB) =1, VagPap = Pap,

Apr@1dg(Pap) =Y @ tra(Pap).

This conic program cannot be directly solved because the characterization of the SEP
cone is still an NP-hard problem [60]. Actually, this is expected, because the rank-
constrained SDP is, in general, also NP-hard. However, in quantum information the-
ory many outer relaxations of the SEP cone are known. For example, the PPT criterion
provides a pretty good approximation for low-dimensional quantum systems. More
generally, inspired by the DPS hierarchy described in Section 2.8, we obtain a complete

hierarchy for rank-constrained optimization in Eq. (3.1).

To express the hierarchy, we need to introduce the notion of symmetric subspaces for
multiple parties. We label the N parties as A,B,...,Zand Hop = Hp =+ = Hz =
Hi ® Hp = C" ® CF. For any H®N := Hy @ Hp ® - - - @ Hz, the symmetric subspace
is defined as

{|\1f> e HEN ‘ Vo |¥) = [¥) Voe sN}, (3.20)

where Sy is the permutation group over N symbols and V; are the corresponding
operators on the N parties A, B,...,Z. Let P5 denote the orthogonal projector onto

the symmetric subspace of H®¥, then P} can be explicitly written as

1
Py = NI Y Ve (3.21)

toeSy
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Hu Hg Hy,
r A o-a
. . o o o . :}(f/N
2 2 2 HEN
; W W

FIGURE 3.2: [99] An illustration of the N-party extension ®4p...,. Hi = C" is the
n-dimensional Hilbert space on which the rank-constrained optimization is defined.
H, = CF is the k-dimension auxiliary Hilbert space that is used for purifying the
rank-k (more precisely, rank no larger than k) states in {1 = C". Sometimes, we also
denote 7—[? Nas H A, @ Hp, @+ ®Hgz, in order to distinguish the Hilbert spaces H;

for different parties (similarly for Hy'N = Ha, @ Hp, @ - - - @ Hz,).

Hereafter, without ambiguity, we will also use P;; to denote the corresponding sym-
metric subspace. For example, a state ®4p...z is within the symmetric space, i.e.,
Dyp.7z = Zi pi “Fl> <‘Y1| for |‘Pz> S PI—\~I_’ if and Ol’lly if PI—\[FCI)ABmZP]-\i[_ = Dyp..z7.

Now we are ready to state the complete hierarchy for rank-constrained optimization.

Theorem 3.2. For ' = C, let ¢ be the solution of the rank-constrained SDP in Eq. (3.1).
Then, for any N, ¢ is upper bounded by the solution ¢ of the following SDP hierarchy

max tr(X, ® 1p..7Pap...7)
Dyp..z

s.t. q)ABmZ > O, tr(CIDAB..,Z) == 1, (3.22)
Pl ®ap..z Py = Pap..z,

/KA ®IdB-~~Z(q)AB---Z) = Y®trA((DAB---Z)~

Furthermore, the SDP hierarchy is complete in the sense that {n11 < {n and limn_, {0 N =

C.

The proof is similar to the proof of Theorem 2 in Ref. [134]. For completeness, we also
present it here. To prove Theorem 3.2, we take advantage of the following lemma,
which can be viewed as a special case of the quantum de Finetti theorem [135]; see

also related results in Refs. [136, 137].

Lemma 3.3. Let py be an N-party quantum state in the symmetric subspace Py:, then for all
¢ < N there exists an {-party quantum state
|®€

oy = ZPV |@u) (Pu (3-23)
1
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i.e., a fully separable state in P, such that

4/D

leen—e(on) = aull < = (3.24)

where ||-|| is the trace norm and D is the local dimension.

The part that ¢ is upper bounded by ¢y for any N is obvious. Hence, we only need to

prove that {ny1 < ¢y and limy— 400 N = €.

We first show that {n11 < ¢n. This follows from the fact that if a multi-party quantum
state is within the symmetric subspace, so are the reduced states. Mathematically, we

have the relation
(P;I_ ®]lnk)P]-\i]_+1 = P]—\]~_+1' (325)
Suppose that there exists an (N + 1)-party extension ® 4p...z satisfying all constraints

that achieves the maximum {1 in Theorem 3.2. Then, the constraint

Py 1 ®Pap..zz Py = Pag.zz (3-26)
implies that

(P @ Lyp) P ap...z2/ (P @ Lk) = Py @ Lk Pny1P ... 227 PN1 Py @ Ly
= Pn11Pap..zz Py i1 (3-27)
= ®yp..zz7-
Thus, one can easily verify that the reduced state trz/ (P 4p...zz) is an N-party exten-

sion satisfying all the constraints in Theorem 3.2 with objective value ¢{n1. From this,

the result {n11 < ¢n follows.

Next, we prove the convergence part, i.e., limy_ 1o {n = ¢. Suppose that the solution
¢n of the N-party extension in Theorem 3.2 is achieved by the quantum state ®4p...7.

Let CIDXB = trc..z(®Papc...z), then CIJXB satisfies that

tr(XA ® ]qu)]XB) =N, tr(q)IXB) =1,

- N N (3-28)
Further, Lemma 3.3 implies that there exist separable states &DQIB such that
VAB(EIXB = CBXB/ (3-29)
~ 8nk
|05 — DAl < N (3.30)
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As the set of quantum states for any fixed dimension is compact, we can choose a
convergent subsequence CDIX"B of the sequence ® . Thus, Eq. (3.30) implies that
®yp = lim Oy = lim Oy, :

AB e T AB = O, AR (3:31)
As all EISZL'B are separable and the set of separable states is closed, we have that
Dy = limj, o &)% is separable. Further, as all the functions on CDIXB or CTDXB
in Egs. (3.28,3.29) are continuous, Eq. (3.31) implies that ®4p satisfies all the con-
straints in Eq. (3.19). In other words, ®4p is a feasible point of program (3.19), thus
tr()?A ®1pPap) = imy_ 100 GN < §. Together with the fact that x > ¢, we then have

limy s yeo En = &.

In addition, any criterion for the full separability of ®p...z can be added to the op-
timization in Eq. (3.22), which can give a better upper bound for the optimization in
Eq. (3.1). For example, the PPT criterion, more precisely, PPT with respect to all bi-
partitions, can also be added as additional constraints, which can give better upper
bounds 5{1, ie, ¢ < CKIH < CZE < ¢y and limy— 4o ﬁ, = (. Furthermore, it is some-
times convenient to denote the solution of the SDP by relaxing the rank constraint in

Eq. (3.1) as ¢1, then we have ¢, < ¢;.

Let us estimate the complexity of the SDP hierarchy in Theorem 3.2. For the N-th level
of the hierarchy, the dimension of the matrix reads dim(H®Y) = (nk)N, but it can be
further reduced by taking advantage of the fact that ®4p...; is within the symmetric

subspace, which has the dimension

k — k —
dim (Py) = <n +Ii]\] 1) = <n rjl_cljl 1). (3.32)

By noticing that k < n, Eq. (3.32) implies that for fixed dimension n the complexity of
the SDP grows polynomially with the level of the hierarchy N, and for fixed level of
hierarchy N the complexity of the SDP also grows polynomially with the dimension
n. Similar results also hold when considering the PPT criterion, because the partial
transpose of ® 4p...z with respect to any bipartition is within the tensor product of two

symmetric subspaces P,j ® Pﬁ_k for some k [63].

3.2.2 Don't let de Finetti be misunderstood

Before proceeding to the optimization over real matrices, we want to add a few re-
marks in the context of the quantum de Finetti theorem. While Lemma 3.3 provides
a quantitative statement about the distance between separable states and marginals of

symmetric quantum states, the qualitative statement that any exchangeable state can
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3.2. Rank-constrained SDP and quantum entanglement

be written as the mixture of multi-copy states is more widely known [138]. More
precisely, a state ®4p...z is called exchangeable if it is permutation-invariant, i.e.,
Vo®ap..zVe = Pyp...z for any permutation o, and there exist permutation-invariant
extensions ® 4p...z,... for any number of extra parties M, such that Try...q Pap...z4..0 =

D 4p...z. An exchangeable state ® 4p...z can then be written as

Dpp..z = /P(p)p®Ndp, (3:33)

where P(p) is a probability distribution over all quantum states p € Ha = --- = Hq.

The authors of the highly cited Ref. [138], however, falsely claim that the probability
distribution P would be always unique. Indeed, this is generally only the case if all
the extensions ®4p...z,...0 are fixed. We want to clear up this misunderstanding by
tirst, providing a very simple explicit counterexample. Namely, we find the following

two-qubit state originating from different ensembles of two-copy mixtures,
1 1 ®2 1 ®2 1 ®2 1 ®2
=< |= —(1 - -~ —(1-Z
Dp 4{[2(11+X)] +[2(11 X)] +[2(]1+Z)] + {2( )]

:iizi [1 <]li1 \/Xizf ﬂ@z (3-34)

1 1 1
= (1®1+-X0X+-Z20Z).
4(®+2®+2®)

Second, we show that such counterexamples exist for any number of parties N and
local dimension d.
Observation 3.4. For any number of parties N and local dimension 4, the normalized

projector onto the symmetric subspace Py, has different decompositions {p,,, pf?N }.

