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Abstract

Computer Science & Electrical Engineering

Doctor of Philosophy

Challenges in Integration and Analysis of High-Dimensional Biological Data:
Cases from Environmental and Health Research

by Mariam Reyad Rizkallah

Biological data represent a large, challenging sector of data engineering applica-
tions, where being “drowned in data and starved for information” could cost human
lives. Biological data are typically complex and poorly standardized. Moreover, high
value, rapid growth in volume and advances in acquisition technologies characterize
modern environmental and health research data, humbling the classical practices for
data transformation and analytics. Furthermore, data in biology make more sense
when integrated with usually different data types, or data from different sources or
even fields. In addition, the uniqueness of each case and research question call for a
deep understanding of data life cycle and for customized solutions. Having a large
volume and value, and being produced at a high velocity in a large variety, biolog-
ical data encourage the investigation of scalable workflows to automate acquisition
and integration, closing the gaps in optimizing analytics specially for heterogeneous
data.

This thesis aims at exploring and optimizing the state-of-the-art methods for hetero-
geneous data integration and analysis, of sequence and non-sequence-based data,
by identifying four areas of application concerning primary and secondary data
from environmental and health research. It presents four challenges in data prepa-
ration and transformation for variable selection, and accompanying case studies.
Particularly, the thesis investigates knowledge extraction from primary inherently
high-dimensional marine sequence data, scalability in handling secondary photo-
synthetic sequence data, integration and statistical modeling of secondary high-
dimensional relational health care claims data for adverse drug event prediction,
and integration of heterogeneous primary epidemiological data for childhood obe-
sity investigation. The thesis highlights the importance of data model development
for data transformation and integration, and the role of scalable analytics in the fore-
seen increase in data dimensions.
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Chapter 1

Introduction

1.1 In the light of data

Finding a common term between banking, weather forecast, fitness, cancer, elec-
tions, and climate change is not as difficult as it would seem. Data is the currency
of the present world; data collected from various sensors are relied upon for de-
cision making and for compiling strategies for crisis management. However, data
and knowledge are not equivalents; the “data step” (i.e., acquisition, integration
and transformation) is argued to be the most critical and time consuming step in the
data mining and consequently knowledge discovery process (van der Putten, 2010).
Therefore, data engineering is needed where data exit.

In 1989, knowledge and data engineering have been considered as the studies related
to computer-aided information, data and knowledge management (Ramamoorthy
and Wah, 1989). Data engineering covers a wide range of applications including
social network analysis, web usage mining, business intelligence, financial fraud
detection, and precision medicine, addressing the acquisition and transformation of
large collections of data to facilitate information extraction.

Biological data represent a large and a challenging sector of data engineering appli-
cations, where being “drowned in data and starved for information” (Brown, 2014)
could cost as much as the human life itself. Throughout history, “nothing in biology
made sense except in the light of data”. Data engineering’s fundamental under-
standing of the data life cycle from acquisition, processing and distribution matches
the needs of biological research, where data are typically complex and poorly stan-
dardized, and where analytics are often challenged by data dimensionality. To com-
prehensively grasp the biological data life cycle, and properly address the challenges
in biological data curation and analytics, it is crucial to understand the biological
data ecosystem.

1



Chapter 1. Introduction

1.1.1 The diverse ecosystem of biological data

The data landscape in biology is rich and diverse in terms of sources, types and
fields of application. First, regarding sources, for instance, (bio)medical data can be
collected from people through observations (e.g., batch experiments, examinations,
interviews) or from sensors (e.g., wearable devices, sequencers, images, and labora-
tory measurements). Data are also obtained from large repositories and collections
such as sequence repositories and administrative databases (e.g., health insurance
databases, cancer registries, biobanks). Moreover, data integration is of major in-
terest in biological research, for example, for investigating the interaction between
environmental and genetic factors and its effect on disease etiology and prognosis.
To achieve that, the records are to be matched, pseudoymized or anonymized and
distributed for statistical analysis (El Emam et al., 2009; Chan et al., 2010; Dey et al.,
2018). In addition to integration, biomedical data may feed the Internet of Medical
Things (a.k.a., Internet of Health Things or Smart Healthcare) to monitor patients’
treatment and general health status (Islam et al., 2015; Baker et al., 2017; Dey et al.,
2018). Looking at such an ecosystem, we can categorize biological data based on
their source into primary data (e.g., observations from experiments and cohort stud-
ies) and secondary data (i.e., databases and repositories of routinely collected data).

Second, concerning data types, different types of biological data are becoming read-
ily available at a reduced cost due to the advances in biological data acquisition
systems (e.g., high-throughput platforms in genomics, lipidomics). Since the re-
lease of the first sequenced genome in 1995 (Haemophilus influenzae) (Fleischmann
et al., 1995), the number of sequenced genomes has been increasing exponentially
attempting to cover the entire Tree of Life on Earth. Nevertheless, the reduced cost
of data acquisition, particularly sequencing, is counteracted by the increasing cost of
data storage, processing and analysis (i.e., mapping and variant calling), and, most
notably, sharing and privacy (Sboner et al., 2011; Stephens et al., 2015). In addition to
the most known types of biological data (i.e., sequence- and image-based), biologi-
cal data types include relational data as in electronic health care databases spanning
record linkage systems (e.g., national disease and death registries), electronic med-
ical records and health care claims databases (Pacurariu et al., 2018). As of 2018,
in Europe alone, 34 databases of this type exist, covering, as median, 18.5 years of
patient time of five million patients (Pacurariu et al., 2018).

High-throughput omics1 data and electronic health care databases form the major-
ity of the biological data landscape, which in turn renders biological data inherently
high-dimensional. Such data are used in a wide range of biological fields of appli-
cation. In particular, applications in health (e.g., disease epidemiology and person-
alized medicine) and environment (e.g., ecology and biogeochemistry) are largely
based on knowledge extraction from high-dimensional biological data.

1The suffix “omics” refers to: “the measurement of the entire complement of a given level of biolog-
ical molecules and information”. For example, the term “genomics” refers to the quantitative study of

2



1.1. In the light of data

In biological sciences, the pathway from data to information is long. The biologi-
cal data life cycle is as lengthy and costly as the unpacking of genetic information
in biological systems, where genetic material is transcribed and/or translated into
functional entities (i.e., proteins). Data curation strategies depend on the data source,
type and intended analytics. Observation data from sensors or from the field are to
be acquired, transferred to storage, normalized (e.g., gene expression data), curated
and imputed (e.g., epidemiological surveys), and transformed into features (e.g.,
gene expression estimates, microbial abundances, drug and disease exposure from
electronic health care databases) variables. Such extensive data (pre-)processing re-
quirements are integral in order for the data input type to conform with the intended
analytics for knowledge extraction.

Each data source, type and field has its own challenges in data acquisition, manage-
ment, privacy, processing and analysis. Moreover, with the increasing availability of
data sources, data integration is expected, and analysis methods should be scalable
to accommodate heterogeneous data sources.

1.1.2 In health and environment

In this subsection, I briefly introduce four challenges in biological data curation and
analytics that this thesis addresses, with respect to data source (primary, secondary),
and data type (sequence and relational) in the two major fields of application, health
and environment.

Knowledge extraction from primary high-dimensional sequence data

Transcriptomic studies of batch culture experiments are a major and popular source
of biological primary data in environmental research. They provide a glimpse on the
metabolic potential of algae, and a high-resolution snapshot of the metabolism un-
der changing growth conditions. Transcriptomics data acquisition (e.g., RNA-Seq),
processing and analysis methods are becoming increasingly standardized (Angiuoli
et al., 2008; Osborne et al., 2014; Conesa et al., 2016). Nevertheless, handling high-
throughput sequence data represent a challenge to a classical bioinformatic analy-
sis primarily due to dimensionality issues. Moreover, curation and analysis largely
depend on the biological source of the data (i.e., its genome complexity and/or
genome availability) creating a unique challenge in every study. It is tempting to
solve the problem fully and solely automatically, however, subject-matter knowl-
edge and manual curation are often required for knowledge extraction. In spite of
being a routine activity with respect to data engineering, applying state-of-the-art

the genome, as in protein-coding genes, regulatory elements and noncoding sequences. Helpful refer-
ence: Schneider MV, Orchard S. Omics Technologies, Data and Bioinformatics Principles. In: Mayer B,
editor. Bioinformatics for Omics Data: Methods and Protocols. Totowa, NJ (US): Humana Press; 2011.
p. 3–30. Available from: https://doi.org/10.1007/978-1-61779-027-0_1.
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methods for knowledge extraction from primary sequence data is necessary to ad-
dress perspective scalability and automation challenges with the increased breadth
of available data.

Scalability in handling secondary sequence data

In addition to the various high-resolution “vertical” data types available on an or-
ganism, there is the “horizontal” aspect of biological data. Large volumes of data
are collected on individual or communities of organisms through global projects.
Examples of such projects include: Global Ocean Sampling (GOS) (Yooseph et al.,
2007), Tara Oceans and Oceanomics (Sunagawa et al., 2015), and the Marine Microbial
Eukaryote Transcriptome Sequencing Project (MMETSP) (Keeling et al., 2014). To
showcase the data volume by such projects, Tara Oceans expeditions yielded 7.2
terabases (Tb) of ocean microbiome data, and a comparable amount of data was
yielded by the US Human Microbiome Project and the European Metagenomics of
the Human Intestinal Tract (MetaHIT) project (Qin et al., 2010; Human Microbiome
Project Consortium, 2012; Li et al., 2014b; Sunagawa et al., 2015). These data are
made available through public repositories, which are a valuable secondary data
source for information integration and meta-studies. A key challenge in handling
secondary sequence data is the scalability and modularity of data acquisition and
analysis, to address 1) the differences in sequencing technology and, consequently,
in pre-processing steps, and 2) the type of integration and, therefore, appropriate
analytics.

Integration and statistical modeling of secondary high-dimensional relational data

It is evident that sequence data analysis (i.e., functional annotation) largely relies
on data integration from annotations platforms. Nevertheless, utilizing molecular-
based ontologies to analyze relational epidemiological data is foreseen. The re-
cent steep rise in routinely collected health data sources (i.e., electronic health care
databases) renders such secondary data a readily available and cheap, yet highly
valuable data type for pharmacoepidemiological research, for example, to monitor
drug safety in large populations in the post-marketing phase. Handling secondary
high-dimensional relational data is challenged at two levels: 1) the extraction and
integration of molecular-relevant ontologies from public knowledge bases, and 2)
the optimization of statistical methods for scalability, specially for studies on large
populations. In addition, data security is a major concern when handling human
data.

Integration of heterogeneous primary epidemiological data

Epidemiological research, as well, benefits from the advances in high-throughput
multi-omics technologies, which increase the depth of the phenotypic profiles of
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individuals, and, in turn, advance our understanding of disease etiology. For op-
timal knowledge extraction, modern cohort studies require integration of various
heterogeneous data types (i.e., lifestyle variables from epidemiological profiling and
surveys, exercise data from wearables, and food intake data from food surveys and
food tracking web applications), in addition to multi-omics data (e.g., genetic vari-
ants, microbiome and lipidome data). Each of these data types are to be transformed
prior to integration into a meaningful data model. In the near future, cohort stud-
ies will not only be challenged due to the increase in number of variables, but also
due to the increase in number of subjects [e.g., as in the UK Biobank including more
than 500,000 participants (Sudlow et al., 2015)], calling for scalable solutions for data
integration and analytics.

1.2 Thesis objectives, structure and publications

1.2.1 Thesis objectives and structure

The aforementioned data challenges in biological research invite the investigation
of scalable workflows to automate acquisition and integration. The role of data en-
gineering in handling high-dimensional data is not limited to data preparation and
warehousing, as it extends to closing the gaps in optimizing analytics specially for
heterogeneous data.

This thesis, thus, aims at exploring and optimizing the state-of-the-art methods for
heterogeneous data integration and analysis, of sequence and non-sequence-based
data in human and environmental research. The thesis will present challenges in
biological data preparation and transformation for variable selection, where no one-
size-fits-all solution can be adopted, and custom-made solutions are required. For
this purpose, I identified four areas of application in primary and secondary data
concerning a wide spectrum of the Tree of Life (e.g., marine algae, land plants and
human gut microbiota). The particular aspects and models for data processing and
analysis, and the areas of application are:

1. State-of-the-art dimensionality reduction practices and their impact on knowl-
edge extraction in transcriptomics using a case of primary environment data
(Chapter 2)

2. A simple approach for scalability and reproducibility of acquisition and analy-
sis of transcriptomic data from public repositories: Meta-analysis of secondary
environment data (Chapter 3)

3. Integration and statistical modeling of high-dimensional relational data for ad-
verse drug event prediction in secondary health care claims data (Chapter 4)

5
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4. A model for meaningful data integration using dimensionality reduction meth-
ods: An epidemiological case study of primary heterogeneous multi-omic-
based data (Chapter 5)

In these four chapters, I present the four concepts and accompanying case studies. In
each chapter, I first present a background on the biological research data sources, ac-
quisition and analytics model. Second, I address the foreseen challenges and require-
ments, the solution implementation steps, and the evaluation and limitation of the
solution. In Chapter 6, I present a conclusion and future outlook. The thesis chapters
are complemented with two appendices: a technical appendix A for supplementary
information and results, and the publication appendix B for the manuscripts the the-
sis contributed to, listed below.

1.2.2 List of manuscripts and statement of contribution

1. Manuscript I (Published): Rizkallah MR, Frickenhaus S, Trimborn S, Harms
L, Moustafa A, Benes V, Gäbler Schwarz S, Beszteri S. Deciphering patterns
of adaptation and acclimation in the transcriptome of Phaeocystis antarctica to
changing iron conditions. J Phycol 2020; 56: 747–760.

• I maintained and inoculated the cultures, harvested the cells and extracted
RNA with S. Beszteri. I have executed the transcriptome assembly, analy-
sis and differential expression inference with Harms L supervised by S.
Frickenhaus and A. Moustafa. I participated in the conceptualization
of the manuscript, and I wrote the initial draft of the manuscript with
S. Frickenhaus and S. Beszteri. I processed the sequence-based data to
be deposited and publicly available through NCBI. The work was done
in collaboration with and under the supervision of the co-authors. The
manuscript is published in the Journal of Phycology.

2. Manuscript II (Published; in German): Foraita R, Dijkstra L, Falkenberg F,
Garling M, Linder R, Pflock R, Rizkallah MR, Schwaninger M, Wright MN,
Pigeot I. Detection of drug risks after approval: Methods development for
the use of routine statutory health insurance data. Bundesgesundheitsblatt -
Gesundheitsforschung - Gesundheitsschutz 2018; 61: 1075–1081.

• R. Foraita planned the concept and wrote the main draft of the publica-
tion. I and R. Foraita conducted the literature research, prepared visual-
izations and wrote the initial draft of the section concerning using func-
tional targets-based analysis and construction of patient risk profiles in
identifying risk factors for adverse drug events in routine statutory health
insurance data.

3. Manuscript III (Draft): Rizkallah MR, Dijkstra L, Wilhelm AFX, Pigeot I, Foraita
R. Predicting patient risk for adverse drug events in health care claims data us-
ing functional targets.
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• R. Foraita, I and L. Dijkstra planned the concept. I conducted the litera-
ture research, data curation and transformation pipeline. Statistical analy-
sis plan was compiled by R. Foraita and I in collaboration with L. Dijkstra,
I. Pigeot and AFX. Wilhelm. I optimized the methods performance with
R. Foraita and L. Dijkstra. I wrote the initial draft, R. Foraita revised parts
of the draft.

4. Manuscript IV (In preparation): Wolters M, Rizkallah MR, Foraita R, Liebisch
G, Veidebaum T, Tornaritis M, Molnár D, Eiben G, Rampelli S, Günter K, Marron
M on behalf of the IDEFICS/I.Family and MyNewGut Consortia. Plasma lipid-
ome and gut microbiome profiles as predictors of weight gain in children.

• The MyNewGut Consortium planned the concept. M. Wolters, I and R.
Foraita conducted the literature research. M. Wolters, K. Günter and I
conducted the data selection. I conducted data curation and transforma-
tion, and developed the analysis plan with R. Foraita and the MyNewGut
Consortium. R. Foraita and I compiled and optimized the statistical meth-
ods. I participated in the manuscript writing.

1.2.3 Further contributions

• Aziz RK, Hegazy SM, Yasser R, Rizkallah MR, ElRakaiby MT. Drug pharma-
comicrobiomics and toxicomicrobiomics: From scattered reports to systematic
studies of drug–microbiome interactions. Expert Opin Drug Metab Toxicol
2018; 14: 1043–1055.

• Aziz RK, Rizkallah MR, Saad R, ElRakaiby MT. Translating pharmacomicro-
biomics: Three actionable challenges/prospects in 2020. Omi A J Integr Biol
2020; 24: 60–61.
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Chapter 2

Existing Workflows for Knowledge
Extraction: A Case of Primary
Environment Data

Transcriptomic studies of batch culture experiments are a major source of biological
data, and they fall under the umbrella of primary data. These data are, by defi-
nition, intended to answer a particular scientific question, such as the adaptation
of species under novel growth conditions. As the data acquisition methods (e.g.,
RNA-Seq) in these experiments are meanwhile highly standardized, curation (i.e.,
processing) and analysis methods are becoming increasingly standardized as well.
Workflows by R-Bioconductor (Love et al., 2015) and best practices (Conesa et al.,
2016) for analyzing these data are available. Nevertheless, curation and analysis
largely depend on the biological source of the data (i.e., genome complexity and/or
availability of the organism, how well-studied the organism is), the biological re-
search question and the skill set of the analysts, creating a unique challenge in every
case study. Therefore, different types of downstream analyses or different ontologies
might be required. RNA-Seq data are high-dimensional data and thus preparation
and analytics are often challenged by dimensionality issues.

In this chapter, I present the analysis of primary data from environmental research,
in particular marine algae. The case study is a transcriptomic study of a batch cul-
ture of the Southern Ocean key endemic species Phaeocystis antarctica. The chapter
deals with data acquisition from source, annotation data acquisition, dimensionality
reduction, basic data flow management, and study data archiving in public repos-
itories. The work featured in this chapter is published in the Journal of Phycology
(Appendix B.1).

Although the project seems to be more of a routine activity with respect to data en-
gineering, it paved the way to considering more sophisticated scalable solutions in
the following chapters. In particular, due to the popularity of transcriptomics in al-
gal research, in Chapter 3 I apply simple, scalable solutions on secondary sources of
transcriptomic data (i.e., sequence public repositories). In addition, the case study
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described here offered an opportunity to highlight challenges and solutions for mea-
suring and managing data acquired from a biological experiment.

The chapter is structured as follows. In Section 2.1, I describe the potential of tran-
scriptomics in marine research and on the ecological relevance of the species chosen
for this case study before emphasizing the objective of the chapter. In Section 2.2,
I address the objective in detail in terms of project requirements, steps undertaken
for solution implementation and evaluation of the results. Concluding remarks are
presented in the last section.

2.1 Background

2.1.1 Transcriptomics as a potential for marine research

Transcriptomic studies present an interesting source of biological data. These stud-
ies can compare gene expression under two or more conditions (e.g., health/disease,
enriched/starved) by allowing the organism to grow under different conditions. If
applicable, biological replicates of the organism can be used. In case of algae, cells
are harvested from replicates and conditions on filters. Then, mRNA1 is extracted
from the cells and sequenced (e.g., by high-throughput technologies such as RNA se-
quencing; RNA-Seq). In RNA-Seq, total mRNA is sequenced yielding usually short
reads (in case of Illumina; 30-150 bp) (Marguerat and Bähler, 2010). To quantify
gene expression, these short sequences are mapped to the genome (if available), or
de novo assembled into a scaffold (as genes). Finally, gene expression values are
statistically tested to infer the differentially expressed fraction of the genome un-
der the predefined growth conditions. Many tools and workflows were developed
for processing data from high-throughput technologies (Reuter et al., 2015; Conesa
et al., 2016), providing guidelines to clean (i.e., process) data resulting from each se-
quencing technology, to assemble the sequences, and to infer differentially expressed
genes and isoforms (i.e., transcripts), in addition to experimental design for plant bi-
ology (Strickler et al., 2012) and statistical aspects of RNA-Seq data analysis (Yendrek
et al., 2012).

Marine algae represent both a potential and a challenge for data curation and analy-
sis. First, genome organization is generally very complex and genomes are large
(e.g., dinoflagellates). Dinoflagellates have some of the largest known genomes of
sizes ranging from 1.5 to 185 Gb (gigabases or one billion nucleotides) (Wisecaver
and Hackett, 2011). To relate to those numbers, the size of the human genome is

1RNA stands for ribonucleic acid. In the classical view of the central dogma in biology, DNA holds
the genetic information. When needed, the information is transcribed into the small portable mRNA
(messenger RNA). For more information on the central dogma and how biological data are organized
within the databases in relation to the central dogma, I refer to material from NCBI (The National
Center for Biotechnology Information). URL: https://www.ncbi.nlm.nih.gov/Class/MLACourse/
Modules/MolBioReview/central_dogma.html. Helpful references: Barrett T, et al. BioProject and
BioSample databases at NCBI: Facilitating capture and organization of metadata. Nucleic Acids Res.
2012;40(D1):57-63. Crick F. Central dogma of molecular biology. Nature. 1970;227(5258):561-563.
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∼3 billion nucleotides, which translates to ∼140 gigabytes of raw data generated
from a genome sequencer (Marx, 2013). Large genomes sizes can be a result of
gene duplication and lateral gene transfer events [e.g., dinoflagellates (Wisecaver
and Hackett, 2011)] or whole-genome duplication [e.g., diatoms (Parks et al., 2018)],
which in turn makes genome sequencing and analysis challenging and thus infor-
mation on genome sequence scarce. Second, unique structural features (e.g., thick
silica shells in diatoms) make genetic engineering techniques less utilized in algal
molecular biology, which, contributes to the fact that less information is available
about the genetics and, consequently, the metabolic potential of these species.

Transcriptomics can serve as an alternative for genome sequencing, as it provides
a glimpse on the metabolic potential of algae and a high-resolution snapshot of the
metabolism under particular growth conditions. However, there are two issues to
account for: 1) the small sample size (sometimes of one) that challenges both the
inference of differentially expressed genes and the coverage of sequenced genes, 2)
the poor and misleading annotation of assembled genes because the majority of algal
species is underrepresented in public databases.

2.1.2 Case study: Phaeocystis antarctica and iron metabolism

Iron is essential for phytoplankton growth as it serves as an electron carrier in pho-
tosynthesis and mitochondrial respiration. It is also required as a cofactor in fatty
acid biosynthesis, nitrate reduction and assimilation (Marchetti et al., 2012; Harel et
al., 2014; Schoffman et al., 2016). The effect of iron limitation has only been studied
in temperate diatoms at the molecular level (Strzepek and Harrison, 2004; Allen et
al., 2008; Lommer et al., 2012). Even though less studied than diatoms, studies on
haptophytes demonstrated similar adaptation of haptophytes to iron limitation and
lower iron requirements for growth (Strzepek et al., 2011, 2012).

Phaeocystis is a cosmopolitan genus within the division of haptophytes. Its most
famous members are three colony- and bloom-forming species: the temperate P. glo-
bosa in the North Sea, the Arctic P. poucheti and the Antarctic P. antarctica (Schoemann
et al., 2005; Verity et al., 2007). Colonial life stage provides those species with protec-
tive and competitive advantages over the solitary stage, with the protein-carbohydrate
colony skin serving as a mechanical barrier against infections, and the large colony
size protecting against grazers. The mucilaginous structure of the colonies matrix
further allows for storage of micro- (iron and manganese) and macro- (carbon and
nitrogen) nutrients (Hamm, 2000; Schoemann et al., 2005; Gaebler-Schwarz et al.,
2010).

The Southern Ocean (SO) is the largest high-nitrate low-chlorophyll (HNLC) region
with subnanomolar concentrations of total dissolved iron and abundant concentra-
tions of macronutrients yet low rates of nitrate uptake, and dominance of pico- and
nanophytoplankton species (Dugdale and Wilkerson, 1991; Smetacek et al., 1997;
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Assmy et al., 2007). Iron supply to the SO includes dust deposition and melting ice-
bergs (Assmy et al., 2007), but as iron remains bound to organic ligands and there-
fore biologically unavailable to phytoplankton (Shaked and Lis, 2012; Hutchins and
Boyd, 2016), it is limiting phytoplankton growth and productivity (Martin et al.,
1990).

Phaeocystis antarctica is endemic to the largely iron-limited SO and forms large P.
antarctica blooms, which are frequently recorded in the iron-enriched shelf areas
such as Ross Sea and Prydz Bay (Boyd, 2002a; Schoemann et al., 2005; Smith et
al., 2014b). In vitro experiments showed that P. antarctica has a strong response to
iron limitation as indicated by reduction in its growth rates and photosynthetic fit-
ness (Strzepek et al., 2011; Alderkamp et al., 2012), while iron addition was reported
to increase growth rates, and trigger colony formation in P. antarctica (Bender et al.,
2018). In situ iron fertilization experiments in the SO reported haptophytes (P. antarc-
tica) among the groups contributing to the detected peak of photosynthetic activity
(measured as the elevation in chlorophyll a signal) after iron enrichment (Gall et al.,
2001; Boyd, 2002b; de Baar et al., 2005). In the subarctic Pacific, metatranscriptomics
showed that haptophytes (P. globosa) utilized added iron faster than diatoms, with
an overexpression of photosynthesis genes (Marchetti et al., 2012).

2.1.3 Study objectives

The biological objective of this case study was to decipher the molecular adaptation
to low iron availability and subsequent acclimation following iron enrichment in the
ecologically important prymnesiophyte Phaeocystis antarctica. This is achieved by
conducting a transcriptomic study on a colony-forming isolate from the Ross Sea.
The results of this study highlight the molecular processes that might be the basis of
the adaptation of P. antarctica to iron limitation, and its acclimation to iron addition.
For a detailed description of the biological results, refer to Appendix B.1.

I use this typical transcriptomic study to illustrate the process of data dimensionality
reduction as one important area of data engineering. For this purpose, I employed
dimensionality reduction methods throughout the steps of data pre-processing, clus-
tering and differential expression analysis and evaluated their effect on knowledge
extraction. In this chapter, I highlight the importance of both automation of data
preparation and domain knowledge in knowledge extraction from primary data. I
also briefly describe the workflow of the software I utilized, Trinity (Grabherr et al.,
2011; Haas et al., 2013), according to the Extract-Transform-Load (ETL) workflow
criteria, and pinpoint areas for robustness and scalability.
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2.2 Dimensionality reduction

As mentioned above, data dimensionality is a challenging aspect of managing and
analyzing biological data. In this section, I focus on dimensionality reduction dis-
cussing: 1) the data engineering and statistical challenges in the light of the project
requirements, 2) the steps undertaken for solution implementation, 3) the results
and evaluation of the data preparation and analysis solutions, and 4) limitations of
this case study, and of my solution and evaluation. I also briefly describe the main
software used in this study from an ETL perspective.

2.2.1 Challenges and project requirements

There is a set of core requirements for data preparation (i.e., pre-processing) and
analysis in a transcriptomic study, in addition to study-specific challenges. A set of
core requirements for a transcriptomic study are discussed in detail in (Conesa et
al., 2016). These requirements cover aspects of pre-processing (experimental design,
sequencing and quality control), core analysis (transcriptome profiling and differen-
tial expression) and advanced analysis (visualization and integration of other omics
data types).

In this case study, it was important to not only quantify the expression at differ-
ent growth conditions, but also to construct a draft transcriptome to demonstrate
the metabolic potential of the species. Here I summarize the requirements for this
particular case study following the order of the data flow in transcriptomics.

1. Sequence pre-processing. RNA sequences cannot be used unless cleaned from
(i.e., trimmed of) sequencing adapters and low-quality bases due to sequenc-
ing errors. Depending on the sequencing technology, the respective software
and adapters must be used, see Chapter 3 for more information on different
technologies and software for reads pre-processing. In the case study, extracted
RNA was sent for paired-end RNA sequencing using Illumina HiSeq2000 se-
quencer. Therefore, Illumina-specific adapters and software were sought.

2. Transcriptome profiling: De novo assembly and annotation. The short RNA-
Seq reads have to be transformed into “full-length” transcripts. This can be
achieved by either mapping the reads onto the genome through alignment
[evaluated in (Engström et al., 2013)], or assembly of the transcripts as in Trinity
(Grabherr et al., 2011; Haas et al., 2013). As the genome of P. antarctica is not yet
available, a de novo assembly of the reads is required to transform the RNA-Seq
reads into transcripts. A transcriptome assembler has to be able to resolve not
only the expressed genes but also alternative splicing events if any (Grabherr
et al., 2011). In addition, to increase the depth of the assembly, all sequenced
replicates are better assembled together. Assembled transcripts have to be as-
signed a function (i.e., annotated), generally based on sequence similarity to
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known genes in public data repositories (e.g., UniProt2), and based on domain
search (e.g., Pfam3). The best annotation then has to be chosen based on, for
instance, the statistical significance of the match between the query and the
similar sequences in the database (a.k.a., “the hits”). In addition, while con-
ducting the study, the transcriptome of P. antarctica from The Marine Microbial
Eukaryotic Transcriptome Sequencing Project (MMETSP) was released (Koid
et al., 2014). As I wanted to compare the study transcriptome to that from
MMETSP, a metric had to be employed.

3. Expression quantification. In biology, the purpose of transcriptomic studies
is to quantify and compare the gene expression under tested conditions (e.g.,
health and diseased; treated and untreated). Therefore, a main step of tran-
scriptomic studies is the estimation of gene and/or transcript/isoform expres-
sion levels under each condition. These data are often deposited in public
repositories (e.g., Gene Expression Omnibus database; GEO). The abundance
can be estimated for transcripts, genes and most recently “supertranscripts”
[i.e., all the exons of a gene (Davidson and Oshlack, 2018)]. Expression quan-
tification can currently be achieved through alignment-based or alignment-
free methods4. In this case study, P. antarctica, like many other non-model
organisms, has no published genome, therefore, a method for gene and iso-
form quantification from only RNA-Seq data without the need of a reference
genome had to be utilized.

4. Differential expression and functional profiling of statistically significantly
different transcripts between the samples is the final step of a transcriptomic
study. There are two issues here: 1) the selection of the information level for
differential expression (i.e., genes or transcripts; observations), and 2) the se-
lection of the conditions that need to be compared (i.e., samples). In this case
study, RNA was collected from the inoculum, quadruplicates before and after
iron addition (morning and evening), the informative samples (time points)
are those that are available in replicates (thus exclude inoculum) and avail-
able at comparable times (all evening). Furthermore, dimensionality reduc-
tion is required, as in inferring patterns of expression (e.g., using k-mean clus-
tering), and to characterize the molecular pathways in which the differen-
tially expressed genes are involved (e.g., using gene-set enrichment analy-
sis). Statistical significance does not imply biological relevance per se; domain
knowledge is essential to distinguish between the observations that are rele-
vant and those that are merely significant in the statistical sense.

2Bateman A, et al. UniProt: The universal protein knowledgebase. Nucleic Acids Res.
2017;45(D1):D158–69. URL: https://www.uniprot.org/

3El-Gebali S, et al. The Pfam protein families database in 2019. Nucleic Acids Res.
2019;47(D1):D427–32. URL: http://pfam.xfam.org/

4Haas B. Trinity GitHub repository. URL: https://github.com/trinityrnaseq/
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Existing solutions

To fulfill the aforementioned requirements, commercial state-of-the-art solutions are
sought. In particular, at the time of the conception of this study, Trinity (Grabherr et
al., 2011) was recently released and evaluated as a suitable de novo assembler for non-
model organisms [e.g., algae (Cohen et al., 2018; Koch et al., 2019)]. Arguments for
choosing Trinity include: 1) ease of setup, use and interpretation as it is extensively
documented, and 2) highest assembly quality scores and highest read alignment
rates (Wang and Gribskov, 2017). Moreover, alongside Trinity assembler, software
solutions for data pre-processing, data flow management and downstream analysis
were developed and became easy to use in conjugation with Trinity. Trinity ad-hoc
tools include software for: Illumina sequence pre-processing [Trimmomatic (Bolger
et al., 2014)], open reading frame (ORF) extraction (TransDecoder) and annotation
(Trinotate). In addition, independent methods for expression quantification such
as “RNA-Seq by Expectation Maximization” (RSEM) (Li and Dewey, 2011) and for
differential expression analysis [e.g., DESeq2 (Love et al., 2014)] are easy to use with
Trinity. Taken together, Trinity provides a semi-automated, full-suite solution for
de novo assembly and analysis of RNA-Seq data. To understand the data structure
within a transcriptomic study, in Figure 2.1, I provide a simple illustration showing
the data at different stages of the study, namely sequence pre-processing, assembly,
annotation, and expression quantification.

Trinity-based solution, however, is challenged by data dimensionality in two ways.
Typically, Trinity assembler produces a large number of transcripts (i.e., isoforms of
hypothetical genes) with no consensus sequence of the hypothetical genes. Therefore,
if the growth conditions are largely different, DESeq2 produces a large number
of statistically significant differentially expressed isoforms. Both make it difficult
to communicate the high-dimensional data produced by the annotation pipeline
Trinotate to analysts and scientists, as Trinotate attempts to annotate each isoform
of each hypothetical gene. Therefore, a transcriptomic study using Trinity requires
the development of a multi-step dimensionality reduction protocol using Trinity ad-
justments, and programming-based and statistical methods.

2.2.2 Solution implementation

In this case study, I considered many stages of dimensionality reduction to overcome
the large number of transcripts produced by Trinity. Here I describe the levels where
dimensionality reductions were employed with respect to: 1) the transcriptomics
data flow (Figure 2.2), and 2) the tools used for data preparation and analysis. The
diagram illustrates the workflow based on Trinity assembler and its ad-hoc tools
using RNA-Seq reads as the input.

1. Sequence pre-processing. To trim sequencing adapters and to eliminate low-
quality bases and very short reads (Ungaro et al., 2017) (i.e., quality control),
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Trimmomatic (v0.32) was used.

2. Transcriptome profiling: De novo assembly and annotation. To increase the
depth of the assembly and construct a comprehensive transcriptome, all se-
quenced reads were pooled into a single input file for one assembly run by
Trinity (v2.0.4). In this file, only quality-filtered paired-end reads were re-
tained. The samples sequenced and used for assembly were: 1) the iron-limited
culture that was used to inoculate quadruplicates, 2) the iron-deplete control
(quadruplicates pre-iron treatment), and 3) iron-replete treatment (quadrupli-
cates post-iron treatment). These samples were taken at one time point for
the controls, and three time points after the treatment [14h (n = 3), 24h and
72h]. As for coding sequence prediction, ORFs were extracted from the as-
sembled transcripts using TransDecoder (v2.0.1). Only long ORFs (longer than
100 bases) were retained. Moreover, predicted ORFs were screened for homol-
ogy to known proteins in databases (UniProt and Pfam). Only the ORFs with
similarity to known proteins were retained. Regarding functional annotation,
the translated ORFs (i.e., predicted proteins) were analyzed using Trinotate
(v2.0). Only transcripts with known functions (compared against UniProt or
Pfam) were considered and mammalian hits were excluded. In case of compar-
ison against UniProt using BLAST, significance of the sequence similarity was
inferred by comparing the observed similarity (bit) score with the expected
number of sequences in the database that have a bit score at least equal to the
observed; called expected (E) value5. We chose E-value ≤ 0.00001 as a thresh-
old to be not too permissive, yet allow for discovery of genes of novel func-
tions. Functional annotation was collapsed per hypothetical gene based on
best UniProt and Pfam hits of the longest ORF using Bash, R and SQL scripting
languages 6. In addition to standard functional annotation, I conducted a com-
parison against published P. antarctica transcriptome using state-of-the-art
tools. Three metrics for three criteria were employed: 1) functional coverage
(using BUSCO7), 2) sequence coverage of published organellar genomes (using
BLAST) and 3) sequence overlap (using OrthoMCL8). Details on the methods
and results are available in the respective sections in Appendix B.1.

3. Expression quantification was conducted using RSEM at the gene-level to re-
duce the number of observations in the downstream analyses.

5More details can be found in Appendix A.1.
6A custom script. Code is available upon request.
7Benchmarking Universal Single-Copy Orthologs (BUSCO) v1.22. Simăo FA, et al. BUSCO: as-

sessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics.
2015;31(19):3210–2. URL: https://busco.ezlab.org/

8Ortholog Groups of Protein Sequences (OrthoMCL) v2.0.9. Li L, et al. OrthoMCL: Identification
of ortholog groups for eukaryotic genomes. Genome Res. 2003;13(9):2178–89. URL: https://orthomcl.
org/orthomcl/
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4. Differential expression and functional profiling of significant genes. To min-
imize the number of observations considered for differential expression analy-
sis, we only considered: 1) expression at gene-level and 2) genes of ≥ 300

bases and sum of rounded counts ≥ 40. We then applied cutoffs for: 1) false
discovery rate (FDR) ≤ 0.001 and 2) absolute logarithmic fold-change (LFC)
≥ 2 (i.e., the magnitude by which the expression of a gene is affected by the
treatment). Regarding the samples, control and treatment replicates were used
excluding: 1) the inoculum and 2) the replicate that was considered an outlier
according to principal component analysis of normalized expression values.
Moreover, for comparability purposes, it was necessary to exclude the genes
that were significantly expressed exclusively at the morning time point from
all other time points. Significantly expressed genes were further analyzed: 1)
to infer patterns of expression across time, k-mean clustering was used, and
2) to understand the biological functions overrepresented in each cluster/pat-
tern, pathway analysis was conducted using gene ontologies eggNOG9 and
GO10.

2.2.3 Evaluation

In transcriptomics, primary data are analyzed to answer a particular research ques-
tion, therefore efficient knowledge extraction from high-dimensional data becomes
crucial. In this case study, various dimensionality reduction steps were applied and
their outcomes were cumulatively evaluated on the basis of extracted knowledge.

The evaluation criteria include: 1) the quality of the assembly and the comparison of
the assembled transcriptome and published P. antarctica sequences, 2) the knowledge
extracted on differentially expressed pathways (based on eggNOG and GO) and
relevant genes (based on domain knowledge) under changing iron conditions.

Assembly

First, for evaluating the quality of the transcriptome assembly, I used the percent-
age of sequences rejected by NCBI quality control checks. The assembled transcripts
were cleaned and submitted to the Transcriptome Shotgun Assembly (TSA) reposi-
tory (DDBJ/EMBL/GenBank; Accession: GFUQ00000000). As few as 174 transcripts
(0.0014%) were rejected. Other data generated from the study were also deposited
at respective repositories: 1) metadata (BioProject; PRJNA395466), 2) quality-filtered
raw sequencing reads [Sequence Read Archive (SRA); SRP113407] and 3) count and
normalized gene expression matrices [Gene Expression Omnibus (GEO); GSE102608].

9Evolutionary Genealogy of Genes (eggNOG) v4.0. Powell S, et al. eggNOG v3.0: Orthologous
groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res. 2012;40(Database
issue):D284–9.

10Gene Ontology (GO). Ashburner M, et al. Gene ontology: Tool for the unification of biology. The
Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.
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Making the project data available was not only important for communicating the re-
sults to the scientific community, but it was also an opportunity to interact with a
number of public repositories for transcriptomics data.

Moreover, we compared the assembled transcriptome to published P. antarctica se-
quences. 1) We compared the study transcriptome against the published P. antarctica
transcriptome from the MMETSP project (Koid et al., 2014) (MMETSP1100 contain-
ing 53,204 coding sequences and 54,300 peptide sequences) in terms of sequence
overlap using OrthoMCL. A relatively small portion of the translated ORFs (9% of
whole transcriptome; de-duplicated) were orthologs of 25% of MMETSP’s P. antarc-
tica coding sequences. The low similarity between the sequences of both transcrip-
tomes can be attributed to the software used (OrthoMCL; it compares the trans-
lated predicted coding sequences), differences in sequencing depth in both strains,
or to the differences in data processing between the two studies. 2) We compared
sequence coverage in both transcriptomes of published partial mitochondrial and
complete plastid genomes (Smith et al., 2014a). The study’s transcriptome showed
better coverage of both plastid (51 non-overlapping transcripts; 93.4% of organellar
genome length) and mitochondrial genomes (17; 73.7%), compared to 1% and 0%,
respectively, in the MMETSP transcriptome, showing that this assembly worked bet-
ter than that of MMETSP.

Dimensionality reduction

Second, for evaluating the dimensionality reduction approaches employed, I show
the reduction in number of observations, and highlight the extracted knowledge on
differentially expressed pathways and genes. The impact of applying dimension-
ality reduction techniques on the data dimensions illustrated in Figure 2.1 is mani-
fested in Figure 2.3, which depicts the number of observations at each of the dimen-
sionality reduction steps. Quality filtration of the reads led to improving the quality
of assembled transcripts, which consequently led to enhancing our knowledge on
the metabolic potential of P. antarctica. In addition, three components helped the ana-
lysts with knowledge extraction the most: 1) using information at gene-level, 2) clus-
tering of differentially expressed genes, and 3) using pathway analysis (eggNOG);
details in Appendix B.1. In addition, a crucial step in the study was employing
domain knowledge to mine the genes that are biologically relevant to the ecophysi-
ology of P. antarctica. Therefore, standard and simple dimensionality reduction tech-
niques, effective visualization of clustered genes and knowledge-based assessment
of the differentially expressed genes had a great effect on knowledge extraction.

The knowledge on differentially expressed pathways and genes in P. antarctica un-
der iron-limited and -replete conditions were linked to physiological observations of
P. antarctica of the batch culture and supported by reported in situ and in vitro obser-
vations. First, we observed an up-regulation in genes involved in photosynthetic ac-
tivity, mucus formation and down-regulation of motility and motor/flagellar genes.
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These observations match the increase in photosynthetic fitness and abundance of
colonial cells observed in the cultures after iron addition (Issak, 2014). Similarly as
in the literature, colony formation and blooms were recorded in the iron-enriched
shelf areas (Boyd, 2002a; Schoemann et al., 2005; Smith et al., 2014b) and after iron
addition (Bender et al., 2018). Likewise, photosynthetic pigment production was
elevated after iron enrichment (Gall et al., 2001; Boyd, 2002b; de Baar et al., 2005).
Methods such as RT-PCR are required to validate the expression of marker genes
under changing iron conditions. Our results also suggested three adaptive strategies
that P. antarctica may have utilized under low iron availability: 1) activation of an al-
ternative growth mode (mixotrophy) as per the observed overexpression of motility
and endocytosis genes under low iron, 2) expression of iron-economic alternatives of
key enzymes (e.g., flavoxdoxin instead of ferredoxin for photosynthesis), and 3) ex-
pression of iron-independent functional alternatives of other crucial enzymes (e.g.,
NADPH-dependent nitrite reductases for nitrite metabolism). Nevertheless, more
investigation is required to test our hypotheses, which was beyond the scope of this
exploratory project.

Viewing Trinity from an ETL perspective

Trinity presents a semi-automated, full-suite open-source and free solution for RNA-
Seq analysis. Trinity and its ad-hoc tools can be considered as a decision support
system (Henry et al., 2005), as they manage data flow, analysis, visualization and
integration (i.e., measurement and management) of RNA-Seq data. In particular, the
annotation tool Trinotate integrates data from different annotations platforms into a
central relational database and transforms it into a tabular format for analysts. The
differential expression workflow of Trinity transforms data and reports results us-
ing powerful visualizations. In addition, Trinity handles most of the parallelization
required for working with high-throughput data.

