Contents

Preface
List of Examples
Notation

1 Introduction
 Why Read This Book?
 Topics of the Book
 How to Read This Book

2 Finite Elements Overview
 Modelling Basics
 Discretisation Outline
 Elements
 Material Behaviour
 Weak Equilibrium
 Spatial Discretisation
 Numerical Integration
 Equation Solution Methods
 Nonlinear Algebraic Equations
 Time Incrementation
 Discretisation Errors

3 Uniaxial Reinforced Concrete Behaviour
 Uniaxial Stress–Strain Behaviour of Concrete
 Long-Term Behaviour – Creep and Imposed Strains
 Reinforcing Steel Stress–Strain Behaviour
 Bond between Concrete and Reinforcement
 Smeared Crack Model
 Reinforced Tension Bar
 Tension Stiffening of Reinforced Bars

Bibliografische Informationen
https://d-nb.info/1253680876
4 Structural Beams and Frames 67
4.1 Cross-Sectional Behaviour 67
4.1.1 Kinematics 67
4.1.2 Linear Elastic Behaviour 70
4.1.3 Cracked Reinforced Concrete Behaviour 71
4.2 Equilibrium of Beams 81
4.3 Finite Elements for Plane Beams 85
4.3.1 Timoshenko Beam 86
4.3.2 Bernoulli Beam 88
4.4 System Building and Solution 91
4.4.1 Integration 91
4.4.2 Transformation and Assembling 93
4.4.3 Kinematic Boundary Conditions and Solution 95
4.4.4 Shear Stiffness 98
4.5 Creep of Concrete 101
4.6 Temperature and Shrinkage 105
4.7 Tension Stiffening 109
4.8 Prestressing 112
4.9 Large Displacements – Second-Order Analysis 118
4.10 Dynamics 126

5 Strut-and-Tie Models 133
5.1 Elastic Plate Solutions 133
5.2 Strut-and-Tie Modelling 136
5.3 Solution Methods for Trusses 138
5.4 Rigid Plastic Truss Models 145
5.5 Application Aspects 147

6 Multi-Axial Concrete Behaviour 151
6.1 Basics 151
6.1.1 Continua and Scales 151
6.1.2 Characteristics of Concrete Behaviour 153
6.2 Continuum Mechanics 154
6.2.1 Displacements and Strains 154
6.2.2 Stresses and Material Laws 156
6.2.3 Coordinate Transformations and Principal States 157
6.3 Isotropy, Linearity, and Orthotropy 159
6.3.1 Isotropy and Linear Elasticity 159
6.3.2 Orthotropy 161
6.3.3 Plane Stress and Strain 162
6.4 Nonlinear Material Behaviour 164
6.4.1 Tangential Stiffness 164
6.4.2 Principal Stress Space and Isotropic Strength 165
6.4.3 Strength of Concrete 168
6.4.4 Nonlinear Material Classification 172
6.5 Elasto-Plasticity 173
6.5.1 A Framework for Multi-Axial Elasto-Plasticity 173
6.5.2 Pressure-Dependent Yield Functions 178
6.6 Damage 183
6.7 Damaged Elasto-Plasticity 190
6.8 The Microplane Model 192
6.9 General Requirements for Material Laws 199

7 Crack Modelling and Regularisation 201
7.1 Basic Concepts of Crack Modelling 201
7.2 Mesh Dependency 205
7.3 Regularisation 209
7.4 Multi-Axial Smeared Crack Model 216
7.5 Gradient Methods 223
7.5.1 Gradient Damage 223
7.5.2 Phase Field 228
7.5.3 Assessment of Gradient Methods 235
7.6 Overview of Discrete Crack Modelling 236
7.7 The Strong Discontinuity Approach 237
7.7.1 Kinematics 237
7.7.2 Equilibrium and Material Behaviour 240
7.7.3 Coupling 242

8 Plates 249
8.1 Lower Bound Limit State Analysis 249
8.1.1 General Approach 249
8.1.2 Reinforced Concrete Resistance 250
8.1.3 Reinforcement Design 255
8.2 Cracked Concrete Modelling 261
8.3 Reinforcement and Bond 266
8.4 Integrated Reinforcement 273
8.5 Embedded Reinforcement with a Flexible Bond 275
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Solution Methods</td>
<td>381</td>
</tr>
<tr>
<td>A.1</td>
<td>Nonlinear Algebraic Equations</td>
<td>381</td>
</tr>
<tr>
<td>A.2</td>
<td>Transient Analysis</td>
<td>384</td>
</tr>
<tr>
<td>A.3</td>
<td>Stiffness for Linear Concrete Compression</td>
<td>386</td>
</tr>
<tr>
<td>A.4</td>
<td>The Arc Length Method</td>
<td>388</td>
</tr>
<tr>
<td>B</td>
<td>Material Stability</td>
<td>391</td>
</tr>
<tr>
<td>C</td>
<td>Crack Width Estimation</td>
<td>395</td>
</tr>
<tr>
<td>D</td>
<td>Transformations of Coordinate Systems</td>
<td>401</td>
</tr>
<tr>
<td>E</td>
<td>Regression Analysis</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>417</td>
</tr>
</tbody>
</table>