Proof. We have that
®N
o [auu o) (o (ur) ™, (:39)

where the integral is taken w.r.t. the Haar measure, as well as

K ®N
Py o Y U o) 0N (uf) (5.36)
k=1

where the U form a so-called unitary N-design, that transforms the integral to a finite

sum, which exists for all N and d [139, 140]. O

On the other hand, there are also states with a unique decomposition without fixing

any of the permutation-invariant extensions. In Lemma 4.2, we will show that indeed
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all multi-copy states p®N are extreme points in the space generated by mixtures of
multi-copy states and hence, their decomposition is unique. Furthermore, there exist
nonextremal states with a unique decomposition, too. Namely, consider the multi-

qubit states

QN N
Dup.z = % [;(]1 +Z)} +% B(ll - Z)] , (3-37)

for N > 2. Let us assume, that there is a different decomposition {py,p’?N } with

single-qubit states p, = (1 + A" - ) /2. Then, the decomposition of pi/" in the Pauli

basis is a sum of terms containing

2iN (A ZeZo19N-2), (3.38)
Since ® 4p...z contains this term with maximal weight, we have that (AZ )2 = 1 must
hold for all #, which leaves only the two multi-copy states that already appear in the
decomposition in Eq. (3.37). The weights of these two states are then fixed by any
term containing an odd number of Z, implying that the decomposition in Eq. (3.37)
is indeed unique. Thus, the space generated by mixtures of multi-copy states has
partly the geometry of a simplex. This feature should become more prevalent with

increasing N.

3.2.3 Optimization over real matrices

We move on to consider the ' = R case, which is more important in classical infor-
mation theory. One can easily verify that Theorem 3.1 can be directly generalized to
the F = R case, if the decomposition in Eq. (3.12) satisfies that |¢;) (@;| € R™*"k. The
obvious way to guarantee this is to define the set of separable states over R. However,
this hinders the application of known separability criteria developed in entanglement

theory.

Thus, we employ a different method. We still use the separability cone SEP with

respect to the complex numbers, more precisely,
@4 € SEP N R, (3-39)

where SEP is still defined as in Eq. (3.5). Equations (3.12,3.39) are not sufficient for
guaranteeing that |@;) (¢;| € R™ "k An explicit counterexample is given by the (un-

normalized) state

Dup = P /du U & U 00) (00| UT @ U, (3.40)
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This state is obviously in the symmetric subspace, real, and separable. However, it
cannot be expressed as a mixture of real two-copy pure states, which can be seen
by applying P, to a complex two-copy pure state i) |). Apparently, it holds that
P |y) [p) = |¢) [p) but also Py [py) (yip| Pf would be a mixture of real two-copy
pure states which leads to a contradiction since the state |¢) (4| is an extremal

point in the state space.

Still, only a small modification to Eq. (3.39) is needed. For pure states, one has
19:) (@i]" = |97 (7], where (-)T denotes the matrix transpose and |(-)*) the com-
plex conjugation with respect to the same fixed basis. Hence, a necessary condition
for | i) (@il € R™"* is

Oy = Dag, (3-41)

meaning that the state ® 45 is invariant under partial transposition.

Interestingly, due to the symmetry and separability of ® 45, Eq. (3.41) is also sufficient
for guaranteeing that | ;) (¢;| € R From the form of ® 5 in Eq. (3.12), we obtain

@5 = Yopiler) (9714 @ o) (@il (3.42)

where |¢*) denote the complex conjugate of |@;). Then, the fact that % = @5 is a

separable state within the symmetric subspace implies that

l@i) (@il = |o7) (@i ], (3.43)

ie., |@:i) (@:] € R™ "k for all i. This proves Theorem 3.5. Notably, this argument can
be directly generalized to multi-party states, which provides a simple proof for the

result in Ref. [141].

Hence, we arrive at the following theorem for rank-constrained optimization over real

matrices.

Theorem 3.5. For ' = R, the rank-constrained SDP in Eq. (3.1) is equivalent to the following
conic program

max tI‘(XA X ]lBCDAB)
Dap

s.t. ®up € SEP, tr(<I>AB) =1,
Vap@ap = Pap, Oy = ap,

/N\A ®IdB(CDAB) = Y®trA(<DAB).

(3-44)

Similarly to Theorem 3.2, we can also construct a complete hierarchy with the multi-

party extension method for the real case:
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Theorem 3.6. For ' = R, let ¢ be the solution of the rank-constrained SDP in Eq. (3.1).
Then, for any N, ¢ is upper bounded by the solution ¢y of the following SDP hierarchy

max tr(ffA X ﬂB---ZCDABmZ)
Dyp..z

st. Pyp..z >0, tr(Pap..z) =1, (3-45)
Py ®up. 2Py = ®ap..z, Phy = Pap..z,

/KA ® IdB-~-Z(q)AB---Z) =Y® trA(CIDAB...Z).

Furthermore, the SDP hierarchy is complete, i.e., Cn+1 < ¢y and imy_ 10 EN = §.

We emphasize that all variables involved in Egs. (3.44) and (3.45) are taken as real
matrices. In addition, due to the permutation symmetry induced by Py ®4p..z Py =
D ...z, @ﬁ%mz = ®Pyp...z already ensures the partial-transpose-invariance with re-
spect to all bipartitions. This also makes the PPT criterion as an additional separability

condition redundant for the hierarchy in Eq. (3.45).

3.2.4 Inherent symmetry for the hierarchy

Before proceeding further, we briefly describe inherent symmetries emerging from the
ancilla introduced for purification in Egs. (3.19, 3.22,3.44, 3.45), which is particularly
useful for practical implementations. In a convex optimization problem, if a group
action G does not change the objective function and feasible region, then the variables
can be assumed to be G-invariant. Specifically, if the SDP, maxgcs tr(®X), satisfies
that gS¢' C S and ¢Xg¢' = X for all ¢ € G, then we can add an extra G-invariant
constraint that g®¢' = ® for all ¢ € G.

For the hierarchy in the complex case in Theorems 3.1 and 3.2, regardless of the actual
form of X, A, and Y, there is an inherent U*N symmetry on H, @ Hp, @ -+ @ Hz, =
(C*)®N for all unitary matrices U € SU(k), i.e., on the N auxiliary Hilbert spaces 3™

shown in Fig. 3.2. Hence, ®45...z can be restricted to those satisfying
(lln ® U)®NCDAB...Z(1” &® U+)®N = Dyp...7. (3.46)

This implies that ® 4p...7 is generated by the symmetric group Sy in Ha, ® Hp, ® - - - ®
Hz, = (CK)N by the Schur-Weyl duality [142].
We take the case N = 2 as an example to illustrate this point. Under the restriction in
Eq. (3.46), @ 4p admits the form

DPpp =P ®1a,p, + Py ® Va,s,, (3-47)
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where ®; and ®y are operators on Ha,p,, and 14,5, and Va,p, are the identity and

swap operators on H4, ® Hp, = C* ® CF, respectively. By taking advantage of the

relations .
A
VAB — VAlBl & VAZBZI VA2}2}2 - k ‘(P]j> <(Pk+‘ ’ (3 48)
tra, (Las,) = kllp,, tra,(Va,s,) = s,
where |¢,") = ik YK la) 4, |&) g, is a maximally entangled state, ¢; can be simplified
to
max tr [XAl X ]lB1 (qu)I -+ kq)v)]
P10y
s.t. DOy = Vap,3,P, @+ Dy >0,
D — Dy >0, B + kb, >0, (3.49)

M >0, Rtr(Pr) + ktr(dy) =1,
Aa, ®1dp, (k@[ + @V) =Y ®Rtrg, (kq)[ + qu).

A significant improvement in Eq. (3.49) is that the dimension of the variables is crren’,

which no longer depends on the rank k.

For the hierarchy in the real case in Theorems 3.5 and 3.6, we consider the symmetry
Q%N for orthogonal matrices Q € O(k), which would also simplify the structure of
DPyp..zinHp, @Hp, @--- @ Hz, = (IRk)®N. The O(k) symmetry can reduce P 4p...z
to the Brauer algebra By (k) in Ha, ® Hp, ® - - - ® Hz, = (RF)®N [142], which is more
complicated than the SU (k) symmetry.

For N = 2, the Brauer algebra B (k) is the linear span of {14,5,, Va5, k|¢) (¢ [},

which implies that the symmetrized ® 43 is of the form
Pap = @1 @ La,p, + Pv @ Vayp, + Py @k [9) (9|, (3.50)

where @], ®y, and @y are operators on H 4,5,. Correspondingly, ¢» can be simplified

to
Q%i?gb¢ tr [Xa, ® 15, (K*®; + kdy + kdy)]
st. Dy = V50, Op =D, O, =),
Va8, Py = @y, O+ Dy >0, (3.51)
P - Dy >0, O+ Dy +kdy >0,
I tr(®p) + ktr(Dy) + ktr(dg) =1,
Ag, @1dp, (k®; + Py + Py) = Y @ tra, (kP; + Py + D).
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3. Quantum-inspired hierarchy for rank-constrained optimization

Curiously, in the SDPs in Egs. (3.49) and (3.51), the rank constraint k appears as a
parameter that, in principle, can take on non-integer values. Indeed, k can, in some

sense, be considered a continuous rank, which is useful for handling numerical errors.

Observation 3.7. A feasible point ® 4,5, = k*®; + k®y of the SDP in Eq. (3.49) with
parameter k > 1 is also a feasible point ® 4,5, = k">®) + k'®/, of the SDP with param-
eter k' > k.

Proof. The observation is trivial when k' = k. In the following, we assume thatk’ > k >
1. From the relations @y = V&, @}, = V&), and P4, 5, = k*®| +kDy = k2P + k'Y,

we obtain
K + K@, = K2®; + kdy,

(3-52)
K@) + K?®, = kd; + kK*dy,
which further imply that
k(kk' —1) k(k' — k)
I
Q) = k/(klZ — 1)CDI + kl(k/Z — 1>q>V' (3-53)

Thus, we can express @} and @/, in terms of ®; and ®y. The feasibility follows from
the feasibility of ® 4,5, = kK2®; + kdy and

fq . k(K1)
)+ P, = M(CDI iCI>V>,
K —k -1
(@)™ = FE=T) (@ +k2y") + 7, (3-54)
(@) +K (@)™ = & (@] +kayh),

since all coefficients are nonnegative. The linear constraints are obviously satisfied as

. / —
we consider @ AB, = Da,B,- O

A similar statement also holds in the real case.