Given their importance and rise, Henry et al. (Henry et al., 2005) have developed a
trade study for ETL tools evaluation. This thorough study contains criteria, figures
of merit, test scenarios and quantitative measures for evaluation. I used the figures
of merit for measuring the quality of Trinity from an ETL perspective. According to
these figures of merit, Trinity’s strengths are: speed, flexibility, cost and ease of use.
Trinity is, however, challenged in the areas of robustness and scalability.

First, all hardware and software requirements of Trinity are listed and documented.
Nevertheless, software dependencies of Trinity and its ad-hoc tools such as annota-
tion databases and R packages are all required to be independently installed apriori.
Such issue hinders synchronization and dynamic extraction of data, which can lead
to, for example, outdated functional annotation due to the use of older versions of
annotation databases. Second, Trinity can handle projects of varying sizes, yet not
sequentially; to carry out multiple projects or runs of a single project, automation by
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programmers is required. Therefore, there is a potential for improving the robust-
ness and scalability of Trinity perhaps through automation at two levels: 1) dynamic
acquisition of annotation databases and update of the results in a reproducible man-
ner, and 2) automation of the required pipeline steps using simple approaches such
as scripting languages.

2.2.4 Critical appraisal

Trinity is well-established as an Illumina RNA-Seq data assembler and a solution for
RNA-Seq data analysis specially for non-model organisms. Such full-suite solutions
give fast results as they smoothly handle measurement and management of RNA-
Seq data facilitating results interpretation by the scientific community. Nevertheless,
several factors contribute to the high-dimensional nature of the data generated by
RNA experiments and Trinity itself.

In this case study, I used a mixture of statistical methods and programming tools to
reduce the data dimensions. Statistical methods had more advantages compared to
programming-based tools. Statistical methods were easier to explain and commu-
nicate, document and verify. It was also easier to report on their parameters and
to evaluate their performance. Development of the programming-based methods,
however, requires extensive documentation that a skilled engineer would be able to
provide.

In this case study, I based my evaluation on quality of the assembly and knowl-
edge extraction, which falls short in quantifying the amount of information lost (or
gained) by employing dimensionality reduction approaches. In order to support de-
cision on the appropriate dimensionality reduction approaches, the developed pro-
gramming tools need to be documented and evaluated at information level (rather
than at knowledge level).

The evaluation did not cover an experiment-specific factor that might have con-
tributed to the data dimensionality issue, namely polyploidy in P. antarctica. Even
though little is known about the morphological features of P. antarctica, it has been
reported that colonial cells are diploid, while solitary flagellates are either haploid
or diploid [investigated in (Gaebler-Schwarz et al., 2010)]. After iron addition, mi-
croscopical examination showed a mixed prevalence of solitary and colonial cells,
which made it difficult to handle polyploidy. Moreover, the test strain in the case
study was isolated in 1992, and it is likely that SNPs have accumulated over time
which led to divergent sequences of the same gene. We think that polyploidy and/or
mutations played a role in inflating the number of isoforms per gene in our ex-
periment. Among others, programs that produce non-redundant representative se-
quences (e.g., CD-HIT11), would be employed and evaluated to assess the impact of
such phenomena on data dimensions.

11CD-HIT: Cluster Database at High Identity with Tolerance. URL: http://www.bioinformatics.org/
cd-hit/
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2.3 Concluding remarks

Transcriptomic studies using batch cultures are a rich source for primary biological
data, which are typically high-dimensional. Transcriptomic studies of non-model
organisms represent an opportunity for advancing environmental research. For in-
stance, studies on marine algae help understanding the metabolic potential of these
major players in global carbon and sulfur cycles and consequently their effects on
the global climate and food chain.

Even though methods of data acquisition and curation are standardized, this case
study shows that there is a number of aspects that might aggravate data dimen-
sionality issues and hinder RNA-Seq data preparation and analysis. These aspects
include: challenged functional gene annotation, limited information on alternative
splicing in the target organism, large differences in growth conditions, the project
requirements and software used, in addition to the skill set of the analysts. This case
study also illustrates that existing workflows (Trinity) provide fast, easy-to-interpret
results as they smoothly handle measurement and management of RNA-Seq data.
However, it is necessary to employ programming and statistical dimensionality re-
duction methods to optimize knowledge extraction. Moreover, evaluation of the di-
mensionality reduction approaches must address the information loss and/or gain.

Due to both the importance of transcriptomic studies and the advances in RNA-Seq
technologies, a large chunk of the information available on marine algae in public
data repositories comes from RNA-Seq data. Moreover, as this case study shows,
however functioning, existing workflows and employed standard dimensionality
reduction approaches are challenged in areas of effective documentation, robustness
and scalability. In Chapter 3, I develop a simple, scalable solution for analyzing data
from a number of marine transcriptomic studies acquired from public data reposi-
tories. This would facilitate expanding the view I acquired from this case study on
both improving the usage scalability of existing RNA-Seq suite-solutions and com-
paring the effects of iron limitation among well-studied organisms (land plants) and
their evolutionary ancestors and closely-related organisms (algae).
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A) Example of sequenced reads

and quality data (FASTQ)

B) Example of reads assembled

into transcripts (FASTA)

>TRINITY_DN1000_c115_g5_i1 len=247
AATCTTTTTTGGTATTGGCAGTACTGTGCTCTGGGTAGC
TGATTAGGGCAAAAGAAGACACACAATAAAGAACCAGGT
GTTAGACGTCAGCAAGTCAAGGCCTTGGTTCTCAGCAGA

C) Headers of the tabular output

of the annotation pipeline (Trinotate)

0 #gene_id
1 transcript_id
2 sprot_Top_BLASTX_hit
3 RNAMMER
4 prot_id
5 prot_coords
6 sprot_Top_BLASTP_hit
7 custom_pombe_pep_BLASTX
8 custom_pombe_pep_BLASTP
9 Pfam
10 SignalP
11 TmHMM
12 eggnog
13 Kegg
14 gene_ontology_blast
15 gene_ontology_pfam
16 transcript
17 peptide

D) Representation of a two-dimensional

array containing gene expression data

(Count data)

29.00 44.00 16.00

0.00 0.00 3.00

7.00 6.00 6.00

369.00 95.00 135.00




gene1

gene2

gene3

gene4

sample1 sample2 sample3

FIGURE 2.1: Data structure representation of different stages of a
transcriptomic study. A is from (Cock et al., 2009); it represents
sequence data in FASTQ format. B is from Trinity documentation
(URL: https://github.com/trinityrnaseq/); it represents an example
of Trinity’s output of assembled reads. C is from Trinotate documen-
tation (URL: https://github.com/Trinotate/); it represents the fields
contained in the annotation report. D is a simplified matrix of ex-
pression quantification data. The matrix dimensions of D in this case

study are: 110,971 hypothetical genes x 16 sequenced samples.
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Input
RNA sequences

Sequence pre-processing
Trimmomatic

De novo assembly
Trinity

Annotation
TransDecoder & Trinotate

Expression quantification
RSEM

Differential expression
DESeq2

Functional profiling
k-mean & eggNOG

FIGURE 2.2: A simplified illustration of data pre-processing and
analysis processes undertaken in this study. In each box, the process

(upper) and the tools (lower) are stated.
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Sequenced reads

(389,846,414)

Sequence pre-processing

(345,183,306)

Assembly (transcripts; genes)

(122,927; 110,971)

ORFs (predicted proteins)

(105,163)

Annotated

(32,134)

Differentially expressed genes

(10,715; Annotated: 3,638)

Functional profiling

(Clusters: 4; Pathways: 20)

FIGURE 2.3: An illustration of the number of observations that each
dimensionality reduction step undertaken in this chapter resulted in.
Note that differentially expressed gene statistics are provided at gene-

level.
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Chapter 3

Scalability and Information
Integration: A Meta-Analysis of
Secondary Environment Data

Gene expression profiling is one of the most important tools in understanding the
metabolic state of the cell. The advances in high-throughput sequencing technolo-
gies, and the consequent rise in availability of gene expression data on non-model
organisms, could expand our knowledge of the biology of integral members of the
Tree of Life. Those members are key players in the global biogeochemical cycles
and their response to changing environmental conditions. Potentially, information
integration of the less studied non-model organisms with the more studied closely-
related organisms (e.g., cyanobacteria and land plants) can sharpen our view on
essential biological processes under environmental stressors. Public repositories of
sequencing data present a valuable source of secondary data on those organisms.

Data from the two most popular high-throughput sequencing technologies motivate
distinct integration schemes. On the one hand, data from RNA-Seq experiments al-
low for hypothesis generation and exploration of novel genes that are expressed un-
der various environmental stressors. Large high-quality databanks of RNA-Seq ex-
periments on marine algae are becoming available (e.g., Marine Microbial Eukaryote
Transcriptome Sequencing Project; MMETSP), which facilitates and motivates infor-
mation integration. On the other hand, microarray sequencing and analytics proto-
cols are largely standardized, and perhaps better motivate information integration
of studies of stressors on the same organism.

Although public repositories ensure accessibility to high-quality validated data, han-
dling secondary molecular data faces challenges on the levels of data acquisition
(i.e., transfer, storage and harmonization) and analytics. Moreover, handling these
secondary data is largely driven by the gene expression technology used. Therefore,
the development of effective data management and suitable analytical approaches
are essential to fully decipher the biological knowledge contained in the increasing
amount of available sequence data.
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This chapter aims at developing a scalable solution for gene expression data acqui-
sition from public repositories, as well as analytics using a case study from envi-
ronmental research as an example of secondary, routinely collected data. In the
case study, I explore the main public repositories for gene expression studies (Gene
Expression Omnibus database; GEO) and sequence read data (NCBI Sequence Read
Archive; SRA) to acquire, integrate and analyze data from multiple studies on model
and non-model organisms using Bash and R languages. In particular, the case study
aims at: 1) comprehensively investigating the change in molecular response in a
wide range of photosynthetic organisms (namely: diatoms, haptophytes, green al-
gae, cyanobacteria, land plants) in response to environmental changes in iron avail-
ability, and ultimately 2) inferring a core response to iron limitation in photosyn-
thetic organisms. The case study was conceptualized in collaboration with Ahmed
Moustafa, Professor of Bioinformatics at the American University in Cairo, Egypt.
It will be expanded with evolutionary analysis and prepared for publishing. This
work received no funding.

The chapter is structured as follows. Section 3.1 gives background information on
gene expression data sources and repositories, dimensions and domains of scalabil-
ity, and the potential of information integration in studying environmental changes
giving the example of the case study. Section 3.2 addresses the chapter objectives
with respect to project requirements, solution implementation and results evalua-
tion. Concluding remarks are presented in the last section.

3.1 Background

3.1.1 Gene expression profiling technologies: Data repositories and ap-
plications

The metabolic state of the cell is encoded in its transcriptome. Transcriptomic stud-
ies, at their core, are set to provide a high-resolution snapshot of that metabolic state,
the metabolic potential of the organism under study (see Chapter 2) and to infer re-
liable biomarkers (Walsh et al., 2015). Cell transcriptome is a very sensitive proxy
for the amount of change in environmental conditions affecting the cell (Ogata et al.,
2015). This is possibly due to the limitations imposed on gene expression and en-
ergy constraints caused by environmental stressors (Wagner, 2005), and due to the
limited capacity of the cell that it can respond to a limited number of stimuli (Rhee
et al., 2012).

Two main technologies have been used for gene expression profiling: microarray
and RNA-Seq [reviewed and compared here (Marguerat and Bähler, 2010; Mantione
et al., 2014)]. First, microarray allows for quantifying the expression of annotated
and known genes in the cell in, initially, a cost-effective simultaneous manner. Second,
RNA-Seq allows for both quantification and detection of novel expressed genes as
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well as alternative splicing events at a much higher resolution than microarray.
Although throughout the past decade RNA-Seq has become increasingly afford-
able (Marguerat and Bähler, 2010; Mantione et al., 2014), the cost of data storage
and sharing increases dramatically in case of RNA-Seq compared to microarray due
to the large volume of raw sequence files produced. Processing and analysis proto-
cols of microarray data are thought to be more standardized than those of RNA-Seq
data. Nevertheless, data from a microarray experiment are intended at answering a
particular research question, unlike RNA-Seq experiments, whose data can be used
(and re-used) to investigate different aspects of gene expression (Mantione et al.,
2014).

Regardless of the technology or the study purpose, transcriptomic experiments gen-
erally yield a main data type, namely processed normalized transcripts abundance
estimates in table format. The data can be deposited in a number of public reposi-
tories, reviewed in (Rung and Brazma, 2013), the most well-known of which is the
Gene Expression Omnibus (GEO) repository (Barrett et al., 2013). GEO is a public
archive of functional genomics data (i.e., raw, processed and metadata). With respect
to raw data, RNA-Seq yields raw sequence reads with quality scores, while microar-
ray yields files for scan quantification or intensity calculations of pixel values; both
are supported by GEO. Moreover, GEO’s functionalities allow the users to query,
analyze and download repository data (Barrett et al., 2013). A number of methods
were developed for curation and mining of gene expression profiling data archived
in GEO [reviewed in (Wang et al., 2019)].

Transcriptomics applications, particularly those utilizing RNA-Seq technologies, ex-
tend beyond transcript abundance estimation to investigate transcriptional (e.g.,
by sequencing short regulatory RNAs) and post-transcriptional (e.g., by analyzing
transcript structure and sequence re-arrangement and/or fusion) regulation mecha-
nisms (Marguerat and Bähler, 2010). RNA-Seq captures a large number of expressed
genes, which might raise a question whether the gene response we observe is the
behavior of one program adopted by each cell in the community or it is a com-
munity response [reviewed in (Marguerat and Bähler, 2010)]. Moreover, transcrip-
tomics motivated whole transcriptome-based analyses in uni- and multicellular eu-
karyotes. These analyses manifested in methodological applications such as: 1) esti-
mation of information content as a function of sequencing depth utilizing Shannon
entropy (Kliebenstein, 2012), 2) quantification of transcriptome diversity and speci-
ficity also utilizing Shannon entropy (Martínez and Humberto Reyes-Valdé, 2008;
Zambelli et al., 2018), and 3) estimation of relative expression per cell, which is par-
ticularly important in polyploid organisms (Coate and Doyle, 2010). Transcriptomics
were also demonstrated as forensic tool for prediction of time of death based on the
expression of marker genes (Hunter et al., 2017). However, being a measurement of
abundance and activity of multiple cells in a community, further technologies, such
as single-cell ribotyping, were used to correct for expression rate per cell based on
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ribosomal RNA copy number, and test for correlation with changes in body size and
growth rate in marine protists (Fu and Gong, 2017). Copy number variation has im-
portant implications in understanding ecological diversity with respect to biomass
rather than cell abundance in response to changing environmental conditions (Fu
and Gong, 2017).

3.1.2 Information integration potential and requirements

The increasing availability of transcriptomic data in public repositories constantly
motivated information integration from multiple transcriptomic studies, promising
improved biomarkers selection, which is of utmost importance in disease and ther-
apeutics monitoring (Walsh et al., 2015). Such improvement is attributed to the in-
crease in statistical power due to the increase in sample size. Levels of public data
re-use are perfectly surveyed and described in (Rung and Brazma, 2013). Those lev-
els are: 1) analysis of raw data, 2) meta-analysis of summary-level data (i.e., resulting
p-value, effect size or gene rank), 3) supportive analysis combining newly generated
and archived data, and 4) performance evaluation of new analytical methods (Rung
and Brazma, 2013). Here I focus on the first level.

Integration approaches for multiple raw gene expression data sets are categorized
into early- and late-stage integration (Walsh et al., 2015; Frolova and Obolenska,
2016). In early-stage integration (i.e., cross-platform merging and normalization),
data from each study are pre-processed, and a unified case-cohort data set is ana-
lyzed to identify signature genes. In late-stage integration (i.e., meta-analysis), each
case-cohort microarray data set is pre-processed and signature genes are identified
and statistically combined. Possible aspects that can impact integration studies in-
clude: 1) the research question and whether the platforms are similar, which drive
the choice of the cross-platform normalization and the meta-analysis methods, and
2) the transcriptomic data quality, which requires careful pre-processing and quality
control (Walsh et al., 2015). Information integration based on RNA-Seq data is most
common as a meta-analysis, and it was demonstrated to be valuable in integrating
data from different species, tissues and studies [e.g., in (Rau et al., 2014; Sudmant
et al., 2015)]. The use of RNA-Seq data can make information integration more
manageable and make the data more comparable, as it surpasses the probe effect in
microarray data (Rung and Brazma, 2013). However, transcript length bias and nu-
cleotide sequence bias are known challenges that affect the comparability of different
RNA-Seq data sets (Rung and Brazma, 2013). Early-stage integration, whenever ap-
plicable, is believed to be most suited for comparing two defined growth conditions,
yielding a larger number of signature genes. On the contrary, meta-analysis is eas-
ier to use in case of largely diverse data sets [reviewed in (Frolova and Obolenska,
2016)]. In addition to the study design and workflow, public gene expression data
integration can have its risks. Those include unknown quality, difference in file for-
mats, and difference in experimental setup and conditions (Sielemann et al., 2020).
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Re-analysis of the data sets, instead of using summary-level data, is suggested to
overcome those risks (Sielemann et al., 2020).

It is possible to consider such data-driven studies as “research parasitism” (Sielemann
et al., 2020), however, biological entities can be only seen as part of an ecosystem
and with respect to their position in the Tree of Life. Understanding the evolution-
ary transition in plants and animals and the functional changes in evolved genes can
be achieved by integrating information on rarely studied and non-model organisms
(e.g., marine protists) from secondary data repositories.

3.1.3 Designing data-intensive applications for biology

The rising availability of high-throughput biological data as well as the potential ap-
plications for information integration call for the characteristics of the data system
that could support biological data acquisition, storage and analytics. Kleppmann
described three concerns when designing data systems: reliability (i.e., working cor-
rectly), scalability (i.e., coping with growth in data volume, traffic volume and com-
plexity) and maintainability (i.e., smooth operability, simplicity/abstraction, and
evolvability/extensibility) (Kleppmann, 2017). Challenges of reliability and scalabil-
ity of biological data analytics applications have been discussed (Yang et al., 2017).
First, the importance of software reliability is exceptional when analyzing biologi-
cal data. However, testing and validation are challenged in biological data analyt-
ics, in particular due to the gap between the testing data (e.g., simulated data and
gold-standard data sets) and the real input data. A possible solution to overcome
such a challenge is to, for instance, employ state-of-the-art software testing tech-
niques, such as metamorphic testing, for quality assurance of RNA-Seq expression
quantification pipelines (Yang et al., 2017). Second, scalability challenges in han-
dling biological data arise from the large data volumes analyzed and the complexity
of analytics. Therefore, approaches to cope with those challenges extend beyond
mere parallelism of complex algorithms to include distributed storage and efficient
communication in terms of parallel processing and storage. Moreover, as the data
load can be unpredictable, on-demand scalable resources with high elasticity, such as
cloud computing, could be employed. Finally, utilization of memory-efficient data
structures has been also suggested to overcome scalability challenges.

A number of cloud-based RNA-Seq analysis workbenches and application program-
ming interfaces have been developed to promote modularity, scalability and re-
producibility. Those include: Oqtans (Sreedharan et al., 2014), MapReduce-based
Myrna (Langmead et al., 2010), and lastly Elysium, which supports uniform process-
ing of secondary gene expression data (Lachmann et al., 2018, 2020). Nevertheless,
the aforementioned applications have not covered steps of de novo assembly of RNA-
Seq reads. De novo assembly becomes crucial in analyzing organisms whose genomes
are yet to be sequenced. A comprehensive guide for the assembly and the analysis of
RNA-Seq data on the cloud has been developed (Griffith et al., 2015), providing an
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excellent resource on achieving scalability of RNA-Seq data analytics using Trinity,
the popular solution for analyzing phytoplankton data (see Chapter 2). Simple
workflows could be suitable in case of inapplicability of cloud services (e.g., due
to cost or data privacy issues), since they could promote scalability, reproducibility
and extensibility.

3.1.4 Case study: Iron stress in photosynthetic organisms

Stress in algae has been reviewed and its definition has been revisited (Fogg, 2001).
Stress could be viewed as the change in the environmental conditions that threaten
the normal metabolic balance in the organism (i.e., homeostasis), triggering a re-
sponse to counteract these disturbing effects. An environmental stressor could limit
the resources acquisition and/or growth and reproduction in an organism. Algae
have the inherited ability to respond to stressors. In addition to grazing pressure
and pathogens (Smetacek et al., 2004), algae can suffer from different types of stres-
sors. Those stressors can be categorized into: mechanical (e.g., turbulence), physical
(e.g., ultraviolet radiation, osmotic stress, temperature) and nutritional (e.g., nutrient
deficiency, pollutants) stressors (Fogg, 2001). It is often the case that algae are sub-
jected to naturally co-occurring stressors. An example of naturally and interacting
co-occurring stressors is ice formation in the polar seas that could result in increased
salinity, reduced temperature and desiccation [reviewed in (Fogg, 2001)]. Another
example is iron limitation, which intersects with other stressors such as low and high
light, low copper (as a substitute for iron), and nitrogen [reviewed in (Schoffman et
al., 2016)]. In response to stress, algae can move away from the stressor (e.g., high
light intensity), alter their metabolism (e.g., limit photosynthesis and cell division),
alter their structure (e.g., colony and spores formation), and form symbiotic relation-
ships (e.g., to acquire limiting nutrients) (Fogg, 2001).

A closer look at stress response would suggest that time is an important factor in
distinguishing between an inhibiting stressor (on the short-term) and a stimulus (on
the long-term) (Fogg, 2001). Borowitzka describes the stages of stress response in mi-
croalgae as alarm, regulation, acclimation and adaptation (Borowitzka, 2018). First,
when the cell homeostasis is disrupted by the stressor, an alarm response is ini-
tiated. Second, cell regulation would occur to restore homeostasis. Third, as cell
regulation fails and cellular functions continue to be disrupted, acclimation, which
is the change in phenotype (through changes in gene expression), would occur to
restore homeostasis. Once acclimation is accomplished and homeostasis is restored,
the cells are no longer considered stressed. Forth is adaptation; the change in the
genotype of the organism in response to environmental changes. In other words,
adaptation can engrave the acclimated phenotype in the cell’s genome after the
necessary number of generations has been successfully acclimated to the stressful
conditions (Borowitzka, 2018). Most of the laboratory investigations study the al-
gal adaptation to non-ecology-driven (i.e., unnatural) single stressors (e.g., batch
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cultures design). Recently, adaptation to co-occurring stressors have been success-
fully demonstrated under laboratory conditions [e.g., ecology-driven iron limita-
tion coupled with ocean acidification (Trimborn et al., 2017; Koch et al., 2019), or
change in light and temperature (Strzepek et al., 2019)]. Such experiments are im-
portant in understanding the stress response timeline in algae as well as the effects
of co-stressors on cellular functions. Transcriptomics offer a rapid cost-effective tool
for understanding the timely response of algal species to environmental stressors.
Transcriptome functional analysis was used, mainly in diatoms, to identify death
markers under chronic stress (Thamatrakoln et al., 2012), monitor stress response at
the single-cell level (Shi et al., 2013), and identify and prioritize stressors (i.e., toxic
substances) (Osborn and Hook, 2013).

Iron is essential for phytoplankton growth. It serves as an electron carrier in photo-
synthesis and mitochondrial respiration, and as a cofactor in fatty acid biosynthesis
and nitrate metabolism (Marchetti et al., 2012; Harel et al., 2014; Schoffman et al.,
2016) (Chapter 2). Therefore, a large portion of the essential gene-set in photosyn-
thetic organisms (Rubin et al., 2015) is iron-dependent (Behnke and LaRoche, 2020).
Moreover, iron metabolism genes (e.g., those responsive to iron stress) are not only
evolutionary-related (Groussman et al., 2015), but they are also ubiquitous among
marine phytoplankton species (Morrissey et al., 2015; Behnke and LaRoche, 2020).
Iron stress response has been studied at the molecular level in diatoms (Strzepek and
Harrison, 2004; Allen et al., 2008; Lommer et al., 2012), haptophytes (Strzepek et al.,
2011, 2012) and cyanobacteria [reviewed in (Morrissey and Bowler, 2012; González
et al., 2018)]. The chloroplast has been viewed as a global sensor of environmen-
tal stress that results in fluctuations in sugar levels, and triggers metabolic changes
(Biswal et al., 2011). Iron is essential to both the photosynthetic and mitochon-
drial electron transport chains, and markers for iron stress were demonstrated us-
ing knockdown experiments in land plants (Vigani et al., 2016). Data integration
and co-expression gene network analysis of photosynthetic organisms allowed for
deducing conserved gene modules across phytoplankton and land plants (Ferrari
et al., 2018). Integrating data and comparing the stress response to iron limita-
tion in a wide range of photosynthetic organisms might reveal core pathways in-
volved in iron metabolism. Moreover, such comparative analysis might shed light
on the stages of stress response, and help refining the definition of nutrient limi-
tation. Currently, large databanks of RNA-Seq data on marine algae have become
available, the most important of which is Marine Microbial Eukaryote Transcriptome
Sequencing Project [MMETSP; (Keeling et al., 2014)]. The MMETSP databank pro-
vides data on stress response of a variety of rarely studied algal species. Most rele-
vant, the project has the advantage of employing a unified RNA extraction, sequenc-
ing and analysis protocol.
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3.1.5 Study objectives

The main biological objective of this case study is to comprehensively investigate
the gene expression response of a wide range of photosynthetic organisms (namely:
diatoms, haptophytes, green algae, cyanobacteria, land plants) to changes in iron
availability. Ultimately, the study aims at inferring whether a core response to iron
limitation in photosynthetic organisms exists. Moreover, the evolutionary origins of
the genes responsible for the core response would be traced.

The data engineering objective is to test the usability of a simple pipeline to acquire,
integrate and analyze gene expression data archived in public repositories using
this case study. Similar designs are discussed below and possible advantages of the
presented workflow are highlighted.

3.2 Scalability and information integration

To conduct this data-driven study, a simple Extract-Transform-Load (ETL) workflow
for data acquisition, processing, integration, and analysis needs to be designed and
developed. Here I designed and implemented a workflow in Bash to offer basic
functionalities for the case study, which can be easily expanded according to the
investigated data sets.

This section addresses: 1) the rationale, challenges and overall requirements of this
meta-analysis explaining the data repositories to be curated, 2) the solution imple-
mentation steps highlighting the ETL-workflow components, 3) the evaluation and
limitations of this case study.

3.2.1 Challenges and project requirements

For the design of this case study, two aspects are to be carefully considered: 1) the
type of the transcriptomic data to allow for most manageable and informative inte-
gration as well as most comparability of the data, and 2) the analysis plan given the
diversity of the species to be included. Therefore, I considered analyzing RNA-Seq
data in a meta-analysis fashion (late-stage integration). Choosing raw sequence data
as a starting step promotes comparability, as it benefits from employing a unified
pre-processing and transcriptome analysis protocol. In addition to the core require-
ments of a transcriptomic study [described in 2.2, reviewed in (Conesa et al., 2016)],
an ETL-workflow for a meta-analysis study would include steps for data curation
from secondary data repositories prior to data pre-processing as well as late-stage
integration. It is integral to the case study to unify the pre-processing and analysis
protocols. Below I list the requirements in an orderly manner.

1. Data mining and sequence acquisition. A comprehensive data set of RNA-
Seq data from diverse photosynthetic organisms, with focus on iron limitation
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and enrichment, is to be curated. The main repositories cover: 1) publica-
tions and projects (NCBI PubMed database1 and iMicrobe2), 2) gene expression
studies (NCBI Gene Expression Omnibus database; GEO), and 3) sequence
repositories (NCBI Sequence Read Archive; SRA and the European Nucleotide
Archive; ENA3). Domain knowledge is critical in identification and verification
of relevant publications and data sets. Afterwards, sequence repositories offer
functionalities for seamless data acquisition (e.g., SRA toolkit).

2. Sequence pre-processing. The choice of software for reads quality control, fil-
tering low-quality reads and trimming sequencing adapters depends on the
sequencing technology used for each data set included in this meta-analysis.
The most common sequencing technologies used for marine phytoplankton
transcriptomics are: Illumina, SOLiD and Roche 454. Popular quality control
software are FastQC (Illumina)4 and NGSQC (cross-platform) (Dai et al., 2010).
For trimming adapters and filtering low-quality reads and bases, Trimmomatic
(Illumina) (Bolger et al., 2014) and FASTX-Toolkit (cross-platform)5 can be used.

3. Transcript identification and quantification. There are two considerations
for transcript identification for each data set. First, the sequencing technol-
ogy used dictates the software used. For instance, short reads produced by
Illumina (widely used in transcriptomic studies) could be assembled using a
large number of assemblers including Trinity, while longer reads from Roche
454 are assembled using the commercial genome assembler Newbler. Second,
genome availability can direct the transcript identification strategy towards
read mapping against a reference genome rather than de novo assembly. De
novo assembly of paired-end reads from multiple samples (within the same ex-
periment) is encouraged, even in case of available reference genomes (Conesa
et al., 2016; Wang and Gribskov, 2017). Transcript (or gene) abundance estima-
tion are currently achieved through alignment-based or alignment-free meth-
ods. In an earlier study, Chapter 2, I used an alignment-based method, RSEM,
which requires reference transcripts for read alignment. Novel software, such
as Salmon (Patro et al., 2017; Srivastava et al., 2020), are used successfully for
both alignment-free and alignment-based quantification. Most accurate, and
moderately fast, transcript quantification has been obtained through selective
alignment against both the target transcriptome and the genome (Srivastava et
al., 2020).

1National Center for Biotechnology Information (NCBI). Bethesda (MD), National Library of
Medicine (US). URL: https://www.ncbi.nlm.nih.gov/

2iMicrobe. Youens-Clark K, et al. iMicrobe: Tools and data-driven discovery platform for the mi-
crobiome sciences. Gigascience 2019; 8. URL: https://www.imicrobe.us/

3The European Nucleotide Archive; ENA. The European Bioinformatics Institute (EMBL-EBI). URL:
https://www.ebi.ac.uk/ena/browser/home

4Andrews S. FASTQC. A quality control tool for high throughput sequence data. URL: http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/

5FASTX-Toolkit. URL: http://hannonlab.cshl.edu/fastx_toolkit
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4. Differential expression, integration and functional profiling. As in Chapter 2,
in a meta-analysis, differential expression analysis is conducted for each data
set independently; the results are then combined and interpreted collectively.
At that level, information integration is recommended to be through vote count,
or through combining ranks, p-values or effect sizes across the included data
sets [reviewed in (Frolova and Obolenska, 2016)]. P -value combination is a
popular strategy, and it has been used for microalgae transcriptomes meta-
analysis (Panahi et al., 2019). As well, its methods (e.g., Fisher method) have
been implemented in R for RNA-Seq meta-analysis [e.g., metaRNASeq (Rau et
al., 2014)].

The need for modularity

In addition to the aforementioned requirements, this case study may lay ground
for: 1) construction of draft pan-transcriptomes of the less studied organisms, and
2) investigate the evolutionary origin of the most responsive genes. Therefore, ex-
tensibility of the workflow becomes beneficial. A module-based workflow would
provide an excellent base for extensibility.

The first prospective aim of this case study is to advance current knowledge on the
metabolic potential of non-model organisms through improving de novo transcrip-
tome assembly, integrating, at an early stage, transcriptomic data from multiple
growth conditions, studies, and sequencing technologies. Hybrid transcriptome as-
sembly from different sequencing technologies is a promising yet challenging strat-
egy for recovering full-length transcripts, as it could yield chimeric transcript con-
tigs. Novel methods for hybrid assembly have been developed [e.g., IDP-denovo (Fu
et al., 2018) and rnaSPAdes (Prjibelski et al., 2020)] to combine long and short reads.
A modular pipeline can be later extended to offer such hybrid assembly functional-
ity. The assembled contigs can be afterwards checked for chimerism (e.g., by phylo-
genetic analysis and alignment against published genomes).

The second prospective aim is to extensively characterize the resulting transcripts
from the meta-analysis (i.e., meta-genes). In addition to phylogenetic analysis, path-
way enrichment analysis and protein-protein interactions prediction would place
the common patterns in differentially expressed genes in system-wide context. A
modular pipeline could include such analysis in an ad-hoc fashion.

Existing solutions

A pipeline6 for data curation, pre-processing and analysis has been developed in
Python for the MMETSP project, which used Illumina sequencing technology. The
pipeline uses Trimmomatic (for quality control and adapter trimming), Trinity (for
assembly) and Salmon (for transcript quantification). The pipeline was used to gen-
erate a transcriptome data set from each biological sample from the project. In the
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functional pipeline, modularity is well-established, nevertheless, extensibility re-
quires using Python for handling the downstream analysis software. In addition,
for the case study, assembly of more than one sample of the target species is sought.
In the following subsection, I illustrate a simple workflow in Bash that is tailored
for addressing the case study requirements.

3.2.2 Solution implementation

In this subsection, I describe the design of the proposed pipeline for this meta-
analysis case study and its implementation7. Figure 3.1 illustrates the data flow,
and the different processes and tools used in the pipeline. The initial implementa-
tion presented here addresses transcriptomic data produced by Illumina sequencing
technology, the most widely used in marine research.

1. Data mining. To compile an input file, the following repositories were manu-
ally queried using appropriate corresponding search terms:

• NCBI GEO DataSets: (iron [All Fields]) AND (Expression profiling by
high throughput sequencing [Filter]) AND (txid33090 [Organism:exp] OR
txid33634 [Organism:exp] OR txid2763 [Organism:exp] OR txid2830
[Organism:exp] OR Phaeocystis [All Fields]),

• NCBI PubMed: ((photosynthesis) AND (iron OR Fe) AND
(transcriptomic OR rna-seq OR trinity OR RNA/analysis
OR Transcriptome/genetics*)),

• ENA: (phytoplankton OR diatom AND iron), and

• MMETSP: (iron OR Fe in external_sample_id).

The search results were aggregated and manually curated into a list of samples
from the most relevant experiments (106 samples from 17 experiments on 14
organisms as of March, 2019). Information on sequencing technology, taxon-
omy and growth conditions were included. The majority of the samples were
sequenced using Illumina technology (72 samples).

2. Data management and sequence acquisition. The pipeline requires input as
a tab-delimited flat file containing parameters for data acquisition (i.e., the
unique run identifier for raw data retrieval), (pre-)processing (e.g., sequenc-
ing technology and library strand type), and analysis (e.g., experiment identi-
fier, organism name and sample growth condition). The pipeline parses the
file and creates directories for each experiment to store raw and processed
data as well as the analysis results. The pipeline also creates log files to track
progress and report errors. Run IDs are used to download the raw sequence

6The Lab for Data Intensive Biology. MMETSP pipeline GitHub repository. URL: https://github.
com/dib-lab/dib-MMETSP

7The pipeline is available upon request through GitHub.
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data in FASTQ format using parallel fastq-dump from NCBI SRA using
SRA toolkit (v2.9.2).

3. Sequence pre-processing. As in 2.2, the pipeline uses Trimmomatic (v0.32) to
trim sequencing adapters and to eliminate low-quality bases and very short
reads in each run file.

4. Transcript identification and quantification. Quality-filtered reads from each
experiment are pooled into a single input file for one assembly run by Trinity
(v2.0.4). For transcript quantification, I use Salmon (v1.0.0) in selective alignment-
based mode; the newly developed algorithm offering more accurate transcript
abundance estimation (Srivastava et al., 2020).

5. Differential expression, integration and functional profiling. Differential ex-
pression is conducted at transcript-level through pairwise comparisons of the
sample types in an experiment using DESeq2. As in 2.2, only transcript of
length ≥ 300 bases and sum of rounded counts ≥ 40 are included. The follow-
ing default cutoffs are considered: 1) false discovery rate (FDR) ≤ 0.001 and
2) absolute logarithmic fold-change (LFC) ≥ 2. The differentially expressed
contigs are characterized as in 2.2 using TransDecoder (v2.0.1) and Trinotate
(v2.0), for coding sequence prediction and annotation, respectively. The differ-
ential expression results are integrated for the contigs of known function, and
a combined p-value is reported for each differentially expressed gene.

3.2.3 Evaluation and critical appraisal

Meta-analysis of transcriptomic data represents a case of the reuse of public re-
search data that can help inferring patterns in gene expression across different tis-
sues and organisms. A scalable solution for data curation and processing is neces-
sary to successfully conduct such data-driven studies. I designed and implemented
a pipeline to promote scalability and modularity for RNA-Seq data meta-analysis.
This pipeline could be used to comprehensively investigate the gene expression re-
sponse of a wide range of photosynthetic organisms (n = 106). The usability of
the initial implementation of the workflow could be evaluated with respect to data
acquisition, data pre-processing and analysis, and information (late-stage) integra-
tion by analyzing a selected subset of well-studied species (n = 5) sequenced using
Illumina sequencing technology (Synechocystis sp. PCC 6803, Chlamydomonas rein-
hardtii, Chaetoceros debilis, Thalassiosira oceanica, and Oryza sativa).

The ultimate goal of the FAIR Guiding Principles for scientific data management and
stewardship (Wilkinson et al., 2016) is to optimize the reuse of data, promoting data
as findable, accessible and interoperable. This case study sheds light on technical
and research-relevant concerns when analyzing public environmental data.

Regarding the research-relevant concerns, the evaluation of the workflow using real
data was not concluded. In spite of data findability, accessibility and integrability,
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a major growing concern became data ownership; whether a meta-analysis might
conflict with the prospective plans of the data owners, consortia or individuals.
Therefore, personal communication with data owner to seek approval would be
courteous. In addition, publishing the meta-analysis-based study results in peer-
reviewed journals would ensure the novelty of the question and the quality and
comprehensiveness of the data sets, challenging the perception towards the reuse of
data.

On the technical side, the case study and the accompanying workflow have simple
requirements. Nevertheless, more sophisticated data-driven cases and/or analy-
ses are of interest, and the modularity of the workflow would become essential in
such cases. First, concerning transcript identification and quantification, a particular
study might require hybrid transcriptome assembly of reads from different sequenc-
ing technologies. For that, chimeric sequences can be minimized by filtering data
based on studies’ quality, and by employing a number of assembly quality assess-
ment tools [e.g., DETONATE (Li et al., 2014a)] and protocols8. Second, concerning
information integration, modularity would facilitate experimentation with sophis-
ticated analyses. For instance, it has been considered to evaluate the reduction in
transcriptome diversity utilizing Shannon entropy as a function of increased stress
levels, providing a way of prioritizing stressors in phytoplankton. Analysis of both
simulated and real data using a modular extensible workflow would allow exper-
imenting with, among others, information theory-based analysis. Third, a further
step towards scalability would be cloud deployment, for example on Amazon Web
Services (which offers a genomics analysis solution9) or on iMicrobe. Such elasticity
would help accommodate the unpredictable data load.

3.3 Concluding remarks

Cell transcriptome is a very sensitive proxy for the amount of change in environ-
mental conditions affecting the cell. Gene expression profiling technologies yield
large amounts of transcriptomic data available in public repositories, challenged by
data acquisition (i.e., transfer, storage and harmonization) and analytics. Both the
challenges and the value of the integrated information motivate the development of
effective data handling approaches to decipher and evaluate the combined biologi-
cal knowledge.

This chapter presents a case of meta-analysis of transcriptomic data to infer a po-
tential core response to iron limitation in photosynthetic organisms. The case study
highlights a few bottlenecks in secondary sequence data handling, namely: 1) a scal-
able approach for data acquisition and transformation, 2) a modular workflow for

8Trinity RNA-Seq Wiki. URL: https://github.com/trinityrnaseq/trinityrnaseq/wiki/
Transcriptome-Assembly-Quality-Assessmen

9Amazon Web Services: Genomics. URL: https://aws.amazon.com/health/genomics/

37

https://github.com/trinityrnaseq/trinityrnaseq/wiki/Transcriptome-Assembly-Quality-Assessmen
https://github.com/trinityrnaseq/trinityrnaseq/wiki/Transcriptome-Assembly-Quality-Assessmen
https://aws.amazon.com/health/genomics/


Chapter 3. Scalability and Information Integration: A Meta-Analysis of Secondary
Environment Data

experimentation with hybrid assemblies and sophisticated analyses, and 3) a flex-
ible computing plan (e.g., cloud computing). The simple pipeline presented here
would promote scalability and modularity for RNA-Seq data meta-analysis. As it is
the case with the reuse of public data, evaluating this workflow using public data
would be possible through communication with the data owners to address conflict
of interest.

Even though sequence data are the most abundant and computationally intensive
biological data, structured relational data could also present an opportunity and a
challenge for data processing and analysis. Scalability equally challenges transform-
ing and analyzing secondary non-sequence data for large-scale studies for outcome
prediction, which I address in Chapter 4.
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FIGURE 3.1: A data and processes flow diagram for RNA-Seq data
meta-analysis. It illustrates the data acquisition, pre-processing and
analysis processes for the case study. In each box, the process (upper)
and the tool (lower) are stated. The rectangular boxes represent input
data (a tab-delimited flat file); the circles represent the processes and
the card shape represents the output. The arrows illustrate the direc-
tion of data movement. The repositories queried for sequence data
and used for sequence functional analysis are represented as well.
NCBI SRA = NCBI Sequence Read Archive, UniProt = The universal
protein knowledgebase, Pfam = The Pfam protein families database.
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Chapter 4

Integration and Statistical
Modeling of High-Dimensional
Data: A Case of Secondary Health
Data

Adverse drug events (ADEs) represent a burden on the health care system as they
cause significant morbidity and mortality. In Europe alone, 3-10 % of all hospital
admissions are due to ADEs (European Commission, 2008). Drug safety studies
attempt at evaluating drug effectiveness and minimizing the occurrence or severity
of an ADE, specially rare adverse events. A patient’s response to a drug is the sum
of many factors including genetics, nutrition, alcohol consumption and smoking,
co-morbidities, and concomitant drug use. Being able to successfully predict risk
in patients and to identify the characteristics (e.g., drugs and diseases) that lead to
an increased risk to suffer an ADE is of utmost importance. Two data sources are
typically used for detecting ADEs: spontaneous reporting systems and longitudinal
pharmacoepidemiological databases. Spontaneous reporting systems are limited to
the drug in question and the ADE itself. To account for the many factors leading to
an ADE, routinely collected longitudinal health care data could be a valuable source.

In the past few decades, a steep rise in routinely collected health data sources, re-
ferred to as electronic health care databases, has taken place. These repositories rep-
resent a readily available, cheap and fast source of data that can be used to monitor
drug safety in large populations in the post-marketing phase. In the genomics era,
drug safety studies would benefit from analyzing such data in the light of molecular
biology. This requires: 1) extraction and integration of molecular biology-related
ontologies from public knowledge bases, and 2) utilization and development of
genomics-relevant statistical methods, which, in turn, require data transformation
and scalability for studies on large populations.

This chapter addresses the aspects of data integration, and scalability of current
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implementations of specialized statistical methods using a case study from phar-
macoepidemiological research as an example of secondary routinely collected data.
This case study attempts at predicting the risk of ADEs mostly seen in patients us-
ing anticoagulants given the patients’ drug and disease profiles in cases and matched
controls using data from the German Pharmacoepidemiological Research (GePaRD).
The study compares predictions from various methods that do and do not incorpo-
rate knowledge on drug and disease molecular pathways. The basic methodology
proposed in this case study, to which I contributed, has been sketched and published
(Appendix B.2; in German). A few methods were screened and tested on simulated
data (Appendix A.2). The work featured in this chapter guided the improvement
of the study design and methods selection, and resulted in a draft manuscript to
be considered for submission to Drug Safety journal (Appendix B.3). The project
is funded by the Innovation Fund of the German Joint Federal Committee (G-BA,
01VSF16020). I thank the statutory health insurance provider, which provided the
data used for this case study, Die Techniker (TK).

