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Abstract. In 2008, Martin Wirsing initiated the project of conceiving the “Unified
Modeling Language” (UML) as a heterogeneous modelling language. He proposed
to use the theory of heterogeneous institutions for providing individual semantics
to each sub-language, that can then be integrated using institution (co-)morphisms.
In particular, the proposal allows for seamlessly capturing the notorious semantic
variation points of UML with mathematical rigour. In this line of research, we con-
tribute an institutional framework for the “Object Constraint Language” (OCL),
UML’s language for expressing constraints.

1 Introduction

The “Unified Modeling Language” (UML), in its inception and according to its own
definition, “is a graphical language for visualizing, specifying, constructing, and doc-
umenting the artifacts of a software-intensive system” [1, p. XV]. The UML, on the
one hand, has been repeatedly criticized because of its lack of formal semantics. On
the other hand, UML has been praised for being the “lingua franca” that acts as an
Esperanto among stakeholders, be these application domain experts, system designers,
program developers, or clients.1 The scientific community has spent some effort in pro-
viding UML with a formal semantics that, among other things, allows for the rigorous
verification of properties of interest of the software system under consideration. These
efforts, however, have not been crowned with the success they might deserve, probably
because they impose a “straitjacket” to UML users, what in its turn is against a stance
advocated by the UML language designers that UML be somehow free in the way it
should be understood. Indeed, the standard foresees so-called semantic variation points
that allow language users to interpret language constructs differently.

Martin Wirsing, therefore, proposed a heterogeneous approach that allows UML users
the definition of the preferred semantics to the individual UML sub-languages, and is
such that the composition of those languages and their attached semantics permits com-
positional proofs; see [4] and also [2]. The proposed approach builds on the abstract
model theory framework of institutions [8], where each sub-language is captured as an
institution. Originally, institutions have been devised for formalizing logical systems
with their signatures, sentences, structures, and satisfaction relation, imposing only min-
imal constraints, namely that satisfaction be invariable under change of syntax. Formally,

1 Empirical evidence for the various, but rather limited usages of the UML in industrial practice
has been gathered by Petre [18].
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an institution (Sig, Str , Sen, |=) is given by (i) a category Sig whose objects are called
signatures; (ii) a contravariant functor Str : Sigop → Cat, called the structure func-
tor, from Sig to Cat, the category of categories; (iii) a functor Sen : Sig → Set,
called the sentence functor, from Sig to Set, the category of sets; and (iv) a family
|= = {|=Σ}Σ∈Sig of satisfaction relations between Σ-structures M ∈ Str(Σ) and
Σ-sentences ϕ ∈ Sen(Σ), such that for each σ : Σ → Σ′ in Sig, M ′ ∈ Str(Σ), and
ϕ ∈ Sen(Σ), the following satisfaction condition holds:

Str(σ)(M ′) |=Σ ϕ ⇐⇒ M ′ |=Σ′ Sen(σ)(ϕ) .

For the application to UML sub-languages, the syntactic elements available in each
sub-language are rendered as signatures, their meaning as structures, and their possi-
ble combinations as sentences. Semantic variation points or particular domain-specific
usages of a sub-language lead to different institutions. The framework of institutions
provides a rich family of institution (co-)morphisms for relating institutions in terms of
embeddings and projections. For UML sub-languages expressed as institutions, these
(co-)morphisms can be applied to express refinements and consistency conditions be-
tween sub-languages and different resolutions of semantic variation points.

The aim of this work is to give a definition of the “Object Constraint Language”
(OCL [16]) that satisfies the conditions associated with institutions. The OCL provides a
textual expression language for navigating through UML models, specifying guards and
pre-/post-conditions, and for defining constraints, like invariants, on model elements.
In the UML specification [15] the OCL is used for specifying well-formedness rules
on models. Though strictly speaking not a UML sub-language, the OCL constitutes a
natural modelling ingredient complementing the visual notation of the UML.

The first difficulty, that at first sight seems an incompatibility, is that OCL focuses
on terms and not on truth. This way, for instance, a three-valued logic is possible. So,
the core property of institutions, namely the satisfaction condition, needs be defined
for terms, in the form of an evaluation condition. In fact, this is already the case for,
e.g., classical first-order predicate logic with function symbols (for term construction),
predicate symbols (for atom construction), and logical connectives and quantifiers (for
formula construction). This means, the property called for is satisfied in the classical
setting and needs only be mimicked for a definition of OCL terms. Thus, it should be
possible to use some formal OCL expression semantics, like, e.g., [3], and derive an in-
stitution directly. However, it turns out that some OCL constructs like if-then-else,
iterate, or allInstances are more naturally handled as special term formers
than as function symbols directly. This motivates a two-level language definition for
OCL terms, namely the already mentioned function symbols and a construction functor
for the term formers. Using the language of indexed categories (see Sect. 2), we define
the notion of term charters for capturing such general term languages, their evaluation,
and, in particular, an evaluation condition in Sect. 3. We also show how languages de-
fined by means of term charters can be turned into an institution.2

A further characteristics of OCL is that it is constituted by many sub-theories: order-
sortedness, non-strict evaluation, three-valued logic, non-determinism, etc. For particular

2 The manuscript accompanying this article, that shows the proof of every assertion here, can be
found in [11].
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domains, different combinations or extensions of the sub-theories may be useful, see, e.g.,
[3,12]. For this reason, and in order to provide the modelling language designer with a
powerful tool, means are defined that allow for a compositional definition of a term-based
constraint language. Each sub-language can be defined separately, and it is possible to
build different constraint languages, that contain the needed theories for the situation at
hand, by putting up different sub-theories. Therefore, a further goal of this work is the
elucidation of a (meta-)theory for the compositional integration of those sub-theories.
This is akin to the specification-building operators defined by Martin Wirsing in [21],
only on a meta-level. Examples of OCL theories are shown in Sect. 4, means for their
composition are presented in Sect. 5.

2 Indexed Categories

We briefly recall the basic notions of indexed categories (see, e.g., [20]) mainly for
fixing the notation.

An indexed categoryN over an index category I is a functorN : Iop → Cat. Given
an I-indexed category N : Iop → Cat, the Grothendieck category G(N) over N has
as objects the pairs 〈i, O〉 with i ∈ |I| and O ∈ |N(i)|, and as morphisms from 〈i, O〉
to 〈i′, O′〉 the pairs 〈u, o〉 with u ∈ I(i, i′) and o ∈ N(i)(O,N(u)(O′)); the identity
morphism on 〈i, O〉 is 〈1i, 1O〉, the composition of morphisms 〈u, o〉 : 〈i, O〉 → 〈i′,
O′〉 and 〈u′, o′〉 : 〈i′, O′〉 → 〈i′′, O′′〉 is 〈u, o〉; 〈u′, o′〉 = 〈u;u′, o;N(u)(o′)〉.

The projection functor πN from G(N) to I is defined by πN (〈i, O〉) = i and πN (〈u,
o〉) = u. For an i ∈ |I|, G(N)(i) denotes the sub-category of G(N) with objects 〈i, O〉
and morphisms 〈1i, o〉.

A morphism u : i→ i′ in I induces the reduct functor−|Nu : G(N)(i′)→ G(N)(i)
with 〈i′, O′〉|Nu = 〈i, N(u)(O′)〉 and 〈1i′ , o′〉|Nu = 〈1i, N(u)(o′)〉. For 〈i′, O′〉 ∈
|G(N)|, u : i→ i′ also induces the forward morphism u|N〈i′,O′〉 = 〈u, 1N(u)(O′)〉 : 〈i,
N(u)(O′)〉 → 〈i′, O′〉; in particular, u|N− : −|Nu →̇ 1G(N)(i′) is a natural transfor-
mation. Each morphism 〈u, o〉 : 〈i, O〉 → 〈i′, O′〉 can be uniquely factorized as 〈u,
o〉 = 〈1i, o〉;u|N 〈i′,O′〉 with 〈1i, o〉 : 〈i, O〉 → 〈i′, O′〉|Nu; we denote 〈1i, o〉 by 〈u,
o〉|N .