Observation 3.8. A feasible point ® 4,5, = k*®; + kPy + kD of the SDP in Eq. (3.51)
with parameter k > 1 is also a feasible point ® 4,5, = k">®) + k', + k' CD:P of the SDP
with parameter k' > k.

Proof. In this case, from @}, = V@], &y = (@1,)™1, and K2 + KD, + k), = k2P, +
k®y + kdy, we obtain

o KUK +k—2)
7KK +2) (K —1)

k(K — k)
K (K +2)(k — 1)

k(K — k)
PR —1 o 35

d;+ by +
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Analogous to the proof of Observation 3.7, it is straightforward to verify that the

coefficients in the following equalities are all nonnegative,

P ay . (k+2)(k—1) 2(k" — k)
R o =Y (®r+v) + TE D) (®@1+ @y +k®y) (3.56)
1
(D/I B cI)/V = k’Ek’ )> (cb[ CDV)' (3-57)
D) + Dl + KD, = I];(CDI + Oy + k®¢>. (3.58)

It is also obvious that (®})™1 = &/ and V&), = ;. Hence, the feasibility follows. [

Thus, the set of feasible points grows monotonically with continuous k, and hence,
the same is true for the objective value. Apart from the interpretation as a continuous
rank, this also helps in preventing invalid conclusions because of numerical errors,

since parameters k can be sampled in a region around the considered rank.

3.3 Examples

In this section, we show that our method can be widely used in quantum and classi-
cal information theory. As illustrations, we investigate examples of optimization over
pure states and unitary channels, the characterization of faithful entanglement, ma-
jorization uncertainty relations, and quantum contextuality as problems in quantum
information theory. Concerning classical information theory, we study the Max-Cut
problem, pseudo-Boolean optimization, and the minimum dimension of the orthonor-

mal representation of graphs.

3.3.1 Optimization over pure quantum states and unitary channels

A direct application of our method in quantum information theory is the optimization
over pure states. For example, we consider the optimization problem from incomplete

measurement information

max  (¢| X |@)
lo)

st.  {(@|M;l|p) =m;,

(3.59)
where the M; are the performed measurements and the m; are the corresponding

measurement results. This can be viewed as a refined problem of compressed sensing

tomography [110], in which the feasibility problem is considered. The optimization in

55



3. Quantum-inspired hierarchy for rank-constrained optimization

Eq. (3.59) is obviously a rank-constrained SDP,

max tr(Xp)
st.  tr(Mp) =m;, tr(p) =1, (3.60)

p >0, rank(p) = 1.

Thus, Theorem 3.1 gives the following equivalent conic program

max tr(Xa @ 1pPap)

Dap

s.t. dup € SEP, tI‘(CDAB) =1, VagPap = Paz, (361)
tra(M; @ 1pPap) = mitra(Pagp),

from which a complete SDP hierarchy can be constructed using Theorem 3.2. Simi-

larly, we can also consider the optimization over low-rank quantum states.

Due to the Choi-Jamiotkowski duality described in Section 2.3, the result in Egs. (3.60,
3.61) can also be used for the optimization over unitary (and low-Kraus-rank) chan-
nels. As an example, we show that our method provides a complete characterization
of the mixed-unitary channels, which was recently proved to be an NP-hard problem
[116].

A channel A is called mixed-unitary if there exists a positive integer m, a probability

distribution (p1, p2, ..., Pm), and unitary operators U, Uy, ..., Uy, such that

m
Alp) = ) pillipU;. (362)
i=1
According to the Choi-Jamiotkowski duality, a channel is mixed-unitary if, and only
if, the corresponding Choi state 7, is a mixture of maximally entangled states. Thus,
characterizing the mixed-unitary channels is equivalent to characterizing the mixture

of maximally entangled states,

w = con {9} (g1 | 1) t91) = 32 }. (563
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According to Eq. (3.8), A being mixed-unitary, i.e., 14 € M, is equivalent to the
following feasibility problem

find P 4p € SEP

s.t. trg(Pap) = n, VapPap = Pag, (3-64)

1
’CI‘A1 ®IdA2 ®IdB(CDAB) = ?n ®tI'A(CDAB),

1
Ida, @tra, @ dp(Pap) = 7” R tra(Pap),

where the last constraint follows from tr(|¢) (¢|) = 1,,/n according to Eq. (3.63). This
constraint is redundant for Eq. (3.64), but it may help when semidefinite relaxations

are considered.

A further application comes from entanglement theory. Following Ref. [108], the
optimization over M also provides a complete characterization of faithful entangle-
ment [114], i.e., the entangled states that are detectable by fidelity-based witnesses.
In Ref. [108], the authors prove that a state p € C" ® C" is faithful if, and only if,
¢ := maxyep tr(op) > 1/n. According to Theorem 3.1, the solution ¢ also equals the

following conic program

max tr(pa @ 1P ap)
s.t. ®ap € SEP, Vaopdap = Pyp, (3-65)
1
tI'Al ®IdA2 ®IdB(CDAB) = ?n [ trA(q)AB>/

1
Ida, ®tra, ® Idp(Pap) = ?n @ tra(Pag),

where Hy = Hp = C" ® C". By taking advantage of the complete hierarchy, if for
some N there is {ny < 1/n or g{l < 1/n, then p is unfaithful. In practice, it is already
enough to take ¢ for verifying the unfaithfulness of some states that are not detectable
by any of the known methods [108, 114]. An explicit example for n = 4 is

1—p

1—
= Funen+ =Ll +—Ew v, (5.66)

=16

where

1 4
|x) = \/T—OD;\/MW%
L s (3.67)
ly) = ﬁ;ﬁZVS_M“w'

with p = 23/40 and B4 = (1+1)/+/2. For this state, the SDP relaxation of Eq. (3.65)
gives the upper bound ¢} = 0.24888 < 1/4, which matches the lower bound from
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3. Quantum-inspired hierarchy for rank-constrained optimization

gradient search and is strictly better than the best known upper bound ¢; = 0.25063 >
1/4 from Ref. [108].

3.3.2 Majorization uncertainty relations

As described in Section 2.9, majorization relations provide a way to compare how
chaotic probability distributions are independent from a specific entropy. Let us con-
sider two POVM measurements with effects {E;} and {F;}. For each state p, they
give rise to two probability vectors p; = TrpE; and q; = TrpF. We try to find
a minimal w such that p ® g is majorized by w, i.e. p ® g < w, for all states p.
Minimality means that, for any other w’ that satisfies this condition, it holds that
w < ', . Then, such an w gives rise to a family of entropic uncertainty relations
S(p®q) =S(p)+5S(q) > S(w) for any additive entropy S.

Via the definition of majorization, the search can be reduced to the optimization prob-

lem [117, 118]

Wy = max max Tr(oE;) Tr(oF; 68
T rcpixinlisi=k b (l%T (PE:) Tr(pF) (3.68)
= max max Trl(p ® E;®F)], 6

TC[n]x[m],|S|=k P (i,];elT [(p@p)( il (3.69)

where [n] = {1,..., N} with N being the number of effects E; and similar for [m] and
we have k = 1,2,..., min(N, M) — 1 because for larger k, wy is obviously 1. Since the
outer maximization is over a finite set, we can focus on the inner optimization which

is of the two-copy type central to Chapters 3 and 4.

The easily computable general approximations of wy in Refs. [117, 118] are indeed
exact for k = 1,2. It turns out that the approximations found in Refs. [117, 118] are in-
deed exact for k = 1,2. For k > 3, however, we can apply the hierarchy in Theorem 3.2
to obtain better and better bounds. An interesting example is to consider w3 for mea-
surements in the computational and the Fourier basis in dimension d = 4. In this case,
for T = {(i,j), (i,k), (i,1)}, the method in Refs. [117, 118] gives a maximum value of
(7 +4+/3) /16 which is realized by the state |¢) = v/a/3[0) ++/a/3|1) + Va/3[2) +
V1 —a|3) with a = (24 /3)/4. Due to the symmetry between the bases, the same
result is obtained for T = {(j, i), (k,i),(l,i)}. Finally, for T = {(i, /), (i,k), (1,j)}, their
method yields a value of 1 implying overall only a trivial bound for ws. Our ex-
tension method, on the other hand, gives a certified numerical value of 0.84038 for
this T, probably realized by the state |¢) = +/a|0) + /(1 —a—b)/2|1) + VD |2) +
V({1 —a—1b)/23) witha = (33-5-3/3+9.32/3)/68 and b = (27 +33-3!/3 —5.
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32/3) /204 yielding a value of (121 + 27 -31/3 433 - 32/3) /272. Although the semidefi-
nite program proves this value only up to numerical precision, at least without being
able to guess the analytical expression for the optimum of the dual problem, together
with the analytical result for the T = {(i,/), (i,k), (i,])} and T = {(j,i), (k,i),(1,i)},
this proves that indeed w3 = (7 +41/3) /16. Thus, we established the minimal

w = {196,; (3+2ﬁ) ,11—6 (7+4f3) ,1} (3.70)

for measurements in the computational and the Fourier basis.

Interestingly, further investigations indicate that there might always be an optimal
state which is pure for two measurements but presumably not for more POVMs. It is
worthwhile to examine this observation in more detail and also consider the special

case of projective measurements.

3.3.3 Gram matrix and orthonormal representation

Let ;) € F* (F = Cor F = R) fori = 1,2,...,n be a sequence of vectors, then
the Gram matrix defined as I' = [(ai|aj>]ﬁj:1 satisfies I' > 0 and rank(T') < k. The
converse is also true in the sense that if an n X n matrix in F"*" satisfies I' > 0 and
rank(I') < k, then there exist |a;) € F* for i = 1,2,...,n, such that Iy = (aila;)
[119]. This correspondence can trigger many applications of the rank-constrained
optimization. For example, it can be used to bound the minimum dimension of the

orthonormal representation of graphs.