Using the aforementioned case study, I investigate and use the best solutions to
extract-transform-load data from public knowledge bases and from GePaRD, and
apply a number of known and novel statistical methods in R and Python. In ad-
dition, I compare the predictions of these models. The chapter also highlights scal-
ability issues in data acquisition and analysis, data security, and the challenges of
data-driven simulation studies.

The chapter is structured as follows: Section 4.1 gives background information on
electronic health care databases and their usefulness in ADEs detection, the statis-
tical methods used, the data source, GePaRD, and an overview on the specific case
study. Section 4.2 addresses the chapter objective in terms of project requirements,
solution implementation and results evaluation. Concluding remarks are presented
in the last section.

4.1 Background

4.1.1 Electronic health care databases

The past few decades witnessed a steep rise in routinely collected health data sources.
These sources, referred to as electronic health care databases (EHDs), span three cat-
egories, namely: record linkage systems starting in the 1960s (e.g., national disease
and death registries), electronic medical records and health care claims databases
(Pacurariu et al., 2018). Electronic medical records represent the most common form
of EHDs in Europe (Pacurariu et al., 2018); they provide detailed information on pa-
tient’s symptoms, and medical examinations and their results. Health care claims
databases store routinely collected data for reimbursement purposes by statutory
health insurances (SHIs). They contain demographic information (e.g., age, sex,
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occupation), prescription information (e.g., drug name, dose, duration, and possi-
bly route of administration and therapeutic indication), and diagnosis information
(e.g., in- and outpatient diagnoses and procedures) (Schneeweiss and Avorn, 2005;
Pacurariu et al., 2018). An example of health care claims databases is the German
Pharmacoepidemiological Research Database (GePaRD) (Pigeot and Ahrens, 2008).

The strengths of the EHDs, such as large size, realistic representation of the popula-
tion, and availability at a low cost, qualify them for several applications (Schneeweiss
and Avorn, 2005; Pigeot and Ahrens, 2008). These applications can be classified into
drug-related, health policy-related, and data usability and validation-related appli-
cations. First, drug-related applications include drug utilization studies (i.e., the
number of prevalent and incident users of a particular drug or biosimilars), and
drug safety and effectiveness studies in the post-marketing phase, specially in pop-
ulations that are not included in clinical trials (e.g., elderly, children, and pregnant
women). Second, health policy applications include studies of patterns in physi-
cian prescription practices, and studies of different drug reimbursement policies and
their effect on health outcomes (Schneeweiss and Avorn, 2005). Third, data usability
and validation studies include quality control, validation of diagnosis coding and
development of drug utilization algorithms. In the era of machine learning and ge-
nomics, applications of EHDs are currently encompassing, for example, respectively,
text- (McTaggart et al., 2018) and data mining (Umemoto et al., 2019), and merging
with genomic data (Hall et al., 2016).

There is a number of considerations regarding EHDs management and analytics.
EHDs are often used in conjugation with other data sources. For instance, data are
required to be validated perhaps through linkage to national disease and death reg-
istries, while diagnosis and prescription data could be transformed using ontologies
such as the international classifications of diseases and drugs. Due to the nature of
EHDs data, high standards are to be employed for analyzing EHDs in epidemio-
logical studies. For instance, proper study designs (i.e., decision on a cohort, case-
control or nested case-control design, definition of new users as exposed individ-
uals, and identification of and controlling for confounding variables) and rigorous
statistical tests are required. The complexity of both data management and analysis
increases in case of integrating data from multiple EHDs (Schneeweiss and Avorn,
2005; Andrews et al., 2014).

To overcome such complexity, using multiple data sources and/or in conjugation
with genomic and molecular data would require: 1) development of a unified data
model, 2) utilization of ETL workflow or alternatives to populate the model with
the data, and 3) deployment of analytical workflows on high-performance comput-
ing resources for such large-scale studies (Curcin et al., 2008). From an analytics
perspective, standard pharmacoepidemiological methods fall short in analyzing big
data, therefore, the alternatives include applying data mining and machine learning
methods in analyzing EHDs, and adapting standard epidemiological methods for
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high-performance computing platforms. Moreover, from an information extraction
perspective, analyzing data from EHDs incorporating prior knowledge on drugs
similarity and drug targets requires development of novel scalable epidemiological
methods.

4.1.2 Data-driven methods in pharmacovigilance

Pharmacovigilance (PV) is one of the most central aims for using EHDs. The World
Health Organization (WHO) defines PV as “the science and activities relating to the
detection, assessment, understanding and prevention of adverse effects or any other
drug-related problem” (World Health Organization, 2021b), including data gath-
ering activities (Lu, 2009). Following its release, a drug’s safety during the post-
marketing phase can be assessed through post-authorization safety studies (PASS)
or post-marketing surveillance studies. These allow to evaluate drug effectiveness
and minimize the occurrence or severity of an ADE, particularly rare adverse events
(Pacurariu et al., 2018). A “signal” of an ADE (i.e., a possible relationship between
an ADE and a drug) can be detected in two typical data sources: spontaneous re-
porting systems and longitudinal pharmacoepidemiological databases (Suling and
Pigeot, 2012). An example of a spontaneous reporting system is FAERS1.

As a data source, spontaneous reporting systems can only be used to answer ques-
tions related to patients that reported taking a particular drug and suffering ADEs.
As mentioned earlier, longitudinal pharmacoepidemiological databases provide ad-
ditional information such as co-administered drugs, co-morbidities and demographic
variables (Suling and Pigeot, 2012) on all individuals that were prescribed a particu-
lar drug, and those who experienced the ADE.

While choosing the data source is important, choosing the signal detection method is
as important. A signal detection method of choice should be able to utilize available
variables (i.e., demographic variables, co-medications and co-morbidities), and scal-
able to handle large number of subjects and variables of several types. Throughout
the years, a wide range of data-driven methods were developed and used in PV,
some of which were applied to EHDs. These data-driven methods include: 1) data
mining-based prediction of ADEs; reviewed in (Harpaz et al., 2012; Suling et al.,
2013), 2) prediction using a combination of data mining and/or machine learning
methods, and molecular similarity between drugs (Vilar et al., 2012), molecular path-
ways (i.e., drug targets) (Liu et al., 2012), drug-drug interactions (Liu et al., 2017),
and clinical coding (McMaster et al., 2019), 3) detection of rare ADEs using stan-
dard (Chan et al., 2015) and machine learning-based methods, 4) ADE detection us-
ing different ontologies (Saunders et al., 2005; Winnenburg et al., 2015), and 5) causal
inference (Schneeweiss, 2018). Basic study design recommendations for ADE signal
detection in EHDs could be found in (Schneeweiss, 2010).

1FDA Adverse Event Reporting System (FAERS). URL: https://www.fda.gov/drugs/
drug-approvals-and-databases/fda-adverse-event-reporting-system-faers
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4.1.3 The German Pharmacoepidemiological Research Database

GePaRD, the data source for this case study, is a health care claims database in
Germany, established in 2004 by the Leibniz Institute for Prevention Research and
Epidemiology - BIPS (Pigeot and Ahrens, 2008). GePaRD currently contains claims
data obtained from SHIs on more than 24 million insured individuals of the years
2004 to 2016. GePaRD covers patient information divided into four data dimen-
sions: socio-demographic data, inpatient diagnoses data, outpatient (ambulatory)
diagnoses data, therapeutic and diagnostic procedures on a quarterly basis, and out-
patient drug dispensation data. These data dimensions are represented by the col-
ors in Figure 4.1. Diagnoses are coded according to the International Classification
of Diseases, 10th revision, German Modification (ICD-10-GM). Outpatient thera-
peutic and diagnostic procedures are coded according to the German procedure
classification system for surgical and medical procedures (OPS). Drug dispensa-
tions can be linked to a reference database via the central pharmaceutical reference
number (PZN), and drugs can be mapped to the Anatomical Therapeutic Chemical
Classification System (ATC). For each drug, the reference database contains up-
to-date information on active substances, brand names, strengths, dosage forms,
and defined daily doses. The data dimensions are linked by a pseudonymous sub-
ject identifier (ID). GePaRD is stored in a relational database management system
(ORACLE®) maintained by BIPS. The unified data model for GePaRD was devel-
oped by BIPS for integration of data from different SHIs, imposing strict data trans-
fer, protection and quality measures. GePaRD is regularly updated (extended with
patient time) providing concurrent information on a large fraction of the German
population (Pigeot and Ahrens, 2008).

In Germany, social security data (including administrative health care data) are pro-
tected by Article 75, Social Code Book (SGB) X (Pigeot and Ahrens, 2008). This article
permits, under rigid constraints, the use of data for scientific research purposes with-
out the need for the informed consent of each insurant. Therefore, each study based
on GePaRD, requires both the participating SHIs approvals and the approvals of the
corresponding regulatory regional or nationwide authorities for data use (Enders,
2017). Such high-quality large-scale structured database is perfectly suited for: 1)
use in large-scale drug safety and drug utilization studies on free-living popula-
tions (Pigeot and Ahrens, 2008), 2) PV and concurrent drug monitoring, 3) identi-
fying trends in prescription, and 4) conducting siblings and familial linkage studies
(as insurance data can link mothers and children).

4.1.4 Case study: Predicting patient risk for adverse drug events in health
care claims data using functional targets knowledge

A patient’s response to a drug, including susceptibility to ADEs, is the sum of many
factors such as: genetic makeup (Meyer, 2000; Phillips et al., 2001), microbiome
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(Rizkallah et al., 2010), lifestyle, e.g., nutrition, alcohol consumption and smok-
ing (Alomar, 2014), co-morbidities (Dumbreck et al., 2015), and concomitant drug
use (Stewart et al., 2017). Specially in elderly patients, polypharmacy and multi-
morbidity can lead to an increased risk of ADEs (Dumbreck et al., 2015; Schöttker et
al., 2017). It is, therefore, important to successfully predict the risk and identify the
characteristics of patients that lead to suffering an ADE.

Drugs and diseases combinations can increase the susceptibility of a patient to a par-
ticular ADE through their interactions. A basic case is that concomitant use of similar
active drugs can augment the drugs intended effect (e.g., hypoglycemia as a result of
multiple active antidiabetic agents). In a less apparent case, ADEs occur due to the
drugs effect on off-targets (i.e., unintended targets) (Lounkine et al., 2012). For exam-
ple, the withdrawn synthetic estrogen chlorotrianisene inhibits COX-1 enzyme and
inhibits platelet aggregation, thus it can exacerbate bleeding in a patient taking an-
ticoagulants (Lounkine et al., 2012). Another example is the use of antidepressants
and antipsychotics simultaneously. Both drug groups block muscarinic receptors,
and if combined, their synergistic effect on off-targets can lead to urinary retention
as an ADE. Underlying co-morbidities can affect drug choice and ADEs. For ex-
ample, selective serotonin reuptake inhibitors would increase the risk of bleeding in
depressed patients with myocardial infarction and thus drives drug choice modifica-
tion (Dumbreck et al., 2015). Therefore, to mitigate the risk of an ADE of a particular
drug and thus to identify possible actions, such risk factors and the interaction be-
tween them need to be identified.

In the past, spontaneous reporting systems were preferably used for signal detec-
tion. However, longitudinal databases currently offer a more comprehensive source
of information that are necessary to better assess individuals risk of an ADE. In par-
ticular, longitudinal databases provide additional information on co-administered
drugs and operations, co-morbidities in addition to important confounding vari-
ables (e.g., age and sex) (Suling and Pigeot, 2012). Current signal detection methods
were originally developed for spontaneous reporting systems, and they continued
to be used for analyzing longitudinal data (Arnaud et al., 2017). A limitation of
this approach is the need for transforming longitudinal data into a spontaneous
report (create pseudo-reports of drug exposure and events) (Arnaud et al., 2017).
Consequently, this approach disregards co-medications and co-morbidities (Suling
and Pigeot, 2012). An alternative approach for signal detection in longitudinal data
is to utilize traditional pharmacoepidemiological study designs (e.g., matched case-
control and self-controlled designs) combined with statistical methods that can ad-
just for confounders and handle a large number of predictors (Arnaud et al., 2017).

In Figure 4.2a the classical approach to predict patient risk in PV is schematically
represented. Classically, patient risk is predicted based on the associations between
individual risk factors (drugs and diseases) and the ADE. This approach is limited
by 1) the restricted available information for patients exposed to these drugs, and
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2) the scale at which statistical models can handle and utilize such relatively large
number of variables. Methods for variable selection (e.g., penalized logistic regres-
sion) are important data dimensionality reduction approaches for large-scale signal
detection studies. Another approach to reduce data dimensionality is testing for
association between a group of covariates (e.g., drugs/diseases) and a specific out-
come (e.g., ADE). This concept is well-established in genetic epidemiology (shown
schematically in Figure 4.2b). In genetic epidemiology, pathway analysis approaches
allow for combining evidence for associations between single covariates (e.g., genes)
and the outcome (e.g., phenotype), which 1) leads to better signal detection (Yu
et al., 2009), and 2) helps interpreting the risk factors according to their biologi-
cal pathways. Pathway selection methods include Gene Set Enrichment Analysis
(GSEA) (Subramanian et al., 2005; Mooney et al., 2014). GSEA is suitable for test-
ing associations between the phenotype and a group of single nucleotide polymor-
phisms or genes in particular pathways. However, GSEA is not the method of choice
for outcome prediction. Recently, group-based penalized regression (Friedman et
al., 2010) became widely applied in genetic epidemiology to infer associations while
incorporating pathway (i.e., group) information and predict biological outcomes
(Breheny and Huang, 2009; Breheny, 2015). Overlapping group logistic regression
facilitates handling overlapping pathways in regression models (Zeng and Breheny,
2016).

Similarly, we propose that instead of assessing the associations between the drugs
and diseases, and the ADE directly, as in Figure 4.2a, the associations between the
groups and the ADE shown should be investigated. We propose that drugs and
diseases are grouped by the functional targets (FTs) they interact with. An FT is a
pathway of interacting biomolecules (e.g., enzymes, receptors) that are affected by
the drug (Overington et al., 2006) or associated with a disease. Online databases
such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,
2017) and Therapeutic Target Database (TTD) (Li et al., 2018) can be queried to cu-
rate the FTs. By exploiting domain knowledge to assign drugs/diseases to groups,
we can possibly improve risk prediction by increasing the power for detecting asso-
ciations. In addition, pooling the data within each group reduces data dimensional-
ity. Moreover, target-based prediction of ADEs might help resolve target pathways
(more importantly unintended target pathways) of drugs, which can better explain
the underlying mechanisms of ADEs.

4.1.5 Study objectives

Methodological/biological objectives: The methodological and biological aims of
the study are: 1) to compare classical PV methods and GSEA-based methods in their
ability to predict the risk of ADEs in longitudinal data, and 2) to investigate the effect
of grouping covariates based on their functional targets on individual outcome and,
whenever applicable, group predictions.
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Data engineering objective: The data engineering aim is to optimize and develop
scalable portable solutions for: 1) transformation of structured high-dimensional
data as health care claims data in conjugation with molecular knowledge from on-
line data sources, and 2) adapting statistical methods for high-dimensional data and
high-performance computing resources. A number of optimizations are considered
including parallelization as well as utilization of relational databases and on-disk
intermediate storage.

4.2 Integration and statistical modeling of high-dimensional
data

This chapter presents an example of the need for solutions for data transformation
and integration required for knowledge transfer (from genomic knowledge bases)
and method transfer (from genetic epidemiology), and for adapting statistical meth-
ods to large-scale studies on longitudinal data. In particular, this section addresses:
1) the challenge and requirements of this case study, the data to be integrated and
transformed, and the statistical models to be adapted for scalability, 2) the solution
implementation steps, 3) the evaluation of data preparation and analysis, and 4) the
limitations of this case study and of the solution implementation.

4.2.1 Challenges and project requirements

To achieve the methodological and therefore the biological aims of the study, four
components are required: 1) a grouping structure for the covariates (i.e., drugs and
diseases), 2) patient data extracted from longitudinal databases following an appro-
priate epidemiological study design, 3) statistical methods that support prediction,
and 4) the outcome to be predicted (i.e., ADE). Handling the grouping structure (i.e.,
FT) data and the patient data (i.e., longitudinal GePaRD data) presents a classical
ETL case, as each of these two components requires extraction, transformation and
integration. Below, I describe each of the components in detail.

1. The outcome (i.e., the ADE): In early 2010s, a number of novel anticoagu-
lant drugs were released, named non-vitamin K (or novel) oral anticoagulants
(NOACs). NOACs were successfully used for treating or preventing blood
clots. Patients benefiting from these drugs might have atrial fibrillation and
NOACs lower the risk of stroke caused by blood clots. They might be undergo-
ing a hip/knee replacement, where NOACs can lower the risk of formed blood
clots in the legs (deep vein thrombosis) or in the lungs (pulmonary embolism).
Patients also might be at risk of stroke, heart attack, or other cardiovascular
problems. However, these novel anticoagulants may lead to bleeding events
in the gut (gastrointestinal bleeding and ulcers) and in the brain (intracranial
bleeding). NOACs might also induce liver toxicity. In this case study, we use
various statistical methods to detect the signals of the aforementioned ADEs in
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the German population using longitudinal data. The methods would predict
the ADE risk, and, whenever applicable, select the risk factors (i.e., age, sex,
NOACs and/or other drugs and diseases) for suffering these ADEs. In the
chapter, I discuss only the first ADE of interest namely gastrointestinal bleed-
ing and ulcers.

2. Study design based on GePaRD: A suitable epidemiological study design is
integral to signal detection in longitudinal data. Two study designs were con-
sidered for this case study: cohort study and matched case-control study. In
a cohort study design, we would use demographic, diagnosis and dispensa-
tion data available on the whole German population in GePaRD in a speci-
fied time period starting from when NOACs were released (e.g., 2010-2016).
In a matched case-control study design, we would use the data available for
cases (patients that were diagnosed with the ADEs), and match those cases
with controls of the same birth year and sex. Advantages of using a matched
case-control design are: 1) to reduce data dimensionality (i.e., both the number
of observations and covariates) and 2) to balance the patient time (and there-
fore the covariates) between cases and controls (i.e., cohort exit date for the
matched controls and the cases becomes the index date on which the ADE was
diagnosed in the case). For a comprehensive investigation, as risk factors, we
considered both in- and outpatient diagnoses, in addition to drugs, which is
expected to increase data dimensionality. Test runs showed that a large 6-year
cohort study is not feasible within the current infrastructure, discussed below.
Therefore, I used a matched case-control study design.

3. Functional target data: Figure 4.3 gives an overview on the course of the pro-
posed analysis categorizing SHIs data according to biologically relevant FTs
and testing for associations with the ADE of interest. The figure also illus-
trates how drugs/diseases are to be related to FTs. As drugs and diseases
(i.e., predictors) are required to be grouped in a biologically relevant manner,
target genes and target pathways were considered. Most drugs and diseases
have one or more known biological FTs (e.g., a receptor, an enzyme, an ion
channel that is expressed by a gene), and those targets are naturally grouped
in pathways. Pathways provide a high-level classification of drugs and dis-
eases and, therefore, reduce data dimensionality. To acquire such information,
three knowledge bases were considered: STITCH2 (Szklarczyk et al., 2016),
KEGG3 and TTD4; each provides a facet of the FTs (described in Figure 4.3).
The facets that would be used by the statistical tests are drug-disease (indica-
tion), drug-target and disease-target interactions. Those facets are possible to
curate from KEGG and TTD, where TTD, a manually curated database, has
several advantages over KEGG. First, TTD provides clear comprehensive in-
formation on drug-disease relationships according to the ICD coding system.
KEGG, in contrast, is highly selective as it provides information on the diseases
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that primarily have an underlying genetic cause. Second, TTD can be readily
cross-referenced with the well-known knowledge base KEGG, and with ICD
and ATC systems (used in GePaRD and SHIs data). Therefore, I considered
using TTD for curating grouping structures.

4. Statistical modeling and prediction: As aforementioned, a statistical method
of choice should be scalable for handling and utilizing a large diverse number
of covariates, and suited for prediction. Moreover, to achieve the methodolog-
ical aims, the method should be able to handle data as blocks/groups of FTs.
All appropriate methods should be compared with respect to their ability to
1) infer which groups (i.e., FTs) leading to an increasing risk of experiencing
a certain ADE, and 2) predict whether a patient might experience the ADE
given his/her drug exposures and comorbidities. Methods that do not include
prior knowledge of blocks structure are also required to investigate the effect
of grouping on the prediction.

We screened and tested a number of methods on simulated data, see the results
in Appendix A.2. The methods were then filtered based on subject knowl-
edge and scalability. The methods considered for this case study are based on
penalized regression [the lasso (Tibshirani, 1996) and the overlapping group
lasso (Friedman et al., 2010; Zeng and Breheny, 2016)], machine learning [block
forests (Hornung and Wright, 2019)] and a GSEA [the adaptive rank truncated
product; ARTP (Yu et al., 2009)]. As in Yu et al., the ARTP method has not
been developed or used for prediction (Yu et al., 2009). We, therefore, devel-
oped an implementation of the ARTP that can be used for prediction. This
implementation was introduced and tested on simulated data (Appendix A.2),
where it showed a superior performance compared to other tested methods
with respect to both prediction and inference of associated groups, specially in
case of a weak signal. Group lasso, block forests and the new implementation
of the ARTP incorporate group information in predicting the outcome in con-
trast to the lasso. Therefore, these group/block-based methods are compared
to 1) standard logistic regression model (Cox, 1958), 2) a penalized regression
method that does not include prior knowledge of group structure (e.g., the
lasso), and 3) a penalized regression method that does, which we refer to as
the naïve group lasso (NGL). The NGL is based on creating a group variable
that is either the sum of the covariates within that group or a value of 1 when
any of the group covariates is 1, and 0 otherwise. The results of the simu-
lation study showed that sum-based NGL had better predictability compared
to occurrence-based NGL (Appendix A.2), therefore group size weighted sum-
based NGL is considered here. Finally, the performance of the methods is com-
pared in terms of recall, precision and F1-score.

2STITCH: Search Tool for Interactions of Chemicals. URL: http://stitch.embl.de/
3KEGG: Kyoto Encyclopedia of Genes and Genomes. URL: https://www.kegg.jp/
4TTD: Therapeutic Target Database. URL: http://db.idrblab.net/ttd/
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Existing solutions and their constraints: Time and memory

The project funding requires the solution to be available for distribution among the
project partners (e.g., the SHIs involved). Therefore, cross-platform solutions were
considered. R is a strong platform for both data acquisition and analytics. R can also
effectively handle the diverse ecosystem of data sources considered for this study
(e.g., TTD flat files and GePaRD data stored in a centralized relational database man-
agement system). For portability and distribution, an R package could be developed
to contain all data management and analysis processes.

Despite R’s strengths, there are known performance and scalability limitations [see
(Morandat et al., 2012; Wickham, 2014)]. In particular, inefficient memory utiliza-
tion and lower computation efficiency are highly relevant to data engineering when
handling high-dimensional data. As data grow in size and complexity, these aspects
eventually lead to two classes of runtime errors: out-of-memory (OOM) and pro-
hibitive execution time (exceeded walltime limit). At runtime, R operations on high-
dimensional data create intermediate data objects, which usually grow in size and
dimensions. This expansion in object size hinders efficient computation on modern
multi-core CPUs, as the data used in calculations can be barely contained in the CPU
caches or even main memory, a problem augmented by memory fragmentation re-
sulting from constant objects growth and relocation (Burns, 2011). On the one hand,
the R program can be abruptly killed by the kernel’s OOM killer service due to main
memory capacity exhaustion. On the other hand, the reduced efficiency might cause
the operations to be extremely slow and exceed execution time limits.

Throughout the years, alternatives have been proposed to improve these limitations
in R, such as new implementation of the language [reviewed in (Wickham, 2014)].
Improvements can be also achieved through code optimization (e.g., paralleliza-
tion) and utilization of object classes that are high-dimensional data-friendly (e.g.,
data.table and sparse matrix).

Application field constraints: Data dimensions and data protection

In pharmacoepidemiological studies, data sets from longitudinal data are often of
lower dimensions than that intended for this case study. For instance, in (Pisa et
al., 2019), a large matched case-control study of 16,750 cases and 1,673,320 controls,
and approximately 50 covariates was analyzed using a logistic regression model.
Current implementations of statistical models (e.g., logistic and penalized logistic re-
gression) are rarely used to analyze larger data sets. To be able to use those methods
and others such as block forests and the ARTP, data dimensionality is a constraint.
Setbacks are expected when it comes to analytics of such high-dimensional data in
terms of both software implementations and hardware constraints. In particular, to
comply with data protection constraints, data acquisition, transformation and analy-
sis operations of GePaRD data, including this case study, are required to be run on
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the institute’s computing cluster, which, even though powerful, is a limited shared
resource.

4.2.2 Solution implementation

Throughout the development phase, OOM and exceeded execution time problems
arose. In particular, in case of a cohort study design, data acquisition and transfor-
mation was repeatedly halted by OOM issues, such that analytics testing was not
possible. In the matched case-control study design, both transformation and analyt-
ics experienced OOM and exceeded execution time issues. It meant that even with
the dimensionality reduction by adopting a matched case-control study design, re-
sources and time represented constraints.

Resources availability and time are important aspects of signal detection studies;
therefore, the study’s aims were translated into finding a statistical method that pro-
duces the most accurate predictions while using reasonable resources. In this sub-
section, I describe the study population and data dimensions of the matched case-
control study, data acquisition, transformation and analysis for each of the project
components. I focus on the successfully applied implementations that did not expe-
rience runtime errors.

Machine specifications The solution runs on a 28-node cluster operated by CentOS
Linux 7, with an Intel® Xeon® CPU E5649 @ 2.53GHz 2 x 6-core CPUs, 12MB shared
cache, 98GB of RAM per node, and 10TB disk space; R version 3.4.3 (2017-11-30).

1. The outcome: Gastrointestinal bleeding was chosen as the ADE of interest.
Incidence of gastrointestinal bleeding was defined based on diagnoses of gas-
tric ulcer (K25.0, .2, .4, .6), duodenal ulcer (K26.0, .2, .4, .6), peptic ulcer (K27.0,
.2, .4, .6), gastrojejunal ulcer (K28.0, .2, .4, .6), or gastritis and duodenitis (K29.0),
according to ICD-10-GM.

2. Longitudinal data (GePaRD):

• Study population and design: In this case study, a matched case-control
study design was applied. The study entry date was between 1 January
2015 and 31 December 2016. Data from the Techniker Krankenkasse (TK)
were used. Eligible subjects had to be 1) aged 18 years or older at the
time of cohort entry (birth year≤ 1996), 2) continuously insured through-
out the study period (with up to 3 days gap), and 3) living in Germany.
Eligible subjects that had a valid date of death (i.e., on the basis of hospital
discharge cause and date, and end of insurance case and date) were re-
tained in the cohort as long as the ADE occurred before the date of death.
Subjects for whom year of birth and sex were not available were not con-
sidered for study entry.
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• Case definition and matching protocol: Cases (i.e., subjects suffering from the
ADE of interest) were identified on the basis of in- and/or outpatient di-
agnoses, whichever available. Inpatient diagnosis must be either main or
other main discharge diagnosis. Outpatient diagnosis must be an assured
diagnosis. Cases must not have the ADE of interest during the baseline
period (July 1, 2014 - December 31, 2014) and the first quarter of 2015
(January 1 - April 30, 2015). Controls must not have the ADE of interest
throughout the baseline and the study periods. Cases are not eligible to be
controls at any time. Matching [1:10 without replacement (Robins et al.,
1986; Pearce, 2016)] based on sex, year of birth and index date was per-
formed. Cases and eligible controls were divided by identification num-
ber into a training data set (even numbers; for fitting) and a test data set
(odd numbers; for prediction) before the matching was performed.

• Predictors definition: Both co-morbidities and concomitant drug adminis-
tration were considered as risk factors (i.e., predictors) for the ADE of
interest. Co-morbidities were obtained from in- and outpatient diagnoses
(main and other main discharge diagnosis, secondary and auxiliary diag-
nosis and diagnosis for ambulatory treatment, or hospitalization diagno-
sis for inpatients, and assured and post-diagnosis for outpatients) prior to
the onset of the ADE of interest. Administered drugs were obtained from
reimbursable dispensation data prior to the onset of the ADE of interest.

• Data acquisition and transformation: In general, data acquisition and trans-
formation were designed such that entire tables and relevant fields could
be extracted using the database connector ROracle. Then the retrieved
data were cleaned including variables and dates recoding, and joined in
R (v3.4.3). First, GePaRD was queried for patient confounding variables,
insurance periods and death dates. A temporary table with eligible sub-
jects was saved to the project schema in GePaRD to speed up joining us-
ing SQL and reduce the operation time and load of R. Second, GePaRD
was queried for drug dispensation for the eligible subjects. Dispensations
between 01-01-2015 and 31-12-2016 were translated into ATC code using
data from the in-house drug reference database (tab-delimited flat file).
Third, GePaRD was queried for in- and outpatient diagnoses for the eligi-
ble subjects. Diagnoses between 01-07-2014 and 31-12-2016 were subset-
ted to cover both the baseline and the study periods. To overcome OOM
runtime error due to data dimensions, only for outpatient diagnosis, data
subsetting and cleaning were performed using SQL queries. Fourth, di-
agnoses data were merged, cases and eligible controls were identified,
and index dates were retrieved for cases. Fifth, training and test data
sets were created from cases that were matched with controls by paral-
lel filtration of patients’ birth year and sex using doParallel package.
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Only socio-demographic data were used for filtration to reduce memory
load. Objects containing eligible subjects diagnoses and dispensations
were temporarily stored as single R objects in .Rds files on the comput-
ing cluster prior to transformation.

• Data preparation for analytics: First incidence of diagnosis and dispensa-
tions until the respective index date of the case and control were selected.
Data on covariates were split into chunks and transformed into binary in-
dicator (i.e., boolean) matrices that were reduced to one matrix for each of
the training and test data sets. Zero variance predictors (i.e., all 0 or all 1)
were excluded from the training and test data sets. Dispensation and di-
agnosis data were treated either independently or aggregated according
to TTD human target pathways. Single-member groups were created for
singletons including birth year, sex, and covariates that had no pathway-
based group for group/block-based methods group lasso, block forests
and ARTP. Single-member groups increased the number of groups by al-
most 10-fold (see Subsection 4.2.3).

3. Functional target data: TTD (update: 6.1.01; published: 2017.10.04) data were
downloaded and loaded into a portable light relational database (SQLite)
with Bash scripts. An R program was developed that connects to the SQLite
database to query the data as necessary. Data were extracted, cross-matched
with ATC, ICD and KEGG pathway ID, and transformed into binary matri-
ces and key-value data.table structures of drug-disease, drug-target and
disease-target pairs. TTD classification neither provides a categorization of all
ICDs (or ATCs) nor categorizes ICDs at equal levels of hierarchy. ICDs in TTD
groups (ICD-10-CM version 2017) were inflated to and cross-referenced with
ICD-10-GM version 2017 down to the lowest level in the ICD hierarchy. Both
the database and the matrices are contained into the R package. Figure 4.4 is a
simplified entity-relationship diagram illustrating the SQLite database struc-
ture.

4. Statistical modeling and prediction: As mentioned in the previous subsec-
tion, a number of statistical tests were considered for this study to compare
classical PV methods against GSEA-based methods and to investigate the ef-
fect of grouping the covariates. In general, wrapper functions were developed
to 1) read training and test data sets, 2) assign the covariates to TTD groups, 3)
use the training data set for fitting the models, 4) use the test set for predicting
the outcome, 5) calculate the recall, precision and F1-score for each method,
and 6) extract, if applicable, the most informative groups/variables. Here, I
list the methods, their parameters and specific considerations regarding data
preparation if necessary.

• Standard model for logistic regression: Here, a logistic regression model was
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applied using stats to analyze the relationship between each covariate
and the ADE; p-values were adjusted for multiple comparisons according
to Bonferroni (cutoff < 0.05).

• The lasso: The implementation in the R package glmnet (v2.0-16) was
used with parallelization option, employing a 10-fold cross-validation to
select the tuning parameter, λ, that minimizes the deviance.

• The lasso for a constructed group variable (NGL): The group variable was
calculated as the sum of the covariates within a group and multiplied by
1 / square root of the group size. The calculation of the group variable
was parallelized using parallel.

• The group lasso for overlapping groups (OGL): The regularized regression
methods group (Breheny and Huang, 2009; Friedman et al., 2010) and
overlapping group (Zeng and Breheny, 2016) lasso, among others, pro-
vide additional regularizations on group membership by using differ-
ent penalty functions. We tested grepregOverlap (Zeng and Breheny,
2016) (v2.2.0) in R on simulated data (Appendix A.2).

grepregOverlap for overlapping group lasso uses grepreg (Breheny
and Huang, 2009), yet, to handle overlapping groups, the input design
matrix is inflated (i.e., expanded) prior to the fitting and the prediction. It
was not possible to use the current implementation of grepregOverlap
due to the input and output data size (as data.frame) and the change in
data type and/or object class within the grpregOverlap. Therefore, I
adapted the matrix expansion function to handle sparse matrix objects
as both input and output. However, the resulting matrix dimensions
were not computable using grpreg (v3.2-1). I, therefore, used pyglmnet

(based on (Friedman et al., 2010)) in Python, by adapting it to support
sparse matrix input and intermediate calculations in order for the compu-
tation to be doable with the available amount of main memory (98 GB). A
10-fold cross-validation was employed to select the tuning parameter, λ,
that minimizes the deviance. To the best of our knowledge, the modified
pyglmnet is the only implementation with support for sparse matrices
and cross-validation calculation of λ.

• The pathway analysis by adaptive combination of rank truncated product (ARTP):
The ARTP is a gene set enrichment method that was originally designed
for single nucleotide polymorphism (SNP) data (Yu et al., 2009). It is a
hypothesis testing approach used to select the biological pathways that
are enriched with genetic variants to be associated with a phenotype. The
method preserves the correlation structure between genes by using per-
mutation tests, and it has the potential to detect subtle effects of genetic
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variants in a given pathway that might be missed when assessed individ-
ually. The ARTP uses p-values from any statistical association test, here a
standard logistic regression model. We modified the ARTP to detect asso-
ciations between ADEs and functional targets when using binary health
care claims data. Here, cutoff for group selection is p-value ≤ 0.05, and
number of permutations = 50.

Our previous implementation of ARTP (Appendix A.2) suffered from ob-
ject class changes and growing objects within the function; both resulted
in OOM runtime error in fitting. In addition, the implementation suffered
from exceeded execution time in prediction. Three strategies were tested
and implemented to adapt the ARTP to high-dimensional data, and re-
duce execution time and memory requirements: 1) minimization of mem-
ory fragmentation and growing objects by creation and initialization of all
objects (e.g., data.frame, matrix and vector objects) within the fitting and
prediction functions to preserve their size and dimension, 2) reduction
of execution time by parallelization of permutation tests and prediction,
and 3) utilization of on-disk storage of intermediate objects (e.g., predic-
tions based on each group covariates) in case any forked process is killed,
which is random to some extent.

• Block forest (BF): As a machine learning approach, block forests are a fur-
ther development of random forests that is able to combine different blocks
of omics data for outcome prediction and including group structures to
improve the prediction performance. This is facilitated by modifying
the split point selection procedure of random forests to the group struc-
ture in the data. BF handles the blocks independently, therefore, over-
lapping group structures can be analyzed without further modifications.
However, singleton variables are not included in the analysis. The avail-
able implementation of BF could only be applied for risk prediction as it
does not allow for variable or block importance estimation, and therefore,
it is not used for variable and group selection.

The R package BlockForest (v0.2.3) was used with number of tun-
ing parameter sets = 50, number of tuning trees = 50, number of trees
= 500, and splitting rule = ‘gini’. BF performance, however optimized
for parallelization, was hindered by memory and walltime restrictions.
Adaptation for input as matrix was encouraged and implemented in the
BF version to avoid memory cost of object class change between data.frame
and matrix inputs throughout the operations; the newest version was
used. Moreover, a parallelization of the tuning process was used to over-
come exceeded execution time issues. The tuning parameters for the best
run (minimum of all) were used to construct the forest.
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4.2.3 Evaluation

Secondary data, including EHDs, are a rich data source that can be used to answer
multiple research questions, using various analysis and mining methods. This al-
lows for knowledge and method transfer between fields, which often requires vari-
ous adaptations to the methods. In this case study, various adaptations were applied
and their outcomes were cumulatively evaluated in regard to 1) data acquisition and
management approaches with respect to data source, and 2) data dimensions and
statistical methods performance.

Data source and dimensions drive acquisition and management approaches

Functional target data source: KEGG, STITCH and TTD: Developing the strategy for
target-based enrichment analysis (Figure 4.3), KEGG, STITCH and TTD were con-
sidered. The functional target data source and the data acquisition and transforma-
tion approach largely influence each other. First, KEGG, the most comprehensive
source for biological pathway data, offers various accessibility options. In addi-
tion to file-based (i.e., FTP) and graphic-based (i.e., XML representation of KEGG
pathway maps) formats, KEGG databases can be queried in R for each drug-target
(gene or pathway) and disease-target interaction using KEGG API, a RESTful web
service application programming interface and the client-side package KEGGREST.
Web service-based API insures dynamic data acquisition and is bandwidth efficient,
however, it is network-dependent. Second, STITCH, a source for drug-drug similar-
ity scores based on curated evidence-based drug-target interactions, could be down-
loaded as parsable flat files or as complete SQL schemas; the latter require large disk
space and a robust free database management system (e.g., MySQL). Third is TTD,
the source used in this chapter. A small number of flat files (e.g., STITCH) could be
readily parsed in R or Bash, however, to better handle a complex structure such as
TTD, an relational database management system is a better fit (Figure 4.4). Taken
together, data source choice drives data acquisition and transformation approaches.

Functional target data management: Relational databases and MapReduce: To extract,
transform and load TTD data, two possibilities were considered: relational database
management systems (e.g., ORACLE or SQLite) and the well-known parallel frame-
work MapReduce. The MapReduce programming model was developed and imple-
mented for parallel and/or distributed processing of large-scale data in a key/value
pair format (Dean and Ghemawat, 2008). Hadoop is the most popular publicly avail-
able implementation of MapReduce, which is based on the Hadoop distributed file
system (HDFS) (Stonebraker et al., 2010; Muhammad et al., 2017). MapReduce is an
ETL system that is often upstream from database management systems, and thus
complementing them. MapReduce is best used in cases of ETL processes, com-
plex data flows, semi-structured data, and the need for an out-of-the-box system
for budget-limited projects (Stonebraker et al., 2010), which were not applicable to

57



Chapter 4. Integration and Statistical Modeling of High-Dimensional Data: A Case
of Secondary Health Data

our case study. SQLite has multiple features in favor of its use: 1) the database is a
single file which is easily portable to many platforms without installation, 2) it is free
and open-source (i.e., a good choice for low-budget small scientific projects), 3) it is
simple to set up and query from most programming languages and environments, 4)
it has the least possible dependencies for data manipulation, 5) it is straightforward
to install and configure if required, and 6) it is simple with respect to data import,
which is important for updating the functional target data with a newer version
of TTD. SQLite, however, has limited scalability in case of multi-user concurrent
workloads on the database; in these cases, PostgreSQL or MySQL could be more
appropriate alternatives.

Longitudinal data management: High-dimensional data in R and SQL: To extract and
transform GePaRD data into binary matrices, the inputs for the statistical methods,
two possibilities were considered: R and SQL; in practice a combination of both was
used. Using SQL bypassed memory and walltime constraints, however, resulted in
poor scalability and reproducibility. To achieve scalability and reproducibility, as
a practice, perhaps R could be used as a wrapper for SQL functions in future im-
plementations. In addition, intermediate tables, on-disk storage of intermediate R
objects and memory-mapped file objects could have been better utilized.

Data dimensions drive analytics choice and implementation

Case study statistics: The highlights of case study statistics are in Appendix A.3.
Table A.3.3 shows the data dimensions of the eligible subjects. The socio-demographic
as well as dimension statistics of the matched case-control data set are shown in
Table A.3.4. The statistical methods performance metrics are in Table A.3.5. The to-
tal number of eligible subjects was 7,420,946; 1,159 (0.015%) died before the cohort
exit date, 8,120 (0.11%) were not ADE-free after three months of cohort entry date
and therefore excluded, while 11,732 (0.16%) suffered from the ADE afterwards. To
assess whether our matched case-control design helped balancing patient time seg-
ments, patient time was calculated in calendar quarters for cases and controls and
is presented in Figure A.3.10. The dimensions of the functional target groups (i.e.,
pathways) were assessed as well. The curated TTD data set contained 1,124 drugs
and 12,761 diseases to the lowest level in 260 pathways; pathway sizes ranged be-
tween 3 and 10,511 (mean ± SD: 3114.1± 2463.1). Zero variance predictors were ex-
cluded (2,340 out of 12,407; 18.9%). A total of 10,064 informative covariates, exclud-
ing confounders, were mapped to TTD pathways; 8,161 (81%) were assigned to 260
pathways, while 1,903 covariates were not assigned to TTD pathways. Group sizes
ranged between 2 and 6,441 (mean ± SD: 1908.5 ± 1468.9). If we accounted for the
overlap among the groups, the actual dimensions of the 260 groups would be 496,210
covariates. The empirical distribution of the number of drugs and diseases in all
functional target groups in the curated TTD data set was assessed and is presented
in Figure A.3.11, and that in the GePaRD data set is presented in Figure A.3.12.
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Data dimensions and analytics: The data in this case study influenced the analytics
in two ways. First, the methods selection was data-driven. For instance, overlap-
ping group logistic regression was considered instead of group logistic regression
when preliminary research showed that most of biological targets overlap, i.e., drugs
and diseases affect more than one pathway (e.g., drug ADEs). Second, the statisti-
cal methods were largely affected by data dimensions. Three factors influenced the
data dimensions, and therefore affected the applicability of carrying out the statisti-
cal methods, the computation time and the runtime errors. First, the matched case-
control study design contributed largely to reducing the number of subjects and
number of covariables, and to balancing patient time. Second, the exclusion of zero
variance predictors reduced the data dimensions and computation time, and en-
hanced the comparability of the tested methods; penalized regression-based meth-
ods ignored zero variance variables by default, while the other methods did not.
Third, the qualitative assessments highlighted that the size and number of groups
affected the statistical methods applicability and runtime. The number of groups
increased by the introduction of single-member groups, which affected the ARTP
and BF the most. It increased the number of subsets to be tested for association in
ARTP, however, the smaller the group, the faster the standard logistic regression
model ran. The number of groups increased the number of splits in BF and there-
fore the runtime. Group size affected the current implementations of group lasso the
most; expanding the covariate matrix into a single much larger matrix perhaps is not
the optimal solution for high-dimensional data. Benchmarking is required to fur-
ther investigate the critical point at which the number of groups and covariates can
no longer be analyzed by grpreg. Looking at the performance metrics, the worst
methods with respect to prediction precision were the ARTP and OGL (Table A.3.5).
Despite the adaptations for large-scale data and their performance with simulated
data (Appendix A.2), those methods did not seem to have a fair chance against better
implemented and large scale-adapted methods (e.g., BF). The ARTP would benefit
from increasing the number of permutations, which would, however, increase mem-
ory and processing load.