An indexed functor F from an I-indexed categoryM to an I-indexed categoryN is a
natural transformationF :M →̇ N . The Grothendieck functor G(F ) : G(M)→ G(N)
over F is defined by G(F )(〈i, O〉) = 〈i, Fi(O)〉 and G(F )(〈u, o〉 : 〈i, O〉 → 〈i′,
O′〉) = 〈u, Fi(o)〉 : 〈i, Fi(O)〉 → 〈i′, Fi′(O

′)〉.
Lemma 1. Let M,N : Iop → Cat be indexed categories and F :M →̇ N an indexed
functor. Let u : i→ i′ in I and 〈i′, O′〉 ∈ |G(M)|. Then
(1) G(F ); (−|Nu) = (−|Mu);G(F );
(2) u|NG(F )(〈i′,O′〉) = G(F )(u|M 〈i′,O′〉);
(3) πM = G(F );πN .

3 Term Charters

The core part of the OCL is an expression or term language, where formulae are cap-
tured as Boolean expressions that can then be used as guards, invariants, or pre-/post-
conditions. When institutionalizing OCL we thus want to focus on its expressions in
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their own right and extend the satisfaction condition for formulae to an “evaluation
condition” for terms. We therefore employ a framework that mimics and generalizes
classical term evaluation with valuations for variables [21]: Terms over a signature are
built by a construction functor C that takes values as variables X from a signature-
indexed categoryVal and yields the term language, again inVal . Evaluation of a term
over a given valuation β is described by a lifting (β)�M from C (X) to the values in a
structure M from a signature-indexed category Str . The evaluation condition requires
that evaluation is invariant w.r.t. signature changes.

We call our evaluation framework “term charters”, as it is inspired by the no-
tion of charters [7] for constructing institutions. A charter is given by an adjunction
(U, F, η, (−)) between a category of signatures Sign and a category of syntactic sys-
tems Syn, a ground object G ∈ |Syn| and a base functor B : Syn → Set with
B(G) = {ff , tt}. An institution is obtained from a charter by using Sign as the sig-
natures, and defining, for each Σ ∈ |Sign|, the Σ-structures as the Sign-morphisms
m : Σ → U(G), theΣ-sentences asB(F (Σ)), and the satisfaction relation bym |=Σ e
if, and only if B(m)(e) = tt .3 Term charters mainly deviate from charters in making
the variables of terms explicit in the indexed categoryVal such that evaluation by means
of (−) is shifted to taking into account valuations. In charters, these valuations are con-
tained in the single semantic ground object that also comprises all possible interpreta-
tions of the signatures, necessitating a “Procrustean ground signature” [7, p. 324] of this
ground object which sometimes may not seem the most natural choice; in term charters
the ground object is split into several semantic structure objects from the indexed cat-
egory Str representing different interpretations. Finally, term charters do not insist on
an adjunction between the syntactic domain G(Val ) and the semantic domain G(Str)
which makes them applicable in situations where the evaluation structures should only
consist in standard interpretations but the syntactic domain may lead to non-standard
interpretations, as, e.g., for pre-defined data types or higher-order functions. However,
we show below that such an adjunction indeed induces a term charter.

3.1 Term Charter Domains and Term Charters

A term charter is defined over a term charter domain that fixes the signatures, the values
and variables, the semantic structures, and how the values are extracted from a structure.
A term charter then adds how terms or expressions over variables are constructed and
how they are evaluated over the values of a structure. We first give the formal definition
and then illustrate the notion of term charters by means of order-sorted algebras [21].

A term charter domain D = (S,Val , Str , U) is given by a category S of signatures,
an indexed categoryVal : Sop → Cat of values, an indexed category Str : Sop → Cat
of structures, and an underlying indexed functor U : Str →̇Val .

A term charter T = (C , ν, (−)�) over a term charter domain (S,Val , Str , U) is given
by a construction functor C : G(Val) → G(Val) with πVal = C ;πVal ; an embedding

3 In fact, an adjunction for a charter can be obtained systematically when using the notion of
parchments [7,17] that induce a suitable category of syntactic systems as the Grothendieck
category G(Syn) with Syn(Σ) = Alg(Lang(Σ)) where Lang is a functor from the signatures
to (many-sorted) algebraic signatures and the functor Alg yields the (many-sorted) algebras
over an algebraic signature.
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natural transformation ν : 1G(Val) →̇ C with νX : X → C (X) in G(Val)(πVal (X));
and a |G(Str)|-family (−)� = ((−)�M )M∈|G(Str )| associating for each Σ ∈ |S| and
M ∈ |G(Str)(Σ)| to each morphism β : X → G(U)(M) in G(Val)(Σ) a morphism
(β)�M : C (X)→ G(U)(M) in G(Val )(Σ) such that
– for allΣ ∈ S,M ∈ |G(Str)(Σ)|, β : X → G(U)(M) in G(Val)(Σ), and ξ : Y → X

in G(Val )(Σ) the following diagrams commute:

(C)

X C (X)

G(U)(M)

νX

β
(β)�M (K)

C (Y ) C (X)

G(U)(M)

C (ξ)

(ξ;β)�M
(β)�M

– for all σ : Σ → Σ′ in S, M ′ ∈ |G(Str)(Σ′)|, and β′ : X ′ → G(U)(M ′) in
G(Val)(Σ′) the following diagram commutes:

(E)

C (X ′|Valσ) C (X ′)

G(U)(M ′|Strσ) G(U)(M ′)

C (σ|ValX
′
)

(β′|Valσ)
�
M′|Strσ

G(U)(σ|StrM′
)

(β′)�M′

Requirement (E) is called the evaluation condition expressing that evaluation is invari-
ant w.r.t. signature changes. Condition (C) and (K) ensure that valuations are respected
by evaluation and that evaluation is compatible with variable renaming.

Example 1. In order to illustrate term charters, we reformulate order-sorted algebras
and their terms. For establishing a suitable term charter domain, we first have to fix
order-sorted signatures, value domains, and structures.

The category S≤ of order-sorted signatures has as objects the pairs (S,D) with
S = (|S|,≤S) a partial order for the sorts and D = (|D|, δD) function declarations
with δD : |S|∗ × |S| → P(|D|); and as morphisms pairs (γ, ρ) : (S,D)→ (S′, D′) of
a monotone function on the sorts and a sort-compatible function renaming.

For a Σ = (S,D), a Σ-value domain V consists of a family (Vs)s∈|S| of values
respecting sub-sorting, i.e., Vs ⊆ Vs′ if s ≤S s′; and a Σ-value domain morphism
ω : V → V ′ is given by a family of mappings ω = (ωs : Vs → V ′

s )s∈|S|. Similarly,
a Σ-structure (V,E) consists of a Σ-value domain V and a family E of evaluation
functions E = (Es,s)s∈|S|∗,s∈|S|, where Es,s : δD(s, s) → (Vs → Vs), that is, E
assigns to each function type in |D| a set of functions on the corresponding values;
and a Σ-structure morphism ω : (V,E) → (V ′, E′) is given by a Σ-value domain
morphism ω : V → V ′ satisfying the homomorphism condition ωs(Es,s(d)(�v)) =

E′
s,s(d)(ωs(�v)). The indexed categoriesVal≤, Str≤ : (S≤)op → Cat map each Σ to

Val≤(Σ) and Str≤(Σ), respectively, and each order-sorted signature morphism to the
usual renaming reduct functors. The indexed functor U≤ : Str≤ →̇Val≤ “forgets” the
evaluation functions of a structure.

We thus obtain the term charter domain (S≤,Val≤, Str≤, U≤). For a term charter
for order-sorted terms, we now address term construction and evaluation.
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The construction functor C≤ : G(Val≤)→ G(Val≤) assigns to 〈Σ,X〉 ∈ |G(Val≤)|
with Σ = (S,D) the value domain C≤(〈Σ,X〉) = 〈Σ, V ≤

X 〉 such that for each s ∈ |S|
the values in V ≤

X,s are given inductively by

– x ∈ V ≤
X,s for x ∈ Xs;

– d(�v) ∈ V ≤
X,s′ for all s′ ≥S s if d ∈ δD(s, s) and �v ∈ V ≤

X,s.

For the morphisms in G(Val≤), C≤ yields the corresponding renaming morphism in
G(Val≤). As natural transformation ν≤ : 1G(Val≤) →̇ C≤ for embedding values or
variables into the order-sorted terms we may simply choose the inclusions.