In graph theory, a graph G is denoted by a pair (V, E), where V is the set of vertices,
and E is the set of edges connecting pairs of vertices. For a graph G = (V,E), an
orthonormal representation is a set of normalized vectors { [a;) € ¥ ‘ i € V}, such
that (a;la;) = 0if {i,j} ¢ E [119]. The minimum dimension problem is to find the
smallest number k such that an orthonormal representation exists. This is not only an
important quantity in classical information theory [119], but also widely used in quan-
tum information theory. For example, it is a crucial quantity in quantum contextuality
theory [120, 121], and can be directly used for contextuality-based dimension witness
[143]. Note that in quantum contextuality, the definition of orthonormal representa-
tions is slightly different, where the adjacent instead of the nonadjacent vertices are
required to be orthogonal to each other, i.e., (a;|a;) = 0if {i,j} € E. In the following,
we will use the standard definition in graph theory. All results can be trivially adapted

to the alternative definition by considering the complement graph.
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3. Quantum-inspired hierarchy for rank-constrained optimization

FIGURE 3.3: [99] For this 11-vertex graph, one obtains that ¢(G) = 4 (up to a numerical
error smaller than 10~1%) using the standard primal and dual problem of the Lovasz
U-function’s SDP characterization [103] and hence, a lower bound of 4 for the minimal
dimension. In contrast, our PPT relaxation of Eq. (3.73) can already exclude both real
and complex orthonormal representations in dimension 4.

By taking advantage of the Gram matrix, the problem of the minimum dimension of
the orthonormal representation [119] can be expressed as

min k

r
st. A(T) =1, I;=0V{ij}¢E, (3.71)
I' >0, rank(T') <k,

where G = (V, E) is a graph with |V| = n vertices, E is the set of edges, A(-) denotes
the map of eliminating all off-diagonal elements of a matrix (completely dephasing
map), and I' € R"*" or I' € C"*" corresponds to the real or complex representation.

Let W be the adjacency matrix of G, i.e., W;; = 1if {i,j} € E and W;; = 0 otherwise,

then the first two constraints in Eq. (3.71) can also be written as (1 — W;;)I';; = ¢j;, i.e.,
AT):=J,—W)oT =1, (3.72)

where J, is the n X n matrix with all elements being one and [X ® Y] ij = XjjYjj is the
Hadamard product of matrices. Then, the existence of a k-dimensional orthonormal
representation is equivalent to the following feasibility problem
find CDAB
s.t. ®yp € SEP, tr(Pyp) = n, (3.73)
Vap®Pap = Pas, (qﬁAB = q’AB) ,
~ 1
Ap @1dp(®ap) = L ®@tra(Pap),

where Hy = Hp = H1 @ Ha = C" @ CF (R" ® R¥), A(-) = Altry(-)], and the extra

constraint <I>£AB = P43 is for the case that I = R only. Note that the inherent symmetry
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FIGURE 3.4: [99] The Max-Cut problem for a graph is to find a cut, i.e., a bipartition,
such that the number of edges that cross the cut is maximized. For the graph shown in
the figure, the Max-Cut is 8 (achieved by the cut 1,2 versus 3,4, 5, 6), which matches
our SDP relaxation ¢, = 8, while the Goemans-Williamson method yields only an
upper bound of ¢; = 9.

presented in Section 3.2.4 can be used to simplify the SDP relaxations.

The Lovasz ¢-function defined by

1
3(G)= min max———:, .
( ) {lai) }iev,|c) i€V | <C|ai> ’2 (3 74)

where the |4;) form an orthonormal representation and |c) is a unit vector, is prob-
ably the best-known way to obtain a lower bound on the minimal dimension of or-
thonormal representations. Note that the value of the Lovédsz ¢-function is indepen-
dent of whether the orthonormal representation is real or complex [119]. For any
k-dimensional orthonormal representation |a;), also |a;) ® |a}) form an orthonormal
representation and, with |c) = ﬁ YK_,|a) ® |a), the bound k > 8(G) is readily ob-
tained from Eq. (3.74). Our method can provide a better bound even for small graphs;

see Fig. 3.3.

3.3.4 Max-Cut problem

The Max-Cut problem is among the best-known rank-constrained optimization prob-
lems [122] and also draws a lot of interest in quantum computing [144, 145]. Given
a graph G = (V,E), the Max-Cut problem is to find a cut, i.e., a bipartition of the
vertices (S, S¢), where S¢ = V'\ S, that maximizes the number of edges between S and
S¢; see Fig. 3.4. A significant breakthrough for the Max-Cut problem was the work by
Goemans and Williamson [122], in which they showed that the Max-Cut problem can

be written as the following rank-constrained optimization

max itr[W(J]n —p)]

b (3.75)
st. A(p)=1,,p >0, rank(p) =1,
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where n = |V|, p € R"™", J, is the n x n matrix with all elements being one, and
W is the adjacency matrix of G. To see why the Max-Cut problem is equivalent to
Eq. (3.75), we denote a cut with the binary vector x € {—1,1}" such thatx; =1ifi € S
and x; = —1if i € S° and let p = xxT, then the number of edges between S and S¢ is
! (i,jee (1 — x;x;), which is equal to the objective function in Eq. (3.75). Furthermore,
the set of all cuts p = xx! can be fully characterized by the constraints in Eq. (3.75).
The idea of the Goemans-Williamson approximation is to remove the rank constraint
in Eq. (3.75) and solve the resulting SDP relaxation, which gives an upper bound ¢;
for the Max-Cut problem.

In the following, we show how our method can give a better estimate compared to
the Goemans-Williamson approximation. By noting that we can add a redundant
constraint tr(p) = n, Theorem 3.5 implies that the Max-Cut problem is equivalent to

the following conic program

1 1
- - 1
rgil;( i tr[WJ,] i tr[W4 ® 1P 4]

s.t. ®dup € SEP, tr(<I>AB) =n,

’ (3.76)
Vap®Pap = ®ap, @5 = Das,

1
Ap @1dp(Pap) = L ®tra(Pag),

where Hy = Hp = R". Consequently, a complete hierarchy of SDPs can be con-

structed from Theorem 3.6.

We have tested the SDP relaxation > (replacing ® 45 € SEP by ®45 > 0) with some
random graphs (randomly generated adjacency matrices). Let us discuss the largest
two graphs that we have tested. For a 64-vertex graph with 419 edges, the Goemans-
Williamson method gives the upper bound || = 299, instead §, = 287. For the 72-
vertex graph with 475 edges, the Goemans-Williamson method gives the upper bound
|&1] = 335, instead ¢ = 321. Furthermore, the optimal ® 45 also shows that the upper
bound ¢, in these two cases are achievable. Hence, ¢, gives the exact solution to the
Max-Cut problem in these examples. Actually, for all the graphs that we have tested,
¢ already gives the exact solution of the Max-Cut problem. At last, we would like
to mention that, although our method gives a much better bound, it is more costly
than the Goemans-Williamson method. For example, the size of the matrix grows
quadratically on the number of vertices for ¢, compared to only growing linearly for

the Goemans-Williamson method.

62



3.3. Examples

3.3.5 Pseudo-Boolean optimization

Similar to the Max-Cut problem, we can apply the method to general optimization of
a real-valued function over Boolean variables. These so-called pseudo-Boolean opti-
mization problems find wide applications in, for example, statistical mechanics, com-
puter science, discrete mathematics, and economics (see [123] and references therein).

As a demonstration, we consider the quadratic pseudo-Boolean optimization

max x'Qx+c'x
* (3.77)
st. x; =41,

where Q € R-1Dx(n-1) ¢ ¢ R"1 and xT = [x1,X2,...,x,_1]; higher-order cases
can be obtained by reducing to quadratic forms [123] or applying the results of Sec-
tion 3.5.4. Notably, performing quadratic pseudo-Boolean optimization problems with
noisy intermediate-scale quantum computers has drawn a lot of research interest [126—
129]. So, the following method may be used to characterize benchmarks of such de-

vices.

The quadratic pseudo-Boolean optimization problem can also be written as a rank-

constrained optimization. The basic idea is to write p as an n X n matrix

xxT x x
_ _ T
p= LT 1] - H ). (678)
Further, we define L as
_|Q 3
= [;CT ol (3-79)

Then, the optimization problem in Eq. (3.77) can be written as the following rank-

constrained SDP
max tr(Lp)

P (3.80)
st. A(p) =1, p >0, rank(p) =1,
which is of a similar form as in Eq. (3.75). By Theorem 3.5, the quadratic pseudo-
Boolean optimization problem is equivalent to the conic program in Eq. (3.76) with

the objective function replaced by tr(Ls @ 15D 4p).

To illustrate the performance of our method, we consider the Boolean least squares
optimization, i.e.,

min ||Ax — b3
x (3.81)
s.t. x;j= +1.
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We have tested our SDP relaxation §,, compared to the widely-used SDP relaxation ¢;
[146], for 1000 random matrices A € R***30 and vectors b € R*’ with elements inde-
pendently normally distributed. For this size, the optimal value ¢ can still be obtained
by brute force. In most cases, the optimum is reached by ¢, while there is a significant
gap between the optimal value ¢ and §;. More precisely, for the 1000 random samples,
we obtain an average ratio of (/) = 99.93% in contrast to (¢1/¢) = 49.32%. Note
that in Eq. (3.81), a the minimization is considered which means that the ¢y provide

lower bounds for ¢ instead of upper bounds.

In passing, we would like to mention that Lasserre’s hierarchy for polynomial opti-
mization can also be used for the pseudo-Boolean optimization [104, 105], however,
the construction of the SDP hierarchy is much easier with our method. Moreover, our
method also makes it more convenient to utilize the symmetry of the optimization

problem, which usually plays a crucial role when solving large-scale problems.