4.2.4 Critical appraisal

There are crucial limitations in the implementation for this case study at three levels:
longitudinal data management, the utilization of optimal parallelization options in
R, and the evaluation. First, in a matched case-control study, each case is matched
(i.e., paired) to a number of controls. In case no predictors were found between
cohort entry and index date, a new match is assigned. In the current implementa-
tion, the predictors were not checked in the matching phase due to dimensionality,
and therefore, memory issues. Thus, in case no predictive factors were available
between the cohort entry date (01-01-2015) and the index date for either a case or
a control subject, the pair was not regenerated. This resulted in an imbalance in
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patient time segments. Instead of case:control 11,732:117,320, the final data set con-
tained case:control 11,717:108,747, excluding 8,573 controls and 15 cases due to no
predictors detected.

Second, there are several approaches for high-performance computing in R. The
package parallel was used to improve the scalability of prediction by the ARTP.
batchtools (Lang et al., 2017) was used for BF tuning parallelization. The promis-
ing approach by future (Bengtsson, 2019) was tested as a parallelization approach
for ARTP prediction, however, its performance was completely halted in case any
forked process was killed due to exceeded execution time or memory requirements.
Therefore, possible approaches could be chunking the data into groups a priori to
avoid memory load or using batchtools.

Finally, benchmarking was best to be used for evaluating the outcomes of this case
study. This means: 1) evaluating the failed and successful implementations with
respect to memory and time consumption, and 2) investigating the effect of number
and size of groups and covariates on the implementations using simulated data.

4.3 Concluding remarks

Adverse drug events are a burden on the health care system that can be minimized
through drug safety studies. The increasing availability of comprehensive secondary
health data sources (i.e., electronic health care databases) and evidence-based ge-
nomic data represents a unique opportunity for advancing drug safety studies pro-
vided that methods for data integration and analytics are developed and adapted
for scalability.

This case study attempted at applying and improving current data preparation and
analytical methods for predicting the risk of ADEs on a large scale, incorporating
knowledge on drug and disease molecular pathways. The case study highlights a
number of consideration that are important to the success of large-scale drug safety
studies. First, high-performance computing solutions are required for both data
preparation and analytics. Data extraction and transformation for large-scale cohort
studies can be memory consuming and require robust tools and better pipeline de-
sign. As well, statistical methods performance is limited by computational resources
constraints, which requires scalable implementations. Second, signal detection in
longitudinal data is driven by data source, structure and dimensions; it requires
knowledge and method transfer as well as data integration from different fields.
Third, at the analytics-level, this case study aimed at comparing the predictability
of group-based (BF, ARTP, NGL, OGL) to that of the lasso and the standard lo-
gistic regression model. Despite their promising performance on simulated data,
ARTP and OGL were hindered by data dimensionality. The group-based method,
BF, outperformed all others in terms of sensitivity (i.e., recall), however, with re-
spect to precision, the lasso and the standard logistic regression model showed best
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performance. Indeed, evaluating the performance of novel methods requires more
scalable implementations. In fact, drug safety studies would benefit from alterna-
tive high-performance computing platforms. Successful discipline-independent so-
lutions were developed and applied to scientific data augmenting the stability and
efficiency of relational database management systems with tools for large-scale data
processing and analytics capabilities [e.g., SciDB (Stonebraker et al., 2011) and Array
SQL (Misev and Baumann, 2015; for Standardization, 2019)].

This case study particularly shows that scalable implementation of statistical meth-
ods is the limiting factor in analyzing high-dimensional data. It also argues that a
data-driven choice of acquisition and transformation tools would help expanding
the scale at which drug safety studies are conducted (e.g., possibility to increase
cohort size and integrate multiple data sources). Nevertheless, integration of data
from multiple data sources can be as challenging; it requires models for integration
to distinguish between informative and irrelevant attributes, and to achieve optimal
knowledge extraction. In Chapter 5, I apply the principles of meaningful use of data
to integrate multi-omics data from a cohort study. Having been subjected to large-
scale studies in this chapter, the next chapter uses a pilot study to focus on the data
integration and analytical challenges that are anticipated with the rise in multi-omics
data availability.
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FIGURE 4.1: A simplified entity-relationship diagram represent-
ing the structure and relevant content of GePaRD. First, the socio-
demographic dimension consists of demographic data on insurants
(Table Insurants), insurance periods (Table Iperiods) and claims pe-
riods (Table Claims). Second, hospitalization (i.e., inpatient) data are
linked through hospital ID and stored in: Table Inpatient (for hos-
pital admission and discharge causes and dates), Table Diag (for di-
agnosis types and codes), and Table OPS (for procedures codes and
dates). Third, ambulatory (i.e., outpatient) data are linked and stored
in: Table Ambulant (for treatments), Table Amb_Diag (for outpatient
diagnoses and dates), and Table Amb_OPS (for procedures). Finally,
prescription data (central pharmaceutical reference number; PZN,
and delivery and issue dates) are stored in Table Prescription, which

can be linked to the dispensing pharmacy by pharmacy ID.
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FIGURE 4.2: A schematic representation of two approaches for ADE
risk prediction. (a) illustrates the standard approach in the field of
PV. The left column contains all the drugs (1, 2, . . . , k) and diseases
(1, 2, . . . , l). The ADE of interest is shown on the right. The predic-
tions are based on the associations between individual risk factors
(drugs and diseases) and the ADE, represented here by arrows point-
ing from each drug/disease to the ADE. (b) illustrates the approach
proposed in this case study. Similarly, the left column contains all the
drugs (1, 2, . . . , k) and diseases (1, 2, . . . , l) as covariates. The middle
column lists groups (1, 2, . . . , G). Each arrow between a drug/disease
and a group represents the group membership. Note that drugs/dis-
eases can belong to multiple groups simultaneously, e.g., drug2 is in,
both, group1 and group2. Instead of assessing the associations be-
tween the drugs/diseases and the ADE directly as in (a), the associ-
ations between the groups and the ADE are assessed, shown here by

arrows pointing from the groups to the ADE.
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FIGURE 4.3: The procedure of an enrichment analysis to predict
ADEs in routine data of the SHIs using functional targets (FTs).
First, relevant online genomic knowledge bases are queried for drug-
target, disease-target, drug-disease and drug-drug relationships to
curate FTs. FTs serve as the grouping structure of the predic-
tors. Within those FTs, substructures and pairings exist, such as
drug-drug structural and functional similarity, drug-disease relation-
ship, and less likely disease-disease co-existence. Second, an epi-
demiological study design is considered, and SHIs database (here
GePaRD) is queried for prescribed drugs, in- and outpatient di-
agnoses that are coded according to international coding systems
to facilitate being mapped to FTs. Third, the SHIs predictors
are grouped according to the grouping structure, and the risk of
ADE is predicted using statistical models based on those structures.
Drugs are denoted in blue, while diseases are in green. Within
a FT, solid lines represent drug-drug or disease-disease relation-
ships; dotted lines represent drug-disease (i.e., indication) relation-
ships. GePaRD = The German Pharmacoepidemiological Research
Database, ADE = Adverse Drug Event, STITCH = Search Tool for
Interactions of Chemicals, KEGG = Kyoto Encyclopedia of Genes
and Genomes, TTD = Therapeutic Target Database, ATC = The
Anatomical Therapeutic Chemical Classification System, ICD = The
International Classification of Diseases. The figure is modified af-

ter (Foraita et al., 2018) (Appendix B.2).
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FIGURE 4.4: A simplified entity-relationship diagram (ERD) of TTD
tables. Original data downloaded from TTD are used to create the
tables starting with ttd_. The remainder of the tables are the re-
sult of data cleaning, integration and cross-referencing in R using
RSQLite and data.table packages. The ERD was generated from
the SQLite database using SchemaCrawler (v15.04.01). The data
type of each column was pre-defined in ttd_ tables using SQLite. In
the tables created by RSQLite, the default is TEXT; the data type is
manually corrected and denoted by the underlining in the ERD. The
arrows represent the relationships between the tables based on entry

identifiers.
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Chapter 5

Meaningful Data Integration: A
Case of Primary Health Data

Cohort studies are the heart of non-experimental epidemiological research. They
offer insights into associations and causal relationships between lifestyle and, for
instance, complex diseases and drug response in the population. This, in turn,
advances our understanding of disease etiology and consequently drives preven-
tive measures development, therapeutic decision making and drug development.
The longitudinal design of such studies, where individuals serve as their own con-
trols, facilitates correcting for intra-subject variability and investigating disease pro-
gression as well as its influencing social and behavioral factors in individuals in a
time-dependent manner. In the omics era, large data volumes are generated from
extensive multi-omics phenotypes of the individuals. Cohort studies combining
omics data with other phenotypic information, such as lifestyle information, face
challenges in the areas of data management, measurement, storage and analysis.
Moreover, the omics era increases the need for additional resources for data acqui-
sition, in particular sample collection and storage (e.g., in biobanks). It is, there-
fore, of utmost importance to adequately prepare for the multi-omics era of epi-
demiological research. Advances in high-throughput technologies rapidly acceler-
ate the establishment and extension of longitudinal multi-omics biobanks around
the world (Wijmenga and Zhernakova, 2018). Such resources increase the depth of
the phenotypic profiles of individuals.

This chapter explores the different facets and data blocks in modern cohort stud-
ies using a case study based on the pan-European IDEFICS/I.Family cohort, where
children have been extensively examined in a baseline and follow-up surveys. The
study is an example of primary human data collected for answering particular re-
search questions, namely on the etiology and primary prevention of childhood obe-
sity and other metabolic disorders in Europe. The results of the case study will be
prepared for submission to the journal OMICS: A Journal of Integrative Biology.

Using this case study, I investigate the applicability of dimensionality reduction
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approaches in achieving meaningful use and integration of heterogeneous high-
dimensional data, which is expected to be a typical case in future epidemiological
studies. The chapter also highlights self/past-dependency issues in data acquisition
practices from shared data repositories, transformation and integration of heteroge-
neous multi-omics data and classical epidemiological data, statistical modeling, and
association and interaction analyses.

The chapter is structured as follows: Section 5.1 gives background information on
multi-omics biobanks, cohort studies and plasma lipidomics data in epidemiology,
and a brief introduction to the IDEFICS/I.Family cohort and the MyNewGut project.
Key aspects and applicability of meaningful data integration are also discussed.
Section 5.2 addresses the chapter objective in terms of project requirements, solu-
tion implementation and results evaluation. Concluding remarks are presented in
the last section.

5.1 Background

5.1.1 The rise of multi-omics biobanks in cohort studies

Biobanks are defined as the “structured resources that can be used for the purpose
of genetic research, including human biological materials and/or information gen-
erated from genetic analysis and associated information” (Hewitt and Watson, 2013;
Coppola et al., 2019). Biobanks facilitate understanding the etiology of complex dis-
eases, advancing personalized medicine research and driving drug development.
Taking a closer look into biobank components, biospecimens collected and stored
from large-scale cohorts include tissues, saliva, urine, stool, and blood. From those
biospecimens, DNA, RNA, metabolites and proteins can be extracted and as well
stored. Software programs were developed and used for sample management, re-
trieval and transfer (Coppola et al., 2019). Biobank data management, however,
seems to be a challenge in respect to: 1) research data management, 2) real-time data
sharing and 3) disaster management. Cloud-based solutions are suggested to over-
come issues of scalability and disaster management (Paul et al., 2017). Moreover,
resources for harmonization of biobank data and operating procedures are reviewed
in (Harris et al., 2012).

According to Coppola et al., biobanks can be classified based on: 1) design (e.g.,
population, disease-oriented), 2) purpose (e.g., epidemiological or pharmaceutical
research), and 3) study type (e.g., family cohort studies, clinical trials) (Coppola et al.,
2019). Population-based biobank samples are collected from volunteers, as it is the
case in the German National Cohort (German National Cohort (GNC) Consortium,
2014). Population studies can also exploit the family aspect as it is the case in the
pan-European IDEFICS/I.Family study (Ahrens et al., 2017).
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The vast majority of biobank samples and data originate from cohort studies. Driven
by the advances in genotyping and genome sequencing, cohort studies have in-
creasingly adopted multi-omic approaches (Huang et al., 2017; Hasin et al., 2017;
Wijmenga and Zhernakova, 2018) to shed light on the different facets of the biologi-
cal system such as genetics, epigenetic modifications of DNA, functioning molecules
(peptide, lipid and metabolite abundances), and microbiome composition and func-
tion (Hasin et al., 2017). The integration of these facets deepens our understanding
of the individuals and of their behavior in relation to complex diseases.

Although beneficial, using omics in cohort studies can have its challenges. First,
in spite of the reduction in cost of multi-omics laboratory analyses, cost is still an
obstacle, in particular, if a large number of participants is required (such as in pre-
dictive and biomarker discovery studies). Second, cohorts can be less diverse and
therefore show less variability in geno- and phenotypes (as it is the case in small
closed countries). Third, cohort studies have particular aims that shape the cohort
study protocol (e.g., age, sex, number of participants and sets of phenotypes); there-
fore it is desirable to combine smaller specific cohorts into a single larger cohort to
answer biological questions. At that point, however, data harmonization between
these smaller cohorts becomes an issue (Wijmenga and Zhernakova, 2018). Forth,
omics data are heterogeneous in nature, and each omics data type presents chal-
lenges in data analytics, in particular in selecting the variables associated with the
outcome, and in differentiating between causal relations and associations (Hasin et
al., 2017). Such heterogeneous omics data, possibly also from heterogeneous cohorts,
are required to be integrated and included in statistical models for an “integrative
holistic” omics approach for analysis (Hasin et al., 2017).

5.1.2 Data heterogeneity and meaningful use of data

Several characteristics define heterogeneous data; those include high variability, am-
biguity, large fraction of missing values, and high redundancy (Wang, 2017). Reasons
for data heterogeneity can include the diversity of data acquisition devices. There
are various types of data heterogeneity, including the following relevant types: syn-
tactic (different languages for different sources) and terminological (different names
for the entities from different data sources) (Wang, 2017). Cohort omics data suffer
from both types of data heterogeneity. In handling heterogeneous data, three levels
of processing are considered: 1) cleaning, 2) integration and 3) dimensionality reduc-
tion. First, at the data cleaning level, utilized methods encompass de-duplication,
imputation of missing values and correlation analyses to distinguish between infor-
mative and irrelevant attributes. Second, at the data integration (i.e., aggregation)
level, data sets are matched and merged to provide a data set that can be used for
data mining. Third, dimensionality reduction and data normalization techniques are
utilized to minimize the computational burden and to find meaningful informative
patterns in the data (Wang, 2017).
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However important, going a step further beyond cleaning and integration must be
considered. Without the implementation of “meaningful use of data” (Bizer et al.,
2012) principles, the application of aforementioned data engineering approaches
yields sub-informative data. To promote meaningful data integration, according
to Bizer et al., several steps can be undertaken including: 1) problem definition, 2)
database query for candidate data elements required to investigate the problem (e.g.,
search the database for all patients taking a certain drug), 3) implementation of ETL
workflows to transform the relevant data into an appropriate functional format, 4)
entity resolution including data verification and abstraction, and 5) implementation
of appropriate statistical and computational methods for problem solving (Bizer et
al., 2012).

Modern cohort studies often require the integration of various data types that are
extremely heterogeneous, for instance, from multi-omics studies, lifestyle variables
from epidemiological profiling and surveys, exercise data from wearables, and food
intake data from food surveys and food tracking web applications. All is required
to be integrated into a meaningful data model, which is of utmost importance to
achieve optimal knowledge extraction. Data engineering offers principles for the
meaningful use of biological data.

5.1.3 Lipidomics in epidemiological research

Lipidomics is defined as “the characterization, analysis and study of the lipid com-
plement of biological systems” (e.g., tissues or fluids) (Mundra et al., 2016). Lipids
and fatty acids are crucial substrates to humans. They are involved in energy pro-
duction, biological membranes construction, and signaling molecules. Lipids also
serve as therapeutic drug targets. Estimates of the number of lipid species in na-
ture range between 10,000 and 100,000 (Wenk, 2010). Lipids are not encoded in the
genome, they are molecules that rather result from metabolic processes (Wenk, 2010),
for instance, the metabolism of dietary fat by the digestive enzymes or by the gut mi-
crobiota (Wolters et al., 2019).

Mass spectroscopic analysis of lipids was first used in the 1990s. Following that,
mass spectroscopy-based lipidomics techniques were developed (Wenk, 2010). High-
resolution mass spectrometry allows for quantification of lipids, discrimination be-
tween lipids with similar masses and chemical structures, and identification of novel
uncharacterized lipids (Wenk, 2010). Data analytics in lipidomics comprise data pro-
cessing (mass-spectroscopic peak identification and normalization), statistical analy-
sis (Datta and Mertens, 2017), and elucidation of biological relevance via integration
into known biological pathways and processes (Wenk, 2010).
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Dissecting a lipidome, the main fraction of the plasma lipidome consists of lipopro-
teins: very low-density lipoprotein (VLDL), low-density lipoprotein (LDL) and high-
density lipoprotein (HDL). These lipoproteins consist of the lipid classes: phospho-
lipid, sphingolipid and free cholesterol, cholesteryl ester and triacylglycerol; those
classes, in turn, consist of numerous lipid species. Plasma lipoproteins function as
transporters of lipids between the gut, the liver and the peripheral tissues, therefore
plasma lipidome analysis has a unique position in inferring relationships between
lifestyle and genetic factors and metabolic processes. Methods for statistical analysis
of lipidomics data in epidemiology are reviewed in (Mundra et al., 2016; Datta and
Mertens, 2017).

5.1.4 The IDEFICS/I.Family cohort study

IDEFICS/I.Family is a pan-European population-based children cohort represent-
ing diverse European lifestyles that certainly affect lipidome and microbial diversity
in children. The IDEFICS study aimed at understanding the etiology of childhood
obesity in Europe, and examining the feasibility and effectiveness of primary in-
tervention strategies concerning diet, sleep and physical activity in eight European
countries: Belgium, Cyprus, Estonia, Germany, Hungary, Italy, Spain and Sweden.
In the IDEFICS cohort, children were extensively profiled and examined in a base-
line survey (T0; 2007-08), and a first follow-up examination (T1; 2010-11). A second
follow-up examination (I.Family; T3) took place in 2013-14, where not only IDEFICS
children were included but also their parents and siblings to investigate social and
familial effects, as the I.Family study aimed at identifying determinants of lifestyle
behaviors, in particular dietary behavior. The baseline survey included 16,229 chil-
dren aged 2-9.9 years. At T1, 11,041 (68% of baseline survey participants) children
and 2,555 newly recruited children were examined. At T3, 9,617 children and 7,941
adults were included in the follow-up examinations. A simplified illustration of the
longitudinal design of the IDEFICS/I.Family cohort study is shown in Figure 5.1.

T0

IDEFICS
baseline survey

(2007-08)
N = 16,229

T1

IDEFICS (first)
follow-up

examination
(2010-11)

N = 13,596

T3

I.Family (second)
follow-up

examination
(2013-14)
N = 9,617

FIGURE 5.1: A simplified illustration of the longitudinal design of
the IDEFICS/I.Family children cohort. It depicts the time points of
surveys and examinations from which the data in this case study are

derived. The figure is based on Figure 1 in (Ahrens et al., 2017).
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The examination modules are described in detail in Ahrens et al. (Ahrens et al., 2017).
The most relevant modules include: questionnaires (answered by parents or later
by the participants themselves), physical examinations (anthropometry, blood pres-
sure), the collection of non-invasive biomaterial (saliva for DNA analyses, stool for
lipids and microbiota analyses, urine) and invasive biomaterial (fasting blood for
biomarker measurements including lipidomics), as well as accelerometry (physical
activity trackers). Questionnaires aimed at collecting information on: dietary behav-
ior (food frequency and complemented by structured computer-based 24-h dietary
recalls), physical activity type and duration (including sports club membership),
sedentary behavior (media devices in child’s room and screen time), and others
(such as sleeping habits, medications and medial history, socio-demographic char-
acteristics of the parents). Moreover, in the framework of the MyNewGut project,
stool samples from IDEFICS/I.Family participants, among others, were sequenced
and analyzed to identify microbiome-related features that contribute to and predict
obesity and other disorders, and to understand the effect of environmental factors
on gut microbial communities and its consequences on health outcomes (Sanz et al.,
2018). However, for such a large cohort, resource allocation for sample collection,
storage, processing, sequencing and chemical analysis form a bottleneck. Therefore,
a pilot study was designed to analyze microbiome and plasma lipid profiles of a rel-
atively small number of participants, and to investigate the potential of integrating
lipidome and microbiome data.

5.1.5 Case study: Childhood obesity and associated markers in plasma
lipidome and microbiome profiles

Childhood obesity has become an epidemic worldwide. In 2016, more than 340 mil-
lion children and adolescents were overweight or obese (World Health Organization,
2021a). In addition to the general causes of obesity, namely increased fat/sugar/en-
ergy intake and decreased physical activity, a number of factors contribute to obe-
sity in childhood and adolescence. These factors include: 1) prenatal factors (e.g.,
smoking during pregnancy, maternal diabetes, maternal excessive or reduced en-
ergy intake), 2) diet, familial, and in adolescents, social and environmental habits
(e.g., irregular meal patterns) (Magrone and Jirillo, 2015; Ahrens et al., 2017), 3) ge-
netics (Cugino et al., 2013; Iacomino et al., 2016), 4) gut microbiome as a key player in
glucose and fat metabolism, and consequently in metabolic homeostasis (Rampelli
et al., 2018; Wolters et al., 2019). Overweight and obesity in childhood is a risk fac-
tor for serious health outcomes in adolescence (Börnhorst et al., 2019) and adult-
hood (Magrone and Jirillo, 2015) including: insulin resistance, metabolic syndrome,
type 2 diabetes mellitus, and cardiovascular diseases (Bremer et al., 2012).

Obesity is considered not only a metabolic disorder but also an inflammatory dis-
order as reviewed by Magrone and Jirillo (Magrone and Jirillo, 2015). A number
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of inflammation-related markers were elevated in obese animals and humans, re-
spectively, the adipose tissue-derived tumor necrosis factor (TNF)-α [reviewed in
(Magrone and Jirillo, 2015)], and C-reactive protein [CRP; in children (Nappo et al.,
2013) and adults (Vargas et al., 2016)] and the adipose tissue-derived interleukin (IL)-
6 (Eder et al., 2009; Pradhan et al., 2001). IL-6 plays a key role in the biosynthesis of
CRP. Moreover, obesity has been linked to immunological diseases such as asthma.
IL-6 and IL-8 levels were elevated in obese asthmatic and non-asthmatic children
compared with asthmatic non-obese children and control children (Magrone and
Jirillo, 2015).

A number of molecular lipid species were demonstrated to be associated with weight
status in adults. Recent lipidomic studies have shown associations of specific lipid
species (cholesteryl ester, ceramide and lactosylceramide) (Cheng et al., 2015) or
lipid classes (lower levels of glycerolipids but higher levels of glycerophospholipid)
(Jové et al., 2014) with weight status in adults. Phosphocholine PC16:0/2:0 was nega-
tively and PC14:1/0:0 was positively associated with visceral fat (Syme et al., 2016).
As well, ceramides were associated with inflammation and insulin resistance (De
Mello et al., 2009). Specific lipid classes were also associated with asthma. In partic-
ular, reduced levels of phosphatidylglycerol, ceramide-phosphates and ceramides,
and increased levels of sphingomyelin 34:1 were found in the airway lipid particles
in adult asthmatic patients in comparison to healthy adults (Hough et al., 2018).

The relationship between lipid metabolism and gut microbiota is very tight. Gut mi-
crobiota play a key role in lipid metabolism and energy homeostasis (Wolters et al.,
2019), and lifestyle factors (diet, physical activity and sedentary behavior) influence
both lipid metabolism and gut microbiota (Bressa et al., 2017; Wolters et al., 2019;
Rampelli et al., 2018). Gut microbiota was shown to modulate lipid metabolism
in mice (Velagapudi et al., 2010; Kindt et al., 2018). Markers in gut microbial gen-
era were demonstrated to be associated with weight status in children (Rampelli et
al., 2018). Imbalances in gut microbiota were associated with immunological dis-
eases such as respiratory (allergic rhinitis and asthma) or dermatological (atopic
dermatitis and eczema) allergies in infants (Chua et al., 2018), and food sensitivi-
ties in children (Savage et al., 2018). Studies investigating the interaction between
gut microbiota and plasma lipids in children and their impact on weight status and
immunological health are, however, scarce.

5.1.6 Study objectives

Biological objective: The present case study aims at understanding the associa-
tions of lifestyle factors (namely diet, physical activity and sedentary behavior) and
plasma lipidomics with weight status and immunological health in children, and
whether these associations are mediated by intestinal microbiota. This study serves
as a pilot study; it is expected to increase our understanding of the aforementioned
associations, potentially leading to improved lifestyle recommendations for children
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and adolescents. The analyses are based on data that have been collected in the
framework of the IDEFICS/I.Family children cohort (Ahrens et al., 2017) and ana-
lyzed in the framework of the European project MyNewGut (Sanz et al., 2018).

Data engineering objective: I use this case study to investigate the applicability
of dimensionality reduction approaches in achieving meaningful use and integra-
tion of heterogeneous high-dimensional biological data. For this purpose, I employ
dimensionality reduction approaches to analyze data from a number of heteroge-
neous sources (namely plasma lipidome, microbial abundances and epidemiological
profiles). On this reduced data set, I apply a statistical model to infer associations
between variables from multiple sources and the outcome (weight status and im-
munological health status). Throughout the chapter, I follow the steps discussed by
Bizer et al. for meaningful data integration.

5.2 Meaningful data integration

As mentioned earlier, cohort studies require the integration of heterogeneous data
into a meaningful data model for outcome prediction, effect estimation and statisti-
cal inference. Data engineering principles of both heterogeneous data handling and
meaningful use of data can be applied in this context. To investigate the applicability
of these principles, I chose the pilot study. Being a pilot study (n = 70), and due to
the depth of the information on the pheno- and genotypes of the participants of the
IDEFICS/I.Family cohort, the data are severely challenged by dimensionality issues.

This section addresses: 1) the challenges and requirements of this pilot study ex-
plaining the data sources to be integrated [i.e., part of problem definition as in (Bizer
et al., 2012)], 2) the solution implementation steps in the light of data heterogene-
ity and meaningful use of data principles, 3) the evaluation of data preparation and
analysis, and 4) the limitations of this case study and those of the solution imple-
mentation.

5.2.1 Challenges and project requirements

The biological aim of the study, as mentioned above, is to understand the associa-
tions of three integral lifestyle factors and plasma lipidomics with weight status and
immunological health status in children, and to determine whether these associa-
tions are mediated by the diversity of intestinal microbiota. These associations are
to be inferred using phenotypic information at two time points [T1 (2010-11) and T3
(2013-14)] on a group of children. The children were non-obese at T1 and almost
half of them developed obesity by T3 while the other half maintained a non-obese
weight status.
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There are three aspects of the participants’ phenotypes of interest here, namely: epi-
demiological profiles1, plasma lipidome profiles and microbiome profiles. Each of
these profiles come into play at a different step of the statistical analysis plan.

1. Epidemiological profiles: The IDEFICS/I.Family cohort is the main source
for data on lifestyle variables and confounding variables (i.e., age, sex). Data
retrieval, curation and preparation steps were necessary to use and compare
data from two follow-up examinations. Table 5.1 shows the different variables
required and the respective IDEFICS/I.Family mean of assessment.

The cohort data are stored on a central data server hosted at BIPS. A time- and
study time point-limited access to cohort data is granted after an evaluation
of a project proposal. IDEFICS data (including T1) are stored as SAS7BDAT
binary database storage files. I.Family data (including T3) are stored in a rela-
tional database management system (MySQL). The database systems contain,
among others, sets or tables of metadata on participation and biological sam-
ples, and data from questionnaires, physical examinations, accelerometry, and
24-h dietary recall (24-HDR). Each participant is assigned a unique identifi-
cation number (ID); the aforementioned tables or sets can be linked via this
unique ID. Physical examination assessments [e.g., CRP (Schlenz et al., 2014)]
were standardized according to age and sex, and tested for quality by BIPS
before being stored in a designated MySQL table. Body mass index (BMI)
was calculated from measured height and weight, and categorized according
to (Cole and Lobstein, 2012).

2. Plasma lipid profiles: Results of a targeted plasma lipidome analysis of the
participants represent a plasma lipidome profile for each participant at each
time point. The lipidome analysis measured 328 lipid species (including 12
internal standards) present in eight classes (n = 53 at T1 and 55 at T3; n = 45

paired data points at the intersection of T1 and T3). The fractions of mono-
and polyunsaturated and saturated fatty acids in each class are assessed as
well. The data set is stored as Microsoft Excel tables.

3. Microbiome profiles: Results of the intestinal microbiome analysis of the par-
ticipants (n = 70), published in (Rampelli et al., 2018), are used to assess the mi-
crobiome diversity at each time point. Proxies for microbiome diversity were
to be calculated from microbial abundance tables at the genus-level (167 gen-
era) stored as flat files.

Aspects of heterogeneity In this case study, heterogeneity is expected at two lev-
els: syntactic and terminological. Syntactic heterogeneity stems from the different
data storage systems used in the study, namely MySQL, SAS7BDAT, Microsoft Excel

1In the chapter, I use the term “epidemiological profile” to combine: 1) lifestyle variables (diet, phys-
ical activity and sedentary behavior variables), 2) demographic (age and sex), and 3) non-modifiable
(i.e., social) variables (maternal BMI, puberty status and socio-economic status).
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TABLE 5.1: Epidemiological profile components used in the case
study and their respective IDEFICS/I.Family method of assessment.

Variable Assessment

Socio-demographic variables
Sex Questionnaire
Age [in years] Questionnaire
Country Questionnaire
International Standard Classification of Education Questionnaire
Puberty status Questionnaire
Maternal BMI Questionnaire

Clinical variables
CRP z-score Physical examination
BMI z-score Physical examination

Physical activity
Moderate-to-vigorous physical activity [minutes per day] Accelerometry
Sports club membership Questionnaire
Sports club time [minutes per week] Questionnaire

Sedentary behavior
Number of media devices in bedroom Questionnaire
Screen time [hours per week] Questionnaire

Diet
Fish frequency [times per week] Questionnaire
Preserved food frequency [times per week] Questionnaire
Sweet propensity score (including diet soft drinks) Questionnaire
Fat propensity score Questionnaire
Fiber intake (g/day) 24-HDR
Usual weight of food intake (g/day) 24-HDR

and flat file. Even though IDEFICS/I.Family data passed rigorous quality control,
standardization and data cleaning procedures, slight terminological heterogeneity
is observed. Such heterogeneity stems mainly from the differences between T1 and
T3 in variable names and variable content (e.g., difference in food groups between
European countries, and improvements in physical examination procedures). It was
of utmost importance to understand the levels of heterogeneity and carefully ad-
dress them at the programming and knowledge extraction levels.

Statistical analyses A model for hypothesis testing is to be carefully chosen, and
applied to the data to test for association of T3 data points (cross-sectional analysis),
and the difference between T3 and T1 (longitudinal analysis). For that, each of the
above listed data sources had to be retrieved, cleaned, transformed and reduced be-
fore applying appropriate statistical models for two continuous outcome variables:
BMI z-score and CRP z-score. Moreover, data are to be segmented and described
by weight gain categories (normal and overweight/obese BMI z-score at T3) and
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immunological health categories (normal and high CRP z-score at T3; ≤ 0 and > 0).

Existing solutions R is a strong platform for both data retrieval and curation, and
statistical programming. R can also handle such a diverse ecosystem of data sources
effectively. Moreover, even though multivariate analysis solutions for lipidomics
are available commercially, alternative open source and free solutions have recently
become available in R. Therefore, an R package had to be developed to contain all
data management, visualization and analysis steps to ensure reproducibility.

5.2.2 Solution implementation

The solution is designed to test the applicability of meaningful use of heterogeneous
data through dimensionality reduction. The solution implementation is described
according to (Bizer et al., 2012). Data preparation tools, data dimensionality reduc-
tion and analysis methods are highlighted here as well.

1. Problem definition: The main question, as described above, concerns the in-
vestigation of associations of plasma lipidomics with weight status and im-
munological health status in children, allowing for comparing those who de-
veloped obesity between T1 and T3 to those who maintained a normal weight.
These associations can be mediated by the diversity of intestinal microbiota,
and are sensitive to a number of lifestyle variables.

2. Database query: All children whose microbiome and plasma lipidome have
been profiled were included in this study. Therefore, IDEFICS/I.Family data
sets were searched for the IDs of those participants for data extraction.

3. Data transformation: A simple workflow was designed and implemented in
R to dynamically:

(a) retrieve respective relevant epidemiological data from IDEFICS/I.Family
data sets using MySQL connectors and SAS7BDAT readers for R, and cal-
culate variables from source (e.g., maternal BMI),

(b) parse Microsoft Excel tables to extract lipid profiles at two levels: summa-
rized lipidome variables by lipid class (i.e., saturated, mono- and poly-
unsaturated fatty acid fractions of the lipid classes) and individual lipid
species, both as percentages of total lipid class, and clean the data from
internal standards, blanks and controls, and

(c) parse microbial abundance flat file to extract microbiome profiles.

The workflow was supplemented by a configuration file for database authenti-
cation information, and input and output data sets locations, intended at insur-
ing data security and preserving the directory structure. Moreover, to promote
dynamic and reproducible programming, a tab-delimited flat file was used
containing the variable names and respective data set name or location in the
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IDEFICS/I.Family data sets. Both files were parsed at runtime. The workflow
is sketched in Figure 5.2.

4. Entity resolution: Bizer et al. considered entity resolution as the forth step
in the meaningful use of data (Bizer et al., 2012). Entity resolution involves
the extraction, matching and resolution of entities in data sources (Getoor and
Machanavajjhala, 2012). It covers aspects of de-duplication, record linkage,
verification of elements of each unique entity, and classification (i.e., canon-
icalization) by analyzing those elements across the different data sources at
many levels of abstraction and from different perspectives (Bizer et al., 2012;
Getoor and Machanavajjhala, 2012). Entity resolution is a challenge in many
fields such as database management, machine learning, natural language pro-
cessing, and statistics (Getoor and Machanavajjhala, 2012). Impaired entity
resolution results in impaired knowledge extraction (Bhattacharya and Getoor,
2007). Given the small number of records (n = 70) and the high quality of the
data sources, verification of the relevance and comprehensiveness of data as
well as abstraction were most relevant to this case study. Below are the differ-
ent steps in regard to entity resolution that are used to handle the three data
sources.

(a) The elements (i.e., variables) of the epidemiological profile were selected
using domain knowledge to insure comprehensiveness and avoid redun-
dancy. Relevant elements were verified using descriptive analytics across
different weight gain and CRP z-score categories. For the abstraction of
the epidemiological profiles, we aimed at constructing a lifestyle variable
to describe each participant (i.e., to assign each participant a lifestyle cat-
egory or class based on his/her observed socio-demographic, PA, diet,
and SB observations). First, missing lifestyle data were imputed by pre-
dictive mean matching as implemented in the R package missRanger

(v2.1.0) (Stekhoven and Buhlmann, 2012). Second, the data were scaled,
and the optimal number of clusters (k = 2) was inferred using NbClust

(Charrad et al., 2014) (v3.0) with the parameters method = “centroid”,

index = “alllong”. A data-driven clustering, based on self-organizing
maps (SOM), of the most informative variables (verified by Pearson test
for correlation; namely fat and sweet propensity scores, maternal BMI, ex-
ercise duration, and number of media devices in bedroom) was adopted
as implemented in kohonen (v3.0.8) (Wehrens and Buydens, 2007; Wehrens
and Kruisselbrink, 2018). Third, the SOM nodes were clustered into two
clusters according to partitioning around medoids (i.e., PAM) as imple-
mented in cluster (v2.1.0). A composite ID was created combining
IDEFICS IDs and I.Family IDs to track the subjects across the clusters at
T1 and T3 (i.e., whether the subjects will remain in a defined cluster).

(b) The lipid profiles were abstracted as the summarized lipidome variables
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of the different lipid classes (i.e., the eight lipid classes are presented as the
fatty acid fractions of the sum of one per lipid class). Descriptive analyt-
ics was applied to verify the data distribution. The summarized lipidome
variables were assessed with respect to collinearity, and collinear vari-
ables (Pearson’s r2 > 0.8) were excluded.

(c) Microbiome diversity was quantified by the Shannon index (Shannon,
1948), which accounts for the relative abundance of each bacterial taxon in
the microbiome profile of a participant (Morgan and Huttenhower, 2012),
using the R package vegan (v2.5-6) (Dixon, 2003).

5. Statistical methods for problem solving: The abstracted epidemiological, lipid
and microbiome profiles were integrated using R and analyzed using appro-
priate statistical models.

A linear model was used for variable selection, effect estimation and testing for
possible interactions with the intestinal microbiota diversity. The model was
applied in three variants: crude, sex- and age-adjusted, and lifestyle-adjusted.
The model was used for the cross-sectional association analyses (i.e., T3) of
weight status and CRP levels with plasma lipidome including an interaction
term between each plasma lipidome and the Shannon index. For the longitu-
dinal association analyses, the differences between T3 and T1 (i.e., in regard
to lipidome and microbiome variables, and the outcome variables) were used
in the linear model, while for the epidemiological covariates, T1 values were
used. The model was believed to account for both T3 and T1, and therefore
it was not adjusted for lifestyle (i.e., on the basis of the aforementioned data-
driven clustering).

A step forward selection method was applied to select the final model, start-
ing from a model adjusting for age and sex, and ending with the all predic-
tors using Shannon index as interaction term. The stepwise regression method
(Venables and Ripley, 2002; Bruce and Bruce, 2017), which is implemented in
bootStepAIC (v1.2-0), assesses the Bayesian information criterion for model
selection. Model variability was investigated and 95% bootstrap confidence
intervals were calculated (R = 10). Model p-values were adjusted accord-
ing to Bonferroni correction (Holm, 1979). As well, multiple comparisons us-
ing single-step procedure for simultaneous tests for general linear hypothe-
ses were performed on each model as implemented in multcomp (v1.4-10)
(Hothorn et al., 2008). We considered a significance level of α = 0.05.

5.2.3 Evaluation

In this study, the principles for meaningful use of data were applied, and a num-
ber of dimensionality reduction approaches were employed to achieve meaningful
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FIGURE 5.2: Data and processes flow diagram for the integration
and analysis of epidemiological, lipidomics and microbiomics data.
Squares with rounded corners represent the data, processes are
shown as rectangular boxes, and terminator ovals represent the sta-
tistical analysis. The three profile types are shown in the diagram,
including data sources and formats. Data from sources are used as
input for extraction and transformation processes. The processes out-
put data either directly to terminators or require further transforma-
tions (e.g., handling missing values and clustering). The workflow is
simple and flexible; transformed data can be loaded from process to
terminator, or temporarily stored on disk if the data security issues
allow for that. BMI = Body mass index, CRP = C-reactive protein, PA

= Physical activity, SB = Sedentary behavior.

data integration, and, consequently, optimize knowledge extraction. Moreover, so-
lutions for heterogeneous data processing, transformation and integration were im-
plemented. The data integration model proposed here was cumulatively evaluated
by the means of statistical methods performance, that is testing for associations be-
tween predictors from multiple sources and the outcome. This subsection focuses
on evaluating the strategies adopted in data processing and analytics.

Model applicability

Achieving meaningful use of data, and particularly big data integration was pre-
sented by Bizer et al. (Bizer et al., 2012) as a multi-disciplinary challenge. The in-
tegration model elegantly showed the position of data preparation and analysis in
the data and process flow. It also showed the importance of problem definition and
entity resolution. Entity resolution seems an important step when retrieving a large
data set particularly from a database management system. This case study shows
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that it is an integral part of meaningful data integration regardless of data set size
or structure. Moreover, the generic nature of the model made it attractive for use
in a future similar pilot study aiming at integrating fecal lipidome data of the par-
ticipating children. This is particularly important as fecal samples collection is a
non-invasive procedure, which is important in children cohort studies. Moreover,
fecal lipidome reflects intestinal function and disease, which, in turn, is known to be
linked to various immunological morbidities (e.g., allergy) (Gregory et al., 2013).

The role of statistics

The case study shows that the role of statistical methods implies analytics and ef-
fect estimation, data verification and abstraction, and evaluation of data usefulness.
Consequently, statistical methods help assess the data integration model effective-
ness. First, utilizing single imputation, descriptive analysis and Pearson test for
correlation aided the incorporation of informative variables. Second, utilizing di-
mensionality reduction approaches (i.e., construction of single variables for lifestyle
and microbiome diversity) helped minimizing the risk of overfitting by the statisti-
cal model. Third, statistical model performance is proposed to be used to evaluate
integration effectiveness (discussed in 5.2.4).

Optimizing data acquisition and processing

Data processing was challenged by data heterogeneity, and principles for heteroge-
neous data processing were applied accordingly (Wang, 2017). Depending on the
types of heterogeneity expected, appropriate data processing principles need to be
incorporated for optimal data integration. To further optimize data acquisition, data
were retrieved from source to minimize self- or past-dependencies. Self- and past-
dependency issues in data acquisition practices are not uncommon, specially when
dealing with shared data repositories. These issues may lead to inconsistencies in
data acquisition and analytics upon, often automatic and regular, updates of the
data source. Moreover, these issues promote the need for data transfer, a practice
that often violates data flow security. In this study, a single R package was devel-
oped to encapsulate all curation and analytics employing past/self-dependencies
minimization concepts and promoting reproducibility.

5.2.4 Critical appraisal

Evaluation of meaningful data integration

As discussed in this chapter, to achieve the aims of modern cohort studies, pur-
poseful integration of heterogeneous data types is required. This case study argues
that dimensionality reduction is a key step in such integration. Bizer et al. (Bizer
et al., 2012) focused on big data integration. In one of the presented cases, com-
pleteness and consistency of the curated data were considered as success metrics.
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Nevertheless, challenges of multi-omics data integration were not discussed. A
plethora of dimensionality reduction approaches have emerged and were compared
(van der Maaten et al., 2007). Those approaches were employed for integrative
analysis of multi-omics data (Meng et al., 2016), and their performance was eval-
uated on simulated and real data (Fanaee-T and Thoresen, 2019). Evaluation ap-
proaches and success metrics are not well-developed in this case study.

The application of statistical approaches for data verification and abstraction moti-
vated the proposed evaluation criteria to better quantify integration efficiency. For
instance, a systematic adoption of performance measures to evaluate the data inte-
gration model is proposed. In particular, at the data acquisition-side, data compre-
hensiveness can be evaluated looking at descriptive statistics. At the analytics-side,
to evaluate the effect of data-driven clustering as an adjustment variable on effect
estimation of the statistical model, cross-validation can be utilized.

Multivariate analysis of (multi-)omics data

In this case study, a comparison between the analysis of the abstracted profiles
by linear regression and the analysis of the complete profiles using multivariate
analysis is required to better evaluate the linear model in regard to variable se-
lection. Multivariate analysis methods are considered the most common for inte-
gration and statistical analysis of (multi-)omics data (Huang et al., 2017). Those
methods are reviewed (Orešič, 2009; Worley and Powers, 2012; Paliy and Shankar,
2016) and comprehensively compared (Acharjee, 2012), in particular for small sam-
ple sizes (Kirpich et al., 2018). The criteria for selecting a multivariate analysis
method include: 1) the research question (e.g., variable selection, prediction and
classification or discrimination), 2) the number of data blocks (single- vs. multi-
omics data), 3) the need for adjusting for confounding variables, and 4) the num-
ber and type of response variables (i.e., single or multiple, nominal or continuous).
One of the most popular analytical methods in this context is partial least squares
(PLS) (Wold et al., 2001), which is used in microbial abundance analysis (Paliy and
Shankar, 2016) and lipidomics (Checa et al., 2015; Mundra et al., 2016). In addition,
novel methods based on machine learning [e.g., block forests (Hornung and Wright,
2019)] or penalized regression [e.g., priority lasso (Klau et al., 2018)] are being devel-
oped and used for predicting clinical outcomes from high-dimensional multi-omics
data. Moreover, the interplay between the different associated lipid classes and the
related genes and proteins could be investigated through mapping the variables to
human metabolites databases (e.g., KEGG) and lipids database (LIPID MAPS) (Cotter
et al., 2006).
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5.3 Concluding remarks

Modern design of cohort studies aim at advancing our understanding of diseases,
and driving therapeutic decision making and drug development. Currently, large
data volumes are generated from extensive multi-omics phenotyping of the indi-
viduals. Integration of heterogeneous omics data becomes indispensable for study
population profiling. Such integration, however, augments the resources needed for
sample collection, data acquisition and management, and data analysis.