For evaluating order-sorted terms over a structure M = 〈Σ, (V,E)〉 in |G(Str≤)|
given a valuation β = 〈1Σ , β≤〉 : 〈Σ,X〉 → G(U≤)(〈Σ, (V,E)〉) define (β)�

≤
M =

〈1Σ , (β≤)�
≤
M 〉 : C≤(〈Σ,X〉)→ 〈Σ, (V,E)〉 inductively by

– (β≤)
�≤M
s (x) = β≤

s (x) for x ∈ Xs;

– (β≤)
�≤M
s (d(�v)) = Es,s(d)((β

≤)
�≤M
s )(�v)).

With these definitions, the term charter conditions (C), (K) and, (E) can be
checked straightforwardly by induction. Thus we obtain the order-sorted term char-
ter (C≤, ν≤, (−)�≤) over the term charter domain (S≤,Val≤, Str≤, U≤).

3.2 Term Charters from Adjunctions

The concrete construction of a term charter often involves quite many routine checks,
as already illustrated by the previous example of the order-sorted term charter. In the
special situation of an adjunction between the syntactic side ofVal and the semantic
side of Str this effort can be avoided completely.

In fact, let D = (S,Val , Str , U) be a term charter domain and assume that (G(U),T ,
η, (−)) forms an adjunction (expressed as a free construction [19]) with the func-
tor T : G(Val ) → G(Str) satisfying πVal = T ;πStr the left-adjoint to G(U), the
natural transformation η : 1G(Val) →̇ T ;G(U) with ηX : X → G(U)(T (X)) in
G(Val)(πVal (X)) the unit, and the S-family (−) = ((−)Σ )Σ∈|S| associating for each
σ ∈ |S| and M ∈ |G(Str)(Σ)| to each morphism β : X → G(U)(M) in G(Val)(Σ) a
morphism βΣ : T (X) → M in G(Str)(Σ) the lifting. Then it can be shown that for
each σ : Σ → Σ′ in S, M ′ ∈ |G(Str)(Σ′)|, and β′ : X ′ → G(U)(M ′) in G(Val)(Σ′)
the following diagram expressing the evaluation condition commutes:

T (X ′|Valσ)

T (X ′)|Strσ T (X ′)

M ′|Strσ M ′

T (σ|ValX
′
)

(ηX′ |Valσ)
�Σ

(β′|Valσ)
�Σ

σ|StrT (X′)

β′�
Σ′ |Strσ β′�

Σ′

σ|StrM′
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Using this form of the evaluation condition we obtain

Proposition 1. Let (G(U),T , η, (−)) form an adjunction. Then (T ;G(U), η, (−)�)
with (β)�M = G(U)(βΣ ) for each Σ ∈ |S|, X ∈ |G(Val )(Σ)|, M ∈ |G(Str)(Σ)|, and
β : X → G(U)(M) is a term charter.

3.3 Constructing an Institution from a Term Charter

Let T = (C , η, (−)�) be a term charter over the term charter domain (S,Val , Str , U).
Let UVal : G(Val )→ Set be a functor such that UVal (σ

|ValX
′
) is the inclusion map from

UVal(X
′|Valσ) to UVal (X

′) for σ : Σ → Σ′ in S and X ′ ∈ |G(Val)(Σ′)|, and the
semantic truth value ∗ ∈ UVal(X) for all X ∈ |G(Str);G(U)| ⊆ |G(Val )|.
– Define the category SigUVal

T as G(Val).
– Define the functor SenUVal

T : SigUVal

T → Set as C ;UVal .
– Define the functor StrUVal

T : G(Val)op → Cat as

– the category StrUVal

T (X), where Σ = πVal(X), with the class of objects the pairs
(M,β) with M ∈ |G(Str)(Σ)| and β : X → G(U)(M) in G(Val )(Σ), and
the morphisms μ : (M1, β1) → (M2, β2) where μ ∈ G(Str)(Σ)(M1,M2) and
βi : X → G(U)(Mi) for 1 ≤ i ≤ 2 such that β1;G(U)(μ) = β2;

– the functor StrUVal

T (ξ : X → X ′) : StrUVal

T (X ′) → StrUVal

T (X), where σ =
πVal (ξ), with

StrUVal

T (ξ)(M ′, β′) = (M ′|Strσ, ξ|Val ;β
′|Valσ)

StrUVal

T (ξ)(μ′ : (M ′
1, β

′
1)→ (M ′

2, β
′
2)) = μ′|Strσ .

This is well-defined, since β′
1;G(U)(μ′) = β′

2 and hence also ξ|Val ;β
′
1|Valσ;

G(U)(μ′)|Valσ = ξ|Val ;β
′
1|Valσ;G(U)(μ′|Strσ) = ξ|Val ;β

′
2|Valσ.

– Define the family of relations (|=UVal

T,X)
X∈|SigUVal

T | with |=UVal

T,X ⊆ |StrUVal

T (X)| ×
|SenUVal

T (X)| by

(M,β) |=UVal

T,X ϕ iff UVal((β)
�M )(ϕ) = ∗ .

Proposition 2. (SigUVal

T , StrUVal

T , SenUVal

T , |=UVal

T ) is an institution.

Proof. We have to show the satisfaction condition

StrUVal

T (ξ)(M ′, β′) |=UVal

T,X ϕ iff (M ′, β′) |=UVal

T,X′ Sen
UVal

T (ξ)(ϕ)

with ϕ ∈ SenUVal

T (X), ξ : X → X ′ and β′ : X ′ → G(U)(M ′). It suffices to prove

UVal((ξ|Val ;β
′|Valσ)

�
M′|Strσ )(ϕ) = UVal (C (ξ; (β′)�M′ ))(ϕ)

with σ = πVal (ξ). We have
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(ξ|Val ;β
′|Valσ)

�
M′|Strσ ;σ|ValG(U)(M ′) (K)

=

C (ξ|Val ); (β
′|Valσ)

�
M′|Strσ ;σ|ValG(U)(M ′) (E)

= C (ξ|Val );C (σ|ValX
′
); (β′)�M′ =

C (ξ|Val ;σ
|ValX

′
); (β′)�M′ = C (ξ); (β′)�M′ .

The imageUVal (σ
|ValG(U)(M ′)) of the forward morphism is an inclusion map. Therefore,

UVal((ξ|Val ;β
′|Valσ)

�
M′|Strσ ;σ|ValG(U)(M ′))(ϕ) =

UVal((ξ|Val ;β
′|Valσ)

�
M′|Strσ )(ϕ) .

Now additionally assume that for each Σ ∈ |S| there is an object XΣ that is initial
in G(Val )(Σ). Then, for each each X ∈ |G(Val)|, there is a unique morphism ξX :
XΣ → X in G(Val )(Σ). In particular, for each M ∈ |G(Str)(Σ)|, there is a unique
morphism βΣ : XΣ → G(U)(M) in G(Val)(Σ). In this case, we can define a more
“classical” institution from the term charter T = (C , ν, (−)�) as follows:

– Define the category CSigUVal

T as S.
– Define the functor CSenUVal

T : CSigUVal

T → Set as

CSenUVal

T (Σ) = UVal(C (XΣ)) and

CSenUVal

T (σ : Σ → Σ′) = UVal(C (ξX
Σ′

|Valσ;σ|ValX
Σ′
)) .

– Define the functor CStrUVal

T : (CSigUVal

T )op → Cat as Str : Sop → Cat.
– Define the family of relations (|=UVal

T,Σ)Σ∈|CSig
UVal
T | with |=UVal

T,Σ ⊆ |CStrUVal

T (Σ)| ×
|CSenUVal

T (Σ)| by

M |=UVal

T,Σ ϕ iff UVal ((β
Σ)�M )(ϕ) = ∗ .

Corollary 1. (CSigUVal

T ,CStrUVal

T ,CSenUVal

T , |=UVal

T ) is an institution.

4 OCL Terms and Evaluation

The main use of OCL for UML models is navigation through a system’s maze of objects
and links. A domain for this task is quite naturally captured by the notion of order-
sorted algebras [9], where the sort hierarchy of an order-sorted signature is induced
by the inheritance relation of a given model and its function symbols represent the
properties and queries specified in the model [10]. Following, the “states-as-algebras”
paradigm [6], each order-sorted algebra represents a particular configuration of objects
and links. In fact, we use order-sorted signatures, structures, and terms as substitutes
for the precise OCL declarations in order to avoid some of its idiosyncrasies [3].