3.4 Arbitrary-precision certified semidefinite programming

Reading Section 3.3.3, one might stumble over the remarkably high precision obtained
for the Lovasz 9-function at the graph given in Fig. 3.3, namely ¢(G) = 4 +10~1%.
As indicated in the text, we find feasible points of the standard primal and dual prob-
lem of the Lovédsz ¢-function’s SDP characterization [103] which provide a certified
lower and upper bound to ¢(G), respectively. To do so, we use the arbitrary-precision
SDP solver SDPA-GMP [147-149] to obtain highly-accurate numerical solutions to the
SDPs.

Then, using fractions, we find exact feasible points close to the numerical solution.
To ensure positive semidefiniteness, we examine the characteristic polynomial p(A) =
det(AL — @) whose roots are the eigenvalues of the K x K-matrix ®. An efficient way

to compute the coefficients ¢ in the decomposition

K
p(A) =Y Ak (3.82)
k=0

analytically is to use the Faddeev-LeVerrier algorithm [150, 151]. Using Descartes’ rule
of signs [152], the positivity of ® is determined by the signs of the coefficients cj [153].
More precisely, we consider the characteristic polynomial of —® with coefficients ¢
for convenience. If ¢ > 0 for all k, then Eszo &AK > 0 for A > 0 and hence, —® is

negative semidefinite, i.e., ¥ is positive semidefinite. On the other hand, writing 7(A)
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as (note that ¢x = 1)

K

PO =TT(A=4)) = L&A’ (583)
j=0 k=0

where A; are the eigenvalues of —®, negative semidefiniteness of —® implies that ¢, >

0 by the expansion of the product because —;\j > 0. Thus, ® is positive semidefinite

if, and only if, all the ¢ are nonnegative.

One possibility to find exact feasible points from approximate solutions uses the stan-
dard form for SDPs in Eq. (2.76). In this form, the constraints are incorporated into
the basis F;. Then, finding a linear combination ) ;.o #;F; > 0, we can obtain an exact
feasible point from an almost semidefinite approximate solution by adding a small
multiple of this linear combination and hence, a certified upper of lower bound for
the optimal value. Sometimes, the exact solution can even be guessed from the numer-
ical result and verified as described. In this way, we were able to certify that indeed
9(G) > 4, however, we could not find a certificate for 9(G) < 4 and hence, a small

uncertainty remains.

3.5 More general results on rank-constrained optimization

In this section, we consider extensions of the problem in Eq. (3.1) and general cases
of rank-constrained optimization. For simplicity, we only consider the optimization
over complex matrices. All results can be similarly applied to the optimization over
real matrices by adding the partial-transpose-invariance constraint q’%g = ®yp or

T,
D5, = Puap.z.

3.5.1 Inequality constraints

Starting from the following rank-constrained SDP with inequality constraints

max tr(Xp)
st. Alp) <Y, tr(p) =1, (3.84)

p >0, rank(p) <k,

where A is a Hermiticity-preserving map [154], we can still define the feasible region

F in C"" and its purification P in C"**"*, similar to Egs. (3.2, 3.3), as

F={p| Alp) <Y, tr(p) = 1,p > 0,rank(p) < k}, (3-85)
P={lo) (| | Allg) (@) <Y, (plp) =1}, (3.86)
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3. Quantum-inspired hierarchy for rank-constrained optimization

where A(-) = Altry(-)]. Again, we denote the solution of Eq. (3.84) as &. In this case,

the proof of Theorem 3.1 does not work, because although the constraints

®up € SEP, tr(®ap) =1, VapPap = Das,

. (3.87)
A®1dg(®ap) <Y @tra(Pap),

still provide a necessary condition for trg(®4p) € S := conv(P), they are no longer
sufficient. This is because contrary to the equality case, the pure states in the decompo-
sition of ®4p can no longer be guaranteed to be in P for the inequality case. However,

the complete hierarchy analogously to Eq. (3.22) still provides the exact solution ¢.

Theorem 3.9. For ' = C, let ¢ be the solution of the rank-constrained SDP in Eq. (3.84).
Then, for any N, ¢ is upper bounded by the solution ¢y of the following SDP hierarchy

max tr()?A & ]lB---Zq)ABmZ)
Dyp..z

st. ®up..z >0, tr(CIDAB...Z) =1, (388)
Pl ®ap..zPN = Pap..z,

A ® IdB‘--Z(q)AB-nZ) <Y® tl‘A(q)AB...Z).

Furthermore, the SDP hierarchy is complete, i.e., Cn+1 < ¢y and imy_ 1o EN = §.

Similarly, any criterion for the full separability of ®4p...; or the unnormalized state
Y @ try(Pap..z) — A @1dp...z(Pap...7), such as the PPT criterion, can be added to the

optimization in Eq. (3.88), which can give a better upper bound for the optimization

in Eq. (3.84).

For simplicity, we only present the intuition of the proof of Theorem 3.9 here; see
[99] for a rigorous proof. The property ¢{ni+1 < ¢n follows from the hierarchical
property that if ®4p...z7 is within the feasible region of level N 41, then ®4p...; =

try (P ap...zz) is within the feasible region of level N.

For the convergence property, we consider a separable variant of the optimization in
Eq. (3.88) by replacing ®4p...z > 0 with ®4p...z € SEP, and denote the corresponding
solutions as ¢y, i.e., add a tilde to distinguish the solution with the separability con-
straint from the original {y. Then, the quantum de Finetti theorem [135, 138] implies

that

lim &y = li . .
Nggooéw Nggméw (3-89)

Now, we assume that the ¢y are achieved by the separable states

Ban-z = [ Ful) g} (oI, (390)
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3.5. More general results on rank-constrained optimization

where the fy(¢)dy are N-dependent probability distributions, and dy denotes the
normalized uniform distribution. As the set of probability distributions on a compact
set is also compact in the weak topology [155], we can take fo(1)dy as a limit point
of fn(1)dy. Thus, we get an N-independent probability distribution fo(¢)di. Let

&%, = /w Fool) [ ()N dyp, (3.91)

which satisfies all the constraints in Eq. (3.88) for arbitrary N by the hierarchical prop-

erty, and moreover

NgToo I = ngﬂ tr (Xa®Y) = tr (Xa9%), (3.92)
where

SN = trp.z (Pag..z) = /IPfN(llJ) [¥) (p|dy, (3.93)

5?ﬂmz@%ﬂ=AAWWMWW- (3.94)

By Eq. (3.89), to prove that limy_, (N = ¢, we only need to show that qND‘X €
conv(P). To this end, it is sufficient to show that Y, := A(|¢) (¢|) < Y whenever
feo(@) # 0. By plugging Eq. (3.91) into the last constraint in Eq. (3.88), we get that for
arbitrary N

/¢ Fol ) (Y = Yp) @ [9) (N dyp > 0, (3.95)

which implies that
S, fo @)Y = Yp)l (gl Yy

>0 (3.96)
T, Tolp) PNay
for any \(p) and N. Note that for any ¢ > 0, the integral over the complement of the
e-ball BS(e) := { ) (¢| | [{plp)[* <1 —¢}is
Jog o)l ) [P dy
=0, (3.97)

lim
N oo J‘!¢M¢PNd¢

because while the numerator decreases to zero exponentially with N, the denominator
/ 1p| (@lp)|*Ndy = 1/ dim(Py,;) decreases only polynomially according to Eq. (3.32) and
the relation fll’ ) (p|“N dy = Py, / dim(Py;) [154]. Hence,

R~ sy 598)
) [2Ndy ¢ 39

Nll}:r#loo fl,b
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3. Quantum-inspired hierarchy for rank-constrained optimization

where 6(+) is the Dirac-delta function. Then, in the limit N — o0, Eq. (3.96) gives
that

/w o) (Y = Yp)o( — @)dip = fuol(9)(Y = Y,) > 0, (3.99)

and hence, Y, <Y when fo(¢) # 0.

3.5.2 Non-positive-semidefinite variables

Second, we study the rank-constrained optimization for non-positive-semidefinite and

even non-square matrices. Consider the rank-constrained optimization

max  tr(Xw) + tr(XTw")
w (3.100)
st. A(w) =Y, rank(w) <k,

where w € C"™*", and the form of the objective function is chosen such that it is real-
valued. Here, we impose an extra assumption that the optimal value can be attained

on bounded w, i.e., we consider the optimization

max tr(Xw) + tr(X w")
w

(3.101)
st. A(w) =Y, |w|]| <R, rank(w) <k,
where ||w]|| = tr(Vww?) is the trace norm of w, and R is a suitably chosen bound

depending on the actual problem. Especially, by taking R — +oo, Eq. (3.101) turns to

Eq. (3.100). The key observation for solving Eq. (3.101) is the following lemma.

Lemma 3.10. A matrix w € F™" (F = C or F = R) satisfies that rank(w) < k and
|lw|| < R if, and only if, there exists A € F"*™ and B € F"*" such that

A w

Q.=
w! B

(3.102)

satisfies that Q) > 0, tr(Q)) = 2R, and rank(Q)) < k.

Proof. We take advantage of the following observations from elementary algebra:
Observation (i): For any a,b, x > 0 satisfying ab > x?, we have that a +b > 2x.
Observation (ii): For any y > x > 0, there exist a,b > 0 such that ab = x? and
a+b=2y.

We first prove the sufficiency part. The rank statement is obvious because the rank of

a submatrix is no larger than that of the whole matrix, i.e., rank(w) < rank(Q) < k.
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3.5. More general results on rank-constrained optimization

Now, we show that ) > 0 and tr(Q)) = 2R imply that ||w| < R. Consider the singular
value decomposition of w
w=Uu'DV, (3.103)

where U and V are unitary matrices, D;; > 0, and D;; = 0 for i # j. Furthermore, we
have |w| = ¥; D;;. Let

~ u o ut o UAuUt D
O = O = .10,
0 Vv 0o Vvt DT VBVt (3.104)
Then, (2 > 0 implies that
(UAU+)ii(VBV+)ii Z Dlzz (3105)
Thus, Observation (i) implies that
(uAu®y; + (vBvh),; > 2Dy, (3.106)
whose summation gives
() =Y [(uzxu*)ii + (VBV*)“} >2Y Dy (3.107)
i

i
Hence, tr(Q)) = 2R implies ||w|| = Y; D;; < R.