This case study aimed at testing the applicability of dimensionality reduction ap-
proaches in achieving meaningful integration of heterogeneous high-dimensional
biological data. In this chapter, I followed a model for meaningful data integration
that illustrates the effect of data transformation, abstraction and analytics in improv-
ing the usability of multi-omics data and optimizing knowledge extraction. First, the
model is flexible; it supports heterogeneous data integration, and accounts for the
various aspects of data processing. Second, the application of appropriate statistical
approaches improves data integration and usability.

As seen in Chapter 4, there is a need for scalable analytics solutions to accommodate
high-dimensional data. Chapter 5 argues that the rapid rise of multi-omics data
availability makes such need imminent. Even though current methods for multi-
omics data analytics seem suitable for analyzing a large number of predictors, as
the number of observations increase, computational and perhaps methodological
challenges arise (e.g., due to missing values and imbalanced data). Moreover, in-
tegration of heterogeneous data and harmonization of data from different sources
can present a bottleneck towards optimal knowledge extraction. The more unstruc-
tured the data are, the more challenging harmonization and therefore usability be-
come. Digitalization of the health care system and the rise of the Internet of Medical
Things (Dimitrov, 2016) would further drive the development of data integration.
The future of primary biological data might benefit from utilizing emerging ap-
proaches that support integration, such as data virtualization (Pullokkaran, 2013;
Wang, 2017), which provides solutions for data transformation and analysis of het-
erogeneous data in place and in real-time.

The increasing speed of primary data availability no longer seems a distant fu-
ture. At the end of the year 2019, the world has embarked a global crisis; a threat
that is of pure biological nature. The respiratory disease COVID-19, caused by
the novel coronavirus SARS-CoV-2, has triggered a sequence of political, computa-
tional and social challenges worldwide. Various resources have been made avail-
able for the scientific community to tackle COVID-19 including virus2 and host
(i.e., the UK Biobank (Sudlow et al., 2015)) genetic data as well as computational
resources3. Open science and sharing of data and resources provide hope to join
forces in the face of the pandemic that claimed the lives of 729,393 persons world-
wide [Johns Hopkins Coronavirus Resource Center; August, 10, 2020]4. Similarly,
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crowd-sourcing in 2011 fast-tracked the genome analysis and decoding of the E. coli
O104:H4 (STEC O104:H4) strain that was responsible for the outbreak in Europe
(Rohde et al., 2011).

In epidemiology, each data point matters, yet the data points are as good as their
usability (i.e., including aspects of secure access, cleaning, integration, and analy-
sis). The application of data engineering principles can drive knowledge extrac-
tion through improving data usability. In the final chapter, I summarize the lessons
learned from the presented case studies, and highlight the potential impact and chal-
lenges of resources and data sharing.

2CoV-GLUE: A Web Application for Tracking SARS-CoV-2 Genomic Variation. Singer BJ, et al.
Preprints 2020, 2020060225. URL: http://cov-glue.cvr.gla.ac.uk/ and The COVID-19 Data Portal.
URL: https://www.covid19dataportal.org/

3Open-Access Data and Computational Resources to Address COVID-19, NIH. URL: https://
datascience.nih.gov/covid-19-open-access-resources

4Johns Hopkins Coronavirus Resource Center. URL: https://coronavirus.jhu.edu/
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Chapter 6

Conclusions and Outlook

It is profound that numbers (i.e., data) have no way of speaking for themselves;
we often speak for them1. Data engineering provides not only the tools for making
the most sense of the data, but also the recipe for knowledge extraction and for
translating the data into actionable predictions.

This thesis addresses challenges in biological data preparation and transformation
for analytics, particularly variable selection. The thesis presents custom-made solu-
tions for four areas of application on primary and secondary biological data in health
and environmental research. The presented case studies highlight similarities and
dissimilarities in biological data handling with respect to the data source (primary
vs. secondary), type (sequence-based vs. relational) and field of application (health
vs. environment). In this final chapter, I discuss the outcome of the four case studies
and its relevance to the needs of biological data curation and analytics. I also give
an outlook into the needs of the future landscape of biological data.

6.1 The making of knowledge in health and environment

Knowledge extraction from primary high-dimensional sequence data

Processing and analyzing observation sequence data are routine activity in biolog-
ical research, with the purpose of knowledge extraction. In Chapter 2, I focused
on transcriptomic studies in environmental research, a major valuable source of bi-
ological primary sequence data. Transcriptomic studies provide a glimpse on the
metabolic potential of complex organisms growing under harsh conditions, bypass-
ing the obstacles of genome sequencing of environmental samples. However, tran-
scriptomic data are high-dimensional and generated by high-throughput sequenc-
ing platforms. Existing workflows are often successfully used for knowledge ex-
traction, mainly through the utilization of a customized multi-step dimensionality
reduction protocol, which I explored using the case study in Chapter 2. I utilized an
existing workflow (i.e., Trinity full-suite solution), which seamlessly handled data
processing and quickly provided easy-to-interpret results. Nevertheless, the large

1Silver N. The Signal and the Noise. New York, US: Penguin Books; 2015. Reprint edition.
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number of transcripts produced by Trinity required a mixture of statistical methods
and programming tools for dimensionality reduction. I employed those tools and
methods even prior to transcript identification, through the steps of quality control
by filtering low-quality short reads and unannotated transcripts, and the differential
expression analysis by using k-mean clustering to infer patterns of gene expression
across time and scripting-based consolidation of functional annotation data.

The case study highlighted an issue when analyzing high-dimensional primary se-
quence data from a non-model organism, namely effective gene characterization.
Gene characterization is necessary to pinpoint the genes responsible for the species’
metabolic activity under changing conditions. However, the under-representation of
the studied group in public databases and the lack of information on their genomes
and splicing events affect accurate gene characterization. Therefore, knowledge ex-
traction from primary high-throughput sequence data is largely based on domain
knowledge and customized dimensionality reduction approaches, in particular us-
ing ontologies at gene-level instead of transcript-level, k-mean clustering of differ-
entially expressed genes, and pathway analysis.

Scalability in handling secondary sequence data

Large volumes of high-quality observation data collected on individual or commu-
nities of organisms through global projects are giving rise to valuable secondary se-
quence data and encouraging information integration and meta-studies. Scalability,
modularity and reproducibility are essential for such data-driven studies, offering
flexibility for information integration, and accounting for the diversity of organisms
to be included, the differences in sequencing technologies, and possible integration
schemes. In Chapter 3, I explored the potential for improving the scalability of the
Trinity workflow to achieve information integration and analysis of secondary tran-
scriptomic environmental data. Therefore, I designed and implemented a pipeline to
acquire, integrate, and analyze gene expression data archived in public repositories.
To test the pipeline usability, I also designed a meta-analysis case study. To achieve
satisfactory scalability, modularity and reproducibility for integration and analysis
of the gene expression data, I focused on automation at two levels: dynamic acquisi-
tion of annotation databases to update gene characterization results as needed, and
automation of the workflow steps.

The case study highlighted several bottlenecks in secondary sequence data analysis,
such as hardware requirements and the potential for flexible computing plans (e.g.,
cloud computing), experimentation with more sophisticated analyses (e.g., based on
information theory) which requires scalable data transformation, and data owner-
ship. Interestingly, the technical bottlenecks also challenge handling non-sequence-
based secondary data as addressed in Chapter 4, summarized below.
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Integration and statistical modeling of secondary high-dimensional relational data

Bottlenecks in integration and statistical modeling of secondary high-dimensional
relational data directly impact modern epidemiological research. The steep rise in
routinely collected health data (i.e., electronic health care databases) and the use of
common data models both promote the use of such valuable data in pharmacoepi-
demiological research. For instance, the data could be used for monitoring drug
safety in large populations in the post-marketing phase. When paired with the uti-
lization of molecular-based ontologies, analysis of secondary structured relational
epidemiological data could better explain the underlying mechanisms of disease
outcomes in the light of the ever-growing body of molecular biology knowledge.
However, similar to secondary sequencing data, limitations in performance and scal-
ability of analytics arise. In Chapter 4, I used a large-scale signal detection case
study to address aspects of both data integration and scalability of current imple-
mentations of specialized statistical methods. Therefore, I optimized and developed
scalable portable solutions for acquisition and transformation of molecular knowl-
edge data from online data sources (SQLite database), transformation of high-
dimensional relational health care claims data in conjugation with the molecular
knowledge (utilizing on-disk intermediate storage objects to better scale to big data
volumes), and adapting statistical methods for high-dimensional data and high-
performance computing (HPC) resource (utilizing parallelization and minimization
of memory fragmentation).

The case study showed how both the data source (ontology data) and dimensions
(longitudinal data) influenced acquisition and transformation strategies. The case
study also showed how the transformed data dimensions drove both analytics choice
(e.g., due to limitations of group-based penalized regression implementations) and
implementation (i.e., the adaptive rank truncated product for outcome prediction).
Finally, the case study highlighted the need for exploring benchmarking utilizing
simulated data to systematically investigate the effect of group/block number and/or
size on analytics, tools augmenting relational database management systems for
large-scale data processing and analytics, and staging, to design and utilize a re-
lational middle layer between health care claims databases and analytics (e.g., a
column-oriented database management system) to better support transformation of
high-dimensional data.

Integration of heterogeneous primary epidemiological data

It may seem that a model for integration of data from multiple sources is strictly
required for large-scale studies. However, successful data integration, regardless of
the data volume, requires a model for meaningful use of data to distinguish between
informative and irrelevant attributes, and to achieve optimal knowledge extraction.
As primary data remain the largest contributor to the biological data sphere, in
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Chapter 5, I explored the principles of meaningful use of data, and applied them in a
case study to integrate heterogeneous data from a cohort pilot study (i.e., epidemio-
logical, lipidomics and microbiomics data). I adopted a flexible model that supports
meaningful integration of heterogeneous data, starting from clear problem defini-
tion, database querying, transformation of heterogeneous data, statistics-based en-
tity resolution using dimensionality reduction approaches (e.g., correlation-based
verification and data-driven clustering), and problem solving (i.e., optimized linear
model-based variable selection).

The case study showed the need for adopting a flexible data model for handling pri-
mary heterogeneous data regardless of the sample size. It also showed the impor-
tance of applying heterogeneous data processing practices on modern cohort study
data. The case study highlighted the role of statistical methods in both entity reso-
lution and problem solving, as the application of appropriate statistical approaches
improves data integration and usability. Evaluation of meaningful data integration
metrics are yet to be adopted for multi-omics data. Moreover, evaluation of extracted
knowledge is required, for instance, comparing two analysis approaches: linear re-
gression of the abstracted profiles and multivariate analysis of the complete profiles.

6.2 In a data-driven new world

Biology is a unique core contributor to world data, either through research (epi-
demiological studies and ecological batch experiments), environmental surveillance
or health care. This is life’s data, in health and disease, in disaster and prosperity,
in prediction and prevention. Biological data are expensive, yet the real cost of bio-
logical data is mush higher than the sum of acquisition and management costs. The
real cost includes that of data storage, security, (pre-)processing, linkage, and ana-
lytics. The pathway from data to information is long, even for standardized data
(e.g., medical imaging data), which explains the high cost of data transformation
into analysis-ready data. Nevertheless, the cost falls short in representing the value
of biological data. Every point’s meta-, raw-, and intermediate data is invaluable
as it drives inference and prediction forward, and requires data protection, which
adds a further layer of complexity to biological data handling. Thus, the value and
the growing volume of the data characterize modern environmental and epidemi-
ological research data, both are characteristics of big data. In this section, I discuss
the data types that this thesis addressed in the light of big data characteristics. I
also highlight a number of overarching needs of the biological data processes and
possible solutions.

6.2.1 Big data and its characteristics

Mauro et al. formally defined big data as the representation of “the information as-
sets characterized by such a high volume, velocity and variety to require specific
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technology and analytical methods for its transformation into value” (De Mauro et
al., 2015). This definition captures the five pillars of big data: volume (i.e., storage
requirements), velocity (speed of generation and processing), variety (of data types
which requires data fusion), veracity (as in data quality and reliability), and value
(of extracted information). The definition also implies the need for data transfor-
mation, processing, and advanced analytics to ultimately achieve information gen-
eration and decision making. Such lengthy costly pathway to knowledge charac-
terizes big data. A generic characterization of big data, therefore, became: the data
that cannot be handled within the resource constraints on a single machine, where
constraints for transformation and information extraction are time, memory or disk
space.

It is not possible to discuss big data without considering a major contributor to it,
which is unstructured data. Unstructured data, human-generated (e.g., textual) and
sensor-generated (e.g., imaging) data, conform to no known data model and can-
not be stored in or processed by a database management system (Buneman et al.,
1995, 1996). The value of data depends on the knowledge it generates and action-
able outcome derived from it (e.g., environmental management). The value of big
unstructured data collected for general observatory purposes (e.g., ecological sur-
veys) was argued to be less than that of standardized monitoring data, which are
collected for a particular purpose in generating knowledge (Bayraktarov et al., 2019).
Bayraktarov et al., therefore, argue for the utilization of benchmarking against high-
quality data, identification and maintenance of key time-series datasets, and invest-
ment in data curation and sharing as in data collection (Bayraktarov et al., 2019). On
the analytics-side, mining unstructured (bio)medical data could contribute to the
identification of drug-disease relationships in secondary (i.e., bibliographic) reposi-
tories (Ji et al., 2015). This thesis did not deal with unstructured data. Nevertheless,
the non-sequence epidemiological data from the case studies in Chapters 4 (e.g., dis-
pensations data) and 5 (e.g., wearables data) were originally unstructured; the data
were validated and transformed into structured relational data through highly stan-
dardized procedures.

Addressing cases of real-world data, the thesis inspires three questions. First, when
to consider biological data big data? Second, would such a consideration influence
the practices needed for transformation into analysis-ready data and the analyti-
cal methods used? Third, is the relationship between the data dimensions and the
knowledge gained a linear association; could using bigger data lead to gaining more
knowledge? I reflect on these questions below.

6.2.2 In big and small: The path to knowledge

Having a large volume (e.g., sequence data), being produced at a high velocity (e.g.,
high-throughput omics data and routine health care data), variety (requiring inte-
gration), veracity, and being of utmost value, the majority of biological data would
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be considered big data. Such consideration would motivate the transfer of big data
handling practices from other fields (e.g., image analysis and data mining).

Concerning the case studies presented in this thesis, regardless of the data dimen-
sions (large-scale vs. pilot) and type (sequence-based vs. relational), transformation
into analysis-ready data as well as variable selection-relevant analytics were com-
plex. Even in “small” studies (Chapter 2 and 5), the path to analysis-ready data and
knowledge required the utilization of a data model for data transformation (and
integration), and high computational requirements for analytics due to the high-
dimensional nature of omics data. Both requirements were clearer in the large-scale
studies (Chapter 3 and 4).

An obvious aspect of big data is the high computational requirements for data trans-
formation and analysis. Genomic data, in particular, is accounted for as big data, as
one whole human genome produces over a 200 GB of raw and analysis-ready data
generated by HPC facilities. Genomics is a main driver of the recent advances in per-
sonalized medicine, which is translated into drug development. In particular, 42%
of the new drug approvals by the U.S. Food and Drug Administration (FDA) in 2018
were personalized medicines2. Volume, velocity (rise in sequenced genomes) and
value of genomic data motivated the utilization of big-data-relevant technologies
such as cloud computing (e.g., AWS Genomics) and GPU-accelerated computational
framework for genomics (e.g., by NVIDIA).

In addition to genomic data, although highly structured, electronic health care data
are currently considered big data (Andrews et al., 2014; Umemoto et al., 2019), with
respect to three factors: 1) the rapid growth in data volume and value, 2) data fusion
from different sources, and 3) data analysis in large-scale studies. Using multiple
data sources would require: 1) development of a unified data model, 2) utilization
of ETL workflow or alternatives to populate the model with the data, and 3) deploy-
ment of analytical workflows on HPC resources for such large-scale studies (Curcin
et al., 2008). From the analytics perspective, the standard methods for risk prediction
fall short in utilizing the full spectrum of big data. Therefore, the alternatives include
applying data mining and machine learning methods, and adapting epidemiologi-
cal methods (e.g., penalized regression) for HPC platforms. Therefore, it seems that
computational requirements are the tip of the iceberg, further needs are highlighted
below.

1. Data model for acquisition, curation and integration of heterogeneous high-
dimensional data Although implicit, the first step in handling either sequence
(Chapter 3) or relational data (Chapter 4) is the creation of a data model for
transformation and integration, which is an integral step to support applica-
tion of target analytics. Particularly when handling heterogeneous data (as

2Personalized medicine at FDA: A progress & outlook report, Personalized Medicine
Coalition. URL: https://www.personalizedmedicinecoalition.org/Userfiles/PMC-Corporate/file/
PM_at_FDA_A_Progress_and_Outlook_Report.pdf
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in Chapter 5), careful consideration and creation of a suitable data model are
required to represent the relationships between the data elements as they are
in real life. Currently, data models and schemas to support studies using sec-
ondary data from multiple electronic health care databases (Pacurariu et al.,
2018) and meta-omics sample data (Rambold et al., 2019) have been devel-
oped. The use of those models could be propagated for data handling and
transformation.

2. Empowering predictive analytics filling staging and production gaps The
case study in Chapter 4 pinpoints areas for empowering analytics. First, a
health care claims databases could benefit from (or even offer as a service)
an attached staging area, a middle layer between the database and analyt-
ics, such as a column-oriented database management system (e.g., MetaKit).
Establishing a two-warehouse data management system, one for original data
and another for the transformed analysis-ready data would offer a solution for
large-scale studies challenges. Second, the difference in software development
practices between R and Python, where Python is more production-oriented
is apparent. Python (and Julia) are also better suited for high-dimensional
data. However, regression-based methods (e.g., Group LASSO and conditional
LASSO), successfully implemented in R, are yet to be implemented in Python
or other platforms including discipline-independent database-based solutions
for scientific large-scale data analytics (e.g., SciDB). This is an opportunity for
implementation of analytical methods suited for high-dimensional health data.

3. Evaluation of extracted knowledge The ability to evaluate the data transfor-
mation approaches and their effect on the information lost (or gained) is cru-
cial. Benchmarking against state-of-the-art methods (or of novel methods us-
ing reference sets), and simulations are possible directions. However, it is cer-
tainly not feasible to compare methods/datasets in every study to evaluate
extracted knowledge.

4. Data sharing: The COVID-19 test Data sharing is an integral topic when dis-
cussing research data, personalized medicine and ecology, particularly through
the FAIR principles (Wilkinson et al., 2016). In 2020, data sharing had be-
come “vital” due to the coronavirus disease 2019 (COVID-19) pandemic. Not
only large numbers of virus and host sequences are publicly available, but
also patient-level epidemiological data (e.g., electronic health records, phys-
iology, laboratory, imaging, and treatment data) are recorded, yet these pa-
tient data are not suited for sharing (Cosgriff et al., 2020). It is, therefore,
argued for the need for a multinational COVID-19 electronic health record
database (Cosgriff et al., 2020) to facilitate the application of sophisticated an-
alytics (Cosgriff et al., 2020; Peiffer-Smadja et al., 2020). As well, a number of
solutions have been suggested to address data heterogeneity and security is-
sues (Paul and Chatterjee, 2020). In addition to (bio)medical data, data from
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wearables (e.g., smartwatches) have been collected, compared and evaluated
for pre-symptomatic detection of COVID-19 (Mishra et al., 2020). The COVID-
19 pandemic has been testing the the current capacities for integration, sharing
and analytics, with billions of lives are at stake. These efforts will certainly ben-
efit respiratory and heart disease monitoring, personalized medicine (Denny
and Collins, 2021). The deep understanding of the importance of data shar-
ing and availability motivated the national initiative in Germany, the National
Research Data Infrastructure (NFDI), aiming at managing scientific and re-
search data, in terms of storage and accessibility at the national and inter-
national levels. Two consortia are relevant to the case studies in this thesis,
NFDI4Health3 and NFDI4Biodiversity4. NFDI4Health aims at providing a
central registry for health data and metadata, analytics software, and data
linkage services. NFDI4Biodiversity focuses on serving ecological research,
facilitating access to modern technologies and a comprehensive repository of
environmental data.

6.3 Outlook: When life depends on it

This thesis is a glimpse into the data of life, from health and environment. The data
are of extreme value, if integrated and interrogated properly. Ultimately, the data
drive preparation and transformation, which consequently directly influence data
analytics choice and performance, and influence extracted information, calling for
customized solutions for every case. Nevertheless, a number of challenges remain
such as cost (e.g., storage and computation), security and data sharing. As life it-
self depends on it, acquiring high-quality data must be completed with the creation
of a suitable data model and necessary computation requirements for transforma-
tion analytics. Investing in scalable solutions is inevitable. As a “small” database
grows in volume and value, a shift in perception must be considered to address
hard- and software requirements for transformation, warehousing and analytics of
a soon-to-be an “extensive” repository. Integration as well is foreseen in the future.
Perhaps soon, health records, environmental microbial data and particle pollution
data would be integrated for air pollution monitoring and decision making, remind-
ing us of the interconnected world that we can take action to preserve.

3NFDI4Health - National Research Data Infrastructure for Personal Health Data. URL: https://
www.nfdi4health.de/en/

4NFDI4Biodiversity. URL: https://www.nfdi4biodiversity.org/de/

92

https://www.nfdi4health.de/en/
https://www.nfdi4health.de/en/
https://www.nfdi4biodiversity.org/de/


Appendix A

Technical Supporting Material

A.1 Sequence similarity and E-value

Sequence similarity searches have been used in biology for decades, and have many
applications. These applications include: 1) annotation (i.e., finding homologs of
sequences of interest (nucleotide or amino acid sequence) in public data reposito-
ries), 2) inferring the evolutionary origin as to: a) identify homologs of sequences
that share statistically significant similarity with (i.e., identify orthologs that descend
from a common ancestor), b) identify homologs of sequences that share statistically
significant similarity within the same organism (i.e., identify paralogs, gene dupli-
cation events).

BLAST, the most common and well-established sequence comparison algorithm,
uses four steps for sequence comparison (Altschul et al., 1990; Kerfeld and Scott,
2011). These steps [according to (Kerfeld and Scott, 2011)] are: 1) It chops the query
sequence provided by the user into “words”, and accounts for mutations in these
words by creating a list of synonyms for each word. These words and synonyms are
then scored according to their similarity to the query sequence based on BLAST’s
substitution matrices. 2) BLAST scans the entire database for sequences that con-
tain these words and their synonyms. 3) It then moves forward creating an align-
ment between the query and the “subject sequence”; if the score (S) of this “un-
gapped” alignment is high, the query and the subject sequences are considered ho-
mologs/similar. Gaps in the alignment represent the insertion/deletion of an amino
acid or a nucleotide. The score drops (is penalized) based on gap existence/open-
ing and gap extension. 4) The alignment is terminated once the match score drops
below a predefined threshold score, therefore, the alignments are called “local” as
compared to “global”.

The aforementioned raw scores S are later normalized across different penalties and
matrices used into S′ (bit score). Each subject will have an S′ value to reflect its
similarity to the query. S′ is further normalized to account for the size of the database
against which the search took place (n in residues; amino acids or nucleotides) and
the length of the query m; this yields E, with E = (n×m)/(2S′

). E represents the
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number of subject sequences that a BLAST search is expected to retrieve by change
alone from a database (that size), where those subject sequences have an S′ larger
than or equal the S′ calculated from the match/alignment. In case the query and
the subject sequence “hit” are very similar, E would be small and would reflect the
confidence that these two sequences are homologs. E for a BLAST search using the
same query can change over time due to the change in database size.
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A.2 Integration and modeling of secondary health data: Setup,
methods and results of a simulation study

Contribution: R. Foraita, L. Dijkstra and I planned the concept. I conducted the liter-
ature research, data curation, and pipeline setup with R. Foraita. Statistical methods
were compiled by R. Foraita and myself, and revised by L. Dijkstra. The appendix is
part of a project deliverable report that I, L. Dijkstra and R. Foraita wrote.

Preface

In order to reduce the number of patients affected by adverse drug events (ADE), it
is of utmost importance to identify patient groups that are at risk. Drug exposures
and comorbidities often form the basis for creating patient risk profiles. Instead of
basing the profile on the associations between individual drugs and diseases with
the ADE, we propose to use domain knowledge by linking drugs, diseases and the
ADE to so-called functional targets (FTs), i.e., a pathway of interacting biomolecules
(e.g., receptors). Here, we compare ten statistical methods that are able to exploit this
underlying group structure to 1) infer the FTs that affect the ADE risk, and 2) predict
whether a patient will suffer the ADE given his/her drug exposures and diseases.
The FTs are curated from the online database Kyoto Encyclopedia of Genes and
Genomes (KEGG). The methods’ performance is assessed based on simulated health
care claims data. The area under the receiver operating characteristics curve (AUC)
is used as performance measure. The adaptive rank truncated product (ARTP), a
gene set enrichment strategy from the field of genetic epidemiology, performed best
in most parameter settings for inference and prediction.

Annotation of drugs and diseases based on FTs using KEGG

There are several public repositories of largely manually curated biological and chem-
ical databases that link drugs and diseases to FTs. Examples include the Therapeutic
Targets Database (TTD) (Yang et al., 2016), ChEMBL (Gaulton et al., 2012), Search
Tool for Interacting Chemicals (STITCH) (Szklarczyk et al., 2016), and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2017). For this sim-
ulation, we consider KEGG as a comprehensive publicly available online database
that allows linking drugs and diseases to the same FT, comprising various biological
processes, components or structures with which drugs and diseases interact. Most
importantly, the data in KEGG are cross-referenced with the Anatomical Therapeutic
Chemical (ATC) classification system and International Classification of Diseases
(ICD), which makes it easier to associate the FTs with the drugs and diseases stored
as real health care claims data. For these reasons, we use the information in KEGG
to map human diseases and approved drugs to FTs.
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Methods

We compare several statistical methods with respect to their ability to: 1) infer the
groups that effect the ADE risk, and 2) predict whether a patient will experience
the ADE based on his/her drug exposures and comorbidities. Table A.2.1 gives
an overview of all methods. Note that some of the methods are only suitable for
prediction, see column ‘I’ (inference) and ‘P’ (prediction) in Table A.2.1.

Notation

First, we introduce some notation that will be used throughout this appendix. Let us
suppose that we havem covariates xi = (xi,1, . . . , xi,m)

> with binary entries for each
patient i = 1, 2, . . . , n, comprising all drugs and diseases in the data set. In addition,
we have a binary response vector y ∈ {0, 1} ∈ Rn that denotes the occurrence of the
ADE.

The relationship between X and y is modeled by the following logistic regression
model:

log

{
P (Y = 1 | X = x)

1− P (Y = 1 | X = x)

}
= η(x). (A.1)

The function η is the linear predictor

η(x) = β0 +Xβ>

where X = (xi,j)i,j denotes an n×m-dimensional matrix of covariates with xi,j being
the j-th covariate of individual i, β0 ∈ R is the intercept and β ∈ Rm is a vector of
regression coefficients. Furthermore, each of the m covariates can be assigned to G
groups. Each group g = 1, . . . , G has a group size, i.e., sg. Groups represent FTs
and can, thus, possibly overlap, which means that some covariates can be assigned
to multiple groups simultaneously. Let the matrix X(g) represent a submatrix of the
design matrix X, where the columns correspond to the covariates contained in group
g. The coefficient vector for this group is denoted by β(g). The corresponding linear
predictor of group g can then be written as:

η
(
x(g)

)
= β0 +

G∑
g=1

x(g)>β(g). (A.2)

Regularized regression models

Regularized regression methods exploit sparsity to detect signals in particularly
high-dimensional data sets. Hence, they might be an attractive approach for sig-
nal detection when only a minor proportion of all drugs on the market could cause
the ADE of interest. Regularized regression methods estimate a vector of regression
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coefficients β by minimizing an objective function S(β) composed of a loss func-
tion L that assesses the deviance between the outcome and the linear predictor in
combination with a penalty P (β | λ):

S(β) = L(β0, β | y,X) + P (β | λ),

for some λ ≥ 0. The penalty P (β | λ) regularizes the parameter estimation by
tuning the parameter λ to control both coefficient shrinkage and variable selection.
The most popular regularization method, the least absolute shrinkage and selection
operator [lasso; (Tibshirani, 1996)], minimizes the negative log-likelihood along with
the l1-penalty to shrink the coefficients towards zero with some coefficients set to
exactly 0:

minimize
β0∈R,β∈Rm

{
− 1

N
L(β0, β | y,X) + λ‖β‖1

}
where ‖a‖1 =

∑
i |ai| and the log-likehood function of a logistic model as formulated

in equation (A.1) takes the form

L(β0, β | y,X) =
n∑
i=1

yiη(x)− log [1 + exp{η(x)}] .

One drawback of the lasso is its overestimating behavior. The adaptive lasso (Zou,
2006) addresses this issue by decreasing the bias and, hence, reducing the number of
false positives. It is a two-stage procedure, where, in the first stage, pilot estimates
β̃ are obtained, which are then used to re-weigh the regression coefficients of a lasso
regression in the second stage. In this simulation study, we apply ridge regression
(Hoerl and Kennard, 1970) in the first stage.

Nevertheless, both methods are not able to include prior knowledge about group
structures. In order to include this prior knowledge, we propose a very simple strat-
egy, which we will refer to as the naïve group lasso (NGL). First, for each group, we de-
termine a ‘group variable’ that reflects the covariate values of that particular group.
The lasso is then applied to these constructed group variables, rather than to the in-
dividual covariates in order to identify groups possibly associated with the ADE of
interest. There are two approaches in which we define these group variables. The
first approach defines the group variable as the sum of the covariates within that
group, i.e., x(g)sum =

∑sg
j=1 x

(g)
j . We will refer to this definition as the sum approach.

The second approach, to which we will refer to as the any approach, summarizes
the group by setting the group variable to 1 when any of its covariates is 1, and 0
otherwise. The latter approach is intended to reflect the hypothesis that drugs from
the same FT might lead to the same ADEs due to their similar chemical properties.
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In addition, there are various other regression methods that put additional regular-
izations on group membership by using different penalty functions. Yuan and Lin
(Yuan and Lin, 2006) proposed the group lasso to select entire groups of covariates
which solves the convex optimization problem

minimize
β0∈R,β(g)∈Rsg

− 1

N
L
(
β0, β

(g) | y,X(g)
)
+ λ

G∑
g=1

wg‖β(g)‖2

 , (A.3)

where the log-likelihood function uses the linear prediction as formulated in (A.2)
and (wg)g∈G are positive weights that account for different group sizes (Meier et al.,
2008). As it is common that a particular covariate xj is included in more than one
group, we also investigate overlapping group strategies based on the work of Jacob
et al. (Jacob et al., 2009). This might be of great importance in certain cases; consider,
for example, a situation where drug X belongs to both the functional targets A and
B. The association between X and the ADE, however, is driven solely by target A,
and the drug’s membership to target B is irrelevant. The minimization problem for
the overlapping group lasso is formulated as

minimize
β0∈R,β∈Rm

− 1

N
L(β0, β | y,X) + λ

G∑
g=1

wg‖γ(g)‖2

 , (A.4)

where γ(g) =
(
γ
(g)
1 , . . . , γ

(g)
m

)>
are latent coefficient vectors satisfying

∑G
g=1 γ

(g) = β

with γ
(g)
j = 0 if xj does not belong to group g and γ

(g)
j 6= 0 otherwise. Obozinski

et al. (Obozinski et al., 2011) showed that solving Equation (A.4) is equivalent to
solving the following minimization problem with respect to γ where γ consists of all
elements of γ(g):

minimize
β0∈R,(γ(g)∈Rsg )g∈G

− 1

N
L
(
β0, γ | y, X̃

)
+ λ

G∑
g=1

wg‖γ(g)‖2

 ,

where X̃ is an n ×
(∑G

g=1 sg

)
new design matrix with duplicated columns from

group overlapping covariates. With this transformation, the overlap group lasso is
equivalent to the group lasso and can be solved by existing and computationally ef-
ficient algorithms (e.g., ). This strategy was also applied for the naïve lasso and the
group exponential lasso. The group exponential lasso [GEL; (Breheny, 2015)] uses the
concept of bi-level variable selection to select important groups as well as the im-
portant individual covariates in those groups. This is of interest if not only complete
groups should be selected but also single variables. Its penalty contains an addi-
tional decay parameter to control the degree to which variables are selected together
within groups. The different penalty functions that we use in the simulation study
are summarized in Table A.2.1. All regularized logistic regression methods employ
10-fold cross-validation to select the tuning parameter, λ, that minimizes the AUC.
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Adaptive rank truncated product

The adaptive rank truncated product (ARTP) is a gene set enrichment method that was
originally designed for single nucleotide polymorphism (SNP) data (Yu et al., 2009).
It is a hypothesis testing approach to select biological pathways that are enriched
with genetic variants to be associated with a phenotype. The method preserves the
correlation structure between genes by using permutation tests, and it has the po-
tential to detect subtle effects of genetic variants in a pathway that might be missed
when assessed individually. The ARTP uses p-values from any statistical association
test performed between individual SNPs and the disease outcome. Here, a logistic
regression model is applied to analyze the relationship between each covariate and
the ADE. The resulting p-values of the respective regression coefficients are then
used for the ARTP. Since the ARTP handles each group independently, this method
can be also applied to overlapping groups. We modified the ARTP to detect associa-
tions between ADEs and functional targets when using binary health care claims real
or simulated data. A group is selected when the p-value of the respective permuta-
tion test is lower than .1. As the ARTP is not used for risk prediction, we adopted the
following strategy to apply ARTP for individual risk predictions. We propose, first,
to predict ŷ(g)i for each selected group, and, second, to average the individual group
risk predictions to achieve an overall prediction, i.e., the individual risk prediction
ŷi = 1 if n−1

∑G
g=1 ŷ

(g)
i > .5, and 0 otherwise.

Block forests

As a machine learning approach, block forests (Hornung and Wright, 2019) are a fur-
ther development of random forests that is able to combine different types of omics
data for outcome prediction. Random forests are known to capture complex depen-
dence structures in data, and block forests additionally allow for including a priori
known group structures in the analysis to improve the prediction performance. This
is facilitated by modifying the split point selection procedure of random forests to
the group structure in the data. Overlapping group structures can be analyzed with-
out further modifications. The initial implementation of block forests could only be
applied for risk prediction not allowing for variable or block importance estimation,
and therefore, it is not used for variable and group selection.

Simulation setup

Each simulated data set consists of n = 2000 patients and m = 1000 binary covari-
ates, X1, . . . , X1000, that represent both the drugs and the diseases. The outcome is
represented by a binary vector, y ∈ {0, 1}2000, which denotes the ADE occurrence in a
patient. The covariates are independent, i.e., Xi,j ∼ Bernoulli (pj) for i = 1, . . . , 2000

and j = 1, . . . , 1000, where pj is the marginal probability of taking the drug or hav-
ing the disease. The marginal probabilities are drawn from a Beta distribution with
the shape and rate parameter set to 2 and 15, respectively, to reflect that the majority
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of drugs and diseases tend to appear rather infrequently. The simulated covariates
are either independent or correlated. In case of the latter, an autoregressive (AR-1)
correlation matrix is used with a correlation coefficient of ρ = .25.

Ten of the 1000 covariates have a causal effect on the ADE, as in that they are truly
associated with the ADE. We refer to these 10 covariates as the causal covariatves
in the following, although, in this study, we only test for association. In case of
the causal covariates, the association has either an odds ratio (OR) of 1.5 (weak), 3
(medium) or 5 (strong effect); the other covariates have an OR of 1. The regression
coefficient is set accordingly, i.e., β = log (OR). The intercept, β0, is determined
numerically such that approximately 50% of the patients experienced the ADE as a
case-control study design.

All covariates are assigned to groups. The causal covariates are distributed over
these groups in two ways: 1) each causal covariate belongs to a different group,
and 2) empirically five causal covariates are assigned to one group; the other five
are assigned to another group. That means: the proportions of truly associated
variables in one group are either 10% or 50%. The non-causal covariates are ran-
domly distributed over the groups. The number of covariates in each group, de-
noted by s1, . . . , sG, are randomly drawn from the sizes of the 303 FT groups present
in the online database KEGG (see Figure A.2.1 for their empirical distribution). The
group sizes are drawn such that their sum is equal to the number of covariates, i.e.,∑G

g=1 sg = 1000. We sample from an empirical distribution in order to obtain realis-
tic group sizes.

In the aforementioned setup, the groups do not overlap, i.e., each drug/disease be-
long to one group only. We refer to this as the setting of ‘no overlap’. However,
covariates might usually belong to several groups. In order to simulate this setting,
we randomly select 100 covariates (both causal and non-causal) and assign them
to newly created groups. By doing so, these 100 covariates belong to at most two
groups simultaneously. The sizes of these new groups are, as before, sampled from
the empirical distributionof KEGG groups. We refer to this second setting as the
‘overlap’ case. Table A.2.2 shows an overview of the 12 parameter settings used in
the simulation study. Overall, we simulate 50 data sets for each setting. The data
sets are split into a train and test set with 1,320 and 680 observations, respectively.

Software

The simulation study uses the following packages in R (v3.4.3):

• simstudy v(0.1.16) for synthetic datasets generation

• KEGGREST (v1.18.1) for extracting drug and disease target information from
KEGG
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• glmnet (v2.0-16) for lasso (L), adaptive lasso (AL), naïve (overlap) group lasso
(NGL, NOGL)

• grpreg, grpregOverlap (v3.2-0 and v2.2.0, respectively) to calculate (over-
lap) group lasso (GL, OGL) and group exponential lasso (GEL, OGEL)

• our own package for identification of risk groups in pharmacovigilance using
penalized regression and machine learning RGP1 to: 1) acquire and transform
KEGG data, 2) create synthetic overlapping and non-overlapping grouping
structures based on KEGG data, 3) calculate ARTP for inference and prediction,
and 4) select those λ that minimizes the cross-validated AUC for GL, OGL,
GEL and OGEL

• blockForest (v0.2.1) for block forests (BF)2

Results

For each of the 12 different parameter settings (Table A.2.2), we generate 50 data sets,
and we apply all methods listed in Table A.2.1 to each of these 600 data sets using
AUC as a performance measure. Subsection A.2 shows to what extent the methods
are able to infer the groups that have a direct effect on the ADE, while the methods’
performance in predicting individual risks are presented in A.2. The figures in this
subsection omit the results for OR = 3. In addition, we only show the results for the
AL with κ = 2, since it performed either best or comparable to the other values of κ.

Inferring groups

Each method suitable for inference, see Table A.2.1, is applied to the train data of
each of the simulated data sets. Figures A.2.2 – A.2.5 show the box plots with the
resulting AUCs. The AUCs reflect the extent to which the methods are able to infer
the groups (i.e., functional targets) that have a direct effect on the ADE. On the one
hand, Figures A.2.2 and A.2.3 show the results when there is no overlap between the
groups, i.e., each drug/disease belongs to one group only. Figures A.2.4 and A.2.5,
on the other hand, show the results where there is overlap between the groups. The
results with each of the 10 causal covariates being in different groups are shown
in the Figures A.2.2 and A.2.4. Figures A.2.3 and A.2.5 show the results if half of
the causal covariates are assigned to one group, while the other five are assigned to
another. The performance of a random classifier, i.e., an AUC of 0.5, is depicted in
each plot with a dashed line.

The figures show, as one might expect, a clear performance increase when the effect
size changes from OR = 1.5 to OR = 5. When the drugs and diseases are corre-
lated (see the lower row of the box plots), the performance drops significantly for

1Available under GPL-3 license http://www.github.com/bips-hb/rgp
2Using blockfor function with the parameters: block.method = ‘BlockForest’,

splitrule = ‘gini’, nsets = 100, num_treesoptim = 1000
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OR = 1.5. In case of OR = 5, this is not so clear. Interestingly, when the causal
covariates are equally distributed over two groups (see Figures A.2.3 and A.2.5), we
observe the opposite trend: the methods’ performance improves when the drugs
and diseases are correlated. This might be due to the fact that the methods devel-
oped to exploit an underlying group structure benefit from groups containing > 1

causal covariate. Overall, the ARTP performs best, except when there is no overlap
between the groups and two of the groups contain all causal covariates. In these
cases, the NGL (sum) tends to perform better.

Individual risk prediction

Each method is applied to each of the simulated train data sets. The test sets are sub-
sequently used to assess the prediction performance. Figures A.2.6 – A.2.9 show the
box plots with the AUCs, where, in this case, the AUCs reflect how well the meth-
ods can predict the ADE occurrence in a patient given his/her drug exposures and
disease diagnoses. Figures A.2.6 and A.2.7, on the one hand, show the results when
there is no overlap between the groups. Figures A.2.8 and A.2.9, on the other hand,
show the results when the groups overlap. The results when each of the 10 causal
covariates being in different groups are shown in Figures A.2.6 and A.2.8. Figures
A.2.7 and A.2.9 show the results when the causal covariates are split among only
two groups equally. As before, the performance of a random classifier is depicted in
each plot with a dashed line.