For expressiveness and ease of use, the OCL provides a set of built-in types, like
Boolean or Integer, and collection constructors, like Sequence or Set, as well
as a rich standard library. On the one hand, this library features primitive functions
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for computations on values like c->including(e) for adding e to the sequence or
set c. On the other hand, the construct c->iterate(i; a = e0 | e) is available on
collections which after initializing the accumulator variable a by e0 successively binds
the iteration variable i to the values in the collection c updating the accumulator with the
result of evaluating e for the current values of i and a, and finally returns the value stored
in a. Numerous operations on collections, like select, reject, or collect, but
also forAll and exists, are built on top of this general iteration construct [5]. For
accessing the currently available objects of a class allInstances() can be called
on a type identifier; this call only succeeds when a type with finitely many inhabitants
is used, such that Integer.allInstances()will not work.

In fact, OCL introduces a special value undefined for expressions like
Integer.allInstances() or division by zero that do not yield a proper value.
Instead of exception handling, the particular function isUndefined() can be used
to check whether an expression results in undefined. The built-in Boolean func-
tions and and or show a “parallel” (non-strict) behaviour for undefined, mandating
that true or e and e or true always result in true, regardless of whether e yields
undefined or not, and similarly for false and e and e and false.

We now consider these OCL features w.r.t. terms and evaluation one by one, but sep-
arately, starting with the order-sorted framework as a term charter and then accordingly
adapting this framework. We restrict ourselves to an informal account of the notions
mentioned above, that constitute the interesting cases within OCL. Formal, rigorous
definitions can be found in the Appendix A.

4.1 Built-ins

The built-in types of OCL can be viewed as a particular case of the order-sorted frame-
work in Ex. 1, namely the one that contains certain sorts and declarations and inter-
prets them in the “standard” way. If we want, for instance, sequences and sets with
membership test, then we require Bool ∈ |S| with {true, false} ⊆ δD(Bool), and
{Seq(s),Set(s)} ⊆ |S| with−→including(−) ∈ δD(Seq(s) s,Seq(s))∩δD(Set(s) s,
Set(s)) (together with some sanity conditions). The morphisms are required to be the
identity on these built-in types and function names. The signatures and morphisms ful-
filling these requirements are called primitives closed, the sub-category they define is
denoted by S◦. Primitives-closed structures interpret built-in sorts and declarations in
the standard way; this contravariant structure functor is denoted by Str◦. Value do-
mains, however, are not restricted: this means, in particular, that the value domain for
Set(s) not necessarily consists of the (finite) sets of values in the value domain for s.
The indexed category of values is thus the same as for order-sorted term charter, namely
Val≤. The underlying indexed functor relating structures and values is denoted by U◦.
The terms are constructed in the same manner as those of the order-sorted case. This
way, we obtain the primitives-closed order-sorted term charter (C≤, ν≤, (−)�≤) over
the term charter domain (S◦,Val≤, Str◦, U◦).

4.2 Iteration, All Instances, Undefinedness

The iteration construct of OCL is, in fact, a higher-order instrument since it binds both
an iteration variable and an accumulator variable. Therefore, it cannot be treated as
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the built-ins of above. It can however be added to primitive-closed term charters by
including a further inductive case to the definition of the term language. Besides the
base case of variables being a term and the inductive case of function symbols applied
to previously defined terms, we have a second inductive case constructing an OCL
iteration term: t′→iterate(x′;x = t0 | t) where t′ is a term of collection type (with
elements of type s′), t0 is a term of arbitrary type s, x and x′ are “new” variables of
type s′ and s, respectively, and t is a term of type s possibly containing x and x′. (For
the sake of simplicity, we disregard here sub-sorting.) The extension of order-sorted
signature morphisms to iteration terms is straightforward. The evaluation (β)�

it
along

a valuation β is defined on iteration terms, if not in a straightforward, nevertheless in
relatively simple manner by

(βit)
�it
M
s (t′→iterate(x′;x = t0 | t)) =

it((βit)
�it
M

s′ (t′), (βit)
�it
M
s (t0),

{(t1, t2) → ((βit{x : s → t2, x
′ : s′ → t1})�

it
M
s (t)})})

where it(ε, ta, f) = ta and it(ti :: !, ta, f) = it(!, f(ti, ta), f)

The charter domain used here is the one of order-sorted signatures, that is, the ob-
tained iteration term charter (C it, ν it, (−)�it

) is defined over the term charter domain
(S◦,Val≤, Str◦, U◦) .

Now, the introduction of the OCL query that returns all the instances of a given
type, namely allInstances, conveys the introduction of an undefined return value
if the type is infinite. Thus we consider a further special case of order-sorted value
domains: those that contain the undefined constant †. More formally, the value do-
mains remain unchanged, only the morphisms are “undef-lifted” and, in particular, the
structures do not change, i.e., they do not contain †. This yields an indexed category
Val† : (S≤)op → Cat and thus an indexed functor U † : Str◦ →̇Val†. Similarly as for
iteration, a further inductive case is added to the definition of term language, namely
s.allInstances() with s a sort. The extension of order-sorted signature morphisms as
well as the (strict) extension of valuations to allInstances is straightforward:

(βa)
�a
M

s′ (s.allInstances()) =

{
Vs if |Vs| <∞
† otherwise

and in any other case the extension of the valuation β is strict. An all-instances term
charter (C a, νa, (−)�a

) over the term charter domain (S◦,Val†, Str◦, U †) is obtained.
Having a way to treat undefinedness of allInstances, the possibility of treating unde-

finedness in general opens up. So, for instance, non-strict functions as, e.g., if-then-else
can be terms of the language. Three-valued Boolean connectives, moreover, need be
defined. Again, not function symbols are assumed but further cases to the inductive
definition of terms are added; in particular, the constant undef, the term construction
t.isUndef() for t a term, t1 and t2 and t1 or t2 are terms if t1 and t2 are terms of sort
Bool, and if t then t1 else t2 endif is a term if t is a term of sort Bool and t1 and t2 are
of the same sort (disregarding sub-sorting here for the sake of simplicity). Both undef-
lifted order-sorted signature morphisms and valuations are customarily defined on these
new terms, with valuations strict but for if-then-else:
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(βu)
�u
M
s (v1 and v2) =

⎧⎪⎨⎪⎩
tt if (βu)

�u
M

Bool(v1) = tt and (βu)
�u
M

Bool(v2) = tt

ff if (βu)
�u
M

Bool(v1) = ff or (βu)
�u
M

Bool(v2) = ff

† otherwise

(βu)
�u
M
s (if v then v1 else v2 endif) =

⎧⎪⎨⎪⎩
(βu)

�u
M
s (v1) if (βu)

�u
M
s (v) = tt

(βu)
�u
M
s (v2) if (βu)

�u
M
s (v) = ff

† otherwise

The undefinedness term charter (C u, νu, (−)�u
) is thus defined over the term charter

domain (S◦,Val†, Str◦, U †), i.e., over the same term charter domain as “all instances”.

4.3 Institutions for OCL Sub-languages

The term charters of the preceding sections use primitives-closed signatures and struc-
tures. From each of them, by Prop. 2, corresponding institutions can be constructed by
instantiating UVal† and ∗. One possible choice is UVal†(〈Σ, V 〉) = VBool and taking the
semantic truth value ∗ to be tt . With this choice a term of type Bool evaluating to † is
per se not “true”. Due to the satisfaction condition, this evaluation is invariant under
change of notation.

Example 2. Assume that equality is one of the built-ins considered in Sect. 4.1 and
let us write t1 = t2 instead of =(t1, t2). In the undefinedness term charter Tu with
Σ ∈ |S◦|, X ∈ |G(Val†)(Σ)|, M ∈ |G(Str◦)(Σ)|, and β : X → G(U †)(M), we

have (β)
�u

M (undef = true) = † and therefore (M,β) �|=U
Val†

Tu,X undef = true. Similarly,

(β)
�u

M (false = true) = ff , and again (M,β) �|=U
Val†

Tu,X false = true.

5 Operators on Term Charters

Having provided a series of examples for term charters for various OCL features in
isolation, we now want to combine these term charters and thus the OCL features to
obtain a coherent OCL semantics out of which we can also form an institution. We
provide two first operators, which, however, both currently assume that all the involved
term charters are given over the same term charter domain.