To prove the necessity part, we again consider the decomposition in Eq. (3.104). Then,

rank(w) < k implies that D;; = 0 when i > k. One can easily verify that () satisfies

that Q) > 0 and rank(Q) = rank(Q) < k when

(UAU);; =0 fori#jandi=j>k,
(VBV’L)ij =0 fori#jandi=j >k,

(3.108)
(uAu®); >0, (VBVY; >0 fori=1,2,...k

(

UAUY);(VBVY);; = D3 fori=1,2,...k

Then, Observation (ii) and the bound constraint ||w|| = ¥%_; D;; < R imply that we can
choose suitable (UAU"); and (VBV');; for i = 1,2,...,k such that tr(Q) = tr(Q) =
Yk [(uAUt); + (VBVY),] = 2R. O

By taking advantage of Lemma 3.10, the optimization in Eq. (3.101) can be written as

max tr(LQ))
(@)

st. AoP(Q) =Y, tr(Q) = 2R, (3-109)
O >0, rank(Q) <k,
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3. Quantum-inspired hierarchy for rank-constrained optimization

where
0 X'

X 0

A w

O =
w' B

= , P(Q)) = w. (3.110)

4

Then, after normalization, Eq. (3.109) is of the simple form given in Eq. (3.1). Thus, all

the methods developed in Section 3.2 are directly applicable.

Furthermore, by applying the technique from Section 3.5.1, it is also possible to con-
sider element-wise inequality constraints of the form A(w) < Y for the optimization

in Eq. (3.100), where =< denotes the element-wise comparison.

3.5.3 Unnormalized variables

Third, we consider rank-constrained semidefinite optimization without normalization

constraint. Formally, we consider the general rank-constrained SDP

max tr(Xp)
0
st. Alp) =Y, M(p) < Z, (3.111)
p >0, rank(p) <k,

which contains both an equality constraint A(p) = Y and an inequality constraint
M(p) < Z.

The first method we can try is to find a matrix C such that W := A*(C) > 0, where
A* is the dual/adjoint map of A [154]. If this is possible, we can add a redundant
normalization-like constraint

tr(Wp) = w, (3.112)

where w = tr(CY), which follows from A(p) = Y. The strictly-positive-definite prop-
erty of W implies that w > 0, otherwise the problem is trivial (0 = 0). Then, by
applying the transformation g = w~'v/Wp\/W, the general rank-constrained SDP is
transformed to a form with normalization condition for p. Thus, the methods in Sec-

tion 3.2 and 3.5.1 are directly applicable.

In general, we can combine the techniques of the inequality constraint and the non-
positive-semidefinite variable to tackle the problem. Again, we impose an extra as-

sumption that the optimization can be attained on bounded p, i.e., we consider the

optimization
max tr(Xp)
0
st. Alp) =Y, M(p) < Z, tr(p) <R, (3.113)
p >0, rank(p) <k,

70



3.5. More general results on rank-constrained optimization

where R is a suitably chosen bound depending on the actual problem. By taking

advantage of Lemma 3.10, the optimization in Eq. (3.113) can be written as

max tr(LQY) (3.114)
s.t. AoP(Q) =Y, MoP(Q) <Z, P(Q) >0,

tr(QQ) = 2R, O >0, rank(Q)) <k,

where
0 X

X , P(Q2) =p. (3.115)

1
)

p B

Eq. (3.114) is a rank-constrained SDP with normalization constraint. Thus, by applying
the methods from Section 3.2 and Section 3.5.1, a complete SDP hierarchy can be

constructed.

3.5.4 Quadratic optimization and beyond

Finally, we show that our method can also be used for (rank-constrained) quadratic
and higher-order optimization. The key observation is that quadratic functions over p

can be written as linear functions over p ® p. For example, we can rewrite

tr(XpYp) = 3 6{V, X & Vo), e
tr(Xp) tr(Yp) = tr[(X @ Y)(p ® p)],

where V is the swap operator, and the anti-commutator {-, -} is taken to ensure Her-
miticity. Thus, without loss of generality, we consider the following rank-constrained
quadratic optimization

m;ix tr[Xa,B, (04, ® p5,)]

st. Alp) =Y, tr(p) =1, (3.117)
p >0, rank(p) <k,

where Ha, = Hp, = C", pa, and pp, denote the same state p on H,, and Hp,,
respectively, and X 4, p, is some Hermitian operator on H 4, ® H 4,. The generalization

to the general cases as in the previous subsections is obvious.

To solve Eq. (3.117), we consider F; := {p®p | p € F} and P; := {|¢p) (¢| ®
@) (| | |@) (¢| € P}; see Fig. 3.5. From the definitions in Egs. (3.2, 3.3, 3.7), we have

tra,B,(S2) = conv [ tra,p, (P2)] = conv(F?). (3.118)
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Hi1QH1 = Ha R Hp = Ha X Hp

F»r = P> = S,

pRp = |p)el®le) el = YLipile) {pil®?

FIGURE 3.5: [99] An illustration of the relations between the two-party feasible region
F>, the two-party purification P,, and the two-party extension S,.

As the set S is already fully characterized by Theorem 3.1, the rank-constrained

quadratic optimization in Eq. (3.117) is equivalent to the conic program
max tI‘[XABq)AB}
D
s.t. ®dup € SEP, tI‘(CI)AB) =1, VagPap = Pap, (3.119)
/KA ® IdB((DAB) =Y® trA(q)AB)/

where X5 = X A.B; @ 1 4,B,. Accordingly, a complete hierarchy can be constructed

similarly as in Theorem 3.2.

We conclude this section with a few remarks. First, taking k = n (i.e., taking the
rank bound to be the dimension of p) corresponds to the quadratic program without
rank constraint. Second, this method can be used for various uncertainty relations in
quantum information, in which the minimization of the variance is automatically a
quadratic program. Finally, the above procedure can be easily generalized to higher-
order programming. The main idea is that all the results in Section 3.2 can be directly

generalized to fully characterize

Sy = conv ({ I9) (9I”" | I9) (9] € P}), (3.120)

and Sy satisfies that tra,p,...z,(Sn) = conv(Fy), where Fy := {p®N ‘ pE .7-"}. More
precisely, recall that P is defined as

P={lp) (gl | Allp) (p]) =Y, {plp) =1}. (3.121)
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Then, we show that ®4pc...z € Sy if, and only if,

D opc...z € SEP, tI‘(CDABc...Z) =1, (3.122)
P ®apc..zPy = P apc...z, (3-123)
Ap ®Idpc..z(®Papc..z) = Y @ tra(Papc..z)- (3.124)

Similarly to the case of S, the constraints in Egs. (3.122) and (3.123) imply that ®4pc...z
is a separable state in the symmetric subspace, which always admits the form [133]
Papcz =Y pilo) (@i, (3.125)
i
where the p; form a probability distribution and the |¢;) are normalized. Thus,

Eq. (3.124) implies that
Ea®EFRtrc.z(Papc.z) =) piEi®Ef =0, (3-126)
i

where E; = E(|¢;) (¢i]). Then, |¢;) (p;| € P follows from Egs. (3.17,3.18), which
prove that ®4pc...; € Sy. Similarly, in the case of I = R, we only need to add the

partial-transpose-invariant constraint

QA =Dz (3-127)

Thus, (rank-constrained) higher-order optimizations over p®" are fully characterizable
with Sy.

3.6 Conclusion

We have introduced a method to map SDPs with rank constraints to optimizations over
separable quantum states. This result establishes a new connection between the theory
of quantum entanglement, convex optimization, and rank-constrained semidefinite
programming. While the DPS hierarchy characterizes entanglement via a hierarchy
of semidefinite programs, we reformulate rank-constrained SDPs as conic optimiza-
tions using the cone of separable matrices, which again can be solved through a SDP
hierarchy. Furthermore, we studied various examples and demonstrated the practical
viability of our approach. In particular, we show how certified bounds with arbitrary
precision can be obtained from the SDP relaxations. Since the quantum de Finetti

theorem is indispensable for the completeness of our hierarchy, we commented on
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the uniqueness of multi-copy decompositions, which is a common misunderstanding.

Finally, we discussed several extensions to more general problems.