The figures show that the ARTP performs best when the signal is weak, i.e., OR =

1.5. When the signal is strong, OR = 5, the AL shows the best performance. In
contrast to inference results, we see that, in all cases, the performance decreases
if the covariates are correlated. In particular, in case of OR = 1.5 and correlated
covariates seems to be the most challenging. The majority of the methods perform
only slightly better than a random classifier would do.
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FIGURE A.2.1: Empirical distribution of the number of drugs and
diseases in all functional target groups in the KEGG database. The
total number of groups is equal to 303. The median group size is 4.
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FIGURE A.2.2: Box plots representing AUCs. The AUCs reflect to
what extent the methods are able to infer which groups have an effect
on the ADE risk. Each of the 10 causal covariates are in a different
group. There is no overlap between the groups.. The left and right
columns show the results when the effect is weak (OR = 1.5) or strong
(OR = 5), respectively. The top and bottom rows show the results
when the drugs/diseases are independent or correlated, respectively.
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FIGURE A.2.3: Box plots representing AUCs. The AUCs reflect to
what extent the methods are able to infer which groups have an ef-
fect on the ADE risk. Five of the 10 causal covariates are assigned to
one group. The other five are assigned to a different group. There
is no overlap between the groups.. The left and right columns show
the results when the effect is weak (OR = 1.5) or strong (OR = 5),
respectively. The top and bottom rows show the results when the

drugs/diseases are independent or correlated, respectively.
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FIGURE A.2.4: Box plots representing AUCs. The AUCs reflect to
what extent the methods are able to infer which groups have an ef-
fect on the ADE risk. Each of the 10 causal covariates are in a dif-
ferent group. Note that due to that fact that the groups, some of the
causal covariates might be in another group as well.. The left and
right columns show the results when the effect is weak (OR = 1.5)
or strong (OR = 5), respectively. The top and bottom rows show the
results when the drugs/diseases are independent or correlated, re-

spectively.
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FIGURE A.2.5: Box plots representing AUCs. The AUCs reflect to
what extent the methods are able to infer which groups have an effect
on the ADE risk. Five of the 10 causal covariates are assigned to one
group. The other five are assigned to a different group. Note that due
to that fact that the groups, some of the causal covariates might be in
another group as well.. The left and right columns show the results
when the effect is weak (OR = 1.5) or strong (OR = 5), respectively.
The top and bottom rows show the results when the drugs/diseases

are independent or correlated, respectively.
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FIGURE A.2.6: Box plots representing AUCs. The AUCs reflect to
what extent these methods are able to predict whether or not a patient
will experience the ADE given his/her drug exposures and diseases.
Each of the 10 causal covariates are in a different group. There is
no overlap between the groups.. The left and right columns show
the results when the effect is weak (OR = 1.5) or strong (OR = 5),
respectively. The top and bottom rows show the results when the

drugs/diseases are independent or correlated, respectively.
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FIGURE A.2.7: Box plots representing AUCs. The AUCs reflect to
what extent these methods are able to predict whether or not a patient
will experience the ADE given his/her drug exposures and diseases.
Five of the 10 causal covariates are assigned to one group. The other
five are assigned to a different group. There is no overlap between the
groups.. The left and right columns show the results when the effect is
weak (OR = 1.5) or strong (OR = 5), respectively. The top and bottom
rows show the results when the drugs/diseases are independent or

correlated, respectively.
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FIGURE A.2.8: Box plots representing AUCs. The AUCs reflect to
what extent these methods are able to predict whether or not a patient
will experience the ADE given his/her drug exposures and diseases.
Each of the 10 causal covariates are in a different group. Note that due
to that fact that the groups, some of the causal covariates might be in
another group as well.. The left and right columns show the results
when the effect is weak (OR = 1.5) or strong (OR = 5), respectively.
The top and bottom rows show the results when the drugs/diseases

are independent or correlated, respectively.
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FIGURE A.2.9: Box plots representing AUCs. The AUCs reflect to
what extent these methods are able to predict whether or not a patient
will experience the ADE given his/her drug exposures and diseases.
Five of the 10 causal covariates are assigned to one group. The other
five are assigned to a different group. Note that due to that fact that
the groups, some of the causal covariates might be in another group
as well.. The left and right columns show the results when the effect is
weak (OR = 1.5) or strong (OR = 5), respectively. The top and bottom
rows show the results when the drugs/diseases are independent or

correlated, respectively.
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A.2. Integration and modeling of secondary health data: Setup, methods and
results of a simulation study

TABLE A.2.2: Simulation study parameter settings.

Description Notation Values

total number of patients n 2,000
number of patients in train set – 1320
number of patients in test set – 680
total number of drugs/diseases m 1,000
number of causal covariates ma 10
number of causal covariates per group – 1 or 5
number of repetitions – 50

probability of experiencing the ADE – 50%
odds ratio between causal covariate and ADE OR 1.5, 3, or 5
correlation between covariates ρ 0 or .25
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A.3 Integration and modeling of secondary health data: Data
dimensions and statistics
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FIGURE A.3.10: A bar plot of patient time in calendar quarters in the
case-control data set. It is showing a near normal distribution.
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A.3. Integration and modeling of secondary health data: Data dimensions and
statistics
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FIGURE A.3.11: The empirical distribution of the number of drugs
and diseases in all functional target groups in the curated TTD data

set.
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FIGURE A.3.12: The empirical distribution of the number of non-
zero variance drugs and diseases in all functional target groups in

the GePaRD data set according to TTD grouping.
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TABLE A.3.3: Number of rows, unique covariates per patient (i.e.,
first incidence) and number of covariates in eligible subjects data in

GePaRD.

Module No. rows Unique covariates per subject No. covariates

Inpatient diagnosis 22,609,126 14,131,149 11,329
Outpatient diagnosis 497,891,376 171,436,672 13,965
Dispensation 104,057,634 36,522,387 2,410

TABLE A.3.4: Descriptive statistics of the matched case-control data
set with respect to socio-demographics and data dimensions. The
non-vitamin K oral anticoagulants (NOACs) considered are rivarox-
aban, apixaban, edoxaban, and dabigatran. Numbers of covariates

include zero variance predictors.

Cases Controls Total
(n = 11,717) (n = 108,747) (n = 120,464)

Age (in years; mean ± SD) 59.01± 17.92 59.55± 17.83 59.5± 17.84
Sex (no.; % female) 5,534; 47.2% 52,580; 48.35% 58,114; 48%
NOAC users (no.; %) 619; 5.28% 3,238; 2.97% 3,857; 3.2%
Max no. drugs per subject 69 54 1,711
Max no. diseases per subject 301 198 10,693

TABLE A.3.5: Performance of statistical methods measured as re-
call, precision and F1-score. L = LASSO, OGL = overlapping group
LASSO, ARTP = adaptive combination of rank truncated product, BF
= block forests, NGL = naive group LASSO, and SM = standard model

for logistic regression.

L OGL ARTP BF NGL SM

Recall 0.28 0 0 0.73 0.15 0.35
Precision 0.72 0 0 0.074 0.54 0.67
F1-score 0.4 0 0 0.13 0.24 0.46
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Publications

B.1 Deciphering patterns of adaptation and acclimation in
the transcriptome of Phaeocystis antarctica to changing
iron conditions

Contribution to the manuscript: I maintained and inoculated the cultures, har-
vested the cells and extracted RNA with S. Beszteri. I have executed the transcrip-
tome assembly, analysis and differential expression inference with Harms L super-
vised by S. Frickenhaus and A. Moustafa. I participated in the conceptualization of
the manuscript, and I wrote the initial draft of the manuscript with S. Frickenhaus
and S. Beszteri. I processed the sequence-based data to be deposited and publicly
available through NCBI. The work was done in collaboration with and under the su-
pervision of the co-authors. The manuscript is published in the Journal of Phycology.
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The haptophyte Phaeocystis antarctica is endemic to
the Southern Ocean, where iron supply is sporadic
and its availability limits primary production. In iron
fertilization experiments, P. antarctica showed a
prompt and steady increase in cell abundance
compared to heavily silicified diatoms along with
enhanced colony formation. Here we utilized a
transcriptomic approach to investigate molecular
responses to alleviation of iron limitation in P.
antarctica. We analyzed the transcriptomic response
before and after (14 h, 24 h and 72 h) iron addition
to a low-iron acclimated culture. After iron addition,
we observed indicators of a quick reorganization of
cellular energetics, from carbohydrate catabolism and
mitochondrial energy production to anabolism. In
addition to typical substitution responses from an

iron-economic toward an iron-sufficient state for
flavodoxin (ferredoxin) and plastocyanin (cytochrome
c6), we found other genes utilizing the same strategy
involved in nitrogen assimilation and fatty acid
desaturation. Our results shed light on a number of
adaptive mechanisms that P. antarctica uses under low
iron, including the utilization of a Cu-dependent ferric
reductase system and indication of mixotrophic
growth. The gene expression patterns underpin P.
antarctica as a quick responder to iron addition.
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The Southern Ocean (SO) is the largest high-
nitrate low-chlorophyll (HNLC) region with sub-
nanomolar concentrations of total dissolved iron,
abundant concentrations of macronutrients yet low
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rates of nitrate uptake, and dominance of pico- and
nanophytoplankton species (Dugdale and Wilkerson
1991, Smetacek et al. 1997, Assmy et al. 2007,
Marchetti et al. 2012, Trimborn et al. 2017). Iron
supply to the SO includes dust deposition and melt-
ing icebergs (Assmy et al. 2007, Boyd et al. 2012),
but as iron remains bound to organic ligands and
therefore biologically unavailable to phytoplankton
(Maldonado et al. 2005, Shaked and Lis 2012,
Groussman et al. 2015, Hutchins and Boyd 2016), it
is limiting phytoplankton growth and productivity
(Martin et al. 1990).

Iron is essential for phytoplankton growth as it
serves as an electron carrier in photosynthesis and
mitochondrial respiration. It is also required as a
cofactor in countless processes such as fatty acid
biosynthesis, nitrate reduction and assimilation
(Marchetti et al. 2012, Harel et al. 2014, Schoffman
et al. 2016). The effect of iron limitation has only
been studied in temperate diatoms at the molecular
level (Allen et al. 2008, Lommer et al. 2012, Morris-
sey and Bowler 2012, Raven 2013, Smith et al.
2016), showing how the newly acquired iron is allo-
cated (Strzepek and Harrison 2004, Lommer et al.
2012, Marchetti et al. 2012, Smith et al. 2016). Hap-
tophytes as well showed similar adaptation to iron
limitation, and lower iron requirements for growth
(Strzepek et al. 2011, 2012, 2019).

Phaeocystis is a cosmopolitan genus within the divi-
sion of haptophytes. Its three colony- and bloom-form-
ing species are: the temperate P. globosa in the North
Sea, the Arctic P. pouchetii and the Antarctic P. antarc-
tica (Schoemann et al. 2005, Verity et al. 2007, Beard-
all et al. 2009). Colonial life stage provides these
species with protective and competitive advantages
over the solitary stage, with the protein–carbohydrate
colony skin serving as a mechanical barrier against
infections, and the large colony size protecting against
grazers (Hamm 2000). The mucilaginous structure of
the colony matrix further allows for storage of micro-
(iron and manganese) and macro- (carbon and nitro-
gen) nutrients (Hamm 2000, Schoemann et al. 2005,
Gaebler-Schwarz et al. 2010).

Phaeocystis antarctica is endemic to the largely iron-
limited SO and forms large blooms, which are fre-
quently recorded in the iron-enriched shelf areas such
as Ross Sea and Prydz Bay (Schoemann et al. 2005,
Smith et al. 2014b). In vitro experiments showed that
P. antarctica has a strong response to iron limitation as
indicated by reduction in its growth rates and photo-
synthetic fitness (Strzepek et al. 2011, Alderkamp
et al. 2012), whereas iron addition was reported to
increase growth rates and trigger colony formation in
P. antarctica (Bender et al. 2018). In situ iron fertiliza-
tion experiments in the SO reported haptophytes (P.
antarctica) among the groups contributing to the eleva-
tion in chlorophyll a signal after iron enrichment
(Gall et al. 2001, Boyd 2002b, de Baar et al. 2005). In
particular, in the iron fertilization experiment Eise-
nEx, P. antarctica showed a prompt and steady increase

in cell abundance compared to heavily silicified dia-
toms, in addition to a higher frequency of colony for-
mation (Assmy et al. 2007). In the subarctic Pacific,
metatranscriptomics showed that haptophytes (P. glo-
bosa) utilized added iron faster than diatoms, with an
overexpression of photosynthesis genes (Marchetti
et al. 2012).
Adaptation and acclimation are considered types of

stress response (Borowitzka 2018). Acclimation, on
the one hand, is the change in phenotype (through
changes in gene expression) in response to stress in
an attempt to restore homeostasis in the cell. Once
acclimation is accomplished and homeostasis is
restored, the cells are no longer considered stressed.
Adaptation, on the other hand, is the change in the
genotype of the organism in response to environmen-
tal changes. In other words, adaptation can engrave
the acclimated phenotype in the cell’s genome after
the necessary number of generations has been success-
fully acclimated to the stressful conditions (Borow-
itzka 2018). Phaeocystis antarctica was found to combat
photosynthesis-limiting factors such as low iron by
increasing photosynthetic iron use efficiencies (e.g.,
replacement of iron rich with iron-economic photo-
synthetic components; Strzepek et al. 2019).
Here, we aim at deciphering the molecular basis of

adaptation to low iron availability and its subsequent
acclimation following iron enrichment in the ecologi-
cally relevant prymnesiophyte Phaeocystis antarctica, a
colony-forming species isolated from the Ross Sea.
We highlight the molecular processes that might be
the basis of the adaptation of P. antarctica to iron limi-
tation, and its acclimation to iron addition. We pro-
vide novel evidence based on gene expression data
that supports possible mixotrophic behavior of
P. antarctica cells under iron limitation.

MATERIALS AND METHODS

Culture conditions. A colony-forming strain of Phaeocystis
antarctica (strain #25 isolated from Ross Sea [76� S; 170� W] in
2003) was acclimated in f/2 growth medium where iron was
omitted from the trace metal mix (pH 8.0–8.3; Guillard and
Ryther 1962) prepared with Southern Ocean seawater. Iron-
free trace metal mixture and desferrioxamine B (DFB) chelator
(10 nmol � L�1 final concentration; Strzepek et al. 2011) were
syringe filtered through cellulose acetate 0.22 lm sterile filters
(Cole-Parmer, Montreal, Canada) before its addition to the nat-
ural seawater. The iron-limited culture was used to inoculate
quadruplicates with starting cell concentration of 2 9 104 cells
� mL�1. Cultures were acclimated at 2°C under a 16:8 h light:-
dark cycle (40 lmol photons � m�2 � s�1; Philips Master TL-D
18 W daylight lamps with neutral density screens with the lights
switched on at 6 AM and off at 10 PM). All cultures were incu-
bated in 2L polycarbonate bottles (Nalgene, New York, USA)
which were detergent and acid treated (3-day 0.1%
CITRANOX�-bath followed by 7-d 0.1N HCl-bath) and rinsed
with ultrapure Milli-Q� water (Millipore, Darmstadt, Germany).
The cell densities and physiologic status of the quadruplicates
are summarized in Table S1 in the Supporting Information.

Forty-eight hours after inoculation, iron-deplete quadrupli-
cates were supplemented with 1800 nM of iron (as FeCl3.6H2O
dissolved in ultrapure Milli-Q� water, syringe-filtered). The
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main experiment was conducted for 5 d. Cells were harvested
from the iron-limited and iron-enriched incubation bottles at
0 h, 14 h, 24 h and 72 h and 100 � 10 mL of each culture was
filtered through MF-MilliporeTM membrane filters (1.2 lm;
Merck KGaA, Darmstadt, Germany) using vacuum filtration.
Cells were resuspended in 500 lL beta-mercaptoethanol /
RLT buffer (Qiagen, Hilden, Germany) and preserved in liq-
uid N2 at �80°C until RNA extraction. Samples were taken in
the evening (6 PM; 12 h of light) except for 14 h (10 AM; 4 h
of light). Information on the physiologic assessments, and iron
and light status of treatment cultures is provided in Table S2 in
the Supporting Information.

RNA extraction, qualitative and quantitative analysis, and
sequencing. Total RNA was extracted using RNeasy� Plant Mini
Kit (Qiagen) as published before (Beszteri et al. 2012). RNA con-
centration (ng � L�1) was estimated using a NanoDrop� ND-1000
spectrophotometer (Peqlab, Erlangen, Germany). RNA integrity
(RIN) was estimated using a 2100 Bioanalyzer coupled with 2100
Expert Software (Agilent Technologies Inc., Boeblingen, Ger-
many). RNA (260/280 > 1.6 and RIN > 5) was processed by The
European Molecular Biology Laboratory (EMBL) Genomic Core
Facilities (GeneCore, EMBL Heidelberg, Germany) for comple-
mentary DNA (cDNA) library construction of poly(A) RNA, and
for paired-end RNA sequencing using Illumina HiSeq2000
sequencer (Illumina Inc., San Diego, CA, USA).

De novo transcriptome assembly and functional analysis. Trimmo-
matic (v0.32; Bolger et al. 2014) was used to trim sequencing
adapters and to eliminate bases of Phred quality scores below
15 and reads shorter than 30 bases. Quality-filtered paired-end
reads from the iron-limited culture that was used to inoculate
quadruplicates, the iron-deplete control and iron-replete treat-
ment were used for assembly using Trinity de novo transcrip-
tome assembler pipeline (v2.0.4; Grabherr et al. 2011, Haas
et al. 2013). Open reading frames (ORFs) identification and
translation were performed using TransDecoder (v2.0.1)
accounting for homology search results from UniProtKB/
Swiss-Prot (r2015-09) and Pfam-A (r27.0). Translated ORFs
were analyzed using Trinotate (v2.0; e-value ≤ 1e-5). Trans-
lated ORFs were compared to Phaeocystis antarctica peptide
sequences (iMicrobe sample MMETSP1100; Koid et al. 2014)
using OrthoMCL (v2.0.9; Li et al. 2003). Transcriptome func-
tional coverage was estimated by comparing the assembled
transcripts against the eukaryotic Benchmarking Universal
Single-Copy Orthologs (BUSCO; v1.22; e-value ≤ 1e-5; Sim~ao
et al. 2015). Assembled transcripts were compared against P.
antarctica mitochondrial and plastid genomes (Smith et al.
2014a) using nucleotide BLAST mapping cDNA/EST to a
genome protocol (stringent reward/penalty, e-value ≤ 1e-100
and query coverage ≥ 90). Hits were visualized using
BLASTGrabber 2.0 (Neumann et al. 2014) and overlapping
hits segments were fused. Project metadata is available at
BioProject (Record: PRJNA395466). Quality-filtered raw
sequencing reads are available at the Sequence Read Archive
(SRA; Study accession: SRP113407). Standard quality-managed
data of this Transcriptome Shotgun Assembly project have
been deposited at DDBJ/EMBL/GenBank (Accession:
GFUQ00000000).

Differential gene expression and functional enrichment. Abun-
dance of the generated transcripts was estimated for each
replicate by RNA-Seq by Expectation Maximization (RSEM; Li
and Dewey 2011). Sample correlation was assessed through
hierarchical clustering of the fragments per feature Kb per
million reads mapped (FPKM) values using Pvclust (Suzuki
and Shimodaira 2006). Differential expression analysis was
conducted comparing each iron-response time point (14 h,
24 h and 72 h) against 0 h by DESeq2 (Love et al. 2014).
Only transcript contigs (denoted as “genes” for simplicity) of
≥ 300 bases and sum of rounded counts ≥ 40 were consid-
ered for downstream differential expression analysis. Genes
with false discovery rate (FDR) ≤ 0.001 and absolute log2
fold-change ≥ 2 were considered differentially expressed.
Heatmaps were used for visualizing the hierarchical clustering
of normalized expression values of the differentially
expressed genes (DEGs) based on Euclidean distance with
complete linkage. DEG clusters were identified through man-
ual inspection by k-mean clustering of time-point averaged
normalized expression (i.e., FPKM), where the number of
centers was set to seven.

The number was validated through NbClust (Charrad
et al. 2014) and manual inspection. Gene Ontology (GO)
enrichment analysis was conducted on the DEG clusters
through Trinity (one-sided Fisher’s exact test) with signifi-
cance cut-off of FDR (Nannotated/NGO-annotated) ≤ 0.05. Over-
represented GO terms were categorized using Categorizer
(Na et al. 2014). DEG clusters were also inspected for
orthologous group frequencies. The frequencies were
derived from Trinotate’s mapping of BLAST results to Evo-
lutionary Genealogy of Genes (eggNOG; v4.0). Functional
annotation of DEGs was based on best UniProt and Pfam
hits of the longest ORF and excluding mammalian hits.
Count and normalized gene expression matrices as well as
transcript annotations are available at the Gene Expression
Omnibus (GEO) database (Accession: GSE102608).

RESULTS

Transcriptome characteristics. To profile the tran-
scriptomic characteristics of Phaeocystis antarctica, we
sequenced mRNA from the iron-limited culture, and
the iron-limited control (0 h) and -enriched treat-
ments (14 h, 24 h and 72 h). A total of 389,846,414
reads were sequenced and quality filtered into
312,273,819 reads prior to assembly. The total num-
ber of bases of the final assembly is 87,421,418
assembled into 122,927 transcripts (i.e., isoforms) of
110,971 contigs (i.e., hypothetical genes). Tran-
scripts N50 was 953 bp and estimated GC content was
63.16% (Table 1). The frequency distribution of iso-
forms mapping showed that the largest fraction of
genes (94%) constituted of unique transcripts

TABLE 1. Phaeocystis antarctica transcriptome statistics. Gene length is the length of the longest transcript (i.e., isoform) of
the gene.

Category Number Total bases N50 (bp) Mean (bp) Median (bp)

Sequenced reads 389,846,414 19,882,167,114 – – –
Post QC reads 345,183,306 17,179,127,605 – – –
Assembled reads 312,273,819 15,925,964,769 – – –
Total genes 110,971 76,380,968 916 688.3 486
Total transcripts 122,927 87,421,418 953 711.17 506

PHAEOCYSTIS ANTARCTICA UNDER IRON ENRICHMENT 749



(Fig. S1 in the Supporting Information). To assess
sample correlation, we clustered hierarchically the
raw counts of the assembled hypothetical genes
(Fig. S2 in the Supporting Information).

A total of 105,163 open reading frames (ORFs)
were predicted and translated. Transcripts were
annotated based on similarity search against UniProt
database and domain search against Pfam database.
Annotations were cross-referenced with GO and egg-
NOG (Fig. 1; largest gene families are provided in
Table S3 in the Supporting Information). Here for
consistency, we report the results at the gene level
(detailed statistics are given in Table 2).

We assessed the evolutionary origin of the assem-
bled genes. Generally, 16,419 genes (14.8% of total
transcriptome genes) were of eukaryotic origin exclud-
ing mammals. Specifically, 6,455 genes (5.8%) were
closest to Streptophyta, 337 (0.3%) to Chlorophyta
and 92 (0.08%) to Haptophyta. There were 3,878
(3.5%) genes of bacterial origin, of which 459 genes
(0.41%) were of cyanobacterial origin. The number of
genes of archaeal and viral origins accounted 250
(0.22%) and 206 (0.19%), respectively.

We compared the study transcriptome against the
published Phaeocystis antarctica transcriptome from
the MMETSP project (Koid et al. 2014;
MMETSP1100, a data set that contains 53,204 cod-
ing nucleotide sequences and 54,300 translated pep-
tide sequences) in terms of sequence overlap using
OrthoMCL (Li et al. 2003). About 9% of the study

unique (i.e., deduplicated) translated ORFs were
orthologs of 25% of MMETSP’s P. antarctica coding
sequences. Furthermore, we compared the transcrip-
tomes in terms of functional coverage against BUS-
CO’s eukaryotic gene set (429 orthologs; Table 3).
Additionally, we also compared sequence coverage
of both transcriptomes against published partial
mitochondrial and complete plastid genomes
(Smith et al. 2014a; Table 3).
Global patterns of differentially expressed genes. To

assess the immediate (14 h), short- (24 h) and long-
term (72 h) response following iron enrichment, we
compared Phaeocystis antarctica gene expression at the
different time points after iron addition relative to
the one before iron addition (0 h). We found in
total 16,895 differentially expressed genes (DEGs)
following iron enrichment at the different sampling
points: 12,081 genes after 14 h (4,130 up-regulated/
7,951 down-regulated), 84,16 genes after 24 h
(1,326/7,090), and 5,306 genes after 72 h (1,382/
3,924). Time point 14 h differed from the other sam-
pling points with regard to light duration with ~4 h
of light at 14 h (Table S2). To focus on the temporal
effect of iron enrichment on gene expression, we
excluded the DEGs that were only differentially
expressed at 14 h from downstream analyses, result-
ing in 10,715 DEGs (9.7% of total assembled genes).
DEGs were divided into seven clusters based on k-

means clustering (Fig. S3 in the Supporting Infor-
mation), to support and explain the functional

FIG. 1. Gene families assigned to eggNOG orthologous groups in Phaeocystis antarctica transcripts. [Color figure can be viewed at wile
yonlinelibrary.com]
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analysis below. Clusters A, B, D, and E showed simi-
lar patterns of immediate down-regulation and were
grouped into cluster 1. The variability within cluster
1 seems to be the largest perhaps due to the fusion
of the clusters. We renumbered the clusters C to 2,
F to 3, and G to 4 in downstream analysis (Fig. 2).
In clusters 1 and 4, a global pattern of down-regula-
tion following iron addition was prevalent, while
clusters 2 and 3 showed a pattern of up-regulation.
We denote clusters 1 and 4, respectively, “immedi-
ate-down” and “delayed-down,” and clusters 2 and 3,
respectively, “immediate-up” and “delayed or pro-
gressive-up” (detailed statistics in Table 4).
Functional analysis of DEGs. GO enrichment and egg-

NOG statistics: To a total of 3,638 DEGs, we were
able to append function based on similarity (accord-
ing to UniProt and Pfam annotation). Table A in
Appendix S1 in the Supporting Information summa-
rizes the results of the GO enrichment analysis of
the DEGs. In down-regulation cluster 1 (immediate-
down), cell cycle, cell motility, intracellular localiza-
tion and transport, endo/exocytosis, ATP catabolic
process, and tricarboxylic acid cycle, glucan
biosynthesis, signaling and calcium transport were
overrepresented. In down-regulation cluster 4 (de-
layed-down), nucleus (i.e., nucleolus and splicing)
GO terms were overrepresented. In up-regulation
cluster 2 (immediate-up), mitochondria, respiration
and translation GO terms, whereas in up-regulation
cluster 3, oxidation–reduction processes and signal-
ing GO terms were more abundant. Photosynthesis
GO terms were represented in all clusters except
cluster 1, while cell motility terms were only present
in cluster 1. The frequencies of eggNOG ortholo-
gous groups across the clusters were analyzed
(Fig. 3; Table B in Appendix S1), and were in
agreement with GO enrichment analysis.

Iron acquisition and homeostasis: Altogether, 31
gene candidates implicated in iron assimilation and
transport exhibited differential expression (Table C
in Appendix S1). After iron addition, 19 of these
were immediately down-regulated, including compo-
nents of a high-affinity iron uptake system (ferric
reduction oxidases and multicopper oxidases). Also,
ferrochelatase and other genes bearing domains
found in iron-starvation-induced proteins ISIP2A
and ISIP3 were expressed at the later time points at
lower levels compared to 0 h. A potential mitochon-
drial iron transporter (mitoferrin) also showed sus-
tained down-regulation after iron addition.
Contrastingly, NADH-cytochrome b5 reductases and
cytochrome b5 were immediately up-regulated follow-
ing iron addition, whereas the two vacuolar iron
transporter fragments (VIT11 and VIT1) showed
immediate and delayed up-regulation, respectively.
Ferritin was not differentially expressed.
Photosynthesis and pigment biosynthesis: A relatively

large number of genes related to photosynthesis
(46) were differentially expressed under the differ-
ent time points (Table D in Appendix S1). After
iron addition, 38 genes were up-regulated. Several
genes of photosystems I and II and of the plastidic
electron transport chain (e.g., cytochrome b6f sub-
units) were more abundant, whereas flavodoxin and
plastocyanin were down-regulated immediately after
iron addition.
Light-harvesting complex genes and photore-

ceptors (67; Table E in Appendix S1) exhibited
differential expression according to their func-
tion: those implicated in light harvesting were
more abundant, whereas others involved in pho-
toprotection became down-regulated in response
to iron addition. In contrast, the genes coding
for the chlorophyll a/b binding protein L1818
were immediately up-regulated after iron addi-
tion. Furthermore, several genes involved in
chlorophyll and accessory pigment biosynthesis
(26; Table F in Appendix S1) were mostly more
abundant after iron addition. Chlorophyll, xan-
thophyll and carotenoid biosynthesis genes were
mainly differentially expressed at the light (i.e.,
morning) time point at 14 h.
Nitrogen and sulfur assimilation and metabolism:

Table G (Appendix S1) depicts the DEGs related to
nitrogen and sulfur metabolism (26 genes). Strik-
ingly, four of six nitrite reductases (NiR) were
down-regulated after iron addition, whereas the
other two fragments exhibited higher expression.
Similarly, two of three sulfite reductases and three
of four glutamate synthases (GS) were down-regu-
lated after iron addition, whereas one sulfite reduc-
tase and one GS were up-regulated. Also, type-3
glutamine synthases showed similar mixed expres-
sion patterns, whereas ammonium transporters were
mostly immediately down-regulated after iron
enrichment. Interestingly, all potential nitrate
reductases were immediately up-regulated.

TABLE 2. Phaeocystis antarctica transcriptome functional
annotation statistics in each database.

Database Gene hits (no.; %)
Transcript hits

(no.; %) ORF hits (no.; %)

UniProt 28,781; 26% 32,134; 26.14% 37,241; 35.4%
Pfam 31,740; 28.6% 35,664; 29% 36,295; 34.5%
GO 26,826; 24.17% 29,807; 24.25% 27,202; 25.9%
eggNOG 16,958; 15.28% 18,683; 15.2% 16,908; 16.07%

TABLE 3. Functional and sequence coverage of nonnuclear
genomes of the study and MMETSP Phaeocystis antarctica
transcriptomes.

Data set

BUSCO Gene Set
% (% single-copies;

% duplicated)

Organelle Genome
(no. nonoverlapping tran-
scripts; % genome length)

Complete Fragmented Plastid Mitochondria

Current 62% (41.7%;
20%)

15% 51; 93.4% 17; 73.7%

MMETSP 53% (52.2%;
0.7%)

14.40% 1; 1.32% 0; 0%
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Carbon metabolism: We identified a large number of
differentially expressed genes that were either related
to or involved in carbon metabolism (Table H in
Appendix S1). Iron addition led to immediate down-
regulation of genes related to glucan synthesis (1,3-
beta-glucan synthase), glycan degradation (beta-galac-
tosidase), pentose phosphate pathway (PPP), mito-
chondrial respiration and TCA cycle (malate
dehydrogenase), and probably gluconeogenesis (fruc-
tose-1,6-bisphosphatase). On the contrary, a delayed

down-regulation was observed in glycolysis and glucan
catabolism genes (endoglucanase). Contrastingly,
iron addition led to immediate up-regulation of one
fragment of the Calvin cycle enzyme phosphoribuloki-
nase, whereas another fragment exhibited down- and
up-regulation.
A total of 42 lipid metabolism genes were differ-

entially expressed (Table I in Appendix S1). Beta-
oxidation-related genes (17) showed immediate
(long-chain fatty acid-CoA ligases) or delayed (suc-
cinyl-coA ligase) down-regulation following iron
addition. Moreover, genes involved in the process
of polyunsaturated fatty acid synthesis showed a
mixed pattern of up- and down-regulation after
iron addition (omega-6 fatty acid desaturase).
Cell cycle, motility and colony formation: In Table J

(Appendix S1), 290 genes involved in cell cycle,
motility, cytoskeleton structure, and vesicle trans-
port were curated. Interestingly, most of these were
down-regulated after iron addition. However, a few
genes linked to mucus formation (UDP-O-acylgluco-
samine N-acyltransferase) showed delayed up-regula-
tion observable only at 72 h. Some down-regulated
genes were also involved in actin polymerization,
autophagy and membrane remodeling. Mixed pat-
terns of genes involved in cell aggregation were
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FIG. 2. Boxplot of the DEG
clusters in Phaeocystis antarctica
against sample time points. The
boxplots represent the mean
expression of each gene in the
cluster. These means were
calculated for the normalized
gene expression values of the
replicates at each time point [i.e.,
log2(mean(fpkm) + 1), scaled to
median]. The median is
calculated for each time point in
each cluster. The shapes indicate
the time points. [Color figure
can be viewed at wileyonlinelibra
ry.com]

TABLE 4. Sequence features of DEG clusters. The anno-
tated fraction of genes is filtered based on our annotation
criteria (see Materials and Methods).

Attribute

Cluster 1
“Immediate-

down”

Cluster 2
“Immediate-

up”

Cluster 3
“Delayed-

up”

Cluster 4
“Delayed-
down”

Gene (n) 7,774 1,087 1,196 658
Transcript (n) 9,134 1,227 1,467 720
Candidate
ORF (n)

11,612 1,259 1,573 852

GO terms (n) 114 24 12 5
eggNOG (n) 2,027 276 264 206
Annotated
(n; %)

2,524; 32% 441; 41% 401;
34%

272; 41%
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observed (e.g., von Willebrand factor domain, lectin
and fibrillin).

DISCUSSION

We conducted a batch culture experiment with
iron-limited Phaeocystis antarctica in order to assess
its acclimation response following iron enrichment
at different time points. Using transcriptomics, we
monitored the change in expression of key genes
and pathways under iron-deplete and iron-replete
conditions. Here we aim at providing new insights
into the underlying metabolic pathways of adapta-
tion and acclimation to iron enrichment.

Due to the lack of a Phaeocystis antarctica genome
sequence, we conducted a de novo assembly of the
transcriptome. We obtained 110,971 genes, a larger
number than what was previously reported (56,193
contigs; Koid et al. 2014), and relative to the gen-
ome of its sister species Emiliania huxleyi (30,569
protein-coding genes; Read et al. 2013). The high
number of genes could be attributed to inaccuracy
in resolving diploid polymorphisms by Trinity
(Grabherr et al. 2011, Haas et al. 2013), a reported
phenomenon in diatoms (Armbrust et al. 2004), or

alternatively to other factors such as alternative
splicing.
We compared the Phaeocystis antarctica transcrip-

tome to the published one from the MMETSP project
(Koid et al. 2014) in terms of functional and
sequence coverage against the BUSCO eukaryote
gene set, and the previously published P. antarctica
plastid and mitochondrial genomes (Smith et al.
2014a), respectively. The transcriptome from our
study showed a more complete coverage of BUSCO
gene set, and more sequence coverage of both plastid
and mitochondrial genomes compared to the
MMETSP transcriptome. Thus, our assembly is more
comprehensive in regard to functional and sequence
coverage. Nevertheless, the low coverage of BUSCO
gene set by both our study’s transcriptome and that
of Koid et al. (2014) could be attributed to the unbal-
anced representation of the reference plant/algae/
fungi sequences in the relatively old version of the
eukaryotic gene set. Sequence coverage results as well
show a lower degree of overlap between the predicted
peptide sequences in the transcriptomic studies than
expected, perhaps due to the difference in sequence
processing methods and the difference in growth
conditions.
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FIG. 3. Representation of differentially expressed eggNOGs in Phaeocystis antarctica in four clusters. The frequencies are normalized to
the total number of DEGs. [Color figure can be viewed at wileyonlinelibrary.com]
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The k-means-based clustering of the DEGs
(Fig. 2) helped identifying patterns in the DEGs
qualitatively, however, the increased number of out-
liers might be attributed to the fusion of clusters
especially in cluster 1. The biological significance of
the outliers is worth investigating.
Phaeocystis antarctica acclimates quickly to high iron

conditions. Phaeocystis antarctica is endemic to the
largely iron-limited Southern Ocean, which previ-
ously responded to added iron with sustained
growth in batch culture experiments (Strzepek et al.
2011, Koch et al. 2019). Moreover, its blooms are
frequently recorded in the iron-enriched shelf areas
(Schoemann et al. 2005, Smith et al. 2014b). We
observed 75% of the expressed genes differentially
expressed after 14 h, with the majority (79%) being
down-regulated. In diatoms, similar acclimation
response was reported where the number of iron-
limitation–specific genes was larger than that of
iron-replete–specific genes (Nunn et al. 2013). Four-
teen hours could be considered as a relatively short
time with respect to average growth rate under iron
limitation (0.3; Strzepek et al. 2011, Koch et al.
2019). However, the observation that the majority of
DEGs were down-regulated shortly after iron supply
suggests that iron addition perhaps does not evoke
a response of its own, but rather restores cellular
functions, which were otherwise negatively affected
under iron scarcity, for example, by stress alleviation
(down-regulation of photoprotection) and restora-
tion of normal cellular functions (up-regulation of
photosynthesis-related processes). The down-regula-
tion of a large number of transcript contigs was
observed at 24 h as well, along with a peak in RNA
translation, perhaps to fuel the up-regulated pro-
cesses and the increase in cell abundance. At 72 h,
a stabilization of gene expression has perhaps been
reached and an up-regulation of cell cycle processes
has been observed. Below we discuss a number of
processes that have been affected under iron enrich-
ment. The change in expression of its key genes is
depicted in Figure 4a and schematically represented
in Figure 4b.
Iron acquisition and metabolism. Iron plays a ubiqui-

tous role in photosynthetic cells. Its importance
stems, on one hand, from the role of iron–sulfur
clusters in electron transport (in the chloroplast
and the mitochondria; Pilon et al. 2006, Lill 2009).
On the other hand, iron is widely used as a cofactor
in many other processes such as chlorophyll biosyn-
thesis, assimilation of nitrogen and sulfur, fatty acid
metabolism and reactive oxygen species scavenging
(Behrenfeld and Milligan 2013, Twining and Baines
2013, Schoffman et al. 2016). Iron requirements of
a species can be assessed as the intracellular iron
concentration (Strzepek et al. 2011, Twining and
Baines 2013). Not surprisingly, SO species—adapted
to low iron conditions—have lower iron demands
compared to coastal ones (Strzepek et al. 2011),
which increase with cell size (Strzepek et al. 2011).

As the largest iron supply is required for photosyn-
thetic electron transport, iron is usually concen-
trated in the plastid (Twining and Baines 2013). To
meet their iron requirements, SO species use iron-
economic forms of photosynthetic protein com-
plexes (Strzepek et al. 2019), utilize bound iron
(Strzepek et al. 2011) and use forms of iron storage
(Marchetti et al. 2009).
Down-regulated fragments included genes respon-

sive to iron starvation. Iron-responsive genes have
been proposed to have a role in both iron stress sens-
ing and iron acquisition, being mostly surface proteins
and sharing iron-dependent regulatory domains
(Lommer et al. 2012, Yoshinaga et al. 2014). Specifi-
cally, iron-starvation-induced proteins (ISIPs) were
universally up-regulated under iron-limiting condi-
tions in subarctic Pacific phytoplankton (Marchetti
et al. 2012), suggesting a conserved role in iron uptake
(Smith et al. 2016). ISIP2A was found to be activated as
an initial response to iron limitation in Phaeodactylum tri-
cornutum (Morrissey et al. 2015) andThalassiosira oceanica
(Lommer et al. 2012), and was shown to play a role in
iron acquisition in the former (McQuaid et al. 2018).
Similarly, in our experiment, putative ISIP2A genes
showed immediate down-regulation after iron addition,
suggesting a role for ISIP2A in iron acquisition also in P.
antarctica under iron limitation.
The success of low-iron adapted species can be

attributed, among other factors, to the molecular
alternatives they evolved to utilize bound iron such
as siderophore-mediated iron uptake and high-affi-
nity ferric uptake systems (Strzepek et al. 2011,
Shaked and Lis 2012, Groussman et al. 2015). Phaeo-
cystis antarctica could grow on both organically
bound (from ferrichrome and other siderophores;
Strzepek et al. 2011) and free iron, with faster rates
of iron uptake and ferric iron reduction under low
iron conditions (Strzepek et al. 2011). Similar find-
ings were reported in temperate diatoms (e.g.,
Phaeodactylum tricornutum, Morrissey et al. 2015; Tha-
lassiosira oceanica, Lommer et al. 2012). These find-
ings illustrate that P. antarctica is adapted to
utilizing siderophore-bound iron particularly under
iron limitation as reported in subantarctic phyto-
plankton (Maldonado et al. 2005).
Strzepek et al. (2011) demonstrated the existence

of a high-affinity ferric reductase-based iron uptake
system in Phaeocystis antarctica. Such a system consists
of a ferric reductase, a multicopper ferroxidase and
a permease (Armbrust et al. 2004, Lommer et al.
2012, Morrissey and Bowler 2012). We observed up-
regulation of two ferric reduction oxidases and sev-
eral multicopper oxidases under low iron (Fig. 4a;
Table C in Appendix S1), similar to iron-limited
Thalassiosira oceanica (Lommer et al. 2012). Our
results provide further evidence of an iron-regulated
ferric uptake system in P. antarctica.
To investigate intracellular distribution of iron,

we observed immediate and sustained down-regula-
tion of mitoferrin genes after iron addition.
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Mitoferrins are responsible for regulating iron trans-
port in the mitochondria (Shaw et al. 2006), and
defects in mitoferrins resulted in impairment in Fe–
S cluster assembly and global metabolic changes in
land plants (Vigani et al. 2016). Our observation is
consistent, on one hand, with the down-regulation
of other mitochondrial processes following iron
enrichment (e.g., respiration; Table H in
Appendix S1). On the other hand, three vacuolar
iron transporters and plastidial processes in general
(e.g., chloroplastic IscA gene for assembly of Fe–S

clusters and photosynthesis) were immediately up-
regulated after iron enrichment. These observations
suggest that P. antarctica shunts iron among com-
partments depending on iron availability, with iron
supplied to the mitochondrium or plastidic pro-
cesses under low- and high iron conditions, respec-
tively (Fig. 4b).
Cellular metabolism. Photosynthesis is considered a

major sink of iron in the cell (Sunda and Huntsman
1995, Strzepek et al. 2011), as iron is integral in the
cytochrome b6f complex and the other components

FIG. 4. (A) Heatmap of differentially expressed filtered genes of interest in discussed cellular processes (also in Table M in Appendix
S1). Mean normalized expression of genes of the same function is used. (B) Schematic representation of the genes of interest in respect
to cellular localization. Gene abbreviations are: AMT, Ammonium transporter 1 members; ATPG, ATP synthase gamma chain; ATP-
synthase, ATP synthase subunit a and beta, chloroplastic; BGS, 1,3-beta-glucan synthase components; CA, Carbonic anhydrase 2; Cu-SOD,
Cell surface Cu-only superoxide dismutase 5; CuZn-SOD, Cell surface superoxide dismutase [Cu-Zn] 4 and CuZn-SOD chloroplastic;
CYC6, Cytochrome c6; FBA, Fructose-bisphosphate aldolase; FBPc, Fructose-1,6-bisphosphatase, chloroplastic; FBP, Fructose-1,6-bisphospha-
tase class 1; Fd-GLT, Ferredoxin-dependent glutamate synthase 2; FEA, Low iron-inducible periplasmic protein (ISIP2a domain); FENR,
Ferredoxin–NADP reductase, embryo isozyme, chloroplastic; FER1, Ferredoxin-1 and Ferredoxin-1, chloroplastic; FER2, Ferredoxin-2;
FER, Ferredoxin; FLV, Flavodoxin; FRO, Ferric reduction oxidase 2 and 6; GAPDH, Glyceraldehyde-3-phosphate dehydrogenase 2;
GLNA3, Type-3 glutamine synthetase; GLNA4, Type-3 glutamine synthetase; GLT, Glutamate synthase [NADH], chloroplastic; L1818,
Chlorophyll a/b binding protein L1818, chloroplastic; MCO, Multicopper oxidase mco; MIT, Mitoferrin; Mn-SOD, Superoxide dismutase
[Mn] and MnSOD mitochondrial; MYO, Myosin and Myosin heavy chain; NB5, NADH-cytochrome b5 reductase 1 and 2; NIA, Nitrate
reductase [NADH]; NIRA, Ferredoxin–nitrite reductase, chloroplastic; NRT, High-affinity nitrate transporter 2.4; PETE, Plastocyanin
domains; PETM, Cytochrome b6-f complex subunit 7; PGKH, Phosphoglycerate kinase, chloroplastic; PGR5, Protein PROTON GRADIENT
REGULATION 5, chloroplastic; PRK, Phosphoribulokinase, chloroplastic; PSAB, Photosystem I P700 chlorophyll a apoprotein A2; PSAE,
Photosystem I reaction center subunit IV; PSAK, Photosystem I reaction center subunit PsaK; PSAL, Photosystem I reaction center subunit
XI; PSBA, Photosystem II protein D1; PSBO, Oxygen-evolving enhancer protein 1, chloroplastic; PYC, Pyruvate carboxylase; RBCMT, Ribu-
lose-1,5 bisphosphate carboxylase/oxygenase large subunit N-methyltransferase, chloroplastic; RPE, Ribulose-phosphate 3-epimerase; SIR,
Sulfite reductase [ferredoxin]; VIT, Vacuolar iron transporter 1 and 1.1.
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of the photosynthetic electron transport chain
(Strzepek and Harrison 2004). As expected, iron
addition led to immediate up-regulation of mem-
bers of the photosynthetic electron transport chain,
pigment production and genes coding for proteins
involved in light harvesting; all orchestrated the
enhanced photosynthetic efficiency previously
observed in our target species (Boyd 2002a, Strze-
pek et al. 2012, Issak 2014). In particular, flavo-
doxin and plastocyanin were down-regulated
immediately after iron addition. The expression of
flavodoxin was proved to be a sign of iron stress in
phytoplankton (La Roche et al. 1996) in general
and in diatoms in particular (La Roche et al. 1995),
with protein expression values elevated at least 25-
fold in the diatom Phaeodactylum tricornutum under
iron limitation (La Roche et al. 1995). This com-
mon response was also observed by others in the
temperate diatoms P. tricornutum (Allen et al. 2008,
Zhao et al. 2018) and Thalassiosira oceanica (Lom-
mer et al. 2012). Moreover, as an adaptive strategy,
a number of SO species, including Phaeocystis antarc-
tica, showed a large increase in photosystem II activ-
ity under low-iron, low-light, low-temperature
conditions that is facilitated by the increased
antenna size in those species (Strzepek et al. 2019).