By sequencing term charters we can stack construction functors and thus get a lev-
elled combination of their terms. Consider for example the all-instances term char-
ter Ta = (C a, νa, (−)�a

) and the undefinedness term charter Tu = (C u, νu, (−)�u
)

of Sect. 4.2 which are both defined over (S◦,Val†, Str◦, U †). In the term charter
Ta 
 Tu = (C , ν, (−)�) resulting from sequencing these two term charters we obtain
the “heterogeneous” term (s.allInstances()).isUndef(). This sequencing can be iterated
thus adding more levels; a full combination, that allows the occurrence of terms from
both term charters on all levels, is in a co-limit construction provided below of the chain
νC (n) : C (n) → C (n+1) where C (n) is the construction functor of the n-th level.
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Both operators, sequencing and co-limit, work in the category TmCh(D) of term
charters over a given term charter domain D, where a term charter morphism μ :
T1 → T2 with term charters T1 = (C1, ν1, (−)�1) and T2 = (C2, ν2, (−)�2) over
D = (S,Val , Str , U) is given by a natural transformation μ : C1 →̇ C2 such that for all
Σ ∈ |S|, X ∈ |G(Val)(Σ)|, M ∈ |G(Str)(Σ)| and β : X → G(U)(M) in G(Val)(Σ)
the conditions ν1,X ;μX = ν2,X and μX ; (β)�2,M = (β)�1,M hold.

5.1 Sequencing of Term Charters

Let T1 = (C1, ν1, (−)�1) and T2 = (C2, ν2, (−)�2) be term charters over the term
charter domain (S,Val , Str , U). Then the sequencing T1 
 T2 = (C , ν, (−)�) of first
T1 and then T2 is defined by

C = C1;C2 : G(Val )→ G(Val)
νX = ν1,X ; ν2,C1(X) = ν2,X ;C2(ν1,X) : X → C2(C1(X))

β�M = (β�1,M )�2,M

for all X ∈ |G(Val)(Σ)|, M ∈ |G(Str)(Σ)|, and β : X → G(U)(M) in G(Val)(Σ).

Proposition 3. Let D = (S,Val , Str , U) be a term charter domain. Let T1 = (C1, ν1,
(−)�1) and T2 = (C2, ν2, (−)�2) be term charters over D. Then T1 
 T2 is a term
charter over D.

Example 3. Consider the “heterogeneous” term (Integer.allInstances()).isUndef() of
Ta 
 Tu where we assume that Integer is a built-in sort standardly interpreted by Z.
This term is built by first constructing Integer.allInstances() in Ta, then taking this term
as a variable, which we may abbreviate by x, and constructing x.isUndef() in Tu. Con-
sequently, the evaluation of

((β)
�a

M )
�u

M ((Integer.allInstances()).isUndef()) = ((β)
�a

M )
�u

M (x.isUndef())

for an arbitrary β : X → G(U †)(M) with X ∈ |G(Val †)(Σ)|, M ∈ |G(Str◦)(Σ)|,
and Σ ∈ |S◦| first evaluates ((β)�

a

M )
�u

M (x), amounting to (β)
�a

M (x), since x is a variable,
which yields †. Thus the overall result is tt .

Also the natural transformation ν2,C1(−) : C1 →̇ C1;C2 induces a term charter
morphism from T1 to T1
T2, and, likewise, the natural transformationC2(ν1) : C2 →̇
C1;C2 induces a term charter morphism from T2 to T1
T2. The n-th iteration T(n) of
a term charter T for n ≥ 1 is inductively defined by T(1) = T and T(n+1) = T(n) 
 T.

5.2 Co-limits of Term Charters

Let D = (Σ,Val , Str , U) be a term charter domain. For a term charter T =
(C , ν, (−)�) ∈ |TmCh(D)| let us write TC , Tν , and T� for the components of T. Con-
sider a diagram F : J → TmCh(D) where J is a small connected category. Assume
that for every X ∈ |G(Val )(Σ)| with Σ ∈ |S|, the diagram FC ,X : J → G(Val)(Σ)
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with FC ,X(j) = F (j)C (X) and FC ,X(f : j → j′) = F (f)X has co-limit (CF,X ∈
G(Val)(Σ), γF,X : FC ,X →̇ Δ(CF,X)) (where, for a category C, Δ : C → CJ

denotes the diagonal functor mapping a C ∈ |C| to the functor Δ(C) : J → C

with Δ(C)(j) = C and Δ(C)(f : j → j′) = 1C). Then, by universality, for each
ξ : X → Y in G(Val )(Σ) there is a unique arrow cF,ξ : CF,X → CF,Y such that

F (j)C (ξ); γF,Y,j = γF,X,j; cF,ξ for all j ∈ |J | .

Define C F (X) = CF,X and C F (ξ) = cF,ξ. Furthermore, for all f : j → j′ in J ,

(F (j)ν)X ;F (f)X = (F (j′)ν)X and γF,X,j = F (f)X ; γF,X,j′

Define νFX = (F (j)ν)X ; ζF,X,j for some j ∈ |J |. For a morphism β : X → G(U)(M)

in G(Val)(Σ) with M ∈ |G(Str)(Σ)| let (β)�
F
M : C F (X)→ G(U)(M) be the unique

morphism with ζF,X,j ; (β)
�FM = F (j)�(β) for all j ∈ |J | which exists since

F (f)X ;F (j)�M (β) = F (j′)�M (β) for all f : j → j′ in J .

Then TF = (C F , νF , (−)�F ) is a term charter and all γF,−,j are term charter mor-
phisms. In fact, (TF , γF ) with (γFj )X = γF,X,j is the co-limit of F .

Proposition 4. (−)C : TmCh(S,Val , Str , U) → Fun(G(Val ),G(Val)) creates pa-
rameterized small connected co-limits.

Example 4. Continuing the previous example, we now want to consider arbitrarily
nested terms from the all-instances term charter Ta and the undefinedness term char-
ter Tu. We thus consider the chain T

ν1−→ T(2) ν2−→ T(3) ν3−→ · · · for T = Ta 
 Tu.
Writing C for the construction functor C a;C u, we have to check that the chain

C (X)
ν1,X−−−→ C (2)(X)

ν2,X−−−→ C (3)(X)
ν3,X−−−→ · · · has a co-limit in G(Val†)(Σ) for

X ∈ |G(Val†)(Σ)|. Indeed, the co-limit object of this chain is simply given by the
component-wise union of the value domains and thus we obtain a co-limit term charter
by Prop. 4. The evaluation of a term at a nesting level n of Ta and Tu then proceeds like
in T(n).

6 Conclusions and Future Work

Along the lines of Martin Wirsing’s proposal for the definition of an heterogeneous
semantics of UML in [4], we have presented above a semantics for the constraints
language OCL. The distinct characteristic of this approach is the compositional con-
struction of theories out of basic ones. Indeed, OCL can be obtained by sequencing
term charters and building the co-limit of the result. This way only the theories, pre-
sented as term charters and needed for the situation at hand, are combined into an OCL
sub-language (and therefore the theories that are dispensable need not be included).

Let us emphasize that OCL is not a logic but a term language. It it is imperative
to deal with its particularities, too, especially undefinedness and non-termination. The
OCL setting defines a logic that is not binary. That is, we have to deal with formulase
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that, instead of being either true or not, may be true, false, undefined or even non-
terminating. In order to mimic the implied three- or four-valued OCL logic (see [3] and
also [12]), the most natural to do is, on the one hand, to follow the definition of OCL as
closely as possible and construct a term language whose equality, on the other hand, is
invariant under change of notation. As pointed out above, we moreover addressed the
OCL sub-languages one by one, thus supporting compositional construction of term
languages that comply the satisfaction condition and can consequently be presented as
institutions.

Indeed, term charters for the OCL sub-languages can be composed by means of
the sequencing operator and the co-limit construction of Sect. 5, provided they are de-
fined over the same term charter domain. In particular, an OCL term charter can be ob-
tained by composing the term charters sketched in Sect. 4, that is, the primitives-closed
order-sorted term charter (see Sect. A.2), the iteration term charter (see Sect. A.3),
the all-instances term charter (see Sect. A.4), and the undefinedness term charter (see
Sect. A.5), only after their reformulation as term charters over a single term charter
domain. By Prop. 2, the resulting OCL term charter defines an institution for OCL.