For further research, there are several interesting directions. First, concerning the pre-
sented method, a careful study of possible large-scale implementations, including the
exploitation of possible symmetries, is desirable. This may finally shed new light on
some of the examples presented here. Second, another promising method for solv-
ing the convex optimization problems in Theorems 3.1 and 3.5 is to consider the dual
conic programs, which correspond to the optimization over entanglement witnesses.
The benefit of this method will be that any feasible witness operator can provide a
certified upper bound for the optimization problem. Third, on a broader perspective,
it would be interesting to study other SDPs with additional constraints. An example is
conditions in a product form, which frequently occur in quantum information due to
the tensor product structure of the underlying Hilbert spaces. Finding SDP hierarchies

for such problems will be very useful for the progress of this field.
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4 A complete hierarchy for the
pure-state marginal problem in

quantum mechanics

Prerequisites

2.2 Quantum mechanics
2.5 Entanglement
2.7 The marginal problem and quantum codes

2.8 Semidefinite programming

4.1 Introduction

The main parts of this chapter have been published as Publication (C) [134]. Clarifying
the relation between the whole and its parts is crucial for many problems in science.
In quantum mechanics, this question manifests itself in the quantum marginal prob-
lem. For a given multiparticle quantum state |¢) it is straightforward to compute its
marginals or reduced density matrices on some subsets of the particles. The reverse
question, whether a given set of marginals is compatible with a global pure state, is,
however, not easy to decide. Still, it is at the heart of many problems in quantum
physics. Already in the early days it was a key motivation for Schrodinger to study
entanglement [156], and it was recognized as a central problem in quantum chemistry
[157]. There, often additional constraints play a role, e.g., if one considers fermionic
systems. Then, the anti-symmetry leads to additional constraints on the marginals,
generalizing the Pauli principle [158, 159]. A variation of the marginal problem is
the question whether or not the marginals determine the global state uniquely or not
[160-162]. This is relevant in condensed matter physics, where one may ask whether
a state is the unique ground state of a local Hamiltonian [163, 164]. Many other cases,
such as marginal problems for Gaussian and symmetric states [165, 166] and applica-
tions in quantum correlations [167], quantum causality [168], and interacting quantum

many-body systems [169, 170] have been studied.
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4. A complete hierarchy for the pure-state marginal problem in quantum mechanics

With the emergence of quantum information processing, various specifications of the
marginal problem moved into the center of attention. In entanglement theory a pure
two-particle state is maximally entangled, if the one-particle marginals are maximally
mixed. Furthermore, absolutely maximally entangled (AME) states are multiparticle
states that are maximally entangled for any bipartition. This makes them valuable
ingredients for quantum information protocols [8o, 81], but it turns out that AME
states do not exist for arbitrary dimensions, as not always global states with the de-
sired mixed marginals can be found [86, 171-173]. In fact, also states obeying weaker
conditions, where a smaller number of marginals must be maximally mixed, are of
fundamental interest, but in general it is open when such states exist [174-176]. More
generally, the construction of quantum error correcting codes, which constitute fun-
damental building blocks in the design of quantum computer architectures [177-179],
essentially amounts to the identification of subspaces of the total Hilbert space, where
all states in this space obey certain marginal constraints. This establishes a connection
to the AME problem, which consequently was announced to be one of the central
problems in quantum information theory [180]. Although an AME(4, 6) state, the spe-
cific instance which was asked for in Ref. [180], has been found recently [181], the

general existence problem still remains unsolved.

In this chapter, we rewrite the marginal problem as an optimization problem over
separable states, which can be seen as a special case of the optimization problem
considered in Chapter 3. Here and in the following, the term marginal problem usu-
ally refers to the pure-state marginal problem in quantum mechanics. This rewriting
allows us to transform the nonconvex and thus intractable purity constraint into a
complete hierarchy of conditions for a set of marginals to be compatible with a global
pure state. Each step is given by a semidefinite program (SDP), the conditions become
stronger with each level, and a set of marginals comes from a global state, if, and
only if, all steps are passed. There are at least two advantages of writing the marginal
problem as an SDP hierarchy: First, the symmetry in the physical problem can be
directly incorporated to drastically simplify the optimization (or feasibility) problem.
Second, many known efficient and reliable algorithms are known for solving SDPs
[89], which is in stark contrast to nonconvex optimization. To show the effectiveness
of our method, we consider the existence problem of AME states. By employing the
symmetry, we show that an AME state for a given number of particles and dimension
exists, if, and only if, a specific two-party quantum state is separable. In fact, this
allows us to reproduce nearly all previous results on the AME problem [17] with only
few lines of calculation. Finally, we show that our approach can also be extended to

study the existence problem of quantum codes.
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1 1

2 2
n-body ¢ e n-body
system A @3 3 system B
®on ®n

FIGURE 4.1: [134] An illustration of the two-party extension for the marginal problem.
In the marginal problem one aims to characterize the pure states |¢) on n particles,
which are compatible with given marginals. The key idea of our approach is to drop
the purity constraint and to consider mixed states p with the given marginals. Then,
the purity is enforced by considering a two-party extension @ 4p.

4.2 Connecting the marginal problem with the separability

problem

The formal definition of the marginal problem is the following: Consider an n-particle
Hilbert space H = Q! ;H;, and letZ C {I | I C [n] ={1,2,...,n}} be some subsets
of the particles, where the reduced states p; are known marginals. Then, the problem
reads

find lp)

(4.1)

st. tre([g) (o) =p1, 1 €L
Here, I° = [n] \ I denotes the complement of the set I. Two facts are worth mentioning;:
First, if the global state |¢) (¢| is not required to be pure, then the quantum marginal
problem without purity constraint is already an SDP. Second, if the given marginals
are only one-body marginals, that is Z = {{i} | i € [n]}, the marginals are non-
overlapping and the problem in Eq. (4.1) was solved by Klyashko [79]. For overlapping
marginals, however, the solution is more complicated, and this is what we want to

discuss in this work.

The main idea of our method is to consider, for a given set of marginals, the compatible
states and their extensions to two copies. Then, we can formulate the purity constraint
using an SDP. We denote the two parties as A and B, and each of them owns an n-body

quantum system; see Fig. 4.1.

Theorem 4.1. There exists a pure quantum state |@) that satisfies tric(|@) (¢|) = pr for all

I € T if, and only if, the solution of the following convex optimization is equal to one,

max tr(Vap®Pap) =1 (4-2)

Dup

s.t. ® 4 € SEP, tr(<I>AB) =1, (43)
trAlc(q)AB) :Pl®trA((DAB) VIeT. (44)
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where SEP denotes the set of separable states w.r.t. the bipartition (A|B), Aje denotes all
subsystems A; for i € I¢, and similarly for Bje.

This result follows directly from Theorem 3.1 for rank-1-constrained optimization by

noting that the permuation matrix Vg has eigenvalues +1.

Before proceeding further, we would like to add a few remarks. First, in Theorem 4.1

the constraint in Eq. (4.5) can be replaced by a weaker condition

tra, . (Pap) =p1@p1 VIEL, (4.5)

This is because for any separable quantum state ® 45 with tr(Vag®Pap) = 1, Eq. (4.5)

implies Eq. (4.4). More precisely, in this case, we can write ® 45 as [133]
DPap = ZPH Pu) (Pl @ ) (Pul - (4.6)
7

Then, with Eq. (4.5) we have that

tra.cs (Pas) = Y pupl” @) = pr @ p1. (47)
H
Furthermore, the following lemma implies that p&” ) = p; for all y, and hence,
tra(Pap) = 1@ Y Py [Pu) (Yl = p1 @ tra(Pap). (4.8)

u

Lemma 4.2. Any state of the form p ® p is an extreme point of the convex set conv{p ® p |
p >0, tr(p) =1}

Proof. Suppose that
PRP =) Pubu @ Pus (4.9)
7

for some probability distribution {p,}, and quantum states p,. Without loss of gen-
erality, we assume that all p, are strictly positive and we want to show that all p, = p.

Let X be any Hermitian matrix such that tr(Xp) = 0, then we have
tr[(X @ X) (0 ®p)] = Y putr[(X @ X)(on @ pp)] = 3 ppltr(Xoy)]*. (4.10)
K K

Combining Eq. (4.10) with the relations tr[(X ® X)(p ® p)] = [tr(Xp)]> = 0 and
tr(Xp,) € R, we get that
tr(Xpu) =0, (4.11)
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for all y and all X such that tr(Xp) = 0. This implies that

Pu = CuP, (4.12)

for some ¢, € C. Furthermore, tr(p) = tr(p,) = 1 implies that c, = 1, i.e., p, = p for
all u. Thus, we proved that p ® p are extreme points. ]

Hence, the replacement of Eq. (4.4) by Eq. (4.5) will lead to an equivalent result as in
Theorem 4.1. However, when considering relaxations of the optimization in Eq. (4.2)
by replacing the separability constraint in Eq. (4.3) with some entanglement criteria,

Eq. (4.4) may be strictly stronger for certain marginal problems.

Second, physically, tr(Vap®P4p) = 1 means that ®4p is a two-party state acting on

the symmetric subspace only. Hence, Theorem 4.1 is also equivalent to the feasibility

problem
find D 4p € SEP (4.13)
s.t. VAB(DAB = (DAB/ tr(CIDAB) = 1, (414)
trAIc(cDAB) :p1®tI'A(CDAB) VIiel. (415)

Furthermore, any feasible state ® 5 can be used to construct the global state |¢) with
the desired marginals, as the constraints in Theorem 4.1 imply that any pure state in

the separable decomposition of ® 45 yields a desired global state.

Third, the separability condition in the optimization Eq. (4.3) is usually not easy to
characterize, hence relaxations of the problem need to be considered. The first candi-
date is the positive partial transpose (PPT) criterion [57, 58], which is an SDP relaxation
of the optimization in Eq. (4.2). The PPT relaxation provides a pretty good approxima-
tion when the local dimension and the number of parties are small. In the following,
inspired by the symmetric extension criterion [62], we propose a multi-party extension
method as in Theorem 3.2 and obtain a complete hierarchy for the marginal problem.
We denote the N parties as A, B, ..., Z, and each of them owns an n-body quantum

system. For any H®N := H 4 @ Hp @ - - - @ H, the symmetric subspace is defined as
{|‘1f> e HN | Ve [¥) = [¥) VZ € SN}, (4.16)

where Sy is the permutation group over N symbols and Vs are the corresponding

operators on the N parties A, B,...,Z; see Fig. 4.2. Let P;]r denote the orthogonal
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Permutation Vx, ¥ € Sy Vs = V(‘TX"

A B e 7
1 1 eeeeen 1 Vo, 0€ SN
°2 2 [ 02 V,, o€ Sy
3 3 eeeees 3 Vo, 0€ Sy
o o S on Vy, 0 € SN

FIGURE 4.2: [134] An illustration of the complete hierarchy for the marginal problem.
In order to formulate the hierarchy for the marginal problem, one extends the two
copies in Fig. (4.1) to an arbitrary number of copies N. If the marginal problem has a
solution |¢), then there are multi-party extensions ® 45...z in the symmetric subspace
specified by Vs, = V" for any number of copies, obeying the semidefinite constraints
in Egs. (4.19, 4.19).

projector onto the symmetric subspace of H¥N. P can be explicitly written as

1
P = N Y Ve (4.17)
T XeSn
In particular, for two parties we have the well-known relation P2+ = (Lap + Vag)/2,
which implies that tr(Vag®ag) = 1 if, and only if, tr(P @) = 1. Also, VapPap =
® 43 is equivalent to PZ+ ® 4P, = ®4p. Hereafter, without ambiguity, we will use Pﬁ

to denote both the symmetric subspace and the corresponding orthogonal projector.