Iron-induced enhancement of photosynthetic
capacity logically leads to substantial shifts in carbon
metabolism. Given that the production of reducing
equivalents through photosynthesis can be ham-
pered by iron limitation (Nunn et al. 2013), glycoly-
sis, TCA cycle and PPP are considered ways to
generate reducing equivalents in the form of NAD
(P)H when photosynthesis is impaired (Nunn et al.
2013, Rubin et al. 2015). Along these lines, reduced
abundance of TCA cycle, glycolysis and PPP-related
genes, while higher abundance of Calvin cycle genes
were observed in iron-enriched diatoms (Lommer
et al. 2012, Nunn et al. 2013). Similarly, iron addi-
tion resulted in immediate and sustained up-regula-
tion of genes involved in the Calvin cycle in the
tested Phaeocystis antarctica strain, and immediate
down-regulation of metabolic pathways which recy-
cle or utilize fixed carbon after iron addition.

However, genes related to callose/glucan synthe-
sis were less abundant from the earliest time point
on (14 h), those related to glucan catabolism exhib-
ited delayed down-regulation (24 h) after iron addi-
tion. Members of the class prymnesiophyceae
produce chrysolaminaran (beta-1,3 glucans) as car-
bon storage products (reviewed in (Alderkamp et al.
2007). Excretion of excess carbon in the form of
chrysolaminaran in nutrient-limited Phaeocystis glo-
bosa was reported (Janse et al. 1996) probably as a
vent for excess energy and metabolites under unbal-
anced growth conditions (Janse et al. 1996, Alder-
kamp et al. 2007). Accordingly, our results indicate
decreased glucan production following iron enrich-
ment. Taken with the aforementioned expression
patterns, stored glucan could be remobilized to

supply NAD(P)H and/or carbon backbones through
carbon recycling/catabolic processes.
However, similar to previous observations in dia-

toms and haptophytes (Marchetti et al. 2012), fatty
acid (FA) degradation genes showed delayed down-
regulation after iron addition, FA desaturases exhib-
ited a mixed pattern of down- and up-regulation.
FA desaturases contain diiron cluster domains, and
different isoforms have different cellular localization
(endoplasmic reticulum and plastid), and different
electron donors (cytochrome b5, NADPH and ferre-
doxin; Sperling and Heinz 2001, Uttaro 2006,
Urzica et al. 2013). These results, on one hand,
could be explained by a technical limitation in
resolving cellular localization and cofactor in our
data. On the other hand, they might be an indica-
tion of an adaptive strategy, where Phaeocystis antarc-
tica activates different FA desaturases according to
iron concentration.
Nitrate assimilation is a cellular process that is

strongly affected by iron limitation. First, both
nitrate and nitrite reductases require iron as a cofac-
tor (Nunn et al. 2013). Second, nitrogen assimila-
tion requires reducing equivalents; the impaired
production of which exerts an additional constraint
on this process under iron limitation. Interestingly,
we observed two different gene expression patterns
concerning nitrogen assimilation genes. As expected,
nitrate transport and reduction, along with some
nitrite reductases (NiRs), glutamate and glutamine
synthases were up-regulated after iron addition,
while ammonium transporters were down-regulated
(Fig. 4a; Table G in Appendix S1). However, other
few putative NiRs, glutamate and glutamine syn-
thases and ammonium transporters were down-regu-
lated at the same time, indicating potential
adaptation features of tightly regulated acclimation
processes. Experiments showed that diatoms utilize
urea and ammonia under iron limitation, and when
the limitation is alleviated, diatoms switch to nitrate
assimilation (Marchetti et al. 2012). In haptophytes,
nitrate was the only nitrogen source reported to sup-
port both solitary and colonial growth (Wang et al.
2011). Given the importance of the colonial stage to
Phaeocystis antarctica, it would prefer to maintain a
nitrate assimilation activity under low iron. There-
fore, it is possible that P. antarctica, as with FA desat-
urases, uses different cofactors for pivotal enzymes
under changing iron conditions.
Colony formation in Phaeocystis antarctica has been

demonstrated to be triggered by increased iron
availability (Assmy et al. 2007, Strzepek et al. 2011,
Bender et al. 2018). A few molecular markers, sug-
gested to play a role in the formation of the extra-
cellular colonial matrix and in cell aggregation
(Bender et al. 2018), were found in colonial P.
antarctica including von Willebrand domain-contain-
ing proteins and adhesin-like proteins. Contrast-
ingly, some fragments exhibiting von Willebrand
domains showed elevated expression, whereas most
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were down-regulated in our experiment following
iron addition. Considering, that colony formation
could be observed after 72 h of iron supplementa-
tion, the involvement of other fragments in the
buildup of mucus and colony skin is implicated as
well.

Interestingly, a large number of genes (290)
involved in motility and cytoskeleton structures were
down-regulated after iron addition (Table J in
Appendix S1). The reduced expression of motor
proteins such as myosin, dynein and flagellar pro-
teins coincides with an enhanced frequency of col-
ony formation, where the cells lose motility.
However, it may also be indicative of lessened
phagotrophy and/or membrane trafficking after
iron addition, as genes involved in motility, actin
polymerization, vesicle transport and possibly adhe-
sion are known to have a role in exocytic/endocytic
processes such as secretion or phagocytosis (Rupper
and Cardelli 2001). Indeed, ISIP 2A proteins, which
concentrate iron on the cell surface, have been
shown to be internalized by endocytosis in the dia-
tom Phaeodactylum tricornutum (McQuaid et al. 2018).
Reduced expression of ISIP 2A genes after iron sup-
plementation could have resulted in reduced fre-
quency of endocytosis in Phaeocystis antarctica, along
with lessened glucan secretion, leading to the
observed gene expression pattern. Alternatively, the
reduced expression of genes involved in cytoskeleton
structures after iron addition may reflect a reduction
in the mixotrophic growth mode. Mixotrophy
describes the ability of an organism to use different
trophic modes of acquiring macronutrients such as
carbon and nitrogen, or trace metals such as iron
(Verity et al. 2007, Stoecker et al. 2017, Villanova
et al. 2017), allowing for sustained growth even
under limiting condition (Stoecker et al. 2017). Evi-
dence of mixotrophy has been found in diatoms
(Villanova et al. 2017) and prymnesiophytes (Till-
mann 2004, Stoecker et al. 2017). These results call
for an investigation of mixotrophic behavior in soli-
tary P. antarctica under low iron.
Phaeocystis antarctica is well adapted to low iron con-

ditions. There is a number of adaptive strategies of
SO phytoplankton species, including Phaeocystis
antarctica, to combat iron limitation (Strzepek et al.
2011, 2019). In this study, we pinpoint three differ-
ent possible adaptive strategies.

First, the utilization of iron-free functional alter-
natives of iron-rich proteins under iron scarcity can
be stated as an adaptive approach. This is widely
used in temperate and low-iron-adapted organisms
(Strzepek and Harrison 2004); including a non-
colony-forming Phaeocystis antarctica strain (Koch
et al. 2019). Examples include the up-regulation of
flavodoxin and plastocyanin substituting for ferre-
doxin and the small heme-containing protein cyto-
chrome c6, respectively, which we observed in P.
antarctica immediately after iron addition (Table D
in Appendix S1). This response was also observed in

haptophytes shortly after iron addition by Marchetti
et al. (2012).
Second, an additional strategy to the well-estab-

lished “iron limitation survival kit” proteins is the
activation of iron-dependent and iron-independent
isoforms of pivotal metabolic enzymes according to
the change in iron conditions (Raven 1988). For
example, different isoforms of fructose-bisphosphate
aldolase were found in Thalassiosira oceanica; operat-
ing either with a metal cofactor (class II) or through
a Schiff-base catalysis (class I) depending on iron
availability (Lommer et al. 2012), allowing for quick
acclimation to iron scarce/rich environments. More-
over, flavodoxin was suggested as an electron carrier
in plastidic processes such as FA desaturation in
iron-limited diatoms (Whitney et al. 2011). We
observed differential expression of several genes
involved in plastidic pathways such as nitrogen/sul-
fur assimilation (specifically NiR and GS), and FA
desaturation under changing iron conditions
(Table G in Appendix S1). Different isoforms of GS
and NiR were reported to be expressed in diatoms
as well. Metatranscriptomics showed that in diatoms
both NADPH-dependent and ferredoxin-dependent
GS were up-regulated after iron enrichment (March-
etti et al. 2012), while NADPH-dependent and ferre-
doxin-dependent NiR were alternately expressed
under changing iron conditions (Marchetti et al.
2012). Additionally, no haptophyte nitrate assimila-
tion genes were detected, and it was suggested that
haptophytes channel newly acquired iron into pho-
tosynthesis rather than nitrate assimilation (March-
etti et al. 2012). Contrastingly, in our experiment,
nitrate assimilation genes were differentially
expressed under low and high iron in Phaeocystis
antarctica.
Lastly, we postulate mixotrophy as a possible

growth mode of iron-limited solitary Phaeocystis
antarctica based on enhanced expression of motility
and endocytosis-related genes under iron limitation.
This feeding mode was also observed in other hap-
tophytes (Tillmann 2004, Stoecker et al. 2017) and
was suggested to be active in Phaeocystis to overcome
limited photosynthetic capacity under prolonged
periods of starvation, for instance in winter (Verity
et al. 2007), facilitating the uptake of macronutri-
ents and trace elements.
Based on our results, iron addition has led to the

up-regulation of photosynthesis genes as well as
nitrate assimilation genes simultaneously. It was
beyond the scope of this study to resolve which pro-
cess had the higher priority, a question which may
be answered through time points at a finer resolu-
tion. However, what can be concluded is that shunt-
ing iron toward photosynthesis allows for better
photosynthetic efficiency consequently facilitating
increased production of reducing equivalents and
ATP and therefore a better energy state of the cell.
Moreover, as a baseline of the reducing equivalent
NADPH is necessary for nitrate assimilation,
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Phaeocystis antarctica investing iron into photosynthe-
sis first and nitrogen assimilation second would be a
reasonable prioritization of processes, especially if
this species is capable of mixotrophic growth.

CONCLUSIONS

Our results suggest that iron-limited Phaeocystis
antarctica invests in iron acquisition through a Cu-
dependent ferric reductase system, and that the
majority of iron seems to be directed toward mito-
chondrial processes. Also, our results demonstrate
that P. antarctica actively uses a number of adap-
tive mechanisms to alleviate iron limitation, such
as activating iron-economic functional homologs
for nitrite reduction and possibly fatty acid biosyn-
thesis. As well, P. antarctica uses adaptive strategies
such as expressing plastocyanin and flavodoxin
under limited iron availability, Finally, the results
suggest that P. antarctica relies on heterotrophic
nutrition through phagocytosis. Phaeocystis antarc-
tica responds to iron enrichment by enhancing
photosynthetic capacity, a major limiting factor for
nitrate assimilation, and consequently perhaps col-
ony formation. A linearity in metabolic changes/
shifts in response to added iron was observed in
some processes (e.g., iron uptake and transfer)
and our observations suggest that the adaptive fea-
tures enable Phaeocystis antarctica to thrive in an
environment characterized by chronic iron limita-
tion.
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genes (log transformed).
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Approximately Unbiased p-value; BP: Bootstrap
Probability value). The bootstrap clustering has
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lation and principal component analysis (data not
shown). Principal component analysis showed repli-
cate 1 at 24 h as outlier and we eliminated it from
downstream differential expression analysis.

Figure S3. K-mean clustering of DEGs in Phaeo-
cystis antarctica against time. The gray lines repre-
sent the mean expression of each gene. These
means were calculated for the normalized gene
expression values of the replicates at each time-
point (i.e., log2[mean(fpkm) + 1], scaled to med-
ian). The colored dots represent the mean
expression profile of the DEGs within a cluster.

Appendix S1. Analysis of DEGs. Results of GO
enrichment analysis of DEGs in table A, eggNOG
categories in table B, and biological process-specific
DEGs in tables C–M.
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Aufdeckung von Arzneimittel-
risiken nach der Zulassung
Methodenentwicklung zur Nutzung von
Routinedaten der gesetzlichen
Krankenversicherungen

Einleitung

Basierend auf denZahlen einerMetaana-
lyse aus den USA wurde geschätzt, dass
unerwünschte Arzneimittelwirkungen
(UAW) zu den 4–6 häufigsten Todes-
ursachen in den USA zählen [1]. Ei-
nem jüngeren Bericht der Europäischen
Kommission zufolge sind europaweit
jährlich 100.800–197.000 Todesfälle und
ca. 3–10% der Krankenhauseinweisun-
gen auf UAW zurückzuführen [2]. Bei
älteren Patienten wird der Anteil der
Krankenhauseinweisungen aufgrund
von UAW sowohl auf europäischer Ebe-
ne als auch weltweit auf 5–10% geschätzt
[3, 4]. Ein ähnlicher Anteil wird auch
für Deutschland berichtet [5]. Immer
wieder kommt es zu Marktrücknahmen
auch häufig verwendeter Arzneimittel
aus Sicherheitsgründen, da schwerwie-
gende UAW in den klinischen Studien
vor der Zulassung nicht erkannt wurden.
Beispielsweise geht man davon aus, dass
in dem Zeitraum, in dem Vioxx (Merck,
New Jersey, USA; Wirkstoff Rofecoxib)
verschrieben wurde, allein in Deutsch-
land mehrere Tausend Personen UAW
(u. a. Myokardinfarkte) erfahren haben
[6, 7]. Aufgabe der Pharmakovigilanz
ist es, durch die systematische Über-
wachung von Arzneimitteln nach der
Zulassung solche zum Zeitpunkt der

Zulassung noch unbekannten Risiken
aufzudecken.

Die Pharmakovigilanz in Europa,
wie auch in vielen anderen Ländern,
beruht primär auf spontanen Verdachts-
meldungen von einer möglichen UAW.
Zur Sammlung dieser Fallberichte wur-
de gemäß der 2012 in Kraft getretenen
Gesetzgebung der Europäischen Union
ein bei der europäischen Arzneimittel-
agentur (EMA) angesiedeltes, zentrales
Spontanmelderegister von möglichen
UAW, die sog. EudraVigilance-Daten-
bank, geschaffen. An dieses Register
müssen alle Verdachtsfälle von Arznei-
mittelnebenwirkungen durch die phar-
mazeutische Industrie gemeldet werden.
Ärztinnen und Ärzte in Deutschland
sind per Berufsordnung verpflichtet, die
ihnen aus ihrer ärztlichen Behandlungs-
tätigkeit bekannt werdenden UAW der
Arzneimittelkommission der deutschen
Ärzteschaftmitzuteilen [8]. Dieses Fach-
gremium leitet die Meldungen an das
Bundesinstitut für Arzneimittel undMe-
dizinprodukte (BfArM) weiter, das als
zuständige Bundesoberbehörde die Da-
ten in EudraVigilance einpflegt [9, 10].
Im November 2017 wurde dementspre-
chend das in Deutschland am BfArM
angesiedelte Register geschlossen und
in die EudraVigilance-Datenbank über-
führt. Die in dieser Datenbank kumu-
lierten Informationen zu Expositionen

(Arzneimitteln) und Ereignissen (ver-
muteten UAW) werden anhand speziell
entwickelter Algorithmen analysiert, um
potenzielle Sicherheitsrisiken („Signale“)
zu entdecken. Eine vereinfachte Darstel-
lung des Prozesses zur Signalerkennung
findet sich in. Abb. 1, in der auch einige
gängige Verfahren zur Signalerkennung
aufgeführt sind, auf die in den nächsten
Abschnitten zum Teil noch eingegangen
wird.

Allerdings unterliegen Spontanmel-
dedaten zur Identifizierung potenzi-
eller Sicherheitsrisiken einigen in der
Literatur ausführlich dokumentierten
Limitationen [12, 13]. So werden nur
ca. 5–10% der Arzneimittelwirkungen
tatsächlich gemeldet, wodurch sich ein
erhebliches „Underreporting“ ergibt.
Dies betraf auch den Verdacht auf mög-
liche UAW bedingt durch Vioxx, der erst
durch die Nutzung von Routinedaten
für Pharmakovigilanzzwecke aufkam
[6]. Umgekehrt kann es aber auch zu
einem „Overreporting“ kommen, wenn
ein Ereignis von verschiedenen Stellen
mehrfach gemeldet wird. Ein grund-
legendes Problem ergibt sich zudem
dadurch, dass in Spontanmelderegistern
die Anzahl der Exponierten unbekannt
ist, sodass die relative Häufigkeit von
Ereignissen nicht ermittelt werden kann
[14, 15].
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Abb. 19 Schematische
Darstellung des Prozes-
ses zur Signalerkennung.
UAWUnerwünschte Arz-
neimittelwirkung, PRR Pro-
portional Reporting Ratio,
ROR ReportingOdds Ra-
tio, (M)GPS (Multiitem)
Gamma-Poisson Shrinker,
BCPNN Bayesian Confi-
dence PropagationNeural
Network, ICTPD Informati-
on Component Temporal
PatternDiscovery, SPRT Se-
quential Probability Ratio
Test, SCCS Self-controlled
Case Series. (Übersetzte
Abbildung aus [11], ©
M. Suling, I. Pigeot. Die Ab-
bildung ist lizenziert unter
der Creative Commons
Attribution License 3.0
[https://creativecommons.
org/licenses/by/3.0/]).

Vor diesem Hintergrund stellt die
Etablierung eines Systems zur Unter-
suchung der Arzneimittelsicherheit (als
Ergänzung zu Spontanmelderegistern),
das auf der Nutzung von Versicherten-
daten basiert, ein wertvolles Instrument
dar, das einen bedeutenden Beitrag zur
Patientensicherheit in der Versorgung
leisten kann [16, 17]. Die Routinedaten
bieten Informationen zu den abgegebe-
nen Arzneimitteln und zum Auftreten
von Diagnosen mit einer kalendarischen
Zeitangabe [18]. Insbesondere Kranken-
hauseinweisungennachArzneimittelver-
schreibung können als Informationen
über mögliche schwere UAW dienen.

In diesemmethodischen Artikel wer-
den Verfahren zur Signalerkennung
in Abrechnungsdaten der gesetzlichen
Krankenversicherungen (GKV) vorge-
stellt, wobei schwerpunktmäßig neue
Konzepte diskutiert werden. Diese sol-
len dazu beitragen, drei Kernprobleme
von Arzneimittelsicherheitsstudien zu
lösen: (1) Verminderung der Anzahl
falsch-positiver Signale, (2) Identifikati-
on seltenerRisikenund (3) Identifikation
von Bevölkerungsgruppen mit erhöh-

tem Risiko. Als zentrale Datenbank wird
die deutsche pharmakoepidemiologi-
sche Forschungsdatenbank (GePaRD)
herangezogen, die zurzeit bundesweite
Abrechnungsdaten von mehr als 24Mio.
Versicherten von vier GKVen der Jah-
re 2004 bis 2015 umfasst (u. a. [18]).
In der abschließenden Diskussion wird
zusammenfassend aufgezeigt, wie die
verschiedenen Methoden der Signal-
erkennung zum Nutzen potenzieller
Betroffener eingesetzt werden können.

Methoden der Signalerkennung

Die statistischen Methoden der Phar-
makovigilanz wurden hauptsächlich für
die Auswertung von Spontanmeldedaten
entwickelt. Um die Vorteile von Routi-
nedaten zu nutzen, werden statistische
Methoden weiterentwickelt, die sich bei
der Auswertung von sehr großen und
strukturierten Datenmengen (wie z.B.
bei genetischen Auswertungen) bewährt
haben.

Methoden für Spontanmelde-
daten und ihr Potenzial
für Abrechnungsdaten der
Krankenkassen

DieHauptaufgabe der Pharmakovigilanz
ist die Detektion von bisher unbekann-
ten Assoziationen zwischen Arzneimit-
teln und UAW. Die folgende Darstel-
lung der Methoden der Pharmakovigi-
lanz folgt dem Prozess der Datenaufar-
beitung bis hin zu den berichteten Si-
gnalen (. Abb. 1): Zu Beginn werden die
in dem Register vorliegenden Meldun-
gen zu Arzneimitteln und UAW für eine
weitergehende Verarbeitung (Schritt: Si-
gnalgenerierung) aufbereitet. Bei der an-
schließenden Signalprüfung werden die
vorgefundenen UAW-Meldungen, die in
Zusammenhang mit einemMedikament
stehen, gelistet, auf medizinische Plausi-
bilität überprüft und nach Schweregrad
priorisiert (Triage). Den Abschluss des
ProzessesstelltdieEntscheidungdar,wel-
cheSchrittederSignalprüfung folgensol-
len: Entweder wird das Sicherheitsrisiko
des Signals als so hoch eingestuft, dass
umgehend eine konfirmatorische Studie
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Aufdeckung von Arzneimittelrisiken nach der Zulassung. Methodenentwicklung zur Nutzung von
Routinedaten der gesetzlichen Krankenversicherungen

Zusammenfassung
Unerwünschte Arzneimittelwirkungen zählen
zu den häufigen Todesursachen. Aufgabe
der Pharmakovigilanz ist es, Arzneimittel
nach der Zulassung zu überwachen, um
so mögliche Risiken aufzudecken. Zu
diesem Zweck werden typischerweise
Spontanmelderegister genutzt, an die u. a.
Ärzte und pharmazeutische Industrie Berichte
über unerwünschte Arzneimittelwirkungen
(UAW) melden. Diese Register sind jedoch
nur begrenzt geeignet, um potenzielle
Sicherheitsrisiken zu identifizieren. Eine
andere, möglicherweise informativere
Datenquelle sind Abrechnungsdaten der
gesetzlichen Krankenversicherungen (GKV),
die nicht nur den Gesundheitszustand eines
Patienten im Längsschnitt erfassen, sondern

auch Informationen zu Begleitmedikationen
und Komorbiditäten bereitstellen.
Um deren Potenzial nutzen zu können und so
zur Verbesserung der Arzneimittelsicherheit
beizutragen, sollen statistische Methoden
weiterentwickeltwerden, die sich in anderen
Anwendungsgebieten bewährt haben. So
steht eine große Bandbreite von Methoden für
die Auswertung von Spontanmeldedaten zur
Verfügung: Diese sollen zunächst umfassend
verglichen und anschließend hinsichtlich ihrer
Nutzbarkeit für longitudinale Daten erschlos-
senwerden. DesWeiterenwird aufgezeigt, wie
maschinelle Lernverfahren helfen könnten,
seltene Risiken zu identifizieren. Zudem
werden sogenannte Enrichment-Analysen
eingesetzt, mit denen pharmakologische

Arzneimittelgruppen und verwandte
Komorbiditäten zusammengefasst werden
können, um vulnerable Bevölkerungsgruppen
zu identifizieren.
Insgesamt werden diese Methoden die
Arzneimittelrisikoforschung anhand von GKV-
Routinedaten vorantreiben, die aufgrund
ihres Umfangs, der longitudinalen Erfassung
sowie ihrer Aktualität eine vielversprechende
Datenquelle bieten, um UAWs aufzudecken.

Schlüsselwörter
Unerwünschte Arzneimittelwirkungen ·
Patientensicherheit · GKV-Abrechnungsdaten ·
Signalerkennung · Spontanmelderegister

Detection of drug risks after approval. Methods development for the use of routine statutory health
insurance data

Abstract
Adverse drug reactions are among the leading
causes of death. Pharmacovigilance aims to
monitor drugs after they have been released
to the market in order to detect potential
risks. Data sources commonly used to this end
are spontaneous reports sent in by doctors
or pharmaceutical companies. Reports alone
are rather limitedwhen it comes to detecting
potential health risks. Routine statutory
health insurance data, however, are a richer
source since they not only provide a detailed
picture of the patients’ wellbeing over time,
but also contain information on concomitant
medication and comorbidities.

To take advantage of their potential and to
increase drug safety, we will further develop
statistical methods that have shown their
merit in other fields as a source of inspiration.
A plethora of methods have been proposed
over the years for spontaneous reporting
data: a comprehensive comparison of these
methods and their potential use for longitudi-
nal data should be explored. In addition, we
show how methods from machine learning
could aid in identifying rare risks. We discuss
these so-called enrichment analyses and how
utilizing pharmaceutical similarities between
drugs and similarities between comorbidities
could help to construct risk profiles of the

patients prone to experience an adverse drug
event.
Summarizing these methods will further push
drug safety research based on healthcare
claim data from German health insurances
which form, due to their size, longitudinal
coverage, and timeliness, an excellent basis
for investigating adverse effects of drugs.

Keywords
Drug-related side effects and adverse
reactions · Patient safety · Health claim data ·
Signal detection · Adverse drug reaction
reporting systems

durchgeführt werden sollte, oder es wird
eineÜberwachungder gemeldetenUAW
als notwendig erachtet.

Grundlegend lassen sich im Rahmen
der Pharmakovigilanz als potenzielle
Datenquellen die bereits angesproche-
nen Spontanmelderegister sowie die in
den gesetzlichen Krankenkassen vor-
liegenden Routinedaten nennen. Der
Großteil der vorgeschlagenen statisti-
schen Methoden beruht auf Daten aus
Spontanmelderegistern. Viele Verfah-
ren basieren auf sogenannten Dispro-

portionalitätsanalysen, bei denen aus
den eingegangenen Meldungen für jede
Kombination aus einem Arzneimittel
und einem Ereignis (z.B. Schlaganfall)
eine Vierfeldertafel (s. . Tab. 1) erstellt
wird. Für jede dieser Kombinationen
wird basierend auf der entsprechenden
Vierfeldertafel ein „Risikomaß“ berech-
net, das als Indikator für die Stärke einer
potenziellen UAW dient. Zu diesen
Maßen gehört z.B. das Reporting Odds
Ratio (ROR; [19]), das sich als ROR =

ad
bc

aus der . Tab. 1 berechnet und – grob

gesprochen–die geschätzteWahrschein-
lichkeit, dass ein bestimmtes Ereignis
unter Einnahme eines spezifischen Arz-
neimittels eintritt, mit der geschätzten
Wahrscheinlichkeit vergleicht, dass die-
ses Ereignis unter Nichteinnahme dieses
Medikaments eintritt. Dieses und andere
einfache Risikomaße können bei einer
sehr kleinen Anzahl an Ereignissen zu
sehr hohen Werten führen, die dann
fälschlicherweise als UAW angesehen
würden. Solche falsch-positiven Signa-
le können auch durch die simultane
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Tab. 1 Vierfeldertafel –Anzahl derMeldungenmit einer bestimmtenKombination aus Ereignis
(Ja/Nein) undArzneimittel (Ja/Nein)

Kombination Ereignis Gesamt

Ja Nein

Arzneimittel Ja a b a+ b

Nein c d c+ d

Gesamt a+ c b+ d a+ b+ c+ d

Überprüfung (sog. multiples Testpro-
blem) von ggf. sehr vielen Risikomaßen
entstehen. Betrachtet man etwa Kom-
binationen aus 1000 Arzneimitteln und
1000 Ereignissen, müssen aus einer Mil-
lion Vierfeldertafeln die entsprechenden
Risikomaße berechnet und inferenzsta-
tistisch überprüft werden.

Um falsch-positive Signale zu vermei-
den, wurden aufwendigere bayesianische
Verfahrenentwickelt,diedieRisikoschät-
zung bei kleinen Ereignisanzahlen nach
unten korrigieren (Shrinkage-Verfah-
ren; [20–22]). Zwei der gebräuchlichsten
Verfahren sind der Gamma-Poisson
Shrinker [20], der bei der Food and
Drug Administration (FDA) in den
USA zum Einsatz kommt, und das Baye-
sian Confidence Propagation Neural
Network (BCPNN; vgl. [21, 22]), das
von der Weltgesundheitsorganisation
(WHO) im Uppsala Monitoring Centre
(UMC) in Schweden eingesetzt wird.

Neben diesen Ansätzen werden fre-
quentistische Hypothesentests [19, 20,
23], penalisierteRegressionsmodelle [24]
sowie Assoziationsmaße [25] und weite-
re bayesianische Verfahren [26, 27] in
der Literatur zur Signalgenerierung dis-
kutiert.

Um GKV-Routinedaten zu Zwe-
cken der Pharmakovigilanz nutzen zu
können, müssen geeignete Methoden
für den Einsatz bei Längsschnittdaten
weiterentwickelt werden. Dazu ist es
sinnvoll, aus den gängigsten Metho-
den zur Signalgenerierung zunächst die
hinsichtlich der Reduzierung falsch-
positiver Signale vielversprechendsten
Ansätze zu identifizieren. Zu diesem
Zweck wird ein umfangreicher Metho-
denvergleich durchgeführt, in dem für
unterschiedliche Szenarien die im Spon-
tanmelderegister eingehenden Signale
statistisch simuliert werden.

Identifikation seltener UAW mit
maschinellen Lernverfahren

Neben den im vorhergehenden Ab-
schnitt diskutierten gängigen Methoden
der Pharmakovigilanz ist zu überlegen,
ob die Arzneimitteltherapiesicherheit
nicht auch von den in anderen Fach-
gebieten sehr erfolgreich eingesetzten
maschinellen Lernverfahren profitieren
kann. Diese dort eingesetzten Algorith-
men versuchen, Muster in Lerndaten zu
erkennen und mit dem generierten Wis-
sen unbekannte Daten zu beschreiben
oder Ergebnisse vorherzusagen. Es gibt
eine Vielzahl maschineller Lernalgorith-
men. Zwei prominente Verfahren sind
Deep Learning und Random Forest.

DeepLearning isteineWeiterentwick-
lung der biologisch motivierten künst-
lichen neuronalen Netze mit besonders
vielen und neuronenreichen internen
Nervenzellschichten.DieOptimierungs-
methodewird u. a. sehr erfolgreich in der
Sprach- [28] oder Bilderkennung [29]
eingesetzt. Deep-Learning-Algorithmen
haben in der Regel eine deutlich höhere
Klassifikationsgenauigkeit als etablier-
te multivariate Klassifikationsverfahren
[30] und eignen sich insbesondere da-
für, nichtlineare, hochkomplexe Zusam-
menhänge selbstständig zu erkennen
und abzubilden. Bekannte Nachteile des
Deep-Learning-Ansatzes sind die hohen
Anforderungen an eine performante
Hardware, das Blackbox-Problem (man-
gelnde Möglichkeit, die inneren Abläufe
und somit das Ergebnis neuronalerNetze
erklären zu können) sowie die fehlen-
de Universalität: Deep-Learning-Netze
werden in der Regel problemspezifisch
entwickelt und angepasst. Dafür müssen
der Netzwerktyp, die Netzwerkstruk-
tur und die Lernregel ausgewählt sowie
viele weitere „Stellschrauben“ adjustiert
werden wie etwa die Lernrate oder das
Momentum. Dieses Feintuning erfolgt

durch einen Experten und eignet sich
nicht für die angestrebte automatisierte
Signalerkennung seltener UAW. Im Fo-
kus steht daher die Entwicklung eines
universellen Deep-Learning-Algorith-
mus für die Pharmakovigilanz.

Deep Learning wird auf den Routi-
nedaten so implementiert, dass zunächst
für alle Versicherten geprüft wird, ob die
Entstehung bestimmter ausgewählter
UAW unter Einfluss des zu untersu-
chenden Wirkstoffs erfolgte. Zusätzlich
werden die wichtigsten verfügbaren
Informationen aus dem jeweiligen In-
dexjahr hinzugefügt: Alter, Geschlecht,
Codierung der Diagnose nach ICD (In-
ternational Statistical Classification of
Diseases and Related Health Problems),
OPS (Operationen- und Prozeduren-
schlüssel), ATC (Anatomical Thera-
peutic Chemical Classification), EBM
(Einheitlicher Bewertungsmaßstab) etc.,
um mögliche Confounder (Störgrößen)
zu berücksichtigen. Mit all diesen Va-
riablen wird das Deep-Learning-Netz
trainiert, in neuen Daten die UAW vor-
herzusagen und die Klassifikationsgüte
des Deep-Learning-Netzes zu bestim-
men. Nach erfolgtem Lernen wird die
Einnahme des zu untersuchendenWirk-
stoffs bei allen Patienten auf null gesetzt
(„geclampt“) und erneut eine Messung
der Klassifikationsgüte durchgeführt.
Final gelten diejenigen gelisteten UAW
als potenzielle Signale, bei denen das
Clamping zur stärksten Verringerung
der Klassifikationsgüte führte.

Zur Identifikation vonUAWkann ne-
ben Deep Learning alternativ auch ein
Random Forest eingesetzt werden, bei
dem es sich um ein robustes maschi-
nelles Lernverfahren mit hoher Klassi-
fikationsgenauigkeit handelt. Ein Vorteil
gegenüber Deep Learning ist, dass zum
Trainieren eines Random Forest weniger
Feintuning nötig ist. Darüber hinaus ist
keine Vorauswahl der möglichen UAW
nötig, alle Diagnosen können gemein-
sam in einem Modell analysiert werden.
Hierfür wird eine sogenannte Self-con-
trolled-Case-Series-Analyse [31] durch-
geführt. Dabei werden alle Versicherten
betrachtet, bei denen mindestens eine
Verschreibung des interessierenden Arz-
neimittels vorliegt. Für alle Versicherten
werden zwei Datensätze erstellt, jeweils
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Abb. 28 Ablauf einer Enrichment-Analyse zumAuffinden funktionaler Targets (basierend auf den
RoutinedatenderGesetzlichenKrankenversicherungen),dieunterArzneimittelanwendernmitUnver-
träglichkeiten assoziiert sind. Eswerden biologische und chemische Onlinedatenbanken verwendet
(z. B. Kyoto Encyclopedia ofGenes andGenomes (KEGG) [40], Search Tool for Interactions of Chemicals
(STITCH) [44], Therapeutic Target Database (TTD) [45]), um zu untersuchen, ob die Arzneimittel und
Erkrankungen, die einembestimmten funktionalen Target zugeordnet sind,mit der unerwünschten
Arzneimittelwirkung (UAW) assoziiert sind.ATCAnatomisch-Therapeutisch-Chemisches Klassifikati-
onssystem, ICD International Statistical Classification of Diseases and RelatedHealth Problems

für die Zeit vor und nach der ersten Ver-
schreibung. Für diese Datensätze wer-
den jeweils alle Diagnosen (ICD-10) und
Verschreibungen (ATC) sowie mögliche
Confounder betrachtet. Auf diesen Da-
ten wird ein Random Forest trainiert,
die biaskorrigierte Variablenwichtigkeit
für jede Diagnose berechnet sowie ein p-
Wert geschätzt, basierend auf der Null-
hypothese, dass keine Assoziation zwi-
schen Diagnose und Verschreibung vor-
liegt. Alle signifikant assoziierten Dia-
gnosenwerdennachderEffektstärke sor-
tiert. Die Richtungen der Effekte werden
aus Vierfeldertafeln geschätzt. Das Er-
gebnis dieser Analyse ist eine Rangliste
detektierter Signale möglicher UAW.

Beschreibung von UAW-
Risikoprofilen

Eine wichtige, aber in Arzneimittelsi-
cherheitsstudien oft nicht beantwortete
Frage ist, ob bestimmte Bevölkerungs-
gruppen ein erhöhtes Risiko für eine

spezifische UAW aufweisen. Die Ver-
träglichkeit eines Arzneimittels ist von
Person zu Person unterschiedlich und
wird individuell durch verschiedene
Faktoren beeinflusst, wie beispielsweise
durch die genetische Ausstattung [32,
33], das Mikrobiom [34], den Lebensstil
(bspw. Ernährung, Alkohol, Rauchen;
[35]), durch den allgemeinen Gesund-
heitszustand [36] oder durch Komedika-
tion [37]. Unterschiedliche Arzneimittel
können jedoch die gleichen UAW aus-
lösen, u. a. wenn diese einen ähnlichen
unerwünschten Effekt besitzen (z.B. Hy-
poglykämie als Folge vonunterschiedlich
wirkenden Antidiabetika) oder ähnli-
che Wirkmechanismen aufweisen (z.B.
hemmen sowohl Antidepressiva als auch
Antipsychotika Muskarinrezeptoren,
was zu Harnverhalt als UAW führen
kann).

Um die oben erwähnten Hochrisiko-
patienten zu identifizieren, besteht ein
mögliches Vorgehen darin, zunächst al-
le Versicherten, die ein bestimmtes Me-

dikament verschrieben bekommen ha-
ben und eine spezifische UAW aufwei-
sen, hinsichtlich ihrer Komedikation zu
untersuchen. Konkret wird geprüft, ob
dieseVersichertenMedikamente einneh-
men, die zu einer für die UAW rele-
vanten pharmakologischen Gruppe ge-
hören. In einem weiteren Schritt wird
geprüft, ob das Kollektiv derjenigen Ver-
sicherten, die unter Einnahme des in-
teressierenden Medikaments eine UAW
erleiden, im Vergleich zu dem entspre-
chenden Kollektiv ohne UAW unerwar-
tet viele weitere Risikofaktoren aufweist
(engl. „enriched“). Diese Risikofaktoren
werden schließlich zu einemRisikoprofil
gebündelt, wodurch die einzelnen, ggf.
sehr kleinen Effekte der jeweiligen Ri-
sikofaktoren kumuliert werden, was die
Prognose einer UAW erleichtert.

Diese Bündelung von Risikofaktoren
wird häufig auch als „Enrichment“ be-
zeichnet,wobei derBegriff „Enrichment-
Analyse“ zwar aus der genetischen For-
schung stammt, das Prinzip aber auch
in der Pharmakologie angewandt wird,
umUAWbasierend aufmolekularenTar-
getsvorherzusagen[38,39].DieseTargets
können durch unterschiedliche Arznei-
mittel aktiviert werden, die eine hohe
pharmakologische Ähnlichkeit aufwei-
sen. Das gilt besonders für Arzneimittel
derselben Wirkstoffklasse.

In der genetischen Epidemiologie
bündeln Gene-Set-Enrichment-Ana-
lysen (GSEA) Gene oder Proteine in
funktionale Gruppen und untersuchen,
welche dieser Gruppen mit der Erkran-
kungassoziiert sind.DieEinordnungvon
Genen in solche funktionalen Gruppen
erfolgt mittels entsprechenderOnlineda-
tenbanken (z.B. KEGG [40], GO [41]).
Mittlerweile gibt es vielfältige Strategien
für GSEA [42], u. a. auch topologieba-
sierte Verfahren. Diese berücksichtigen
zusätzlich, inwiefern Gene aus einer
funktionalen Gruppe gemeinsam ex-
primiert werden [43]. Der Vorteil von
GSEA ist, dass sie Einblicke in den bio-
logischen Kontext multipler genetischer
Risikofaktoren bieten und damit auch
Ideen für Krankheitsmechanismen und
mögliche Behandlungsansätze liefern
können. Allerdings sind die Ergebnis-
se stark abhängig von der Definition
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der Gengruppen und werden daher als
hypothesengenerierend verstanden.

Bei der Charakterisierung von UAW-
Risikoprofilen sollen Enrichment-Ana-
lysen helfen, die pharmakologisch rele-
vantenGruppen zu identifizieren, die bei
Patienten, die ein bestimmtesArzneimit-
tel einnehmen, mit einer UAW assoziiert
sind. Dafür werden Arzneimittel und
Erkrankungen in funktionale Targets
(z.B. Rezeptoren, Enzyme, molekulare
Prozesse, Wirkstoffklassen, höhere Ebe-
nen der ICD-Codierung) anhand der
einschlägigen Onlinedatenbanken (z.B.
KEGG Drug, STITCH [44], TTD [45],
ChEMBL [46]) eingruppiert. Dabei kann
die pharmakologische Ähnlichkeit von
Arzneimitteln innerhalb eines Targets
bspw. anhand des Chemical-Similarity-
Scores [47] bewertet werden und die
Information, welche Erkrankungen häu-
figer miteinander auftreten, durch den
Cormobidity-Score [48] berücksichtigt
werden. Die Anwendung der Enrich-
ment-Analyse in der Pharmakovigilanz
wird in . Abb. 2 illustriert.

Mit einer auf Routinedaten zuge-
schnittenenEnrichment-Methodekönn-
ten daher die funktionalen Targets iden-
tifiziert werden, die ein erhöhtes UAW-
Risiko aufweisen. Das hilft, einerseits
den biologischen Mechanismus hinter
der UAW zu erklären und andererseits
Risikoprofile für vulnerable Bevölke-
rungsgruppen zu erstellen, die in diesen
funktionalenTargetsmitentsprechenden
Komedikationen oder Komorbiditäten
„enriched“ sind.

Diskussion

Die Nutzung von Versichertendaten
für die Pharmakovigilanzforschung er-
scheint äußerst vielversprechend, be-
inhaltet aber auch einige Herausfor-
derungen, insbesondere da die gesam-
melten Routinedaten der GKVen nicht
für Forschungszwecke, sondern für die
Abrechnung erbrachter Leistungen im
Gesundheitswesen erhoben werden. Die
sich daraus ergebenden Unschärfen und
mögliche Fehler in den Daten können in
konfirmatorischen pharmakoepidemio-
logischen Studien basierend auf solchen
Datenbanken z.B. durch ein geeignetes
Studiendesign und entsprechende Me-

thoden berücksichtigt werden. Will man
diese Daten, wie oben beschrieben, für
automatisierte Signalgenerierungsstudi-
en nutzen, ist dies nicht zu leisten.

Hier müssen andere Lösungen wie
die vorgestellten automatisierten Lern-
verfahren gefunden werden. Dabei grei-
fen die obigen methodischen Weiterent-
wicklungen insbesondere drei wesent-
liche Probleme der Arzneimittelsicher-
heitsforschungauf: (1)Falsch-positiveSi-
gnale können zu einer Verunsicherung
vonPatienten, aber auch vonÄrzten füh-
ren und somit eine adäquate Versorgung
gefährden. (2) Häufig reichen die Fall-
zahlen in pharmakoepidemiologischen
Studien nicht aus, um auch seltene Er-
eignisse mit einer vorgegebenen statis-
tischen Sicherheit zu erkennen, was zu
einer falschen Einschätzung des Gefähr-
dungspotenzials durch ein Arzneimittel
führen kann. (3) Es ist bekannt, dass Arz-
neimittelrisiken nicht in gleichem Maße
bei jedem Patienten auftreten. Dennoch
können identifizierte Risiken zu einer
Marktrücknahme führen, die für Pati-
enten, bei denen das Medikament keine
Schädenhervorgerufenhat, eine schlech-
tere Versorgung zur Folge hat. Damit ist
die Erkennung von Risikoprofilen essen-
ziell für eine bessere Einschätzung des
Gefährdungspotenzials von Arzneimit-
teln.