Useful would be the possibility of combining term charters defined over different
term charter domains. The use of heterogeneous term charter domains could support
the construction of the four-valued logic with undef and non-termination by means of
operators on the corresponding three-valued term charters, i.e., by composing them di-
rectly, instead of resorting to their redefinition for a four-valued term charter domain.
A property not demonstrated yet is the associativity of sequencing. A further issue,
to be included in the framework presented in this work, is the treatment of pre-/post-
conditions. The present idea consists in testing them on pairs of “states”, one that rep-
resents the state at the time before the execution of a method and one that represents
the state afterwards. In the long term, we aim to define an entailment system for OCL
which, combined with the institution above, would yield an general logic; see [13]. Fi-
nally, an integration into the institution-based Heterogeneous Tool Set [14] for analysis
and proof support in multi-logic specifications is planned.
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A OCL Terms and Evaluation

We formally define the OCL features discussed in Sect. 4 following the same strategy,
i.e., one by one and each time adapting the framework.

A.1 Order-Sorted Terms and Evaluation

For the first basic step, we recapitulate the notions of order-sorted signatures, structures,
terms, and evaluation in terms of indexed categories.

Signatures, Values, and Structures. An order-sorted signature (S,D) consists of a sort
hierarchy S and a function declaration pair over S; where S = (|S|,≤S) is a partial
order with a set of sort names |S| and a sub-sorting relation ≤S; and D = (|D|, δD)
is a pair with |D| a set of function names and δD : |S|∗ × |S| → P(|D|) a function
such that |D| =

⋃
{δD(s, s) | s ∈ |S|∗, s ∈ |S|}. An order-sorted signature morphism

(γ, ρ) : (S,D)→ (S′, D′) is given by a monotone function γ : S → S′ and a function
ρ : |D| → |D′| such that ρ(d) ∈ δD′(γ(s), γ(s)) for each d ∈ δD(s, s). Order-sorted
signatures and morphisms between them define a category which we denote by S≤.

An (S,D)-value domain V consists of a family V = (Vs)s∈|S| of sets of values with
Vs ⊆ Vs′ if s ≤S s′. An (S,D)-value domain morphism ω : V → V ′ is given by a
family of mappings ω = (ωs : Vs → V ′

s )s∈|S|. (S,D)-value domains and morphisms
define a category Val≤(S,D). The indexed category Val≤ : (S≤)op → Cat maps
each Σ = (S,D) toVal≤(Σ) and each (γ, ρ) : Σ → Σ′ = (S′, D′) to the functor
Val≤(γ, ρ) :Val≤(Σ′) →Val≤(Σ) withVal≤(γ, ρ)((V ′

s′)s′∈|S′|) = (V ′
γ(s))s∈|S| and

Val≤(γ, ρ)((ω′
s′ : V

′
1,s′ → V ′

2,s′)s′∈|S′|) = (ω′
γ(s) : V

′
1,γ(s) → V ′

2,γ(s))s∈|S|.
An (S,D)-structure (V,E) consists of an (S,D)-value domain and a family of eval-

uation functions E = (Es,s)s∈|S|∗,s∈|S| with Es,s : δD(s, s) → (Vs → Vs). An
(S,D)-structure morphism ω : (V,E)→ (V ′, E′) is given by an (S,D)-value domain
morphism ω : V → V ′ such that the homomorphism condition ωs(Es,s(d)(�v)) =
E′

s,s(d)(ωs(�v)) is satisfied. (S,D)-structures and morphisms define a category

Str≤(S,D). The indexed category Str≤ : (S≤)op → Cat maps each Σ to Str≤(Σ)
and each (γ, ρ) : Σ → Σ′ = (S′, D′) to the functor Str≤(γ, ρ) : Str≤(Σ′) →
Str≤(Σ) with Str≤(γ, ρ)((V ′

s′ )s′∈|S′|, (E
′
s′,s′)s′∈|S′|∗,s′∈|S′|) = ((V ′

γ(s))s∈|S|, ((E
′ ◦

ρ)γ(s),γ(s))s∈|S|∗,s∈|S|) and Str≤(γ, ρ)(ω′) =Val≤(γ, ρ)(ω′).
The indexed functor U≤ : Str≤ →̇ Val≤ “forgets” the evaluation functions of a

structure.

Terms and Evaluation. For constructing order-sorted terms over an order-sorted value
domain we define a functor C≤ : G(Val≤) → G(Val≤) as follows: For an object 〈Σ,
X〉 ∈ |G(Val≤)| with Σ = (S,D) set C≤(〈Σ,X〉) = 〈Σ, V ≤

X 〉 such that for each
s ∈ |S| the values in V ≤

s are given inductively by

– x ∈ V ≤
X,s for x ∈ Xs;

– d(�v) ∈ V ≤
X,s′ for all s′ ≥S s if d ∈ δD(s, s) and �v ∈ V ≤

X,s;
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For a morphism 〈σ, ω〉 : 〈Σ,X〉 → 〈Σ′, X ′〉 in G(Val≤) with σ = (γ, ρ) and
Σ = (S,D) set C≤(〈σ, ω〉) = 〈σ, ω≤〉 : C≤(〈Σ,X〉) → C≤(〈Σ′, X ′〉) such that
inductively ω≤

s (x) = ωs(x) for x ∈ Xs and ω≤
s (d(�v)) = ρ(d)(ω≤

s (�v)).
For evaluating order-sorted terms over aΣ-structureM = 〈Σ, (V,E)〉 in |G(Str≤)|

given a valuation β = 〈1Σ , β≤〉 : 〈Σ,X〉 → G(U≤)(〈Σ, (V,E)〉) define (β)�
≤
M =

〈1Σ , ((β≤))�
≤
M 〉 : C≤(〈Σ,X〉)→ 〈Σ, (V,E)〉 inductively by

– (β≤)
�≤M
s (x) = β≤

s (x) for x ∈ Xs;

– (β≤)
�≤M
s (d(�v)) = Es,s(d)((β

≤)
�≤M
s )(�v)).

Term Charter. Given an order-sorted signature morphism σ : Σ → Σ′ in S≤,
a Σ′-structure 〈Σ′, (V ′, E′)〉 ∈ |G(Str≤)(Σ′)|, and a valuation β′ : 〈Σ′, X ′〉 →
G(U≤)(〈Σ′, (V ′, E′)〉) in G(Val≤)(Σ′) it is straightforwardly checked that the eval-
uation condition (E) for term charters

C≤(〈Σ′, X ′〉|Val≤σ) C≤(〈Σ′, X ′〉)

G(U≤)(〈Σ′, (V ′, E′)〉|Str≤σ) G(U≤)(〈Σ′, (V ′, E′)〉)

C≤(σ
|
Val≤〈Σ′,X′〉

)

(β′|
Val≤σ)

�
≤
〈Σ′,(V ′,E′)〉|

Str≤σ

G(U≤)(σ
|
Str≤〈Σ′,(V ′,E′)〉

)

(β′)
�
≤
〈Σ′,(V ′,E′)〉

indeed is satisfied. Also condition (K) is easily shown. As natural transformation
ν≤ : 1G(Val≤) →̇ C≤ for embedding values or variables into the order-sorted terms

we may simply choose the inclusions, i.e., ν≤〈(S,D),X〉 = 〈1(S,D), (ι〈(S,D),X〉,s : Xs →
V ≤
X,s)s∈|S|〉 which also satisfies (C).

Thus we obtain the order-sorted term charter (C≤, ν≤, (−)�≤) over the term charter
domain (S≤,Val≤, Str≤, U≤).

A.2 Adding Built-ins

The addition of OCL’s built-in types can be handled by a specialization of order-sorted
signatures and structures, requiring them to contain and interpret particular sorts and
declarations in a standard way. We demonstrate this by adding Booleans, sequences, and
sets as well as a few functions; these additions are by far not exhaustive, but meant to be
exemplarily. Nevertheless, we call the resulting order-sorted signatures and structures
“primitives closed”.