Then, the SDP hierarchy characterizing the marginal problem is given by the following

theorem.

Theorem 4.3. There exists a pure quantum state |@) that satisfies tric(|@) (@|) = p; for all
I € T if and only if for all N > 2 there exists an N-party quantum state ® ap...z such that

P ®ap...zPy = Pap..z, (4.18)
Dyp..z >0, tr(Pap..z) =1, (4.19)
tra,.(Pap..z) = p1 @ tra(Pap..z) VIl (4.20)

Each step of this hierarchy is a semidefinite feasibility problem, and the conditions become more

restrictive if N increases.

This result is a direct corollary of Theorem 3.2.

Notably, we can add any criterion of full separability, e.g., the PPT criterion for all
bipartitions, as extra constraints to the feasibility problem. Then, Theorem 4.3 still
provides a complete hierarchy for the quantum marginal problem. In addition, the
quantum marginal problems of practical interest are usually highly symmetric. These

symmetries can be utilized to largely simplify the problems in Theorems 4.1 and 4.3.
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Indeed, taking advantage of symmetries is usually necessary for practical applica-
tions, because the general quantum marginal problem is QMA-complete [182, 183].
Notably, even for non-overlapping marginals, despite recent progress in Refs. [184-
186], it is still an open problem whether there exists a polynomial-time algorithm. In
the following, we illustrate how symmetry can drastically simplify quantum marginal

problems with the existence problem of AME states.

4.3 Absolutely maximally entangled states

For convenience, we recall the definition of AME states introduced in Section 2.7. An
n-qudit state |¢) is called an AME state, denoted as AME(n,d), if it satisfies

te(19) (9]) = V1€ T, (4:21)

where Z, = {I C [n] | |I| = r} and r = |n/2]. Thus, Egs. (4.13, 4.14, 4.15) imply that
an AME(n, d) exists if, and only if, the following problem is feasible,

find ® .5 € SEP (4.22)

s.t. tr(Pap) =1, VapPap = Pas, (4-23)
1,

tra, (Pap) = d—‘j Qtra(Pap) VI € L. (4.24)

Direct evaluation of the problem is usually difficult, because the dimension of ®4p
is d?" x d*", which is already very large for the simplest cases. For instance, for the

4-qubit case, the size of ® 4p is 256 x 256.

To resolve this size issue, we investigate the symmetries that can be used to simplify
the feasibility problem. Let X denote the set of ®,p that satisfy the constraints in
Egs. (4.22, 4.23, 4.24). If we find a unitary group G such that forall g € Gand ®45 € X
we have that

gPapg’ € X, (4.25)

then the convexity of X implies that we can add a symmetry constraint to the con-

straints in Eqs. (4.22, 4.23, 4.24), namely,

gPapg' = PapV g €G. (4.26)

In the following, we will show that the symmetries of the set of AME states (if they
exist for given n and d) are restrictive enough to leave only a single unique candidate

for @ 43, for which separability needs to be checked. The set of AME(n, d) is invariant
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4. A complete hierarchy for the pure-state marginal problem in quantum mechanics

under local unitaries and permutations on the n particles, so by Theorem 4.1 (or by

direct verification) the following two classes of unitaries satisfy Eq. (4.25),

U@ - @U,oU - U, YU € SU(d), (4-27)
nRmV mTeS,, (4-28)

where © = (A1, Az, ..., Ay) = 11(By, By, ..., By) denotes the permutation operators
on H 4 and Hp. Note that the U; in Egs. (4.27, 4.28) can be different.

First, let us view V4p and ® 45 as Via.,, and ®12.,, where i labels the subsystems A;B;.

Hereafter, without ambiguity, we will omit the subscripts of
1:= ]ldz, V.= VAiBi’ (429)

for simplicity. From this perspective, V4p can be written as V%", and the sym-
metries in Egs. (4.27,4.28) can be written as @/ ,(U; ® U;) for U; € SU(d) and
IT = I1(A1By, A2By, ..., AyBy) for IT € S, respectively. According to Werner’s re-
sult [187], a (U ® U)-invariant Hermitian operator must be of the form a1 + BV with
a,p € R. This implies that a [®/_; (U; ® U;)]-invariant state must be a linear combi-

nation of operators of the form

n

Q) (@il + BiV) V a;, Bi € R. (4-30)
i=1
In addition, we take advantage of the permutation symmetry under I1 € S, to write
any invariant ® 45 as
n . .
®AB = Z xjp{v@l ® ]1®(n_1) }, (431)
i=0
where P represents the sum over all possible permutations that give different terms,
eg, P{VR1I®1}=VRII+10VRI+11xV.

Before proving the existence and uniqueness of the symmetrized ® 45, we show how
to simplify the constraints in Eqs. (4.23,4.24) by taking advantage of Eq. (4.31). The
meaning of this simplification is two-fold: first, it gives an intuition about why the
symmetrized ®,4p is uniquely determined; second, it can be directly generalized to
other marginal problems, such as the m-uniform states and quantum codes, in which

the symmetrized ® 4p are no longer uniquely determined.

e Normalization constraint tr(®4p) = 1:

tr(®ap) =tr |} xP{V® ]l®("_i)}] =) <Tll> Al = 1. (4-32)

i=0 i=0
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e Symmetric subspace constraint Vog®ap = Pp:

Vap®@ap = V" ®@up = Y 5PV @19} = ¥ 5 P{V¥ 019070}, (4.33)

n
i=0 i=0

which implies that
X, =x,_;Vi=01,...,n—r—1, (4-34)

where r = [n/2].

e Marginal constraints tra,. (®ap) = % QR tra(®ap):

Because @ 4p is invariant under permutations I1 € S, it is sufficient to consider I° =
{1,2,...,n —r}. Further, as % @ tra(Pap) o« Lyn+r, it must also hold that try (P ap) o«
14:+. Hence, all terms that contain V in try4,, (®4p) must be zero. Thus, the marginal

constraints tra , (®ap) = I%’ ® tra(Pap) are equivalent to
n—r - )
Z <n ; r) A" xg; =0Vs=1,2,...,r. (4-35)
i=0

Egs. (4.32,4.34, 4.35) provide n 4 1 linear equations, which can uniquely determine the

n + 1 parameters (xo, x1,...,X,) in ®4p.

To rigorously prove the existence and uniqueness of ® 45, we also take advantage of

the following lemma; for more details about the dual basis see, e.g., Ref. [188].

Lemma 4.4. Let {|x;) }; be a basis for a finite-dimensional Hilbert space, which is not required
to be orthogonal or normalized. Then, there exists a unique vector |y) satisfying the linear
equations {(x;|y) = yi}: for any {y;}i. Concretely, let {|%;)}; be the dual basis for {|x;)};,
ie., (xi|%;) = &ij, then |y) = ¥y |%i).

Let S be the space generated by the linearly independent operators
X =P{V¥@1°0-1vi=0,1,...,n (4.36)

and the inner product to be the Hilbert-Schmidt inner product, e.g.,
(Xi, Xj) = tr(X] X)) = tr(X;X;). (4-37)

Obviously, @45 € S by Eq. (4.31).

By slightly modifying the derivation of Eq. (4.35), it is easy to see that the normaliza-
tion constraint and the marginal constraints for AME(n,d) are equivalent to
]ldr ]l ar

ar ©

tracB.e (Pap) = VI1el, (4-38)
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which implies that

tr(X;@ap) = () t yeila o Lo _ W04 (4-39)
T( iPAB) = ; r I ri 1=20,1,...,r. 4.39
The symmetric subspace constraint Vag®ap = V&"®up = Dyp and the relation

X;Vuap = X; VO = X,,_; 1mply that
tr(Xiq)AB) = tI‘(XiVABCDAB) = tI‘(Xn,iq)AB) Vi= 0, 1, Y (B (440)

Thus, we get

(7)

(Xi, @ap) = tr(X;Pap) = W

Vi=0,1,...,n. (4.41)

which implies the uniqueness by Lemma 4.4.

We want to find the dual basis {X;}?_, for {X;}"_, explicitly. To do so, we first compute
straightforwardly the dual basis

1 1 1 1
=gV azvV-g (442)

of {1,V} using the definition. Then, for bases {\x§1)>}, {]x§2)>} and their dual bases
{|321(1) '} {|JZ1.(2)>}, respectively, we have that {|3€l(1)> ® |J?](2) ) } is the dual basis of {|x§1)> ®
|x](2)>} because

(e a1 (157 @18)) = VIR @157 = 6. (4.43)

Hence, the dual basis respects the tensor product structure. Finally, symmetrizing both
the primal and dual basis over all permutations ensures that the resulting vectors form
bases of the symmetric subspace and remain dual to each other after renormalization
by the number of different permutations. Thus, we obtain the dual basis of the X; =
P{V® @ 19(-)} as

1 1) o
Xi:(n)(dZ_l)nP{(]l—dV)@@)(V—d]l)@( )}Vz:o,l,...,n. (4.44)

84



4.3. Absolutely maximally entangled states

It is straightforward to check that tr(X;X ;) = d;j. Hence, we can also explicitly compute
b 4 from x; = tr()~(iC