Nicht zuletzt bedeutet eine syste-
matischere Erfassung von potenziellen
UAW in Anbetracht der Datenmenge
eine große Zeit- und Kostenersparnis im
Gesundheitswesen. Durch Automatisie-
rungsprozesse in der Datenverarbeitung
könnte die Effizienz der Signalgenerie-
rung in Zukunft gesteigert werden.

Fazit

Aufgrund des Umfangs, der Kontinui-
tät und der standardisierten Erfassung
erscheint die Nutzung von GKV-Routi-
nedaten für die Pharmakovigilanzfor-
schung zur Verbesserung der Qualität
der Pharmakotherapie überaus attrak-
tiv. Dabei kommt der Erkennung von
falsch-positiven Signalen und seltenen
UAW sowie der Ermittlung von spezi-
fischen Risikoprofilen eine besondere
Bedeutung zu. Auch für zukünftige Fra-

gestellungen dürften Routinedaten
noch viel Potenzial bieten.
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Abstract

Word count: 248 words

Background: Adverse drug reactions (ADRs) represent a burden on health care systems. Identifying populations

at increased risk based on co-administered drugs and co-morbidities requires ADR prediction and risk factor

identification from comprehensive sources such as health care claims databases. We present a strategy for

predicting ADRs, grouping drug and disease predictors according to their biological functional targets (FTs),

basing ADR prediction on group-ADR associations. Exploiting domain knowledge may better explain predictors

relationships and increase predictive power.

Methods: We compared three settings: grouping according to FTs or WHO drug/disease classification, and no

grouping, applying: random forests (RF) and block forests (BF), LASSO, LASSO for a constructed group variable

(NGL), and an extension of the adaptive rank truncated product (ARTP). We used the German

Pharmacoepidemiological Research Database to construct two matched case-control studies for gastrointestinal

bleeding (GIB) and intracranial bleeding (ICB). We controlled for age, sex, region of residence and time-to-event.

FT information were curated from the Therapeutic Target Database.

Results: In both samples, GIB (N=64,720) and ICB (N=34,600), LASSO, RF and BF (FT-grouping) performed

best. In the ICB sample, NGL (WHO-grouping) performed comparable to the LASSO and RF. The ARTP

performed poor showing slight improvement using WHO-grouping.

Conclusion: BF using FTs is a candidate method for risk prediction. Further investigation is required to determine

the effect of data set size, group structure and size on performance. This strategy is expendable with drug-target

score data and potentially dosage information.
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1 Introduction

Adverse drug reactions (ADRs) represent a burden on the health care system as they lead to patient morbidity and

mortality. In Europe alone, 3-10% of all hospital admissions are due to ADRs [1]. A patient's response to a drug,

including susceptibility to ADRs, is the sum of many factors such as: genetic makeup [2, 3], microbiome [4],

lifestyle, e.g., nutrition, alcohol consumption and smoking [5], co-morbidities [6], and concomitant drug use [7].

Particularly in elderly patients, polypharmacy and multi-morbidity can lead to an increased risk of ADRs [6, 8].

Identifying groups of patients at increased risk of ADRs becomes of utmost importance. Such identification can be

achieved based on a number of patient characteristics, particularly co-administered drugs and co-morbidities.

Therefore, the incorporation of various data types at high-resolution on a large scale is required. A comprehensive

resource of such data is health care claims data. Health care claims databases store routinely collected data for

reimbursement purposes by statutory health insurances (SHIs). They contain demographic information (e.g., age,

sex, occupation), prescription information (e.g., drug name, dose, duration, and possibly route of administration

and therapeutic indication), and diagnosis information (e.g., in- and outpatient diagnoses and procedures [9, 10,

11]. The quality, magnitude and comprehensiveness of their data qualify health care claims databases as a good

source for ADR prediction.

In Figure 1a, the classical approach to predict patient risk is schematically represented. Classically, patient risk is

predicted based on the associations between individual risk factors (drugs and diseases) and the ADR. This

approach is limited by 1) the restricted available information for patients exposed to these drugs, and 2) the scale at

which statistical models can handle and utilize such a relatively large number of variables. Methods for variable

selection (e.g., penalized logistic regression) are important data dimensionality reduction approaches for

large-scale signal detection studies. Another approach to reduce data dimensionality is testing for association

between a group of covariates (e.g., drugs/diseases) and a specific outcome (e.g., ADR). This concept is

well-established in genetic epidemiology (shown schematically in Figure 1b). In genetic epidemiology, pathway

analysis approaches allow for combining evidence for associations between single covariates (e.g., genes) and the

outcome (e.g., phenotype), which 1) leads to better signal detection, and 2) helps to interpret the risk factors

according to their biological pathways.

Here, we propose that instead of assessing the associations between the drugs and diseases, and the ADR directly,

the associations between the groups and the ADR shown should be investigated. Further, as sketched in Figure 2,

we propose that drugs and diseases are grouped by the functional targets (FTs) they interact with. We define a FT

as: a pathway of interacting biomolecules (e.g., enzymes, receptors) that are affected by the drug [12] or associated

with a disease. We hypothesize that drugs and diseases involved with an FT are more likely to lead to the ADRs

associated with that FT.

There are several public repositories of largely manually curated biological and chemical databases that link drugs

and diseases to FTs, e.g., the Therapeutic Targets Database (TTD) [13], ChEMBL [14], Search Tool for Interacting

Chemicals (STITCH) [15], and the Kyoto Encyclopedia of Genes and Genomes (KEGG) [16]. To the best of our

knowledge, TTD is the most comprehensive publicly available online database that allows linking drugs and
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diseases to the same FT. First, TTD provides clear, comprehensive information on drug-disease relationships

according to the ICD coding system. KEGG, in contrast, is highly selective as it provides information on the

diseases that primarily have an underlying genetic cause. Second, TTD can be readily cross-referenced with the

well-known knowledge base KEGG, and with ICD and ATC systems (used by SHIs data). Therefore, we

considered using TTD for curating grouping structures to annotate the predictors.

Here, we elaborate on the proposed approach using an example of the direct oral anticoagulants (DOACs). The

four DOACs, dabigatran, rivaroxaban, apixaban and edoxaban, have been used for thromboembolism prevention

and/or treatment, acting via direct inhibition of coagulation cascade factors (i.e., enzymes) [17]. In particular, the

target of dabigatran is thrombin, while the target of the other three DOACs is the coagulation factor Xa. Those two

enzymes are encoded by genes in the complement and coagulation cascade pathway (KEGG ID: hsa04610).

Therefore, in our approach, DOACs belong to the functional target-based group hsa04610, because their target

enzymes are encoded by genes in this pathway. Furthermore, underlying co-morbidities can affect drug choice and

ADRs; selective serotonin reuptake inhibitors would increase the risk of bleeding in depressed patients with

myocardial infarction [6]. A FT-based view can explain ADRs, providing an understanding of the combined

drug-disease effect. By exploiting domain knowledge to assign drugs/diseases to groups, we can possibly improve

risk prediction by increasing the power for detecting associations. In addition, pooling the data within each group

reduces data dimensionality. Moreover, target-based prediction of ADRs might help resolve target pathways (more

importantly unintended target pathways) of drugs, which can better explain the underlying mechanisms of ADRs.

Various methods were developed integrating domain knowledge on drug and disease molecular targets, and a few

were applied to various forms of electronic health care data with the purpose of ADR prediction. Examples of the

developed methods include data mining and/or machine learning methods using information on molecular

similarity between drugs [18], drug molecular pathways [19], and drug-drug interactions [20], or using ATC

classes [21, 22]. Concerning health care claims databases, data mining methods have been used for safety signal

detection (reviewed in [23]). Nevertheless, to the best of our knowledge, such approach is yet to be used for

large-scale ADR prediction using health care claims data.

In this study, we aim at comparing the predictability of an event of interest (EI) in patients given his/her drug

exposures and diseases using FTs. We consider statistical methods that are able to exploit this underlying group

structure, some of which were able to infer the FTs (and drugs and diseases) that are associated with the risk of the

event. We compare the effect of FTs grouping structures to that of the WHO classification systems for drugs

(Anatomical Therapeutic Chemical Classification System; ATC) and diseases (International Classification of

Diseases; ICD). We apply our approach to health care claims data from the German Pharmacoepidemiological

Research Database (GePaRD) [24] in two case-control studies considering two adverse drug events:

gastrointestinal bleeding (GIB) and intracranial bleeding (ICB), both are linked to the use of DOACs.

2 Methods
2.1 Data source and data privacy
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The data source for this study is GePaRD [24] established by the Leibniz Institute for Prevention Research and

Epidemiology—BIPS. GePaRD is based on claims data from four statutory health insurance (SHI) providers in

Germany, and currently includes information on ~25 million persons who have been insured with one of the

participating providers since 2004 or later. In addition to demographic data, GePaRD contains information on drug

dispensations as well as outpatient (i.e., from general practitioners and specialists) and inpatient services and

diagnoses. Per data year, there is information on approximately 20% of the general population and all geographical

regions of Germany are represented. Diagnoses are validated according to the International Classification of

Diseases, 10th revision, German Modification (ICD-10-GM). Drug dispensations are mapped according to the

Anatomical Therapeutic Chemical Classification System (ATC).

In Germany, the utilization of health insurance data for scientific research is regulated by the Code of Social Law.

All involved health insurance providers as well as the German Federal Office for Social Security and the Senator

for Health, Women and Consumer Protection in Bremen as their responsible authorities approved the use of

GePaRD data for this study. Informed consent for studies based on claims data is required by law unless obtaining

consent appears unacceptable and would bias results, which was the case in this study. According to the Ethics

Committee of the University of Bremen, studies based on GePaRD are exempt from institutional review board

review.

2.2 Study population and design

We conducted two case-control studies nested in a cohort of insurants who were required to: 1) be continuously

insured from July 1, 2014 until December 31, 2016 with no occurrences of the  event of interest (EI) until March

31, 2015, and 2) to have complete demographic information and had to be born not earlier than 1997. Cohort entry

was January 1, 2015. Cohort exit was the first of the following dates: onset of the EI, death or end of study period

(December 31, 2016).

Cases were defined as the patients who were hospitalized for either gastrointestinal bleeding (GIB; first

case-control study) or intracranial bleeding (ICB; second case-control study). GIB ICD-10-GM codes are: I983,

K226, K228, K2280, K2281, K2288, K250, K252, K254, K256, K260, K262, K264, K266, K270, K272, K274,

K276, K280, K282, K284, K286, K290, K3182, K5522, K5532, K5582, K5701, K5703, K5711, K5713, K5721,

K5723, K5731, K5733, K5741, K5743, K5751, K5753, K5781, K5783, K5791, K5793, K625, K661, K920, K921,

and K922. ICB ICD-10-GM codes are: I61, I610, I611, I612, I613, I614, I615, I616, I618, I619, I60, I600, I601,

I602, I603, I604, I605, I606, I607, I608, I609, I62, I620, I6200, I6201, I6202, I6209, I621, I629, S0633, S0634,

S064, S065, and S066. ICD code descriptions are in SI_File1. The admission date is referred to as index date. Four

controls were matched to each case with respect to sex, year of birth and index date. Each control was assigned an

index date that resulted in the same follow-up time as for the corresponding case. Cases of an EI were not eligible

to be selected as controls for the same EI; controls of one EI were eligible to be selected as controls for the other

EI.

2.3 Predictor assessment 
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The following categories of potential predictors were considered in the analysis: disease diagnoses, drug

dispensations, demographic variables (sex, age, region code). Disease predictors were obtained from in- and

outpatient diagnosis data (i.e., main discharge diagnosis, secondary and auxiliary diagnosis, diagnosis for

ambulatory treatment, or hospitalization diagnosis) prior to the onset of the EI as ICD-10-GM codes. Drug

predictors were obtained from reimbursable dispensation data prior to the onset of the EI as ATC codes.

Demographic data and time-to-event (i.e.,  the number of days between the study entry and the onset of EI in days)

were treated as adjustment variables.

2.4 Annotation of predictors into group structures

Two annotation schemes were considered for grouping drugs and diagnoses: classical drug and disease

classification systems by the WHO, and functional target-based annotation. First, for the WHO grouping, we

aggregated predictors according to the WHO respective drug and disease classification systems. For dispensation

data, codes were truncated to ATC 4 th digit, while disease codes were truncated to ICD 3rd digit. Second, groups of

predictors belonging to a functional target were aggregated according to drug and disease target information as per

Therapeutic Target Database (TTD, Update: 6.1.01) [25].

We used the following data from TTD: drug-target gene data and disease-target gene data. A target gene is a gene

coding for, for most drugs, a molecule that the drug interacts with to exert its effect, or, in case of a disease, a

molecule linked to the disease (e.g., coagulation factor Xa and atrial fibrillation, bleeding). Predictors belonging to

a target gene were further aggregated and mapped to human KEGG pathways as: drug-pathway and

disease-pathway relationships. A pathway consists of the genes coding for the interacting biomolecules that are

affected by the drug or associated with a disease. Pathway-based aggregation is intended to reduce data

dimensionality and provide a pathway-centered interpretation.

For each grouping scheme, there is a possibility that a predictor cannot be assigned to a group, for example,

because the target gene of a drug or a disease is not yet discovered or curated. This mainly applies to FT grouping,

as in WHO grouping, a drug or disease, respectively, hierarchically belongs to an ATC or an ICD group. In case of

singletons (predictors without FT information), two strategies were followed: 1) creating a group of singletons

(i.e., grp262, denoted as 1gp), and 2) splitting singletons into 1-member groups (1:n_singletons; denoted as split).

2.6 Statistical analyses

Four non-group-based and group-based statistical methods were compared in their ability to predict the risk of GIB

and ICB using health care claims data. We fitted a prediction model for each EI and for each method based on the

grouped or single predictors. Both case-control samples were split so that cases with an even ID number were used

as to fit the model and cases with an odd ID number were used to evaluate the prediction performance.

The methods applied were chosen with regard to their ability to analyze and group high-dimensional data.

Additionally, we applied those methods that were implemented in R (version 4.0.2) and able to process the data in

reasonable time. The chosen methods were the LASSO [26, 27], random forest (RF) [28], block forest (BF) [29],
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the LASSO for a constructed group variable (i.e., naïve-group LASSO; NGL), and the adaptive combination of

rank truncated product (ARTP) [30].

First, we considered regularized regression methods because they exploit sparsity and they are able to detect

signals in high-dimensional data sets. This is applicable here, as we hypothesize that only a minor proportion of the

marketed drugs and diagnoses could cause the EI. The most popular penalized regression method, the LASSO, was

applied for single and grouped predictors as implemented in the R package glmnet (v 4.0.2) [31]. To apply the

LASSO with grouped predictors (i.e., NGL), we constructed a group variable based on the sum of predictors

within one group (i.e., FT-based or WHO classification-based), multiplied by where n is the number of1/ 𝑛

predictors within group, to account for the varying group sizes. We utilized ten-fold cross-validation to select the

penalty term λ.

Second, regarding machine learning approaches, we considered two methods that could analyze ungrouped and

grouped high-dimensional data, which are, respectively, RF and BF. BF is a further development of RF that is able

to combine different types of omics data for outcome prediction. While RF is known to capture complex

dependence structures in data, BF additionally allows for including a priori known group structures to improve

prediction performance. To estimate RFs, we used the function ranger (v 0.12.1) [32] with its default settings,

where the variable importance was determined by permutations. We also used the package blockForest (v 0.2.4) to

estimate the forests using the same settings as for RF, while adjusting the number of groups of tuning parameter

values to 50 (for computational resources and time constraints), and the number of trees in each forest during

tuning parameter optimization to 50.

Third, the ARTP was considered, which is a gene set enrichment method that was originally designed for single

nucleotide polymorphism (SNP) data [30]. It is a hypothesis testing approach to select biological pathways that are

enriched with genetic variants to be associated with a phenotype. The method preserves the correlation structure

between genes by using permutation tests, and it has the potential to detect subtle effects of genetic variants in a

pathway that might be missed when assessed individually. The ARTP uses p values from any statistical association

test performed between individual SNPs and the disease outcome. We adopted the ARTP method for detecting

associations between the EI and the groups when using binary health care claims data, and modified for individual

risk predictions. We implemented it in R as the ARTPredict package [33]. The ARTP used p values from an

adjusted logistic regression model, and used permutation tests (n = 50) based on the p values preserving group

correlation structure. It then used a cutoff for group selection p value ≤ 0.05.

In summary, the predictors were analyzed according to either: no grouping (ng), FT-grouping (FT-g), or grouping

according to the WHO drug/disease classification (WHO-g). For each  EI, the methods were applied in the

following settings: RF for ng, BF for FT-g and WHO-g, the LASSO for ng, the NGL for FT-g and WHO-g, and the

ARTP for FT-g and WHO-g. The LASSO and NGL models were adjusted for sex, age, GKZ5 (truncated at the 3 rd

character), and time-to-event. For all grouping settings, the two approaches for handling predictors with unknown

FT (i.e., singletons) were applied (i.e., 1gp and split) in case of NGL and the ARTP. For BF, which is designed to

handle blocks of omics data, we only used the 1gp approach. For all these methods, non-informative variables (i.e.,

no variance variables) were excluded. An ensemble prediction was evaluated as well; a case is predicted when >

7



50% of the methods predict it as a case. Ensemble prediction was compared when using: 1) FT-g (1gp) + ng, 2)

WHO-g (1gp) + ng, and 3) FT-g (1gp) + WHO-g (1gp) + ng.

The performance of the statistical methods was assessed with respect to accuracy, precision, recall, the area under

the curve, and the area under the precision-recall curve (PR-AUC) of the methods in predicting the selected EI in

the test dataset. We considered the PR curve for prediction evaluation, as it is argued to be more informative than

the receiver operating characteristics (ROC) curve in case of evaluating binary classifiers on imbalanced datasets

[34]. We calculated the baseline value for a random classifier for the PRC-AUC as follows: baseline performance =

number of positives / (number of positives + number of negatives). Associated variables or groups are selected

based on either variable coefficient (LASSO), variable importance (RF), constructed group variable coefficient

(NGL), block split value (BF), or block p value (ARTP).

3 Results
3.1 Study population description

The cohort included 7,140,746 persons; 12,944 cases of GIB and 6,920 cases of ICB were identified to whom we

matched 51,776 and 27,680 controls, respectively. Figure 3 illustrates the study flowchart.  Seventy-nine insurants

were considered cases in both subcohorts. In both nested case-controls samples, the majority of cases were male

(GIB: 60 %, ICB: 62.4%) and the mean age was 66 (GIB) and 67 (ICB) years [standard deviations (SD) (GIB: 17,

ICB: 16) see Table 1 and SI_File2]. The mean number of days in the sample until the event occurred was 417 for

GIB (SD: 185) and 411 for ICB (SD: 185). Death within the study period occurred in 2.8% of GIB cases and 8% of

ICB cases, while not among controls. Moreover, we examined the proportion of patients with DOAC dispensations

in the study period, those were 6.1% of the total GIB sample and 5% of the ICB cohort.

The number of drug and disease predictors were 8,577 (GIB) and 7,847 (ICB);  the majority of which are diseases

(see Table 1 and SI_File2). In both samples, the largest proportion of predictors could be grouped using the

FT-grouping (82%). Furthermore, the frequencies of group sizes are presented in Figure 4. In both grouping

schemes and both samples, the larger the group size, the less abundant they are in the samples. Concerning

FT-grouping, disregarding singletons, the group sizes range from 2 to 4000 predictors (4762 in GIB and 4310 in

ICB), with the most occurring group sizes falling into the 2-402 predictor/group category, while only a small

proportion of groups have sizes larger than 3000 predict/group. Concerning WHO-grouping, the group sizes range

from 1 to 36 predictors in GIB and 1 to 29 predictors in ICB), with the largest proportion of group sizes falling into

the 1-6 followed by 6-11 predictor/group categories.

3.2 Outcome prediction

The predictive performance of each of the statistical methods applied was evaluated according to standard

classification measures. Table 2 shows the area under the precision-recall curve, while the full performance

spectrum is presented in SI_File4. LASSO, RF and BF using FT-grouping performed best in both case-control

samples. The PR-AUC is comparable for these three methods in the GIB sample (0.7). In the ICB sample, the NGL

using WHO-grouping predicted the outcome as good as the LASSO or RF (0.8), while BF outperformed all these
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methods when FT-grouping was used (0.825). The prediction performance of the ARTP was in general poor,

nevertheless, when using WHO-grouping, the performance slightly improved (0.5 vs. 0.45 in GIB and 0.6 vs. 0.3 in

ICB). Finally, we assessed the performance of an ensemble prediction based on best FT-g predictions (where

singleton predictors are treated as 1gp), WHO-g or both, which were all comparable in both samples (0.71 in GIB

and 0.82 in ICB).

3.3 Selected predictors

Here we present a quantification of top selected predictors and groups by the methods compared in this study. The

number of selected predictors by the LASSO and RF, and of the selected groups by NGL, BF and ARTP for GIB

and ICB are presented in Table 3, while the importance values of the selected variables and groups are presented in

Table 4.

In general, a consistently larger number of predictors were selected in the GIB study compared to the ICB study,

except for NGL FT-g 1gp (187 in GIB and 192 in ICB). The largest number of predictor groups were selected in

case of WHO-g grouping by the NGL (487 in GIB and 359 in ICB), and by the ARTP (871 in GIB and 523 in

ICB). Concerning predictor variables, the LASSO selected 840 variables for GIB, compared to 107 for ICB. The

lowest number of predictor groups were selected by NGL FT-g split in ICB (52). We also assessed the number of

combined selected variables by ensemble of methods either for FT-g only, WHO-g only or both, where FT-g

selected fewer variables and groups (1,158 in GIB and 437 in ICB) than WHO-g (1,965 in GIB and 899 in ICB)

scheme in both studies. It is important to notice for the overlap between the groups from each grouping scheme in

the ensemble of potential risk factors (2,259 in GIB and 1,187 in ICB).

In Table 4, the list of the highest ranked variables and groups (top 10) are presented, as by RF, BF using FT

grouping and WHO grouping. In the GIB sample, RF ranked highest the ICD codes that are either included in case

definition and or are directly linked to the EI (e.g., K92, D500, D62), while BF FT-g and WHO-g ranked highest

the ICD groups and FTs that are involved in cancer and urinary system disorders (e.g., hsa05219, hsa04115,

hsa05212, D41, C24). Concerning cardiovascular-relevant predictors, BF FT-g ranked highest complement and

coagulation cascades (hsa04610) and renin-angiotensin system (hsa04614) pathways, while BF WHO-g ranked

highest cardiomyopathy (I43).

In the ICB sample, RF ranked highest the ICD codes that are either included in case definition and or are directly

linked to the EI (e.g., I620, I609, I619, S060, S065), while BF FT-g and WHO-g  ranked highest the FTs and the

disease groups that are involved in cancer (e.g., hsa04068, hsa05217, hsa05205, hsa04350), autoimmune diseases

(e.g., hsa05320, dsL43), or indicate central nervous system disorders (e.g, S10, G90, hsa04360, hsa05214).

Concerning cardiovascular-relevant predictors, BF WHO-g ranked highest: essential (primary) hypertension (I10)

and other disorders of white blood cells (D72). Finally, BF FT-g ranked the target-less predictors group (grp262)

highest.

We explored the overlap in selected predictor variables and groups across the methods (see SI_File5). For

ungrouped methods, in both samples, LASSO selected the predictors that RF ranked highest. Concerning FT-g, all

top 10 FT groups by BF FT-g were also ranked the highest by ARTP FT-g in both samples (except for grp262 in
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ICB). NGL FT-g selected FTs and those ranked highest by BF and the ARTP overlapped. Finally, concerning

WHO-g, the top 10 WHO groups by BF WHO-g minimally overlapped with the highest ranked groups by ARTP

WHO-g or those selected by NGL WHO-g in both GIB and ICB samples.

Moreover, we explored further predictor variables and groups focusing on: 1) adjustment variables (i.e., age, sex

and time-to-event), 2) custom-made groups (adjustment variable group grp261 and target-less predictors group

grp262), and 3) the DOACs either as predictor drugs or their FT or WHO groups. In GIB sample, age and

time-to-event were selected by LASSO, NGL FT-g (split) and NGL WHO-g, while sex was only selected by NGL

FT-g (split). Age and time-to-event were ranked among the top 10 predictors by RF but not the ARTP, however the

adjustment group of variables (grp261) was ranked high by ARTP FT-g (1gp). In ICB sample showed a similar

trend with sex was only selected by NGL FT-g (1gp) (see SI_File5). In GIB sample, aside from BF FT-g results,

the three known FT pathways of DOACs, namely, hsa04610 hsa04080 and hsa04810, were ranked the highest only

by the ARTP FT-g (1gp and split), while only two of the pathways were selected by NGL FT-g (1gp), also the

ARTP WHO-g ranked high the drug group antithrombotic agents (B01A), while the DOAC dabigatran was only

selected by the LASSO. In the ICB sample, similar results were obtained, except that no DOACs were selected or

ranked high by any method.

4 Discussion
In this study, we compared five statistical methods in their ability to predict an event, comparing non-group-based

and group-based methods. We used two grouping schemes, classical WHO classification of drugs and diseases, and

pathway-level grouping based on functional target data curated from the TTD. For that, we designed a nested

case-control study to construct and analyze two matched case-control subcohorts (1:4) of adult insurants in

GePaRD with and without main hospital diagnosis of one of two events, GIB and ICB.

4.1 Events of interest

We chose two serious events that could lead to morbidity and mortality in patients. Here we discuss those events

focusing on three aspects: underlying conditions, drug pharmacodynamics and drug pharmacokinetics.

Gastrointestinal bleeding is a serious concern in elderly patients. The common causes of GIB in the elderly are

underlying conditions (e.g., peptic ulcer, malignancy, diverticular hemorrhage, hemorrhoids, inflammatory bowel

disease) [35]. Moreover, both upper and lower GIB is known to be linked to administration of aspirin, nonsteroidal

anti-inflammatory drugs (NSAIDs) and antithrombotic drugs (reviewed in[35]). It is, therefore, recommended, in

case of GIB, to consider patient history with respect to diseases/procedures (i.e., previous abdominal surgery) and

current medication. Concerning ICB, the use of DOACs have been also considered a risk factor for developing

ICB in case of mild traumatic brain injury [36]}, increasing in the haemorrhagic risk profile patients under

anticoagulant therapy.

In addition to intentional drug targets, the molecules drugs bind to in order to exert their intended effect (see

Introduction section), there are the molecules that are involved in drug pharmacokinetics (i.e., absorption,

distribution, metabolism, and excretion). We focus on three factors causing pharmacokinetic variations: single

nucleotide variants in genes coding for key enzymes in drug pharmacokinetics, co-administration of drugs
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interacting with those key enzymes, and pre-existing disease conditions that affect drug absorption and/or

elimination [17]. For example. co-administration of the DOACs and drugs that interact with the enzymes integral

to DOACs pharmacokinetics can slow down DOACs metabolism and increase risk of bleeding. Those can be

either enzymes for activation (CES1 for dabigatran), metabolism (CYP3A5 for apixaban), or clearance (e.g.,

acetaminophen or morphine interaction with UGT2B15 slow down dabigatran’s elimination), or transport proteins

[e.g., co-administration of glycoprotein-P inhibitors (e.g., erythromycin, atorvastatin) increase dabigatran’s blood

concentration]. Single-nucleotide variants in the genes encoding for the aforementioned key enzymes and

transporters can lead to variations in DOACs pharmacokinetics and to an increased risk of bleeding [17]. We refer

to the comprehensive review by Ašić et al. on the pharmacogenetics of DOACs [37].

This study aims at comparing the predictability of an EI in patients given his/her drug exposures and diseases using

FTs rather than an in-depth investigation of factors associated with GIB or ICB, or DOACs targets. Below, we

focus on discussing the predictive performance of the methods. Nevertheless, we expect to see three categories of

predictors (or groups) selected with the highest ranks: event ICDs (e.g., patient history, outpatient diagnosis), ICDs

of underlying conditions of the event or those affecting DOACs clearance, and ATCs of the interacting drugs,

which also we discuss below.

4.2 Grouping annotation and structure

We inspected several, largely manually curated, biological and chemical databases that link drugs and diseases to

FTs, e.g., the comprehensive knowledge base KEGG, TTD focusing on curated drug-target information, and

STITCH forg drug-target binding scores. For this model proposed here, we favored the manually curated TTD.

Our approach can be also complemented with STITCH data. Issues with FT annotation are mainly: handling

predictors of unknown targets and the impact of overlap between groups. The ARTP, FT and NGL analyzed group

data independently and were not affected by overlap. It is interesting to evaluate the effect of group size on the

selection. Here, the largest groups were not selected (e.g., cancer hsa04020 and metabolic hsa01100 pathways).

Compared to FT-based grouping, conventional ATC/ICD grouping, does not provide the molecular-based

interpretation we proposed. However, the group numbers are larger, yet sizes are 2-fold smaller and there is no

overlap among the groups. Computationally, this was less challenging for all grouping methods.

4.3 Prediction evaluation

We considered the precision-recall (PR) curve for prediction evaluation as it is argued to be more informative than

the receiver operating characteristics (ROC) curve in case of evaluating binary classifiers on imbalanced datasets

{Saito2015}. In such EI, we expected highly imbalanced data as only a minor proportion of the predictors are

believed to be truely associated with the EI. Based on the PR-AUC, LASSO, RF and BF FT-g performed best in

both EI samples. BF is designed for analyzing large groups of omics data. FT-grouping resemble that of variant

data, FT-grouping improved BF performance, possibly through increasing the power for detecting association.

WHO-grouping, on the other hand, improved NGL performance. The constructed group variable was based the

sum of predictors and correcting for group size. It is possible that, in case of FT-grouping, this resulted in identical
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group variables across overlapping groups, which were not handled well by the LASSO. In case of

WHO-grouping, there are no overlapping groups and the group variables are somehow unique and would improve

the predictive power of the LASSO.

Investigating the performance of a genetic epidemiology method was inspired by the resemblance of our proposed

approach to enrichment analysis. The ARTP algorithm is designed for SNP data analysis, in which the number of

groups and variables are similar to those we had here, yet the number of observations is expected to be many folds

less. The bottleneck in the ARTP was modeling each group, particularly those of very large number of predictors.

It is possible that, if computational constraints are addressed, an increase in the number of permutations would

improve the ARTP performance.

Finally, the selected predictors by the methods include groups and variables that are known to be linked to the

events in question. In case of GIB, concerning WHO-g and ng, RF and BF rank the underlying conditions highest,

yet not the drugs. while the LASSO selected a DOAC, and the ARTP ranked antithrombotic agents high.

Concerning FT-g, a large overlap between ARTP and BF ranking is observed. It is then important to consider a

ranking for the large number of selected predictors (by the LASSO) or groups (by the ARTP), where, respectively,

either no p value or the same p value is generated.

5 Conclusion and Outlook
This study attempted at evaluating statistical methods' performance in predicting ADR risk in health care claims

data incorporating molecular ontologies and domain knowledge, and modifying methods transferred from genetic

epidemiology for ADR prediction. FT-based grouping would offer an advantage for ADR risk prediction and

inference of involved factors, compared to conventional ATC/ICD systems alone, exploiting the underlying

relationship between the predictors and the ADR. The results of our comparative study suggest block forests using

FTs as a candidate method for individual risk prediction and for inference of suspected risk factors. This study

highlights the need for an ad-hoc linear model for quantifying LASSO-generated associations. As well, it

highlights considering a cutoff for RF and BF importance, and also considering evaluating both BF blocks based

on split value  and variables based on importance.

Further investigation is required to determine the extent to which data set size, group structure (i.e., group overlap,

handling target-less predictors) and group size affect methods performance. Optimization for methods that correct

for group size, such as group LASSO, is also required for large-scale prediction and inference. Moreover,

construction of a risk profile as well as using an ensemble risk prediction compiled of more than one method might

allow for combining the strengths of those methods,  better prediction of ADRs and consequently personalized

medical decisions. Our proposed approach for FT-based grouping of predictors can be complemented with

drug-drug and, when available, disease-disease relationships as in score matrices (e.g., integrating drug-target score

data from STITCH).  Furthermore, our model can also be extended with dosage information (i.e., defined daily

dose).
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Tables
Table 1: Descriptive statistics of the study populations.

GIB ICB

Affected cases
(N=12944)

Controls
(N=51776)

Total
(N=64720)

Affected cases
(N=6920)

Controls
(N=27680)

Total
(N=34600)

Sex

  Male (%) 7767 (60%) 31068 (60%) 38835 (60%) 4319 (62.4%) 17276 (62.4%) 21595 (62.4%)

  Female (%) 5177 (40%) 20708 (40%) 25885 (40%) 2601 (37.6%) 10404 (37.6%) 13005 (37.6%)

Age, yrs  (Range 18 - 101)

  Mean (SD) 66 (17) 66 (17) 66 (17) 67 (16) 67 (16) 67 (16)

Time-to-event, days (Range 90 - 730)

  Mean (SD) 417 (185) 411 (185)

Death

Yes (%) 352 (2.7%) 0 (0%) 352 (0.5%) 560 (8.1%) 0 (0%) 560 (1.6%)

No. covariates

Total 8040 7346 8577 6303 7338 7847

  Mean (SD) 48.2 (29.6) 27.1 (22.5) 31.3 (25.5) 42.3 (27) 27.1 (22.7) 30.1 (24.4)

  Range 0 - 310 0 - 221 0 - 310 0 - 218 0 - 222 0 - 222

No. NI (%) 537 (6.3) 1231 (14.4) 0 (0) 1544 (19.7) 509 (6.5) 0 (0)

DOACs use

Yes (%) 1596 (12.3) 2342 (4.5) 3938 (6.1) 485 (7) 1253 (4.5) 1738 (5)

GIB = Gastrointestinal bleeding; ICB = intracranial bleeding; NI = Non-informative covariates; DOACs = Direct
oral anticoagulants.
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Table 2: The area under the precision-recall curve (PR-AUC) of prediction performance for GIB and ICB.

GIB ICB
Ungrouped
LASSO 0.706 0.798
RF 0.703 0.806
Grouped (FT-g)
NGL (as 1gp; split) 0.582; 0.556 0.667; 0.617
BF (as 1gp; split) 0.702; NA 0.825; NA
ARTP (as 1gp; split) 0.449; 0.446 0.312; 0.311
Grouped (WHO-g)
NGL (as 1gp; split) 0.683; NA 0.8; NA
BF (as 1gp; split) 0.53; NA 0.579; NA
ARTP (as 1gp; split) 0.515; NA 0.596; NA
Ensemble
ng + FT-g (as 1gp) 0.716 0.824
ng + WHO-g 0.712 0.82
ng + FT-g (1gp) + WHO-g 0.713 0.821

GIB = Gastrointestinal bleeding; ICB = intracranial bleeding; RF = Random Forest; NGL = Naïve-group LASSO;
BF = Block Forest; ARTP = Adaptive combination of Rank Truncated Product; FT-g = Functional Target-based
grouping; WHO-g = ATC/ICD-based grouping; ng = ungrouped; 1gp = Target-less singleton predictors grouped as
one group; split = Target-less singleton predictors treated split into single groups of one predictor each. PR-AUC
baseline = 0.2 (see Methods).
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Table 3: Number of selected predictors for GIB and ICB.

GIB ICB
Ungrouped
LASSO 840 107
RF1 100 100
Grouped (FT-g)
NGL (as 1gp; split) 187; 978 192; 52
BF1 (as 1gp; split) 100; NA 100; NA
ARTP (as 1gp; split) 256; 687 254; 482
Grouped (WHO-g)
NGL (as 1gp; split) 487; NA 359; NA
BF1 (as 1gp; split) 100; NA 100; NA
ARTP (as 1gp; split) 871; NA 523; NA
Ensemble
ng + FT-g (as 1gp) 1158 437
ng + WHO-g 1965 899
ng + FT-g (1gp) + WHO-g 2259 1187

1only top 100 predictors were considered

GIB = Gastrointestinal bleeding; ICB = intracranial bleeding; RF = Random Forest; NGL = Naïve-group LASSO;
BF = Block Forest; ARTP = Adaptive combination of Rank Truncated Product; FT-g = Functional Target-based
grouping; WHO-g = ATC/ICD-based grouping; ng = ungrouped; 1gp = Target-less singleton predictors grouped as
one group; split = Target-less singleton predictors treated split into single groups of one predictor each.
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Table 4: Highest ranking predictors and groups, according to importance (RF) or split value (BF) for GIB
and ICB. For RF, variable refers to ICD code. For BF (FT-g 1gp), group refers to KEGG pathway ID. For BF
(WHO-g 1gp), group refers to ICD group (prefix: ds).

4a: GIB

RF BF (FT-g 1gp) BF (WHO-g 1gp)
Variable Description Group Description Group Description
D62 Acute posthemorrhagic

anemia
hsa05219 Bladder cancer dsR43 Disturbances of smell and

taste
K922 Gastrointestinal

hemorrhage, unspecified
hsa04115 p53 signaling pathway dsD41 Neoplasm of uncertain

behavior of urinary organs
K921 Melena hsa05120 Epithelial cell signaling

in Helicobacter pylori
infection

dsQ91 Trisomy 18 and Trisomy
13

K920 Hematemesis mtu03020 RNA polymerase dsH92 Otalgia and effusion of ear
K298 Duodenitis hsa04920 Adipocytokine signaling

pathway
dsI43 Cardiomyopathy in

diseases classified
elsewhere

K290 Acute gastritis hsa04730 Long-term depression dsD89 Oth disorders involving
the immune mechanism,
NEC

D500 Iron deficiency anemia
secondary to blood loss
(chronic)

hsa04610 Complement and
coagulation cascades

dsD56 Thalassemia

K226 Gastro-esophageal
laceration-hemorrhage
syndrome

hsa05212 Pancreatic cancer dsD84 Other immunodeficiencies

K625 Hemorrhage of anus and
rectum

hsa04911 Insulin secretion dsF28 Oth psych disorder not due
to a sub or known physiol
cond

K296 Other gastritis hsa04614 Renin-angiotensin
system

dsC24 Malignant neoplasm of
other and unsp parts of
biliary tract
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4b: ICB

RF BF (FT-g 1gp) BF (WHO-g 1gp)
Variable Description Group Description Group Description
G810 Flaccid hemiplegia hsa04068 FoxO signaling

pathway
dsH74 Other disorders of middle

ear mastoid

S065 Traumatic subdural
hemorrhage

hsa00410 beta-Alanine
metabolism

dsI10 Essential (primary)
hypertension

I620 Nontraumatic subdural
hemorrhage

hsa05217 Basal cell carcinoma dsD72 Other disorders of white
blood cells

S066 Traumatic subarachnoid
hemorrhage

hsa04360 Axon guidance dsL43 Lichen planus

G936 Cerebral edema hsa05214 Glioma dsS10 Superficial injury of neck

I609 Nontraumatic
subarachnoid
hemorrhage, unspecified

hsa04350 TGF-beta signaling
pathway

dsY36 Operations of war

S020 Fracture of vault of
skull

hsa05320 Autoimmune thyroid
disease

dsG90 Disorders of autonomic
nervous system

I619 Nontraumatic
intracerebral
hemorrhage, unspecified

grp262 "Singletons group" dsZ48 Encounter for other
postprocedural aftercare

R412 Retrograde amnesia hsa00592 alpha-Linolenic acid
metabolism

dsO41 Other disorders of
amniotic fluid and
membranes

S060 Concussion hsa05205 Proteoglycans in
cancer

dsI62 Other and unspecified
nontraumatic intracranial
hemorrhage

GIB = Gastrointestinal bleeding; ICB = intracranial bleeding; RF = Random Forest; BF = Block Forest; FT-g =
Functional Target-based grouping; WHO-g = ATC/ICD-based grouping;1gp = Target-less singleton predictors
grouped as one group.
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Figure legends
Figure 1. A schematic representation of two approaches for ADR risk prediction. (a) illustrates the standard
approach in the field of pharmacovigilance. The left column contains all the drugs (1, 2, . . . ,  k) and diseases (1, 2,
. . . , l). The ADR of interest is shown on the right. The predictions are based on the associations between
individual risk factors (drugs and diseases) and the ADR, represented here by arrows pointing from each
drug/disease to the ADR. (b) illustrates the approach proposed in this study. Similarly, the left column contains all
the drugs (1, 2, . . . ,  k) and diseases (1, 2, . . . , l) as covariates. The middle column lists groups (1, 2, . . . ,  G) .
Each arrow between a drug/disease and a group represents the group membership. Note that drugs/diseases can
belong to multiple groups simultaneously, e.g., drug2 is in, both, group1 and group2. Instead of assessing the
associations between the drugs/diseases and the ADR directly as in (a), the associations between the groups and
the ADR are assessed, shown here by arrows pointing from the groups to the ADR.

Figure 2. The proposed approach to predict ADRs in routine data of the SHIs using functional targets (FTs).
First, relevant online genomic knowledge bases are queried for drug-target, disease-target, drug-disease and
drug-drug relationships to curate FTs. FTs serve as the grouping structure of the predictors. Within those FTs,
substructures and pairings exist, such as drug-drug structural and functional similarity, drug-disease relationship,
and less likely disease-disease co-existence. Second, an epidemiological study design is considered, and SHIs
database (here GePaRD) is queried for prescribed drugs, in- and outpatient diagnoses that are coded according to
international coding systems to facilitate being mapped to FTs. Third, the SHIs predictors are grouped according to
the grouping structure, and the risk of ADR is predicted using statistical models based on those structures. Drugs
are denoted in blue, while diseases are in green. Within a FT, solid lines represent drug-drug or disease-disease
relationships; dotted lines represent drug-disease (i.e., indication) relationships. GePaRD = The German
Pharmacoepidemiological Research Database; ADR = Adverse Drug Reaction.

Figure 3. Study eligibility and matching flowchart. The flowchart illustrates the number of available insurants in
the presented nested case-control cohort study, and the number of cases and controls in each subcohort. GIB =
Gastrointestinal bleeding; ICB = Intracranial bleeding.

Figure 4. Frequencies of group sizes in study samples. The distribution of the number of non-zero variance
drugs and diseases predictors per group in each of the two grouping schemes for each of the study samples:
gastrointestinal bleeding (GIB) and intracranial bleeding (ICB). Top-left: Frequencies of predictors per group size
category grouped according to functional targets from the Therapeutic Target Database (TTD) in GIB sample;
top-right: Frequencies of predictors per group size category grouped according to functional targets from the TTD
in ICB sample; bottom-left: Frequencies of predictors per group size category grouped according to the WHO
grouping of drugs and diseases as in the ATC/ICD classification in GIB sample; bottm-right = Frequencies of
predictors per group size category grouped according to the WHO grouping of drugs and diseases as in the
ATC/ICD classification in ICB sample.
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Supplementary information legends
SI_File1: Table of ICD codes considered as outcome in the study, their frequency and explanation.

SI_File2: Table of detailed descriptive statistics of the study populations.

SI_File3: Table of model performance for gastrointestinal bleeding and intracranial bleeding samples. Singleton

predictors that did not belong to a functional target (FT) were either analyzed as one group (one gp), or split into

dummy groups of one (split gps).

SI_File4: Information on variables and groups selected for gastrointestinal bleeding (GIB) and intracranial

bleeding (ICB) subcohorts by random forests (RF) and block forests (BF). Table 1 contains the highest ranked top

10 variables or groups, description and, respectively, importance value or split value. Table 2 shows the overlap of

the variables and groups selected by all the methods and settings for GIB. Table 3 show the overlap of the variables

and groups selected by all the methods and settings for ICB.
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