Signatures and Structures. An order-sorted signature (S,D) with S = (|S|,≤S) and
D = (|D|, δD) is primitives-closed whenever Bool ∈ |S|, and true ∈ δD(Bool) and
false ∈ δD(Bool); and the following conditions hold for all τ ∈ {Seq,Set} and all
s, s′ ∈ |S|:
– τ(s) ∈ |S| if, and only if, s ∈ |S|;
– τ(s) ≤S τ(s

′) if, and only if, s ≤S s
′;

– τ{} ∈ δD(τ(s)) and −→including(−) ∈ δD(τ(s) s, τ(s)).
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A morphism (γ, ρ) : (S,D) → (S′, D′) between primitives-closed order-sorted signa-
tures is primitives-closed if γ(Bool) = Bool, and ρ(true) = true and ρ(false) = false;
and the following conditions hold for all τ ∈ {Seq,Set} and all s ∈ |S|:
– γ(τ(s)) = τ(γ(s));
– ρ(τ{}) = τ{} and ρ(−→including(−)) = −→including(−).
Let S◦ be the sub-category of order-sorted signatures consisting of all the primitives-
closed order-sorted signatures and all the primitives-closed morphisms between them.

An (S,D)-structure (V,E) over a primitives-closed order-sorted signature (S,D) is
primitives-closed if VBool = {tt,ff }, and EBool(true) = tt and EBool(false) = ff ; and
for all s ∈ |S|:
– VSeq(s) = (Vs)

∗ and VSet(s) = Pfin(Vs) (i.e., all finite lists and sets over Vs);
– ESeq(s)(Seq{}) = ε and ESet(s)(Set{}) = ∅ (i.e., the empty list and set);
– ESeq(s) s,Seq(s)(−→including(−)) = {(l, v) → v :: l} (i.e., prepending an element

to a list) and ESet(s) s,Set(s)(−→including(−)) = {(m, v) → {v} ∪m} (i.e., adding
an element to a set);

An (S,D)-structure morphism ω : (V,E) → (V ′, E′) over a primitives-closed order-
sorted signature (S,D) is primitives-closed if ωBool(tt) = tt and ωBool(ff ) = ff ; and
for all s ∈ |S|:
– ωSeq(s)(ε) = ε and ωSet(s)(∅) = ∅;
– ωSeq(s)(v :: l) = ωs(v) :: ωSeq(s)(l) and ωSet(s)({v} ∪m) = {ωs(v)} ∪ ωSet(s)(m).

The indexed category Str◦ : (S◦)op → Cat is defined like Str≤ but only involves
primitives-closed order-sorted signatures, structures, and morphisms.

The indexed functor U◦ : Str◦ →̇Val≤ is defined by U≤ restricted to Str◦.

Terms and Evaluation. As construction functor for primitives-closed order-sorted terms
we can still use C≤ : G(Val≤) → G(Val≤) as defined in Sect. A.1. Also the defini-
tion of the evaluation of primitives-closed order-sorted terms, though now involving
primitives-closed signatures and structures, stays the same, such that the corresponding
evaluation condition (E) again is satisfied. However, the primitives-closed order-sorted
terms do not directly give rise to primitives-closed structures (in the sense of term alge-
bras) due to the “standard interpretation” requirements on sequences and sets.

Term Charter. In particular, we obtain the primitives-closed order-sorted term char-
ter (C≤, ν≤, (−)�≤) over the term charter domain (S◦,Val≤, Str◦, U◦). Furthermore,
setting UVal≤(〈Σ, V 〉) = VBool and ∗ = tt we obtain, by applying Prop. 2, an institu-
tion for the primitives-closed order-sorted term charter. SinceVal≤(Σ) has initial value
domains for eachΣ ∈ |S◦|, we can also apply Cor. 1 and obtain a “classical” institution.

A.3 Iteration

For handling OCL’s iteration construct, we only extend the term language, but keep work-
ing over primitives-closed order-sorted signatures and structures. In fact, iteration is not
straightforwardly integrable into order-sorted signatures and structures themselves, since
it binds the iteration and the accumulator variable and thus involves higher-order terms.
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Terms and Evaluation. The construction functor for iteration terms C it : G(Val≤) →
G(Val≤) is defined as follows: For the objects, set C it(〈(S,D), X〉) = 〈(S,D), V it

X〉
such that inductively
– x ∈ V it

X,s if x ∈ Xs;
– d(�v) ∈ V it

X,s′ for all s′ ≥S s if d ∈ δD(s, s) and �v ∈ V it
X,s;

– v′→iterate(y′; y = v0 | v) ∈ V it
X,s if v′ ∈ V it

X,Seq(s′) with s′ ∈ |S|, v0 ∈ V it
X,s,

and v ∈ V it
X�{y:s,y′:s′},s (where, for s0, s1 ∈ |S|, y0 /∈ Xs′0 for any s′0 ≥S s0,

(X $ {y0 : s0})s1 is defined by Xs1 if s0 �≤S s1 and by Xs1 ∪ {y0} if s0 ≤S s1).

For the morphisms, define the morphism C it(〈(γ, ρ), ω〉) = 〈(γ, ρ), ωit〉 : C it(〈(S,D),
X〉) → C it(〈(S′, D′), X ′〉) such that, by simultaneous induction, ωit

s(x) = ωs(x)
for x ∈ Xs; ωit

s(d(�v)) = ρ(d)(ωit
s(�v)); and ωit

s(v
′→iterate(y′; y = v0 | v)) =

ωit
s′(v

′)→iterate(y′; y = ωit
s(v0) | (ω{y : s → y : γ(s), y′ : s′ → y′ : γ(s′)})it

s(v)).
For each M = 〈Σ, (V,E)〉 ∈ |G(Str◦)| with Σ = (S,D) and each morphism

β = 〈1Σ, βit〉 : 〈Σ,X〉 → G(U◦)(M) define (β)�
it
Σ = 〈1Σ , (βit)�

it
Σ 〉 : C it(〈Σ,X〉) →

G(U◦)(M) inductively by

– (βit)
�it
M
s (x) = βs(x) for x ∈ Xs;

– (βit)
�it
M
s (d(�v)) = Es,s(d)((β

it)
�it
M

s (�v));

– (βit)
�it
M
s (v′→iterate(y′; y = v0 | v)) = it((βit)

�it
M

s′ (v′), (βit)
�it
M
s (v0),

{(v1, v2) → ((βit{y : s → v2, y
′ : s′ → v1})�

it
M
s (v)})}),

where it(ε, va, f) = va and it(vi :: !, va, f) = it(!, f(vi, va), f).

Term Charter. We obtain the iteration term charter (C it, ν it, (−)�it
) over the term char-

ter domain (S◦,Val≤, Str◦, U◦) when choosing the embedding natural transformation
ν it to consist out of inclusions. The evaluation of the iteration construct is completely
handled by the structure over which a term is evaluated. As for primitives-closed order-
sorted term charters we can construct the respective institutions.

A.4 All Instances

When accessing all instances of a type with an infinite number of inhabitants, an unde-
fined value, which we denote by †, shall be the result. We cover this addition by lifting
the order-sorted value domain morphisms to include also † in their co-domains.

Values. An undef-lifting value domain morphism ω† : V → V ′ from an (S,D)-value
domain V to an (S,D)-value domain V ′ over the order-sorted signature (S,D) is given
by a family of mappings ω† = (ω†

s : Vs → (V ′
s )†)s∈|S| where (M)† = M $ {†}

is the undef-lifting of the set M extending M by the special undefinedness symbol †.
The composition ω′† ◦ ω† : V → V ′′ of two undef-lifting value domain morphisms
ω† : V → V ′ and ω′† : V ′ → V ′′ between (S,D)-value domains is given by ω′† ◦
ω† = (ω′†

s ◦ ω†
s : Vs → (V ′′

s )†)s∈|S| with (ω′†
s ◦ ω†

s)(v) = † if ω†
s(v) = † and

(ω′†
s ◦ ω†

s)(v) = ω′†
s (ω

†
s(v)) otherwise; i.e., composition is strict w.r.t. undefinedness.

The identity undef-lifting value domain morphism 1†V : V → V between an (S,D)-
value domain V is given by 1†V = (1†V,s : Vs → (Vs)†)s∈|S| with 1†V,s(v) = v.
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(S,D)-value domains and undef-lifting morphisms between (S,D)-value do-
mains define a category which we denote by Val†(S,D). The indexed category
Val† : (S≤)op → Cat maps each order-sorted signature (S,D) to Val†(S,D) and
each order-sorted signature morphism (γ, ρ) : (S,D) → (S′, D′) to the functor
Val†(γ, ρ) :Val†(S′, D′) →Val†(S,D) withVal†(γ, ρ)((V ′

s′ )s′∈|S′|) = (V ′
γ(s))s∈|S|

andVal†(γ, ρ)((ω′†
s′ : V

′
1,s′ → (V ′

2,s′)†)s′∈|S|) = (ω′†
γ(s) : V

′
1,γ(s) → (V ′

2,γ(s))†)s∈|S|.

For a primitives-closed Σ = (S,D)-structure (V,E) define U †
Σ(V,E) = V . For

a structure morphism ω : (V,E) → (V ′, E′) between primitives-closed Σ-structures
define U †

Σ(ω) = (ω†
s : Vs → (V ′

s )†)s∈|S| with ω†
s(v) = ω(v) which is an undef-lifting

value domain morphism fromU †
Σ(V,E) to U †

Σ(V
′, E′). This yields the indexed functor

U † : Str◦ →̇Val†.

Terms and Evaluation. The construction functor for all-instances terms C a :
G(Val†) → G(Val†) is defined as follows: For the objects, let C a(〈(S,D), X〉) =
〈(S,D), V a

X〉 such that inductively

– x ∈ V a
X,s if x ∈ Xs;

– d(�v) ∈ V a
X,s′ for all s′ ≥S s if d ∈ δD(s, s) and �v ∈ V a

X,s;
– s.allInstances() ∈ V a

X,s′ for all s ∈ |S| and s′ ≥S Set(s);

For the morphisms, define C a(〈(γ, ρ), ω†〉) = 〈(γ, ρ), (ω†)a〉 : C a(〈(S,D), X〉) →
C a(〈(S′, D′), X ′〉) such that, by simultaneous induction,

– (ω†)a
s(x) = ω†

s(x) for x ∈ Xs;

– (ω†)a
s′ (d(�v)) =

{
ρ(d)((ω†)a

s(�v)) if ω†
si
(�vi) �= † for all 1 ≤ i ≤ |�v|

† otherwise
;

– (ω†)a
s′ (s.allInstances()) = γ(s).allInstances().

For each M = 〈Σ, (V,E)〉 in |G(Str◦)| with Σ = (S,D) and each β = 〈1Σ , βa〉 :
〈Σ,X〉 → G(U †)(M) define (β)�

a
M = 〈1Σ, (βa)�

a
M 〉 : C a(〈Σ,X〉) → G(U †)(M)

inductively by

– (βa)
�a
M
s (x) = βa

s(x) for x ∈ Xs;

– (βa)
�a
M

s′ (d(�v)) =

{
Es,s(d)((β

a)
�a
M

s (�v)) if (βa)
�a
M

si
(�vi) �= † for all 1 ≤ i ≤ |�v|

† otherwise
;

– (βa)
�a
M

s′ (s.allInstances()) =

{
Vs if |Vs| <∞
† otherwise

.

Term Charter. Define the embedding natural transformation νa : 1G(Val†) →̇ C a again
as inclusions, though now as undef-lifting value domain morphisms, i.e., νa

〈(S,D),X〉 =

〈1(S,D), (ι
a
〈(S,D),X〉,s : Xs → (V a

X,s)†)s∈|S|〉. This yields the all-instances term charter

(C a, νa, (−)�a
) over the term charter domain (S◦,Val†, Str◦, U †), though checking the

term charter conditions (C), (K), and (E) becomes a little bit more tedious because of
case distinctions.
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A.5 Undefinedness

Finally, let us consider OCL’s handling of undefinedness. We also add an if-then-else
clause as another non-strict function besides the test on undefinedness and the three-
valued Boolean connectives.

Terms and Evaluation. The construction functor for undefinedness terms C u :
G(Val†) → G(Val †) is defined as follows: For the objects, set C u(〈(S,D), X〉) =
〈(S,D), V u

X〉 such that inductively

– x ∈ V u
X,s if x ∈ Xs;

– d(�v) ∈ V u
X,s′ for all s′ ≥S s if d ∈ δD(s, s) and �v ∈ V u

X,s;
– undef ∈ V u

X,s for all s ∈ |S|;
– v.isUndef() ∈ V u

X,s′ for all s′ ≥S Bool if v ∈ V u
X,s for s ∈ |S|;

– v1 and v2 ∈ V u
X,s and v1 or v2 ∈ V u

X,s for all v1, v2 ∈ V u
X,Bool and s ≥S Bool;

– if v then v1 else v2 endif ∈ V u
X,s′ for all v ∈ V u

X,Bool and v1, v2 ∈ V u
X,s with s′ ≥S s.

For the morphisms, define C u(〈(γ, ρ), ω†〉) = 〈(γ, ρ), (ω†)u〉 : C u(〈(S,D), X〉) →
C u(〈(S′, D′), X ′〉) such that, by simultaneous induction,

– (ω†)u
s(x) =

{
undef if ω†

s(x) = †
ω†
s(x) otherwise

for x ∈ Xs;

– (ω†)u
s′ (d(�v)) = ρ(d)((ω†)u

s(�v)) for d ∈ δD(s, s);
– (ω†)u

s(undef) = undef;
– (ω†)u

s′ (v.isUndef()) = (ω†)u
s(v).isUndef();

– (ω†)u
s(v1 bop v2) = (ω†)u

Bool(v1) bop (ω†)u
Bool(v2) for bop ∈ {and, or};

– (ω†)u
s′ (if v then v1 else v2 endif) = if (ω†)u

Bool(v) then (ω†)u
s(v1) else (ω†)u

s(v2) endif.

(Although (ω†)u
s(x) = ω†

s(x) together with a strict extension for d(�v) could have been
defined, special measures for if v then v1 else v2 endif would have to be taken.)

For each M = 〈Σ, (V,E)〉 in |G(Str◦)| with Σ = (S,D) and each β = 〈1Σ , βu〉 :
〈Σ,X〉 → G(U †)(M) define (β)�

u
M = 〈1Σ , (βu)�

u
M 〉 : C u(〈Σ,X〉) → G(U †)(M)

inductively by

– (βu)
�u
M
s (x) = βu

s(x) for x ∈ Xs;

– (βu)
�u
M

s′ (d(�v)) =

{
Es,s(d)((β

u)
�u
M

s (�v)) if (βu)
�u
M

si
(�vi) �= † for all 1 ≤ i ≤ |�v|

† otherwise
;

– (βu)
�u
M
s (undef) = †;

– (βu)
�u
M

s′ (v.isUndef()) =

{
tt if (βu)

�u
M
s (v) = †

ff otherwise
;

– (βu)
�u
M
s (v1 and v2) =

⎧⎪⎨⎪⎩
tt if (βu)

�u
M

Bool(v1) = tt and (βu)
�u
M

Bool(v2) = tt

ff if (βu)
�u
M

Bool(v1) = ff or (βu)
�u
M

Bool(v2) = ff

† otherwise

;

– (βu)
�u
M
s (v1 or v2) =

⎧⎪⎨⎪⎩
tt if (βu)

�u
M

Bool(v1) = tt or (βu)
�u
M

Bool(v2) = tt

ff if (βu)
�u
M

Bool(v1) = ff and (βu)
�u
M

Bool(v2) = ff

† otherwise

;
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– (βu)
�u
M
s (if v then v1 else v2 endif) =

⎧⎪⎨⎪⎩
(βu)

�u
M
s (v1) if (βu)

�u
M
s (v) = tt

(βu)
�u
M
s (v2) if (βu)

�u
M
s (v) = ff

† otherwise

.

Term Charter. The undefinedness term charter (C u, νu, (−)�u
) over the term char-

ter domain (S◦,Val†, Str◦, U †) uses the analogous embedding natural transformation
νu : 1G(Val†) →̇ C u as the all-instances term charter. Checking the term charter con-
ditions (C), (K), and (E) now involves even more case distinctions. In contrast to the
all-instances case, the undef-lifting value domain morphism constructed by C u not sim-
ply is a strict extension to terms, but treats † specially in order to avoid problems with
the if-then-else clause.
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